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WINTER ROAD MAINTENANCE

RESOURCE ALLOCATION MODELS

Zhongwei Yu

Dr. Wooseung Jang, Thesis Supervisor

ABSTRACT

Winter snow storms could cause serious disruptions to traffic and transportation.

Because resources for winter road maintenance, such as snow removal trucks, are

limited, using them properly would improve the efficiency and effectiveness of the

winter maintenance work. However, a fixed resource allocation plan among service

regions may not work well in several situations because of different types and intensity

of winter storms. Therefore, reallocation of resources among service regions is often

needed. The objective of this research is to develop a resource reallocation model that

minimizes the total cost of reallocation operations and provides equitable resources

to service regions. Road and weather condition factors, such as road classes, weather

forecasts, and service levels, are taken into account in the model.
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Chapter 1

Introduction

Resource allocation operation is the process of distributing limited resources to satisfy

various demands in different locations. This kind of problem is especially important

when an emergency happens. When natural disasters, such as earthquakes, tsunamis

and blizzards, strike certain areas, it is urgent to find the best assignment of available

rescue resource so that more people can be saved. On the other hand, if the threat is

partially predictable, for example, by forecasting the storm or hurricane movement, it

would be more efficient and economical to reallocate the resource before the emergency

happens.

In winter, snow storms could cause serious disruptions to traffic transportation,

because it is hard to drive on slick roads which are covered by ice and snow. According

to the statistics of the Federal Highway Administration, 24 percent of weather-related

vehicle crashes occur on snowy, slushy, icy roads and 15 percent happen during snow-

fall or sleet each year. Therefore, winter maintenance work, including spreading salts

and abrasives, snow plowing, loading snow into snow removal vehicles and hauling

snow to disposal sites, is of great importance to decrease traffic accident risk in winter.

One of the most important winter maintenance resources is the snow removal truck,

which is used to clear snow-clad roads. Since the quantity of snow removal trucks is

1



always limited due to fiscal constraints, deploying them properly would help improve

the level of winter maintenance service.

In this thesis, we consider the situation where a certain area is under the threat of

winter storms. There are several districts in this area, and each district owns a road

maintenance depot which carries a certain number of snow removal trucks. Based

on the characteristics of districts, such as road condition, number of trucks, snowfall

intensity, etc, it is reasonable to imagine that some of the districts would have the

capability to maintain a high level of service during a snow storm, while others not.

Hence, reallocating the snow removal trucks in this area is effective in improving the

winter maintenance service quality in the whole area.

In the state of Missouri, more than 1,800 vehicles are available for snow removal

work in winter on the state’s 32,000-mile highway system. The work is divided among

10 districts. The traditional method of solving these maintenance problems is highly

empirical in nature. Most of the decisions on deploying snow removal trucks are

typically made by district supervisors, based on the first hand reports and personal

experience. It is hard to adjust the amount of snow removal trucks in each district in

a global perspective, and decisions made too late delay the dispatch of snow removal

vehicles, decreasing the efficiency of winter road maintenance work.

Our objective of this research is to develop a resource allocation model for winter

maintenance work in the considered area. In this model, reallocation operation is

performed before a storm strikes, and a certain level of winter maintenance service is

maintained in each district after reallocation. The goal of the model is to minimize

the total reallocation operation cost under service level constraints.
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Chapter 2

Literature Review

2.1 Typical Winter Road Maintenance Models

Winter road maintenance operations include spreading of salts and abrasives, snow

plowing, loading snow into snow removal vehicles and hauling snow to disposal sites.

Due to the complexity of the operations, various models have been introduced to the

planning and management of winter road maintenance work. Although these models

emphasize different aspects of winter road maintenance operations, their objectives

are typically the same, i.e. minimizing the sum of the operational costs. Most of

the existing models can be classified into three major fields: vehicle routing, depot

location and fleet sizing.

2.1.1 Vehicle Routing and Scheduling

Within these models, vehicle routing problems received the most attention because

these operations are common to snow fighting in all urban and rural regions. These

problems are practical examples of the Chinese Postman Problem and related arc

routing problems, and are similar to other arc routing problems such as garbage

collection and street sweeping.

There are three kinds of vehicle routing problems: spread routing, plow routing and

3



snow disposal routing. Spread routing problems concern the operations of spreading

chemicals and abrasives, while plow routing problems focus on the removal of snow

from the road, and snow disposal routing problems deal with loading snow and hauling

snow to the disposal sites. The first two problems both consist of determining a set

of routes, each performed by a snow-fighting vehicle that starts and ends at its own

depot, so that all districts are served, every operational constraint is satisfied, and

more importantly the global cost is minimized. However, the snow disposal routing

problem is more complicated, which determines the best set of itineraries for the

trucks filled with snow that travel from the assigned snow blower site, to disposal

sites, and back to the snow blower site such that the total cost is minimized. Both

spread routing and plow routing problems can be generally formulated as arc routing

problems, the snow disposal routing problem is a more difficult shortest path problem.

Marks and Sticker (1971) modeled the plow routing problem as a multiple vehi-

cle undirected Chinese Postman Problem, and proposed two approaches – a route

first-cluster second approach and a cluster first-route second approach – to solve it.

Eiselt et al. (1995) presented a review on arc routing problems, and gave the algo-

rithmic results for Chinese Postman Problems under different conditions. A typical

scheduling problem is presented by Lu, et al. (2009), who described a routing prob-

lem of winter road maintenance, considering the operating costs, quality of service

and weather condition factors, and then established a linear model to find out the

optimized schedule for assigning routs, service type and corresponding start time.
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2.1.2 Depot Location and Sector Design

Depot location and sector design involve ”partitioning the geographic region into sec-

tors for efficient operations, locating the necessary facilities, and assigning the sectors

obtained from the partitioning to various facilities” (Pierrier, et al. 2006). Similarly

to the vehicle routing problems, sector design and depot location problems can be

classified into two kinds of problems: sector design for spreading and plowing and

sector design for snow disposal. The sector design problem for spreading and plowing

consists of partitioning a spreading or plowing route network into non-overlapping

subnetworks, and assigning vehicle depots to these sectors, such that the transport

costs and vehicle depot costs are minimized. It is similar to the arc partitioning

problem in the context of postal delivery and districting problems for arc routing

applications. On the other hand, given a road network and a set of planned dis-

posal sites, the sector design problem for snow disposal consists of determining a set

of non-overlapping subnetworks, and assigning each sector to a single snow disposal

site in order to minimize the relevant variable and fixed costs. Solution approaches

for both problems are similar. Korhonen et al. (1992) developed a decision support

system allowing managers to select vehicle depots and their corresponding sectors

such that variable transport cost and fixed vehicle depot costs are minimized. The

model was solved by a construction heuristic that opens depots sequentially until no

further savings are realized. Perrier et al. (2008) provided a mathematical model of

sector design and assignment of sectors to disposal sites, and proposed two construc-

tive approaches – the assign first, partition second method and the partition first,

assign second method – to solve it. The result of Perrier’s experimentation showed

5



that the assign-partition heuristic could result in substantial savings compared to the

partition-assign approach.

2.1.3 Fleet Sizing and Replacement

Fleet sizing problems consist of determining the number of winter maintenance ve-

hicles from depots such that the total operational and depot depreciation costs are

minimized, while a specified level of service for each road class is satisfied. Accord-

ing to the types of winter maintenance operations, the fleet sizing problems can be

divided into two classes: fleet sizing for plowing and fleet sizing for hauling snow to

disposal sites. The difference between the two problems is that fleet sizing for plowing

balances the total costs and the length of time to plow each class road, while fleet

sizing for snow disposal balances the total costs and the length of time for the snow

loading and hauling operations.

Fleet replacement or fleet design considers the cost of purchasing, operating, main-

taining and replacing vehicles in a fleet. These kind of problems determine a replace-

ment schedule (i.e. how many replacement groups the fleet should have, how large

each replacement group should be, the age at which each group is replaced and the

relative distribution of the groups overtime), so that the total costs of operating,

maintenance and net replacement are minimized. Jones (1993) considered a general

fleet design problem in a simplified economic environment, and developed the first

formal model that determines optimal steady-state fleet design. The research showed

that all replacement groups must be equally sized in the optimal steady-state fleet

design.
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2.1.4 Integrated Winter Road Maintenance Model

Although the winter maintenance models above are most often solved separately,

there are still strong interactions between them. For example, in the vehicle routing

problem, each route starts from a depot and ends at a depot, and a set of routes

complete the service in a sector. Therefore, vehicle routing problems always correlate

with depot location or sector design problems. Hayman and Howard (1972) generated

a compound model of sector design, depot location and fleet sizing. Lotan, et al.

