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ABSTRACT

In this paper, we implement a novel joint Bayesian method based on the classical

Bayesian face recognition method by Baback Moghaddam et al and a creative paper

”Bayesian Face Revisited: A Joint Formulation”. One face is divided into two parts

by us: identity and variation, which results a much better performance than the prior

algorithms and the verification rate reaches 93 % on LFW.

To compare each parameters in EM algorithm, we use two types training ways

and add a validation set as the stopping criterion. Additionally, we also reduce the

computational complexity by changing log likelihood ratio into a closed form. These

changes make our algorithm outweigh the performance of the original joint Bayesian

method with even lower dimensions LBP feature.

Key words: LBP, EM, Joint Bayesian
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Chapter 1

Introduction

1.1 Motivation

Face recognition is a ubiquitous and difficult topic. It can be divided into two

branches: face verification and face identification. On the one hand, face verifica-

tion is to ask Are they the same person? On the other hand, face identification is

about who is he? The former one is used more wide because it does not need much

amount of data which the other one does. If we want to know who he is from the

face image, we must label his face for train. However, to decide two faces if they

are the same subject requires much less information. Therefore, the challenge of face

verification is to test 100 people by training only 10 of them.

In recent years, big data has been going through all the fields. More and more

projects have to solve the problem that how to deal with the huge data warehouse to
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keep all procedures running fast and stable. Face verification also faces some similar

problems[1][2]: we can get a high dimension feature for a face image but it may take

too much time to train and test. Generally, to reduce the dimension of features[3] or

improve the hardware of projects are two solutions[4].

Many state of arts algorithms focus on looking for new features and mixing some

prior algorithms. It cannot be denied that they are both good ideas and more easier

to improve performance directly, though most of them are difficult to reused. From

a totally different viewpoint, we find a joint Bayesian model to outperform the other

methods, which can also be used flexible.

1.2 Previous Work

Before the 1990s, most research about face recognition is based on features and the

face recognition systems became possible such as the layered neural network system

of O’Toole et al[5]. In the 1990s, as a humans unique feature, facial feature drew more

scholars attention. Low recognition rate made the people feel frustrated and someone

propose to use template matching, which led to the famous eigenface technique using

Principle Component Analysis (PCA) by M. Turk and A. Pentland [6].

Many newest methods were originated from the eigenface at that time. They

extended the eigenspaces to subspace learning way and showed a more powerful re-

sult than standard eigenface, such as Etemad and Chellappas, which used Linear

Discriminant Analysis (LDA)[7]. Besides, with the recognition rate increasing, the

applications of face recognition system also attracted the companies about security
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or army. For instance, Craw modeled the shape of the face named ”shape-free” face

and combined it with the other methods[8]

As mentioned above, many successful features have been generally applied in face

recognition. Sift is invariant to image scale and rotation, and provide robust matching

across a substantial range of afne distortion, change in 3D viewpoint, addition of

noise, and change in illumination[9]. Histogram of Oriented Gradients (HOG) is

similar to that of scale-invariant feature transform descriptors but differs in that it is

computed on a dense grid of uniformly spaced cells and uses overlapping local contrast

normalization for improved accuracy[10]. Gabor filter is a linear filter used for edge

detection. Frequency and orientation representations of Gabor filters are similar

to those of the human visual system, and they have been found to be particularly

appropriate for texture representation and discrimination[11]. LBP is the particular

case of the Texture Spectrum model proposed in 1990 and it is widely used in face

recognition[12].

Learning-based descriptor (LE) is a novel representation to solve the face matching

issue[13]. Recent year, the face data have been mined more deep and the face data

system also become more robust, which has been divided to a pipeline with 3 different

fields in an order: face detection, face alignment and face verification (recognition)[14].

Face detection is obviously the first step in the whole system because we need

to get the exact face regions[15]. However, the face region also contains two much

information, especially a person with different angles and emotions. To avoid the big

data from face, the researchers begin using face alignment method to extract some

points on the face to represent the whole face. This means if we want to get LBP from

a face, only the alignment points need to be computed[16]. Nowadays, there are still
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many algorithms pick the features from the whole face directly, which will result in a

long training time, more memories of hardware cost and redundant information. But

the performance of them may not lower than the algorithms using face alignment

so that this procedure is often ignored by some researchers. The last step is face

verification or recognition algorithms that can tell us the identity[17].

