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ABSTRACT 

Calsenilin is calcium (Ca2+) ion Ca2+ binding protein found in the nucleus, plasma 

membrane, and endoplasmic reticulum of neuronal cells.  Calsenilin was first found 

to interact with two proteins involved in early-onset familial Alzheimer disease (AD), 

presenilin 1 and presenilin 2.  Several studies have shown overexpression of 

calsenilin to alter Ca2+ signaling and cell viability in several neuronal cell models of 

AD.  In this study, we show that calsenilin directly interacts with the ryanodine 

receptor (RyR) modulating Ca2+ release from this intracellular Ca2+-activated Ca2+ 

release channel.   

Co-expression, co-localization, and protein-protein interaction of calsenilin and RyR 

in primary neurons and in central nervous system tissue were determined using 

immunoblotting, immunohistochemistry and co-immunoprecipitation.  Mechanisms of 

intracellular Ca2+- signaling controlled by the interaction of calsenilin and RyR, 

including changes in the release of Ca2+ from intracellular stores, were measured 

with single channel electrophysiology and live-cell optical imaging techniques.   

Immunohistochemical studies showed a high degree of co-localization between 

calsenilin and the RyR in neurons of the central nervous system.  Additionally, 
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successful immunoprecipitation of a RyR-calsenilin protein complex from brain 

tissue provided evidence of a functional interaction.  Using electrophysiological and 

Ca2+ imaging techniques the modulatory effects of calsenilin on Ca2+ release in a 

single RyR channel or in a cellular system with a population of RyR channels, 

respectively, whereby RyR-mediated intracellular Ca2+ release by calsenilin was 

determined under physiological and pathophysiological intracellular Ca2+ 

concentrations.   

Calsenilin directly interacts with the RyR, modulating Ca2+ induced Ca2+ release 

(CICR) pathways in neuronal cells.  Further characterization of this interaction and 

its pharmacological and molecular biological control could provide insight into altered 

Ca2+ signaling in neurodegenerative and other diseases controlled by CICR and aid 

in developing novel alternative therapies using these newly identified mechanisms 

as targets.   
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CHAPTER 1 

INTRODUCTION 

 

General overview of Ca2+ signaling: functions, mechanism, and channels 

 

Calcium (Ca2+) is a tightly regulated signaling molecule in cells [11].  

Localized increases in Ca2+ concentration initiate different signaling pathways [11, 

12, 22, 30, 51, 92, 126, 134, 135, 142, 163, 164].  The ability of Ca2+ to initiate 

multiple signaling pathways depends on the source of Ca2+ entry [11].  Ca2+ entry 

into the cytoplasm occurs through multiple ion channels in the plasma and 

endoplasmic/sarcoplasmic reticulum membrane [11]. Ca2+ ion channels possess 

distinct protein ensembles responsible for transmitting Ca2+ signals from the source 

of Ca2+ entry to the site of action [11]. 

For most cell types, the resting intracellular Ca2+ concentration is between 

50nM-150nM [11]. The Ca2+ concentration in the endoplasmic/sarcoplasmic 

reticulum is approximately 100µM, and the Ca2+ concentration outside the cell is in 

the mM range [11].  The high concentration of Ca2+ outside the cell and in the 

endoplasmic/sarcoplasmic reticulum creates a steep concentration gradient between 

cytoplasmic Ca2+, extracellular Ca2+, and endoplasmic/sarcoplasmic Ca2+  [11]. 

Activating Ca2+ ion channels on the plasma membrane rapidly increases Ca2+ 

concentrations in the intracellular loci surrounding the ion channels [12].   The 

increase in Ca2+ concentration surrounding the plasma membrane Ca2+ ion channels 

is amplified by the release of Ca2+ from Ca2+ induced Ca2+ release (CICR) ion 

channels on the endoplasmic/sarcoplasmic reticulum  [12].   The increased Ca2+ 
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concentration surrounding the plasma membrane ion channels creates several 

microdomains of elevated Ca2+ that can reach high µM concentrations. [134].  The 

elevation in Ca2+ concentration in these microdomains along the plasma membrane 

can last from milliseconds to minutes [158].   The microdomains of elevated Ca2+ 

can remain localized, which can result in activation of Ca2+ sensitive proteins, or they 

can move throughout the cell by activating regenerating waves of increased Ca2+ 

throughout the cytoplasm through CICR [134].  Ca2+ signaling is regulated by the 

composition of proteins within close proximity of these elevated Ca2+ microdomains 

[126]. Ca2+ binding proteins, Ca2+ buffering proteins, Ca2+ ATPase pumps, 

exchangers, and Ca2+ ion channels (both plasma and endoplasmic/sarcoplasmic 

reticulum membrane) surrounding the increased Ca2+  microdomains can bind Ca2+ 

[12, 23, 30]. The binding of Ca2+ to Ca2+ binding proteins can initiate signaling 

pathways through the activation, or inactivation, of the Ca2+ binding proteins. The 

binding of Ca2+ to Ca2+ buffering proteins  lowers the amount of free Ca2+ present in 

microdomains of elevated Ca2+, therefore  limiting the spread of increased Ca2+ in 

the cytoplasm.  Ca2+ ATPase pumps, both on the plasma membrane and 

endoplasmic/sarcoplasmic reticulum membrane, rapidly extrude Ca2+ from the 

cytoplasm to subsequently lower the availability of free Ca2+, therefore returning 

intracellular Ca2+ concentration to resting levels [30, 54].  The binding of Ca2+ to 

CICR channels in the endoplasmic/sarcoplasmic reticulum amplifies and propagates 

the initial increase in Ca2+ concentration through plasma membrane Ca2+ ion 

channels [52].  Understanding Ca2+ signaling in cells begins with the activation 

mechanisms of plasma membrane Ca2+ ion channels [59, 126, 156, 171].   
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Plasma membrane Ca2+ ion channels activate in response to extracellular 

stimuli [92]. The mechanism of plasma membrane Ca2+ ion channel activation is 

specific for each family of plasma membrane Ca2+ ion channels [92]. Membrane 

depolarization activates voltage operated Ca2+ channels (VOCC) on the plasma 

membrane [92].   Activation of VOCCs on the plasma membrane generates rapid 

increases in intracellular Ca2+ in excitable cells [104].  The rapid influx of Ca2+ 

through VOCCs on the plasma membrane control muscle contraction and exocytosis 

of neurotransmitters [30].  Receptor operated Ca2+ channels on the plasma 

membrane are activated by binding ligands produced from extracellular signals. N-

Methyl-D-Aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methylisoxazole-4-

propionate acid (AMPA) receptors are activated through binding of the 

neurotransmitter glutamate [142].  Glutamate is released from presynaptic neurons 

into the synaptic cleft where it binds to postsynaptic NMDA and AMPA receptors 

activating them [116]. The influx of Ca2+ through NMDA and AMPA receptors in 

response to glutamate is one mechanism of neuron to neuron communication. 

Another source of Ca2+ entry is through plasma membrane store operated Ca2+ 

channels that refill endoplasmic/sarcoplasmic reticulum Ca2+ stores [116]. The 

transient receptor potential plasma membrane Ca2+ ion channels represents a large 

family of ion channels that are activated in different ways depending on the type of 

channel [115].  Some of the transient receptor potential ion channels are stretch 

sensitive, responding to mechanical disruption of the plasma membrane, while 

others bind agonists for activation [115].  The wide variety of plasma membrane 

Ca2+ channels is the cells first response to extracellular stimuli propagating distinct 
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Ca2+ signals throughout the cell [115].  The amplification of these signals by CICR 

channels in the endoplasmic/sarcoplasmic reticulum increases Ca2+ locally ,or 

transmits these signals throughout the cell[115].  

The major CICR ion channels in the endoplasmic/sarcoplasmic reticulum are 

ryanodine receptors (RyRs) and Inositol-1, 4, 5-trisphophate receptors (IP3Rs) [149]. 

The binding of Ca2+ to intracellular CICR channels, within the microdomains of 

increased Ca2+ concentration, results in activation of these channels and 

subsequent Ca2+ release into the cytoplasm  [11, 12, 30]. The release of Ca2+ from 

intracellular CICR channels can then activate Ca2+ release from adjacent 

intracellular CICR channels [11, 12, 30].  This process of activation allows the influx 

of Ca2+ from the plasma membrane Ca2+  channels to be  amplified by the CICR 

release from RyR- and IP3R- sensitive stores  [134]. The adjacent stimulation of 

clusters of RyRs creates frequent repetitive oscillations of increased Ca2+ [134].  The 

phenomenon of frequent repetitive oscillations of increased Ca2+ has been 

extensively studied in heart tissue [26, 71, 183].  In heart tissue, the coupling of 

RyRs to L-type VOCC regulate excitation contraction coupling [26, 71, 183]. Ca2+ 

influx through L-type VOCCs activate clusters of RyRs that release Ca2+ creating a 

localized increase in Ca2+, or Ca2+ “spark” [26, 71, 183].  The “spark” enlists adjacent 

clusters of RyRs to release Ca2+, creating discrete spatiotemporal increases in Ca2+ 

concentration that coordinate muscle contraction throughout the heart [118]. In 

neurons, NMDA receptor activation in dendrites causes metabatropic glutamate 

receptors to mobilize Inositol 1, 4, 5-trisphosphate (IP3) [94, 150].  IP3 along with 

Ca2+ activate IP3Rs in apical dendrites of neurons initiating a Ca2+ wave that creates 
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discrete spatiotemporal patterns along dendrites [94, 150].  In dendrites of layer II/III 

and V pyramidal cortical neurons,  the amplification and transmission of Ca2+ along 

apical dendrites has a RyR component as well as an IP3R component [94, 150]. The 

amplification and propagation of Ca2+ signals by RyRs and IP3Rs coordinates the 

activity of adjacent cells. The coordination of signals occurs through the specific 

spatiotemporal pattern of Ca2+ release throughout the cells [94].  In excitable cells, 

Ca2+ plays a pivotal role in induction and transmission of signals within the cell that 

lead to short and long term alterations in protein expression and activity [205].  

These alterations have a profound effect on cell to cell communication, most notably 

in the central nervous system where Ca2+  is involved in every aspect of pre- and 

post- synaptic communication between neurons [10].   

 

The spatiotemporal release of Ca2+ in neurons contributes to neuronal 

plasticity and memory  

 

Ca2+ signaling in neurons involves the integration and communication of 

multiple incoming neuronal messages [138].  Neuronal signaling is processed 

through complex hierarchies of distinct cell populations creating networks of related 

processing units [138].  The organization of neuronal networks is achieved through 

definitive spatial and temporal patterns of increased cytoplasmic Ca2+ [138].  The 

distinct patterns of increased Ca2+ release in neurons regulates transcription [31, 

156], membrane excitability [163], neurotransmitter release [142], apoptosis [111, 

171] , and memory formation [11, 142, 168].   
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Ca2+ signaling directly effects transcription in neurons through Ca2+ binding 

transcriptional modulators such as calsenilin [31], or by initiating Ca2+ dependent 

signaling cascades that effect transcription [208].  The activation of adenylyl cyclase 

by Ca2+ to produce cyclic AMP (cAMP) causes cAMP to directly enter the nucleus 

and effect transcription [208]. Cyclic AMP activation of protein kinase A (PKA) leads 

PKA to phosphorylate target proteins that alter transcription [5].  The activation of 

Ca2+/calmodulin-dependent protein kinase IV (CAMKIV)  can phosphorylate 

Ca2+/cAMP response element binding protein (CREB) altering hippocampal gene 

transcription [19].  Activation of the ras signaling pathway alters long term plasticity, 

and occurs in a Ca2+ dependent fashion  [133].  In CA1 neurons, large Ca2+  signals 

occur at the synapse and cause a Ca2+   wave to travel from apical dendrites to the 

nucleus [21].  This increase in nuclear Ca2+ that originates in dendrites can change 

neuronal plasticity [6].  Plasticity and memory formation occur between pre- and 

post-synaptic neurons through the spatial and temporal aspects of Ca2+ signaling 

[105, 138].  Regulation of membrane excitability in neurons can increase or 

decrease firing patterns between neuronal synapses [3].  A backpropagating action 

potential is a process where an action potential is generated in the soma of neurons 

traveling through the axon, and  through proximal and apical  dendrites [104].  

Studies in dendritic spike timing and back-propagation of signals have shown that  

VOCC location as well as  Ca2+ influx from VOCC’s effects communication in 

hippocampal neurons [55].  The amplification of pre- and post-synaptic signals by 

ryanodine sensitive stores can effect membrane potential therefore altering the 

spatiotemporal firing of neurons [10, 55, 104, 149].  These alterations in firing pattern 
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underlie the major contribution of Ca2+ signal integration during the formation of long 

term potentiation (LTP) and long term depression (LTD) [10, 54, 105].  LTP and LTD 

are processes in neurons, whereby the specific spatiotemporal pattern of 

intracellular Ca2+ can consolidate or erase temporary memories [10, 163].  The 

release of vesicles containing neurotransmitter in pre-synaptic cells are controlled by 

Ca2+ intrusion through VOCCs, and amplification of the Ca2+ signal by internal 

release from ER stores [10, 163].   

 Ca2+ signaling can initiate apoptosis by activating caspases [171]. In 

neurodegenerative disorders, abnormal alterations in Ca2+ homeostasis can 

increase apoptosis through  different mechanisms based on disease and cell type [9, 

11, 83, 109, 111, 165].  The integration of simultaneous neuronal signaling pathways 

can be transmitted by modest alterations in CICR dynamics [50].  RyRs are one of 

the major CICR channels of the ER [13].  RyRs have multiple binding sites for 

modulation of Ca2+ release including signaling molecules, ions, proteins, and other 

ion channels [13]. The different modulatory molecules that bind to RyRs allow 

multiple signaling pathways to be shaped by  Ca2+ release l[13].  

