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APPLICATION OF SOLUBLE WHEY PROTEIN- 

CARBOXYMETHYLCELLULOSE COMPLEX IN EMULSION AND 

ACID-INDUCED GELATION 

Yan Huan 

Dr. Bongkosh Vardhanabhuti, Thesis Supervisor 

ABSTRACT 

   Soluble complex between whey protein isolate (WPI) and carboxymethylcellulose 

(CMC) can be formed at pH above the isoelectric point of the protein. This complex 

can be utilized to enhance functional properties of the biopolymers and thus improve 

texture and stability of many food products. This study investigated the effect of 

molecular weight and concentration of CMC on emulsion stabilization and 

acid-induced gelation. 

   In the first study, the influence of CMC concentration and molecular weight (Mw = 

270k, 750k, and 2500kDa) on the stability and properties of WPI/CMC-stabilized 

oil-in-water emulsions was investigated. Emulsions were prepared using soluble 

WPI-CMC complexes by homogenization 5% vegetable oil with 95% mixed 

WPI-CMC solution (0.5% WPI and 0-0.5% CMC, pH 7.0) at 12,000 rpm for 1 min, 

followed by sonication at 30% amplitude of total power for 5 min, and the pH was 

adjusted to 5.2. Emulsions were assessed by measuring ζ-potential, droplet size, 

creaming stability, rheological properties, and protein surface coverage. In the absence 

of CMC, the WPI-stabilized emulsions were unstable to droplet flocculation and 
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coalescence due to the relatively low droplet charge. ζ-potential and droplet size 

indicated that WPI-CMC complexes adsorbed to the droplet surfaces and thus reduced 

droplet flocculation and coalescence.  Both CMC Mw and concentration significantly 

influenced the properties and stability of acidified emulsions. At low CMC 

concentrations, stability was improved due to increased droplet charge and protein 

surface coverage, while the effect of viscosity dominated at high CMC concentrations. 

High Mw of CMC contributed to better stability compared to lower Mw CMC.  At 

proper concentration, emulsions containing high Mw CMC (2500k) were the most 

stable and showed no separation even after 15-day storage. In the second study, 

acid-induced gelation of heated WPI and CMC soluble complex was investigated. 

Heated soluble WPI-CMC complexes were prepared by mixing the biopolymers at pH 

7 and heated at 85 oC for 30min. Gels were formed by the addition of 

glucono-δ-lactone (GDL) and compared to those formed from WPI polymer (protein 

heated alone) with added CMC. All gels contained 5% protein and 0-0.125% CMC 

(Mw = 270k, 680k, and 750kDa). Results showed that CMC molecular weight and 

biopolymer ratio were the major factors affecting gel properties. For 270k and 750k 

CMC, gels from heated WPI-CMC complex showed improved gel hardness and, at 

certain CMC concentration, improved water holding capacity. Confocal laser scanning 

microscopy (CLSM) results revealed that gel structure largely depended on CMC 

concentration. Overall, gels from heated WPI-CMC complex showed smoother 

structure and less porosity, indicating less phase separation. Furthermore, gels showed 

better mechanical properties when heated WPI-CMC complex at higher protein 
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concentration. 

   Overall, both unheated and heated WPI-CMC complex improved the 

emulsification and cold gelation of whey protein. The Mw of CMC significantly 

affects their interactions with whey protein and thus the functional properties of the 

complexes. High Mw CMC at optimum concentration resulted in the improvement of 

emulsion stability and acid-induced gel properties. By utilizing proper Mw and 

optimum concentration, WPI-CMC complex can be applied as a novel food 

ingredient. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Need for the research 

   Biopolymer interactions are widely used to improve the texture and shelf-life of 

food products. Many studies on the interactions between protein and polysaccharide 

have been reported (Pereyra and others 1997; Laneuville and others 2000; Turgeon 

and others 2003; Neirynck and others 2007; Schmitt and Turgeon 2011; Dickinson 

2008). Attractive interactions between protein and polysaccharide can lead to soluble 

and/or insoluble complexation, cosolubility or segregation (Schmitt and others 1998; 

Rodríguez Patino and Pilosof 2011). Functional properties of protein are generally 

improved by complexation with polysaccharides. The formation and solubility of 

protein-polysaccharide complex mainly depend on pH, ionic strength, biopolymer 

ratio and concentration. Other factors such as types of biopolymers (charge density, 

molecular weight, et al.), temperature and pressure also influence the complex 

formation (Schmitt and Turgeon 2011). Maximum protein-polysaccharide complex 

formation could be reached at pH values below or around the pI of protein due to the 

opposite charge carried by these two biopolymers. However, at pH values above the 

pI of proteins, electrostatic interactions between biopolymers can still occur 

(Doublier and others 2000; Vardhanabhuti and others 2009; Girard and others 

2002a). In this case, any electrostatic interaction involves the anionic polysaccharide 
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interacting with positively charged local patches on the proteins (Dickinson 1998).  

   Heating mixed biopolymers at near neutral pH can result in heated soluble 

complex having different size and shape compared to heated protein aggregates 

without polysaccharides. When formed at appropriate conditions, heated soluble 

protein-polysaccharide complex could also offer better functional properties. It has 

been reported that dextran sulfate improved thermal stability of β-lactoglobulin by 

altering its aggregation and the complexation between the two by heating at near 

neutral pH resulted in less turbid solution or gels (Vardhanabhuti and others 2009). 

Zhang and others (2014) recently demonstrated that heated soluble whey 

protein/pectin complex at pH 7 resulted in finer gel microstructure with less porosity 

and smoother network, which significantly improved gel strength and water holding 

capacity compared to heated whey protein alone with addition of pectin. 

   Soluble protein and polysaccharide complex has been studied in emulsions.  

When prepared at pH 6, the mixed caseinate-dextran sulfate solution resulted in a 

soluble complex rather than a coacervate and the emulsion obtained by this approach 

gave much stronger interfacial films than the bilayer emulsion, leading to a more 

stable emulsion system (Jourdain and others 2009). Lutz and others (2009a) reported 

that once a soluble WPI-pectin complex was formed at pH 6, the resulting emulsion 

was stable with small droplet size, minimum creaming and low water transport. 

   Though there has been an increasing interest in the functional properties of 

unheated and heated soluble protein-polysaccharide complexes at near neutral pH, 

knowledge in this area is still very limited. Understanding how different factors 
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(intrinsic and extrinsic) could affect the complex formation and their functional 

properties can lead to the design of proper complexes for different applications.   

1.2 Objectives of the study 

   The overall objective of this study was to investigate how molecular size (e.g., 

molecular weight) of CMC affects the formation and functional properties of 

unheated and heated soluble complexes between WPI and CMC. Specific objectives 

were: (i) to investigate the effects of molecular weight of CMC on the stability of 

emulsions stabilized by unheated WPI-CMC complexes, (ii) to characterize the 

emulsions stabilized by WPI-CMC complexes, (iii) to determine the effects of CMC 

molecular weight on acid-induced gelation of heated WPI-CMC soluble complexes, 

and (iv) to determine whether there was a relationship between the molecular 

properties of the complexes (both heated and unheated) and their functional 

properties.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Whey protein 

   Whey protein is a mixture of globular proteins isolated from whey, a by-product 

of cheese production. It represents 20% of the total protein content of cow’s milk. It 

contains four major proteins, namely β-lactoglobulin (~ 65%), α-lactalbumin (~ 

25%), bovine serum albumin (~ 8%), and immunoglobulins. Whey protein typically 

comes in three major forms: whey protein concentrate (WHC), whey protein isolate 

(WPI), and whey protein hydrolysate (WPH). 

   Whey proteins have been widely used in food industry due to its high nutritional 

values and unique functional properties. It has been reported that whey proteins are 

utilized in many different applications and the effects on bone, muscle, blood, brain, 

immune, infection and metabolism have attracted lots of interest. Its effect on 

reducing the risks of diseases such as heart disease, cancer and diabetes is currently 

being investigated (Krissansen 2007). The increased use of whey protein in food 

industry is due to its excellent thermal stability, gelation, foaming and emulsification 

properties (Foegeding and others 2002). Whey proteins are well known as 

replacements for egg proteins in confectionery and bakery products, and are also 

used as functional ingredients and as milk replacers in dairy products such as ice 

cream (de Wit 1998). Whey proteins form interfacial films that stabilize emulsion 

and foams such as ice cream, salad dressings, and etc. (Ruger and others 2002; 
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Akalın and others 2007; Turgeon and others 1996). Gelation properties of whey 

protein has been utilized to improve texture and water holding capacity of meat and 

yogurt (Zhang and others 2014; Lyons and others 1999). The recent increased 

application of whey protein has been for nutritional beverages (Vardhanabhuti and 

Foegeding 2008; Keowmaneechai and McClements 2006).  

2.2 Carboxymethylcellulose (CMC) 

   Carboxymethylcellulose (CMC) or cellulose gum, is derived from cellulose, 

which is made water-soluble by a chemical reaction. The solubility is achieved by 

introducing carboxymethyl groups along the cellulose chain, which makes hydration 

of the molecule possible. It is often used as its sodium salt, sodium 

carboxymethylcellulose. 

                            

   CMC has the ability to impart viscosity to aqueous solutions. CMC is 

pseudoplastic by nature and can show thixotropic and non-thixotropic rheology. The 

viscosity is proportional to the average chain length of the CMC molecule or the 

degree of polymerization (DP). The average chain length and the degree of 

substitution (DS) determine the molecular weight of CMC. The viscosity of CMC 

increases rapidly with increasing degree of polymerization.  

   CMC is used in food industry as a viscosity modifier or thickener, and to 

stabilize emulsions and improve foaming properties in various products (Hansen and 
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Black 1972; Mann and Malik 1996; Girard and others 2002b). It is also used 

extensively in gluten free and reduced fat food products (Chillo and others 2007). It 

has been reported that the long-term stability of acidified milk drinks with high 

molecular weight CMC was better than that with low molecular weight CMC (Du 

and others 2009). Capitani and others (2007) evaluated the thermostability of 

β-lactoglobulin and α-lactalbumin by complexation with CMC and both complexes 

showed a maximum stability at pH 4 due to electrostatic interactions between 

proteins and CMC. Besides controlling the rheological properties, CMC is known 

for its excellent water retaining capacity. 

2.3 Protein-polysaccharide interactions 

   Proteins and polysaccharides are present together in many kinds of food systems, 

and contribute to the structure, texture and stability of food (Doublier and others 

2000). Interactions with polysaccharides will influence the functional properties of 

food proteins, such as solubility, heat stability, gel formation, emulsification and 

foaming properties (Ye 2008). Control and manipulation of protein-polysaccharide 

interactions is a key factor in the development of novel food processes and products. 

Interactions between proteins and polysaccharides are mainly driven by electrostatic 

interactions, which can divide the mixed biopolymers into three groups: co-solubility, 

incompatibility, and complexation. A dilute non-interacting biopolymer mixture of 

proteins and polysaccharides may be co-soluble, forming a stable solution. If protein 

and polysaccharide carry opposite charges (e.g., pH < pI), electrostatic attraction 
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between the biopolymers will lead to the formation of soluble complex/coacervates 

or associative phase separation. However, if proteins and polysaccharides repel each 

other (e.g., pH > pI), mixtures of biopolymers are often incompatible, leading to 

thermodynamic incompatibility (segregation). Phase separation results in one phase 

rich in proteins and the other phase rich in polysaccharides (Tolstoguzov 1991).  