(1996) discussed a problem combining the depot location and routing problems for

spreading. Zhang, et al (2006) developed an integrated system which considers the

optimization models and solution algorithms for the routing of snow removal trucks

and the location of road maintenance depot in Boone County, MO, and proposed a

route first-cluster second approach based on Marks and Sticker’s (1971) method.

2.2 Resource Allocation Problems

Resources are meant to be limited in every aspect of life, however, there are always

various demands among different functional parts of a system that need to be satis-

fied. Therefore, how to allocate the limited amount of resources so as to achieve a high

performance of the system would be a problem that every organization encounters.

In winter road maintenance problems, snow-fighting vehicles such as snow plowing

trucks might be the most important resource. Recall the typical winter maintenance

models; almost every model considers the number of snow-fighting vehicles available

as the primary factor. Then the winter road maintenance resource allocation prob-

lem becomes determining a plan that allocates the limited number of snow-fighting

7



vehicles in order to achieve a high level of service. Efficiency and effectiveness are the

two parameters that measure the primary aspects of winter maintenance work.

2.2.1 Efficiency-oriented model

Efficiency generally concerns the cost associated with doing business. In other words,

the objective of an efficiency-oriented resource allocation model is minimizing the

total operational cost, while several effective constraints may need to be satisfied.

One of the most solved efficiency-oriented problems is the Hitchcock transportation

problem. A typical transportation problem aims to find the best strategy of fulfilling

the demands of a set of destinations using the supplies of a set of sources. While trying

to find the best way, a variable cost of shipping the commodity from one source to

a destination, as well as the capacity of supply in each source and the minimum

demand in each destination should be taken into consideration. The objective of a

typical transportation problem is to minimize the sum of all incurred transportation

costs. Due to its special mathematical structure, several efficient solution approaches

based on the simplex method have been developed. These methods differ in how to

calculate the necessary simplex-method information.

In 1951, the primal simplex transportation method was proposed by Danzig, who

adapted the simplex method to the transportation problem. Charnes and Cooper

(1954) developed the stepping- stone method, in which unused cells in transportation

tableaus were referred to as ”water” and used cells as ”stones” – from the analogy of

walking on a path of stones half-submerged in water. The stepping-stone method is

much easier to comprehend, because most of the solution procedures are conducted on

transportation tables. However, it is not applicable to all types of linear programming

8



problems. Besides, it is not even suitable for transportation problems with a large

number of origins or destinations. Arsham and Kahn (1989) provided a simplex-

type tableau-dual algorithm which is an alternative to the stepping-stone method

for general transportation problems. This algorithm only has one operation – Gauss

Jordan pivoting in transportation tableau, and all operations can be performed in a

single working tableau. In addition to these simplex-type methods, some heuristics

were also introduced: Vignaux and Michalewicz (1991) used a genetic algorithm to

solve the linear transportation problem; Adlakha and Kowalski (2003) presented a

simple heuristic algorithm to solve the fixed-charge transportation problem.

2.2.2 Effectiveness-oriented model

Effectiveness generally concerns the resulting outcome, which means the objective

of an effectiveness-oriented model is maximizing the outcome after allocation, while

several efficiency constraints may be included. There are quite a few resource allo-

cation models with the objective functions that minimize the total cost of allocation

operations, however, when the loss incurred by inadequate resources is invaluable,

compared with the cost of allocation operations, the objective of this kind of resource

allocation models changes to the optimization of the outcome: minimization of the

loss caused by the unavailable resources, in many cases.

For instance, when natural disasters like earthquakes happen, it is urgent to send

rescue teams and equipments to the affected areas in the first few days, otherwise

more people would be killed. The maximum time of survival lies between four and

seven days, and the probability of survival decreases to zero in one day if the trapped

person is injured. Since the quantity and quality of the rescue resources are limited,
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the emergency manager has to find the best assignment of available resources, so that

more people can be saved in the shortest time. Fiedrich et al. (2000) introduced a

dynamic resource allocation model for the search-and-rescue operations after earth-

quakes, of which the goal is to minimize the total number of fatalities. In his model,

three different rescue tasks – rescuing people out of the collapsed buildings, stabiliz-

ing work to prevent second disasters and rehabilitation of transportation lifelines to

improve the accessibility of important areas, are taken into consideration. Thus, res-

cue resources are classified into corresponding categories, and the maximum volume

of each resource is used as the restriction that should be fulfilled in the model. Two

heuristic methods – Simulated Annealing and Tabu Search are introduced to solve

this resource allocation problem.

As mentioned above, time seems to be the most important factor that affects

the total number of fatalities. Therefore, instead of the total number of fatalities,

time could also be used as the measure of allocation performance. In Gong and

Batta’s (2007) ambulance allocation and reallocation model, the objective becomes

minimization of makespan, which is the maximal finish time of the rescue operation

in each cluster, or minimization of the total flow time, which means the summation of

the finish time of rescue operations in all clusters. Gong and Batta first formulated the

deterministic model that concerned the allocation of the correct number of ambulances

at the beginning of the rescue operations. Moreover, since the situation in each cluster

changes during the rescue period, the former ambulance plan may not be optimal in

the new period. As a result, a reallocation model with the objective of minimizing

the makespan over discrete time period was proposed. Both the ambulance allocation
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and reallocation problems can be solved by an iterative procedure presented by Gong

and Batta.

2.2.3 Fair Allocation

Efficiency and effectiveness are common measures of a resource allocation system

performance, nevertheless, only minimizing the total cost or maximizing aggregate

outcome may be extremely unfair in systems which serve many different demands.

One of the widely used fair allocation models is the so-called Min-Max model, which

tries to find the best allocation of limited resources to a given set of demand sites,

so that the maximum of the profit or loss differences between the demand sites is

minimized.

Much research has been conducted on the Min-Max fair allocation model. Zeitlin

(1981) first considered the Min-Max resource allocation problem with discrete re-

sources. Katoh et al. (1985) presented a more general model, whose constraints

include the fixed size of discrete commodity and lower and upper bounds on the

amount of the commodity to be allocated to each demand site. Tang (1988) for-

mulated several manufacturing problems into a max-min resource allocation model,

and developed a procedure that finds an optimal integer solution. Lee et al. (1994)

extended the min-max discrete resource allocation problem by considering multiple

types of resources. Luss (1999) introduced the lexicographic min-max problem, which

determines the lexicographically smallest vector whose performance function values

are sorted in non-increasing order. Karabati et al, (2001) proposed a new min-max

model, in which the system performance measure function consists of multiple com-

ponents and is equal to the sum of these components. He suggested different ways to
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efficiently solve it, according to the size of the problem.
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Chapter 3

Winter Road Maintenance Model

The literature review of the past research on winter road maintenance models shows

that the former models always assumed static requirements or capacities of the winter

road maintenance resources, such as the total distance of the roadways that need to be

served, the service rate of the snow removal trucks on the road, the number of available

snow removal trucks in a depot, etc. However, in reality, the winter road maintenance

workload increases while the service speed decreases as the storm becomes severe, and

the number of available trucks in each depot tends to change when cooperation exists

among districts. Considering these dynamic aspects, we proposed a new resource

allocation model for winter road maintenance operation, whose objective is to find

the best resource reallocation plan that minimizes the total reallocation cost while

each district needs to be fully served.

In this chapter, the important components that constitute our model are discussed

first. Then parameters necessary to the model are set according the these components.

The procedure of modeling is presented at the end of this chapter.
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3.1 Relevant Components

Three main components are related with the requirements and capacities of the winter

road maintenance resource: the service area where winter road maintenance opera-

tions are conducted, the storm factors that affect the speed of the snow removal

trucks, and the basic information about the service resource.

3.1.1 Service Area

Suppose there are m districts. In each district, there are n classes of roads with

different service targets. In this model, service frequencies are used to indicate the

different service targets. Let f j denote the the service frequency of class j roads

during unit duration, or one working shift which is often 12 hours. That is, during

unit duration, class j roads should be served f j times. For example, f3 = 2 means

that class 3 roads need to be served twice during unit duration. Assume that f i > f j

if i < j without loss of generality.

In addition, let lji denote the length of class j roads in district i. Then lji f
j denotes

the absolute service length of class j roads in district i that needs to be served during

unit duration. Assume that lji is given as lane miles, which means that the service

length of a road with multiple lanes is considered as the product of the number of

lanes and the length of a single lane.