 

Structure, modulation, function, and role of ryanodine receptors in 

neurodegeneration 

 

RyRs are CICR channels consisting of four-approximately 550kDa subunits 

located on the ER [118, 149, 172, 180].  This approximately 2200 kDa channel has a 

large N –terminal cytoplasmic domain [61, 73, 90, 93].  The N-terminal domain acts 
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as a scaffold for multiple modulatory substances that integrate different cellular 

pathways by modulating the release of Ca2+ through CICR   [61, 73, 90, 93].  The 

RyR has three receptor subtypes, RyR1 [198], RyR2 [122], and RyR3 [60] that share 

65%  sequence homology [43, 60, 66, 125].  The two major RyR in the brain are the 

type 2 and type 3 isoforms found in the hippocampus, cortex, and cerebellum [53, 

60, 89, 119, 150].   RyRs have a bell shaped response curve to cytosolic Ca2+, with 

maximum activity between 1-100uM depending on receptor subtype [17].  RyR2 and 

RyR3 are active over a wide range of cytosolic  Ca2+ values, while RyR1 is  activated 

and inhibited at higher cytosolic Ca2+ levels [17, 77, 85, 114, 124, 154].  The 

biophysical modulation of the RyRs can be characterized by a change in the 

frequency of channels openings, the gating time of ON and OFF channel events, 

and the conductance of Ca2+ through the channel [67, 137].  Signaling molecules 

such as ATP [14, 153], cADPR [58, 84],  small molecules such as magnesium [92, 

93] and Ca2+ [17, 77, 85, 154] have an effect on RyR channel function by altering the 

affinity of RyRs for Ca2+.  Phosphorylation of RyRs by protein kinase A (PKA) [29, 

113, 185] and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [186, 189] can 

increase Ca2+-dependent activation of RyRs.  Phosphorylation of RyRs allows 

distinction of different Ca2+ sensitive pathways through phosphorylation of specific 

kinase sensitive domains [132] [186, 191].  The macromolecular complex formed by 

RyRs involves the cytoplasmic N-terminal domain that accounts for 90% of the total 

mass of the receptor [155].  The structural proteins FKBP12 and FKBP 12.6 bind to 

RyRs stabilizing the closed conductance state and coordinating gating between 

adjacent receptor clusters [57, 106, 107, 127].  Homer proteins competitively bind to 
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RyRs and effect channel activity [71, 82].  The long isoform of Homer increases the 

channel conductance of RyRs, while the short isoform of Homer has no effect on 

channel activity [188]. During single channel electrophysiology experiments additive 

increases in the concentration of the short isoform of Homer  dose-dependently 

decreased the heightened activation of RyRs due to the interaction of the long-

isoform of Homer [46, 72, 188].  In cardiac muscle cells, the direct interaction of L-

type Ca2+ channels with RyRs couples the Ca2+ influx through the  plasma 

membrane to CICR [52] [42].  The estrogen receptor beta binds to the RyR 

stimulating single channel activity [136].  Binding of calmodulin (CaM)  to RyRs in 

both the Ca2+ bound and unbound form inhibits the activity of RyR2 at all Ca2+ 

concentrations [148, 174].  The association of RyRs and the N-terminus of the 

Alzheimer’s associated proteins presenilin 1 (PS1) and presenilin 2 (PS2) potentiate 

RyR activity [67, 137].  Alzheimer’s disease mutations in PS1 associated with 

Alzheimer’s disease further increase Ca2+ release [34, 162].  The diversity of 

proteins regulating RyRs including signaling molecules, kinases, other channels, and 

Ca2+ binding proteins shape Ca2+ transients by altering CICR of RyRs [178].  

 

 Structure, expression, and multiple cellular roles of calsenilin 

 

The NCS family of Ca2+ binding proteins contain canonical EF hand Ca2+-

binding domains. The EF hand domain transmits Ca2+ signals through the cell via 

Ca2+-bound activation [23].  The binding of Ca2+ to these molecules can cause 

conformational changes within the proteins themselves, and upon binding the target 
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proteins. These conformational changes induce cellular responses that initiate 

multiple signaling pathways [23].  One such molecule CaM, that is closely related to 

NCS proteins, transmits Ca2+ signals to multiple proteins throughout the cell and 

directly alters CICR through an interaction with RyRs [23, 178].  Another NCS 

protein, calsenilin, has been shown to alter the dynamics of Ca2+ signaling [98, 100] 

through a yet unidentified protein interaction.   

Calsenilin/KChIP3/DREAM (hereafter called calsenilin) is a 31kD protein that 

is part of the (NCS) family [23]. Calsenilin contains a C-terminus with 4 EF-hand 

motifs -reminiscent of the frequenin NCS-1 subfamily, however calsenilin has a 

unique amino terminus [24].  Calsenilin binds to Ca2+ with high affinity at EF hands 3 

and 4, magnesium at physiological concentrations at EF-hand 2, and contains a 

CPXG sequence on the first EF-hand that prevents Ca2+ binding [41, 120, 193].  

Ca2+ binding to the EF hands of calsenilin cause the formation of homodimers and 

homotetramers that translate Ca2+ dependent activity to target molecules [41, 103, 

120, 121].  Calsenilin is found in human brain extracts [25], and in all mouse nervous 

tissue with particularly high expression levels in the hippocampal layers (dentate 

gyrus, CA1-3), layers V & VI in the cerebral cortex, granule layers of the cerebellum, 

and olfactory centers [44, 62, 157, 159, 190, 192, 194].  Calsenilin is expressed 

throughout mouse development with the highest expression levels in adults [194].   

 Calsenilin was first identified to interact with the C-termini of Alzheimer’s 

disease related proteins PS1 and PS2. This interaction regulates the level of a 

20kDa specific caspase cleavage product of PS2 [24].  Calsenilin itself is a substrate 

for caspase 3 cleavage [37] which is regulated by phosphorylation of Ser63 in 
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calsenilin [36].  In neuroglioma cells, calsenilin preferentially interacts with the 20kDa 

PS2 C-terminal fragment which is increased in AD and associated with PS2 Familial 

Alzheimer’s Disease (FAD) associated mutations in this protein [37].  Though not 

directly a part of the γ-secretase complex [48], calsenilin affects the γ-secretase 

cleavage of N-cadherin [74] and increases the γ-secretase production of Aβ [79].  In 

calsenilin knockout mice the levels of Aβ as well as Aβ induced apoptosis is 

decreased [99].  The pro-apoptotic function of calsenilin, which is associated with 

increased cytosolic Ca2+ concentration [80], is coordinated with presenilin/ γ-

secretase activity and enhanced in the presence of PS1 gain of function AD mutants 

[78].In neuroglioma cells overexpression of calsenilin, enhances apoptosis in 

response to serum withdrawal and thapsigargin treatment is [100].  This 

enhancement in apoptosis is thought to occur through altered Ca2+ release and 

correlates with increased caspase activity [100].  Calsenilin can alter IP3R mediated 

Ca2+ signaling and Ca2+ stores in the ER, which directly effects Ca2+ levels within the 

cell [49, 98].    

 Calsenilin regulates the expression of the human prodynorphin gene in a Ca2+ 

dependent manner [31].  Prodynorphin is distributed throughout the CNS and 

involved in pain and memory acquisition [146].  Calsenilin regulates prodynorphin 

through an interaction with the downstream regulatory element (DRE) hence the 

name DRE-antagonist regulator (DREAM) [31].  Calsenilin, in the absence of Ca2+, is 

bound to the DRE site silencing prodynorphin gene expression. Upon Ca2+, and c-

AMP elevation, calsenilin binding to the DRE site is abolished [31, 41, 103, 121].  

Prodynorphin expression alters several signaling pathways due to the fact it is a 



12 

 

precursor for several opioid receptor agonists.  Opioid receptor activation can 

influence phosphorylation and Ca2+  concentrations within the cell [146].  In 

hematopoietic cells, calsenilin binding to a DRE site in the 3’ untranslated region of 

the pro-apoptotic HRK gene represses HRK expression [140].  Elevation in Ca2+, PI-

3 kinase phosphorylation of calsenilin, and apoptotic inducers all reduce calsenilin 

binding to the DRE site increasing apoptosis [139, 140].  In cerebellar neurons 

calsenilin binding to a DRE site in the sodium Ca2+ exchanger (NCX3) gene 

decreases NCX3 expression levels in the cell [56].  This decrease in NCX3 causes 

increased susceptibility to Ca2+ induced apoptosis [56].  Furthermore, in PC12 cells, 

calsenilin binding to peroxiredoxin, an antioxidant enzyme that functions as a redox 

sensor, enhances calsenilin binding to DRE sites [130].  Knockdown of calsenilin in 

PC12 cells increases oxidative stress induced damage [130].  The transcription of 

glial fibrillary acidic protein (GFAP), an astrocyte expressed stress marker, is 

controlled through a calsenilin interaction in the promoter region [32, 177].  This 

interaction is regulated through a pituitary adenylate cyclase-activating polypeptide–

cAMP-Ca2+-calsenilin interaction [32, 177].  This occurs in Mueller glial cells in the 

retina in a NMDA - cAMP response element binding protein (CREB) phosphorylation 

dependent manner [35, 91, 129].  Binding of calsenilin to phosphorylated CREB 

decreases the interaction with DRE sites, and regulates the production of the early 

response gene c-fos in a cAMP dependent manner [28, 47, 95, 96].  In spinal 

inflammation the production of brain derived neurotrophic factor is controlled by 

calsenilin [131, 196], and in kainite and pentylenetetrazol  induced seizure the levels 
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of calsenilin in dentate gyrus, cerebral cortex, and piriform complex are altered 

providing evidence for calsenilin in inflammatory responses [70, 108].   

 Calsenilin directly interacts with rapidly inactivating voltage gated potassium 

channel (Kv4.2) potassium channels on the plasma membrane. The interaction with 

Kv4.2 channels occurs in the α pore forming subunit altering the biophysical release 

properties of the channel [182].  The interaction of calsenilin with Kv4.2 channels 

stabilizes tetramerization of the four Kv4.2 subunits [7, 27, 75, 117, 181].  This 

interaction occurs in a 1:1 ratio between each Kv4.2  subunit and calsenilin. This 

interaction includes DPP 10, a cell adhesion related protein, that form a multiprotein 

complex regulating channel activity [7, 27, 75, 117, 181].  Calsenilin aides in the 

tetrameric assembly of Kv4.2 channels, and rescues zinc mutants that do not form 

tetramers and remain in the ER/Golgi [87]. Co-expression of Kv4.2 and calsenilin in 

Chinese hamster ovary (CHO) cells alters Kv4.2 activity by increasing peak current, 

peak current density, inactivation time constant, and recovery from inactivation [2].  

The increase in channel density can be attributed to calsenilin to trafficking Kv4.2 

channels from the ER to the plasma membrane [151].  Kv4.2 channels are found at 

high density in proximal and distal dendrites [18].  The modification of Kv4.2 channel 

activity by calsenilin returns resting dendritic membrane potentials faster, eliminating 

back propagation of action potentials from the soma [18]. In the presence of a 

constitutively active form of Ca2+-calmodulin-dependent kinase II (CaMKII) and 

calsenilin, Kv4.2 current amplitudes and surface expression were increased linking 

Kv4.2 channel activity to calsenilin and Ca2+ [179].  Alterations in the inactivation time 

constant of Kv4.2 channels are transmitted to Kv4.2 by arachidonic acid and PKA 
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phosphorylation only in the presence of calsenilin [69, 143].  Signaling between T-

type Ca2+ channels (Cav3) and Kv4.2 channels through a calsenilin interaction is 

thought to link Ca2+ signaling and Kv4.2 channels [3].  Finally, calsenilin binds to the 

C0 domain of the NR1 subunit of NMDA receptors causing an inhibition of NMDA 

receptor currents and reduction of NMDA receptor activated Ca2+ currents [197].   

 Calsenilin has a myriad of functions that alter Ca2+ signaling and cell viability 

in neurons [31].  Calsenilin affects Ca2+ levels in cells, excitability in neurons, 

transcription, and cleavage products AD related-proteins.  The similar roles of 

calsenilin and CICR channels in the maintenance of physiological Ca2+ and the 

perturbation of Ca2+  in pathological states is striking.   

 

Perturbations of Ca2+ homeostasis in Alzheimer’s disease 
 

 Subtle changes Ca2+ homeostasis can affect cell viability, transcriptional 

regulation of apoptotic proteins, and neuronal connectivity [9].  In the progression of 

AD all of these processes are altered [9]. There is also an increase in the production 

of Aβ plaques and tau neurofibrillary tangles [9].  The linking of FAD with sporadic 

Alzheimer’s disease (SAD) could provide clues into the etiology and progression of 

nongenetic SAD.   

AD is a neurodegenerative disorder that is clinically characterized by a loss of 

higher cognitive function and memory with marked behavioral abnormalities [63].  

Pathologically, AD is characterized by the presence of β amyloid (Aβ) plaques, 

neurofibrillary tangles, and progressive neuronal loss [63].  One type of AD which 
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accounts for approximately 5% of AD cases is early onset familial AD (FAD) [63].  

FAD occurs in people before 65 years of age and is correlated with missense 

mutations in the amyloid precursor protein (APP), γ-secretase proteins, PS1 and 

PS2 [63].  The second type of AD, which accounts for the remainder of the cases, is 

sporadic AD (SAD) [63].  SAD occurs later in life, usually after 65 years of age, and 

has genetic and non-genetic factors [63].  Typical disease etiology of SAD includes a 

slow decline in cognition and memory, and increase in cell loss in the hippocampus 

and cortex [63].  Alterations in Ca2+ signaling occur before these changes become 

evident [16], suggesting that Ca2+ dysregulation plays a role in the pathogenesis of 

AD.  The Ca2+ hypothesis of AD states that a remodeling of Ca2+ homeostasis in 

response to altered β-amyloid accumulation is an underlying cause of memory loss 

and cell death associated with AD [9, 109, 165].  Increased β-amyloid accumulation, 

as well as normal aging, can cause an increase in the resting Ca2+ concentration 

within neurons [86, 102, 173].  This alteration in normal Ca2+ concentration induces 

oxidative stress [88, 110], increases cell death from excitotoxicity [4], and effects 

learning and memory (reviewed [9]).  Cortical neurons from triple AD mutant 

transgenic mice show increased resting Ca2+ levels [102].  Neocortical neurons from 

triple AD mutant transgenic mice also show elevations in resting Ca2+ levels in 

dendrites and spines as a function of proximity to Aβ deposits [86].  In young and 

aged transgenic mouse models of AD there is a correlation between increased Aβ 

and aberrant expression and release of RyR sensitive Ca2+ stores [83, 166].  

Mutations in PS1 and PS2 increase recruitment, expression, and Ca2+ release from 

RyRs in transgenic mouse models of AD in cortical, and hippocampal neurons [33, 
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34, 97, 152, 161].  The increase in Ca2+ content and Ca2+ release from ER mediated 

stores causes an increase in apoptosis in several models of AD [51, 97, 161].  

These alterations in intracellular Ca2+ signaling suggest that abnormal activities of 

RyRs may play a part in the progression of AD.  Modulation of RyRs by AD related 

proteins such as PS1, PS2 and calsenilin could help dissect the role of RyRs in AD, 

and provide possible targets for the modulation of intracellular Ca2+ release.   

 

Identification of a direct protein-protein interaction between calsenilin and 

neuronal RyRs as a potential mechanism for the alteration of CICR 

 

 The goal of the present study is to identify a direct interaction of calsenilin 

with neuronal RyRs describing a mechanism of action for the underlying modulation 

of CICR. By identifying an interaction and describing the modulatory effect we will 

describe whether this interaction alters intracellular Ca2+ levels in physiological and 

pathophysiological states.  Calsenilin and neuronal RyRs directly interact with the 

AD related proteins PS1 and PS2 to alter the Ca2+ levels within the cell in normal 

physiological cell signaling [24, 49, 67, 81, 98, 100, 137].  In several models of AD, 

the interaction between calsenilin and PS1 and PS2, as well as RyRs and PS1 and 

PS2, cause increased apoptosis, abnormal Ca2+ signaling, and vulnerability to 

various cellular insults  [33, 78-80, 83, 99, 100, 152, 161, 166].  The ability of NCS to 

modulate RyRs and alter CICR suggests a possible role for calsenilin and RyRs in 

shaping neuronal cell signaling [155]. The fact that calsenilin binds with PS1 and 

PS2 in the ER  [172], and multiple targets of several Ca2+ signaling  pathways [31, 
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79, 96, 100, 195] including modulation and tetramerization of plasma membrane 

Kv4.2 channel that is directly linked to T-type Ca2+ channels [2, 3, 75], suggests a 

possible interaction between calsenilin and RyRs.  To date, the link between altered 

Ca2+ release and calsenilin has not been studied in depth and is widely seen as a 

consequence of alterations in transcription, Kv4.2 channel action, and γ-secretase 

activity.  