2.3.1 Protein-polysaccharide complexes 

   Complexes can be regarded as a new type of food biopolymers, the functional 

properties of which showed markedly differences from those of macromolecular 

reactants (Doublier and others 2000). The formation of an electrostatic complex is 

usually a reversible process, depending on parameters such as pH and ionic strength. 

Generally, electrostatic complexes dissociate with ionic strength exceeds 0.2-0.3 M, 

or when the pH is above the pI of the protein (Ye 2008). Complex formation 

between proteins and polysaccharides usually occurs at pH values below the 

isoelectric point of the proteins and at low ionic strength. The interactions between 

the two biopolymers reach the maximum when proteins carry a net positive charge 

and behave as polycations at pH values below the pI, while polysaccharides have a 

net negative charge and behave as polyanions at pH ranging between the pK and the 

pI (de Kruif and others 2004). However, electrostatic interactions between proteins 

and polysaccharides can still occur at near neutral pH. It is due to the fact that 

anionic polysaccharides can interact with positively charged patches on the proteins 

(Dickinson 1998; Doublier and others 2000; Tolstoguzov 1997). Recent studies have 
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indicated that this type of complex showed enhance functional properties such as 

heat stability and acid-induced gelation.  

2.3.2 Factors influence the complexation 

   The formation of complexes is primarily influenced by pH, ionic strength, 

biopolymer concentration and protein to polysaccharide ratio. Some other factors 

such as the biopolymer charge density and molecular weight, temperature, pressure 

or stirring have been shown to also influence complexes formed at pH < pI (Schmitt 

and Turgeon 2011). These parameters have been extensively investigated in 

references and discussed in details for many protein/polysaccharide pairs. 

   pH. pH plays an important role in the formation of protein-polysaccharide 

complexes because it influences the net charge carried by the biopolymers. At pH 

values below pI of the protein, an anionic polysaccharide and a protein carries 

opposite net charges, resulting in a maximum electrostatic interaction. It has been 

reported that complex formation of β-lactoglobulin/acacia gum increased when pH 

of the mixture decreased from 5.0 to 3.6 due to increased positive net charge on the 

protein (Schmitt and others 1999). A similar effect was reported when gum arabic 

was mixed with pea protein isolate, and complexes were obtained at pH 3.2 to 4.0 

(Liu and others 2010). At pH values above the pI, e.g. at near neutral pH, 

electrostatic interaction can still occur due to the interaction between anionic 

polysaccharide with positively charged subunits on the proteins, forming soluble 

interbiopolymer complexes (Doublier and others 2000; Vardhanabhuti and others 
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2009; Girard and others 2002a).  

   Ionic strength. The net charge on proteins and polysaccharides is reduced by 

interaction with salts, leading to a decrease in the electrostatic attraction between the 

biopolymer molecules. At high ionic strength, salt would screen the charges of the 

protein and polysaccharides, which affects the formation of complexes (Ye and 

others 2000; Vardhanabhuti and Foegeding 2008; Weinbreck and others 2003a; 

Galazka and others 1999).  

   Biopolymer ratio and biopolymer concentration. The protein to polysaccharide 

ratio will obviously have effect on the charge balance of the mixture, hence 

influencing complexation. At a certain condition of pH and ionic strength, maximum 

complexation is obtained at a specific protein to polysaccharide ratio. It was clearly 

shown that the optimum coacervation was obtained for β-lactoglobulin/acacia gum 

mixing ratio of 2:1 at pH 4.2 (Schmitt and others 1999). Similarly, Ducel and others 

(2004) found that optimum coacervation was obtained at pea globulins to arabic gum 

ratio of 3:7 and pH 2.7, and with α-gliadins to arabic gum ratio of 1:1 at pH 3. 

Weinbreck and others (2003a) explained that increasing the biopolymer 

concentration would screen the charges of the biopolymers due to release of more 

counterions in the solution, thus increase the solubility of the complexes. 

Furthermore, at high biopolymer concentrations, the mixture will show phase 

separation which is attributed to the competition between the molecules for the 

solvent (Tolstoguzov 1997). 

   Other factors. Processing factors, including temperature, heating time, pressure, 
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and shear rate can affect the formation and stability of protein-polysaccharide 

complexes (Laneuville and others 2000; Li and others 2006; Leng and Turgeon 

2007). These parameters may induce conformational changes on proteins and 

polysaccharides such that have influence on the interactions between the two 

biopolymers. For instance, an increase in temperature enhances hydrophobic 

interactions and covalent bonding while low temperature is conductive to hydrogen 

bonding. Globular proteins will be unfolded and denatured at high temperature, 

exposing more reactive sites for interacting with polysaccharides (Ye 2008). Galazka 

and others (1999) pointed out that complexation with carrageenan protected the BSA 

against loss of its functionality due to disulfide bridge formation during or after high 

pressure treatment. 

2.4 Emulsification 

   Food emulsions are complex in composition. The droplets are stabilized by 

proteins, small-molecule surfactants, and in certain cases, polysaccharides 

(Dickinson 2010). Basically, emulsions could be stabilized either by 

protein-polysaccharide complexes/coacervates or by using the so-called 

layer-by-layer technique, leading to mixed emulsions or bilayer emulsions. The 

layer-by-layer technique is most commonly used in food industry even if the two 

types of emulsions have different properties (Jourdain and others 2009). However, in 

Jourdain and others (2009), mixed sodium caseinate/dextran sulfate emulsions were 

much more stable against bridging flocculation even at very low pH compared to 
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bilayer emulsions due to the different structure of the composite biopolymer at the 

interface. Complexes between whey protein isolate and HM-pectin were also used 

for emulsion stabilization at pH 5.5 due to strong electrostatic repulsion between oil 

droplets (Neirynck and others 2007). Lutz and others (2009b) reported that such 

complexes were shown to stabilize the external interface of W/O/W emulsions 

prepared at pH≤6.0. In addition, whey protein/CMC complex-stabilized emulsions 

showed freeze stability upon storage at -15 oC for 7 days (Koupantsis and 

Kiosseoglou 2009). Several other protein/polysaccharide pairs were used to produce 

acid stable emulsions and could be applied in the beverage industry (Du and others 

2009; Klein and others 2010). Furthermore, complex-stabilized emulsions were used 

for entrapment of flavors and delivery in food matrices (Weinbreck and others 2004; 

Relkin and others 2004). 

2.5 Gelation 

   Gelation is one of the most important functional properties of proteins and it is 

widely applied to meat, yogurt, cheese and other gel-based food products (Sodini 

and others 2005; Everett and McLeod 2005; Lyons and others 1999).  

   Gelation can be induced by chemical and enzymatic methods, heat treatment or 

so called cold-set process. Cold-set gelation is a two-step gelation process conducted 

at ambient temperature. In the first step, protein polymers are obtained by heating 

the protein solution at below critical gelation concentration, pH above or below the 

isoelectric point, and low ionic strength. In the second step, acid or salt is added to 
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the protein polymers to induce gelation by reducing the electrostatic repulsion 

between the protein aggregates (Bryant and McClements 2000b; Ju and Kilara 1998; 

de Jong and others 2009; Kuhn and others 2010; Hongsprabhas and Barbut 1997b; 

de Faria and others 2013). Salt type and concentration have effects on gel properties. 

Bryant and McClements (2000c) found that adding 100-400 mM NaCl to whey 

protein polymer solutions resulted in gels with increased turbidity, shear modulus 

(G*) and elasticity. When compared with gels induced by addition of NaCl, those 

containing CaCl2 were more rigid due to calcium being more effective at screening 

charges and its ability to form Ca2+ bridges between protein molecules (Bryant and 

McClements 2000b; Vardhanabhuti and others 2001). Cold-set gelation can also be 

induced by adding gluconic-δ-lactone, which gradually reduces the pH of protein 

polymers and thus forming the gel. During the acidification process, additional 

disulfide bonds are formed between aggregates to strengthen the gel network (Alting 

and others 2000). 

   Polysaccharides are added to alter and improve the properties of acid-induced 

protein gels. de Jong and van de Velde (2007) investigated the effect of charge 

density of polysaccharide on the microstructure and physical properties of 

acid-induced WPI gels, and pointed out that charge density was the dominant factor 

that determine the micro-phase separation. In WPC-gellan systems, an increase in 

gel mechanical properties was observed due to the formation of electrostatic 

complexes between the proteins and polysaccharides at pH 4 (Picone and da Cunha 

2010). Zhang and others (2014) pointed out that the water holding capacity (WHC) 
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of acid-induced whey protein gels depended on the concentration of pectin. Addition 

of pectin at low concentration had little effect on WHC while high pectin 

concentration had sever adverse effect on WHC due to thermodynamic 

incompatibility between protein and pectin.  

   Interactions between proteins and polysaccharides have been extensively utilized 

in the food industry due to their enhanced properties compared to those of protein 

alone. Most studies, however, have been conducted on the mixtures at pH < pI, while 

investigations of complexes formed at pH > pI have been limited. It has been shown 

that unheated and heated soluble complexes between protein and polysaccharide at 

pH > pI have a great potential to be novel food ingredients due to their improved 

functional properties. Understanding different factors that affect their formation and 

functional properties could lead to the design of the complexes that are suitable for 

different applications.  
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CHAPTER 3 

THE EMULSIFICATION PROPERTIES AND STABILITY OF 

WHEY PROTEIN-CMC COMPLEX 

Manuscript to be Submitted for Publication 

 

3.1 Abstract 

   The influence of CMC concentration and molecular weight (Mw = 270k, 750k, 

and 2,500kDa) on the stability and properties of WPI/CMC-stabilized oil-in-water 

emulsions was assessed by measuring ζ-potential, droplet size, creaming stability, 

apparent viscosity and protein surface coverage. Emulsions were prepared with 

soluble WPI-CMC complex by ultrasonicating 5% oil, 0.5% WPI and 0-0.5% CMC 

at pH 7. After emulsification, pH was adjusted to 5.2. In the absence of CMC, the 

WPI emulsions were unstable to droplet flocculation and coalescence due to the 

relatively low droplet charge. ζ-potential and droplet size measurements indicated 

that WPI-CMC complex absorbed to the droplet surfaces and thus reduced droplet 

flocculation and coalescence. The emulsion with 0.08% CMC 2,500k showed the 

most stable properties. Although the acidic emulsions containing 0.5% CMC 2,500k 

remained stable within 10 days after preparation due to the high viscosity and/or 

weak gel-like network, it showed separation for further storage. Both CMC 

concentration and Mw influenced the stability of acidified emulsions, and high Mw of 

CMC at proper concentration contributed to the long-term stability of emulsion 
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system. 

3.2 Introduction 

   Biopolymer interactions are widely used to improve the texture and shelf-life of 

food products. Many studies on the interactions between protein and polysaccharide 

have been reported (Pereyra and others 1997; Laneuville and others 2000; Turgeon 

and others 2003; Neirynck and others 2007; Schmitt and Turgeon 2011; Dickinson 

2008). Functional properties of protein are generally improved by complexation with 

other polysaccharides. The formation and solubility of protein-polysaccharide 

complex mainly depend on pH, ionic strength, biopolymer ratio and concentration. 