3.1.2 Storm Factors

The intensity of the storm obviously impacts the winter maintenance work. In our

model, storm intensity is indicated by discrete multiple levels: from level 1 to level

K. In practice, K would be the number between 3 and 10. Any natural number
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between 1 and K indicates a storm intensity level. The greater number indicates

higher intensity of storm. For instance, level 1 storm indicates no storm, while the

level K storm has the extreme intensity.

The impact of storm can be viewed as a decrease of winter maintenance efficiency.

Therefore, let αj ∈ (0, 1] denote the service efficiency under storm level j. For exam-

ple, α3 = 0.7 means that the service speed of a snow removal truck under a level 3

storm deceases to 70% of that in a normal situation. Assume α1 = 1, and αi > αj if

i < j.

Because resource is reallocated before a storm strikes, forecast of storm intensity

is needed. Let pik denote probability of having a level k storm in district i. Then

a vector Pi = [pi1, . . . , piK ] denotes the probability of storm intensity in district i,

where
∑K

k=1 pik = 1, pik ∈ [0, 1], for all district i ∈ [1,m].

3.1.3 Service Resource

Assume there is only one type of snow removal trucks in this model, and the original

number of trucks in district i is ni, which is a constant. Let sj denote the normal

service speed of the snow removal truck in class j roads. Hence, the service speed

of the truck in class j roads during a level i storm should be αis
j, where αi is the

service efficiency under a level i storm. In addition, assume that the service speed is

given as miles per unit duration, so that sj represents the service distance of a snow

removal truck during unit duration.
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3.2 The Model

With the parameters defined in the previous section, we can formulate the realistic

winter road maintenance problem as follows. Consider class j roads in district i in a

normal condition. As shown in the previous section, lji f
j denotes the service length

of class j roads in district i that needs to be served during unit duration, and sj is the

normal service speed (equivalently, service distance during unit duration) in class j

roads. Hence, the the minimum number of trucks needed for class j roads in district

i in a normal condition during unit duration is
lji f

j

sj
. The minimum number of trucks

needed for all the roads in district i in normal condition during unit duration is given

as

n∑
j=1

lji f
j

sj
.

Because there should be enough number of trucks to operate in a normal condition,

we assume

n∑
j=1

lji f
j

sj
≤ ni for 1 ≤ i ≤ m, (3.1)

where ni is the number of trucks originally assigned to district i.

When there is a storm, the service speed in class j road under a level k storm

decreases to αks
j, and the expected number of trucks needed to serve class j roads

in district i becomes

K∑
k=1

pikl
j
i f

j

αksj
,

where pik is the probability of having a level k storm in district i.
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Therefore, the expected number of trucks needed for all the roads in district i

under a potential storm during unit duration is given as

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
. (3.2)

Clearly, the number of trucks needed under a storm in (3.2) is larger than the number

under a normal condition given in the left hand side of (3.1). Observe that

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
>

n∑
j=1

K∑
k=1

pikl
j
i f

j

sj
=

n∑
j=1

lji f
j

sj
.

The first inequality holds because αk < 1 when k > 1. The second equality holds

because
∑K

k=1 pik = 1. From (3.1) and (3.2), it is possible that for some i, 1 ≤ i ≤ m

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
> ni.

That is, there may not be enough number of trucks in certain districts when a storm

arrives. In this situation, it is desirable to reallocate the snow removal trucks among

districts so that every district can be served fairly and efficiently.

Let xij be the number of trucks reallocated from district i to district j. These are

the decision variables having integer values such that xij ∈ [0, ni] for all i = 1, . . . ,m.

Let cij denote the cost of moving one truck from district i to district j. The cost

can be proportional to the distance between districts i and j. That is, the longer the

distance between the districts, the higher the moving operation cost.

In addition, the inefficiency of the snow removal operation of reallocated trucks

is considered. Truck drivers who are unfamiliar with roads and environment in a
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reallocated district cannot work as efficient as truck drivers who have worked in the

district long time.

This reallocation inefficiency is expressed by a constant factor β ∈ [0, 1]. Hence,

the product of β and the number of moving-in trucks gives the actual utility of

reallocated trucks.

The number of trucks in district i after reallocation is given by

ni +
m∑
j=1

βxji −
m∑
j=1

xij,

which is the original number of trucks in the district plus the practical number of

moved-in trucks minus the number of moved-out trucks.

Hence, district i has enough trucks if following equation holds:

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
≤ ni +

m∑
j=1

βxji −
m∑
j=1

xij. (3.3)

The goal of the problem can be to minimize the total reallocation cost while satis-

fying above constraint (3.3), if possible. Before developing a mathematical model, we

identify a property of an optimal policy, which holds under the triangular inequality

in reallocation cost, i.e. cik ≤ cij + cjk.

Lemma 1 There exists an optimal reallocation policy that does not allow a district

to both send and receive trucks.

Proof. Suppose that a truck is moved from district i to district j and then district j

to district k. The reallocation of one truck incurs the cost of cij + cjk, decreases truck
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capacity by 1 in district i and by 1 − β in district j, and increase truck capacity by

β in district k.

If the truck is moved directly from district i to district k, the associated cost is

cik. District i loses truck capacity by 1 and district k earns truck capacity by β, while

there is no capacity change in district j.

The second policy costs less and performs better or equally in every district com-

pared to the first policy. Because this argument can be generalized for multiple trucks

and multiple districts, the proof is complete.

The above Lemma simplifies our modeling. Let I1 be the set of districts with

enough number of trucks to serve their own districts, and I2 be the set of those

without enough number of trucks. That is, if i ∈ I1, then

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
≤ ni,

and if i ∈ I2, then

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
> ni.

Note that I1 ∪ I2 shows all the districts in the area, and I1 ∩ I2 = Ø.

From Lemma 1, the reallocation of trucks can happen only from I1 to I2. Hence,

the math model minimizing the total allocation cost is written as

min
∑
i∈I1

∑
j∈I2

cijxij

s.t.
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
≤ ni −

∑
j∈I2

xij for all i ∈ I1 (3.4)

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj
≤ ni +

∑
j∈I1

βxji for all i ∈ I2 (3.5)

xij ∈ [0, ni], xij ∈ Z. i, j = 1, . . . ,m
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The existence of a feasible solution can be easily determined as follows:

From equation (3.4), the number of available trucks to send in district i ∈ I1 is at

most

⌊
ni −

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj

⌋
.

The sum over all the districts with sufficient trucks becomes

∑
i∈I1

⌊
ni −

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj

⌋
. (3.6)

Similarly from (3.5), the number of trucks needed in district i ∈ I2 is

⌈
1

β

(
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
− ni

)⌉
.

Again, the sum over all the districts which need trucks becomes

∑
i∈I2

⌈
1

β

(
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
− ni

)⌉
. (3.7)

Therefore, from (3.6) and (3.7), a feasible solution for the optimization model exists

when

∑
i∈I1

⌊
ni −

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj

⌋
≥
∑
i∈I2

⌈
1

β

(
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
− ni

)⌉
. (3.8)

In other words, the number of all trucks that can be reallocated should be greater

than or equal to the total number of trucks that are needed. When (3.8) is satisfied,

at least one feasible solution for this model exists. The optimization problem can be

rewritten as
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min
∑
i∈I1

∑
j∈I2

cijxij (3.9)

s.t.
∑
j∈I2

xij ≤

⌊
ni −

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj

⌋
for all i ∈ I1 (3.10)

∑
j∈I1

xji =

⌈
1

β

(
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
− ni

)⌉
for all i ∈ I2 (3.11)

xij ∈ [0, ni], xij ∈ Z.
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Chapter 4

Solution Approaches

The proposed model (3.9) does not always have feasible solutions. In the worst

situation, when the whole area faces a high-intensity storm, each of the districts in

the area requires more trucks to maintain the service level, and none of them has any

additional trucks to be reallocated. Then there would be no feasible solution in this

model because of (3.8), which asks the total number of trucks that can be reallocated

to be greater than the total number of trucks that are needed. Therefore, different

solution approaches are needed, depending on whether feasible solutions exist.

4.1 When Feasible Solutions Exist

We first consider a case when a feasible solution to model (3.9) exists.