 

Targets for the modulation of Ca2+  have proved effective in slowing the 

progression of neuronal loss in several neurodegenerative diseases [45], but this 

approach is applied to whole receptor populations in the body affecting countless 

signaling pathways.  Targeting a modulatory protein rather than a whole ion channel 

population would allow for tunable manipulations of specific cells populations.  For 

the current study, we hypothesize that calsenilin and RyRs directly interact to 

modulate RyR Ca2+ release.  To test this hypothesis we used immunological, 

electrophysiological and live imaging techniques in neuronal cells and tissue to 1) 

determine whether there is colocalization of RyR and calsenilin, 2) to determine 

whether a direct protein-protein interaction of RyR and calsenilin exists, 3) to test the 

effect calsenilin has on single RyR channels, and 4) to test the effect calsenilin has 

on a population of RyR channels, in vitro. 
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CHAPTER 2 

MATERIALS AND METHODS 

 
 In order to verify that calsenilin and neuronal RyRs interact, the expression 

pattern of these two proteins was assessed in neuronal cells and whole brain tissue 

sections using fluorescent immunohistochemistry.  The quantification of co-

localization was calculated using standard algorithmic formulas, Pearson’s and 

Mander’s coefficients.  Once co-localization was established, testing for direct 

protein-protein interactions was verified using co-immunoprecipitation studies 

reported with Western blot analysis.  The alterations in biophysical Ca2+ release from 

single brain RyRs in the presence of calsenilin were measured using planar lipid 

electrophysiology.  The changes in single channel RyRs biophysical release was 

assessed utilizing a whole cell paradigm using overexpression of calsenilin in order 

to determine how the changes in single channel RyR Ca2+ release translated into 

whole cell Ca2+ release signals.   

 

Growth and preparation of the SH-SY5Y neuroblastoma cell line: an 

experimental neuronal cell model for Ca2+ release studies  

 

SH-SY5Y neuroblastoma cells (ATCC, Manassas, VA) were thawed from 

cryo-storage (-80°C), and grown in a T-150 cell culture flask (TPP, MidSci, St.  

Louis, MO) using SH-SY5Y media (10% fetal bovine serum (PAA, Piscataway, NJ), 

1:200 penicillin/streptomycin, 50% Ham’s F-12 media, 50% eagle minimum essential 
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media (Lonza, Walkersville, MD)) where cells were maintained in a maintained in a 

37ºC, 5%CO2, 95% O2 incubator.  Once 50%-70% confluency was reached, media 

was removed and placed into a 50mL conical Falcon tube where 5mL of Trypsin-

EDTA (Mediatech, Manassas, VA) was added to the flask and allowed to incubate a 

37oC for 2-5 minutes.  Following incubation, 5mL of the removed media was placed 

back into the flask to inhibit the trypsin digestion.  The flask was washed three times 

with the removed media and placed into the 50mL Falcon tube.  The sample was 

spun at 200xg for 3 minutes and the supernatant was removed.  The pellet was 

resuspended in 1 mL of cell media and 20 µL of the suspension was counted using a 

Cellometer Auto T4 (Nexcelom Bioscience, Lawrence, MA).  The cells were plated at 

25,000 cells per laminin/poly-d lysine coverslips (BD Biocoat, Bedford, MA) and 

maintained in a 37ºC, 5%CO2, 95% O2 incubator.   

 

Growth and preparation of rat cortical neurons: an in vitro model to establish 

endogenously expressed calsenilin and RyRs 

 

NeuroPure™ embryonic day 18 (E18) Sprague Dawley rat cortical cells 

(Genlantis, San Diego, CA) were prepared following the according to manufacturer’s 

protocol.  The shipping media from the vial containing the E18 rat brain tissue was 

removed and replaced with 5mg of NeuroPapain™ enzyme dissolved in 

NeuroPrep™ medium (Genlantis), and incubated for 15 minutes at 37oC (to 

breakdown the extracellular matrix).  The tissue was then centrifuged at 200xg for 1 

min and supernatant removed and discarded, and replaced with the original shipping 
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media.  The tissue was resuspended with a fire polished glass pipette by triturating 

approximately 15 times in (Genlantis).  Subsequently, the cells were centrifuged at 

200xg for 1 minute and resuspended in NeuroPure™ plating medium (Genlantis).  In 

order to determine the cell density, the cell suspension was mixed with a trypan blue 

at a 1:1 ratio, and counted using a Cellometer Auto T4 (Nexcelom Bioscience).  The 

cells were plated at 25,000 cells per laminin/poly-d lysine coverslips (BD Biocoat) 

and maintained in a 37ºC, 5%CO2, 95% O2 incubator.   

 

Immunocytochemistry: to establish the expression pattern and co-localization 

of calsenilin and RyRs in neuronal cell models 

 

SH-SY5Y cells or primary cortical neurons were allowed 1 or 7 days, 

respectively, to adhere to laminin/poly-d lysine coverslips (BD Biocoat), then were 

washed three times in phosphate buffered saline (PBS) (Lonza), and fixed for 15 min 

in 4% paraformaldehyde (PFA) (4% PFA w/v, 0.1M NaOH, 0.1M NaH2PO4, pH 7.3 

(Sigma-Aldrich)) to preserve cellular structures by methylene crosslinking.  Following 

the removal of PFA, three 10 min washes with PBS were performed.  In order to 

block nonspecific secondary antibody binding, a serum buffer from the secondary 

antibody host species was applied (donkey serum blocking buffer (1% BSA fraction 

V (EMD Millipore, Gibbstown, NJ), 0.5% Triton x -100 (Sigma-Aldrich), 10% donkey 

serum (PAA) in PBS at pH of 7.4)), where cells were incubated for 1 hour at room 

temperature.  The block was removed and the cells were incubated with goat anti-

calsenilin monoclonal antibody raised against the full length human calsenilin (1:50; 
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Santa Cruz Biotechnologies, Dallas, TX) and rabbit RyR2 antibody raised against a 

synthetic peptide variant from the transmembrane region of human RyR2 (1:10000, 

Chemicon Biotechnologies, Temecula, CA) or a rabbit ryanodine type 3 receptor 

raised against a synthetic peptide variant from the transmembrane region of human 

RyR3 (1:5000; Chemicon Biotechnologies)  diluted in incubation buffer (1% BSA 

fraction V, 0.  5% Triton x-100, 3% donkey serum in PBS at a pH of 7.4) and 

incubated for 36-48 hours at 4°C.  The primary antibody was removed, and the cells 

were washed three times in PBS.  Cells were incubated for 1 hour in the dark at 

room temperature with AlexaFluor 488 donkey anti-goat secondary antibody 

(1:2000; Life Technologies, Carlsbad, CA; the calsenilin primary antibody was raised 

in goat and therefore anti-goat secondary antibody will bind specifically to the 

primary antibody) and AlexaFluor 594 donkey anti-rabbit (1:2000; Life Technologies; 

used for both of the RyR antibodies because the species specific label of the primary 

antibody).  AlexaFluor 488 fluorescent antibody has a peak excitation wavelength of 

490nm- 495nm and AlexaFluor 594 fluorescent antibody has a peak excitation 

wavelength of 590nm. The non-overlapping excitation and emission spectra of the 

two secondary antibodies used allows acquisition of both signals without the use of 

complex spectral unmixing software.    Following secondary antibody incubation, the 

cells were washed in PBS with 1:10000 4', 6-diamidino-2-phenylindole (DAPI) (which 

binds strongly to A-T regions in DNA) for three minutes.  The cells underwent three 

subsequent 10 minute washes in PBS, followed by one 10 min wash in deionized 

water (to remove excess phosphate), and the coverslips were mounted to 

microscope slides with Aqua-Polymount (Polysciences, Warrington, PA).   
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Collection and preparation of mouse brain sections: to establish 

endogenously expressed calsenilin and RyRs in the intact mouse brain 

 

C57BL/6 mice (Jackson Laboratories, Bar Harbor, MA) were used in this 

study as a model for human brain physiology.  Mice were euthanized using IACUC 

approved methods of carbon dioxide overdose.  The heads of the mice were 

removed from the body by a lateral incision above the C4 cervical segment but 

below the brain stem.  After removal of the skull from the body, the fur and skin over 

the crown of the skull was removed, and an incision through the medial line of 

cranium was made from the most posterior to the most anterior portion.  Further 

incisions were made in the posterior and anterior portions of the skull perpendicular 

to the medial incision.  The crown of the skull was then removed allowing access to 

the brain.  The brains were removed from the cranial cavity using a spatula, and 

immersion fixed in 4% PFA overnight.  Following the removal of PFA, the brain was 

rinsed in PBS.  The tissue was then sequentially cryoprotected in a graded series of 

10% sucrose, then 20% sucrose, then 30% sucrose, in order to ensure the 

preservation of cellular structures within the tissue.  Each cryoprotection step was 

done at 4oC overnight.  Tissue was then removed from the final sucrose solution and 

placed in a mold, where the tissue was incubated in Tissue-Tek Optimal Cutting 

Temperature (OCT) Embedding Medium (Tissue Tek, Torrance CA) for 1hr at 4oC.  

The samples were then placed in -80oC isopentane (Alfa Aesar, Ward Hill, MA) to 

solidify the OCT compound and snap-freeze the tissue.  Molds were sectioned at 
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30µm using a Leica model CM 3050S Cryostat.  Sections were placed in PBS and 

stored at 4oC until immunohistochemistry was performed.   

 

Immunohistochemistry: in order to establish the expression pattern and co-

localization of calsenilin and RyRs in intact mouse brain tissue 

 

The sectioned tissue was placed in 1mg/ml sodium borohydride (Sigma 

Aldrich) 3 times for 10 minutes to reduce reversible Schiff’s bases that may have 

formed during PFA-fixation [8].  In order to eliminate nonspecific binding, blocking 

buffer using serum from the same host species of the secondary antibody was 

applied (donkey serum blocking buffer (1% BSA fraction V (EMD Millipore), 0.5% 

Triton x -100 (Sigma-Aldrich), 10% donkey serum (PAA) in PBS at pH of 7.4)), 

where brain sections were incubated for 1 hour at room temperature.  The block was 

removed and the cells were incubated with goat anti-calsenilin monoclonal antibody 

raised against the full length human calsenilin protein (1:50; Santa Cruz 

Biotechnologies) and rabbit RyR2 antibody raised against a synthetic peptide variant 

from the transmembrane region of human RyR2 (1:10000, Chemicon 

Biotechnologies) or a rabbit RyR3  raised against a synthetic peptide variant from 

the transmembrane region of human RyR3 (1:5000; Chemicon Biotechnologies)  

diluted in incubation buffer (1% BSA fraction V, 0.  5% Triton x-100, 3% donkey 

serum in PBS at a pH of 7.4) and incubated for 36-48 hours at 4°C.  The primary 

antibody was removed, and the brain sections were washed three times in PBS.  
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Brain sections were incubated for 1 hour in the dark at room temperature with 

AlexaFluor 488 donkey anti-goat secondary antibody (1:2000; Life Technologies; 

used to label the calsenilin primary antibody) and AlexaFluor 594 donkey anti-rabbit 

(1:2000; Life Technologies; used for both of the RyR antibodies).  AlexaFluor 488 

fluorescent antibody has a peak excitation wavelength of 490nm-495nm and 

AlexaFluor 594 fluorescent antibody has a peak excitation wavelength of 590nm. 

The non-overlapping excitation and emission spectra of the two secondary 

antibodies used allows acquisition of both signals without the use of complex 

spectral unmixing software.  Following secondary antibody incubation, the brain 

sections were washed in PBS with 1:10000 4', 6-diamidino-2-phenylindole (DAPI) 

(which binds strongly to A-T regions in DNA) for three minutes.  The brain sections 

underwent three subsequent 10 minute washes in PBS, followed by one 10 min 

wash in deionized water (to remove excess phosphate).  The brain sections were 

then incubated in 25mM CuSO4 for 10 minutes in order to mask the fluorescent 

pigment lipofuscin, which are pigment granules that accumulate in the cytoplasm of 

cell in the central nervous system.  The sections were subsequently washed three 

times with PBS for 10 minutes, followed by a 10 min wash in deionized water (to 

remove excess phosphate), where coverslips were mounted to microscope slides 

with Aqua-Polymount and allowed to dry overnight.   

 

 

 

 



25 

 

Confocal microscopy: imaging of calsenilin and RyR immunoreactivity in 

neuronal cells and tissue 

 

Confocal imaging settings for accurate data acquisition 

Images were acquired using a Leica laser-scanning TCS SP5X confocal 

microscope with tunable pulsed White Light Laser, at 63x oil objective.  Collection 

and visualization of images were done with Leica Acquisition Software.  All cell 

images were acquired with the following settings: 95.5 µm pinhole, xyz scan mode, 

107.0 µm width and height, 1.6 µm depth with step sizes of 0.13 µm, voxel width and 

height 52.3 nm and depth at 125.9 nm, 2048 by 2048 pixels with a 4x line average 

and 2.3 zoom.  Laser power, offset and gain remained constant throughout all cells 

imaged.  All brain images were acquired with the following settings: 102.8 pinhole, 

xyz scan mode, 8 bit resolution, 60.0 µm width and height, 1.0 µm depth with a step 

size of 0.13 µm, voxel width and height 58.7 nm and depth at 125.9nm, 1024 by 

1024 pixels with a zoom of 4.1.  Laser power, offset and gain remained constant 

throughout all experiments.  AlexaFluor 488 was excited at a wavelength of 495nm 

and emission was collected at 496nm-647nm.  AlexaFluor 594 was excited at a 

wavelength of 590nm and collected at 602-760nm.  The collection of each of the 

fluorophores was done sequentially to avoid crosstalk, which is the excitation of one 

fluorophore causing a spillover emission signal of the other fluorophore.  Due to the 

excitation of AlexaFluor 594 being 590nm, which is in the emission spectra of 

AlexaFluor 488, AlexaFluor 488 was always excited first, then AlexaFluor 594, and 

lastly DAPI.   
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Acquisition theory to ensure maximum resolution and contrast sensitivity of 

confocal image acquisition settings 

The optimizing of imaging parameters allows a precise definition of the 

sampling frequency used by a particular microscope. By calculating the correct 

sampling frequency for the microscopes hardware any sample can be accurately 

visualized. By defining the sampling frequency, we avoid false positives that occur 

from under sampling, and avoid superfluous collection of data due to oversampling.  

All imaging was done in such a way as to maximize the resolution and contrast 

sensitivity of the microscope. In order to identify the maximum resolution of each 

objective used an Airy disk calculation was done.  The Airy disk is a calculation of 

the diffraction pattern of light, and can be visualized as a sine curve of the maximum 

and minimum intensity of the signal.  The Airy Disk is calculated for each objective 

separately, using the formula r=0.61 λ/NA (where λ is the emission wavelength of 

the secondary antibody and NA is the numerical aperture of the objective). The 

numerical aperture for each objective takes into account the half angle of the cone of 

light that enters the lens, and the refraction index for the medium used (i.e. Oil=1.56, 

water=1.33, air=1). The Airy disk calculation quantifies the distance with which the 

objective used can resolve a single point of light. To maximize spatial resolution, or 

contrast, of two points the Rayleigh criterion was applied.  The Rayleigh criterion 

states that the maximum spatial resolution that can be expected in an image (the 

minimum distance that can accurately determine the separation of two objects in 

close proximity) is achieved by the lining up of the zero point of one Airy disk with 

the maximum point of the next objects Airy disk.  This criterion becomes applicable 
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when the sampling frequency used to collect the image is to be determined. In 

microscopy the sampling frequency is the pixel size. Utilizing the Nyquist theorem, 

which states that to accurately reproduce a sine curve sampling, must be done at 

2.3 times the frequency, the optimum pixel size as related to the maximum 

resolution, or Airy disk, can be chosen.  To maximize the spatial resolution that can 

be expected from two objects that are in close proximity as defined by the Rayleigh 

criterion, the application of the Nyquist theorem to the half curve of the Airy disk will 

ensure accurate reproduction of the areas of the curve that derive maximum 

contrast.  These parameters were applied to the collection of all confocal images in 

all imaging experiments [20, 147].   

