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ABSTRACT 

 
The evolutionarily conserved Dock proteins function as unconventional guanine 

nucleotide exchange factors (GEFs). Upon binding to ELMO (Engulfment and cell 

motility) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to 

mediate a diverse array of biological processes, including cell motility, apoptotic cell 

clearance, and axon guidance. Overlapping expression patterns and functional 

redundancy among the eleven vertebrate Dock family members, which are subdivided 

into four families (Dock-A, B, C, and D), complicate genetic analysis. Drosophila 

melanogaster is an excellent genetic model organism to understand Dock protein 

function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock-

A) and Sponge (Spg; Dock-B). The target GTPase of the Dock-A subfamily is Rac, 

which modulates actin dynamics. However, the in vivo GTPase downstream of the Dock-

B subfamily remains unclear. Herein we show that the roles of Spg and Mbc are not 

redundant in the Drosophila somatic muscle, central nervous system (CNS), or the dorsal 

vessel (dv).  Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide 

evidence that Spg functions in concert with Rap1 to regulate aspects of adhesion. 

Together these data show that Mbc and Spg can have differential downstream GTPase 

targets. Our findings predict that the ability to regulate downstream GTPases is 
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dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell 

adhesion events in biological processes that undergo cell morphogenesis. 
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CHAPTER 1 

INTRODUCTION 

Rho GTPases are enzymes that bind and hydrolyze GTP, allowing for physical 

interactions with downstream proteins to activate pathways involved in cell 

morphogenesis, including cell migration, cell adhesion, and phagocytosis1, 2.  Normal 

development and tissue homeostasis requires proper regulation of the GTP hydrolysis 

cycle to tightly control cytoskeletal cell shape changes and cell-cell adhesion events3.  

Inappropriate control of cell morphogenesis can manifest in abnormal cellular behaviors.  

For example, during tumor metastasis, cancerous cells may detach from their original 

location, undergo cytoskeletal rearrangement and alter membrane adhesion dynamics in 

order to migrate through the complex extracellular environment.  Many of the same 

molecules are essential for cell morphogenetic events in normal or abnormal cells4. This 

allows us to determine the normal function of proteins that control GTPases and 

extrapolate how abnormal misregulation may result in genetic birth defects or disease 

progression in different biological contexts.  

The Rho GTPases are key regulators in cell morphogenesis, constantly cycling 

between an “off” and an “on” state. GTPase Activating Proteins (GAPs) facilitate the 

exchange of GTP for GDP to inactivate GTPases. Counteracting this, GEFs assist in the 

exchange of GDP for GTP, turning on the GTPase and allowing it to bind to downstream 

effectors.  GDP exchange of Rho GTPases is facilitated by two types of GEFs; the Dbl 

family and the Dock family.  Proteins of the Dbl family contains a conserved tandem Dbl 

homology (DH) and Pleckstrin homology (PH) catalytic sequence1, 2.  In contrast, the 

unconventional Dock GEFs lack the canonical DH domain, and instead utilize an internal 
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Dock homology region 2 (DHR2) for GTPase binding and a separate SH3 domain that 

interacts with the adaptor protein ELMO, which localizes Dock proteins to specific 

regions for GTPase activation.  Normally, ELMO and Dock exist in an autoinhibitory 

state in the cytoplasm and, upon stimulation by external cues, can relieve this inhibition, 

thus allowing the ELMO-Dock complex to be recruited to the membrane to function with 

downstream GTPsae targets1. 

 Recent studies have identified a class of non-canonical GEFS  that  are  members 

of the CDM (C. elegans Ced-5, human DOCK180, Drosophila Myoblast city) family of 

proteins 5, 6. Evolutionarily conserved, Mbc/DOCK180/Ced-5 proteins contain an N-

terminal Src-homology-3 domain (SH3), two internal DOCK-homology regions (DHR-1 

and DHR-2), and a C-terminal proline–rich region.  The DHR1 regions of both 

DOCK180 and Mbc bind to phosphatidylinositol 3,4,5-triphosphate 7 7, 8.  Vertebrate cell 

culture studies show this region is required for membrane localization 7.  In flies, the 

DHR1 domain is not essential for recruitment to the membrane, but is essential for 

myoblast fusion as deletion of the DHR1 domain fails to rescue mbc mutant embryos in 

functional rescue assays 8.  Although the SH3-domain containing protein Crk is capable 

of binding the C-terminal proline-rich region of both DOCK180 and Mbc, it is not always 

essential in vivo.  A direct interaction between vertebrate DOCK180 and CrkII is not 

required for apoptotic cell removal 9.  Furthermore, deletion of the Ced-2/Crk binding 

sites in C. elegans Ced-5/DOCK180 does not affect cell engulfment or migration 9.  

Consistent with this, while Drosophila Crk binds Mbc, it is dispensable for myoblast 

fusion 8.  Whereas canonical GEFs contain both typical Dbl-homology domain (DH) and 

Pleckstrin-homology domains (PH) that are involved in activation of the Rho GTPases, 
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these domains are absent in CDM family members 6, 7.  Conventional GEFs bind 

nucleotide-free Rac via their DH domain, while the CDM proteins use the DHR2 region.  

Deletion or mutation of this domain results in a loss of Rac binding and activation 10, 11.  

A DOCK-Rac protein complex is sufficient for Rac activation 7, 12, but may be enhanced 

by DOCK180 bound to ELMO 10, 13, 14.   

 ELMO/Ced-12 (hereafter referred to as ELMO) was originally identified in C. elegans 

as an upstream regulator of Rac in apoptotic cell engulfment and cell migration 15.  

Studies using mammalian ELMO1 subsequently showed that the DOCK180-ELMO 

complex is required for Rac-mediated cell migration and phagocytosis 10, 13, 14, 16, 17.  The 

PH domain, which in conventional GEFs targets protein to the membrane through its 

interactions with phosphatidylinositol lipids or other protein-protein interactions, is 

provided by the ELMO protein in the DOCK-ELMO complex 10, 12.  The N-terminal SH3 

domain of CDM family members associates with the C-terminal region of the ELMO 

family of proteins 18.   While the molecular function of ELMO in the DOCK!Rac 

signaling pathway still needs to be clarified, it is worth noting that ELMO has functions 

independent of the DOCK proteins.   

 Importantly, studies in Drosophila have provided additional insight into role of 

the Mbc-ELMO!Rac signaling pathway in multiple tissues.  Mutations in mbc and elmo 

result in border cell migration defects in the ovary and myoblast fusion defects in the 

embryo 19-21.  Decreased Mbc and ELMO function exhibit abnormal ommatididal 

organization in the eye and thorax closure defects in the adult 21, 22.  In addition, loss-of-

function studies have demonstrated that the Rac genes are required redundantly in a 

variety of developmental processes, including border cell migration, myoblast fusion, and 
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axon guidance in the developing nervous system 21, 23, 24.  Last, genetic interactions exist 

between the atypical GEF Mbc-ELMO complex and their target GTPase Rac.  A genetic 

screen in the eye uncovered an allele of mbc that suppresses the Rac1 overexpression 

phenotype 25.  In support of this, removal of one copy of both Rac1 and Rac2 are capable 

of ameliorating the “activated-Rac” phenotype exhibited by co-expression of both Mbc 

and ELMO in the eye 21. 

There are 11 Dock proteins in mammals that are subdivided into four categories: 

Dock A-D.  To date, Dock-A, -B, and -C family members can all activate the Rho 

GTPase Rac, while Dock-C and –D proteins also show specificity for Cdc421, 2.  

Expanding the repertoire of GTPase targets, the Dock-B subgroup member Dock4 has 

also been shown to activate the Ras-like small GTPase Rap126-28.  Dock-A family 

member, Dock1, is required for vertebrate neuronal pathfinding, endothelial cell 

migration, and functions in concert with a second Dock-A member, Dock5, in vertebrate 

muscle development1, 2.  Less is known about the developmental roles of the DockB 

family, however both subfamily members, Dock3 and Dock4, are expressed in nervous 

system tissue, with Dock4 expression also expanding into the muscle29-31.  While the 

function of this family in the nervous system is unclear, Dock3-/- mice exhibit neuronal 

degeneration.  This result along with several other in vitro and over-expression studies 

indicate a role in axonal outgrowth and/or neuroprotection2, 32.  Furthermore, a screen 

using human cancer cell lines identified a single Dock4 point mutation in two different 

cancer cell lines.  This same study showed Dock4-mediated Rap activation was required 

for cells to maintain their cell-cell adhesion junctions26.     
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Redundancy is simplified in flies with only one Dock homolog per subfamily. In 

Drosophila, the Dock-A counterpart, Myoblast City (Mbc), is required for Rac-mediated 

processes, such as myoblast fusion and border cell migration that require modulation of 

the actin cytoskeleton1, 2. Mbc also functions redundantly with the Dock-B homolog, 

Sponge (Spg), in border cell migration33. However, it is unclear if the two function 

redundantly in other processes. For instance, Spg is required for proper CNS 

development and genetically interacts with the adhesion protein N-cadherin in this 

process, while Mbc does not.  These results are not necessarily surprising as spg 

transcript has high expression in the CNS relative to mbc transcript, which has higher 

expression in the somatic muscle.  However, both transcripts are expressed in the visceral 

gut muscle and dorsal vessel (DV), or the Drosophila equivalent to the heart29.  It was 

also recently shown that Spg is required for Rap-mediated photoreceptor differentiation 

in the Drosophila eye, one of the first in vivo examples of this relationship28.   

 Herein, we use the genetically tractable model organism Drosophila melanogaster to 

determine if Mbc and Spg function redundantly in tissues other than border cell migration 

and to establish if these Dock proteins target the same or different GTPases in vivo. Using 

genetic interaction analyses, RNAi knockdown, and rescue experiments with the 

GAL4/UAS system, we have established that Mbc and Spg have differential functions in 

the development of the somatic muscle, CNS, and DV.  In addition, we show that the 

downstream GTPases of these GEFs are different in dorsal vessel development.  This is 

one of the first in vivo examples of these two closely related proteins having clear and 

distinct targets in development. 
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CHAPTER 2 

THE DOCK PROTEIN SPONGE BINDS TO ELMO AND FUNCTIONS IN 

DROSOPHILA EMBRYONIC CNS DEVELOPMENT 

 

Identification of the DOCK3 and DOCK4 ortholog CG31048/Sponge as an ELMO-

interacting protein 

 To identify proteins that may interact with ELMO in the developing embryonic 

musculature, tissue-specific immunoprecipitations (IPs) were carried out as described in 

Geisbrecht, et al 21.  In brief, either HA-tagged or untagged ELMO, both of which rescue 

elmo mutants, were expressed using the muscle-specific mef2-GAL4 driver.  ELMO-

specific complexes were isolated from embryonic lysates with anti-HA resin, digested 

with trypsin, and analyzed by Multidimensional Protein Identification Technology 

(MudPIT) mass spectrometry 34.  In an average of 5 independent experiments, the percent 

peptide coverage of ELMO ranged from 43-73% (Figure 1A), while the most abundant 

associated protein was Mbc 21.  Peptides corresponding to the protein CG31048 were 

detected in lysates immunoprecipitated with tagged ELMO, but not untagged ELMO.  

After Mbc, CG31048 was the second most abundant protein detected, where the 

percentage of peptide coverage that corresponded to CG30148 ranged from 2-30%.  

While the CG31048 cDNA had not yet been cloned, an abstract from the 2005 fly 

meeting by Eyal Schejter et al., linked this locus to a maternal effect mutant called 

sponge (spg), whose name we will use hereafter.  An allele of spg was originally 

identified by Rice and Garen 35, while more alleles emerged from screens in the 

laboratory of C. Nusslein-Volhard.  Postner, et al., examined the role of Spg in early actin 
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cap and metaphase furrow formation in early embryonic development 36.  In addition, the 

Rorth lab determined that both Mbc and Spg function redundantly in border cell 

migration downstream of the receptor PVR 37.  However, the role of Spg in later 

embryonic processes has not been examined.     

 Spg is most closely related to both mammalian DOCK3/MOCA and DOCK4 and 

is a CDM family member whose domain structure is highly similar to Mbc (Figure 1B).  

All of these related proteins contain an N-terminal Src-homology 3 domain (SH3), and 

internal DOCK homology region-1 (DHR-1) and DOCK homology region-2 (DHR-2) 

domains.  Spg shares greater amino acid sequence identity to vertebrate DOCK3 and 

DOCK 4 (42% and 40%, respectively) than Mbc (33%).  This primary amino acid 

identity/similarity (33%/52%) between Spg and Mbc decreases to 16% amino acid 

identity and 21% amino acid in the C-terminal proline-rich region.  Notably, the C-

terminal region of Spg contains 7 predicted proline rich sites not present in Mbc.  This is 

similar to vertebrate analyses of DOCK family members, where the number of proline-

rich sites in the C-terminal region of DOCK3 and DOCK4 is greater than that found in 

DOCK180 alone 38.  It is hypothesized that this region may confer differential properties 

of DOCK family function. 

 To confirm a potential physical interaction between ELMO and CG31048, we 

generated antisera to the C-terminal region of Spg that is the most divergent from Mbc.  

Similar to the MS experiments in which Spg was identified, both HA-tagged ELMO and 

untagged ELMO were expressed in the developing musculature with mef2-GAL4. After 

preparing embryonic lysates, anti-HA beads were used to immunoprecipitate HA-tagged 

and untagged ELMO.  Consistent with results that show both vertebrate DOCK3 and 
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DOCK4 are associated with ELMO 17, 39, Spg could be visualized in an ELMO-associated 

complex by immunoblotting with anti-Spg (Figure 1C).   