To simplify the model, in (3.10) and (3.11), we define

ai =

⌊
ni −

n∑
j=1

K∑
k=1

pikl
j
i f

j

αksj

⌋
if i ∈ I1

bi =

⌈
1

β

(
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
− ni

)⌉
if i ∈ I2

and suppose there are m1 supply districts in I1, m2 demand districts in I2. m1+m2 =

m, where m is the total number of districts that we need to serve. We can label the

supply districts from 1 to m1, and the demand districts from m1 + 1 to m1 + m2
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without loss of generality. Then, the model can be simplified as

min

m1∑
i=1

m1+m2∑
j=m1+1

cijxij

s.t.

m1+m2∑
j=m1+1

xij ≤ ai i = 1, . . . ,m1 (4.1)

m1∑
i=1

xij = bj j = m1 + 1, . . . ,m1 +m2 (4.2)

xij ∈ [0, ni], xij ∈ Z.

We also have

m1∑
i=1

ai ≥
m1+m2∑
j=m1+1

bj, (4.3)

which comes from (3.8), so that at least one feasible solution exists. It is now easy to

see that this model is a typical transportation model. Then we can solve it with LP

method mentioned in the literature review chapter.

4.2 When Feasible Solutions Do Not Exist

Suppose that feasible solutions satisfying all demands do not exist, that is, the quan-

tity of trucks that can be reallocated is less than the total demand as follows

m1∑
i=1

ai <

m1+m2∑
j=m1+1

bj. (4.4)

In this case, there are different ways of approach the problem. A straightforward ex-

tension transforms the problem back to a balanced transportation problem by adding

a dummy supply district that satisfies the shortage. Suppose we add a dummy supply

district labeled i = m1 +m2 + 1, and set its maximum supply to be

am1+m2+1 =

m1+m2∑
j=m1+1

bj −
m1∑
i=1

ai,
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and its reallocation unit cost to be

cm1+m2+1,j = 0 for all j = m1 + 1, . . . ,m1 +m2.

Then the problem becomes a balanced transportation model:

min

m1∑
i=1

m1+m2∑
j=m1+1

cijxij

s.t.

m1+m2∑
j=m1+1

xij = ai i = 1, . . . ,m1,m1 +m2 + 1 (4.5)

m1∑
i=1

xij + x(m1+m2+1)j = bj j = m1 + 1, . . . ,m1 +m2 (4.6)(
m1∑
i=1

ai

)
+ am1+m2+1 =

m2∑
j=1

bj xij ∈ [0, ni], xij ∈ Z.

This problem can be solved easily by the same LP method. Although the total

operation cost is minimized in the result, this approach does not guarantee that all

the districts will maintain a certain level of service. In fact, some districts which

are in great need of trucks may even receive no trucks at all in the end, because the

dummy supply district dose not exist actually. Hence, their level of service remain

the same as that in the beginning. Consider the following example:

There are four districts in the considered area, in which districts 1 and 2 are supply

districts, each with the maximum of two trucks to supply, while districts 3 and 4 are

demand districts, each with the minimum of four trucks to receive. Table 5.1 lists

the unit reallocation cost between districts:

Table 4.1: Unit Reallocation Cost

District 3 District 4
District 1 8 3
District 2 6 2
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Then the problem can be modeled as follows, which dose not have a feasible

solution:

min 8x13 + 3x14 + 6x23 + 2x24

s.t.
4∑

j=3

x1j = 2
4∑

j=3

x2j = 2

2∑
i=1

xi3 = 4
2∑

i=1

xi4 = 4

xij ∈ [0, ni], xij ∈ Z.

It is easy to find that the total demand (4 + 4) is greater than the total supply

(2 + 2) in this example. Then we can add a dummy supply, labeled district 5, whose

maximum supply is the difference between the total demand and the total supply.

The problem becomes:

min 8x13 + 3x14 + 6x23 + 2x24

s.t.
4∑

j=3

x1j = 2

4∑
j=3

x2j = 2

4∑
j=3

x5j = 4

2∑
i=1

xi3 + x53 = 4

2∑
i=1

xi4 + x54 = 4

xij ∈ [0, ni], xij ∈ Z.

The optimal solution for this balanced problem is

x14 = 2 x24 = 2 x53 = 4.
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District 1 and 2 will send all their trucks to district 4, because the cost of moving

into district 4 is less than that of moving into district 3 in the objective function. As

a result, district 3 receives no truck at all actually, since district 5 does not really

exist. Therefore, this method may lead to very low level of service in certain districts

– district 3 in this example, which is not fair for those districts, and the allocation

plan will not be accepted.

To solve this unfairness, we introduce another policy called Fair Allocation. In a

Fair Allocation model, the objective remains the same: finding the best allocation

plan that minimize the total reallocation operation cost. However, we restrict each

district to maintain the same level of service after reallocation.

Considering the way we calculated the expected number of trucks needed in each

district, it is reasonable to define the level of service as the number of trucks needed

to be fully serve a district. Our objective is trying to find a reallocation plan, which

maintains the same service level for all districts with minimal cost.

Let Ni denote the expected number of trucks needed in district i to fully serve

the district. Recall that ni denotes the number of trucks that district i originally

has.Then, from (3.2),

Ni =
n∑

j=1

K∑
k=1

pikl
j
i f

j

αksj
. (4.7)

Let ∆Ni denote the level of service in district i before reallocation, and ∆Ni
′ the level
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of service in district i after reallocation:

∆Ni = ni −Ni (4.8)

∆Ni
′ = (ni −

∑
j∈I

xij +
∑
j∈I

βxji)−Ni. (4.9)

Where I denotes the set of all districts.

Then, the Fair Allocation model can be modeled as follows:

min
∑
i∈I

∑
j∈I

cijxij

s.t. ∆Ni
′ = ∆Nj

′ for any i, j ∈ I (4.10)

xij ∈ [0, ni], xij ∈ Z.

Lemma 1, which argues that a district both sending and receiving trucks is not

allowed in an optimal solution, still holds in this Fair Allocation model. The proof is

similar as what we did before:

Suppose that a truck is moved from district i to district j and then district j to

district k. The reallocation of one truck incurs the cost of (cij+cjk), decreases service

level by 1 in district i and by (1− β) in district j, and increase service level by β in

district k.

If the truck is moved directly from district i to district k, the associated cost is

cik. District i decreases level of service by 1 and district k improve its level of service

by β, while there is no change of service level in district j.

The second policy costs less and performs better or equally in every district com-

pared to the first policy. Because this argument can be generalized for multiple trucks

and multiple districts, the proof is complete.
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With this lemma in mind, we can easily identify another property of an optimal

policy for our Fair Allocation model. Let these m districts be ordered according to

non-increasing level of service before reallocation, without loss of generality:

∆Nm ≥ ∆Nm−1 ≥ . . . ≥ ∆N1. (4.11)

Let δ denote the fairness level, i.e. final level of service that every district reaches

after reallocation. We have

δ = (ni −
∑
j∈I

xij +
∑
j∈I

βxji)−Ni for any i ∈ I∑
i∈I

δ =
∑
i∈I

ni −
∑
i∈I

∑
j∈I

xij +
∑
i∈I

∑
j∈I

βxji −
∑
i∈I

Ni

δ =

∑
i∈I ni −

∑
i∈I Ni − (1− β)

∑
i∈I
∑

j∈I xij

m
. (4.12)

When β = 1, which means the best reallocation efficiency,

δ =

∑
i∈I ni −

∑
i∈I Ni

m
=

∑
i∈I ∆Ni

m
;

when β = 0, which means the worst reallocation efficiency,

δ = ∆N1.

Therefore,

∆N1 ≤ δ ≤
∑

i∈I ∆Ni

m
≤ ∆Nm. (4.13)

Lemma 2 In an optimal reallocation policy, if district i send trucks to other districts,

then district (i+1) would not receive any trucks. On the other side, if district j receive

trucks from other districts, then district (j − 1) would not send any trucks.

Proof. If district i need to send trucks in optimal reallocation plan, then it can not

receive any trucks because of Lemma 1. That means the fairness level

δ ≤ ∆Ni. (4.14)
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Also from (4.8),

∆Ni ≤ ∆Ni+1. (4.15)

From (4.14) and (4.15), we have

δ ≤ ∆Ni+1. (4.16)

Therefore, district i + 1 should also only send trucks to other districts, otherwise, it

will not reach the fairness level.

On the other side, If district j need to receive trucks to reach the fairness level,

then it can not send any trucks because of Lemma 1. That means fairness level

δ ≥ ∆Nj. (4.17)

Also from (4.8),

∆Nj ≥ ∆Nj−1. (4.18)

From (4.17) and (4.18), we have

δ ≥ ∆Nj−1. (4.19)

Therefore, district j − 1 should only receive trucks, otherwise, it will not reach the

fairness level.