Besides, choosing a better face image dataset to train and test is essential. Yale

Face Database is very famous but it is too small. It contains only 165 grayscale

images in GIF format of 15 individuals. Though the extended Yale Face Database B

is a large dataset with 16128 images, there are only 28 human subjects under 9 poses

and 64 illumination conditions[18]. Actually, they are pretty good datasets in the

beginning because the training set is diversity. Later, the researchers found that it is

not too difficult to get a good result in these databases. More importantly, the face

recognition algorithm performs still not well when it is used in a real application even

its recognition rate has reached 99% on Yale Face Database. Therefore, people have

realized two things: the face images should be got not only from the cameras in the

lab but also outside to make the algorithms more robust; more human subjects will

result in much more problems and we need a wide and deep database. Recent years,

Labeled Faces in the Wild (LFW)[19], built by UMASS Computer Vision Laboratory,

is used widely and become the most publicly known dataset. There are a total 5749

people with13233 images and 1680 of them with 2 or more than 2 images.
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1.3 Our Approach

Our approach utilizes much newest technology and creates a new model based on

Normal distribution and Bayesian face recognition. So the face verification becomes

a binary problem. The classical Bayesian methods use the difference between two

images as the features to decide if they are the same person. Instead, we model two

faces jointly with an appropriate prior as the face representation.

Obviously, the similarity between two images should be tested from two images

but it will lose much useful information if we only compute difference between two

images as features in the training step. There are some ways that can just relieve this

disadvantage but not solve it basically, such as metric learning. However, our model

is directly from the features of images but not the similarity of the pairs. It solves

the above problem that results from using the data after processing.

To get a convincing result, we need to use a good and popular dataset. As

mentioned above, LFW owns more than 5000 subjects of face images, it is very

appropriate for the face verification. By the doing many experiments, the verification

rate of our algorithm has reached about 90% on LFW.
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Chapter 2

Face Model

2.1 Motivation

Let HI represents the intra-pairs that two faces f1 and f2 belong to the same subject,

and HE represents the extra-pairs that two faces are from different subjects. Then,

the face verification problem focus on the similarity of intra-pairs and extra-pairs

based on the MAP (Maximum a Posterior) rule. To get the decision, we test a log

likelihood ratio r(f1, f2).

r(f1, f2) = log
P (f1, f2|HI)

P (f1, f2|HE)
. (2.1)

Equation.2.1 is a common measurement between two faces f1 and f2. In Bayesian

face recognition[20] by Moghaddam et al, two conditional probabilities are Gaussian

models used for model learning. The Bayesian face attracts more attention for its

excellent performance. For example, Gabor filter is used to replace normal features
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to show the face difference[21]. Wang and Tang[22] partitions the face difference

into three subspaces: intrinsic difference, transformed difference and noise. Instead

of using a native Bayesian classifier, Li, Z. and Tang use a novel way to train by

SVM[23].

Figure 2.1: The 2-D data is projected to 1-D by xy.

As shown in Fig.2.1[17], the two classes in joint representation are inseparable

after projecting the 2-D data to 1-D data, which means much information will be

lost. Class1 and Class2 could be considered as an intra-personal and an extra-personal

hypothesis in face recognition. Our method uses a competitive joint distribution and

Bayesian framework based on a Gaussian model. We introduce an appropriate prior

on face representation: each face is the summation of two independent Gaussian

latent variables, i.e., intrinsic variable for identity, and intra-personal variable for

within-person variation.
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2.2 Joint Formulation

In this section, we will introduce the original joint formulation before our joint formu-

lation. There are two mainly advantages for our new face model. Firstly, we directly

use the original face images but not the difference of each pair, which avoid losing

their common features. Secondly, we assume each person is composed of identity and

variation. And all the identities belong to a Gaussian distribution; all the variations

belong to the other one.

2.2.1 Original Models

As we talked in the introduction section, the face verification problem goes up later

than the face recognition. People have recognized that the face verification can be

used in much security application because it can work very well by training only a

small dataset. Therefore, some researchers used the face model of recognition at the

beginning.