Other factors such as types of biopolymers (charge density, molecular weight, etc.), 

temperature and pressure also influence the complex formation (Schmitt and 

Turgeon 2011). Protein-polysaccharide complex formation reaches the maximum at 

pH values below or around the pI of protein due to the opposite charge carried by 

these two biopolymers. However, at pH values above the pI of proteins, e.g. at 

neutral pH, electrostatic interactions between biopolymers can still occur (Doublier 

and others 2000; Vardhanabhuti and others 2009; Girard and others 2002a). In this 

case, any electrostatic interaction involves the anionic polysaccharide interacting 

with positively charged local patches on the proteins (Dickinson 1998).  

   Two alternative procedures can be used for stabilization of oil droplets by 

protein-polysaccharide electrostatic complex: ‘bilayer emulsion’ preparation and 

‘mixed emulsion’ preparation (Jourdain and others 2008). The so-called 
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layer-by-layer technique is used for the preparation of bilayer emulsions whereby 

polysaccharide is added to a protein-stabilized system. Mixed emulsions are 

prepared by soluble protein-polysaccharide complexes which adsorb onto the oil 

droplet surface directly. (Jourdain and others 2009). When prepared at near neutral 

pH, the mixed emulsion approach would show more stable properties compared with 

the bilayer emulsion. It has been demonstrated that when prepared at pH 6, the 

mixed caseinate-dextran sulfate solution resulted in a soluble complex rather than a 

coacervate and the emulsion obtained by this approach gave much stronger 

interfacial films than the bilayer emulsion, leading to a more stable behavior of 

emulsion system (Jourdain and others 2009). (Lutz and others 2009a) reported that 

once a soluble WPI-pectin complex was formed at pH 6, the resulting emulsion was 

stable with small droplet size, minimum creaming and low water transport. 

   Polysaccharide plays an important role in a protein-stabilized emulsion and has a 

great influence on the emulsion properties (Dickinson 2003). Various research have 

been reported on the addition of polysaccharide to enhance the properties and 

stability of protein-stabilized oil-in-water emulsions (Ye and others 2000; Surh and 

others 2006; Long and others 2013; Dickinson and Pawlowsky 1997; Neirynck and 

others 2007). Although the stabilization of emulsion is primarily dependent on the 

concentration of polysaccharide, molecular properties of polysaccharides can 

significantly influence emulsification properties. It has been investigated that whey 

protein-stabilized emulsion with low molecular weight and low degree of 

deacetylation of chitosan was less stable due to the loss of interfacial coadsorption 
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efficiency and interfacial net charge (Laplante and others 2005b). Du and others 

(2009) reported that CMC with high molecular weight and high degree of 

substitution increased the viscosity of the solutions and increased the electrostatic 

repulsion between casein particles, respectively, leading to the long-term stability of 

acidified skim milk drinks. 

   Whey protein isolate (WPI) is one of the most used proteins in food emulsions 

due to its excellent surface activity. The emulsification properties of WPI with 

different polysaccharides have been widely studied (Girard and others 2002c; Singh 

and others 2003; Laplante and others 2005a; Sun and others 2007; Klein and others 

2010; Li and others 2012a). As one of the most important derivatives of cellulose, 

carboxymethylcellulose (CMC) is an anionic water soluble polysaccharide and has 

been used in a wide range of food products (Nussinovitch 1997). It has been 

demonstrated that WPI/CMC network of complex formed at pH 4.2 was more 

effective in protecting oil droplets against coalescence than emulsion containing 

WPI alone due to higher protein load (Girard and others 2002b). WPI had weak 

interfacial activity while the use of complex as emulsifier made it possible to adsorb 

larger amounts of protein that would be involved in the network formation between 

complex. Koupantsis and Kiosseoglou (2009) reported that by complexation of whey 

protein with CMC at pH value below pI, interactions might take place at lower pH, 

leading to the stability of whey protein-stabilized emulsion during ageing, heating or 

freezing. To our best knowledge, the emulsification properties of WPI-CMC 

complex formed at neutral pH and the effect of CMC molecular weight on 
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WPI-stabilized emulsion have not been studies.  

   The objective of our study was to investigate the emulsification properties of 

mixed emulsion formed by first preparing a bulk aqueous solution of WPI-CMC 

complex at pH 7.0, and using the complex as the emulsifying agent during 

subsequent homogenization. After emulsification, the pH was adjusted to 5.2. The 

reason for choosing pH 5.2 in this study was that it is the pH value near pI of whey 

protein. At this pH, emulsion prepared with whey protein alone is unstable due to the 

least electrostatic repulsion between droplets. Formation of WPI-CMC complex was 

expected to improve the stability of whey protein-coated emulsion. We aimed to 

investigate the influence of CMC molecular weight and concentration on the 

interactions between CMC and WPI at pH value near pI and thus on the 

emulsification properties and stability of emulsion system. This study can provide a 

better understanding of protein and polysaccharide interactions and the outcomes 

could be applied in emulsion food products having pH values near pI of the protein.  

 

3.3 Materials and methods 

3.3.1 Materials 

   Whey protein isolate (WPI) BiproTM was kindly provided by Davisco Foods 

International Inc. (Le Sueur, MN). According to the manufacturer, WPI contained 

97.9% protein and 1.8% ashes on a dry basis. CMC with the average molecular 

weight (Mw) of 270k, 750k, and 2,500kDa were kindly provided by CP Kelco Inc. 
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(Atlanta, GA). Phosphate buffer solutions (5mM, pH 7 and 5.2) were made with 

Milli-Q water (>18.2 MΩ). Commercial vegetable oil was purchased from local 

supermarket, and all the other reagents were of analytical grade. All ingredients were 

used without further purification and without correction for their moisture content. 

3.3.2 Preparation of stock solutions 

   WPI stock solution (10%, w/w) was prepared by slowly dissolving protein 

powder into 5 mM phosphate buffer at pH 7 and kept stirring at room temperature 

for at least 2 h. CMC stock solution (1%, w/w) was prepared by slow addition of 

CMC powder into phosphate buffer at pH 7 and at 85 oC for 1 h under continuous 

stirring. After heating, the CMC stock solution was cooled in ambient temperature 

before weight adjustment to bring the concentration back to 1%. The two stock 

solutions were stored at 4 oC in the refrigerator overnight for complete hydration. 

3.3.3 Preparation of emulsions 

   All oil-in-water emulsions containing 5% of oil, 0.5% of protein and 0-0.5% of 

CMC were obtained by emulsification of oil with aqueous WPI-CMC complex 

solutions through a two-stage process. The WPI-CMC complexes were prepared by 

mixing the biopolymers and water at appropriate amount and the pH was adjusted to 

7.0. The WPI-CMC mixtures were stirred for at least 1h before addition of oil and 

emulsification. Coarse emulsions were prepared by blending 5% oil and 95% 

aqueous solution together using a laboratory homogenizer, Ultra Turrax T-25 (IKA 

Instruments, Germany) at 12,000 rpm for 1 min at room temperature. Final emulsion 
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samples were obtained by using an ultrasonic processor (Sonics VC 505, power 500 

W, frequency 24 kHz) with a sonotrode (3 mm, approx. length 100 mm, titanium) 

for 5 min (30% amplitude of maximum power). Sodium azide (0.02%) was added as 

an anti-microbiological agent. After emulsification, the emulsions were slowly 

acidified to pH 5.2 by adding 0.1M HCl (50 µL at a time). The acidified emulsions 

were stirred for at least 1 h before analysis to allow the pH to stabilize. 

3.3.4 Zeta- (ζ-) potential measurement 

   Measurement of ζ-potential was carried out using the Zetasizer Nano ZS 

(Malvern Instruments Ltd., Worcestershire, UK) equipped with 633 nm laser and 

173o detection optics at 25 oC. Each sample was diluted at a ratio of 1:250 using 5 

mM phosphate buffer at pH 5.2 in order to prevent multiple scattering effects. An 

individual ζ-potential measurement was determined from the average of five 

readings taken on the same sample. All the measurements were carried out in 

duplicate.  

3.3.5 Droplet size determination 

   Droplet size distributions were determined with a Coulter Multisizer (Coulter 

Electronics Ltd., Luton, England) at room temperature. Each sample was diluted 

with 5 mM phosphate buffer at pH 5.2 at a ratio of 1:1000. The volume mean 

diameter of the sample was used as the average droplet size. All measurements were 

repeated at least twice. 
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3.3.6 Creaming stability of the emulsion 

   Fresh emulsion sample (10 ml) was pipetted into a cylindrical glass tube (internal 

diameter = 16 mm, height = 100 mm). Subsequently, the tubes were sealed with 

Parafilm M film (Pechiney Plastic Packaging Company, Chicago, IL) to prevent 

evaporation. The emulsion samples were stored quiescently at ambient temperature 

(~25 °C) for 15 days. Emulsion stability evolutions in tubes were determined by 

measurements of height (millimeter units) of a distinctive clear or semi-transparent 

bottom serum phase layer on day 5, 10 and 15 after emulsion preparation. The extent 

of creaming was characterized by creaming index (CI %) = (HS/HT) × 100%, where 

HS is the height of the serum layer, and HT is the total height of the emulsion. Each 

creaming index of sample was recorded in duplicate. 

3.3.7 Rheological behavior measurement 

   Rheological behavior of fresh emulsions was measured using a Kinexus 

Rheometer (Malvern Instruments Ltd., Worcestershire, UK) equipped with a cone 

(40 mm diameter, 4o angle) and plate geometry. Emulsion sample was loaded on a 

lower plate and the upper cone geometry was gently lowered to a gap of 0.05 mm. 

Flow behavior of the sample was conducted under a shear rate ramp from 0.1/s to 

200/s at 25 °C and under a solvent trap setting to prevent evaporation. Flow behavior 

index (n) and consistency coefficient (m) were calculated using the power law model. 

Each treatment was measured in duplicate.  
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3.3.8 Determination of protein surface coverage 

   The concentration and composition of protein adsorbed at the oil–water interface 

was determined according to the method described by (Ye and others 2000) with 

slight modification. The fresh emulsions were centrifuged at a speed of 13,000 x g 

for 60 min at 20 °C in a temperature-controlled centrifuge (Beckman Coulter, Inc., 

Fullerton, CA). The subnatants were carefully removed using a pipette and filtered 

through a Fisherbrand™ Qualitative P2 Grade filter paper (Fisher Scientific Inc., PA). 

The total protein content of subnatants was analysed by Kjeldahl method (N × 6.38). 

The protein surface coverage (mg/m2) was then calculated from the mean diameter 

of the oil droplets determined by the Multisizer and the difference between the 

amount of protein used to prepare the emulsion and those measured in the subnatant 

after centrifugation. All the measurements were done in duplicate. 