Corollary 1 If the original service level of district i is greater than the fairness level

δ, then it can only send trucks in an optimal reallocation plan; if the original service

level of district j is less than the fairness level δ, then it can only receive trucks in an

optimal reallocation plan.
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Proof. From Lemma 1, if district i receive trucks, it can not send trucks at the same

time. Therefore, the service level of district i will exceed the fairness level more.

Similarly, if district j send trucks, it can not receive trucks at the same time.

Therefore, the service level of district i will decrease, and it can not reach the fairness

level. This completes the proof.

From Lemma 2 and Corollary 1, there is a certain district i0 that satisfies:

(1) For any i ≥ i0, District i either only sends trucks or dose not receive any

trucks in optimal reallocation policy;

(2) For any j < i0, District j only receives trucks in optimal reallocation policy;

(3) Fairness level δ lies between ∆Ni0 and ∆Ni0−1, that is: ∆Ni0−1 ≤ δ ≤ ∆Ni0 .

Our solution procedure that will solve the Fair Allocation problem includes the

following stages: first, we find the specific district i0 according to the properties of

the model; then we can calculate the fairness level by its definition; finally, we solve

the integer problem.

Stage One: Find District i0

For any i ≥ i0, (∆Ni − δ) denotes the number of trucks that move out of district

i. Then the total number of trucks moving out should be

∑
i0≤i≤m

(∆Ni − δ). (4.20)

For any j < i0,
1
β
(δ −∆Nj) denotes the number of trucks that move into district j.
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Then the total number of trucks moving in should be

1

β

∑
1≤j<i0

(δ −∆Nj) (4.21)

.

Since the total number of trucks being sent out should equal the total number of

trucks being received, we have:

∑
i0≤i≤m

(∆Ni − δ) =
1

β

∑
1≤j<i0

(δ −∆Nj). (4.22)

According to the third property of district i0, we have:

∑
i0≤i≤m

(∆Ni −∆Ni0) ≤
1

β

∑
1≤j<i0

(∆Ni0 −∆Nj), (4.23)

and

∑
i0−1≤i≤m

(∆Ni −∆Ni0−1) ≥
1

β

∑
1≤j<i0−1

(∆Ni0−1 −∆Nj). (4.24)

Define N out
k and N in

k as follows:

N out
k =

∑
k≤i≤m

(∆Ni −∆Nk),

N in
k =

1

β

∑
1≤j<k

(∆Nk −∆Nj).

Lemma 3 N out
k decreases in k; N in

k increases in k.

Proof. For any 1 ≤ k < m,

N out
k =

∑
k≤i≤m

(∆Ni −∆Nk)

= (∆Nk −∆Nk) +
∑

k+1≤i≤m

(∆Ni −∆Nk)

=
∑

k+1≤i≤m

(∆Ni −∆Nk).
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Since ∆Nk ≤ ∆Nk+1, then

(∆Ni −∆Nk) ≥ (∆Ni −∆Nk)∑
k+1≤i≤m

(∆Ni −∆Nk) ≥
∑

k+1≤i≤m

(∆Ni −∆Nk+1)

N out
k ≥ N out

k+1.

Therefore, N out
k decreases in k.

On the other hand, for any 1 < k ≤ m,

N in
k+1 =

1

β

∑
1≤j<k+1

(∆Nk+1 −∆Nj)

=
1

β

( ∑
1≤j<k

(∆Nk+1 −∆Nj) + (∆Nk+1 −∆Nk)

)
Since ∆Nk ≤ ∆Nk+1 and ∆Nk+1 −∆Nk ≥ 0,

(∆Nk −∆Nj) ≤ (∆Nk+1 −∆Nj)

1

β

∑
1≤j<k

(∆Nk −∆Nj) ≤
1

β

∑
1≤j<k

(∆Nk+1 −∆Nj)

1

β

∑
1≤j<k

(∆Nk −∆Nj) ≤
1

β

( ∑
1≤j<k

(∆Nk+1 −∆Nj) + (∆Nk+1 −∆Nk)

)
1

β

∑
1≤j<k

(∆Nk −∆Nj) ≤
1

β

∑
1≤j<k+1

(∆Nk+1 −∆Nj)

N in
k ≤ N in

k+1.

Therefore, N in
k increases in k. The proof is complete.

With Lemma 3 and (4.23), we have

∑
k≤i≤m

(∆Ni −∆Nk) ≤
1

β

∑
1≤j<k

(∆Nk −∆Nj) for any i0 ≤ k ≤ m. (4.25)

With Lemma 3 and (4.24), we have

∑
k≤i≤m

(∆Ni −∆Nk) ≥
1

β

∑
1≤j<k

(∆Nk −∆Nj) for any 1 ≤ k ≤ i0 − 1.

(4.26)
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Therefore, we can find i0 through the following steps:

Step 0 Set k = 1.

Step 1 Calculate N out
k , N in

k , N out
k+1 and N in

k+1 .

Step 2 Check

if N out
k = N in

k , then i0 = k, STOP;

if N out
k+1 = N in

k+1, then i0 = k + 1, STOP;

if N out
k > N in

k and N out
k+1 < N in

k+1, then i0 = k + 1, STOP;

otherwise, set k = k + 1 and go back to Step 1.

Stage Two: Find Fairness Level δ

When we find i0, the fairness level δ can be calculated by (4.22):

β
∑

i0≤i≤m

(∆Ni − δ) =
∑

1≤j<i0

(δ −∆Nj)

δ =

∑i0−1
j=1 ∆Nj + β

∑m
i=i0

∆Ni

i0 − 1 + β(m− i0 + 1)
. (4.27)

Stage Three: Solve the Fair Allocation Integer Model

The Fair Allocation model becomes

min
m∑

i=i0

i0−1∑
j=1

cijxij

s.t. (ni −
i0−1∑
j=1

xij)−Ni = (nj + β
m∑

i=i0

xij)−Nj for any i0 ≤ i ≤ m, 1 ≤ j < i0

(4.28)

xij ∈ [0, ni], xij ∈ Z.
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Since δ = (ni −
∑i0−1

j=1 xij)−Ni = (nj + β
∑m

i=i0
xij)−Nj, then the model can be

written as

min
m∑

i=i0

i0−1∑
j=1

cijxij

s.t. (ni −
i0−1∑
j=1

xij)−Ni = δ for any i0 ≤ i ≤ m (4.29)

(nj + β
m∑

i=i0

xij)−Nj = δ for any 1 ≤ j < i0 (4.30)

xij ∈ [0, ni], xij ∈ Z.

Or

min
m∑

i=i0

i0−1∑
j=1

cijxij

s.t.

i0−1∑
j=1

xij = (ni −Ni)− δ for any i0 ≤ i ≤ m (4.31)

m∑
i=i0

xij =
1

β
(δ − (nj −Nj)) for any 1 ≤ j < i0 (4.32)

xij ∈ [0, ni], xij ∈ Z.

The model above dose not have any feasible solution, because integer numbers

would never satisfy the non-integer constraints. To solve this problem, we can round

the supply constraint (4.31) to be less than a larger integer number but greater than

a smaller integer number, and also round the demand constraint (4.32) to be greater
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than a smaller integer number but less than a larger integer number:

min
m∑

i=i0

i0−1∑
j=1

cijxij

s.t. ⌊(ni −Ni)− δ⌋ ≤
i0−1∑
j=1

xij ≤ ⌈(ni −Ni)− δ⌉ for any i0 ≤ i ≤ m

(4.33)

⌈ 1
β
(δ − (nj −Nj))⌉ ≥

m∑
i=i0

xij ≥ ⌊ 1
β
(δ − (nj −Nj))⌋ for any 1 ≤ j < i0

(4.34)

xij ∈ [0, ni], xij ∈ Z.

Then, the integer problem becomes a variant of the transportation problem. It

can be solved by transforming to a standard transportation problem, according to

the method presented by Dahiya and Verma. Therefore, we can solve it similarly as

a transportation model.
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Chapter 5

Case Study

This chapter includes an illustration of the mathematical models and solution ap-

proaches proposed in the research. The presented problem in this chapter is based

on a series of hypothetical storm situations in the seven service regions in central

Missouri. Our objective is to determine the best resource (snow removal trucks) re-

allocation plan that maintains the same service level for all service regions with the

minimal cost.