 

Co-localization software was used to analyze and discriminate between the 

true immunoreactivity signal over background signal 

Fiji ImageJ was used to quantify co-localization between calsenilin and the 

RyR utilizing the ‘Intensity Correlation Analysis’ plugin.  The output of this analysis 

program was a Pearson’s coefficient (Rr) and the Mander’s coefficients (M1, M2) for 

each protein.  To ensure that the co-localization output was true and not due to a 

random overlap of pixels, the Costes method was applied to the images.  To ensure 

signal accuracy, several control staining/collections were done to set a fluorescent 

threshold level.  The threshold level is a value that describes fluorescence that is 

due to nonspecific signals.  Only values above these levels were considered true 

signals.  Nonspecific values are tissue/cell autoflourescence (no antibodies, inherent 

fluorescents of tissue/cells), nonspecific secondary fluorescence (due to the 
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secondary antibody binding to tissue/cell), crosstalk (e.g. fluorescent signals 

collected in 602-760nm from 495 excitation (AlexaFluor 488 excitation in AlexaFluor 

594 emission)), and background fluorescence.   

 

Pearson’s coefficient: to measure the linear relationship of calsenilin and RyR 

immunoreactivity 

The Pearson’s coefficient is an algorithm that measures the covariance of two 

fluorophores within the analyzed image. The covariance is described as a linear 

relationship between the signals in the two channels. The values are from -1 to 1 

with a value of -1 describing an inverse relationship between signals (as one signal 

increases the other decreases) and defined as no colocalization. A value of 1 

describes a relationship in which the two channels are perfectly colocalized (as one 

signal increases the other increases), and a value of 0 is defined as a nonlinear 

relationship between the two species.  The Pearson’s coefficient is not affected by 

background, but can be affected by noise. This limitation can be overcome by 

applying a threshold during analysis, and correctly setting the gain and offset 

function during image acquisition. The Pearson’s coefficient allows the correlation of 

how two signals interact but does not take into account the contribution of each of 

the fluorophores separately as the Mander’s coefficient does.  
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Mander’s overlap coefficient:  a measurement of the overlap of calsenilin and 

RyR immunoreactivity 

The Mander’s coefficient is an algorithm that measures the proportion of 

overlap of each channel with the other [38].  The values of the Mander’s coefficient 

are between 0 to 1, with a value of 0 describing no co-localization and a value of 1 

describing perfect co-localization.  The Mander’s coefficient allows us to establish 

the percentage of each protein that is co-localized with each other.  A value of 1 

means that the two proteins of interest are localized together 100% of the time, while 

a value of 0 means that the two proteins are never localized together.  For most 

proteins with multiple binding partners and activities in the cell, we would expect a 

value between 0.3 - 0.7, indicating the proteins are sometimes localized together, 

but also to have other proteins they associate with.  The Mander’s coefficient is not 

influenced by the intensity of the two signals, but is sensitive to high background.  

This limitation can be overcome by applying a threshold during analysis, and 

correctly setting the gain and offset function during image acquisition.  The Mander’s 

coefficient allows us to quantify the percentage of each species that is expressed 

within a certain image.   
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Costes method: to determine if the co-localization established between 

calsenilin and RyRs was due to random chance.   

The Costes method is an approach to test the validity of the co-localization 

values with respect to the co-localization values that would be calculated by random 

overlap [40].  This method allows us to verify whether proteins are contained within 

the same area, or if they are randomly associated due to a captured event during 

fixation, the random association of background signal to real signal, and 

happenstance detritus on coverslips.  In this method, one of the channels pixels are 

scattered randomly and the Pearson’s value derived from this overlap is compared 

to the co-localization value derived from the true sample.  The values are compared 

and the significance of the true co-localization is indicated by a P-value of > 95%.  In 

this study 200 randomization patterns were compared to the value from the true 

localization.   

 

Co-immunoprecipitation: to determine a direct protein-protein interaction 

between calsenilin and RyRs 

 

Protein-A (Staphylococcus aureus) coated magnetic beads (EMD Millipore) were 

coated with antibodies used for co-Immunoprecipitation experiments.  Protein A 

magnetic beads were used due to their high affinity for the rabbit IgG2 of the 

precipitating antibody rabbit anti-RyR2 antibody (Millipore, MA, USA, raised against 

the synthetic peptide from the variant TM region of human RyR2).  ER microsomes 
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(250µg; method detailed later in the chapter) alone or with rabbit anti-RyR antibody 

(1:200; #AB9080; Millipore) or control rabbit IgG (2mg/ml magnetic beads), with or 

without recombinant calsenilin protein (20nM, 40nM, 60nM, 80nM and 100nM; Mus 

musculus; transcript variant 1, mRNA; accession number, NM_019789; protein was 

obtained and purified by Brian Gerdes in the Vision Research Center), and were 

incubated under constant shaking at 4oC for 12hrs.  The recombinant calsenilin 

protein carries a glutathione S-transferase (GST) tag, therefore instead of detection 

of calsenilin protein its actual weight of approximately 29-30kDa, the protein is 

detected at the combined calsenilin and GST molecular weight of between 51-55kDa 

(see Figure 1).  Following incubation, the slurry of antibodies and proteins were 

incubated at room temperature with protein A magnetic beads (50ul) for 10 minutes, 

washed 3 times in PBS with 0.1% Tween 20, and eluted with Western Blot Sample 

Buffer sodium dodecyl sulfate (SDS): 10%, glycerol: 10%, β-mercaptoethanol: 1%, 

bromophenol blue: 0.004%, tris (hydroxymethyl) aminomethane (Tris)-HCl: 0.5 M, 

pH 6.8) and heated for 10 min at 80oC.  Samples were then probed using the 

western blot technique.   
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Figure 1. Immunoblot of calsenilin recombinant protein with a GST tag, detected at 
approximately 51 kDa. 

Immunoblot image of calsenilin protein with a GST tag probed with mouse 
monoclonal calsenilin antibody (1:500; clone 40A5; #05-756; Upstate, NY, USA) 
overnight at 4°C with an horseradish peroxidase (HRP) linked anti-mouse 

secondary antibody (1:5000; #31430; Thermo Scientific, Glen Burnie, MD, 

USA), and imaged on the Syngene G:BOX using Syngene GeneSnap 
acquisition software 
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Western blotting: to detect the protein-protein interactions following co-

immunoprecipitation  

 

Samples prepared from co-immunoprecipitation were loaded on a 3-8% NuPAGE® 

Novex® Midi Tris-acetate gel (Life Technologies) for electrophoresis in tris-acetate 

buffer (Life Technologies).  Protein size was determined using Spectra Multicolor 

High Range Protein Ladder (Fermentas, Glen Burnie, MD).  Proteins were separated 

at 100V, 50-60mA for 1.5-2hrs and then transferred to Amersham Hybond-ECL 

blotting paper (0.45µm, GE Healthcare) in transfer buffer (25mM Tris-Base, 192mM 

Glycine, 20% methanol, 0.01% SDS (Sigma)) at 50V/250-300mA for 2hrs at 4°C.  

Membranes were blocked for 1 hour at room temperature in blocking buffer (5% 

BSA, 0.2% Tween 20 (Sigma) in tris buffer saline (TBS, Blots were then incubated 

for 12-16hrs in washing buffer (0.2% Tween 20 in TBS) with mouse monoclonal 

calsenilin antibody (1:500; clone 40A5; #05-756; Upstate, NY, USA) and mouse 

RyR2 antibody (1:100; clone C3:33, Millipore, MA; raised against canine cardiac 

ryanodine receptor).  Blots were washed 3 times for ten minutes in washing buffer 

and incubated with horseradish peroxidase (HRP) linked anti-mouse secondary 

antibody (1:5000; #31430; Thermo Scientific, Glen Burnie, MD, USA) in washing 

buffer at room temperature for 1 hour.  Membranes were washed three times in 

washing buffer and developed using SuperSignal West Femto Chemiluminescent 

Substrate (Thermo Scientific) and imaged on the Syngene G:BOX using Syngene 

GeneSnap acquisition software.  
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Planar lipid bilayer electrophysiology: testing the effects of the calsenilin and 

RyRs direct protein-protein interaction on individual RyR channel activity 

 

Isolation of endoplasmic reticulum microsomes for the electrophysiological 

testing of native brain RyRs 

 C57BL/6 mouse brains (n=8-15) were thawed and washed in ice cold PBS.  

The washed brains were minced on ice in homogenization buffer (260mM sucrose, 

5mM HEPES, 1mMEGTA, 1mMDTT, and 10 µg/mL protease inhibitor cocktail 

(PMSF, aprotinin, pepstatin, trypsin inhibitor), at pH 7.35 with KOH) using a straight 

razor.  The minced tissue was then diluted in ice cold homogenization buffer, and 

placed in a Dounce glass homogenizer, homogenized for 10-15 strokes, and placed 

in an ultracentrifuge tube.  The sample was then centrifuged in a Sorvall ULTRA 80 

ultracentrifuge for 10 minutes at 1000xg to remove the nuclear fractions and cellular 

debris.  The supernatant was collected and spun at 1000xg for 10 minutes to ensure 

removal of all cellular debris and nuclear fraction.  The supernatant was collected 

and centrifuged at 5000xg (to remove mitochondrial fraction) for 10 minutes.  This 

step was repeated once more. Following the second centrifugation step, the 

supernatant was collected a further time and centrifuged at 100,000xg for 50 

minutes (to collect the ER microsomal fraction).  The supernatant was removed and 

discarded and the pellet was resuspended in homogenization buffer without EGTA, 

snap frozen in liquid nitrogen, and stored at -80oC until use.   
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Planar lipid bilayer experimental setup 

Planar lipid bilayer electrophysiology involves forming an artificial bilayer 

across an aperture which links two fluid filled chambers.  The system consists of two 

distinct chambers (Warner Instruments, Hamden, CT; see Figure 2): the cis 

chamber, representing the cytoplasm of the cell (containing 93mMTrisOH/190mM 

HEPES, (Sigma-Aldrich) pH 7.35, approx.  285 mOsm) and the trans chamber 

representing the ER lumen (containing 50mM Ba (OH) 2/245mM HEPES (Sigma-

Aldrich), pH 7.35, approx. 285 mOsm).  The trans chamber contains a bilayer cup 

with a 150µm aperture which a lipid bilayer containing phosphatidylethanolamine 

and phosphatidylserine (3:1 w/w dissolved in decane; Avanti Polar Lipids, Alabaster, 

AL) is spread across.  Prior to the spreading of the artificial bilayer, the aperture is 

primed by dispersing lipids containing phosphatidylcholine and phosphatidylserine 

(3:1 w/w dissolved in decane; Avanti Polar Lipids) within the aperture.  This priming 

prepares the aperture to receive the lipid bilayer by providing the extra lipids to 

anchor the bilayer to the bilayer cup.  Two salt agar bridges (5% agar in 1MKCL 

(Sigma) (w/v)) connect the cis and trans chamber to a headstage that transfers the 

signals to a BCD525 Warner Instruments amplifier.  After bilayer formation a 

capacitance test is then performed to access the relative thickness of the bilayer.  

The capacitance measurement allows an indirect measure of the artificial bilayer 

thickness ensuring the pore region of the receptor can pass completely through the 

bilayer.  The trans chamber is grounded and the cis chamber is clamped at 0mV.  

The integrity of the bilayer is accessed by monitoring the current between the two 
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chambers before microsome incorporation.  At this time a current of 0mV connotes a 

bilayer with no contact between chambers.   

 

 

 

Figure 2. Schematic representation of Planar lipid bilayer electrophysiology: 

experimental set up. 

Two chambers (cis and trans) are separated by a 150µm aperture in which an 

artificial bilayer is formed across.  Salt agar bridges connect the two chambers to a 

headstage that transfers the electrical activity to an amplifier.  The trans side of the 

chamber is grounded and the cis side of the chamber is clamped at a 0mV holding 

potential.   
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Testing for proper channel incorporation, stability, and experimental 

procedures for the measurement of RyRs biophysical activity 

When a stable bilayer was formed, ER microsomes containing RyRs were 

added to the cis chamber and incubated for 10-20 minutes.  The purpose of the 

incubation is to place the microsomes in a pre-fusion state where the lipids of the 

bilayer and microsome are in close proximity.  When incubation was complete, 

microsomes were fused to lipid bilayers by addition of 3M KCl.  The addition of the 

hyperosmotic solution creates an osmotic gradient and induces microsomal swelling.  

The hydrostatic pressure created within the microsome induces fusion.  Fusion is 

monitored by the appearance of channel activity.  Upon channel incorporation the cis 

chamber was washed with 10 volumes of cis solution.  To ensure all channels are 

correctly oriented with the cytoplasmic portion of the RyR facing the cis chamber the 

current carrier used is Ba2+.  Ba2+ as a charge carrier cannot activate RyR; therefore 

any channels oriented with the cytoplasmic portion facing the trans chamber will not 

be activated.  RyR currents were activated by adding Ca2+/EGTA in molar 

proportions, calculated by MaxChelator software (Stanford University) and verified 

by Ca2+ electrode measurements.  Once activated at the specific Ca2+ concentration 

to be tested, the channel activity was recorded for three minutes.  After this baseline 

activity was recorded, calsenilin recombinant protein was added to the cis side of the 

chamber and allowed to incubate with constant stirring for one minute. Following 

incubation, the channel activity was recorded for three minutes.  The range of 

calsenilin concentrations we used represents possible physiological concentrations 

of calsenilin within the cell.  All experiments were performed at room temperature.   
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Software settings for the acquisition and filtering of single channel 

experiments 

Single channel recordings were performed using BCD525 Warner 

Instruments amplifier, and filtered to reduce the amplitude of high-frequency noise at 

500Hz.  Digitization was done at 10 kHz using Digidata 1322A acquisition system 

and Molecular Devices pClamp 10 software.  Analysis of recordings was done using 

Molecular Devices ClampFit 10 software, lowpass filtered at 320 Hz to reduce lower 

frequency noise associated with digitization.  Baselines were set at zero, and single 

channel events were recorded for the conductance states of -2pA and -4pA.  

Clampfit software calculated all of the following statistics for 3 minutes of recording: 

number of events (how many times the channel opens), average amplitude (current 

for single channel opening), dwell time (the amount of time per each single channel 

opening), and open probability (the probability of a channel being open per time 

period).   