 

Spg mRNA and protein is strongly expressed in the developing nervous system 

 Portions of the spg transcript were identified in a screen for neural precursor 

genes 40.  We confirmed this using in situ hybridization analysis that revealed spg mRNA 

is expressed strongly in the developing nervous system throughout embryonic 

development.  In situs showed spg mRNA is detected in the nervous system primordia and 

sensory neurons in stage 11 and stage 13 embryos (Figure 2A, B).  This strong expression 

persisted in the ventral nerve cord until the end of embryogenesis (Figure 2E, F).  

Staining in the visceral mesoderm in stage 13 embryos (Figure 2C, arrowheads) 

confirmed the identification of Spg from our muscle-specific MS analysis as the mef2-

GAL4 driver is expressed in both the visceral and somatic musculature.   Similar to mbc 

20, spg mRNA expression was also apparent in the dorsal vessel (Figure 2D, E, arrows).   

While mbc is also expressed abundantly in the developing somatic, or body wall 

musculature 20, spg expression is low or undetectable in this tissue (Figure 2C, solid 

lines).  Thus, spg and mbc exhibit overlapping RNA expression patterns in the 

developing visceral musculature and dorsal vessel 20, while they are uniquely expressed 

in others.  Mbc is strong in the somatic musculature, while Spg expression is predominant 

in the developing nervous system. 

 To confirm and extend our mRNA expression analysis, we examined the 

distribution of Spg protein using antisera generated against the C-terminal region of Spg.  

Consistent with spg mRNA expression, Spg protein was detected in the ventral nerve 
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cord and visceral mesoderm (Figure 2G, H).  A ventral view also revealed expression in 

the peripheral neurons (Figure 2I, arrows).  In addition, Spg immunoreactivity was 

apparent in all longitudinal and commissural neurons (Figures 2J-J’’).  Spg was not 

detected in the general population of glial cells by co-staining with the glial cell marker 

Repo at stage 13 (Figure 2K-K’’) or the midline glial cell marker Slit at stage 16 (Figure 

2L-L’’).   

 

Spg and ELMO are required for development of the central nervous system 

 All alleles of spg isolated in the laboratory of Christian Nüsslein-Volhard and 

analyzed by the Weischaus lab were homozygous viable and female sterile 36. Although 

many of the original alleles were not available for these studies, a stop codon was 

identified by sequencing the spg242 (previously called spg2) allele (W487*).  Consistent 

with Postner, et al. 36, we found that eggs produced from spg242 homozygous mothers 

with a mutant paternal allele of spg die early in embryonic development.   To confirm 

that the lethality of spg is due to the spg locus, we were able to rescue this lethality by 

driving a UAS-spg cDNA with the early nanos-GAL4 driver (n=208).  As maternal spg 

mutants die early and could not be examined for defects in later developmental processes, 

we examined embryos zygotically mutant for spg242/spg242 for defects in nervous system 

development.   

 For proper innervation of muscles in development, neurons send out actin-rich 

growth cones (outgrowth), bundle and unbundle when appropriate (fasciculation), and 

make decisions to cross the ventral nerve cord (axon guidance).  For all experiments that 

include analysis of axon outgrowth and guidance, Fasciclin II (FasII) was utilized to label 
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three tracts of longitudinal fascicles that run parallel to the nerve cord.  A WT embryo 

labeled with FasII is shown in Figure 3A.  Breaks in the longitudinal fascicles indicate 

axon stalling or outgrowth defects, while axons that cross the ventral midline are 

misguided.  The global neuropile marker BP102 labels all longitudinal and commissural 

axons, resulting in a ladder-like appearance of the axonal projections (Figure 3F).  

Consistent with a maternal contribution of Spg mRNA and protein, embryos homozygous 

mutant for the spg242 allele exhibited minor defects in the axonal patterns.  Labeling with 

FasII revealed infrequent breaks in the outer longitudinal tract, while occasional thinning 

of these tracks were observed with BP102 (Figures 3B, G; Table 1).  We could not 

address whether protein was reduced in spg242 animals as the stop codon at AA487 

truncates the protein before the region against which the Spg antibody was produced.  

Thus, we chose to analyze spg242 over the deficiency line Df(3R)3450, which removes 

the spg locus 41. In embryos of the genotype spg242/Df(3R)3450, we observed a similar 

percentage of gaps in the outer longtudinal fascicles to that of spg242/ spg242 (Table 1).  

Furthermore, the frequency of outgrowth defects observed in spg805/Df(3R)3450 and 

spg242/ spg805 alleleic combinations were consistent (Table 1, Supp. Figure 1).  To see if 

we could observe increased defects via neuronal-specific knockdown of Spg, we 

expressed UAS-spg RNAi using the pan-neuronal driver C155-GAL4.  In addition to 

increased axon outgrowth defects (Table 1), we observed occasional bifurcated bundles, 

indicative of fasisculation or abnormal fusion defects (Supp. Figure 1E). The localization 

of spg expression in the developing nerve cord and Spg-ELMO complex based upon 

mass spectrometry results led us to examine the role of elmo genetically in development 

of the CNS.  As predicted based upon the maternal contribution of ELMO mRNA and 
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protein, embryos homozygous mutant for elmo19F3exhibited minor defects in axonal 

patterning.  FasII labeling revealed a nearly wild-type pattern of all longitudinal fascicles, 

while occasional thinning of these tracks and increased length of adjacent segments were 

observed with BP102 (Figures 3C, H; Table 1).  As described in Geisbrecht et al., this 

allele contains a stop codon at amino acid 393 and appears to be null as removal of both 

the maternal and zygotic contribution of elmo by germline clone analysis (GLC) resulted 

in early embryonic lethality 21.  Consistent with this, FasII staining in embryos 

homozygous for the deletion allele elmoko 37 appeared normal (Table 2) and also resulted 

in early embryonic lethality when analyzed by GLC analysis.  To reduce elmo function, 

yet allow animals to survive until the later stages of embryogensis when CNS 

development occurs, we used a hypomorphic elmo allele for GLC analysis 21.  In 

representative embryos maternally and zygotically mutant for elmoPB(c06760), a dramatic 

increase in axonal patterning defects were observed.  In addition to an increased number 

of outer fascicle gaps, we saw aberrant midline crossing of longitudinal axons, and 

misrouting of outer longitudinal axons (Figures 3D, I; Table 2).  This suggests that elmo 

functions in CNS development in addition to its role in myoblast fusion and border cell 

migration 21, 37.   

   If two genes act in the same pathway, transheterozygosity for the two genes of 

interest may result in a phenotype stronger than the single mutants alone. This type of 

experiment is complicated in the case of elmo and spg, which are both contributed 

maternally.  To examine if loss-of-function phenotypes could be exacerbated by removal 

of genes that function in the same pathway, zygotic embryos of the genotype 

elmo19F3/elmo19F3;spg242/spg242 were analyzed.  Compared to elmo/elmo (0.0%; n=133) or 
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spg/spg (10.0%; n=100) single mutants, a consistent increase in longitudinal axon defects 

were observed in the double mutants (37.7%; n=106; Table 2).  In addition, we observed 

an increase in axons that inappropriately cross the midline (Table 2).   A representative 

example is shown in Figure 3E and quantified in Figure 3K.  By BP102 staining, 

abnormalities in the spacing between adjacent segments was also enhanced (Figure 3J).  

There are two possibilities to explain this result: (1) the double mutant is phenotypically 

stronger than either single mutant as the residual maternal products are compromised; or 

(2) the stronger phenotypes observed in the double mutant combination are a result of 

two pathways being affected.  The two possibilities are not mutually exclusive.  We favor 

the first hypothesis as we know Elmo-Spg are found in a complex based upon our MS 

and IP results.  Furthermore, we do not observe genetic interactions with other candidates 

that may function with elmo. 

 

No muscle patterning defects are observed in mutants lacking Spg  

 Based upon the complementary expression patterns for mbc and spg in the 

somatic musculature and developing CNS, respectively, an attractive notion would be 

that ELMO binds to and functions with Mbc and Spg in a tissue-specific manner.  To 

explore this, we examined phenotypes of single and/or double mutants in both muscle 

and nervous system development.  Consistent with our above results that removal of 

zygotic spg exhibited almost wild-type axonal patterning, no myoblast fusion defects 

were observed in zygotic spg242/spg242 mutant embryos (Figure 4A).  In addition, we did 

not observe unfused myoblasts just under the somatic muscle layer (data not shown).  In 

contrast to defects observed in the CNS in elmo; spg double mutants, analysis of the final 
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muscle pattern in these embryos appeared wild-type (Figure 4B).  As previously reported, 

loss-of-function mutations in mbc resulted in strong myoblast fusion defects in the 

developing embryo 8, 20.  In homozygous embryos mutant for mbcD11.2, the myoblasts 

were competent to migrate to the founder cells where fusion normally takes place, while 

fusion did not occur (Figure 4C).  To examine if spg may be functioning redundantly 

with mbc in myoblast migration, the distribution of myoblasts was examined in mbcD11.2, 

spg242/ mbcD11.2, spg242 double mutants.  While the myoblasts fail to fuse as in mbc 

mutants, they were still capable of clustering around the founder cells, suggesting that 

myoblast migration was not affected (Figure 4D).   

 

Both Spg and Mbc are required for axonal patterning 

 The experiments above indicate Spg is not required in embryonic muscle 

development.  To further examine if Spg is the only DOCK family member required for 

axonal patterning, we examined the potential contribution of Mbc in the developing 

nervous system.  Similar to defects already observed in spg mutants, embryos 

homozygous mutant for mbcD11.2 exhibited breaks in the outer longitudinal fascicles 

(Figure 5A; Table 2).  In addition, we observed collapse of axons onto the MP1 fascicle 

tracts (data not shown).  This extends and supports observations by Nolan, et al., where it 

was determined that embryos transheterozygous for mbc1.63/mbc4.25 exhibited ventral 

nerve cord defects upon examination with BP102 25.  Our analysis using BP102 

phenocopies their results, where we observed thinning of the longitudinal axon tracts and 

abnormal spacing between segments (Figure 5C). This suggests that low expression of 
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mbc, possibly undetected in the CNS due to high expression in the muscle, contributes to 

nervous system formation.   

 As Spg and Mbc are the two DOCK family members predicted to be specific for 

Rac and mutations in either one exhibit defects in the nervous system, we sought to 

examine if embryos mutant for both mbc and spg resulted in enhanced nervous system 

defects.  We did not observe a significant increase in broken fascicles or the collapse of 

the outer longitudinal tracts in mbc, spg double mutants over mbc mutants alone (Figure 

5B, Table 2).  However, we did observe an increase in midline fascicle crossing in these 

double mutants (Figure 5B, arrows, Table 1).  There was also an increase in abnormal 

positioning of the ventral nerve cord in mbc, spg double mutants, where 48.2% of mutant 

embryos (n=56) exhibited abnormal swerving of the nerve cord seen on the ventral side 

(Figure 5B, 5D) or abnormal bends in lateral views (Figure 5F compared to Figure 5E), 

which was rare in single mutants of spg (0.0%; n=23) or mbc mutants (0.8%; n=22).  The 

above data suggests Mbc may be the primary DOCK family member in tissues like the 

muscle, while both Spg and Mbc may function in other tissues, such as CNS development 

and border cell migration. 

 

Expression of N-cadherin is sufficient to recruit Spg to the membrane in S2 cells 

 Scanning through our list of potential MS candidates, N-cadherin (Ncad) emerged 

as a possible upstream receptor to mediate signaling via DOCK-ELMO complexes, albeit 

at low levels.  Furthermore, Ncad is expressed in the embryonic fly nervous system and 

vertebrate MOCA/DOCK3 colocalizes with Ncad in regions of cell-cell contact in the 

nerve cell line PC12 42, 43.  Thus, Ncad seemed a reasonable candidate to examine it’s 
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involvement with DOCK-ELMO complexes in CNS development.  To gain insight into a 

potential Ncad-Spg interaction, we examined the subcellular distribution of Spg and Ncad 

protein in Drosophila S2 cells.  RT-PCR results show that spg is endogenously expressed 

in S2 cells (data not shown).  Furthermore, staining with anti-Spg antibody reveals a 

cytoplasmic localization of the protein (Figure 6A).  As S2 cells do not endogenously 

express Ncad, cells transfected with full-length Ncad were stained for Ncad and Spg 

protein.  In transfected cells, Ncad was detected at the membrane and was capable of 

aggregating with other Ncad(+) cells (Figure 6B’), a hallmark of the homotypic cell 

adhesion properties of the Cadherin family of proteins 43. The subcellular distribution of 

Spg was cytoplasmic in Ncad(-) cells (Figure 6A, 6A’’, 6B, 6B’’), but became membrane 

localized upon expression of Ncad (Figure 6A’, 6A’’).  In Ncad(+) cells that formed 

clusters, Spg localization was enriched at the membrane between adjacent cells (Figure 

6B’, 6B’’).  To quantify these observations, we acquired confocal images of S2 cells both 

with and without Ncad expression.  As shown in Fig. 6, we observed membrane-enriched 

Spg in 89.2% of cells (n=102) of Ncad (+) cells compared to 0.04% of S2 cells that do 

not express Ncad (n=210). 