In the LFW, some original face model is definitely classified by different subjects[24],

it is a normal way in face recognition approach but it is not appropriate for face ver-

ification because it only emphasize the difference between all the training human

subjects. It results in a narrow application: the system use this face model can only

verify the people in training set. Then, people realized that the face verification is

a very different field, the popular face model used in face verification appears: from

the two Gaussian functions
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P (f1, f2|HI) = N(0, σI),

P (f1, f2|HE) = N(0, σE)

(2.2)

we often utilize the similarity of each pair, where σI and σE can be estimated from

the intra-personal pairs and extra-personal pairs respectively. At the test time, the

log likelihood ratio between two probabilities is used as the similarity metric.The main

disadvantage of this face model is the ”Separately”. First, each human subject will be

represented separately because the variations are regarded as independent. Second,

it is difficult to compute each variation and it will lose some important information

between different subjects.

As a whole, the original model focus on changing the features or the model learning

way but ignoring the constitute of the model.[25][26][27][28]

Our new joint model ignore the restriction of each subject, we use identity part to

emphasize the extra feature and the variation to emphasize the intra feature, which

seems opposite to the original face models. A face can be represented by a sum of

two independent Gaussian variables:

f = µ+ ε (2.3)

Where f is the observed face with the mean of all faces subtracted, I represents

its identity is the face variation. These two variables belong to two Gaussian distri-

butions with zero mean such as N (0, Cµ), N (0, Cε) and Cµ ,Cε are what we want

to know. Because the means of these two Gaussian functions are 0, we can use only

Cµ, Cε to represent a face x. It is very useful to store the model and run the face

9



recognition system in a real-time.

Eqn.2.3 can be transfer to a linear form and the independent assumption between

I and , the covariance of two faces is:

cov(fi, fj) = cov(µi, µj) + cov(εi, εj), i, j ∈ {1, 2} (2.4)

Therefore, for the verification problem, the two conditions can be showed as follow:

Under HI hypothesis, if the two faces x1 and x2 are the same person, their identity

I1, I2 will be the same and their intra-person variations ε1, ε2 will be independent[29].

From the knowledge of Gaussian model and joint distribution, we can get the covari-

ance of the conditional probability P (f1, f2|HI ):

cov(µi, µj) =

 Cµ Cµ

Cµ Cµ

 ,

cov(εi, εj) =

 Cε 0

0 Cε

 ,

σI = cov(fi, fj) =

 Cε + Cµ Cµ

Cµ Cε + Cµ

 ,

(2.5)

Under HE hypothesis, if the two faces f1 and f2 are the different person, their

identity I1, I2 and their intra-person variations ε1, ε2 will be both independent. We

can also get the covariance of the conditional probability P (f1, f2|HE ):

10



cov(µi, µj) =

 Cµ 0

0 Cµ

 ,

cov(εi, εj) =

 Cε 0

0 Cε

 ,

σE = cov(fi, fj) =

 Cε + Cµ 0

0 Cε + Cµ

 ,

(2.6)

The 2-dimension matrix of covariance not only divides the two conditions exactly,

but also integrates the identity part and variation part to a square matrix. More

important is that we can use only one covariance of the model to control the result.

We will talk about how to use this face model in next section.
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Chapter 3

Algorithm

In our algorithm, Jian Sun’s ”Face Alignment via Component-based Discriminative

Search”[16] is used to find the face alignment points. We get 100 points near eyes,

nose and mouth for each face image, and implement LBP to get a 5900 dimension

vector to represent a face. Our new face model will be trained by EM algorithm

and the procedures are quite different with the one of normal Gaussian. Because our

objective function is not used to compute our final result.

3.1 Feature

3.1.1 LBP

Local binary pattern (LBP)[30][31][32] is a very popular feature in face detection,

alignment and recognition field. It is sensitive to texture and face wrinkle.

The Fig.3.1 shows a face image in LFW and its LBP feature, it is labeled as ”Aaron
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Figure 3.1: LBP of a face image

Eckhart”. LBP describes the neighborhood of each point on the face. So there will

be many types to implement LBP. We can use a circle or a square to restrict the

neighbor region and set a different neighbor area size. We choose only eight points

as the neighbor of a center pixel in our algorithm.

All the neighbor pixels will be compared to the center points. If a neighbor pixel

is bigger than the center point, it will be 1. Otherwise, it will be 0. So, we can get

an 8 bits binary number and change it to decimal number.

There are several ways to represent the LBP. For example, we can change the

order of binary number and 00000110 will be 00110000 (48) in Fig.3.3.