5.1 Case Background

5.1.1 Overview

This section provides a case study which motivated this research. As shown in Figure

5.1 and Figure A.1, the area considered for this case study is the seven service regions

in Missouri, which include 13 counties, 453,000 people, 7,802 sq. miles and 3,625

road miles to be maintained by Missouri Department of Transportation (MoDOT).

As previous mentioned, winter road maintenance work includes the operations of salt

and abrasives spreading, snow plowing, loading snow into snow removal vehicles and

hauling snow to disposal sites, and presents a variety of decision-making problems,

such as routing problem, sector design and fleet sizing, which are extremely complex.
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Therefore, we assume that the winter road maintenance network and policy in each

region have been established by a set of predefined routes. The depot location and

service range in each district are fixed; the operating and maintenance cost of the

snow removal resources is not considered. We focus on the operational objectives

and constraints, which are used for the modeling of winter road maintenance resource

allocation.

Figure 5.1: Counties in Central Missouri

5.1.2 Winter Road Maintenance Operations

MoDOT conducts three major winter road maintenance operations in the seven dis-

tricts: pre-treatment before storm, spreading and plowing during storm, and after-

storm cleanup. Pre-treatment operation includes spreading abrasives or chemicals

over the roadway in order to prevent formation of ice or pack - snow compacted by
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traffic action that becomes nearly as tightly bonded to pavement as ice, before or in

the early stages of a storm event. This pre-treatment can be conducted in all types of

roadways: highway, bridges, hills and curves. But depending on the storm conditions,

it is possible that only part of the roadways need to be pre-treated. Spreading-and-

plowing plays the most important role in winter road maintenance operation. Snow

plowing operation removes as much snow and loose ice as possible in order to keep

the road surface clear, while spreading operation tries to melt ice and improve trac-

tion during a storm event in order to keep the road surface from slick. Although the

speed of plowing is lower than that of spreading, spreading operation requires more

frequent return trips for replenishment than plowing. After-storm cleanup operation

is the process of plowing the remaining snow from the roadways. The inner and outer

shoulders of highways and major roads need to be served once a storm has ended.

Then the remaining snow over any other roadways and bridges which is built up as a

result of previous plowing operations can be removed.

5.1.3 Winter Road Maintenance Network

MoDOT is responsible for serving all state roads within the seven districts in the

center of Missouri, including interstate highways, state highways and other state

roadways. Hence, snow removal vehicles are restricted to the state road network

while providing winter road maintenance service.

Since many roadways have multiple lanes and the snow removal vehicle can only

serve one pass per lane, we calculate the total service distance of a road with multiple

lanes by the multiplication of centerline distance and the number of lanes it has.

Different types of roads have different service frequencies during unit service du-
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ration. For example, interstate highways should be served more often than normal

state roadways. According to the survey completed by the managers in major depots,

all the state roadways that are served by MoDOT can be classified based on the his-

torical average daily traffic (ADT) data. The three-class hierarchy is shown in Table

5.1. Class A1, Class A2 and Class A3 roadways should be served within 2, 6 and 12

hours respectively per 12-hour shift, which means that Class A1, A2 and A3 roadways

needs to be served 6, 2, and 1 times respectively per 12-hour shift. The frequency is

considered ideal because replenishment and other operational time between service

runs are not considered.

Table 5.1: Three-Class Hierarchy

Class ADT
A1 ADT > 2500
A2 2500 > ADT > 1000
A3 1000 > ADT

Besides, there are total 37 existing winter road maintenance depots operated by

MoDOT within the seven districts in central Missouri. Depot locations and asso-

ciated routes have evolved as a result of annual decisions and adjustment made by

MoDOT’s managers and planners based on their operational experience. The prox-

imity to the highways and other major state roadways, as well as the accessibility

to nearby roadways and storage space for maintenance materials and equipment is

mostly considered when locating a winter road maintenance depot.
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5.1.4 Winter Road Maintenance Resources

Snow removal vehicles are the most important resources in winter road maintenance

operations. There are two types of snow removal vehicles that MoDOT has: heavy-

duty single-axle trucks and extra heavy-duty tandem-axle trucks. The difference

between these two types of vehicles is that the tandem-axle trucks can hold more

abrasive or chemical material than the single-axle trucks. Monitors are used in both

trucks in order to control the rate of material spreading. Normally, the spreading rate

is 200lbs per lane mile, but could increase to 400lbs per lane mile depending on the

intensity of the storm. Besides, both could be equipped with 10-, 12-, or 14-foot-wide

plow for snow plowing operation. Any of the three types of plow could serve one

traffic lane by adjusting the angle of the plow, while a larger-size plow would clear

the road more thoroughly. The average serving speed is 40 miles per hour on Class

A1 roadways, and 30 miles per hour on Class A2 and A3 roadways.

5.2 Model Parameters

5.2.1 Considered Area

We consider the seven service regions in central Missouri determined by MoDOT, and

number them from 1 to 7. Each service region may consist of multiple counties. The

roadways in each service region can be classified by the three-class hierarchy which is

defined in the last chapter. The service frequency associated with the roadway class

is shown in Table 5.2.

The length of a road is defined in lane miles, which means the length of a road

with multiple lanes is the product of the centerline distance in a single lane and the
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Figure 5.2: Service Regions in Central Missouri

Table 5.2: Service Frequency by Class

Class ADT Service Frequency per Unit Duration
A1 ADT>2500 6
A2 2500>ADT>1000 2
A3 1000>ADT 1

number of lanes it has. Table 5.3 illustrates the road information in each region:

Note that since Class A2 roads are mostly scattered in Cole County, we com-

bine Class A2 and A3 roads together. Same operation is conducted in Cooper and

Moniteau counties.

The distances between service regions are computed by the location of the major

depot in each region where the regional supervisor works. All distances between these

major depots can be found using the on-line mapping site MapQuest.
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Table 5.3: Roadway Information

Road Length in Lane Miles
Region Number Counties Class A1 Class A2 Class A3

1 Boone 566.64 125.52 337.35
2 Callaway 308.8 117 500.7
3 Osage, Maries, Gasconade 124.4 201.6 1147.8
4 Cooper, Moniteau 265.87 0 848.66
5 Benton, Pettis 271.76 149.39 989.75
6 Morgan, Miller, Camden 314.11 374.19 863.3
7 Cole 216.02 255.41 0

5.2.2 Storm Factors

We assume the hypothetical storm has three levels of intensity: from level 1 to level

3. Each storm intensity level has a different discount on the normal average service

speed of the snow removal vehicle. The greater number indicates the higher intensity

of a storm and a lower service speed. As described in table 5.4, in a level 1 storm,

snow removal trucks serve the roads at the normal speed, i.e. 40 miles per hour on

Class A1 roadways and 30 miles per hour on Class A2 and A3 roadways; while in a

level 2 storm, the service speed is reduced to 60% of the normal speed, i.e. 24 miles

per hour on Class A1 roadways and 18 miles per hour on Class A2 and A3 roadways;

in a level 3 storm, the snow removal trucks can only serve the roads at 30% of the

normal speed, that is 12 miles per hour on Class A1 roadways and 9 miles per hour

on Class A2 and A3 roadways.

The potential snow storm may have a certain pattern, such as high intensity in

the center and low intensity on the edge of the storm. In our case, according to the

snowfall 1971-2000 averages data in Appendix C provided by the Midwestern Regional

42



Table 5.4: Storm Impact on Service Speed

Storm Intensity Level Discount on Service Speed
3 0.3
2 0.6
1 1

Climate Center, we found that the northeastern part in central Missouri always has

much more snowfall than the southwestern part during winter. For example, the

annual average snowfall level in Boone and Callaway counties is around 22inches,

which is much higher, compared with 11.6inches in Pettis, 5.7inches in Morgan and

11.2inches in Miller. To demonstrate this pattern, we assume that in a hypothetical

storm, the probabilities of having high levels of intensities in the northeastern regions,

including Callaway and Boone, would be relatively higher, while the probabilities of

having high levels of intensities in the southwestern regions, including Cole, Benton,

Pettis, Morgan, Miller and Camden, would be relatively lower, and medium in Cooper,

Moniteau, Osage, Maries and Gasconade. Therefore, we partition the service regions

by the possibilities of having higher levels of storm intensities, however, the value of

probability of having each level of storm in a single service region is picked randomly.