 

Genetic Analysis of Ncad-Spg mutants 

 Based upon the results that Spg is enriched at the membrane upon expression of 

Ncad in S2 cells, we wondered if removal of Ncad could increase the severity of 

spg242/spg242 axonal phenotypes.  As previously reported for other Ncad alleles, mutants 

for Ncad405/Ncad405(Ncad) alone show mild CNS defects (Figure 7A; Table 2) 43.  The 

Clandinin lab created mutants that remove both Ncad and the recently characterized N-
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cadherin2 (Ncad, Ncad2 double mutant, hereafter called NcadD14) 44.  Thus, we examined 

NcadD14 mutants to determine if these proteins may function redundantly in CNS 

development.  It appears the contribution of Ncad2 is minor or negligible as our results 

do not show quantifiable differences between Ncad mutants alone or NcadD14/NcadD14  

double mutants (Table 2).  Removal of one copy of NcadD14 in a spg242/spg242 

homozygous mutant background increased the occurance of axon outgrowth defects over 

spg242 mutants alone (Table 2).  To examine this further, we also quantitated embryos 

double mutant for both NcadD14 and spg242.  We observed a modest, although significant 

increase in axon outgrowth phenotypes over NcadD14 mutants alone (Figure 7C, Table 2).  

Consistent with this, NcadD14, elmo19F3 double mutants exhibited a consistent 

enhancement of axonal breaks (Figure 7D, Table 2), although no increase in midline 

guidance errors.  However, in both double mutant combinations, we also observed 

qualitatively different and/or stronger phenotypes than that observed in the single mutants 

alone.  For example, we also observed a greater than additive increase in ectopic midline 

crossing in NcadD14;spg242 double mutants (23.0%) over NcadD14 (3.0%) or spg242 (0.0%) 

mutants alone.  In NcadD14,elmo19F3 double mutants, the embryos showed an increase in 

collapsed outer longitudinal axon tracts onto the MP1 fascicle (Figure 7D, asterisks), a 

phenotype not observed in NcadD14 or elmo19F3 mutants alone.   These data taken together 

suggest that the maternal load of spg or elmo may be masking phenotypes until the levels 

of an upstream component is compromised.  An alternative explanation is that Ncad, Spg, 

or Elmo may also have functions independent of one another in CNS development.   

Although mbc is required for axon outgrowth (Figure 5A), we did not observe an increase 
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in axonal outgrowth or guidance defects upon removal of Ncad (Figure 7E), suggesting 

that Mbc may function independently. 
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Figure 1: Identification of CG31048/Spg as an ELMO-binding Protein  (A) Table 

showing peptide coverage of HA-tagged ELMO in 5 independent mass spectrometry 

experiments compared to 3 untagged ELMO control experiments. Aside from ELMO 

itself, the most abundant associated protein detected was Mbc, followed by CG31048. 

(B) Protein schematic of Spg and related proteins. Spg is the most similar to vertebrate 

DOCK3 and DOCK4. The most closely related fly protein is Mbc. SH3 (Src-homology 

domain-3); DHR-1 (DOCK Homology Region-1); DHR-2 (DOCK Homology Region-2); 

PxxP (Proline-rich region). (C) Both tagged and untagged ELMO are expressed under 

control of the muscle-specific mef2-GAL4 driver. Embryonic lysates are 

immunoprecipitated with anti-HA and immunoblotted with antisera against Spg (top 

panel). Inputs show loading of total ELMO protein (middle panel) and HA-tagged protein 

(bottom panel). 
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Figure 2: Spatial Expression of Spg in the Developing Embryo In situ hybridizations of 

wild-type embryos showing spg mRNA expression. (A–F) (A) Stage 11 embryo shows 

expression in the nervous system primordia. (B) Expression in the ventral nerve cord and 

sensory primordia at stage 13. (C, D) In dorsal views, spg is expressed in the brain and 

visceral mesoderm (arrowheads) at stage 13 (C) and brain and dorsal vessel at stage 16 

(D, arrow). (E, F) At stage 16, expression is high in the ventral nerve cord in both lateral 

(E) and ventral (F) views. Arrow designates dorsal vessel expression (E). (G–I) 

Expression of Spg visualized by immunohistochemical staining. Spg is expressed is the 

ventral nerve cord in stage 13 (G) and stage 15 (H) embryos. Low expression is also 

detectable in the gut mesoderm (H). (I) A ventral view shows expression in the both the 

ventral nerve cord and peripheral neurons (arrows). (J-L″) Immunofluorescent confocal 

micrographs of Spg protein and neuronal markers. (J-J″) In stage 13 embryos, Spg 

expression overlaps with BP102 in both longitudinal and commissural axons. (K-K″) Spg 

is not expressed in repo (+) glial cells or ventral midline glial cells (L-L″). Anterior is left 

and dorsal is up in A, B, E, G, H. Scale bar=50 µm. 
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Figure 3: Embryos with Loss of Both Zygotic elmo and spg Exhibit Abnormal Axonal 

Patterns Late stage 16 or stage 17 embryos stained with anti-FasII to reveal subsets of 

longitudinal axons (A–E) and anti-BP102 to label all CNS axons (F–J). Anterior is up in 

all panels. (A, F) In WT embryos, FasII is expressed in 3 longitudinal bundles along each 

lateral side of the ventral nerve cord and BP102 labels both longitudinal and commissural 

axons on either side of the midline. (B, G) Removal of zygotic spg results in minor gaps 

in the outermost longitudinal fascicles (B, arrowhead) and a largely normal ladder-like 

pattern with occasional thinning of the longitudinal axons (G, arrowhead). (C, H) 

Embryos that lack zygotic elmo look similar to WT as visualized by anti-FasII (C) and 
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reveal minor thinning of longitudinal axons with anti-BP102 (H, arrowhead). (D, I) 

Removal of maternal and zygotic elmo visualized by FasII (D) reveal discontinuous 

bundles of lateral axon tracts (arrowheads) and aberrant midline crossing of fascicles 

(arrow). Misrouted 1D4-positive axons are also seen outside the normal longitudinal 

pathways (asterisk). (I) Thinner longitudinal axons (arrowhead) and abnormal 

commissural patterns are present with BP102 in elmo m-z- animals (I). (E) Analysis of 

embryos homozygous for both zygotic elmo and spg exhibit more severe axonal 

discontinuities and/or fusion to adjacent fascicles (arrowheads), in addition to 

inappropriate midline crossing (arrow). (J) These embryos also exhibit abnormal 

patterning of longitudinal and commissural axons (compare length of 2 consecutive 

segments denoted by line in J to F–I). (K) Graph depicting the percent of hemisegments 

that exhibit either gaps or missing axons and ectopic fascicle crossing in either spg or 

elmo mutants alone or elmo, spg double mutants. All embryos were stained with FasII for 

scoring (see table 1 for complete data set). Statistical significance was determined by 

student T-test. 
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Figure 4: Loss of  Zygotic spg is not Sufficient to Reveal Myoblast Fusion Defects (A–D) 

Lateral views of stage 16 embryos stained with anti-MHC to visualize the final muscle 

pattern. (A, B) A wild-type muscle pattern is seen in mutants that lack zygotic spg (A) 

and both zygotic elmo and spg (B). (C, D) Myoblasts fail to fuse but cluster around 

founder cells (arrows) in mbc mutants (C) and spg, mbc double mutants (D). Scale 

bar=10 µm. 
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Figure 5: CNS Defects are Enhanced in Embryos Missing Both spg and mbc Late stage 

16 or stage 17 embryos stained with anti-FasII (A, B, E, F) and anti-BP102 to label all 

CNS axons (C, D). (A, C) mbc mutants have more discontinuities in the outermost 

fascicles (A, arrowhead) and thinner longitudinal axons (C, arrowheads). (B, D) Mutants 

missing both spg and mbc have an increase in (B) missing and collapsed longitudinal 

fascicles (arrowhead) and abnormal crossovers (arrows). BP102 staining (D) shows a 

severe thinning of axons (arrowhead) and abnormal spacing between segments (compare 

length of 2 consecutive segments denoted by line in panels C and D). (E, F) Lateral views 

of stage 16 embryos stained with anti-FasII show abnormal positioning of the ventral 

nerve cord in spg, mbc mutants (F, arrow) compared to mbc mutants alone (E). Anterior 

is up in panels A–D. Anterior is left and dorsal is up in panels E, F. 
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Figure 6: Expression of N-cadherin is Sufficient to Recruit Spg to the Membrane Late 

stage 16 or stage 17 embryos stained with anti-FasII (A, B, E, F) and anti-BP102 to label 

all CNS axons (C, D). (A, C) mbc mutants have more discontinuities in the outermost 

fascicles (A, arrowhead) and thinner longitudinal axons (C, arrowheads). (B, D) Mutants 

missing both spg and mbc have an increase in (B) missing and collapsed longitudinal 

fascicles (arrowhead) and abnormal crossovers (arrows). BP102 staining (D) shows a 

severe thinning of axons (arrowhead) and abnormal spacing between segments (compare 

length of 2 consecutive segments denoted by line in panels C and D). (E, F) Lateral views 

of stage 16 embryos stained with anti-FasII show abnormal positioning of the ventral 

nerve cord in spg, mbc mutants (F, arrow) compared to mbc mutants alone (E). Anterior 

is up in panels A–D. Anterior is left and dorsal is up in panels E, F. 
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Figure 7: Genetic Interactions Between Ncadherin, elmo, spg, and mbc (A–E) Anti-FasII 

staining to visualize longitudinal axons. (A, B) Removal of zygotic Ncad (A) or both N-

cadherin genes (NcadΔ14) (B) exhibit mild axonal break defects (arrowheads). (C) A 

significant increase in both fascicle axonal breaks (arrowhead) and ectopic midline 

crossing (arrows) are observed in NcadΔ14; spg double mutants. (D) Removal of both 

NcadΔ14 and elmo function results in an increase in axonal patterning defects, including 

a collapse of the outer fascicle tract onto the MP1 fascicle (asterisk and arrow) and an 

increase in axonal gaps (arrowhead). (E) NcadΔ14; mbc double mutants exhibit many 

breaks in the outer longitudinal fascicles (arrowhead), similar to that of NcadΔ14 or mbc 

alone. (F) Graph showing the percent of hemisegments that exhibit missing axons or 

ectopic fascicle crossing in NcadΔ14, spg, or mbc single and double mutants. A 

statistically significant difference (using student t-test) is observed in NcadΔ14; spg 

double mutants versus the NcadΔ14 or spg single mutants alone. However, analysis of 

double mutants of NcadΔ14; mbc do not show a significant increase in axonal defects 

over the single mutants alone. 
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Figure 8: Loss of Spg results in mild CNS defects (A–E) Stage 16 embryos stained with 

FasII. (A, B) Both spg242 (A) and spg805 (B) over a deficiency that removes the spg 

locus result in mild gaps in the outer longitudinal fascicles (arrowheads). (C) The same 

phenotype are observed in animals trans-heterozygous for spg242 and spg805. (D, E) 

Knockdown of Spg by RNAi resulted in similar axonal outgrowth phenotypes (D) and 

bifurcated axons (asterisk in E). 
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 Table 1: Genetic Interactions between elmo, spg, mbc, and N-cad 
 
   Missing  Fascicle   % Segments             Segments      % Embryos  severe  
Genotype    Axonsa   Crossingb     Abnormald            Scored (n)               to quantitate 
 
y, w              0   (0.0%)    0  (0.0%)                        0.0%                         101               0.0% (n=15) 
elmoKO/elmoKO    1   (0.8%)    0  (0.0%)                        0.8 %                     133               0.0% (n=16) 
elmoPBm-z-   35 (44.8%)    5  (6.4%)       72.0%      79                        0.0% (n=17) 
spg242/spg242  10 (10.0%)    0  (0.0%)       10.0 %      100                        0.0% (n=23) 
elmoKO/elmoKO; spg242/spg242 40 (37.7%) ** 13 (12.2%)**      50.0 %    106                        0.0% (n=21) 
mbcD11.2/mbcD11.2  23 (34.3%)    3  (4.4%)       38.8 %          69               0.0% (n=21) 
spg242, mbcD11.2/spg242, mbcD11.2 97 (39.7%)  23  (9.4%)       49.1 %    244             11.3% (n=63) 
Ncad1405/Ncad1405  24 (23.0%)    3  (2.8%)        25.9%    104                        0.0% (n=17)                
NcadΔ

14/NcadΔ
14  81 (35.0%)    7  (3.0%)       38.0%    231               0.0% (n=43) 

NcadΔ
14/NcadΔ

14, elmo19F3/elmo19F3      133 (56.1%)**  10 (4.2%)                        60.3%                       237                        4.7% (n=63) 
NcadΔ

14/NcadΔ
14; spg242/spg242  97 (46.0%)** 48 (23.0%) **      69.7 %    208                        7.4% (n=27) 

NcadΔ
14/NcadΔ

14; mbcD11.2/mbcD11.2 115 (36.5%)    7  (2.2%)       38.7 %       315                        6.0% (n=19)  
 
Stage 16-17 embryos stained with anti-FasII were scored. 
aLongitudinal axon tracts missing from either or both sides of nerve cord/segment. 
bNormal fascicle(s) ectopically crossing the midline 
c% segments abnormal includes all defects observed in a and b 
m-z- designates removal of maternal and zygotic contribution 
**indicates p<0.05 using student T-test compared to single mutants alone 
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CHAPTER 3 

DIFFERENTIAL ROLES OF THE UNCONVENTIONAL DOCK FAMILY MEMBERS MYOBLAST  
 

CITY AND SPONGE IN DROSOPHILA DEVELOPMENT 
 

Mbc and Spg do not function redundantly in somatic muscle development 

Rho GTPases are enzymes that bind and hydrolyze GTP, allowing for physical 

interactions with downstream proteins to activate pathways involved in cell 

morphogenesis, including cell migration, cell adhesion, and phagocytosis 1, 2.  Normal 

development and tissue homeostasis require proper regulation of the GTP hydrolysis 

cycle to tightly control cytoskeletal cell shape changes and cell-cell adhesion events 3.  