 

Comparing single channel biophysical data of RyRs in the presence and 

absence of calsenilin  

Due to the variable nature of single channel activity, all recordings were 

normalized to control values and reported as percentage of controls.  Graphpad 

prism 5 software was used for all analysis and data presentation.  Nonlinear curve 

fitting was performed using the Levenberg–Marquardt algorithm and tested for 

goodness of fit using the chi squared algorithm.  A one-way ANOVA with a Dunnett’s 

post hoc test was used to test significance (Mean ± SEM; p< 0.05*, p< 0.01**, 
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p<0.001***). One-way ANOVA analysis with a Dunnett’s post hoc test was used 

because it is the most appropriate analysis for comparing multiple groups and 

normalized data. 

 

Ca2+ imaging: to test the effect of calsenilin modulation of single RyR channels 

in a whole cell paradigm by overexpressing calsenilin in SH-SY5Y cells 

 

Overexpression of calsenilin recombinant protein in SH-SY5Y cells  

SH-SY5Y cells were grown as previously stated in section of materials and 

methods.  Cells were stripped using trypsin-EDTA as described earlier, and 2 million 

cells were used for each reaction.  Cells were co-transfected with the tdTomato to 

allow identification of transfected cells.  Cells were suspended in Lonza transfection 

media with 2 µg of calsenilin.  pcDNA3. 1 (+) Zeo mammalian expression vector and 

0.5 µg of tdTomato (reporter protein) pcDNA3.1 (+) Zeo mammalian expression 

vector, then transfected using a Lonza 4D-nucleofector transfection unit.  After 

transfection was carried out, the cells were plated at 25,000 cells per laminin/poly-d-

lysine coverslip and maintained for 36-48  hours, and subsequently used for Ca2+ 

imaging experiments.   

 

Verification of co-transfection using fluorescent markers  

 SH-SY5Y cells were co-transfection with green fluorescent protein (GFP; 

emission wavelength 509nm) and tdTomato fluorescent protein (emission 

wavelength 581nm) in order to verify the transfection protocol (described in the 
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preceding section).  The ratio of GFP: tdTomato plasmid co-transfection was the 

same as that used for calsenilin: tdTomato.  The cells were then fixed and imaged 

as previously stated.  Figure 3 shows that all cells expressing the fluorescent marker 

tdTomato also express the GFP fluorescent marker.  These results verify that cells 

are successfully transfected using our protocol, and that GFP can be used as a 

transfection-verification tool. 
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Figure 3.  Validation of Co-transfection using fluorescent markers.   

Co-transfection of GFP and tdTomato fluorescent markers into SH-SY5Y cells 

verifies that all cells transfected with the fluorescent marker protein (tdTomato) are 

also transfected with the GFP protein (ratio GFP: tdTomato 4:1).  The first panel 

shows transfected cells with GFP fluorescence, the second panel shows tdTomato 

fluorescence, and the third panel displays an overlay of the two fluorescent signals.  

The arrows indicate representative cells showing similar levels of expression for both 

proteins.   
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Verification of tdTomato as an indicator for overexpression of calsenilin in 

cells using confocal microscopy 

SH-SY5Y cells were co-transfected with calsenilin (no emission or 

fluorescence) and tdTomato (emission wavelength 581nm) plasmids were prepared, 

stained using immunocytochemistry, and imaged (see earlier section describing the 

immunocytochemistry protocol).  Images were processed using the Image J heat 

map plugin which measures relative fluorescent values of specified channels and 

displays results using a color coded figure legend.  Figure 4 shows cells that are 

tdTomato positive have a higher calsenilin expression level that cells that are 

tdTomato negative.  The calsenilin expression in cells that are tdTomato negative 

are likely to be endogenous levels of calsenilin as they are expected to be 

untransfected.  These results verify that by co-transfecting the cells with tdTomato 

enables visualization of the transfected cells with a fluorescent marker, making it 

possible to distinguish between successful transfection of calsenilin and 

consequently enabling selection of calsenilin overexpressing cells.  Therefore, based 

on this rationale, only cells that were tdTomato positive (fluorescing cells) were 

chosen for Ca2+ imaging experiments.   
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Figure 4. Confocal images showing tdTomato incorporation as an indicator for 

successful calsenilin transfection in SH-SY5Y cells.   

SH-SY5Y cells co-transfected with calsenilin and tdTomato showed that tdTomato 

positive cells display increased calsenilin expression compared to cells absent of 

tdTomato.  The first panel displays calsenilin expression, the second panel tdTomato 

expression, and the third panel displays and overlay of the two channels.  The heat 

map shows that the cells expressing tdTomato have an increased expression of 

calsenilin as opposed to cells showing no tdTomato expression.  The two red arrows 

in the heat map panel indicate expression of calsenilin.  The fifth panel is an overlay 

plus the nuclear stain DAPI, indicating that overexpression of calsenilin does not 

alter the perinuclear expression pattern.   
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Calibration of the Fura-2 Ca2+ indicator dye Kd for Ca2+ binding in order to 

accurately translate changes in fluorescence to biological changes in Ca2+ 

concentration 

Fura-2 pentapotassium salt (Life Technologies) Ca2+ indicator dye was used 

as an in vitro calibration for  Kd  calculations that mimicked experimental conditions of 

pH 7.35, temperature of 37oC, and imaged on a Leica DM6000 FS fluorescent 

microscope (Leica, Wetzlar, Germany) with an Orca-R2 C10600 digital camera 

(Hamamatsu, Bridgewater, NJ) and DG5 illuminator and fast wavelength switcher  

(Sutter, Novato, CA) controlled by MetaFluor (Molecular Devices, Sunnyvale, CA), 

Fura-2 filter set 71000av2 (D340xv2, D380xv2, 400DCLP, D510/40m; Chroma, 

Bellows Falls, V)  with a HCX PL APO 40x/1.25-0.75 oil objective (Leica, Wetzlar, 

Germany).  Collection of the ratiometric fluorescent dye Fura-2 was done by exciting 

alternately at 340nm and 380nm and collecting at 510nm.  Fluorescent values were 

calculated using a 340nm/380nm ratio which indicates the change in Ca2+ 

concentration.  Cell free calibration of Fura-2 was done to achieve relative values of 

Ca2+ concentration for changes in fluorescence within these experimental conditions, 

as opposed to absolute values that would be achieved using a cell based calibration.  

The in vitro calibration was used to ensure that the minimum value of the fluorophore 

was achieved Reciprocal dilutions were used to calibrate Fura-2 Ca2+ indicator dye.  

This technique is based on the notion that defines free [Ca2+] as the Kd of EGTA at a 

particular pH, temperature, and osmolarity when Ca2+ and EGTA concentrations are 

equitably close [176].  To ensure the purity of compounds used in the calibration, a 

commercially available calibration kit was used (calibration buffer kit # 1; Invitrogen).  
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The amount of free Ca2+ was calculated by the ratio of supplied K2 EGTA (10mM) 

and CaEGTA (10mM), added to fixed amount of Fura-2 pentapotassium salt.  The 

free Ca2+ concentrations tested were 0, 0.006µM, 0.0137µM, 0.0234µM, 0.0365µM, 

0.0547µM, 0.0821µM, 0.128µM, 0.219µM, 0.492µM, and 36µM.  Ratio 

measurements at 0µM and 36µM were considered min and max values, 

respectively.  K2 EGTA (10mM) and CaEGTA (10mM) solutions with Fura-2 

pentapotassium salt (2µM) were brought to a pH of 7.35, a temperature of 37oC, and 

placed on the microscope for data collection.  Ratios of K2 EGTA (10mM) and 

CaEGTA (10mM) solutions with 2µM Fura-2 pentapotassium salt were sequentially 

added and measured for all free Ca2+ values mentioned.  After collection, values 

were plotted as the log of free Ca2+ concentrations (X-axis) and the log of (F-Fmin)/ 

(Fmax-F) (y-axis).  The double log plot gives an x-intercept that is the log of the Kd of 

Fura-2 (see Figure 5).  The slope of 1 reflects the 1:1 binding of fura-2 with Ca2+ 

(Figure 5).  The in vitro Kd of Fura-2 in these conditions was calculated to be 0.118 

µM.   
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Figure 5.  Calculated graph for the calibration of Fura-2 Kd value.   

The y-axis displays the log of the bound/ free Ca2+ as reported by the fluorescent 

ratio of Fura-2 (340nm/380nm).  The x-axis is the log of the free Ca2+ as calculated 

previously using the Kd of EGTA and a known ratio of Ca2+ /EGTA   (x-axis; 

0.006µM, 0.137µM, 0.234µM, 0.365µM, 0.547µM, 0.821µM, 0.128µM, 0.219µM, 

0.492µM) at a pH of 7.35 and temperature of 37°C.  The x-intercept represents the 

log of the Kd of Fura-2.   
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Ca2+ imaging: Quantifying the effect of calsenilin and RyR interaction on Ca2+ 

release in calsenilin-transfected SH-SY5Y cells 

The media from mock- or calsenilin-transfected SH-SY5Y cells (maintained, 

plated and transfected as described in previous sections) was removed and washed 

in extracellular solution buffer (ECS; 137mM NaCl, 5mM KCl, 1mM Na2HPO4, 1mM 

MgSO4 (anhydrous), 10mM HEPES, 22mM D-(+)-glucose, and 1.8mM CaCl2 

(anhydrous); 7.3pH at 37°C) three times, then incubated in 2µM fura-2 AM 

(Invitrogen) in ECS for 30 minutes.  Coverslips were then washed with ECS 

containing 55mM KCl to empty and subsequently refill their intracellular Ca2+ stores, 

then washed a further two times with ECS.  Coverslips were assembled to the 

imaging platform as previously described, and continually perfused with ECS at a 

constant temperature of 37°C by Temperature Controller TC-344B (Warner 

Instruments, Hamden, CT) and SC-20 inline heater/cooler (Warner Instruments).  

ECS containing caffeine (30mM, caffeine is a selective ryanodine receptor activator 

[175]) was perfused using VC-8T perfusion system (Warner Instruments, Hamden, 

CT) by MetaFluor and driven by P720/66 high flow peristaltic pumps (Instech, 

Plymouth Meeting, PA) at 2ml/minute.  Time from perfusion channel opening to full 

chamber incubation was consistently measured at approximately 60 seconds.  

Perfusion protocols were the same for all experiments and controlled through 

MetaFluor sequential journals.  The perfusion protocol was a simple 3 step 

sequence: 1 minute of ECS to establish a baseline, 3 minutes of 30mM caffeine in 

ECS to stimulate the RyRs, 3 minute of ECS to return the response to baseline (see 

Figure 6).  Regions of Interest (ROIs) were selected following Ca2+ imaging, in order 
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to adjust for drift, and background ROI’s (N=4 for each coverslip) were selected 

using a region of the optical field not occupied by cells.  

 

 

 

  

 

 

Figure 6. Representative video samples of caffeine-induced Ca2+ release during live 
cell Ca2+ imaging in SH-SY5Y cells 

Representative images from calcium imaging experiments to show the fluorescent 
change in control SH-SY5Y cells following caffeine-induced calcium release. 
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Transformation and comparison analysis of Ca2+ imaging experiments utilizing 

quantitative calculated   Ca2+ values 

 For each time point in the experiment protocol, the fluorescent values for 

excitation at 380nm (Ca2+ free Fura-2 indicator) and 340nm (Ca2+ bound Fura-2) 

were collected at 510nm.  Background values were subtracted from raw fluorescent 

values to ensure only accurate signals was analyzed. Next, the ratio of bound to 

unbound Ca2+ indicator dye was calculated.  The ratio of 340/380 allowed the 

calculation of R which describes the ratio of bound fluorescent indicator at each time 

point.  The formula [Ca2+] = Kd*(R-Rmin)/(Rmax-R)*F380min/F380max (Kd of Fura-2 = 

0.118 µM; calculated as described earlier; R= 340/380 for each experimental time 

point;  Rmin = the 340/380 at 0 free Ca2+; Rmax = the 340/380  at saturating free Ca2+ ; 

F380min = the fluorescent intensity of 380nm at 0 free Ca2+; and F380max = the 

fluorescent intensity of 380nm at saturating free Ca2+) was used to calculate the 

quantitative Ca2+ concentration at each point (Note: All values in the formula were 

kept constant except for the experimental value of R). The formula used describes 

the interrelationship of free Ca2+ and the ratio of fluorescent intensities. The 

transformation of the data allows a more sensitive indicator of smaller changes in 

[Ca2+].  Data sets were normalized by using [Ca2+}/[Ca2+]0 calculations, [Ca2+]0 being 

the calculated Ca2+ values for the first minute of recording (baseline), and [Ca2+] 

being the calculated Ca2+ values each time point. The following example calculation 

shows the increased sensitivity gained by transforming qualitative fluorescent 

signals to quantitative [Ca2+].  
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E.g. Using the same F and F0 values, the qualitative estimate of caffeine-evoked 

Ca2+ response (F/F0) and quantitative free [Ca2+] conversions can be calculated: 

 

F = maximum caffeine-evoked fluorescence signal = 0.074 

F0 = baseline = 0.063 

 

A) The calculation F/F0 can be used to obtain a qualitative estimate of the 

change in fluorescence over baseline after caffeine stimulation : 

 

F/F0 = 0.074/0.063 = 1.17 

 

B) The conversion of the qualitative fluorescent signals to quantitative free 

[Ca2+] more accurately describes the physiological changes due to smaller 

incremental increases in Ca2+: 

 
i) The following constants obtained from the calibration curve (Fig 5): 

Kd of Fura-2 = 0.118uM 

Rmin = 0.033 

Rmax = 1.33 

F380min = 132.08 

F380max = 9.87 

 

ii) Substitute constants, F, and F0 into free [Ca2+] conversion formula: 

 

[Ca2+] of F = [Ca2+] = Kd*(F-Rmin)/ (Rmax-F)* F380min / F380max 

 

 

[Ca2+] = 0.118(0.074-0.033)/ (1.33-0.074)*(132.08/9.87) 
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 = 0.118 (0.041/1.256)*13.38 

 = 0.118*0.033*13.38 

 = 0.052 

 

[Ca2+] of F0 = [Ca2+]0 = 0.118(0.063-0.033)/ (1.33-0.063)*(132.08/9.87) 

 = 0.118 (0.03/1.267)*13.38 

 = 0.118*0.024*13.38 

 = 0.038 

 

iii) Therefore, the change in [Ca2+] over baseline after caffeine stimulation   
is: 

 

[Ca2+]/ [Ca2+]0 = 0.052/0.038 = 1.37 

 
 

By transforming the qualitative fluorescent values to quantitative Ca2+ values 

the changes evoked by caffeine induced Ca2+ release become more biologically 

meaningful. Though the relationship between the signals is not altered, a small 

change in fluorescence equates to a larger change in Ca2+ concentration. Fura-2 is 

sensitive to small changes in Ca2+ concentration, which reflects the same sensitivity 

of cellular processes to minute changes in Ca2+ concentration. Therefore, the 

transformation of qualitative fluorescent values to quantitative Ca2+ concentrations 

more accurately reflects the magnitude of change in a cell after caffeine induced 

Ca2+ release. 

 

Graphpad prism 5 software was used for all analysis and data presentation.  