3.3.9 Statistical analysis 

   SPSS software (version 21, SPSS Inc., Chicago, IL) was used to analyze 

significant differences (p < 0.05) between the properties of gels by one-way analysis 

of variance (ANOVA). The comparisons between the mean values were evaluated 

by the Duncan’s test. 
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3.4 Results and discussion 

3.4.1 Formation of WPI-CMC complex on oil droplets 

   The influences of Mw of CMC on the ζ-potential of WPI as a function of CMC 

concentration were shown in Fig.1. In the absence of CMC, the net charge of the 

emulsion droplets was slightly negative (-2.22 mV), which demonstrated that pH 5.2 

was the pH value very close to the pI of whey protein and that the net droplet charge 

was close to zero. The addition of CMC caused an appreciable change in the CMC 

concentration dependence of the net droplet charge. When CMC was added to WPI 

solution before emulsification, the ζ-potential of the droplets drastically became 

more negative even at 0.04% CMC (-26.7 to -30.2 mV). This indicated that 

complexes were formed between WPI and CMC and the negatively charged 

WPI-CMC complexes adsorbed onto the surface of the oil droplets. Increasing CMC 

concentration led to more negative ζ-potential, which implied that more CMC 

molecules interacted with WPI. When CMC concentration exceeded 0.3%, the 

ζ-potential appeared to be constant, suggesting that the droplet surfaces were almost 

saturated by WPI-CMC complexes. Similar types of electrostatic interactions 

between anionic polysaccharides and proteins in solutions or emulsions have been 

reported previously. Harnsilawat and others (2006) reported that at pH 3 and 4, the 

electrical charge on the emulsion droplets became more negative as the 

polysaccharide concentration increased, and it reached a plateau value until the 

surfaces of the droplets were saturated with polysaccharide. In Liu and others (2012) 

study, at pH 5-7, the ζ-potential of casein-coated droplets increased with the 
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increasing CMC concentration and it appeared to be stable as the CMC 

concentration exceeded 0.3%. Guzey and McClements (2007) pointed out that the 

charge on β-Lactoglobulin–stabilized emulsions (0.1% oil, 0.005% β-Lactoglobulin) 

became more negative as pectin concentration increased from 0 to 0.005%, and it 

became stable with further addition of pectin. 

   Interestingly, there was no clear difference in the ζ-potential of emulsion droplets 

depending on the Mw of CMC especially in emulsions containing up to 0.1% CMC. 

Slight differences in the ζ-potential were observed among CMC Mw at 0.3% and 0.5% 

CMC. The effect of CMC Mw on the formation of complexes between casein 

micelles and CMC was studied. Du and others (2009) reported that addition of high 

Mw CMC resulted in a bigger increase in ζ-potential of CMC-coated casein micelles 

above pH 3.7 compared to lower Mw CMC. It should be noted that the differences in 

the ζ-potential found in their study was mostly within 5 mV. Since the CMCs used in 

our study had similar charge density, it will be reasonable that there was no clear 

difference in their effect on the ζ-potential of the droplets. However, at 0.3 and 0.5% 

CMC, the ζ-potential of the droplets made from CMC 2,500k was > 5 mV larger 

(more negative) than that from CMC 270k. 
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Figure 1. Dependence of electrical charge of emulsion droplets (zeta-potential) on 
CMC concentration and Mw. (u) CMC 2500k; (n) CMC 750k; (▲) CMC 270k. 

 

3.4.2 Mean particle diameter of the oil droplets 

   The effect of CMC concentration and Mw on the average size of the oil droplets 

is shown in Fig. 2. When the pH of WPI stabilized emulsion without CMC was 

acidified to 5.2 the mean particle diameter of the droplets significantly increased 

from 1.7 µm at pH 7.0 (data not shown) to 9.3 µm, indicating a high degree of 

droplet aggregation. This could be attributed to the fact the pH was close to the pI of 

the adsorbed WPI molecules, hence the electrostatic repulsion between the droplets 

was too small to prevent aggregation (Surh and others 2006; Li and others 2012a; 

Guzey and McClements 2007). The addition of CMC even at 0.04 % significantly 

reduced the droplet size, indicating the reduction in droplet aggregation due the 

overall negative charge on the surface of the droplets. This also indicated that the 

presence of CMC at this concentration improved the surface activity of whey protein, 

allowing the protein to sufficiently adsorb to the newly created oil-water interface 
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and prevent the formation of large droplets. This result was in agreement with other 

studies showing that anionic polysaccharides can reduce the aggregation of 

protein-stabilized emulsion droplets at near pI of the proteins (Liu and others 2012; 

Surh and others 2006). However, the observed large standard deviations were a clear 

indication that the system was unstable due to large aggregation and/or flocculation 

of the oil droplets (Khalloufi and others 2009). It is possible that the net charge on 

the droplets was at the border where stable colloid might be achieved, thus the 

electrostatic repulsion might be insufficient to completely prevent aggregation. In 

addition, CMC molecules might adsorb to the surface of more than one emulsion 

droplet during the emulsification, leading to bridging flocculation (Pinotti and others 

1997). With increasing CMC concentration up to 0.1%, the average droplet sizes 

continued to decrease which corresponded to higher negative charge of the droplets. 

At 0.1% CMC, the average droplet sizes for CMC 2,500k, 750k and 270k were 3.7, 

4.3 and 4.7 µm, respectively. At high CMC concentrations of 0.3 and 0.5%, the 

droplet size appeared to be stable for CMC 250k and CMC 750k, while a slight 

increase in droplet size was observed for CMC 2,500k. This slight increase could be 

due to the depletion flocculation resulted from nonadsorbed CMC molecules.  

   It is interesting to point out that, at ≤ 0.1% CMC, significant difference in the 

effect of Mw of CMC on droplet size was observed only at CMC concentrations of 

0.08%. The emulsion prepared with CMC 2,500k had smaller droplet size (3.6 µm) 

than that prepared with CMC 270k (5.5 µm) or CMC 750k (5.5 µm). The result 

observed here was different with previous research which showed larger average 
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droplet size in emulsion prepared with higher molecular mass soy soluble 

polysaccharide due to the formation of thicker layer on the oil droplets. Similar 

phenomenon was observed by Du and others (2009) who pointed out that high Mw 

CMC formed thick adsorbed layer onto caseinate micelles, leading to a larger size of 

caseinate micelles than low Mw CMC. The negative charges of CMC were 

distributed along the CMC chains, yielding a conformation with many loops when 

adsorbed at the interface. These loops extended into the continuous phase. We 

speculated that higher Mw CMC with longer chain length might have more loops and 

greater molecular flexibility, maximizing steric stabilization, therefore, smaller 

droplet size. At CMC concentration of 0.3 and 0.5%, there was no change in droplet 

size and no difference among CMCs with different Mw. This could be due to the 

saturated coverage of CMC molecules on the surfaces of oil droplets and the excess 

CMC molecules would be present in the aqueous phase of the emulsions. 

 

 
Figure 2.	
   Dependence of mean volume diameter of emulsion droplets on CMC 
concentration and Mw. (u) CMC 2500k; (n) CMC 750k; (▲) CMC 270k. 
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3.4.3 Emulsion stability during storage 

   Fig. 3 shows the effect of CMC concentration and Mw on creaming stability of 

WPI-stabilized emulsions during 15-day storage. Without CMC, it was not possible 

to prepare a stable emulsion at pH 5.2. The emulsion separated into a white cream 

layer at the top and a transparent serum layer at the bottom within 3 h of preparation 

(data not shown). This suggested that all of the droplets were aggregated and rapidly 

moved upwards due to gravity, which supported the ζ-potential and droplet size 

results. It was worthy to mention that even though the emulsion in the absent of 

CMC was unstable and separated rapidly, the creaming rate was much slower than 

that shown by other studies. Liu and others (2012) and Surh and others (2006) 

reported that casein-coated emulsion without polysaccharides at pH 4 separated into 

a cream layer and a serum layer within only a few minutes. In their studies, the 

emulsions were prepared by high-pressure homogenization and the average droplet 

size of emulsion containing casein alone was > 300 µm. In Koupantsis and 

Kiosseoglou (2009) study, after the emulsion prepared by high-pressure 

homogenization was acidified to pH 5, the average droplet diameter of the fresh 

emulsion containing WPI alone was about of 13 µm and the percentage of serum 

was more than 30% only after one-day storage. The improved emulsion stability in 

our study could be attributed to the smaller droplet size (9.3 µm) created by 

sonication compared with that in other studies. Stoke’s law states that the velocity at 

which a droplet moves is proportional to the square of its radius, thus, by reducing 

the droplet size, the stability of emulsion can be increased. Ultrasound 
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homogenization has shown a great affinity for producing emulsions with smaller 

droplet size (Jafari and others 2007; Koocheki and others 2009; Delmas and others 

2011). The addition of CMC had an obvious impact on creaming rate of emulsion 

upon acidification. Addition of CMC led to more stable emulsions. Furthermore, the 

effects of Mw and concentration of CMC are clearly shown.  

   Overall, emulsions prepared with higher Mw CMC were more stable compared to 

those with lower Mw CMC as shown by lower creaming rate (Fig. 3). Clearly, 

emulsions containing CMC with highest Mw (2,500k) were the most stable compared 

to those containing CMC 750k or 250k across all CMC concentrations and all 

storage time. Emulsions prepared with CMC 270k and 750k showed much faster 

creaming rate than those with CMC 2,500k within the first 5 days of preparation, and 

samples with CMC 270k had more rapid separation than those with CMC 750k 

within 10 days of preparation. These results were in accordance with previous study 

which showed that CMC with higher Mw resulted in a more stable acidified milk 

drink system than CMC with lower Mw (Du and others 2009). They explained that 

higher viscosity induced by the margin of the nonadsorbed high Mw CMC should 

contribute to the higher stability of the system. This will be discussed in rheological 

behavior (Section 3.4.4).  Semenova (1996) suggested that increasing dextran Mw 

favored coacervation with soy globulin because larger size polysaccharide was more 

accessible for the protein. This may explain the effect of CMC 2,500k over the lower 

Mw CMC on forming complex with whey protein molecules, leading to reduced 

creaming rate and improved emulsion stability. In addition, Li and others (2012b) 
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pointed out that the large size of polysaccharides adsorbed onto interfaces and 

protruding into the continuous phase acted as a thick steric layer, which provided 

effective stabilization between emulsion droplets and acted in concert with 

electrostatic repulsive forces. This might also be an explanation for emulsion with 

high Mw CMC exhibited better creaming stability than that with low Mw CMC 

across all the CMC concentrations. 

   The effect of CMC concentration can be clearly observed and it also depends on 

the type/Mw of CMC. Addition of only 0.04% of CMC 2,500k reduced the creaming 

index from 55.6% to 9.2% and from 58.5% to 19.7% after 5 and 15 days of storage, 

respectively. Interestingly, emulsion with 0.08% CMC 2,500k was the most stable 

and there was no separation after 15 days of storage (Fig. 3a). This might be 

attributed to the fact that increasing CMC concentration up to 0.08% led to increased 

protein surface coverage of the droplets and thus enhanced stability (Fig. 5). This 

also coincided with the ζ-potential and droplet size results where increasing 

concentration up to 0.08% resulted in more negative charge and smaller droplet size 

(Figs. 1 and 2). In addition, the thickness of the interfacial layer increased due to the 

adsorption of CMC to the droplet surfaces, hence, both strong electrostatic repulsion 

and steric repulsion between the WPI/CMC-coated droplets prevent aggregation 

(Harnsilawat and others 2006). Further increase in CMC concentration led to less 

stable systems, which were demonstrated by phase separation on emulsion samples 

with 0.1 and 0.3% CMC. This destabilization should be related to the depletion 

flocculation caused by the nonadsorbed CMC molecules (Dickinson and others 
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1997a; Liu and others 2012). Interestingly, emulsion with 0.5% CMC 2,500k did not 

show any phase separation within 10 days of preparation. It could be due to the high 

serum viscosity of this sample and/or immobilization of dispersed oil droplets in a 

weak gel-like network, resulting in lighter depletion flocculation, thus, the rate and 

extent of phase separation may be impeded (Dickinson 2003; Long and others 2013). 