Inappropriate control of cell morphogenesis can manifest in abnormal cellular behaviors.  

For example, cancer cells may detach from their original location, undergo cytoskeletal 

rearrangement, and alter membrane adhesion dynamics to migrate through complex 

extracellular environments in tumor metastasis.  Many of the same molecules are 

essential for cell morphogenic events in both normal and abnormal cells 4. Thus, 

determining the normal function of proteins that control GTPases allows us to extrapolate 

how abnormal misregulation of cellular events result in genetic birth defects or disease 

progression in different biological contexts.  

The Rho GTPases are key regulators in cell morphogenesis, cycling between an 

“off” and an “on” state 45, 46. GTPase Activating Proteins (GAPs) facilitate the exchange 

of GTP for GDP to inactivate GTPases. Counteracting this, GEFs assist in the exchange 

of GDP for GTP, which activates GTPases for the binding to downstream effector 

proteins.  This GDP exchange of Rho GTPases is facilitated by two types of GEFs; the 

Dbl family and the Dock family.  Proteins of the Dbl family contain conserved tandem 
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Dbl homology (DH) and Pleckstrin homology (PH) sequences 1, 2. Functionally, the DH 

domain catalyzes GEF activity, while the PH domain allows for interactions with other 

proteins to control sub-cellular localization 46, 47.  The ‘atypical’ Dock GEFs lack the 

canonical DH domain, but utilize an internal Dock homology region 2 (DHR2) for 

GTPase binding and exchange activity.  Dock GEFs also contain a separate SH3 domain 

that interacts with the adaptor protein ELMO for the regulation of Dock protein 

localization and GTPase activation 1, 2.  The bipartite Dock-ELMO complex is required 

for optimal in vivo GEF activation of Rac 1, 48. The current model suggests that ELMO 

and Dock exist in an autoinhibitory state in the cytoplasm and upon stimulation by 

external cues, this inhibition is relieved for ELMO-Dock complex membrane recruitment 

and interaction with downstream GTPase targets 1. 

There are 11 Dock proteins in mammals that are subdivided into four categories: 

Dock A-D.  To date, Dock-A, -B, and -C family members can all activate the Rho 

GTPase Rac, while Dock-C and –D proteins also show specificity for Cdc42 1, 2.  

Expanding the repertoire of GTPase targets, the Dock-B subgroup member Dock4 has 

also been shown to activate the Ras-like small GTPase Rap1 26-28.  The Dock-A family 

member, Dock1 (Dock180), is required for vertebrate neuronal pathfinding, endothelial 

cell migration, and functions in concert with a second Dock-A member, Dock5, to control 

myoblast fusion in vertebrate muscle development 49-51.   

Less is known about the developmental roles of the mammalian DockB family.  

Two of the subfamily members, Dock3 (also called Modifier of cell adhesion, or MOCA) 

and Dock4, are expressed in nervous system tissue, and Dock4 expression is also 

detected in smooth muscle cells 29-31.  Both Dock3 and Dock 4 are implicated in actin 
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reorganization through the activation of Rac in neurite outgrowth and dendritic spine 

morphology, respectively 52; HIRAMOTO et al. 2006; UEDA et al. 2013). Notably, Dock3-/- 

mice exhibit neuronal degeneration 53.  The association of Dock 3 or Dock 4 in 

neurological disorders, including Alzheimer’s disease, schizophrenia, and autism 

spectrum disorders, suggest a broader role in neuroprotection 2, 30, 32, 54.  An additional 

role for Dock protein was demonstrated in tumorigenesis. A representational difference 

analysis (RDA) screen using mice-derived tumors identified a single Dock4 point 

mutation in two different cancer cell lines 26.  This same study showed Dock4-mediated 

Rap activation was required for cells to maintain their cell-cell adhesion junctions. 

Clearly, these studies show the importance of Dock proteins in disease progression. 

However, overlapping expression patterns and functional redundancy in vertebrate 

models can be complicated. Fortunately, the less complex fly model provides an excellent 

system to examine the cellular roles of Dock protein function. 

Redundancy is simplified in flies with only one Dock homolog per subfamily. In 

Drosophila, the Dock-A counterpart, Myoblast City (Mbc), is required for Rac-mediated 

processes, such as myoblast fusion and border cell migration that require modulation of 

the actin cytoskeleton 55, 56.  Mbc also functions redundantly with the Dock-B homolog, 

Sponge (Spg), in border cell migration 33. However, it is unclear if these two GEFs 

function redundantly in other developmental processes in Drosophila where spg and mbc 

exhibit either overlapping or exclusive mRNA expression patterns.  For example, mbc 

transcript is enriched in the somatic muscle and mbc mutants show myoblast fusion 

defects 21, 55, 57.  Spg mRNA is not detectable in the developing musculature and thus far 

no muscle phenotypes have been observed.  In contrast, spg, but not mbc transcript is 
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high in the developing CNS, but mutations in either gene result in axon guidance or 

outgrowth phenotypes. While both spg and mbc are essential for CNS development, spg 

exhibits a genetic interaction with the cell adhesion molecule N-cadherin, while mbc does 

not 29.  These data, taken together, suggest that Dock family proteins may exhibit 

differential roles in development. One prediction of these different roles may be 

activation of different downstream GTPases. This is supported by a recent report where 

Spg is required for Rap-mediated photoreceptor differentiation in the Drosophila eye 28.   

Herein, we use the genetically tractable model organism Drosophila melanogaster 

to determine if Mbc and Spg function redundantly in tissues other than border cell 

migration and to establish if these Dock proteins target the same or different GTPases in 

the dorsal vessel, a tissue where both transcripts are expressed 29. Using genetic 

interaction analyses, RNAi knockdown, and rescue experiments with the GAL4/UAS 

system, we have established that Mbc and Spg have differential functions in the 

development of the somatic muscle and dv.  In addition, we show that the downstream 

GTPases of these GEFs are different in dv development.  This is one of the first in vivo 

examples of these two related proteins having distinct targets in development. 

Myoblast fusion defects are well described in Drosophila somatic muscle 

development, a process analogous to skeletal muscle development in mammals and 

requires the regulated control of cell morphogenic events 58.  At stage 13 in 

embryogenesis, specialized muscle cells termed founder cells are present at sites where 

somatic muscles will eventually form.  Fusion competent myoblasts migrate to these 

founder cells and undergo repeated rounds of myoblast fusion events to form 

multinucleated muscle fibers (Fig. 1A,B). Consistent with published literature 55, 59, 
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mutations in the gene that encodes for the Drosophila DockA homolog mbc, resulted in 

myoblasts that were capable of migrating to the founder cells, but failed to undergo 

fusion (Fig. 1C; arrowhead).  Our earlier studies showed that removal of spg in an mbc-/- 

mutant background does not alter the ability of myoblasts to migrate to or fuse with 

founder cells 29.  These data strongly suggest that Mbc and Spg do not perform the same 

roles in the migration or fusion of myoblasts during somatic muscle development.   

A limiting factor in the analysis of mbc-/- spg-/- double mutants is the presence of 

maternal spg transcript 29, 35, possibly masking our ability to observe an enhancement of 

mbc phenotypes.  To circumvent the issue of spg maternal contribution and address 

whether Dock proteins exhibit functional redundancy using a different assay, we tested 

whether Spg could compensate for the mbc-/- myoblast fusion phenotype.  Expression of 

UAS-mbc under control of the mesodermal-specific GAL4 driver, twist (twi), fully 

rescued the muscle pattern to WT in over 80% of the embryos in an mbc-/- mutant 

background (Fig. 1D,F).  Ectopic expression of full-length spg (UAS-spgFL) did not 

rescue mbc-induced myoblast fusion defects to the same extent as expression of mbc (Fig. 

1E,F).  We occasionally observed a few fully formed myotubes in this genotype (14.3%), 

suggesting that a small portion of Spg protein could compensate for the loss of Mbc.  

Overall, we conclude that Mbc and Spg do not have equivalent roles in somatic muscle 

development.  

 

The Mbc-Elmo complex functions upstream of Rac1 in myoblast fusion 

Previous experiments to rescue myoblast fusion defects in mbc mutants using the 

constitutively active form of Rac (UAS-Rac1V12) have been difficult to interpret due to the 
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drastic phenotypes of activated Rac on its own (Fig. 2E), and possibly additional 

functions of Mbc that cannot solely be rescued by a single downstream molecule 60. Thus, 

we chose a different genetic approach to examine if the Mbc-ELMO complex acts 

upstream of Rac in myoblast fusion.  We used the mef2 promoter to express either UAS-

mbc or UAS-elmo in the developing musculature.  Either the mef2-GAL4 insertion alone 

(Fig. 2A,B) or overexpression of mbc (Fig. 2C) or elmo (Fig. 2D) did not induce 

myoblast fusion defects.  However, simultaneous overexpression of mbc and elmo 

triggered myoblast fusion defects (Fig. 2G) similar to, but less severe, than ectopic 

expression of the neuronal DH-containing Rac1 GEF trio (Fig. 2F). We next found that 

we could suppress fusion defects due to overexpression of an Mbc-ELMO GEF complex 

upon removal of a single copy of the downstream GTPases Rac1 and Rac2 (Fig. 2H), 

both of which are required for myoblast fusion 23. These data demonstrate that the Mbc-

ELMO complex function upstream of the Rac GTPase to regulate myoblast fusion in the 

developing Drosophila embryo.     

 

Spg and Mbc are required for dv development 

We previously showed that mbc and spg mRNA are both expressed in the 

developing dv 29, and we decided to use this tissue to further assay the cellular roles of 

Dock proteins.  Formation of the Drosophila dv, or heart tube, begins around st. 13 of 

embryonic development after heart cell specification has delineated two rows of 52 

precursor cells, or cardioblasts, on the dorsal side of the embryo (Fig. 3A,B).  The 

cardioblast rows are physically linked to the epidermis and migrate towards the dorsal 

midline as dorsal closure proceeds.  By st. 17 the cardioblast cells are paired up at the 
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dorsal midline with a distinct posterior heart and anterior aorta region 61 (Fig. 3A’,B’). 

This alignment of cells provides a simple assay to analyze gene functions in early and 

late stages of dv morphogenesis. 

Previous analysis of spg-/- mutants, which contained maternally contributed spg, 

showed only mild defects in CNS development 29.  Thus we sought a different approach 

to further knockdown Spg levels using an RNAi strategy in a spg-/- mutant background. 

Expression of UAS-spgRNAi353 in the developing musculature (24B-GAL4) in zygotic 

spg-/- mutants resulted in weak cardioblast clustering defects in both early (Fig. 3C) and 

late stages (Fig. 3C’) of dv development. Expression of a new embryonic lethal RNAi 

line (UAS-spgIR13) 28 with the mesodermal-specific GAL4 drivers, twi (Fig. 3D,D’) or 

24B (Fig. 3E,E’), revealed enhanced clustering of the cardioblasts that persisted from st. 

13 (Fig. 3I and Table 1A) until st. 17 (Table 2A).  Importantly, these clustering defects 

were severe, with some clusters containing four or more cells.  Analysis of single sections 

from multiple Z-stacks showed that many clusters resulted from cells on top of other 

cardioblasts.  To confirm this observation, we imaged a lateral view of the dv in st. 13 

embryos.  The cardioblasts in WT embryos formed a single-celled row (Fig. 3F), whereas 

these same cells appeared clustering on top of one another in twi-GAL4::UAS-spgIR13 

embryos (Fig. 3G).  This data suggests defects in the ability of the cardioblast rows to 

maintain their initial contralateral alignment at the beginning of dv development. To our 

knowledge, this is the first report of a multilayered cell clustering phenotype in a 

Drosophila dv mutant.  

 The above data clearly show a requirement for Spg in patterning of the dv.  We next 

decided to test if mbc-/- mutant embryos also exhibited defects in heart tube 
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morphogenesis.  Cardioblast clustering defects were apparent in mbc-/- mutants at st. 13 

(Fig. 4A; arrowhead). However, the number of cells in each cluster was consistently less 

than those observed in spg-/- mutants (Tables 1,2) and the clusters were never 

multilayered (compare arrowhead in Fig. 3G to Fig. 3H). Furthermore, the clustering 

defects observed in early mbc-/- mutants were often adjacent to breaks in the lateral rows 

of cardioblasts (Fig. 4A; arrow), indicating that the cluster may be a result of this break.  

Clusters seen in regions of the cardioblast row that were not next to a break normally 

consisted of only two cells compared to the complex clustering in spg-/-  mutant animals 

that contained at least four cells.     

 Cardioblast clusters observed in early mbc-/- mutant embryos persisted until st. 17 (Fig. 