Because we choose only 8 neighbor points, there will be 28 = 256 patterns for a

center point. However, the researchers found that only several types take more than

13



Figure 3.2: different neighbor size

90 percent patterns. Ojala et al. define a new way to implement LBP using only one

or two changing pattern: in a pattern, the number of changes of 0 to 1 or 1 to 0 is

lower than twice[33].

Fig.3.4 is an example of uniform pattern and there are 58 uniform patterns in this

restriction. The other 198 patterns are integrated into one pattern, which means final

result contains 59 uniform patterns. For a face alignment point, we need to compute

the LBP of its 21*21 neighbors to build a histogram. Based on every histogram of

face alignment point, we can get a 5900-dimention feature for a 100 points face.

3.1.2 PCA

Principal Component Analysis (PCA)[34] is a statistics method using KarhunenLove

transform (KLT) to change the correlated variables into the linearly uncorrelated

variables. In our algorithm, 5900-dimention feature is too big to run fast due to the

large memory and training data.

As Fig.3.5 shown to us, it will cost about 595MB internal storage if we use 5900-

dimension feature directly. On the contrary, if we reduce the dimension to 800, it will

take only 81MB. The experiments prove that the lower dimension feature some time

14



Figure 3.3: different representation

performs even better.

The main idea of PCA is to find the most important information and rank them

in the order so that we can eliminate the less important ones and get the essence data

from the samples.

Suppose the resolution of 13200 training images is 250*250 and the dimension of

feature is 5900. First, we need to convert each image to a vector. Then, integrate

each face vector into a face matrix with 13200*5900. And the procedures as follow:

Step 1 mean of the images:

15



Figure 3.4: Uniform pattern of LBP

Figure 3.5: The storage of high dimension feature

f̄ =
1

n
∗
∑

fi (3.1)

Step 2 High dimension image matrix:

f̃i = fi − f̄i. (3.2)

A = (f̃1, f̃2, ..., f̃n) (3.3)

Step 3 covariance matrix:

16



C = AAT , (3.4)

The covariance matrix C is symmetric and positive definite. So the eigenvalues of

C is real and non-negative.

Step 4 Eigen-decomposition:

Cvi = divi, (3.5)

di are the eigenvalues and vi are the eigenvectors.

Step 5 Eigenvector matrix:

V = (v1 v2 v3...vn), (3.6)

Step 6 Low dimension image matrix:

V = (v1 v2 v3...vj), (3.7)

j is the dimension we want to remain.

3.2 Model Learning

As mentioned in the face model section, Cµ and Cε are two unknown variables. Ex-

pectation Maximization (EM) method is used in our algorithm, which is one of the

most popular machine learning approach.

17



3.2.1 EM

EM algorithm is an iterative method to find maximum[35][36]. In each loop, based

on the objective function, a new model will be built by updating the latent variables.

The loop will stop when the objective function is close to a stable maximization. We

hope to set the Cµ and Cε randomly and get the most appropriate joint face model

by updating them automatically via EM algorithm.

We can use a simple example to describe why our algorithm needs to use EM

algorithm[37]: if we want to know the height distribution of the boys and girls in

our university, we cannot ask everyone so that we select 100 boys and 100 girls as

the samples. Assume they follow two Gaussian models N1(U1, σ1), N2(U2, σ2) and we

do not know the U and σ. Compared to the LBP and face images, the problem of

height and people seems to be similar. Because we pick each person randomly, the

joint probability should be:

L(N) =
100∏
i=1

p(fi;N), (3.8)

If we want the heights of these people to be the most possible ones in our university,

we need to find a N to make the L(N) biggest:

L(N) =
100∏
i=1

p(fi;N), (3.9)

If we want the heights of these people to be the most possible ones in our university,

we need to find a N to make the L(N) biggest:

Ñ = arg(Max(L(N))), (3.10)

18



From this function, we can get the N1(µ1, σ1) and N2(µ2, σ2). It is maximum

likelihood estimation (MLE), which is the basic knowledge of EM algorithm.

Now, these 200 people go together and we select one from them. We cannot know

it belongs to a boys or a girls distribution and the detail parameters for each Gaussian

model. So MLE cannot be used directly for the problem like this because we need to

know which distribution it belongs to first.

This type of problem has two unknown variables A (boys or girls) and B (the

parameter of model). The solution is to set one variable A first to get the other

variable B and rectify the A by the feedback from B. For instance, we can arbitrary

select one hundred people as the boys, so we can get their mean and variance

Ñ1 = arg(Max(L(N1))), (3.11)

Certainly, for the girls,

Ñ2 = arg(Max(L(N2))), (3.12)

Then, we can distribute the 200 samples to Ñ1 and Ñ2, and we can get another

Ñ
′
1 and Ñ

′
2 again.