However, it did not contribute to the long-time stability of the emulsion system 

because the emulsion gradually separated after 10 days of storage. This weak 

network undergoes restructuring due to the Brownian motion of the oil droplets and 

gravity with time, causing the collapse of the gel network, eventually leading to 

cream separation from serum phase (Hermar and others 2001). The effect of CMC 

concentration on creaming stability was similar for CMC 270k and 750k. Increasing 

CMC concentration led to more stable emulsions and emulsion containing 0.5% 

CMC was the most stable one during 15-day storage (Figs. 3b and 3c). This could be 

due to the relatively smaller droplet size and/or higher viscosity of the serum phase. 

The effects of hydrocolloids on emulsification properties of protein-stabilized 

emulsion have been reported (Long and others 2013; Hermar and others 2001; Li 

and others 2012a; Singh and others 2003; Harnsilawat and others 2006). A minimum 

concentration of hydrocolloids is needed in order to form stable emulsion. In this 

case, it is clearly shown that the minimum/optimum CMC concentration needed for 

stable emulsion depends on the size/Mw of CMC. The CMC concentration needed 

for stabilizing emulsion was lower with higher Mw CMC than that with lower Mw 

CMC. As previously stated, it could be that high Mw CMC with longer chain would 
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form conformation loops extending into continuous phase, leading to more stable 

system through steric stabilization. 
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Figure 3.	
  Creaming stability of emulsions prepared with different Mw of CMC stored 
quiescently for 15 days at room temperature: (a) CMC 2500k; (b) CMC 750k; (c) 
CMC 270k. (■) day 5; (□) day 10; (■) day 15. 
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3.4.4 Rheological behavior of emulsions 

   Flow behavior of fresh emulsions was measured immediately after the 

preparation of the emulsions. Plots of apparent viscosity versus shear rate for 

WPI/CMC-stabilized emulsions containing different concentrations and Mw of CMC 

are shown in Fig. 4. Power law model was applied to further describe the flow curve 

dispersions. The values of consistency coefficient (m) and flow behavior index (n) 

are listed in Table 1. Consistency coefficient is a measure of viscosity and its trend is 

in agreement with that of viscosity vs. shear rate presented in Fig. 4. The flow 

behavior index indicates the shear-thinning (n < 1), dilatant (n > 1), or Newtonian (n 

= 1) behavior. 

   In the absence of CMC, the emulsion exhibited a shear-thinning behavior with n 

value of 0.664, as the apparent viscosity decreased with the increase of shear rate, 

but with a turning point. This turning point might be explained by the fact that the 

flocs were disrupted at this shear rate, thus decreasing the effective volume fraction 

and lowering the viscosity with further increasing shear rate (Lorenzo and others 

2008; Franco and others 1995). Similar behavior was shown in caseinate-stabilized 

emulsion at pH 5 that the emulsion showed strong shear-thinning behavior (Surh et 

al., 2006). Jourdain and others (2009) also reported that emulsion prepared with 

caseinate showed shear-thinning behavior at pH 6 and pH 2. With addition of CMC, 

the emulsions showed different flow behaviors depending on the Mw of CMC as a 

function of CMC concentration. As shown in Table 1, emulsions containing 0.04 and 

0.08% CMC 2,500k exhibited a behavior close to Newtonian with much lower 
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viscosity compared with that without CMC. This result suggested that there was a 

high degree of droplet flocculation in emulsion prepared with WPI alone and the 

addition of CMC could prevent the formation of large droplets due to increased 

negative charge on the droplets. Increasing CMC 2,500k concentration (0.1 and 

0.3%) resulted in emulsions showing shear-thinning behavior, which implied the 

formation of larger droplets due to more adsorption of WPI-CMC complex on the 

surfaces of droplets. This result was in accordance with the droplet size and 

creaming stability. For emulsion with 0.5% CMC 2,500k, it showed much higher 

viscosity, indicating that the nonadsorbed CMC increased the viscosity of serum, 

thus led to a relatively stable emulsion system within 10 days of preparation. Similar 

rheological behavior has been reported on emulsion system with high addition of 

polysaccharide (Long and others 2013; Sun and others 2007; Ye and others 2004).  

   The trend on viscosity and flow behavior of CMC 270 and 750k as a function of 

CMC concentration was similar Emulsions containing 0.08 to 0.3% CMC exhibited 

Newtonian behavior with much lower viscosity compared with those without CMC. 

At the highest CMC concentration (0.5%), flow behavior of emulsions with CMC 

250k and 750k changed to shear-thinning with the consistency index smaller (less 

viscous) than that of CMC 2,500k. Consistency index of emulsions with CMC750k 

was larger than that with CMC 270k.  

   The differences in rheological behavior among emulsions with different Mw of 

CMC were also clearly shown (Fig. 4). Though the change in rheological behavior 

from shear-thinning to Newtonian (low viscosity) and back to shear-thinning (high 
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viscosity), the concentrations where these changes occurred were different among 

different Mw. The flow behavior of emulsions prepared with CMC 2,500k shifted 

from shear-thinning to Newtonian at 0.04%, and back to shear-thinning at 0.1%; 

however, the concentrations where these changes occurred for emulsions prepared 

with CMC 750k and 270k were at 0.08% and 0.3%. At 0.04% CMC, emulsion with 

CMC 2,500k showed a change in rheological behavior from shear-thinning of highly 

flocculated emulsion of WPI (no CMC) to Newtonian behavior with significant 

decreased viscosity, while those with CMC 270k and 750k still showed 

shear-thinning behavior. In addition, at shear rate < 1 s-1, the viscosity of emulsions 

with CMC 2,500k and CMC 750k was lower than that without CMC, while 

emulsion with CMC 270k had higher viscosity than that without CMC. This might 

be attributed to the fact that high Mw CMC was more accessible for protein than low 

Mw CMC, leading to a relatively more stable system with smaller droplets, as shown 

by droplet size and creaming index. Even though emulsions containing 0.08% CMC 

showed shear-thinning behavior with similar viscosity values, they showed 

significant difference in creaming stability (Fig. 3). The fact suggested that the 

droplets were more likely to be coalesced in emulsions with CMC 270k and 750k, 

since coalescence leads to an increased creaming rate but has little effect on 

emulsion viscosity (McClements 2005). This coincided with the droplet size result, 

which showed emulsion prepared with CMC 2,500k had much smaller droplet size 

than that prepared with CMC 750k or 270k. Emulsions containing 0.3 and 0.5% 

CMC both exhibited shear-thinning behavior; however, the one with higher Mw 
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CMC had higher viscosity compared with that with lower Mw CMC. The consistency 

coefficient values were 0.043, 0.026 and 0.017 for emulsions with 0.5% CMC 

2,500k, 750k and 270k, respectively. As shown in Fig. 1, the droplet surfaces were 

saturated with CMC when CMC concentration exceeded 0.3%, thus the nonadsorbed 

CMC molecules with high Mw would resulted in more viscous serum compared with 

those with low Mw, exhibiting higher viscosity of the emulsion system.  
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Figure 4.	
   Apparent viscosity of fresh emulsions prepared with different CMC 
concentrations (◆, control; ■, 0.04%; ▲, 0.08%; ×, 0.1%; +, 0.3%; ●, 0.5%) and Mw. 
(a) CMC 2500k; (b) CMC 750k; (c) CMC 270k.  
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Table 1. Power law model parameters for emulsions with different CMC 
concentrations and Mw. 
 

CMC concentration (%) m (Pa sn) n R2 

CMC 2,500k 

0 0.017b 0.664a 0.9925  
0.04 0.005a 0.968bc 0.9639 
0.08 0.003a 1.056c 0.9741 
0.1 0.008a 0.872b 0.9904 
0.3 0.018b 0.886b 0.9981 
0.5 0.044c 0.954bc 0.9998 

CMC 750k 

0 0.017c 0.664a 0.9925 
0.04 0.009b 0.794b 0.9780  
0.08 0.004a 0.999de 0.9920  
0.1 0.005a 0.969cd 0.9832 
0.3 0.007ab 1.047e 0.9810 
0.5 0.025d 0.919c 0.9985 

CMC 270k 

0 0.017b 0.664a 0.9925 
0.04 0.012ab 0.748a 0.9977 
0.08 0.003a 1.079b 0.9517 
0.1 0.004a 1.064b 0.9473 
0.3 0.011ab 0.861ab 0.9975 
0.5 0.017b 0.823a 0.9966 

 
Consistency coefficient (m), flow behavior index (n), determination coefficient (R2). 
The data listed in the table were the average from two measurements. Different 
lower cases under the same Mw of CMC indicate significant differences (p < 0.05). 
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3.4.5 Protein surface coverage 

   The adsorbed protein on the surface of the oil droplets forms the viscoelastic 

interfacial film and determines the stability of emulsion system due to its important 

role in competition or cooperation with other biopolymers (Long and others 2013). 

Fig. 5. shows the effect of CMC concentration and Mw on the protein surface 

coverage of acidified WPI/CMC-coated oil droplets. It was obvious that CMC 

concentration showed a significant impact on protein surface coverage. The lowest 

protein surface coverage (0.22 mg/m2) was observed for the emulsion without CMC 

addition. The protein surface coverage increased to 0.84, 0.82 and 0.49 mg/m2 with 

0.04% CMC 2,500k, 750k and 270k, respectively. It indicated that CMC improved 

the surface activity of whey protein, contributing to the relatively slower creaming 

rate and higher stability of emulsion system compared with emulsion stabilized by 

WPI alone. The protein surface coverage showed a continuous increase as CMC 

concentration increased up to 0.08 or 0.1%. This corresponded to increased 

ζ-potential and decreased droplet size with increasing CMC concentration up to 0.1% 

(Figs. 1 and 2), Formation of WPI-CMC complex resulted in a collective and 

cooperative adsorption of whey protein and CMC onto oil-water interface, leading to 

higher protein surface coverage (Li and others 2012b). Further increase in CMC 

concentration resulted in a slight decrease in protein surface coverage at 0.3% CMC 

and it either stayed constant or increased slightly at 0.5% CMC. This could be 

attributed to the fact that when oil droplets were saturated with CMC the presence of 

excessive CMC in the continuous phase would cause depletion flocculation, 
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resulting in the change of protein adsorption behavior. 

   Interestingly, protein surface coverage appeared to saturate at maximum 

interfacial concentration of 2.13 mg/m2 for emulsion containing 0.08% CMC 2,500k. 