4A’; arrowhead).  We also observed regions along the length of the dv that consisted of 

unpaired, or rows of single cells (Fig. 4A’; brackets).  It is unclear if this phenotype is a 

manifestation of the gaps seen in early mbc-/- mutants, a loss of cell number during the 

migration process, or a twist in the vessel where the cells end up underneath their 

potential paired cardioblasts. Quantification of cardioblasts showed a loss of about 10 

heart cells in mbc-/- mutants from st. 13 to st. 17 (Table 1B,2B).  This analysis was 

performed by counting individual cardioblasts in single sections of confocal z-stacks, 

reducing the possibility of missing cells that could be underneath other cardioblasts.  This 

single cell phenotype has been reported in another dv mutant, laminin-A, and is thought 

to result from the inability of the dv to maintain its position within the embryo, resulting 

in twists and breaks in the cardioblast rows 62.  These data, taken together, show that 

while loss of either GEF results in cardioblast clustering, the clustering in spg mutants is 
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more severe than mbc mutants. Moreover, mbc mutants are characterized by a loss of 

cardioblast cells and lateral gaps within a contralateral row of cells.  

 

Spg is not capable of rescuing defects resulting from mbc removal in the dv 

To verify and extend our observations that Mbc and Spg play independent roles in 

dv morphogenesis, we utilized the GAL4/UAS system to perform rescue experiments 

specifically in the dv.  As expected, the reintroduction of UAS-mbc was sufficient to 

ameliorate the loss of cardioblast cell numbers, rows of single cells, and clustering 

defects present in mbc mutants (Fig. 4B,B,E,F and Table 1B,2B). In contrast, expression 

of UAS-spg did not suppress any of these dv phenotypes to the same degree (Fig. 4C, C’, 

E, F and Table 1B,2B). Note that while we could not directly assay the extent of somatic 

myoblast fusion with the Mef2 muscle nuclei marker used in these experiments, we 

noticed a change in the organization of the dorsal muscle nuclei. Consistent with the 

well-documented myoblast fusion defects in mbc-/- mutants (Fig. 4A’; carets), we saw a 

general disorganization of the somatic nuclei in this genotype that was restored upon 

expression of UAS-mbc (Fig. 4B’; asterisks).  This rescue did not occur upon expression 

of UAS-spg (Fig. 4C’; caret), which is consistent with our data in Fig. 1 showing that Spg 

does not rescue mbc-induced myoblast fusion defects.  

The overall primary amino acid sequence between Mbc and Spg (33% 

identity/52% similarity) is the most divergent in the C-terminal proline-rich region, where 

the identity decreases to 16% and similarity to 21% 29.  This feature prompted us to create 

a mutant form of Spg that lacked this proline rich region; called UAS-spgΔPxxP.  

Expression of UAS-spgΔPxxP in mbc-/- mutants produced an intermediate rescue, 
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suggesting that in addition to the DHR2 domain, the C-terminal rich domain may play a 

role in dv development (Fig. 4D,D,E,F and Table 1B, 2B). 

 

GTPase activation of both Rac1 and Rap1 is required for proper dv development 

To address our central question of whether Dock family members act upstream of 

different GTPase targets in vivo, we first examined if disruption of Rac or Rap1 affected 

dv morphogenesis.  Zygotic removal of both Rac1 and Rac2 induced small cell clusters 

and lateral gaps that were prevalent at st. 13 (Fig. 5A,G and Table 1C) and persisted in 

embryos analyzed at st. 17 (Fig. 5A’,H and Table 1C).  Since both Rac1 and Rac2 are 

maternally contributed gene products 23, we expressed a dominant negative form of Rac1 

(UAS-RacN17) under control of the twi promoter to observe effects upon loss of Rac 

activity. In addition to an increased penetrance of clustering defects, we also observed 

partial rows of single cells and a loss of cardioblast number not observed in Rac1Rac2-/- 

mutants alone (Fig. 5B, B’ G, H and Table 1C, 2C).  These combined phenotypes were 

similar to dv defects in single mbc-/- mutants and in embryos that were doubly mutant for 

both mbc and elmo (Fig. 5C, C’ and Table 1C, 2C).   

We observed a similar trend in the degree of penetrance observed upon loss of 

Rap1, where the weak phenotypes observed in zygotic Rap1-/- mutants were increased 

upon expression of dominant-negative Rap1 (UAS-Rap1N17).  Rap1-/- mutants showed 

mild clustering defects in both early (Fig. 5D,G and Table 1C) and late dv development 

(Fig. 5D’,H and Table 2C).  In addition to an increase in the number of clusters per 

embryo, gaps in the contralateral rows, were also present upon expression of UAS-

Rap1N17 in the dv (Fig. 5 E, E’ and Table 1C, 2C).  Note that loss of Rap activity did not 
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alter cardioblast number (Fig. 3H and Table 1C).  Removal of both spg and elmo resulted 

in severe cardioblast clustering, reminiscent of that seen in UAS-spgIR13 knockdown (Fig 

5F,F’ and Table 1C, 2C).  As illustrated in Fig. 5, the cardioblasts in some st. 13 embryos 

exhibited a “star” phenotype, suggesting that the dv is either being pulled away from or 

restrained from migrating to the central midline.  Importantly, elmo-/-; spg-/- double 

mutant animals were unhealthy and even heterozygotes had a hard time surviving under 

normal laboratory conditions.  Taken together, these data suggest that both Rac and Rap1 

are required for dv development.   

 

Mbc exhibits specificity for Rac in dv morphogenesis  

We next tested if Mbc acts upstream of Rac1 in the developing heart tube as it 

does in somatic muscle development.  Expression of UAS-Rac1V12 under control of the 

twi promoter resulted in the same phenotypes, but with increased penetrance, as those 

observed in mbc-/- mutants, including  cell clustering (small arrows), gaps in the 

cardioblast rows (long arrows) and regions of single cells (Fig. 6A,A’; bracket).  

Expression of UAS-Rac1V12 in an mbc-/- mutant ameliorated these phenotypes nearly to 

WT (Fig. 6B, B’, D, E).  Notably the decrease in cardioblast number was also rescued 

upon reintroduction of UAS-RacV12 (Table 1D, 2D), a suppression that was not observed 

upon overexpression of UAS-Rap1V12 (Fig. 6C,C’,D,E and Table 1D, 2D), strongly 

suggesting that Mbc acts upstream of Rac and not Rap1 in this tissue.   
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Spg and Rap1 likely function together in dv development 

Since the dv defects in mbc-/- mutant embryos were partially suppressed upon the 

introduction of UAS-RacV12, we wondered if we could temper spg-induced phenotypes 

upon expression of Rap1V12.  As might be expected for either mis- or overexpression of a 

constitutively active form of any GTPase, patterning defects were present in the dv upon 

expression of UAS-Rap1V12. Specifically, we observed an increased number of 

cardioblast clusters that persisted from early (Fig. 7A,F and Table 1E) to late (Fig. 7A’ 

and Table 2E) stages along with some regions of single cells (Fig. 7A’ and Table 2E).  

Expression of this constitutively active form of Rap1 ameliorated the single cell 

clustering phenotypes associated with a reduction in spg levels using UAS-spgIR13  (Fig. 

7B,B’,F and Table 1E).  Acquiring this stronger RNAi line allowed us to further 

investigate the involvement of Spg in CNS development 28, 29.  Using the neuronal C155-

GAL4 driver, RNAi depletion of spg resulted in increased penetrance of outgrowth 

defects (Fig. 7C; caret) and midline crossing errors (asterisk) compared to spg-/- mutants 

alone 29.  Expression of UAS-Rap1V12 in a spg RNAi background reduced the percentage 

of axon skipping and eliminated midline guidance defects (Fig. 7E,G).  While this data 

suggests that Spg may function with Rap1, there are limitations in analyzing whether 

GTPase overexpression can suppress knockdown of a gene using RNAi techniques.  

 We next turned to genetic interaction analysis to further examine if spg and Rap1 likely 

function in the same pathway in dv development.  Removal of zygotic Rap-/- (Fig. 8A,A’ 

and Table 1F,2F) or spg-/- (Fig. 8C, C’ and Table 1F,2F) alone resulted in mild clustering 

defects.  An enhancement in the number of cardioblast cells in each cluster was seen 

upon removal of either one copy of spg in Rap1-/- mutants (Fig. 8B,B’,F and Table 1F,2F) 
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or a 50% reduction in Rap1 gene dosage in a spg-/- mutant background (Fig. 8D,D’,E and 

Table 1F,2F). Importantly, the cardioblast number did not change in our genetic 

interaction analysis between spg and Rap1, further supporting the idea that cardioblast 

number is mediated by the Mbc!Rac pathway. These data provide good evidence for 

Spg and Rap1 acting together in dv development. 

 

Mbc and Spg are required for proper dv lumen formation 

Cryosection and electron microscopy studies reveal that the dv is an excellent in vivo 

two-cell system to study cell morphogenesis 63, 64 Starting in st. 13 embryos, two 

contralateral rows of cardioblasts migrate towards the midline to form the first junctional 

adhesion domain by st. 15 (Fig. 9A’). The adhesion proteins β-catenin and E-cadherin 

accumulate at this initial adhesion site and trigger actin-mediated cell shape changes, in 

which the cardioblasts adopt a crescent-like shape to form a second, ventral adhesion site.  

Simultaneous with heart cell shape changes, cell-autonomous, repellant Slit/Robo 

signaling at the lumenal surface of the cardioblasts prevents ensures proper lumen 

formation 63-65.  

We chose to test whether loss of mbc or spg resulted in aberrant cell shape 

changes during dv development and whether the adhesion between the cardioblasts was 

altered in these mutant backgrounds.  Using transmission electron microscopy (TEM), 

analysis of cross-sections in WT st. 17 embryos showed two crescent-shaped cardioblasts 

with an internal lumen (Fig. 9 B’).  Higher magnification revealed electron dense regions, 

indicative of adhesion complexes, at the junctional domains (Fig. 9 B’’).  In mbc mutants, 

the cardioblasts appeared rounded as if unable to change shape, and the lumen was either 
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absent or very small (Fig. 9C’).  Dark electron dense regions were present in mbc mutants, 

suggesting that adhesion sites were present (Fig. 9C’’).  In contrast, the heart cells in 

twiGAL4::UAS-spgIR13 mutants showed an elongated shape (Fig. 9D’) that was different 

from the crescent-like cells observed in WT embryos or the round cells in mbc mutants.  

This genotype also lacked a lumen and the electron dense regions seen in WT and mbc 

mutants (Fig. 9D’’).  These results show that both Mbc and Spg are required for lumen 

formation in dv morphogenesis, although they likely act through different signaling 

pathways as the morphology of the heart cells and presence of electron dense adhesion 

sites were not the same in the two mutant genotypes.   
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Figure 9: Spg cannot compensate for Mbc in myoblast fusion  (A) Schematic 

representation of four hemisegments of the somatic musculature of a st. 16 embryo 

Drosophila embryo.  (B-E) Late st. 16 embryos stained with α-MHC to visualize the 

somatic muscle.  (B) WT embryos show organized repeating segments of somatic muscle.  

(C) Zygotic removal of mbc results in severe myoblast fusion defects (arrow).  (D) 

Reintroduction of mbc specifically in the mesoderm using the twi-GAL4 driver rescues 

the somatic muscle fusion defects.  (E) However, expression of spg does not rescue the 

myoblast fusion defects to the extent as mbc.  (F) Graph showing the extent of myoblast 

fusion rescue.  Anterior is left and dorsal is up for all embryos. Scale bar: 20µm. 
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Figure 10: The Mbc-Elmo complex functions upstream of Rac1 in myoblast fusion  (A-

H) Late stage Drosophila embryos stained with α-MHC to visualize the somatic 

musculature.  The muscle specific GAL4 driver, mef2, is used to drive the expression of 

indicated UAS constructs.   (A, B) Whole mount view of the entire embryo (A) or a 

higher magnification photograph of three hemisegments (B) show normal repeating 

segments of organized muscles in embryos heterozygous for the mef2-GAL4 driver. (C, 

D) Expression of mbc (C) or elmo (D) alone do not result in somatic muscle defects.  (E-

F) Expression of RacV12 (E) or ectopic induction of the GEF, trio, show severe myoblast 

fusion defects (F).  (G) Co-expression of UAS-mbc and UAS-elmo (G) induces somatic 

muscle fusion defects, which are suppressed upon removal of one copy of Rac1 and Rac2 

(H).  Anterior is left and dorsal is up for all embryos. Scale bar: 20µm. 
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Figure 11:  Spg is required for dorsal vessel patterning  (A, A’) Schematic representation 

of the cardioblasts. At the beginning of dv development, two rows of cardioblasts begin 

to migrate towards the dorsal midline (A, arrowheads). As dorsal closure proceeds, the 

opposing cardioblast rows eventually pair up at the midline where they form a distinctive 

posterior heart compartment and anterior aorta compartment (A’).  (B-E’) Dorsal views 

of cardioblast cells stained with the nuclear marker Mef2 in early (B-E) and late (B’-E’) 

dv development.  (B, B’) WT embryos form two evenly spaced rows (B) that meet at the 

dorsal midline in pairs (B’). (C, C’) Expression of UAS-spgRNAi353 with 24B-GAL4 in a 

spg-/- mutant background occasionally shows mild clustering defects (arrowheads).  (D, 

D’) Knockdown of spg with a different UAS-spgIR13 line under control of the 24B 
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promoter results in severe clustering (arrowheads). (E, E’) These severe clustering 

defects are also seen using the twist mesodermal driver (arrowheads).  Note the severe 

clustering, sometimes containing more than 3 nuclei, seen in E-E’ compared to the 

relatively mild clustering seen in C and C’.  Scale bar: 50µm. (F-H) Lateral views of 

approximately four hemisegments stained with α-mef2 to visualize cardioblast cell nuclei. 