Therefore, as Fig.3.6 shown, the sample and the parameters decide which Gaussian

model it should follows and the samples in each model decide the parameters.

Then, we need to use the mathematics way to prove the convergence of EM

algorithm and its procedures. Assume the training set is f1, f2, ..., fm,the samples

are independent, we want to find the latent class z, make the p(f,z) be the maximum.

MLE of p(f,z) is
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Figure 3.6: EM algorithm procedures

L(N) =
m∏
i=1

p(fi;N),

L
′(N) = logL(N) =

m∑
i=1

logp(f, z;N)

(3.13)

EM is an effective way to solve the optimum problem with latent variables. It

cannot be used to maximize the L directly but we can change the lowest boundary

by E step, and optimize it by M step.

Assume Qi represent the distribution of latent variable z, the requirement of Qi is

∑
z

Qi(z) = 1, Qi(z) ≥ 0, (3.14)

Combine the prior equation we can get
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∑
z

logp(fi;N) =
∑
i

log
∑
z(i)

p(f (i), z(i);N)

=
∑
i

log
∑
z(i)

Qi(z(i))
p(f (i), z(i);N)

Qi(z(i))

≥
∑
i

∑
z(i)

Qi(z(i))log
p(f (i), z(i);N)

Qi(z(i))

(3.15)

This function utilize the Jensen inequality (If f is convex function, X is random

variable, then E[f(X)] ≥ f(EX)).

Therefore, the procedures of the general EM algorithm are as follow:

E-step:

Qi(z(i)) = p(z(i)|x(i);N) (3.16)

M-step:

N <=> argMax
∑
i

∑
z(i)

Qi(z
(i))log

p(f (i), z(i);N)

Qi(z(i))
(3.17)

If N (t) and N (t+1) are the results of n and n+1 iteration, to prove that EM algo-

rithm is convergent, we need to prove N (t) and N (t+1) are monotonic increasing,

L(N (t)) ≤ L(N (t+1)) (3.18)

Fix Q
(t)
i (z(i)), N (t) as a variable, take a derivative with L(N (t)), we can get N (t+1)

and deduce that:
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L(N (t+1)) ≥
∑
i

∑
z(i)

Q
(t)
i (z(i))log

p(f (i), z(i);N (t+1))

Qi(z(i))

≥
∑
i

∑
z(i)

Q
(t)
i (z(i))log

p(f (i), z(i);N (t))

Qi(z(i))
= L(N (t))

(3.19)

3.2.2 Implementation

In our algorithm, the latent variable is a vector includes identity and variations of a

face, for each human subject with m images,

l = [µ; ε1; ε2; , ..., ; εm] (3.20)

and the input face vector is

f = [f1; ...; fm] (3.21)

E-step: the relationship between f and l is,

f = Pl, P =



I I 0 ... 0

I 0 I ... 0

. . . . .

. . . . .

. . . . .

I 0 0 ... I


, (3.22)
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And the distributions of f and l are as follow,

l ∼ N(0, σl), where σl = diag(Cµ, Cε, ..., Cε), (3.23)

f ∼ N(0, σf ), where σf =



Cµ + Cε Cµ ... Cµ

Cµ Cµ + Cε ... Cµ

. . . .

. . . .

. . . .

Cµ Cµ ... Cµ + Cε


, (3.24)

By equation 3.22-3.24, we can get the an objective function to represent the ex-

pectation of l,

E(l|f) = σlP
Tσ−1

f f (3.25)

M-step: update the two covariance of Cµ and Cε to change the σl, σf ,

Cµ = cov(µ),

Cε = cov(ε),

(3.26)

Stop condition: we use a validation set and when its verification rate r(f1, f2) does

not increase any more, the algorithm will stop,

23



rv(f1, f2) = log
Pv(f1, f2|HI)

Pv(f1, f2|HE)
(3.27)

3.3 Computation

3.3.1 Objective Function

In the last section, we have got the objective function of expectation step of EM

algorithm as follow[17][17],

E(l|f) = σlP
Tσ−1

f f (3.28)

if we directly compute this equation, it will take too large memory and time to

run the EM loop. Let d is the dimension of the feature and m is the number of images

for each subject, we have,

the feature of σl ∼ (dm) ∗ (dm),

the feature of σf ∼ (dm) ∗ (dm),

P ∼ (dm) ∗ (dm),

the feature of f ∼ (dm) ∗ (dm),

(3.29)

therefore, computational complexity isO(d3m3) and memory complexity isO(d2m2),

which are too complex to compute. Now, we have use block-wise structure of the ma-

trix to reduce the computational complexity to O(d3 + md2) and the memory to
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O(d2).