This highest protein surface coverage could contribute to an improvement in 

emulsifying functionality showing lowest creaming rate and highest emulsion 

stability during storage. The improvement was due to the formation of a thick and 

compact interfacial layer around oil droplet surface and the saturated concentration 

of protein, providing strong steric stabilization against aggregation/flocculation and 

coalescence (Dickinson and others 1997b; Li and others 2012b).  

 

 

 

 
Figure 5. Protein surface coverage of emulsion droplets as function of CMC 
concentration. (u) CMC 2500k; (n) CMC 750k; (▲) CMC 270k. 
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3.5 Conclusion 

   To summarize, for emulsion adjusted to pH 5.2, ζ-potential and droplet size 

clearly showed that, in the absent of CMC, the oil droplets formed large aggregates 

due to very low electrostatic repulsive force. The presence of CMC led to formation 

of WPI-CMC complex and resulted in improved surface activity of protein as shown 

by higher protein surface coverage and significantly more negative charges on the 

droplets. WPI-CMC stabilized emulsions showed smaller droplet size and had 

improved stability. Overall, increasing CMC concentration up to 0.1% enhanced the 

adsorption of protein at the interface and increased the negative charge of the 

droplets, resulting in smaller droplet size and more stable emulsions. Above 0.1% 

CMC, the droplet surfaces were saturated with CMC as shown by little or change in 

droplet size and ζ-potential, and protein surface coverage. Further addition of CMC 

would increase the viscosity of the continuous aqueous phase and/or form weak 

gel-like network. Consequently, the emulsions were more stable against creaming. 

However, this high viscosity or weak gel-like network did not contribute to the 

long-term stability of the emulsion. It could be attributed to the fact that Brownian 

motion of the oil droplets and gravity with time resulted in the collapse of the gel 

network. 

   Although CMC molecular weight did not show significant difference on 

ζ-potential or droplet size of the emulsion, it significantly influenced protein 

adsorption as well as the flow behavior and the stability of the emulsions. Overall, 

higher Mw CMC contributed to more stable emulsions compared to lower Mw CMC 
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according to the creaming index. This was likely due to combined effects of 

increased protein surface coverage on the droplets and viscosity of the emulsions. 

Viscosity effect strongly dominated at high CMC concentration with emulsions 

containing high Mw being the most stable. Therefore, the stability of acidified 

WPI/CMC-stabilized emulsion was related to CMC concentration, CMC molecular 

weight, droplet size, viscosity of the system and protein surface coverage of the 

droplets. Complexation between WPI and CMC even at pH > pI provided improved 

the surface properties of the protein and enhanced the electrostatic as well as steric 

repulsion of the adsorbed layers, contributing to the stability of acidified 

WPI/CMC-stabilized emulsions. 
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CHAPTER 4 

ACID-INDUCED GELATION OF HEATED SOLUBLE WHEY 

PROTEIN ISOLATE-CMC COMPLEX 

Manuscript to be Submitted for Publication 

	
  

4.1 Abstract 

   Acid-induced gelation of heated soluble whey protein isolate (WPI) and 

carboxymethylcellulose (CMC) complex was investigated. Heated soluble 

WPI-CMC complexes were prepared by mixing the biopolymers at pH 7 and heated 

at 85 oC for 30min. Gels were formed by the addition of glucono-δ-lactone (GDL) 

and compared to those formed from WPI polymer (protein heated alone) and added 

CMC. All gels contained 5% (w/w) protein and 0-0.125% (w/w) CMC (Mw = 270k, 

680k, and 750kDa). Results showed that CMC molecular weight and biopolymer 

ratio were the major factors affecting gel properties. For 270k and 750k CMC, gels 

from heated WPI-CMC complex showed improved gel hardness and, at certain CMC 

concentration, improved water holding capacity. Confocal laser scanning 

microscopy (CLSM) results revealed that gel structure largely depended on CMC 

concentration. Overall, gels from heated WPI-CMC complex showed smoother 

structure and less porosity, indicating less phase separation. Furthermore, 

significantly higher gel hardness and water holding capacity were observed across 

all CMC concentrations when heated WPI-CMC complexes (CMC 750k) were 
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formed at initial protein concentration of 9%. CLSM image showed bi-continuous 

microstructure even at 0.1% CMC where phase inversion was observed for gel from 

6%WPI-CMC complex. 

4.2 Introduction 

   Whey protein isolate (WPI) is widely used in many food products due to its 

unique functional properties and high nutritional values. Among its many functional 

properties, gelation of WPI has been studied extensively (Alting and others 2000; 

Britten and Giroux 2001; Li and others 2006; Cavallieri and da Cunha 2008; Clark 

and others 1981; Foegeding and others 1998; Vardhanabhuti and others 2001; Çakır 

and others 2012). Cold-set gelation is a two-step gelation process conducted at 

ambient temperature. In the first step, protein polymers are obtained by heating the 

protein solution at below critical gelation concentration, pH above or below the 

isoelectric point, and low ionic strength. In the second step, acid or salt is added to 

the protein polymer solution to induce gelation by reducing the electrostatic 

repulsion between the protein aggregates (Bryant and McClements 2000b; Ju and 

Kilara 1998; de Jong and others 2009; Kuhn and others 2010; Hongsprabhas and 

Barbut 1997b; de Faria and others 2013). 

   Polysaccharides are added to alter the functional properties of food proteins. 

Attractive interactions between protein and polysaccharide can lead to soluble and/or 

insoluble complexation, cosolubility or segregation (Schmitt and others 1998; 

Rodríguez Patino and Pilosof 2011). Functional properties of protein are generally 



	
   46	
  

improved by complexation with other polysaccharides. Their interactions are mainly 

affected by pH, ionic strength, protein to polysaccharide ratio, and biopolymer 

concentrations. Some other factors such as biopolymer characteristics (charge 

density, molecular weight, et al.), temperature and pressure also influence the 

complex formation (Schmitt and Turgeon 2011). Protein-polysaccharide electrostatic 

complex generally occurs when the biopolymers are mixed at pH values below the 

pI of the proteins and at low ionic strength (Ye 2008; Turgeon and others 2007). 

However, at pH values above the pI of proteins, e.g. at neutral pH, electrostatic 

interactions between negatively charged polysaccharides and positively charged 

subunits of proteins can still occur (Doublier and others 2000; Vardhanabhuti and 

others 2009; Girard and others 2002a). Heating mixed biopolymers at this condition 

can result in heated soluble complex having different size and shape compared to 

heated protein aggregates without polysaccharides. de la Fuente and others (2004) 

reported lower molecular weight of whey protein/κ-carrageenan aggregates formed 

in the early stages of heating at pH 7 than the aggregates formed without 

κ-carrageenan. At near neutral pH, heating mixtures of whey protein with low 

methoxyl pectin resulted in a complex with smaller molecular weight than heated 

whey protein alone (Beaulieu and others 2005). When formed at appropriate 

conditions, heated soluble protein-polysaccharide complex could also offer better 

functional properties. It has been reported that dextran sulfate improved thermal 

stability of β-lactoglobulin by altering its aggregation and the complexation between 

the two by heating at near neutral pH could form solutions with lower turbidity or 
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gels (Vardhanabhuti and others 2009). Zhang and others (2014) recently 

demonstrated that acid-induced gels formed from heated soluble whey protein/pectin 

complex at pH 7 (e.g., heated together) had improved gel strength and water holding 

capacity compared to those formed from whey protein polymer with added pectin 

(e.g., heated separately). Enhanced gel properties were supported by finer gel 

microstructure with less porosity and smoother network. 

   Carboxymethylcellulose (CMC),derivative of cellulose, is a common 

water-soluble anionic polysaccharide used in the food industry. CMC has the ability 

to impart viscosity to aqueous solutions. The viscosity of CMC is determined largely 

through controlling cellulose chain length or degree of polymerization (DP). A 

maximum degree of substitution (DS) of 1.5 is permitted, but for food applications, 

DS is in the range 0.6-0.95 (Coffey and others 2006; Murray 2000). Both DP and DS 

determine the molecular weight of CMC. It is believed that molecular weight of 

polysaccharides would have effects on their interactions with protein and how they 

affect functional properties of protein. Du and others (2009) reported that molecular 

weight of CMC influenced the interaction between casein micelles and CMC. 

Acidified skim milk drinks with high molecular weight CMC had better long-term 

stability compared to those with low molecular weight CMC. The majority of the 

studies have focused on protein-CMC complex/coacervates forming at pH below or 

near protein pI. Protein-CMC complex formation at a pH near protein pI promotes 

the stabilization of protein in acidified protein beverages and yogurt drinks (Du and 

others 2007; Koupantsis and Kiosseoglou 2009) and had greater emulsifier 
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properties than protein alone (Girard and others 2002b). Whey protein complexation 

with CMC showed maximum thermostability at pH 4 and gelation properties were 

improved upon heating when compared with non-complexed whey protein (Capitani 

and others 2007). To the best of our knowledge, no study has investigated the 

functional properties of heated soluble whey protein-CMC complex forming at 

neutral pH.  

   The objective of this study was to investigate the acid-induced gelation of heated 

soluble WPI-CMC complex. The effects of CMC molecular weight (Mw) and 

concentration were studied. Physical properties of the heated soluble complexes (e.g., 

particle size and zeta-potential) and gels (e.g., water holding capacity and gel 

hardness) were measured. The microstructure of the gels was determined by 

confocal laser scanning microscopy (CLSM).  

 

4.3 Materials and methods 

4.3.1 Materials 

   Whey protein isolate (WPI) BiproTM was kindly provided by Davisco Foods 

International Inc. (Le Sueur, MN). According to the manufacturer, WPI contained 

97.9% protein on dry basis and 1.8% ashes of the dry mass. CMC with molecular 

weight (Mw) of 270k, 680k, and 750kDa were kindly provided by CP Kelco Inc. 

(Lille Skensved, Denmark). D-(+)-Gluconic acid δ-lactone (SigmaTM GDL) and 

Rhodamine B were purchased from Sigma (St. Louis, MO). All ingredients were 
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used without further purification and without correction for their moisture content. 

Deionized (DI) water ( > 18.2 MΩ) was used in all cases. 

4.3.2 Preparation of stock solutions 

   WPI stock solution (10%, w/w) was prepared by slowly dissolving protein 

powder into DI water and kept stirring at the room temperature for at least 2 h. CMC 

stock solution (0.9%, w/w) was prepared by slow addition of CMC powder into DI 

water heated at 85 oC for 1 h under continuous stirring. The two stock solutions were 

stored at 4 oC in the refrigerator overnight for complete hydration. WPI and CMC 

stock solutions were warmed to ambient temperature before use.  

4.3.3 Gel preparation 

   WPI-CMC complex. Stock solutions of WPI and CMC were mixed at appropriate 

amount and pH was adjusted to 7.0. The final concentration of protein in the mixed 

solution was at 6%, with CMC concentration ranged from 0 to 0.15%. The mixture 

was kept stirring at room temperature for 2 h for completely mixing before heated in 

the water bath at 85 oC for 30 min and cooled using running tap water. DI water was 

added such that the final protein concentration was at 5% and CMC concentrations 

ranged from 0 to 0.125%. 