The heart cells in WT (F) and mbc-/- (H) embryos form a relatively straight line compared 

to multilayered clustering observed in spg-/- mutants (G). (I) Graph depicting the average 

clusters per st. 13 embryo in the indicated genotypes. spg mutants exhibit increased 

cardioblast clustering defects. Posterior is up for panels B-E’. Anterior is left for panels 

F-H. Scale bar: 50µm. 
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Figure 12: spg is not capable of rescuing defects resulting from removal of mbc in the 

dorsal vessel (A-C’) Early and late stage embryos fluorescently labeled with α-mef2 to 

visualize muscle nuclei.  (A) Removal of mbc induces early clustering defects 

(arrowheads) that often appear next to lateral breaks (arrows).  (A’) These clustering 

defects often persist until later in development (arrowheads) where rows of single cells 

(brackets) are also seen. (B, B’) Expression of UAS-mbc in an mbc mutant background 

with twist-GAL4  rescues both early and late defects seen in mbc mutants alone.  (C, C’) 

No rescue of the mbc mutant phenotype is seen upon expression of UAS-spg. (D,D’) 

Expression of UAS-spgΔPxxP, which removes the C-terminal proline rich region, 

partially rescues the dv defects in mbc mutants, but not the myoblast fusion defects (D’, 

carets). (E,F) Quantitation of the ability of UAS-spg to rescue unpaired cardioblasts (E) or 

cardioblast clusters in st. 17 mbc-/- embryos. Posterior is up for all embryos. Scale bar: 

50µm. 
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Figure 13: GTPase activation of both Rac and Rap1 is required for correct patterning of 

the dorsal vessel (A-F’) Early and late stage embryos fluorescently labeled with α-mef2 

to visualize muscle nuclei.  (A-F) Early defects in dv development include lateral gaps 

(arrows) and clustering (arrowheads).  (A’-F’) Later in development, these clusters 

(arrowheads) persist and regions of single cells are present (brackets).  (A-C’) 

Inactivation of the Rac GTPase pathway using classical alleles (A, A’), dominant 

negative overexpression (B, B’) or double mutant null alleles of the upstream GEF 

complex (C, C’) results in early lateral breaks, clustering, and regions of single cells in 

later development indicative of a twist or gap.  Note the disorganized muscle nuclei seen 

in these mutants (carets).  (C, C’) Removal of the zygotic portion of Rap iduces moderate 

clustering both early and late.  (E, E’) Overexpression of the constitutively active form of 

Rap causes severe clustering and lateral gaps both early and late.  Note the organized 

muscle nuclei (asterisk).  (F, F’)  Severe clustering is also seen when removing the 
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zygotic contribution of the elmo; spg GEF complex.  See Table 2 for quantification.  

(G,H) Graphs illustrating the average number of clusters per affected embryo (G) or 

cardioblast number (H) in mutants that alter GTPase activity.  Posterior is up for all 

embryos. Scale bar: 50µm 
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Figure 14: Mbc acts upstream of Rac in the dorsal vessel (A-C’) The nuclear marker 

Mef2 is used to label early and late stage embryos. (A, A’) Driving the constitutively 

active form of Rac under control of the twi promoter, causes lateral breaks (A, arrows), 

cardioblast clustering (A, A’, arrowheads), posterior openings (A’, arrow) and regions of 

single cells (A’, brackets).  (C-C’) Expression of RacV12 (B,B’), but not Rap1V12 (C,C’) in 

an mbc mutant background suppresses both early and late clustering defects and 

eliminates the single cell phenotype (B, B’).  (D,E) Comparison of the ability of activated 

Rac1 or Rap1 to suppress cardioblast clustering (D) or the loss of cardioblast number (E) 

seen in mbc-/- mutants. Posterior is up for all embryos. Scale bar: 50µm. 
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Figure 15: Expression of RapV12 can temper spg-/- phenotypes (A-E) St. 13 (A,B) or st. 17 

(A’,B’,C-D) C-H) embryos fluorescently-labeled with α-mef2 to visualize muscle nuclei 

or α-1D4 to label CNS longitudinal axons.  (A, A’) Embryos solely overexpressing the 
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constitutively active form of Rap1 show early and late clustering defects (arrowheads), 

abnormal posterior openings (arrows), and lateral gaps (brackets).  (B,B’) All of the dv 

defects seen when knocking down spg levels using an embryonic lethal RNAi line, 

spgIR13, are ameliorated with co-expression of the constitutively active form of Rap.  (C) 

RNAi knockdown of spg (UAS-spgIR13) using the pan neuronal driver, C155-GAL4, 

gives rise to outgrowth defects (brackets) and midline crossovers (asterisks).  (D) 

Overexpression RapV12 on its own does not show guidance errors, but instead results in 

minor unbundling of the longitudinal axons (D, caret).  (E) Outgrowth and guidance 

defects seen when knocking down Spg protein levels by RNAi (C, asterisk and bracket) 

are rescued when simultaneously expressing RapV12.  (F,G) Quantitation of the ability of 

UAS-RapV12 to suppress cardioblast clustering (F) or CNS defects (G) in spgIR embryos. 

Posterior is up for all embryos. Scale bar: 50µm. 
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Figure 16: Genetic interactions between spg and Rap1  (A-D’) Dorsal views of 

cardioblast cells stained with Mef2 in early (A-D) and late (A’-D’) dv development.  The 

number of cell clusters in Rap1-/- (A,A’) or spg-/- (C,C’) mutants is enhanced upon 

removal of one copy of either of spg (C,C’) or Rap1 (D,D’). (E,F) Enhancement of dv 

clustering phenotypes (E) and a lack of cardioblast numbers (F) in combinations of spg 

and Rap1 alleles examined at st. 17. Posterior is up for all embryos.  Scale bar: 50µm 
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Figure 17: Mbc and Spg are required for proper dv lumen formation  (A-D”’) Cross 

sections of the Drosophila dv to visualize cardioblast cell shape changes.  (A) Schematic 

representation of a whole mount embryo cross-section. The dv is located on the dorsal 

side just under the epidermis (box).  (A’) Schematic representation of dv lumen 

development from st. 13- st. 17.  Two cardioblasts meet at the dorsal midline to create an 

adhesion site, followed by cell shape changes which allow for the formation of a ventral 

second adhesion site. This process is coincident with lumen formation, resulting in a 

linear heart tube through which hemolymph flows. (B-B’’) The dv in WT embryos 

consists of crescent shaped cardioblasts with a large, central lumen.  (C-C’’) The 

cardioblasts are rounded and fail to form a lumen in mbc mutants. (D-D’’) twi-
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GAL4::UAS-spgIR13 embryos  also result in lumen formation, although the cardioblasts 

retain their crescent shape.  Note the lack of myoblast fusion seen in mbc mutants (C, 

caret) compared to the fused muscle seen in WT and spg RNAi (B, D carets).  (B”-D”) 

High magnification electron micrographs of cardioblast junctions.  (B”, C”)  Electron 

dense regions (arrow) indicate the formation of adherens junctions in WT (B’’) and mbc 

mutants (C’’).  Electron-dense regions are not observed along the adjacent membranes in 

spg IR embryos (D”).  Scale bar: (B-D) 20µm, (B’-D’) 5µm, (B”-D”) 250nm. 
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Table 2: Phenotypes present in early dorsal vessel development 

 
 

 

Embryos that 
exhibit clustering 

(%) 

Average 
clusters/emb

ryo 
cardioblas

t # (n) 
A WT   8.3% 1.0 103.3 48 
 24B-Gal4, spg242::UAS-spgRNAi353, spg242  31.0% 2.0 102.7 29 
 24B-GAL4::UAS-spgIR13 70.6% 7.1   99.8 34 
 twi-GAL4::UAS-spgIR13 78.9% 7.6   99.8 38 
      

B mbcD11.2 100.0% 3.5 102.4 17 
 twi-GAL4, mbcD11.2::UAS-mbc, mbcD11.2   43.0% 3.1 103.4 14 
 twi-GAL4, mbcD11.2::UAS-spg, mbcD11.2   88.0% 5.6 104.3 17 
 twi-GAL4, mbcD11.2::UAS-spgΔPxxP-GFP, 

mbcD11.2   80.0% 2.4 102.8 40 
      

C Rac1Rac2   43.9% 1.4 102.4 21 
 twi-GAL4::UAS-Rac1N17   59.3% 3.3   96.7 27 
 elmoKO; mbcD11.2   75.0% 2.8   99.5 13 
 Rap1B3/B3   62.1% 2.7 101.3 29 
 twi-GAL4::UAS-Rap1N17    75.0% 7.0 103.3 32 
 elmoKO; spg242   91.0%             17.7   98.5 11 
      

D twi-GAL4::UAS-Rac1V12 100.0%             11.5 101.8 13 
 twi-GAL4, mbcD11.2::UAS-Rac1V12, 

mbcD11.2   53.8% 2.8 102.8 13 
 twi-GAL4, mbcD11.2::UAS-Rap1V12, 

mbcD11.2   67.9% 3.9   97.9 28 
      

E twi-GAL4::UAS-Rap1V12    40.0% 2.3 101.9 15 
 twi-GAL4::UAS-spgIR13, UAS-Rap1V12    34.5% 2.0 103.4 29 
      

F spg242/242   41.2% 1.6 104.6 31 
 Rap1B3/+, spg242/242   66.7% 5.3 100.2 18 
 

Rap1CD5/B3   35.3% 1.7 102.8 
  
17 

 Rap1CD5/B3, spg242/+   52.3% 4.7 102.3 29 
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Table 3: Phenotypes Present in Late Development 

 

 
Single cells 

(%) 

Embryos that 
exhibit 

clustering (%) 

Average 
clusters/
embryo cardioblast # (n) 

A WT 11.1% 14.8% 1.3 103.3 54 
 24B-GAL4, spg242::UAS-

spgRNAi353, spg242   9.7% 12.9% 1.0 102.9 31 
 24B-GAL4::UAS-spgIR13 29.4% 35.0% 5.5 101.4 17 
 twi-GAL4::UAS-spgIR13 21.4% 53.6% 5.5 99.6 28 
       

B mbcD11.2 65.4% 86.9% 3.3 94.0 42 
 twi-GAL4, mbcD11.2::UAS-

mbc, mbcD11.2   9.1%   9.1% 2.5 101.0     22 
 twi-GAL4, mbcD11.2::UAS-

spg, mbcD11.2 40.0% 86.7% 4.0 96.2 15 
 twi-GAL4, mbcD11.2::UAS-

spgΔPxxP-GFP, mbcD11.2  12.9% 48.4% 2.3 100.4 34 
       

C Rac1Rac2   0.0% 5.3% 3.0 103.6 19 
 twi-GAL4::UAS-Rac1N17 26.5% 41.2% 2.6 98.9 34 
 elmoKO; mbcD11.2 50.0% 75.0% 2.3 98.8 17 
 Rap1B3/B3 10.7% 17.4% 2.9 100.3 28 
 twi-GAL4::UAS-Rap1N17  54.5% 30.3% 7.6 102.8 33 
 elmoKO; spg242 60.0% 100.0% 3.8 90.50   4a 

       
D twi-GAL4::UAS-Rac1V12 100.0% 100.0% 7.5 105.5  2a 

 twi-GAL4, mbcD11.2::UAS-
Rac1V12, mbcD11.2     0.0% 62.5% 3.2 103.0 16 

 twi-GAL4, mbcD11.2::UAS-
Rap1V12, mbcD11.2   25.0% 25.0% 2.0 98.5  4a 

       
E 

twi-GAL4::UAS-Rap1V12    46.2%              100.0% 
              
10.2 106.5 16 

 twi-GAL4::UAS-spgIR13, 
UAS-Rap1V12     3.2% 25.8% 2.5 102.1 31 

       
F spg242/242  5.0% 20.0% 1.5 103.8 20 
 Rap1B3/+, spg242/242    1.1% 44.4% 5.6 105.1   9 
 Rap1CD5/B3  0.0% 14.3% 1.0 104.0   7 
 Rap1CD5/B3, spg242/+  8.9% 30.0% 6.0 102.0 16 

a These genotypes resulted in low numbers of surviving progeny after st. 13. 
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CHAPTER 4 

MATERIALS AND METHODS 

 

Genetics 

 Fly stocks were raised on standard cornmeal medium at 25ºC unless otherwise 

indicated.  Oregon R	
  was used as the wild-type strain.  The following alleles/fly stocks 

were used: elmo19F3, P{ry[+7.2]=neoFRT}40A (Geisbrecht, et al, 2008); elmoPB, 

P{ry[+7.2]=neoFRT}40A (Geisbrecht, et al, 2008);   elmoKO (Bianco, et al, 2007); spg242 

(kindly provided by Eyal Schejter); mbcD11.2 (Erickson, et al, 1997); Ncad1omb405 

(Yonekura, et al, 2007); NcadΔ
14 (Prakash, et al., 2005); UAS-mbc	
  (Balagopalan	
   et	
   al.,	
  

2006),	
   UAS-­elmo	
   (Geisbrecht	
   et	
   al.,	
   2008);	
  UAS-­spg	
   (Biersmith	
   et	
   al.,	
   2011);	
  UAS-­

spgIR13	
   (Eguchi	
   et	
   al.,	
   2013);	
   UAS-­spgRNAi353	
   (Harvard	
   TRiP	
   Project,	
   BL35396);	
  

spg242	
  (Biersmith	
  et	
  al.,	
  2011);	
  Rap1B3	
  (Biettner	
  et	
  al.,	
  2003);	
  UAS-­Rap1N17	
  (Boettner	
  

et	
   al.,	
   2003);	
   UAS-­Rap1V12	
   (Hariharan	
   et	
   al.,	
   1991);	
   elmoKO	
   (Blanco	
   et	
   al.,	
   2007);	
  

Rap1CD5	
  (Boettner	
  et	
  al.,	
  2003).  elmoPB.mat mutants were created as previously described 

(Geisbrecht, et al, 2008).  The following stocks were generated by standard meiotic 

recombination and isolated on the basis of their failure to complement other alleles, PCR,  

and/or sequencing to verify the molecular lesion: spg242, mbcD11.2; elmo19F3, NcadΔ
14, 

elmoKO; spg242 and NcadΔ
14; mbcD11.2, UAS-­spg.	
  mbcD11.2	
  (for	
  rescue),	
  UAS-­Rap1V12,	
  UAS-­

spgIR13	
  (for	
   rescue),	
  24B-­GAL4,	
  spg242,	
   spgRNAi353,	
  spg242,	
   and	
  UAS-­Rap1V12,	
  mbcD11.2	
  

(for	
   rescue).	
   	