First, the inverse matrix of σf is,

σ−1
f =



X + Y Y ... Y

Y X + Y ... Y

. . . .

. . . .

. . . .

Y Y ... X + Y


, (3.30)

From the formula,

σfσ
−1
f = I, (3.31)

compute the equation of diagonal elements, for m images in a human subject,

(Cµ + Cε)(X + Y ) + (m− 1)CµY = I, (3.32)

For the other elements, we have,

(Cµ + Cε)Y + CµX + (m− 1)CµY = 0, (3.33)

left side and right side of formula 3.32 minus them of formula 3.33 separately,
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CεX = I,

X = C−1
ε ,

(3.34)

So, we can get Y,

Y = −(mCµ + Cε)
−1CµC

−1
ε (3.35)

Put the X and Y into equation 3.30, the inverse of σf can be calculated. The

computational complexity for X and Y are O(d3), which also results in a O(d3) com-

putational complexity for matrix σf .

Take equation 3.30 ,3.34 and 3.35 into the objective function, we can get,

µ =
m∑
i=1

Cµ(X +mY )fi,

εj = fj +
m∑
i=1

CεY fi

(3.36)

so we can see the computational complexity for computing µandε is O(md2) and

the memory complexity is O(d2).

Overall, our computational way can change the computational complexity from

(d3m3) to (d3 + md2) and the memory complexity from (d2m2) to (d2). Generally,

assume the dimension of feature is 1000 after the PCA step and the number of images

for one human subject is m = 20, the total reduction is,
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Computational Complexity :
10003 ∗ 203

10003 + 20 ∗ 10002
= 8000,

Memory Complexity :
10002 ∗ 202

10002
= 400,

(3.37)

the more images in a subject, the more computational reduction we can get.

3.3.2 Log Likelihood Ratio

From the formula 3.27,

r(f1, f2) = log
P (f1, f2|HI)

P (f1, f2|HE)
(3.38)

To compute it easier, we use a closed form after simple algebra operations:

r(f1, f2) = fT1 Af1 + fT2 Af2 − 2fT1 Y f
T
2 , (3.39)

where

A = (Cµ + Cε)
−1 − (X + Y ), (3.40)

 X + Y Y

Y X + Y

 =

 Cµ + Cε Cµ

Cµ Cµ + Cε


−1

(3.41)

As m = 2 for a pair, put formula 3.34 and 3.35 into above equation,

Y = −(2 ∗ Cµ + Cε)
−1CµC

−1
ε (3.42)
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A = (Cµ + Cε)
−1 − (C−1

ε − (2 ∗ Cµ + Cε)
−1CµC

−1
ε ) (3.43)

Therefore, we can use only Cµ and Cε to represent log likelihood ratio.
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Chapter 4

Experiment

4.1 Dataset

Labeled Faces in the Wild (LFW ) is established by the computer vision lab of Uni-

versity of Massachusetts. There are totally 13233 images and 5749 human subjects.

It is a good and difficult database for face recognition but it is not appropriate to

train because there are not enough face images for each human subject. Though only

96 people have more than 15 images for each subject, the training process of face

verification algorithm does not need a wide and deep database.

In our experiment, the images in LFW are just directly divided by the number of

images for each subject, I set two types approaches for training:

1. If this human subject includes more than m images, we choose m images to

train.

2. If this human subject includes more than m images, we choose all images in
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this subject to train.

Obviously, the more images we train, the more information we can have. However,

there may be over-fitting when we use EM algorithm and the result may not be better

with the more images for each subject. For different number of images,

LFW
m n
1 5749
2 1680
3 901
4 610
5 423
6 311
7 256
8 217
9 184
10 158
11 143
12 127
13 117
14 106
15 96

Table 4.1: The details of LFW

The Table 4.1 shows that there will be n subjects that contains more than m

images. As mentioned above, the size of all images is 250 * 250 and the face in each

image have complex background.