The illustrations given in this chapter include three scenarios of hypothetical storm

situations in central Missouri. In the first scenario, the intensity of the hypothetical

storm is very weak, and all the service regions have low probabilities of facing high

intensity levels. In the second scenario, the intensity of the hypothetical storm is

stronger than the first one, thus, all the service regions have higher probabilities of

facing high intensity levels. In the third scenario, the hypothetical storm becomes

very strong, causing the greatest risk of intense storms and need for snow removal
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trucks. Although the intensity of the hypothetical storm changes in each scenario,

the same storm pattern holds. That is, in any scenario, the northeastern regions 1

and 2 would have relatively higher probabilities of facing strong storms than others,

while the southwestern regions 5, 6 and 7 would have relatively lower probabilities of

facing them.

The sets of probabilities of having different levels of intensities in each service

region for each scenario are shown in the following tables:

Table 5.5: Storm Probabilities in Each Region (Scenario 1)

Storm Probability
Service Region Level 3 Level 2 Level 1

1 0.2 0.5 0.3
2 0.3 0.3 0.4
3 0.1 0.3 0.6
4 0.1 0.4 0.5
5 0.0 0.1 0.9
6 0.0 0.2 0.8
7 0.0 0.2 0.8

Table 5.6: Storm Probabilities in Each Region (Scenario 2)

Storm Probability
Service Region Level 3 Level 2 Level 1

1 0.4 0.4 0.2
2 0.5 0.4 0.1
3 0.3 0.4 0.3
4 0.3 0.5 0.2
5 0.0 0.3 0.7
6 0.2 0.3 0.5
7 0.1 0.3 0.6
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Table 5.7: Storm Probabilities in Each Region (Scenario 3)

Storm Probability
Service Region Level 3 Level 2 Level 1

1 0.6 0.3 0.1
2 0.7 0.2 0.1
3 0.4 0.5 0.1
4 0.5 0.4 0.1
5 0.2 0.4 0.4
6 0.3 0.4 0.3
7 0.3 0.3 0.4

5.2.3 Service Resource

Since there is little difference in service speed and service duration between single-axle

trucks and tandem-axle trucks, we consider only one type of trucks. Assume that the

vehicle crew could work 8 hour shift a day. Then the service distance for one shift is

320 miles on Class A1 roadways, and 240 miles on Class A2 and A3 roadways.

Table 5.8 lists the number of trucks available in each region before reallocation.

Table 5.8: Original Number of Trucks

Service Region Original Number of Trucks
1 21
2 18
3 30
4 19
5 13
6 14
7 17

To find the reallocation cost, we suppose the MPG of a snow removal truck is 10

miles per gallon, and the gas price is 2.4 dollars per gallon, then the fuel cost is 0.24

dollars per mile. In addition, operating cost, repair cost and depreciation cost are
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considered based on John Siebert’s report ”Truckers must not be flying by the seat

of their pants”, which is posted on Owner-Operator Independent Drivers Association

Website, and the vehicle replacement cost analysis in Appendix D.

We estimate the total reallocation cost as the total cost of fuel, operating, repair

and depreciation, which is (1.2 + 0.24) dollars per mile. We also assume that the

reallocation inefficiency discount is 0.8, which means the reallocated trucks are only

able to complete 80% of the regular workload in the new service region.

5.3 Case Results and Analysis

First, we coded the proposed model by Matlab to determine whether feasible solution

exists in this problem. The result for each scenario is shown below:

Table 5.9: Number of Trucks (Scenario 1)

Number of Trucks
Service Region Original Expected Supply Demand

1 21 24 0 4
2 18 17 1 0
3 30 13 17 0
4 19 13 6 0
5 13 12 1 0
6 14 17 0 4
7 17 8 9 0

Total 132 104 34 8

The ”Expected” column shows the total expected number of trucks needed to

fully serve each region. The ”Supply” column shows the quantity of extra trucks that

can be reallocated in each region that has enough trucks to meet the total expected

number. The ”Demand” column gives the actual number of trucks needed to fully

serve a region, in addition to what it has.
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Table 5.10: Number of Trucks (Scenario 2)

Number of Trucks
Service Region Original Expected Supply Demand

1 21 29 0 10
2 18 22 0 5
3 30 18 12 0
4 19 18 1 0
5 13 13 0 0
6 14 22 0 10
7 17 9 8 0

Total 132 131 21 25

Table 5.11: Number of Trucks (Scenario 3)

Number of Trucks
Service Region Original Expected Supply Demand

1 21 34 0 17
2 18 25 0 9
3 30 20 10 0
4 19 21 0 3
5 13 19 0 8
6 14 25 0 14
7 17 12 5 0

Total 132 156 15 51

For scenario 1, the total number of trucks that could be reallocated was 34, which

was much greater than the number of total demand, which was 8. Therefore, a

number of feasible solutions would exist. Then the problem could be solved as a

typical transportation model that we mentioned in the previous chapter, that is:
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min
∑

i=2,3,4,5,7

∑
j=1,6

cijxij

s.t. x21 + x26 ≤ 1 (5.1)

x31 + x36 ≤ 17 (5.2)

x41 + x46 ≤ 6 (5.3)

x51 + x56 ≤ 1 (5.4)

x71 + x76 ≤ 9 (5.5)

x21 + x31 + x41 + x51 + x71 = 4 (5.6)

x26 + x36 + x46 + x56 + x76 = 4 (5.7)

xij ∈ [0, ni], xij ∈ Z.

On the contrary, the total number of trucks that could be reallocated was 21 in

scenario 2, 15 in scenario 3, while the total demand was 25 in scenario 2 and 51

in scenario 3. There was not enough trucks to fully serve all the regions in either

scenario 2 or scenario 3, hence, feasible solutions did not exist. The Fair Allocation

policy needs to be employed to solve these two scenarios.

The next step was to find district i0 and the fairness level. The program used

to implement the method finding district i0 and the fairness level could be found

in Appendix A. The Matlab results for scenarios 2 and 3 are shown in Table 5.12

and Table 5.13 respectively. For scenario 2, service region 5 was district i0, and the

fairness level was -0.516. For scenario 3, service region 4 was district i0, and the

fairness level was -4.156.

The ”Current” column shows the service level in each region before reallocation.

The ”Fairness” column shows the theoretical level that all the regions will reach after
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Table 5.12: Level of Service (Scenario 2)

Level of Service
Service Region Current Fairness Change Round

1 -8 -9.355 (-10,-9)
2 -4 -4.355 (-5,-4)
3 12 12.516 (12,13)
4 1 -0.516 1.516 (1,2)
5 0 0.516 (0,1)
6 -8 -9.355 (-10,-9)
7 8 8.516 (8,9)

Table 5.13: Level of Service (Scenario 3)

Level of Service
Service Region Current Fairness Change Round

1 -13 -11.055 (-12,-11)
2 -7 -3.555 (-4,-3)
3 10 14.156 (14,15)
4 -2 -4.156 2.695 (2,3)
5 -6 -2.305 (-3,-2)
6 -11 -8.555 (-9,-8)
7 5 9.156 (9,10)

applying the Fair Allocation policy. The ”Change” Column shows the number of

trucks that need to be reallocated in each service region in order to reach the fairness

level. The integer numbers in the ”Round” Column were based on the numbers in

the ”Change” Column, according to the rounding policy proposed in Chapter 4. In

”Round” columns, positive numbers mean the quantity of sending-out trucks, while

negative numbers mean the quantity of moving-in trucks. Hence, these two problems

became the following transportation problems.
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For Scenario 2,

min
∑

i=3,4,5,7

∑
j=1,2,6

cijxij

s.t. 12 ≤ x31 + x32 + x36 ≤ 13 (5.8)

1 ≤ x41 + x42 + x46 ≤ 2 (5.9)

0 ≤ x51 + x52 + x56 ≤ 1 (5.10)

8 ≤ x71 + x72 + x76 ≤ 9 (5.11)

10 ≥ x31 + x41 + x51 + x71 ≥ 9 (5.12)

5 ≥ x32 + x42 + x52 + x72 ≥ 4 (5.13)

10 ≥ x36 + x46 + x56 + x76 ≥ 9 (5.14)

xij ∈ [0, ni], xij ∈ Z.

For Scenario 3,

min
∑

i=3,4,7

∑
j=1,2,5,6

cijxij

s.t. 14 ≤ x31 + x32 + x35 + x36 ≤ 15 (5.15)

2 ≤ x41 + x42 + x45 + x46 ≤ 3 (5.16)

9 ≤ x71 + x72 + x75 + x76 ≤ 10 (5.17)

12 ≥ x31 + x41 + x71 ≥ 11 (5.18)

4 ≥ x32 + x42 + x72 ≥ 3 (5.19)

3 ≥ x35 + x45 + x75 ≥ 2 (5.20)

9 ≥ x36 + x46 + x76 ≥ 8 (5.21)

xij ∈ [0, ni], xij ∈ Z.