   All	
   rescue	
   experiments	
   were	
   performed	
   at	
   29°C	
   or	
   30oC	
   with	
   the	
  

exception	
   of	
   twi-­GAL4,	
   UAS-­mbcD11.2::UAS-­mbc,	
   mbcD11.2,	
   which	
   was	
   performed	
   at	
  

18oC . Additional stocks were generated by standard fly crosses.   
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In situ hybridization and Immunostaining 

Embryos were collected on agar-apple juice plates and aged at 25°C.  For in situ analysis, 

multiple internal sequences encoding spg were transcribed with Sp6 using the DIG 

mRNA labeling kit (Roche) and hybridized as described [27].  The C-terminal 534AA of 

Spg were cloned into the pT7HMT expression vector and soluble protein was purified as 

described [67].  The resulting protein was injected into guinea pigs and antisera was used 

at 1:500.  For immunohistochemistry, embryos were fixed and stained as described [27].  

The musculature was visualized using anti-MHC (1:500). The CNS was labeled using 

mAb 1D4 (1:100, Developmental Studies Hybridoma Bank, University of Iowa) and 

mAb BP102 (1:20, Developmental Studies Hybridoma Bank, University of Iowa).  

Secondary antibody was goat anti-mouse-HRP (1:200, Jackson).  Fluorescent 

immunostaining was performed as previously described in Geisbrecht, et al. Primary 

antibodies used were anti-Repo (1:50, Developmental Studies Hybridoma Bank, 

University of Iowa) and anti-Slit (1:50, Developmental Studies Hybridoma Bank, 

University of Iowa) and detected fluorescently using Alexa Fluor 488 goat anti-mouse 

IgG at 1:400 (Molecular Probes, Carlsbad, CA). Tyramide staining was used to enhance 

Spg signal for immunofluorescent stainings (Vector Labs, Burlingame, CA).  

Fluorescent	
   images	
   were	
   collected	
   on	
   Olympus	
   Fluoview	
   300,	
   Zeiss	
   LSM	
   710,	
   or	
  

Nikon	
  Eclipse	
  90i	
  and	
   figures	
  were	
  assembled	
  using	
  Photoshop.	
  All	
  statistics	
  were	
  

performed	
  using	
  the	
  student	
  t-­‐test.	
  P-­‐values	
  are	
  indicated	
  in	
  each	
  figure.	
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Mass spectrometry identification and immunoprecipiations 

 Mass spectrometry experiments were described previously [27].  For 

immunoprecipitations, ELMO-HA-tagged and untagged transgenic flies were crossed to 

mef2-GAL4 females and 6-18h embryos were collected on agar-apple juice plates at 25°C.  

Embryos were dechorionated and homogenized in lysis buffer [60mM Tris (pH 7.5), 

80mM NaCl, 6mM EDTA (pH 8.0), 2% Triton X-100, 1mM Na3VO4, 5mM 1-Naphthyl 

phosphate potassium salt, 2mM PMSF, 2 ug/ml  Leupeptin, 2 ug/ml Pepstatin].  The 

NaCl concentration was increased to 300mM and resulting lysate mixed with anti-HA 

resin overnight at 4°C.  The resin was washed 3 times with wash buffer plus protease 

inhibitors, boiled in 6x sample buffer and submitted to SDS-PAGE and subsequent 

Western blotting.  The following primary antibodies were used for immunoblotting: anti-

Spg (1:1000, this paper), anti-ELMO (1:1000) and anti-HA-HRP (1:2000, Roche).  After 

incubation with goat anti-guinea pig-HRP (Jackson), proteins were visualized with ECL 

Plus (Amersham).  

 

Molecular Biology 

 The PxxP region of Spg was determined by primary sequence alignment with 

Mbc, Dock 180, Dock3 and Dock4 using Multalign.  The following primers were 

designed after secondary structure prediction analysis to reduce the possibility of 

interfering with protein structure: forward: 5’-GCCATTCCCCGGGGAGCTCCCATTC-

3’ reverse: 5’-ATAGTTTAGCGGCCGCTCAGGTA-3’.  The spgΔPxxP cDNA 

sequence was generated by amplifying the correct portion of the spg cDNA from the full-
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length clone (BIERSMITH et al. 2011) and out into the pUAST vector.  Transgenic flies 

were produced by Genetic Services, Inc. using standard techniques 

 

Electron Microscopy and Live Imaging 

 Embryos were prepared for electron microscopy as described (Soplop et al., 2009) 

and sent to the Saint Louis University Microscopy Core for sectioning, low magnification 

light micrographs and high magnification electron micrographs.   

 

Constructs 

 A full length spg cDNA sequence was generated by analyzing multiple, 

overlapping fragments generated by RT-PCR using S2 cells and 0-6 h embryos as a 

reference source.  A full length cDNA was generated by Epoch Biolabs and cloned into 

pUAST.  Transgenic flies were produced by Genetic Services, Inc. using standard 

techniques.  

 

S2 Cell Transfections 

 Transient calcium phosphate transfections of pRmHA3-Ncadherin (from ) were 

carried out with 1.2x106 cells/ml and 7-15 ug DNA as needed.   Cells were induced 24 

hours after transfection with 0.7 µM CuSO4.  After 48 hrs, cells were resuspended at a 

concentration of 1.2x106 cells/ml in 2 mls of BBS buffer (10mM HEPES, 55 mM NaCl, 

40mM KCl, 15 mM MgSO4, 20 mM glucose, 50 mM sucrose, and 10 mM CaCl2).  The 

cells were agitated in a 35 mm dish at 100 rpm for 1 hr.  The cells were plated on poly-L-

lysine coated coverslips and fixed for 10 minutes in 4% PFA in Ca2+ and Mg2+-free 
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(CMF) C& GBS (55 mM NaCl, 40 mM KCl, 10 mM Tricine (pH=6.9), 20 mM glucose, 

50 mM sucrose) + 1 mM CaCl2.  Standard immunofluorescent protocols were followed 

using rat anti-Ncad (1:20, Developmental Studies Hybridoma Bank, University of Iowa) 

and gp anti-Spg (1:500). Secondary antibodies used were Fluor 488 goat anti-rat IgG and 

Fluor 546 goat anti-guinea pig at 1:400 (Molecular Probes, Carlsbad, CA).     
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CHAPTER 5 

CONCLUSION 

 

Identification and characterization of Spg, a Dock family member 

 We identified peptides corresponding to the uncharacterized protein CG31048 in 

an in vivo mass spectrometry approach to identify Elmo-binding partners.  The CG31048 

locus, which encodes for Sponge, is a member of the growing family of Drosophila Dock 

family proteins.  This report is the second identification of a Dock family member in flies 

since the role of Mbc was uncovered in 1997 20.   The 11 vertebrate Dock proteins 

identified thus far can be divided into subgroups based upon primary sequence analysis 

and GTPase target specificity for either Rac or Cdc42 5, 6, 38.  In the first group, the Dock-

A family consists of Dock180, Dock2, and Dock 5, while the Dock-B subfamily is 

comprised of Dock3 and Dock4.  In flies, this redundancy is simplified with the 2 Dock 

family members, Mbc and Spg, whom are members of the Dock-A and Dock-B groups, 

respectively. All of the above family members contain an N-terminal SH3 domain, 2 

internal DHR (CZH) domains and a variable C-terminal proline-rich region.  

Furthermore, they function as unconventional guanine nucleotide exchange factors 

(GEFs) for the GTPase Rac.  Members of the Dock-C (Dock 6, Dock7, Dock8) subfamily 

and Dock-D (Dock9, Dock10, Dock11) subfamily bind to the GTPase Cdc42.  The 2 

orthologous Drosophila proteins, CG42533/Dm ziz (Dock-C) and CG11376/Dm zir 

(Dock-D) have not yet been characterized in flies.  

 Alleles of spg were originally identified in a maternal effect screen and later 

characterized for their role in actin-dependent events in early Drosophila embryogenesis 
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35, 36.  Our mRNA and protein expression analysis suggested Spg may be required after 

cellularization due to strong expression in the visceral mesoderm, dorsal vessel, and 

developing ventral nerve cord.  As removal of the maternal contribution of spg null 

alleles results in lethality, the role for spg in later developmental processes had not been 

examined.  However, the identification of Spg as an Elmo-interacting protein gave us 

insight into how to examine the role of Spg in late embryogenesis using double mutant 

analysis.  While zygotic single mutants of spg and elmo appeared essentially wild-type, 

removal of both the zygotic contribution of both spg and elmo resulted in axonal 

patterning defects.  Obtaining a phenotype in these double mutants was especially 

convincing as both elmo and spg are maternally-loaded components.  As mentioned 

above, removal of either spg or elmo maternal contribution results in early embryonic 

lethality 21.  As spg has shown to be required for early actin cap and metaphase furrow 

formation, it is fair to hypothesize that that these two genes may function in concert in 

early embryo development, where Mbc is not required.   

 

Downstream GTPase of the Dock-Elmo complexes 

 Vertebrate Dock 4 was originally identified as a CDM family member capable of 

activating the small GTPase Rap1 in GTPase pull-down assays 66.  Functionally, a 

deletion of endogenous Dock4 in osteosarcoma cells was shown to rescue the formation 

of adherens junctions and could be suppressed by co-expression of dominant-negative 

Rap1 66.  Recent studies have demonstrated that Dock 4 is also capable of activating the 

GTPase Rac1 39, 67, 68.  This data suggests that GTPase activation of either Rac and/or 

Rap1 by the Spg-Elmo complex is context and/or tissue-dependent.  Our model for Dock-
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Elmo function in embryogenesis is shown in Figure 8.  Only the Mbc-Elmo complex 

functions in the developing musculature to activate the GTPase Rac.  While it is clear that 

regulation of the actin cytoskeleton is downstream of the Mbc-Elmo!Rac signaling 

pathway, the upstream receptors that mediate this signaling are unknown.  Our data 

suggests that both Mbc and Spg function in the Drosophila developing nervous system.  

All literature thus far supports a model whereby the Mbc-Elmo complex activates Rac.  

Alternatively, the Spg-Elmo complex may regulate Rac and/or Rap1 activity.  If both the 

Mbc-Elmo and Spg-Elmo protein complexes function upstream of Rac, they may be 

acting redundantly to regulate Rac-dependent actin cytoskeletal changes.  Alternatively, 

the downstream effector functions of Rac activity may lead to changes in cell-cell 

adhesion or may be mediated through the GTPase Rap1.  We hypothesize that differences 

in the C-terminal proline-rich regions of Mbc and Spg may be responsible for their 

differential activities.  In myoblast fusion, the proline-rich region of Mbc is not required 

8.  However, Spg and vertebrate Dock3/4 contain additional proline-rich sites not present 

in Mbc/Dock180.  Further experiments will be necessary to define the cellular and 

molecular mechanisms necessary to carry out Dock-Elmo functions in the developing 

CNS.   

 

Regulation of GEF activity 

 Elmo expression is ubiquitous throughout fly development, while Mbc and Spg 

expression is predominate in the muscle and nervous system, respectively.   Based upon 

the tissue-specific expression patterns of Mbc and Spg, we originally hypothesized that 

complementary expression patterns may be one mechanism for the tissue-specific 
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regulation of Rac activation through the Dock-Elmo complexes.  However, our results 

indicate that the role of Mbc-Elmo and Spg-Elmo is more complicated.  While the Mbc-

Elmo complex seems to be the primary GEF complex for Rac activation in the 

musculature, both the Mbc-Elmo and Spg-Elmo complexes may both be necessary to 

correctly pattern axons in the developing central nervous system.  In support of the idea 

that both complexes are required in certain developmental situations, the Rorth lab found 

that both Spg and Mbc are required in border cell migration 37.  Removal of both Spg and 

Mbc function in the border cells phenocopies loss of Elmo, suggesting that these 2 genes 

function in concert with Elmo to guide migration.  Further experiments are required to 

determine if the observed CNS defects in spg and mbc mutants are autonomous in the 

nervous system.  Alternatively, axonal patterning defects observed in mbc mutants may 

be a secondary consequence due to a requirement for Mbc in the musculature. 