The calculation for the area under the curve (AUC) was defined as follows: the 

beginning of the curve was the time point where the Ca2+ value rose above 5% of 
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baseline and the ending of the curve was defined by the last point in the curve that 

was above 5% of baseline.  Both maximum value and width of response were 

calculated from this curve also.  Linear regression was done to calculate the slope 

values of each response (which represents the rate of Ca2+ release for each 

experiment) using the max value and the first point 5% above baseline.  All values 

were averaged and statistically analyzed using the student’s t-test (Mean ± SEM, p< 

0.05*, p< 0.01**, p<0.001***).   
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CHAPTER 3 

RESULTS 

 

 The expression patterns of calsenilin and RyRs in neuronal tissue were 

compared and quantified using immunocytochemistry (SH-SY5Y cells and E18 

cortical neurons) and immunohistochemistry (brain sections).  To establish if 

colocalization translates to a direct protein-protein interaction co-

immunoprecipitation of calsenilin and neuronal RyRs were carried out. Subsequent 

Western blot analyses of precipitated proteins were identified using protein weight 

estimation.  Single channel electrophysiology and live-cell optical imaging 

techniques were used to determine the mechanisms of intracellular Ca2+ signaling 

controlled by the interaction of calsenilin and RyRs, including changes in the release 

of Ca2+ from intracellular stores.  Immunocytochemistry or immunohistochemistry 

verified the biological relevance of this interaction by showing that calsenilin and 

RyR2 or RyR3 are co-localized in neuronal cells. Co-immunoprecipitation studies 

established a direct link between the two proteins of interest.  To better understand 

the functional consequences of a calsenilin and RyR interaction the biophysical 

parameters of RyR Ca2+ release were measured in the presence of calsenilin. Single 

channel kinetics was measured using planar lipid bilayer electrophysiology. The 

modulation of Ca2+ release in a population of RyRs was tested by overexpressing 

calsenilin (transfection) in a whole cell model and imaging the release of Ca2+ 

through live cell optical imaging techniques.   
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Calsenilin and RyR2 and RyR3 co-localized in rat primary cortical neurons and 

SH-SY5Y cells 

 

Immunoreactivity for calsenilin and RyR2 (Fig 7A), and calsenilin and RyR3 

(Fig 7B) shows a punctate distribution pattern indicative of perinuclear endoplasmic 

reticulum staining [68, 149, 172].  These expression patterns were similar in primary 

cortical neurons (Fig 7A and 7B) and SH-SY5Y neuroblastoma cells (Fig 8A and 

8B).  Pearson’s coefficient values (Table 1) for both primary neurons and 

neuroblastoma cells describe a moderate linear relationship characterizing two 

proteins that interact in the perinuclear regions of the cells, but diverge when located 

elsewhere.  The Mander’s coefficient values of calsenilin and RyR (Table 1) are 

between 30%-60% showing these proteins occupy the same region within the cell, 

but have a wide distribution throughout the cell.   
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Figure 7.  Calsenilin and RyR immunoreactivity and co-localization pattern in cortical neurons.   

Calsenilin and A) RyR2 or B) RyR3 immunoreactivity in E18 primary cultured cortical neurons shows co-localization in 
regions adjacent to the nucleus indicative of endoplasmic reticulum staining.  A)  Calsenilin immunoreactivity (green) 
and RyR2 immunoreactivity (red) shows a perinuclear staining pattern (Merge)  and a high degree of  punctate  co-
localization in the perinuclear region (+PDM) as indicated by arrows and LUT in the last panel.  B) Calsenilin 
immunoreactivity (green) and RyR3 immunoreactivity (red) shows a perinuclear staining pattern (Merge) and a high 
degree of punctate co-localization in the perinuclear region (+PDM) as indicated by arrows and LUT legend in the last 
panel.   
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Figure 8.  Calsenilin and RyR immunoreactivity and co-localization pattern in SH-SY5Y cells.   

Calsenilin and A) RyR 2 or B) RyR 3 immunoreactivity in SH-SY5Y  neuroblastoma cells shows co-localization in 

regions adjacent to the nucleus indicative of endoplasmic reticulum staining  A) Calsenilin immunoreactivity (green) 

and RyR 2 immunoreactivity (red) shows a perinuclear staining pattern (Merge)  and co-localization in the perinuclear 

region (+PDM)  as indicated by arrows and LUT in the last panel B) Calsenilin immunoreactivity (green) and RyR 3 

immunoreactivity (red) shows a perinuclear staining pattern (Merge) and a high degree of  punctate  co-localization in 

the perinuclear region (+PDM) as indicated by arrows and LUT in the last panel.   
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Calsenilin and RyR2 and RyR3 co-localize in the hippocampus and cortex  

 

In the mouse brain, co-localization of calsenilin and RyR2 or RyR3 in the 

dentate gyrus, CA3 and CA1 of the hippocampus and II/III, V, and VI layer of the 

cortex showed differing degrees of co-localization for the two channel subtypes 

tested.  Hippocampal immunoreactivity of RyR2 and calsenilin was similar to cellular 

studies, as represented by the dentate gyrus staining (Fig 9A).  As shown in Table 1, 

Pearson’s coefficient and Mander’s coefficient values in brain tissue are similar to 

that of the cellular studies performed in this study, indicating that the distribution and 

co-localization of these two proteins are similar in vitro as well as in vivo.  

Immunoreactivity of RyR2 and calsenilin in the cortical layers shows a similar pattern 

of expression and co-localization, represented by cortical layer VI staining (Fig 9B), 

as seen in earlier experiments.  Rr, M1, and M2 values are in accordance with those 

in the hippocampal areas, with the Rr values being slightly higher in all cortical levels 

tested (Table 1).  RyR3 and calsenilin co-localization showed a differential 

distribution depending on brain region.  The CA3 region of the hippocampus (Fig 

10A) showed a higher degree of co-localization than the dentate gyrus (Fig 10B) and 

the CA1 regions (Table 1).  In the cortical regions layer VI (Fig 11A), RyR3 and 

calsenilin showed a greater linear relationship than layers II/III (Fig 11B; Table 1).   

To conclude, these results indicate that calsenilin and RyR expression 

overlap, with a specific ER-type expression pattern.  In order to determine if this co-

localization correlates to a direct protein-protein interaction, we incubated RyR-rich 

microsomes and recombinant calsenilin protein together. Using co-
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immunoprecipitation to pull-down RyR complexes present in the mixture was 

visualized using western blot analysis. 
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Figure 9. Calsenilin and RyR 2 immunoreactivity and co-localization pattern in the dentate gyrus and cortical layer VI.   

Calsenilin and RyR2 immunoreactivity in the dentate gyrus and cortical layer VI of C57BL/6 mouse brain shows co-

localization in adjacent regions to the nucleus, indicative of endoplasmic reticulum staining.  A) Calsenilin 

immunoreactivity (green) and RyR2 immunoreactivity (red) in the dentate gyrus shows a perinuclear staining pattern 

and a co-localization (Merge) as indicated by arrows and (+PDM)  LUT in the last panel.  B) Calsenilin 

immunoreactivity (green) and RyR2 immunoreactivity (red) in layer VI of the cortex shows perinuclear, dendritic, and 

axonal staining patterns (Merge) with a high degree of punctate co-localization in the perinuclear region and at the 

base of processes (+PDM) , indicated by arrows and LUT in the last panel.   



 

 

 

6
0
 

 
Figure 10. Calsenilin and RyR3 immunoreactivity and co-localization pattern in the dentate gyrus and CA3 region.   

Calsenilin and RyR3 co-localization in C57BL/6 mouse brain is region specific with the A) CA3 region of the 

hippocampus showing higher degree of co-localization than the B) dentate gyrus.  A) Calsenilin immunoreactivity 

(green) and RyR2 immunoreactivity (red) in the CA3 region shows a staining throughout the CA3 cells (Merge) and a 

high degree of co-localization, as indicated by arrows and (+PDM) LUT in the last panel.  B) Calsenilin 

immunoreactivity (green) and RyR2 immunoreactivity (red) in the dentate gyrus shows staining in clusters of cells 

(Merge) with a moderate degree of co-localization, as indicated by arrows and (+PDM)  LUT in the last panel.   
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Figure 11. Calsenilin and RyR3 immunoreactivity and co-localization pattern in Cortical layer VI and II/III.   

Calsenilin and RyR 3 co-localization in C57BL/6 mouse brain is region specific with A) cortical layer VI showing higher 

degree of co-localization than B) cortical layer II/III.  A) Calsenilin immunoreactivity (green) and RyR2 immunoreactivity 

(red) in cortical layer VI shows perinuclear staining (Merge) and a high degree of co-localization, as indicated by 

arrows and (+PDM) LUT in the last panel.  B) Calsenilin immunoreactivity (green) and RyR2 immunoreactivity (red) in 

cortical layer II/III shows slight staining (Merge) with a moderate degree of co-localization, as indicated by arrows and 

(+PDM) LUT in the last panel.   
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Table 1. Pearson’s and Mander’s values of co-localization for calsenilin and RyR subtypes.   

Co-localization measurements between calsenilin and RyR2 or RyR3 for neuronal cell types (E18 primary cortical 

neurons and SH-SY5Y neuroblastoma cells) and 6wk old C57BL/6 mouse brain sections (dentate gyrus, CA3, CA1, 

cortical layers II/III, V, VI).  The Rr = Pearson’s coefficient and M1=Mander’s coefficient describe the amount of 

calsenilin co-localized with the two RyR subtypes, whereas the M2= Mander’s coefficient describes the amount of the 

RyR2 or RyR3 co-localized with calsenilin.  Statistical significance represents the SEM for each replicate; co-

localization was tested with the Costes method to ensure true co-localization.  For calsenilin/RyR2 co-localization 

(values on left of table), Rr, M1, and M2 for both cell types and tissue tested were similar, with cortical layers V and VI 

showing higher Rr values.  For calsenilin/RyR3 co-localization (values on right of table), R2, M1 and M2 values for cell 

types, hippocampal region CA3, cortical layer VI showed similar values, while all values for the dentate gyrus, CA1, 

cortical layer II/III, and V were similar but at lower values than the other brain regions.  Values are represented as 

Mean ± SEM.   

 RyR2 RyR3 

Sample Rr M1 M2 Rr M1 M2 

Cell type 
      

    Cortical Neurons 0.156 ± 0.022 0.504 ± 0.069 0.501 ± 0.037 0.209 ± 0.015 0.396 ± 0.033 0.437 ± 0.024 

    SH-SY5Y 0.155 ± 0.030 0.557 ± 0.079 0.601 ± 0.043 0.166 ± 0.008 0.468 ± 0.042 0.520 ± 0.033 

Brain Region 
      

    DG 0.131 ± 0.025 0.650 ± 0.061 0.460 ± 0.089 0.034 ± 0.043 0.424 ± 0.085 0.243 ± 0.106 

    CA3 0.138 ± 0.024 0.447 ± 0.075 0.493 ± 0.063 0.148 ± 0.038 0.288 ± 0.047 0.117 ± 0.023 

    CA1 0.122 ± 0.025 0.594 ± 0.059 0.587 ± 0.079 0.081 ± 0.018 0.393 ± 0.080 0.234 ± 0.076 

    Ctx II/III 0.178 ± 0.031 0.436 ± 0.065 0.355 ± 0.083 0.044 ± 0.007 0.199 ± 0.027 0.042 ± 0.004 

    Ctx V 0.259 ± 0.023 0.470 ± 0.050 0.445 ± 0.096 0.055 ± 0.007 0.201 ± 0.030 0.057 ± 0.013 

    Ctx VI 0.275 ± 0.033 0.416 ± 0.056 0.384 ± 0.066 0.111 ± 0.037 0.175 ± 0.014 0.054 ± 0.005 
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Calsenilin recombinant protein co-immunoprecipitates with RyR2, verified by 

Western blot analysis  

 

Following co-immunoprecipitation, the RyR2 antibody successfully captured 

the RyR-calsenilin protein complex. The immunoblot in Figure 12 shows a calsenilin 

band at 51kDa (calsenilin recombinant protein + GST tag) and a RyR band at 

approximately 550kDa.  IgG is detected in immunoblots at approximately 51kDa.  To 

control for artificial positives on the immunoblot from pulldown antibody IgG, the 

antibody used to label immunoblots was derived from a different species than the 

precipitating antibody.  By using a different species of antibody we can be certain 

that the band seen at the 51kDa weight marker is calsenilin with the GST tag. The 

IgG control showed no distinguishable band in either the RyR or calsenilin region of 

the immunoblot.  Pull-down assays with brain microsomes absent of recombinant 

protein, showed no distinguishable bands due to protein levels being below 

detection levels of the immunoblot.  Pull-down assays with whole brain preparations 

were marred with several unspecific protein bands and smears due to fatty content 

of the brain.  Densitometric analysis of immunoblot bands with RyRs as the loading 

control showed saturation of RyR binding at 60nM-100nM. Revealing an 

approximate 1:1 ratio of expression for the RyR: calsenilin signal.  Reverse pulldown 

assays using the calsenilin antibody as the pulldown antibody did not yield bands in 

immunoblots possibly due to weak electrostatic interactions between the two 

proteins from localized charges on their surfaces.  The concentration of 60nM which 

yields approximately a 1:1 ratio in densiometric studies in reminiscent of the binding 
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ratio between Kv4.2 channels and calsenilin.  Calsenilin alters the release kinetics of 

the Kv4.2 channel, so we tested the effect of this protein-protein interaction using 

60nM recombinant calsenilin protein using planar lipid bilayer electrophysiology.   
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Figure 12.  Western blot showing RyR2 and calsenilin protein, from a pulldown using 

RyR2 antibody.   

Co-immunoprecipitation using rabbit anti-RyR antibody (1:200; #AB9080; Millipore) 

or control rabbit IgG (2mg/ml magnetic beads) in brain derived ER microsomes with 

increasing levels of calsenilin recombinant protein (0-100nM).  Calsenilin is detected 

at 51kDa due to GST tag on the calsenilin recombinant protein that was added.  No 

bands were seen using IgG as the precipitating antibody as viewed in the first lane.   
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Electrophysiological recordings show calsenilin reduces the amount of time 

that the RyR conducts ions during a given period of time at low intracellular 

Ca2+ 

 

Figure 13 shows a representative long (30s) and short (4s) continuous 

recording of RyR channel activity. The 4s trace is labeled with the different 

parameters measured in single channel electrophysiology. The average amplitude 

describes the unique conductance property of RyRs. RyRs have three conductance 

states, a closed conductance state represented by the baseline label, a partially 

open state represented by the S2 label, and a fully opened state represented by the 

S4 label.  The amplitude reflects the consequence of the conductance state where a 

closed state (baseline) = 0pA, a partially open state (S2) = -2pA, and a fully open 

state (S4) = -4pA.  These descriptions are important as they are all used in 

assessing open probability of the channel over time.  As seen in figures 15A and 

13B, at low (100nM) intracellular Ca2+ (pCa7), 60nM calsenilin decreases the activity 

of the receptor as noted by less downward deflections in figure 15B as opposed to 

15A.  This decrease in activity is represented in figure 14A by a significant decrease 

in the time that the RyR channel will be open at any given period of time reflected by 

a decrease in open probability.  There is a significant decrease in the open 

probability of the S2 state (Fig 14A).  The mechanism of this decrease in channel 

activity can be attributed to a decrease in the number of times the receptor opens at 

S2 conductance state as indicated by a downward shift in the amplitude histogram 

(Fig15B) as well as decrease in the amount of time the channel remains open each 
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time it is activated as indicated by a leftward shift in the dwell time histogram 

(Fig15C).   
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Figure 13. Representative single channel recordings of planar lipid bilayer 

electrophysiology.   