   Polymer-CMC. Whey protein polymer solution was prepared by heating 6% WPI 

solutions at pH 7.0 at 85 oC for 30 min. After polymer solution was cooled using 

running tap water, CMC stock solution was added at the appropriate amount. The pH 

of the samples were adjusted to 7.0 and DI water was added so that the final protein 
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concentration was 5% and CMC concentration ranged from 0 to 0.125%. Samples 

were gently stirring at room temperature for 2 h for completely mixing.  

   All samples were left in the refrigerator for 18 h for complete interaction 

between protein and CMC. GDL was added to both WPI-CMC complex and 

polymer-CMC mixed solutions with different WPI/GDL ratio to reach a final pH of 

4.7 ± 0.1 after 24 h incubation. All the measurements were carried out within 20 to 

24 h after addition of GDL. 

4.3.4 Particle size and zeta- (ζ-) potential  

   Measurements of particle size and ζ-potential were carried out using the 

Zetasizer Nano ZS (Malvern Instruments Ltd., Worcestershire, UK) equipped with 

633 nm laser and 173o detection optics. Samples were diluted with DI water to 

protein concentration of 0.3%. Z-average diameter of the particles was used as the 

effective diameter. An individual ζ-potential measurement was determined from the 

average of three readings taken on the same sample. Each measurement was carried 

out twice. 

4.3.5 Gel hardness 

   WPI-CMC complex and polymer-CMC (36 g) formed 30-mm-thick gels. Large 

deformation tests were performed using a texture analyser (TA-Hdi, Texture 

Technologies Corp, Scarsdale, NY) with a 5-kg load cell and 13-mm-diameter 

cylindrical plunger. Before analysis, samples were equilibrated at ambient 

temperature for 2 h. The penetration distance was fixed to 10% of the original gel 
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thickness with a deformation rate of 10 mm/s. The force required to maintain the 10% 

strain was recorded for 300 s. Gel hardness was expressed as the initial force (g) at 

the maximum peak of the force-time curve (Bourne and others 1978). All the 

treatments were run in triplicate. 

4.3.6 Water holding capacity 

   Gel samples (1.5 g) were formed in the microcentrifuge tubes for measurement 

of water holding capacity. Loss of water was determined after centrifugation using a 

microcentrifuge (Eppendorf Minispin® Centrifuge) at 10 000 × g for 10 min. Water 

holding capacity (WHC, %) is expressed as percentage of water retained after 

centrifugation. Each sample was analyzed in triplicate. 

4.3.7 Confocal laser scanning microscopy (CLSM) 

   Samples for CLSM imaging were mixed with Rhodamine B solution (20 µL of a 

0.2 % solution/g of sample) before acidification. After GDL addition, 70 µL of dyed 

solution was pipetted onto micro slides with 0.17 mm coverslips. Samples were left 

to gel at 4 oC and CLSM images were recorded at room temperature using a Zeiss 

LSM 510 META confocal laser scanning microscope (Cal Zeiss, Jena, Germany) 

with 63 × water immersion objective. The excitation wavelength was 543nm. Digital 

image files were acquired in 1024 pixels × 1024 pixels. Z-stacks of xy-scans were 

recorded between 6 and 50 µm penetrations, with an interval of 3 µm. All the 

reported images in this paper were recorded at a penetration depth of 18 µm.  
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4.3.8 Statistical analysis 

   SPSS software (version 21, SPSS Inc., Chicago, IL) was used to analyze 

significant differences (p < 0.05) between the properties of gels by one-way analysis 

of variance (ANOVA). The comparisons between the mean values were evaluated 

by the Duncan’s multiple range test. 

4.4 Results and discussion 

4.4.1 Particle size and zeta- (ζ-) potential of mixed solutions 

   In order to confirm the formation of heated soluble complex at neutral pH, 

particle size of WPI-CMC complex and polymer-CMC solutions was measured 

(Table 2). When WPI and CMC were heated together, particle size distribution of 

WPI-CMC complex showed one single peak with the size between that of native 

WPI and CMC. The peaks of native WPI and CMC also disappeared, suggesting the 

formation of heated soluble complex between WPI and CMC. Similarly, particle size 

distribution of heated soluble WPI and pectin complex (heated together at near 

neutral pH) also showed a single peak, while the native WPI and pectin peaks 

disappeared (Zhang and others 2014). For polymer-CMC, particle size distribution 

also showed a single peak after the biopolymers were mixed, indicating that WPI 

polymer and CMC also associated. It has been reported that at pH > 6, chain 

segment model of binding occurred between positively charged segments in BSA 

molecules and anionic polysaccharides forming complex when heated them together, 

reflecting by the BSA peak overlapped the peak of sodium alginate or pectin 
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conduced by gel filtration (Cai and Arntfield 1997).  

   Results shown in Table 1 indicate that increasing CMC concentration led to the 

formation of slightly larger heated complex compared to WPI polymers without 

CMC. Zhang and others (2014) found that at pH 7, heating WPI together with pectin 

led to the formation of aggregates with larger size and/or with different shape 

compared with polymer/pectin. There was no difference in particle size between 

WPI-CMC complex and polymer-CMC at the same CMC molecular weight and 

concentration. In addition, CMC molecular weight did not seem to have any effect 

on particle size.  

   ζ-potential measurement was used to investigate the surface charge properties of 

the particles (Table 3). Addition of CMC resulted in an increase in net negative 

charges on both WPI-CMC complex and polymer-CMC particles. An increase in the 

repulsive force between protein molecules led to micro phase separation, which 

could explain the observed larger particle size of the aggregates at higher CMC 

concentration. There appears to be a trend of increased zeta-potential with increasing 

CMC concentration for WPI-CMC complex and polymer-CMC. At 0.1% CMC, 

ζ-potential of WPI-CMC complex and polymer-CMC was significantly different 

from WPI polymer without CMC addition. At pH 7, though WPI and WPI polymer 

had net negative charge, portions of the protein molecules could be positively 

charged so that binding occurs between CMC and a positively charged site segment 

on the WPI (Dickinson 1998; Cai and Arntfield 1997). When compared WPI-CMC 

complex to polymer-CMC at the same CMC concentration, no difference in 
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ζ-potential was observed. Due to the same charge density of these three CMC, no 

clear effect of CMC molecular weight on the ζ-potential was found. 

 

 

 

Table 2. Z-average particle diameter (nm) of WPI-CMC complex and polymer-CMC 
solutions. 
 

 
CMC concentration (%) 

0   0.01   0.05    0.1 
polymer-CMC 270k 40.2±2.2ab 40.6±0.0abA 43.3±0.4bcdA 45.9±0.5cdAB 
WPI-CMC complex  39.6±1.8aA 43.1±1.8bcA 46.4±0.5dAB 
polymer-CMC 680k 40.2±2.2a 39.4±1.5aA 43.2±0.8aA 43.8±1.0aA 
WPI-CMC complex  39.9±2.0aA 44.1±1.9aA 49.9±3.3bB 
polymer-CMC 750k 40.2±2.2a 41.0±3.7aA 44.8±3.2abA 49.5±4.3bAB 
WPI-CMC complex  41.9±3.0aA 43.6±0.9abA 49.7±1.0bAB 

Average of duplicate measurements, ± means standard deviation. 
Different lower cases under the same Mw of CMC and different upper cases at the 
same CMC concentration indicate significant differences (p < 0.05). 
 
 
 
 
 
Table 3. Zeta-potential of WPI-CMC complex and polymer-CMC solutions. 
 

 
CMC concentration (%) 

0    0.01    0.05    0.1 
polymer-CMC 270k -28.0±1.7b -28.1±0.5bA -29.9±1.7abA -31.0±1.2abB 
WPI-CMC complex  -28.5±1.8abA -30.2±1.0abA -31.9±1.6aAB 
polymer-CMC 680k -28.0±1.7c -28.0±0.5cA -30.1±0.9cA -33.4±1.7abAB 
WPI-CMC complex  -28.3±1.2cA -31.0±1.6bcA -35.0±0.9aA 
polymer-CMC 750k -28.0±1.7c -29.2±2.0cA -31.3±2.1bcA -33.1±1.8abAB 
WPI-CMC complex  -29.5±0.0bcA -33.2±0.3abA -35.2±1.0aA 

Average of duplicate measurements, ± means standard deviation. 
Different lower cases under the same Mw of CMC and different upper cases at the 
same CMC concentration indicate significant differences (p < 0.05). 
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4.4.2 Gel hardness 

   All samples formed opaque gels after acidification to pH 4.7. Mechanical 

property of the gels was characterized by determining gel hardness. Fig. 6 shows the 

gel hardness as a function of CMC concentration and different Mw on WPI-CMC 

complex and polymer-CMC. The observed differences in gel hardness appeared to 

be from combined effects of CMC molecular weight and concentration. 

   All acid-induced gels containing CMC 270k were self-supporting. Increasing 

CMC concentration resulted in an increase in gel hardness across all CMC 

concentrations for both WPI-CMC complex and polymer-CMC gels. When 

compared to polymer-CMC gels at the same CMC concentration, WPI-CMC 

complex gels were stronger across all CMC concentrations. For CMC 680k, 

increasing CMC concentration led to an increase in gel hardness until it reached a 

maximum and then decreased at higher CMC concentrations. This could be 

explained by the fact that micro-phase separation forces the protein and CMC into 

local areas of increased concentration, leading to stronger gels. This will be further 

discussed in Section 3.4. Gels of polymer-CMC at CMC concentration of 0.125% 

was no longer self-supporting, gel hardness could not be measured accurately. No 

significant improvement of gel hardness was obtained for WPI-CMC complex 

compared with that for polymer-CMC at CMC concentrations lower than 0.1%. 

However, improvement in gel hardness in WPI-CMC complex can be observed at ≥ 

0.1% CMC where gels from WPI-CMC complex were stronger (0.1% CMC) or 

self-supporting (0.125% CMC). Similar trend in the effect of CMC concentration on 
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gel hardness was found with CMC 750k. However, WPI-CMC complex gels showed 

higher gel hardness than polymer-CMC gels across all CMC concentrations. The 

maximum gel hardness was achieved at 0.05% CMC for both systems, and further 

increase in CMC concentration resulted in weaker gels. Gels containing 0.125% 

CMC were very weak such that they could not be measured. Our results are in 

agreement with those found in studies investigating the effect of polysaccharides on 

acid-induced gelation of WPI. de Jong and van de Velde (2007) investigated the 

mechanical properties of WPI/CMC (Mw = 730k) acid-induced gels and reported 

that large deformation characteristics of gel samples with CMC concentration higher 

than 0.15% were too weak to measure. This was attributed to the competition 

between the gel formation of the protein and the phase separation process between 

protein and polysaccharide. With increasing CMC concentration, net negative charge 

increases and phase separation process between protein and CMC overwhelms the 

gel formation of the protein, resulting in phase inversion and non-self-supporting 

gels. Similar phenomenon could describe our observation that WPI/CMC 

acid-induced gels were not self-supporting at higher CMC concentrations for CMC 

680k and CMC 750k.  

It is clearly illustrated that both CMC concentration and Mw influenced gel hardness. 