 In the musculature, the only known GEF shown to be required for Rac activation 

is the Mbc-Elmo complex.  However, in the developing nervous system, in addition to 

the unconventional Dock-Elmo complexes, the conventional GEFs Trio and Sos are 

required 69-71.  It is not clear how these multiple GEFs are regulated throughout CNS 

development.  Possible mechanisms include the: (1) regulation of GEF expression either 

in subsets of specific neurons or precise subcellular localization within the same neuron; 

(2) unique physical associations between GEFs and receptors specific for distinct steps in 

axonal patterning; and (3) regulation of GEF activity via post-translational modifications 

including phosphorylation or ubiquitination.  While these ideas have not been examined 

in detail for all known GEFs, what is known is discussed below.  
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 First, it is possible mechanisms exist within the cell or tissue to compartmentalize 

GEF function as the spatial expression patterns of all GEFs in the developing ventral 

nerve cord seems to be fairly broad.  Mbc is expressed at low or undetectable levels with 

reagents currently available, while Spg is expressed in all commissural and longitudinal 

axons, but not glial cells.  Likewise, Sos protein is broadly expressed in many cell types 

around stage 12 and becomes enriched in CNS axons 71.  While Trio is expressed in 

axons that run on longitudinal tracts and those that cross the midline, enrichment of this 

protein is evident in the longitudinal fascicles 69.  Trio is largely localized near the 

membrane 72, while cytoplasmic Spg and Sos can be recruited to the membrane by their 

association with N-cadherin and Robo, respectively 71.  It is not yet clear if membrane 

recruitment is sufficient to promote Rac activation, or if conserved mechanisms exist to 

activate GEFs where their activity may be needed.  For example, by binding to RhoG, 

Elmo can target Dock180 to the membrane 13.  In addition, Elmo binding to Dock180 

relieves a steric inhibition by exposing the DHR-2 domain of Dock180 that binds Rac 12. 

This remains to be shown for other Dock family members. 

 Next, it is possible that each distinct step of neuronal pathfinding requires a 

unique set of proteins that allow upstream receptors to signal to downstream proteins for 

a specific biological output.   For example, Trio cooperates with the Abelson tyrosine 

kinase (Abl) to promote Rac-dependent actin cytoskeletal dynamics in Frazzled-mediated 

commissure formation 73.  In the separate process of longitudinal fascicle formation, a 

trimeric complex of Robo-Dock-Sos activates Rac to promote axon repulsion 71.  

Separately, N-cadherin is suggested to be required for fasciculation and directional 

growth cone migration 43.  Thus, the Ncad-Dock-Elmo complex may be responsible for 
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this latter aspect of axonal pathfinding, while other steps may be mediated by individual 

receptor-GEF complexes. However, additional evidence suggests this regulation may be 

more complex.  Preliminary data from our laboratory demonstrates that Ncad may 

genetically interact with other Rac GEFs to affect earlier CNS development and later 

axon pathfinding results (Biersmith, B. and Geisbrecht, E.; unpublished data).  Dock180 

binds the vertebrate receptor Deleted in Colorectal Cancer (DCC) (similar to the Netrin 

receptor Fra in flies) 74.  In addition, inhibition of Dock180 activity decreased the 

activation of Rac1 by Netrin 50.  Another study suggests that Robo is required for 

multiple, parallel pathways in axon guidance and activated Robo function inactivates N-

Cadherin-mediated adhesion 66. Current models suggest activated Robo binds to Abl and 

N-cadherin, thus providing a mechanism to weaken adhesive interactions during 

fasciculation to allow for mediolateral positioning of axons along the ventral nerve cord.  

The association of either Mbc or Spg proteins in the Netrin signaling pathway has not 

been examined.  So far, we have not observed significant differences in genetic 

combinations that remove elmo with either robo or slit function in midline crossing (Lui, 

Z. and Geisbrecht, E.; unpublished data).  Furthermore, no significant increases in 

midline guidance errors were observed in NcadΔ
14; elmo mutants, suggesting that Ncad 

and Spg may function in this process independent of Elmo function.  It is clear that 

additional analysis of Robo and N-Cadherin dynamics are needed in the well-established 

CNS fly model to determine their in vivo relevance.  

 Finally, the physical interactions of GEF proteins with specific membrane 

receptors may allow the GEFs to be in a unique subcellular localization for post-

translational modifications that regulate activity.  As mentioned above, Dock180 is 
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capable of binding and activating Rac when sterically relieved upon Elmo binding 12. In 

addition, the presence of Elmo1 inhibits the ubiquitination of Dock180, thus stabilizing 

the amount of GEF available to activate Rac 75.  Finally, although the significance is 

unclear, Dock180 is phosphorylated upon Integrin binding to the extracellular matrix 76.  

Trio has also been shown to be tyrosine phosphorylated upon co-expression with Abl 73, 

suggesting this may be a common mechanism for GEF regulation.  Elmo is also 

phosphorylated on tyrosine residues 77, providing another level of GEF regulation.  

Further experimentation must be done to determine whether these modifications of GEFs 

also lead to regulation of Rac activity.  

We have used various tissues that form in Drosophila embryonic development, 

including the somatic muscle, CNS, and heart tube, to discern underlying differences of 

GEF family member function in cell morphogenic events. In the present study, we 

demonstrate that Mbc and Spg appear to have independent roles in most tissues examined. 

First, expression of Spg in the somatic muscle cannot compensate for loss of Mbc during 

myoblast fusion. Second, while both Mbc and Spg are required for dv development, they 

affect different aspects of morphogenesis. Loss of mbc results in small clusters of 

cardioblast cells (3.3-3.5 cells/cluster) breaks in the contralateral rows of adjacent cells, 

and a total loss of about 10 cardioblast cells per embryo. These phenotypes are distinct 

from knockdown of spg using RNAi, where the primary defect is larger clusters of 

multilayered cardioblast cells (5.5-7.6). As a better readout of cell morphogenic events, 

ultrastructure analysis of opposing cardioblast cells reveal that cell shape changes do not 

occur in mbc-/- mutants, while a decrease in spg allows the cells to maintain an elongated 

shape. Loss of both Mbc and Spg affect lumen formation, but differentially affect the 
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ability of putative adhesion sites to form. Taken together, this data provides strong 

evidence for differential roles of Mbc and Spg in vivo.  

 

Dock protein specificity  
 
 Discrepancies concerning the downstream GTPase target(s) of the Dock family of 

GEFs have existed for about ten years1, 2.  Numerous 19 reports demonstrate that both 

proteins of the Dock-A & B family, specifically Dock180/Mbc and Dock3 and 4/Spg, can 

activate Rac1 in in vitro GTPase activation assays39, 66, 68.  In vivo, it is well-established 

that Dock180/Mbc activates Rac in all contexts examined20, 21, 49, 78, while the data for 

Dock4/Spg are less clear. A substantial body of evidence links Dock3 and Dock4 to the 

activation of Rac in both neuronal tissues and cancer cells39, 79 30, primarily through Rac- 

dependent actin rearrangement in axon outgrowth or cellular metastasis. Consistent with 

Rac being the primary downstream target of Dock proteins, Mbc and Spg are thought to 

function redundantly upstream of Rac1 in Drosophila border cell migration33.  

Two reports suggest an alternative or additional role for Dock-B family members 

in the activation of Rap1. The first evidence emerged about ten years ago when Yajnik 

and colleagues showed that Dock4 is capable of activating Rap1 in GTPase activation 

assays66. Recent studies also provide supportive evidence for Rap1 activation via Spg in 

the differentiation of R7 photoreceptor cells in the Drosophila eye28.  Duolink in situ 

PLA experiments suggest a physical interaction between Spg and Rap1 at the plasma 

membrane in photoreceptor cells. The authors also rule out Rac as an effector of Spg in 

R7 photoreceptor differentiation. A reasonable explanation for these apparently 

conflicting results is that Dock-B proteins may exhibit dual roles in the activation of both 

Rac and Rap1, dependent on cellular context.  
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Nucleotide exchange of GDP for GTP is catalyzed by the DHR2 domain in 

unconventional Dock family members. A conserved valine residue within the α10 helix 

of DHR2 acts as a nucleotide sensor that senses and destabilizes bound GDP. Subsequent 

binding of GTP results in 20 a conformational change and release of the activated GEF80.  

However, the mechanisms that mediate GTPase specificity within each DHR2 domain is 

not known. So what is the importance of the C-terminal proline-rich region and why does 

it possess the most divergent sequence conservation between Dock-A and Dock-B family 

members?  

There is some evidence to suggest that the C-terminal part of Dock4 may be 

required for GTPase specificity. An identical point mutation (Pro1718Leu) in Dock4 was 

identified in two independent cell lines, one derived from prostate cancer and the other 

from ovarian cancer. While in these experiments Dock4-WT preferentially activates 

Rap1 in in vitro activation assays, the presence of the Dock4-Pro1718Leu mutation 

altered the GTPase specificity for Rac and Cdc42. Expression of this mutated version in 

mouse 3081 osteosarcoma cells showed a decrease in actin stress fibers and the presence 

of filopodia, an observation consistent with altered GTPase activation. Contact inhibition 

is not a normal feature of this osteosarcoma cell line and staining of these cells with β-

catenin do not show the presence of adherens junctions. Transfection with Dock4-WT 

results in the appearance of intercellular adherens junctions. No such effect is observed 

upon co-expression of Rap1N17 in this Dock4-WT background or independent 

expression of Dock4-Pro1718Leu66. 

Our observations are consistent with this putative role for the C-terminal proline-

rich region of Spg in dv morphogenesis. Expression of Spg deleted for the entire PxxP 
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region (UAS- spgΔPxxP) is able to suppress mbc-mediated single cell stretching and 

cardioblast clustering defects, while overexpression of full-length Spg does not. 

Interestingly, neither version of Spg can rescue myoblast fusion defects due to loss of 

mbc, suggesting that Spg exerts it effects only in tissues where both proteins are known to 

function. While we do not yet understand the role of the PxxP region, whether in GTPase 

specificity and/or binding to other SH3 domain-containing 21 proteins, it is worth noting 

that Spg contains four additional putative PxxP-binding sites not present in Mbc29. 

 

Cardioblast cell shape changes in lumen formation  

We chose the dv as a two-cell system to better understand whether Mbc and Spg 

influence the same or independent cell morphogenic effects. Examination of dv 

development in whole mount embryos allows us to determine whether Dock proteins are 

required for cardioblast number and to note the patterning of cardioblast cells along the 

anterior-posterior axis. In contrast, analysis of TEM cross-sections through the dv 

highlight actin-mediated cell shape changes and the presence of putative adherens 

junctions. As shown in Fig. 9A, the prevailing model for cardiac lumen formation 

involves the coordination of both cell shape changes and lumen formation (SANTIAGO- 

MARTÍNEZ et al. 2006; MEDIONI et al. 2008; ALBRECHT et al. 2011). These events 

occur after formation of the first junctional domain at the future dorsal positon of the dv.  

Our current data is consistent with the canonical role of Mbc in actin cytoskeletal 

rearrangement through the Rac GTPase. Expression of constitutively-active Rac 

suppressed dv patterning defects present upon loss of Mbc. Furthermore, the cardioblast 

cells in mbc-/- mutants properly migrate to the dorsal midline and are able to form 
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adhesion sites, as indicated by the presence of electron-dense plaques between the 

cardioblast membranes. However, the cardioblast cells remain rounded, likely due to the 

inability of actin-mediated cytoskeletal events. Perhaps mbc mutants lack the ability to 

make these shape changes, thus resulting in an extended junctional domain.  We postulate 

that Spg is required for Rap1 activation to regulate adherens junctions formation. A 

genetic interaction between spg and Rap1 regulates apsects of cardioblast patterning, 22  

namely the multilayering of heart cells within a contralateral row. TEM analysis shows 

that spg RNAi mutants lack electron-dense accumulations along adjacent cardioblast 

membranes, suggesting defects in the ability to form the first junctional domain. However, 

the cardioblasts are not rounded as in mbc mutants, but appear elongated, suggesting that 

actin-mediated cell shape changes are not affected. We cannot rule out the possibility that 

Spg could be affecting Slit/Robo signaling at the luminal membrane, thus resulting in an 

inhibition of Armadillo/DE-Cadherin accumulation at adherens junctions and an increase 

in the regulation of actin-mediated cytoskeletal events64.  

Here, we have shown that the genetically tractable model organism Drosophila 

melanogaster can provide an excellent in vivo system to study the cellular behavior of 

Dock proteins, which have already been implicated in a vast array of diseases in 

mammals, including developmental limb disease, congenital cognitive disorders, 

progressive cancers, and neurodegenerative diseases. Understanding the function of these 

proteins at the cellular level during development will likely aid in the understanding of 

their roles in this spectrum of biological processes.  

In conclusion, our analysis of Drosophila dv morphogenesis provides evidence 

for differential roles of the Dock family members Mbc and Spg in regulating either cell 
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shape changes or adhesion dynamics during lumen formation. Future experiments will be 

directed at identifying other proteins that regulate GEF function in tissues where both 

Mbc and Spg are required for cellular processes.  
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Figure 18: Model of CDM-ELMO Pathway  In the muscle, Mbc is the sole CDM family 

member that functions with Elmo to mediate cytoskeletal modifications through the 

GTPase Rac (left panel). In a neuronal cell (right panel), both Mbc and Spg contribute to 

nervous system formation. In this model, the Mbc-Elmo complex is downstream of yet 

unidentified proteins and presumably signals through Rac. In contrast, our data suggests 

Spg-Elmo may function downstream of Ncad. The target of the Spg-Elmo complex, is 

unclear. 
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