 

Representative single channel recordings of long 30s (A) and short 4s (B) recordings 
showing representative example of baseline and conductance states average 
amplitude S2 (io =-2pA), S4 (io =-4pA), event, and dwell time.   
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Figure 14.  Calsenilin increases the open probability of RyR single channel activity at 

higher activity intracellular Ca2+ levels.   

Calsenilin increases the open probability of RyR single channel activity at higher 

activity intracellular Ca2+ levels, but decreases the open probability of RyR single 

channel activity at low activity intracellular Ca2+ levels.  After treatment with 60nM 

calsenilin the open probability for A) io=-2pA sublevel for pCa7 was decreased, while 

pCa6 was increased, but for B) io=-4pA both pCa6 and pCa5 open probability was 

increased.  The number of channels averaged for each condition is presented at the 

bottom of each column bar.  Significance parameters were obtained using Dunnett’s 

Multiple Comparison Test.  Values represented as Mean SEM ***p<0.001, **p<0.01, 

n=3-8.   
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Figure 15.  Calsenilin causes a downward shift in the amplitude histogram and a 

leftward shift in the dwell time histogram of RyR at pCa7.   

(A) Current traces (60s continuous recordings) representing open channel states of 

RyR before (top) and after (bottom) addition of 60nM calsenilin.  (B) Representative 

amplitude histogram curve fitted to a fourth order polynomial distribution with R2 

values of 0.591 (for pCa7) and 0.586 (for pCa7 + 60nM calsenilin) showing a 

downward shift in the amplitude histogram characterizing a decrease in the number 

of subconductance (io =-2pA) channel openings after treatment with 60nM calsenilin, 

(C) Dwell time histogram curve fitted to a Gaussian distribution with R2 values of 

0.817 (for pCa7) and 0.986 (for pCa7 + 60nM calsenilin) calculated from same 60s 

recording showing a leftward shift in dwell time histogram indicative of a decrease in 

the number of longer channel openings after treatment with 60nM calsenilin.   
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Electrophysiological recordings show calsenilin increases the amount of time 

that the RyR conducts ions during a given period of time at high intracellular 

Ca2+ 

  

At higher activity intracellular Ca2+ (pCa6), there is an increase in the open 

probability of both the low S2 (Fig14A) and high S4 conductance states (Fig 14B).  

As can be seen in a representative 30s continuous trace (Fig 16A), the activity of the 

receptor is significantly increased in the presence of 60nM calsenilin.  The 

mechanism of this potentiation can be demonstrated by the increase in the number 

of times the receptor opens at both S2 and S4 conductance states, indicated by the 

upward shift in the amplitude histogram (Fig 16B), as well as an increase in the 

amount of time the channel stays open each time it is activated, shown by a 

rightward shift in the dwell time histogram (Fig 16C).  At the highest activity 

intracellular Ca2+ (pCa5), 60nM calsenilin significantly increases the probability that 

the channel will be open in the high S4 conductance state (Fig 14B).  This increase 

in the activity of the receptor can be seen in a representative 30s continuous trace 

(Fig 17A), and can be attributed to an overall increase in the number of events that 

occur as indicated by an upward shift in both the amplitude (Fig 17B) and dwell time 

(Fig 17C) histograms.   
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Figure 16.  Calsenilin causes an upward shift in the amplitude histogram and a 
rightward shift in the dwell time histogram of RyR at pCa6.   
 
A) Current traces (60s continuous recordings) representing open channel states of 
RyR before (top) and after (bottom) addition of 60nM calsenilin, (B) representative 
amplitude histogram curve fitted to a fourth order polynomial distribution with R2 

values of 0.157 (for pCa6) and 0.171 (for pCa 6 + 60nM calsenilin) showing an 
upward shift in the amplitude histogram characterizing an increase in the number of 
subconductance (io =-2pA) and conductance (io =-4pA) channel openings after 
treatment with 60nM calsenilin.  (C) Dwell time histogram curve fitted to a Gaussian 
distribution with R2 values of  0.968 (for pCa6) and 0.926 (for pCa 6 + 60nM 
calsenilin) calculated from same 60s recording showing a rightward shift in dwell 
time histogram indicative of an increase in the number of longer channel openings 
after treatment with 60nM calsenilin. 
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Figure 17.  Calsenilin causes an upward shift in the amplitude histogram and a 

rightward shift in the dwell time histogram at pCa5.   

 (A) Current traces (60s continuous recordings representing open channel states of 

RyR before (top) and after (bottom) addition of 60nM calsenilin.  (B) Representative 

amplitude histogram curve fitted to a Fourth Order Polynomial distribution with R2 

values of.  800 (for pCa5) and 842 (for pCa 5 + 60nM calsenilin) showing an upward 

shift in the amplitude histogram characterizing an increase in the number of 

conductance (io =-4pA) channel openings after treatment with 60nM calsenilin (C) 

Dwell time histogram curve fitted to a Gaussian distribution with R2 values of  0.866 

(for pCa5) and 0.871 (for pCa 5 + 60nM calsenilin) calculated from same 60s 

recording showing a slight rightward shift in dwell time histogram indicative of an 

increase in the number of longer channel openings after treatment with 60nM 

calsenilin.   
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Overexpression of calsenilin in SH-SY5Y cells caused faster kinetics of 

caffeine –induced Ca2+ release, but not the amount of Ca2+ released 

 

Figure 18 shows an averaged change in Ca2+ [Ca2+]/[Ca2+]0 following caffeine 

induced Ca2+ release in mock- and calsenilin-transfected cells. Overexpression of 

calsenilin sharpens the Ca2+ release by increasing the rate of release (Fig 19A), 

indicated by steep increase in the [Ca2+]/[Ca2+]0  slope, and decreasing the overall 

Ca2+ response time (Fig 19C).  There was an increase in the maximum amplitude of 

the Ca2+ response (Fig 19B), but no difference in the area under the curve (Fig 19D).  

The lack of difference in the area under the curve shows that there was no 

difference in the relative level of Ca2+ release, while the increase in the maximum 

amplitude of Ca2+ release supports a faster more precise signal due to calsenilin 

overexpression.   
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Figure 18. Representative Ca2+ response to caffeine stimulation in control and 

calsenilin overexpressing SH-SY5Y cells.   

Representative response of SH-SY5Y cells to caffeine stimulation in control and 
calsenilin overexpressed cells as represented by change in [Ca2+].  A response is 
represented by [Ca2+]/[Ca2+]0 ([Ca2+]0=baseline, [Ca2+]=response) to normalize 
experiments for comparison.  Calsenilin causes a sharpening of Ca2+ release in 
response to Ca2+ as seen by a steep increase and shorter duration of caffeine-
induced Ca2+-release and increased magnitude of response compared with control 
cells with endogenous levels of calsenilin.   
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Figure 19. Quantification of caffeine induced Ca2+ release kinetics in control and 

calsenilin overexpressing SH-SY5Y cells.   

Column graphs representing the A) slope B) maximum amplitude C) curve width D) 

area under the curve (AUC) of caffeine-induced Ca2+-release kinetics in control 

(black columns) and calsenilin overexpression (white columns) of SH-SY5Y cells.  

Values represent averages of several experiments (N=8 for Control, and N=12 for 

calsenilin overexpression; each N represents 3-20 replicates) with a linear 

regression fit of the points between 5% above baseline and maximum [Ca2+]/[Ca2+]0 

values of the Ca2+ release slope The beginning of a Ca2+ response is defined as 5% 

above baseline and ending of a response is defined as below 5% of baseline. (Chi 

square values for best fit; control R2=0.746, overexpression R2=0.8431).  

Overexpression of calsenilin significantly increases the rate of Ca2+ release (slope) 

and the maximum amount of Ca2+ released (max amplitude), while decreasing the 

time of the Ca2+ release (curve width), however the total amount of Ca2+ released 

(AUC) remains unchanged suggesting a sharpening of the Ca2+ response without 

altering the amount of Ca2+ release.  Values were statistically analyzed using a 

student’s t-test (Mean ± SEM, p< 0.05*, p< 0.01**) 

 



 

77 

 

Overview: summary of results  

 

The current study has shown through immunostaining and confocal 

microscopy that brain RyRs and calsenilin are located within the ER in neuronal 

cells.  These two proteins physically interact as shown in co-immunoprecipitation 

studies.  This interaction leads to a decrease in single channel Ca2+ release activity 

of brain RyRs at low Ca2+ concentrations (pCa7) through a decrease in the number 

of times the channel opens and a decrease in time that the channel stays open each 

time.  Conversely, this interaction at high Ca2+ concentrations (pCa6 and pCa5) 

leads to an increase in single channel Ca2+ release activity of brain RyRs through an 

increase in the number of times the channel opens at all amplitudes, and an increase  

in time the channel stays open.  This change in single channel biophysics was 

confirmed using optical Ca2+ imaging techniques, where increased calsenilin 

expression led to faster Ca2+ release, higher maximum release, and a shorter 

duration of release.  Interestingly, these changes did not alter the overall amount of 

Ca2+ release as quantified by AUC.  To conclude, calsenilin appears to sharpen Ca2+ 

release from the channel by shifting the Ca2+ activation of RyRs to a higher Ca2+ 

concentration, and increasing the channel kinetics following activation direct 

modulatory effect of calsenilin on neuronal RyRs.   
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CHAPTER 4 

DISCUSSION 

  

Limitations and considerations of experimental techniques and set up 

 

 Each of the methods used in the current study suffer from inherent technical 

limitations. By designing an experimental approach that utilizes several different 

techniques we have attempted to address these shortcomings. The evidence 

provided from the results of each of the experimental techniques taken together 

provide enough overlapping evidence to support the hypothesis that calsenilin and 

RyRs directly interact modulating RyR Ca2+ release. 

Immunostaining of neuronal tissue provided evidence that calsenilin and 

RyRs are located and co-localized in the endoplasmic reticulum of neuronal cells. To 

ensure the specificity of the primary antibodies for their target protein, all primary 

antibodies used in the experiment were tested previously and published in peer 

reviewed papers [2, 39, 112]. Localization of calsenilin and RyRs was empirically 

compared with published expression patterns to further confirm the fidelity of the 

primary antibodies used.  The algorithms used to define co-localization are sensitive 

to background fluorescence, fluorescence noise, and the relative intensity of 

immunostaining for each of the proteins.  To address the sources of artifacts two 

distinct co-localization algorithms were used. The Pearson’s coefficient is sensitive 

to relative intensities and noise, but not background fluorescence. The Mander’s 

coefficient is conversely sensitive to background fluorescence, but not relative 
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intensity of the specific protein immunostaining. By utilizing the Pearson’s and 

Mander’s coefficient, we minimized aberrations in quantification due to differences in 

the intensity of immunostaining and background staining.  To minimize artifacts from 

fluorescent noise, strict threshold values were set to delineate true fluorescent 

staining from unspecific staining.  Finally, by using the Costes algorithm, we ensured 

that co-localization was true and not due to random overlap of the fluorescent 

signals.  The resolution of a confocal microscope is well above wide field 

microscopy, but still cannot distinguish between species that are extremely close in 

proximity.  By the use of the Raleigh criterion and Nyquist sampling theorem, the 

resolution and sampling rate of the confocal microscope were optimized to ensure 

proper image acquisition.  The findings from the co-localization studies suggest that 

calsenilin and the RyRs are located in similar regions in neuronal cells.  Using a 

FRET based approach or more accurate and sophisticated imaging technology 

would increase the characterization of these two proteins interaction in vivo. 

However, to initially establish and characterize a direct protein-protein interaction the 

in vitro approach of co-immunoprecipitation was employed.   

Co-immunoprecipitation is an in vitro method for determining protein-protein 

interactions. Antibodies capture protein complexes that physically interact, and 

through immunoblotting, the proteins in this complex can be visualized. Using a 

RyR2 antibody to pulldown the RyR2 and calsenilin protein complex established a 

protein-protein interaction between calsenilin and RyR2. The antibodies used have 

been verified and published in peer reviewed papers [2, 39, 112]. The co-

immunoprecipitation experimental set up minimized artifacts due to unspecific 
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binding of the proteins to paramagnetic collection beads in three ways: 1) 

substituting the rabbit RyR2 primary antibody with rabbit IgG during incubation with a 

protein sample,  2) using a protein sample with no antibody or IgG incubation and 3) 

pre-incubation of the unlabeled paramagnetic beads with unaltered protein samples 

to allow the protein samples to bind up any non-specific sites before incubation with 

the co-immunoprecipitated antibody-protein complex.  Though all artifacts could not 

be removed in immunoblots using IgG only as the pulldown antibody, specific weight 

markers for calsenilin and RyRs showed no immunoreactivity. The use of purified 

ER microsomes harvested from several mouse brains increases the concentration of 

RyRs while lowering the concentration of superfluous proteins in the pulldown assay. 

The calsenilin content in ER microsomes is below the detection limit of 

immunoblotting, so each pulldown assay was performed with addition of 

recombinant calsenilin protein. This experimental design increases the likelihood of 

a calsenilin and RyR interaction. Though suggesting the possibility of a direct 

protein-protein interaction the presence of accessory proteins in the microsome is 

possible. Testing the functional consequence of this protein-protein interaction of 

calsenilin and RyRs was performed using single channel electrophysiology.    

 Single channel electrophysiology allows the testing of a single RyR channel 

activity.  In the current study, calsenilin altered single channel RyR Ca2+ release in a 

Ca2+ dependent manner. The several advantages to using single channel 

electrophysiology are that the native brain RyRs are used, there is absolute control 

of the experimental environment, and single channel’s biophysical properties can be 

measured.  One disadvantage of the technique is that the purified ER microsomes 
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used could contain accessory proteins still attached to the receptor.  This problem 

was addressed by using each channel as its own control therefore measuring a 

change before and after calsenilin introduction.  Electrophysiology, in general, can 

suffer from improper collection technique and a lack of proper filtering.  Both of these 

sources for error were overcome by using standard published collection rates and 

filtering techniques [67].  Finally the environment, though controlled by the 

experiment, lacks the cellular milieu of native neuronal cells. This problem is 

addressed by using optical imaging of cells overexpressing calsenilin to visualize 

Ca2+ release from RyRs in their native environment.   

 Ca2+ imaging techniques allow visualization and estimation of increased 

cytoplasmic Ca2+ levels following receptor stimulation through fluorescent Ca2+ 

binding proteins (See Figure 6).  Our studies show calsenilin overexpression in SH-

SY5Y neuroblastoma cells increases the rate of caffeine induced RyR Ca2+ release, 

decrease the duration of Ca2+ release, and increase the maximum amplitude of Ca2+ 

release from RyRs.  Using overexpression of a target protein as an in vitro model 

ensures that the interaction between two proteins occurs at a level of saturation of 

the target protein, demarcating that any changes measured in Ca2+ release 

dynamics have a high probability of being due to the protein of interest.  This 

technique suffers from inherent limitations such as cells loading differing amounts of 

Ca2+ indicator dye, photo-bleaching of the Ca2+ indicator dye, and possible 

alterations in Ca2+ release due to the transfections itself.  Using Fura-2 as the Ca2+ 

indicator dye decreased the possible aberrations from dye loading in cells and 

photobleaching.  Fura-2 is a ratiometric dye with excitation at 380nm in the unbound 
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state and 340nm in the bound state.  The emission for both is 510nm.  The use of 

the ratiometric dye addresses these anomalies due to dye loading and photo-

bleaching since absolute fluorescent values are not used.  The ratio of 340/380 is 

calculated as the output for each cell giving an accurate picture of changes within 

each individual cell bypassing any differences in dye loading and photo-bleaching.  