The final step was to solve all the three transportation problems using the LINGO
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optimization software package. A Branch-and-Bound procedure was implemented by

LINGO to determine the best transportation plan that results the minimized trans-

portation cost. Table 5.14, 5.15 and 5.16 show the results, including the reallocation

plan and optimal reallocation cost, while Figure 5.3, 5.4 and 5.5 show the directions

of reallocation movements on the map for scenario 1, 2 and 3 respectively.

Table 5.14: Reallocation Plan (Scenario 1)

From To Number of Trucks Total Cost ($)
7 6 4
7 1 3 443.82
2 1 1

Table 5.15: Reallocation Plan (Scenario 2)

From To Number of Trucks Total Cost ($)
4 1 1
7 1 5
7 2 4 1509.07
3 6 9
3 1 3

Table 5.16: Reallocation Plan (Scenario 3)

From To Number of Trucks Total Cost ($)
4 5 2
7 1 5
7 2 4 1750.30
3 1 6
3 6 8

For scenario 2 and 3, Table 5.17 and 5.18 show the comparison between the service

level after reallocation operations and the fairness level. The ”Level of Service”
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Figure 5.3: Reallocation (Scenario 1)

column describes the service level after reallocation, while the ”Fairness Level” is the

same theoretical value we mentioned before. The difference between the service level

and the fairness level is less than one in most of the regions. However, region 3,

containing the counties of Osage, Maries and Gasconade, has the largest difference

for both scenarios. One reason is that the total number of supply is greater than the

total number of demand after rounding, thus there would be some region with higher

service level than the fairness level after reallocation. Another reason is that region 3

faces medium intensity, but owns too many trucks. As a result, region 3 is the region

with the largest number of supply in both scenarios. The last reason is that region 1

is the regions with the greatest demand in both scenarios, but it is not close to region

3. Therefore, region 3 always has extra trucks after reallocation, which results in a

relatively higher service compared with fairness level.

The results show that when the winter maintenance resource allocation model

becomes a typical transportation model, reallocation operations are always chosen
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Figure 5.4: Reallocation (Scenario 2)

Table 5.17: Level of Service after Reallocation (Scenario 2)

Region Number Counties Level of Service Fairness Level
1 Boone -0.8
2 Callaway -0.8
3 Osage, Maries, Gasconade 0
4 Cooper, Moniteau 0 -0.4194
5 Benton, Pettis 0
6 Morgan, Miller, Camden -0.8
7 Cole -1

between service regions that are close to each other in the optimal reallocation plan.

There are two reasons: First, the objective function is trying to find the minimum

reallocation operation cost, which means the reallocation operation with less cost is

preferred; second, the reallocation cost is proportional to the distance between service

regions, thus reallocation between regions that are close to each other is preferred.

However, reallocation operations may happen between service regions that are far

from each other. For example, in scenario 2, three trucks were reallocated from
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Figure 5.5: Reallocation (Scenario 3)

Table 5.18: Level of Service after Reallocation (Scenario 3)

Region Number Counties Level of Service Fairness Level
1 Boone -4.2
2 Callaway -3.8
3 Osage, Maries, Gasconade -4
4 Cooper, Moniteau -4 -4.154
5 Benton, Pettis -4.4
6 Morgan, Miller, Camden -4.6
7 Cole -4

region 3 to region 1, although region 7, 2 and 4 are closer to region 1 than region 3.

But further study shows that region 7 and 4 had no capacity to send more trucks to

region 1, and region 2 was the region that needed more trucks to reach the fairness

level. Then the reallocation operation between region 3 and region 1 was reasonable,

because region 3 was the closest to region 1 in all the regions that were able to send

trucks to region 1 in this scenario.

Another feature of the Fair Allocation model can be found by the comparison
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between scenario 2 and 3. For scenario 2, service region 7, 3, 4 were the districts

capable of sending trucks, and the others were in lack of more trucks to reach the

fairness level except region 5. This partition of the service regions almost stayed the

same for scenario 3. More importantly, a comparison between Table 5.15 and Table

5.16 shows the similarity of the reallocation plans for both scenarios: the origins

and the destinations of the reallocation routs were nearly the same, only with a slight

change in the number of trucks that were reallocated. The reason for this resemblance

is the pattern of the hypothetical storms were fixed, that is relatively high probabilities

of high intensity levels in the northeast, low probabilities of high intensity levels in the

southwest, and medium in the rest, even though the hypothetical storm in scenario 3

was much more intense than that in scenario 2. This feature reveals the possibility of

better preparation before storms. If the pattern of the storm is predictable, a rough

reallocation operation can be laid out without knowing the actual intensity of the

storm. Moreover, adjustment of the existing resources in each service region at the

beginning of each fiscal year would be possible, with the help of the historical snowfall

data in the area.
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Chapter 6

Conclusions

In our research, we have attempted to model the resource allocation process in the

winter road maintenance operation, which is not considered in most typical winter

road maintenance models. For example, the routing and scheduling problems assume

that the number of snow removal trucks in a depot is fixed; the sector design and depot

location models consider a constant snow removal rate in each sector; the fleet sizing

and replacement models try to determine the optimal number of snow removal trucks

that balances the total cost and maintenance operation rate in each depot. Our model

consists of two dynamic aspects within the winter road maintenance operation: the

probabilistic nature of a snow storm and the cooperation between depots or sectors.

The benefit of considering these two factors is clear. Since different districts face

different probabilities of having a snow storm, the capacity of designated winter road

maintenance resources in some may not be enough to fully serve their districts, while

the capacity in others may exceed their needs. Therefore, reallocating the surplus

resources to the districts whose capacity is insufficient will improve not only the

level of service in those districts, but also the efficiency of resource utilization in the

whole area. This resource allocation model can be extended to many fields other

than winter road maintenance, as long as the problem is affected by various, but
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predictable, demands and relocatable resources.

Two solution approaches were presented to solve this resource allocation model,

depending on whether all the regions can be fully served by existing resources. Both

solutions are based on the lemma that there exists an optimal reallocation policy that

does not allow a district to both send and receive trucks. This allows the division

of the districts into two parts, which simplifies the modeling of the problem. When

the total number of trucks that can be reallocated is greater than the total demand,

feasible solutions exist for the original optimization problem (3.9). This reduced

the integer model to a typical transportation problem. It could be solved by many

LP methods, including a branch-and-bound approach, which is implemented by the

LINGO program. When there are not enough trucks that can be reallocated to

the demand districts, feasible solutions do not exist. This requires a new operation

policy, hence, the Fair Allocation policy was introduced, and an iterative approach

was proposed to find the fairness level. Then the districts could be divided into two

groups according to that level, and the problem returns to a typical transportation

problem. The key point in the Fair Allocation policy is that both reallocation cost and

quality of service requirement are considered. A case study is conducted to illustrate

the benefit of the proposed resource allocation model, which maintains a fair level of

service in all the service regions with minimal cost.

One of the most important factors that needs to be included in the future resource

allocation model is the time factor. Taking either the time spent in reallocating the

trucks from one region to the other, or the time of completing the winter maintenance

task in a region into consideration will improve the model and the solution approaches.
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For instance, it is not reasonable to receive trucks from a region far away with a time

constraint on the service completion time, even though that region has extra trucks

which can be reallocated. That is, the time wasted during reallocation might be more

valuable than the savings. Lemma 1 will not hold any more, since there could be a

situation where a service region may first send trucks to fulfill the demand of a nearby

region, and then receive trucks from a farther region to fully serve itself. Another

extension of the time factor could be determining the optimal resource allocation plan

not a for a single time duration, but for a number of successive time periods. In this

case, the probabilities of storm intensity change from period to period, which makes

the resource allocation model more complicated.
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Appendix A

Matlab Program Code

Figure A.1: Matlab Code 1
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Figure A.2: Matlab Code 2
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Appendix B

Service Regions and Depot
Locations
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Figure B.1: Service Regions and Depot Locations
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Appendix C

Snowfall Averages

Figure C.1: Snowfall Averages
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Appendix D

Vehicle Replacement Cost Analysis

Figure D.1: Vehicle Replacement Cost Analysis
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