To test our face verification algorithm, we select 3000 pairs intra-subject images

and 3000 pairs extra-subject images. Intra-subject images represent the two images in

a pair belong to the same subject and extra-subject images represent the opposition.

From this 6000 pairs images, we pick 300 pairs as the validation set in the loop of

EM algorithm.
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4.2 Results

There are many adjustable parameters in our method. In this section, we will change

them to see the influence for each variable from the various results. Because we hope

to find the best parameters to implement our algorithm and prove it is a robust and

competitive approach.

4.2.1 Initialization

In our algorithm, we can mainly control 5 parameters:

1. The minimum number of images in each subject m: as the data in Table 4.1

shown, it decides the number of subjects.

2. The training type k: we have talked in last section about it. Combined with

m, they can decide the totally number of images.

3. The dimension of feature d: we use PCA to reduce dimension of LBP from

5900 to a low dimension and keep the verification rate as high as possible. It decides

how many information we need and how long we need to train.

4. Cµ and Cε: to represent our face model, we just use only these two variables.

Because EM algorithm will learn the optimization automatically, we just use two

random positive definite matrix as initial ones.

Besides, to balance the running time and verification rate, we use a validation

set[38] in EM algorithm[38], the detail process as follow,

Fig.4.1 indicates that if the verification rate do not increase any more within 6

loops, we will choose the result of first loop in these 6 loops as the final verification

rate, which is the best result.
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Figure 4.1: Flow chart of validating process

4.2.2 Implementation

First, we will show how the dimensions of LBP affect our algorithm, the number of

images for each subject m=4 and the training type=1,

Dimension Intra-result Extra-result Final Result
100 0.892222 0.550741 0.721481
200 0.774444 0.799630 0.787037
300 0.802963 0.832593 0.817778
500 0.551852 0.986296 0.769074
800 0.295926 1.000000 0.647963

Table 4.2: type 1 with different dimensions

In table 4.2, intra-result represents the verification rate of the pairs that whose

images belong to the same human subject. When the dimensions are 100, it reaches

nearly 90 percent and goes down to nearly 30 percent with increasing dimension to

800. On the contrary, extra-result shows a upward trend from 55 percent to 1. It is

reasonable that the number of intra-pairs is equal to the number of extra-pairs. The

final result performs better and better before the dimension is more than 400 and the

best one reaches nearly 82 percent.
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Overall, with the dimension of feature increasing, the extra-result changes faster if

the dimension is low enough and the intra-result changes faster when the dimensions

go high. For m=4, type=1, verification rate reaches best at 82 percent when the

dimensions are 300.

Obviously, comparing the two training types, type 1 refer to less images than type

2. However, if we just change the dimensions of feature and remain the number of

images for each subject m=4, type 2 shows a much different trend with type 1,

Dimension Intra-result Extra-result Final Result
100 0.949259 0.464815 0.707037
200 0.975185 0.455926 0.715556
300 0.965185 0.543333 0.754259
500 0.904815 0.835556 0.870185
800 0.852593 0.938148 0.895370

Table 4.3: type 2 with different dimensions

When training type 2 is used, we can see the performance is much better than

type 1. All the results are more than 85 percent when the dimensions are 800. On the

one side, no matter how many dimensions of the feature, the intra-result is stable and

excellent. On the other side, the extra-result shows a much improvement with the

increasing dimensions. We can infer that: when we use type 2 to train the feature with

low dimension, our algorithm cannot distinguish the two people in extra-pairs but the

high dimensions feature will offer much more useful information than redundancy.

Then, we do another experiment to compare the detail of difference between type

1 and type 2.

As shown as Fig.4.2, all the intra-results of type 2 perform better than type 1,

which illustrates that our LBP feature is good enough to catch the ”similar infor-

mation” for same person from each face image. Meanwhile, we need to check if our
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Figure 4.2: intra-result with different type

feature can also catch the ”distinctive information”,

Although both two curves show a upward trend, we can see that extra-result of

type 1 is always better than the one of type 2 from Fig.4.3, but the difference between

them are not larger than the intra-result. It is easy to understand that our algorithm

will receive more information when the dimensions go up. Because there is more

opportunity to get ”distinctive information” due to the principle of PCA. And the

EM algorithm is used to balance the two type information.