Previous experiments in our lab have shown the transfection technique does not 

affect Ca2+ signaling [72]. Overexpressing proteins in cells could alter several 

processes in cells. Using caffeine, a specific RyR agonist [85], ensures that Ca2+ 

release is evoked through RyRs and not another Ca2+ release channel.  Taken 

together, these results strongly suggest that calsenilin and RyRs directly interact, 

and that this interaction modifies Ca2+ release from RyRs. 

 

Calsenilin and RyRs interactions in brain signaling and disease progression 

 

Figures 7-11 show calsenilin and neuronal RyRs co-localize in the ER of 

neuronal cells.  Figure 9B clearly shows colocalization between calsenilin and RyRs 

in the major branch points of dendrites in cortical neurons.  The ER network in 

neurons spans the entire cell from the soma to the dendrites [172].  IP3Rs and RyRs 

are distributed throughout the ER in all regions of the cell [141, 149, 150, 175, 180] . 

Backpropagating action potentials are action potentials that travel from soma to axon 

and concurrently from soma through the dendritic arborization [184] . 

Backpropagating action potentials shape the responses of post synaptic cells to 

presynaptic cell stimuli , affecting the spike-timing dependence of plasticity [184].  In 
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Purkinje cells, as well as cortical and hippocampal cells, these backpropagating 

action potentials are shaped by the location of numerous ion channels including the 

RyR and IP3R [118, 158].  This alteration in spike-timing coordination between 

neurons is now thought to shape LTP and LTD in the formation of memory [10, 50, 

94, 105, 134, 138].  This study has shown there is a high density of co-localization 

between RyR and calsenilin in cortical neurons at the major dendritic branch points 

decreasing as the proximity to the soma increases (Fig 9B).  This relationship of 

RyRs expression follows a well characterized phenomenon in neurons that 

correlates to a lessening of backpropagating action potentials as the proximity to the 

soma is decreased[21, 94, 118, 149, 175].  The interaction of calsenilin with RyRs, 

as seen in the single channel electrophysiology experiments (Fig13-17), shifts the 

Ca2+ activation curve for the RyR. The shift in the Ca2+ activation curve of RyRs 

lowers single channel activity at resting, 100nM (Fig 15), Ca2+ concentrations while 

increasing single channel activity at 1µM and 10µM Ca2+ levels (Fig 16 and 17, 

respectively). The alterations in single channel Ca2+ release of RyRs translates to  

faster and higher amplitude Ca2+ release in whole cells as seen in Ca2+ imaging 

experiments (Fig 18-19).  The result of this alteration in RyR kinetics can be 

hypothesized to alter the timing and firing of a backpropagating action potentials. 

The alteration in backpropagating action potential will affect the polarization of the 

post synaptic membrane to pre synaptic signals [184].  In AD mice, the increase in 

resting concentrations of Ca2+ [102] could result in increased higher amplitude Ca2+ 

release through RyRs when modulated by calsenilin. This increase in firing rate and 

amplitude alter the pre and post synaptic firing of neurons.  In fact, this phenomenon 
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of timing in spiking potentials is a major determinant of whether LTP or LTD occurs 

[10, 50].   

 One of the major correlative features of alterations in Ca2+ signaling in AD 

mice and cellular models is the aberrant release of Ca2+ from RyRs sensitive stores 

[33, 34, 83, 152, 161, 162].  RyRs are known to form complexes with other proteins 

and channels allowing the transmission of cell signals from discrete locations [12, 

178].  In heart and skeletal muscle  RyRs form clusters of alternating receptors 

linked with L-type Ca2+ channels coordinating depolarization between cells leading 

to muscle contractions [13, 148].  The establishment of defined puncta of co-

localization of RyRs and calsenilin throughout the neuronal tissue tested here is 

reminiscent of the organization of RyRs in heart and skeletal muscle tissue [13]. This 

organization of ion channels and accessory proteins shape the propagation of waves 

throughout these excitable cells [29].  RyRs are homotetramers of four 550kDa 

subunits [61, 178].  In our co-immunoprecipitation studies, 60nM of recombinant 

calsenilin protein showed an approximately 1:1 ratio between the amounts of 

calsenilin pulled down with RyRs.  This one to one relationship between calsenilin 

and RyRs is reminiscent of the ratio of binding between calsenilin and Kv4.2 

potassium channel subunits [75, 87, 128, 181].  In this interaction, four calsenilin 

units bind to each of the four Kv4.2 potassium channel subunits in a ratio of 1:1[181].  

This interaction stabilizes the tetramer conformation and changes signaling within 

the receptor [87].  A calsenilin interaction with Kv4.2 channels changes gating 

properties of this channel, most notably by increasing the peak current, peak current 

density,  inactivation time constant, and recovery from inactivation [75].   
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In this study, a calsenilin and RyR interaction altered Ca2+ release in single 

channel electrophysiological recordings (Fig 13-17). The alteration of the Kv4.2 

channel in the presence of calsenilin allows the channel to recover more rapidly from 

inactivation allowing it to fire more frequently at higher intensities [2].  In the single 

channel electrophysiology experiments, calsenilin interaction with RyRs shifts the 

Ca2+ response curve of the RyR) to the right, (Fig 15-17), which suggests that 

activation of the RyR to Ca2+ release occurs at 1µM Ca2+ rather than 100nM Ca2+ 

(Figs. 15-16)  The silencing of the receptor at 100nM Ca2+ (Fig 15), along with the 

significant increase in channel activity at 1µM Ca2+ (Fig 16)  and 10µM Ca2+ (Fig 17) 

shows an increase density in the current transmitted per period of time through the 

receptor (Fig 14).  This change in single channel activity of RyRs can be translated 

in cells as a sharpening of RyR activity.  This effect is shown also in the Ca2+ 

imaging experiments (Fig 18-19) where Ca2+ response curves show faster and more 

robust Ca2+ release.  This data, along with the planar lipid bilayer data, suggests a 

sharpening, or tuning, of the RyR response.  Since the RyR is a CICR channel any 

alteration in the channels response to Ca2+, also alters the pattern of the Ca2+ signal 

creating an all or nothing response at specific Ca2+ concentrations.   

RyRs and IP3Rs serve multiple roles in normal physiological neuronal function 

such as propagation of action potentials, backpropagating action potentials, 

neurotransmitter release, and membrane excitability [10].  In several 

neurodegenerative disorders such as Huntington’s disease (HD), Amyotrophic 

lateral sclerosis (ALS), and AD, aberrant intracellular Ca2+  release is associated with 

cell death and disease progression [11, 15, 54, 83, 123, 160, 169].  Increased Ca2+ 
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release from intracellular stores, increased Ca2+  in response to Aβ, and increased 

Ca2+ induced apoptosis are  enhanced in AD models by overexpression of calsenilin 

[49, 78, 81, 98, 100].  The interaction between calsenilin and RyRs provides a link 

between abnormal Ca2+ signaling and these diseases.  In HD, direct interaction 

between the polyglutamine expansion of the amino terminus of the Huntington 

protein (Htt), which promotes binding to Huntington-associated protein (HAP1), is 

thought to be the cause of this disorder [170].  The interaction between this complex 

and IP3Rs elevates Ca2+ release and apoptosis in neuronal cells [1, 169, 170].  This 

increased in IP3R Ca2+ release can further be amplified by CICR from the RyRs [15].  

The interaction between calsenilin and RyRs enhances signaling at higher Ca2+ 

levels (Fig 16 and 17) thereby exacerbating increased IP3R Ca2+ release.  It is 

interesting to note that increased Ca2+ release and resting Ca2+ levels in all the 

neurodegenerative disorders mentioned can be further amplified by RyRs CICR [11, 

109].  Any increase in calsenilin levels in diseases associated with abnormal Ca2+ 

could create more binding between the two species leading to increased abnormal 

Ca2+ signaling.   

 Calsenilin modulates Ca2+ homeostasis through several protein interactions 

throughout the cell.  Some of the modulators of calsenilin also modulate RyRs [144, 

155] directly linking Ca2+ signaling pathways to calsenilin.  In studies with calsenilin 

as a transcriptional modulator, interactions of calsenilin at CRE sites alter 

transcription of Ca2+ exchangers on the surface [56] increasing resting Ca2+ levels by 

limiting the extrusion of Ca2+ from the cytoplasm. It is therefore exciting to propose 
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that calsenilin may act as a modulator for competing cellular signals [144].  One 

such Ca2+ related signal is apoptosis [59]. 

Several studies have shown that increased cytoplasmic Ca2+ along with 

calsenilin overexpression can lead to apoptotic cell death [80]. Calsenilin is a 

substrate for caspase-3 cleavage [37], but it is not known if the caspase cleavage 

product of calsenilin causes apoptosis. In cell models increased apoptosis due to 

calsenilin overexpression can be normalized back to control levels with caspase 

inhibitors [36, 37, 81].  It is also interesting to note that calsenilin as a transcriptional 

modulator is responsible for the repression of pro-apoptotic transcription HRK [140], 

and is related to the transcription of anti-apoptotic proteins of the Bcl family [139].  

Calsenilin also forms a complex with the anti-apoptotic N-terminus of PS2 further 

suggesting a role as a signaling molecule in apoptosis [24].   

 

Structural basis for interaction between calsenilin and RyRs 

 

Calsenilin interacts with Kv4.2 channels modulating channel activity [76].  The 

binding calsenilin forms a tetrameric structure stabilizing the four Kv4.2 channel 

subunits [87].  The scaffolding protein Homer mediates the interaction between 

RyRs and Cav1.2 (L-type voltage gated Ca2+ channels) in cardiac cells. This 

interaction regulates Ca2+ microdomains by coupling L-type VOCC calcium entry 

with RyR release [71]. Therefor L-type-calcium activation directly modulates the 

release of Ca2+ from RyR [188].  Homer proteins form tetrameric structures [64] 

stabilizing post synaptic densities [65] in neurons. The tetramerization of Homer 
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proteins into a scaffolding structure is through interactions in leucine zipper domains 

of the Homer proteins [167].  Calsenilin interacts with αCREM at the kinase inducible 

domain (KID) of the leucine zipper in αCREM [95]. This interaction occurs between 

the two leucine charge residue rich domains (LCD) located in both calsenilin and 

αCREM [92]. These findings suggest that calsenilin and Homer may interact through 

motifs located in the leucine zipper domain of Homer.  Recently, calsenilin has been 

shown to play a role in the interaction between Kv4.2 channels and Cav3 (M-type 

voltage gated Ca2+ channels) linking Ca2+ release through M-type voltage gated 

Ca2+ channels with modulation of Kv4.2 channels by calsenilin [3]. Calsenilin interacts 

with Kv4.2 channels around the pore forming segment of Kv4.2 channels [18].  

Interestingly, the pore regions of RyRs and A-type potassium channels share 

structural features. Crystal structures of the pore region for both channels were 

elucidated using the same bacterial K1 channel KcsA as a template [18, 187].  As 

seen in co-immunoprecipitation studies, the addition of 60nM calsenilin to ER 

microsomes showed expression of calsenilin: RyR in a 1:1 ratio.  This same type of 

ratio of calsenilin: Kv4.2 is described in the formation of calsenilin and Kv4.2 channel 

complexes and is needed for the alterations in channel release seen in this structure 

[7, 181].  
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Future directions 

 

As higher resolution imaging technology becomes available, the nanodomain 

interaction between calsenilin and RyRs can be viewed. The higher resolution 

imaging would allow a more precise analysis of the exact localization of these two 

proteins in vivo.  Colocalization in distal dendrites and the density of this 

colocalization, with respect to the proximity to the soma, would provide evidence for 

the functional consequence of this protein-protein interaction in neuronal 

communication. In hippocampal neurons, RyRs are located in the most distal 

branches of dendrites and responsible for the propagation of Ca2+ signals 

throughout the dendritic tree [150, 180]. Whether calsenilin modulation effects the 

propagation of Ca2+ signals through dendritic branches has yet to be determined.  A 

more specific survey of calsenilin and RyR colocalization in neural pathways would 

provide evidence for an exact physiological role of calsenilin and RyR interaction.  

Determination of the Ca2+ dependence of the calsenilin and RyR interaction would 

shed more light on the mechanism of RyR modulation.  Mutations in each of the 

Ca2+ binding EF –hand domains of calsenilin would provide an in vitro method to 

determine the importance of specific Ca2+ binding sites on the interaction and 

modulation of RyRs.  

 Calsenilin EF-hand mutations that disrupt Ca2+ binding result in loss of 

function in transcription modulation and potassium channel modulation by calsenilin.  

During transcriptional regulation, mutations preventing the binding of Ca2+ to all 4 –
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EF-hands of calsenilin result in calsenilin being irreversibly bound to the DRE site 

[121]. Calsenilin interaction with Kv4.2 channels is not abolished when mutations 

prevent Ca2+ binding to all 4 –EF-hands of calsenilin, but the modulatory effect of the 

interaction is removed [182]. Calsenilin has 4-EF hands with different binding 

affinities for Ca2+ [120], the importance of each of these binding sites on the function 

of calsenilin has yet to be resolved.  Using single channel electrophysiology, single 

EF-hand mutations that prevent Ca2+ binding to calsenilin, and their effect on the 

modulation of RyRs channel activity would be measured.   

 The whole cell paradigm in this study could be improved by a more 

quantitative measure of overexpression of calsenilin to identify if the changes in Ca2+ 

signaling are sensitive to the concentration of calsenilin.  In in vitro studies it has 

been shown that the concentration of calsenilin effects the formation of dimers and 

tetramers [120, 121], these interactions of calsenilin confer the action of calsenilin in 

transcriptional regulation as well as Kv4.2 channel modification[75, 121] 

In our current study, we have established that calsenilin and RyRs interact 

through a direct protein-protein interaction.  It would be interesting to further 

elucidate properties of this interaction by testing the Ca2+ dependence on this 

interaction as stated earlier.  It would also be interesting to establish whether the 

caspase cleavage product of calsenilin binds with the RyR, as well as understanding 

how phosphorylation of RyRs and calsenilin effect this interaction.  Further 

experiments in hippocampal neurons with specific emphasis on pre and post 

synaptic connections with calsenilin and RyRs would allow a more precise definition 

of what this interaction means for synaptic signaling.   
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The interaction between calsenilin and RyRs could provide a specific 

pharmacological site for the modulation of intracellular Ca2+ in neurons.  The Taiwan 

banded krait beta-bungarotoxin specifically and irreversibly binds calsenilin, but 

none of the other isoforms in the calsenilin NCS family [101].  Hadrucalcin, a peptide 

from Hadrurus gertschi scorpion venom, specifically and irreversibly interacts with 

RyRs [145].  The discovery of the binding sites of these compounds on calsenilin 

and RyR could lead to the production of a compound that targets the interaction 

between these two proteins.  By creating a genetic dimer of the toxins the compound 

could bind both calsenilin and RyRs covalently.  The consequence of this interaction 

could be tested easily in whole cell assays and single channel electrophysiology.  

To conclude, we have provided evidence for a calsenilin interaction with 

neuronal RyRs. The interaction has a biophysical effect on single channel RyRs, as 

well as a modulatory effect on a population of RyRs in a whole cell paradigm.  These 

are important findings in that could aid future investigations into the dysfunction of 

calsenilin regulation in neurodegenerative diseases such as AD, and potentially be a 

target for therapeutic intervention.   
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