In Fig.4.4, the performance of type 2 is worse than type 1 in the beginning and

when the dimensions of feature reach 400, the performance of type 2 is better and

better, which shows nearly state of the art with 800 dimensions of feature.

Dimension Intra-result Extra-result Final Result
1000 0.863704 0.942963 0.903333
1500 0.641724 0.843451 0.742588

Table 4.4: More than 1000 dimensions
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Figure 4.3: extra-result with different type

If the number of images for each subject m=4, the final-result of our algorithm

performs best when the type = 2 and the dimensions of feature d=1000. The table.4.4

shows that all the results do not become better, which may be due to a over-fitting

training.

Finally, to get a convincing conclusion, we also need to compare different number

of images for each subject. We fix the variables type = 2 and d = 100 and change m

to 1 and 10, the results of our algorithm are shown as below,

m subjects Intra-result Extra-result Final Result
2 1680 0.844074 0.562222 0.703149
4 610 0.949259 0.464815 0.707037
10 158 0.958519 0.367778 0.663149

Table 4.5: Different m variable(d=100)

The table.4.5 tells that the intra-result performs better while the extra-result get

worse and the final-results are similar. It may be result from the too low dimensions
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Figure 4.4: final-result with different type

of feature, the difference is not outstanding enough. So we increase the dimensions,

m subjects Intra-result Extra-result Final Result
2 1680 0.923333 0.735926 0.829631
4 610 0.925111 0.744453 0.827782
10 158 0.842593 0.810370 0.826482

Table 4.6: Different m variable(d=400)

As Fig.4.6, all the results are nearly 82% and more images result in higher veri-

fication rate. Actually, our algorithm with 400 dimensions has showed us a relative

reasonable trend. Therefore, we continue to change a larger d=800 to see the varia-

tion,

It is amazing that the high dimensions result in a big improvement for the final

performance, which has been over 92 %. We can see that the intra-result has a much

larger change with the increasing subjects. To compare the data from table.4.7 and

table.4.6, we can infer that: intra-result is influenced by the dimensions of feature
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m subjects Intra-result Extra-result Final Result
2 1680 0.905926 0.948519 0.927223
4 610 0.852593 0.938148 0.895370
10 158 0.349630 0.998148 0.673890

Table 4.7: Different m variable(d=800)

and more training images results in the more effects; extra-result is controlled by the

number of subjects or total number of images.

After the experiments of changing all the parameters in our algorithm, to show

the excellent performance of our method, we compare our Joint Bayesian method

with the other algorithms by using same database,

Figure 4.5: Comparison with other Bayesian methods

From the curves of the Fig.4.5, we can see that our new joint Bayesian method

performs much better than the traditional Bayesian ways and the verification rate

goes up with the more number of test pairs.

In conclusion, from so many experiments, we have analyze all the parameters and
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find their impacts for the whole algorithm. Indeed, there are some cross datasets

among training images, validation pairs and test pairs. To avoid training the people

that may appear in our test set, we do not set the number of subjects is equal to 5749.

And the best performance of our algorithm can be over 93 % with the parameters

m=2, type=2 and d=1200.
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Chapter 5

Summary of Contributions and
Future Work

5.1 Contributions

We have introduced a novel face model and showed the superiority by comparing

with the other algorithms. To balance the variables of our algorithm and the final

verification rate, we implement almost every conditions and get the best result more

than 93 % when m=2, d=1200 and type=2. However, based on the restriction of

hardware, we have not test the dimensions over 2000 because the memory of our

sever is not enough and the training time is more than one month.

We beat most good algorithms and the contribution of my project is mainly about:

1. Implement various experiments for this novel algorithm and analyze the func-

tion of every parameters in our method.

2. Add many new elements to improve the original algorithm. For example, we
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differentiate the type 1 and type 2 for joint Bayesian method and add validation set

as stop condition. The final result of our improved algorithm has been over 93 %.

5.2 Future Works

We prepare to use this new face model into our face verification system, which includes

3 completely algorithms (detection, alignment, verification). As shown as Fig.5.1, our

interface is the feature of the face image, which is a 6000 dimensions vector.

Figure 5.1: future work

Our face detection method is improved from the implementation of OpenCV[39].

It will output a rectangle region as the input of face alignment method. Indeed, we

just use these regions as the new cropped face images and improve the algorithm of

[16] to get alignment points. Finally, all the other procedures are the same as the

face verification method has been mentioned above.
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