Furthermore, gels prepared with different Mw of CMC showed different trends in gel 

hardness as the function of CMC concentration. This difference was due to the 

microstructure of the gels; therefore, the results of gel hardness and water holding 

capacity will be further discussed under the microstructure section.  
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Figure 6. Effects of Mw and CMC concentration on gel hardness from WPI-CMC 
complex (u) and polymer-CMC (n). (a) CMC 270k; (b) CMC 680k; (c) CMC 
750k. 

 

a 

b 
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4.4.3 Water holding capacity 

   Water holding capacity is known as one of the most important characteristics of 

gels. It indicates the water binding ability of proteins and is generally used to 

objectively evaluate the quality of yogurt and other gel-based food products. Fig. 7 

shows the effect of CMC concentration and molecular weight on the WHC values. 

Because the gels were not self-supporting at 0.125% CMC 680k and CMC 750k, the 

WHC values could not be measured. In the presence of 0.01 and 0.025% CMC, all 

acid-induced gels had > 85% WHC and there was no significant difference between 

WPI-CMC complex and polymer-CMC. At 0.05% CMC, WHC started to decrease 

to a lesser or larger degree depending on the samples. Similarly, Zhang and others 

(2014) reported that for gels prepared at pH 7, addition of pectin at lower than 0.15% 

did not have significant effect on WHC while higher pectin concentrations led to a 

significant decrease in WHC. It was proposed that CMC at higher concentrations 

enhanced the interaction between protein and polysaccharide, leading to less 

hydrophilic sites remained on the protein for water binding (Zhang and others 2014). 

It should be noted that the significant difference in WHC between WPI-CMC 

complex and polymer-CMC was observed with CMC 750k at 0.05% CMC. At 0.075% 

CMC, the WHC values of WPI-CMC complex gels containing CMC 270k, CMC 

680k and CMC 750k were 51.7%, 36.6% and 28.1%, respectively and the WHC 

values for polymer-CMC were 41.3%, 33.3% and 26.0%, respectively. These 

indicated that the Mw of CMC also had an effect on gel water holding capacity, at 

high CMC concentrations with higher molecular weight resulting in lower WHC 
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values. It might be due to the fact that high Mw CMC results in more phase 

separation, as revealed by the microstructures. 

 

 
Figure 7. Effects of Mw and CMC concentration on water holding capacity of gels 
from WPI-CMC complex (u) and polymer-CMC (n). (a) CMC 270k; (b) CMC 
680k; (c) CMC 750k. 

a 

b 

c 



	
   60	
  

4.4.4 Microstructure of gels 

   Acid-induced gels with CMC concentrations of 0.01, 0.05 and 0.1% were 

selected as representative samples for CLSM analysis based on water holding 

capacity and gel hardness results. The CLSM images in Fig. 8 show the effects of 

CMC molecular weight and concentration on the network structure of WPI acid gels. 

At 0.01% CMC, all samples were homogeneous and no phase separation was 

observed through CLSM. All gels at this CMC concentration showed similar 

microstructure to gel made from whey protein polymer without CMC (data not 

shown). Clear bi-continuous networks of gels, both the protein phase and the serum 

phase were continuous, were observed in gels containing 0.05% CMC 250k with the 

WPI-CMC complex gel showing more interconnected, less phase-separated, and less 

porosity network. At 0.1% CMC, the protein strands were still interconnected but 

higher phase separation especially in polymer-CMC gels could be observed. These 

results were in agreement with the gel hardness and water holding capacity results. 

Gels containing 0.05% CMC 650k and 750k showed similar structure to those 

containing CMC 250k with bi-continuous and phase-separated network. At 0.1% 

CMC, higher phase separation can be observed in gels containing 650k. For gels 

containing CMC 750k, phase inversion was observed at 0.1% CMC in both 

polymer-CMC and WPI-CMC complex gels. de Jong and van de Velde (2007) 

pointed out that an increase in the concentration of intermediate charged 

polysaccharides resulted in coarsening of the protein network and this coarseness 

was enhanced with high molecular weight polysaccharide. What we found was that 
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at 0.1% CMC, the extent of micro-phase separation was clearly different with regard 

to Mw of CMC. The larger the molecular weight, the more extensive phase 

separation. For CMC 270k, the gel had a good network while for CMC 750k, the 

protein network was discontinuous and the number of effective strands was nearly 

zero. The remarkable difference in gel microstructures demonstrated that Mw of 

CMC had influence on the formation of acid-induced gels, leading to different 

microstructures. Monteiro and others (2005) also found the size of the 

polysaccharide-rich areas and the degree of connection between them increased with 

increasing LBG concentration or molecular weight, which meant that higher LBG 

molecular weight and concentration led to a more phase-separated system.  

   When compared the microstructure of WPI-CMC complex with polymer-CMC, 

gels from heated WPI-CMC complex showed smoother structure and less porosity, 

indicating less phase separation than polymer-CMC gels. Zhang and others (2014) 

concluded that heating whey protein and pectin together at pH 7 resulted in gels with 

less porosity microstructures and smoother networks compared with those from 

polymer/pectin. Heating WPI together with CMC likely enhanced biopolymer 

interactions, leading to improved gel strength, water holding capacity and other gel 

physical properties.  

   The differences in gel microstructures were in agreement with gel hardness as 

well as water hold capacity mentioned above. Addition of CMC at low concentration 

had little effect on WHC while high CMC addition had adverse effect on WHC due 

to thermodynamic incompatibility of protein and CMC. For CMC 270k, with the 
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increasing of CMC concentration, the phase separation became more pronounced 

and micro-phase separation forced the protein and polysaccharide into local areas of 

increased protein concentration, leading to stronger gels (de Jong and van de Velde 

2007). In gels with 0.1% CMC 750k, when the phase inversion appeared, protein 

networks could not form, resulting in very soft gels in which water could not be 

entrapped. 
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  CMC concentration (%) 
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  polymer-CMC 270k 
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Figure 8.	
  CLSM images of gels formed from CMC with different Mw and at different 
CMC concentrations. 
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4.4.5 Gel properties of WPI-CMC complex heated at higher protein concentration 

   In protein and polysaccharide interactions, biopolymer ratio and concentration 

both play an important role in the degree of interactions and the resulting functional 

properties. We have shown the effect of polysaccharide molecular weight and 

concentration on acid-induced gels formed from heated soluble complex. Based on 

the above results, we further investigated the gel properties of WPI-CMC complex 

heated at higher protein concentration (9%) using CMC 750k. 

   All acid-induced gels formed from heated 9%WPI-CMC complex were 

self-supporting without any syneresis. Interestingly, increasing CMC concentration 

resulted in a significant increase in gel hardness up to about 0.05% CMC and gel 

hardness then appeared to be stable (Fig. 9a). This trend was very different from that 

of heated 6% solutions where phase-separation led to weak gel structure. Gels 

formed from solutions heated at 9% protein had higher gel hardness than those 

formed from heated 6% protein solutions across all CMC concentrations (Fig. 9a). 

Significant difference can be observed at 0.1 and 0.125% CMC where gels from 

heated 6% solutions were weak (0.1% CMC) or too weak to be measured (0.125% 

CMC).  

   Acid-induced gels formed from heated 9% and 6% solutions also showed 

different trend in the effect of CMC concentration on gel water holding capacity (Fig. 

9b). As discussed above, WHC of gels from heated 6% solutions decreased 

significantly at ≥ 0.05% CMC. All gels formed from heated 9% solutions showed 

high WHC even at the highest CMC concentration (0.125%). Microstructures of gels 
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formed from 9%WPI-CMC complex were also analyzed by confocal laser scanning 

microscopy. CLSM images are shown in Fig. 10. Gels without CMC and with 0.01% 

CMC were homogenous, and no differences could be observed visually. The 

microstructures were significantly different between 6%WPI-CMC and 

9%WPI-CMC complex at 0.05 and 0.1% CMC concentrations. At 0.05% CMC, both 

gels had an isotropic bi-continuous microstructure where the serum phase formed 

continuous channels through the protein phase; however, the protein strands in 

9%WPI-CMC complex gel were larger and more interconnected with much smaller 

pores. At 0.1% CMC, gel from 6%WPI-CMC complex showed phase inversion, 

while 9%WPI-CMC complex gel still showed protein as continuous phase with 

substantial degree of interconnected networks. 

   The effect of protein concentration on properties of acid-induced WPI gels 

without polysaccharides was investigated (de Jong and van de Velde 2007). They 

determined the gel hardness by large deformation and the results revealed that 

increasing initial protein concentration when heated resulted in an increased local 

concentration of protein, leading to higher firmness of the gels. Braga and others 

(2006) reported that the mechanical properties and WHC of acid-induced caseinate 

gels were improved as the initial caseinate concentration increased from 2% to 6%. 

When applied whey protein polymers into yogurt, Britten and Giroux (2001) found 

that increasing protein content reduced expressible serum which implied the 

improvement of water holding capacity of yogurt. The improved physical properties 

of the gels formed from heated 9% complex solutions may be attributed to the higher 
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number of thiol groups formed during heating and after acidification. Gels heated at 

9% protein had more thiol groups than those heat at 6% protein, resulting in the 

formation of more additional disulfide bonds during gelation. Alting and others 

(2004) concluded that the formation of disulfide bonds had great contribution to the 

mechanical properties of acid-induced WPI gels. It has been reported that at higher 

protein concentration the acid-induced egg white gels became tougher due to more 

additional disulfide bonds formed after acidification (Weijers and others 2006). The 

hardness of acid-induced WPI gels was determined mainly by the number and 

accessibility of thiol groups rather than size of the aggregates or other structural 

features (Alting and others 2003a). 
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Figure 9. Physical properties of gels from 9%WPI-CMC complex (u) and 
6%WPI-CMC complex (n) (CMC 750k). (a) gel hardness; (b) water holding 
capacity. 
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  CMC concentration (%) 

       0           0.01          0.05          0.1 

  6%WPI-CMC complex 
 

    

  9%WPI-CMC complex 

    
Figure 10.	
   CLSM images of gels formed from 6%WPI-CMC complex and 
9%WPI-CMC complex (CMC 750k) at different CMC concentrations. 

 

4.5 Conclusion 

   In general, acid-induced gels formed from WPI-CMC complex had had higher 

gel hardness compared to those formed from polymer-CMC. The significant 

difference in WHC between WPI-CMC complex and polymer-CMC was only 

observed with CMC 750k at 0.05% CMC; however, microstructure analysis showed 

less phase-separated structure in gels from WPI-CMC complex. The CMC molecular 

weight and biopolymer ratio were the major factors affecting the properties of 

acid-induced WPI-based gels. The water holding capacity and gel hardness were 

CMC concentration dependent. Nevertheless, with different molecular weight of 

CMC, gel hardness showed significant different trends as a function of CMC 

concentration. It meant that molecular weight of CMC played a major role other than 

CMC concentration in gel formation process, leading to the disparities among the 

microstructure of gels. 
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   When heated WPI-CMC complex at 9% protein, higher WHC and gel hardness 

values were shown compared to those from heated at 6% protein. This was due to 

the formation of more additional disulfide bonds during acidification and gelation 

process. Covalent bonds were the main determinants of hardness and other physical 

properties of the acid-induced WPI gels. In conclusion, this study demonstrated that 

gelation properties of whey protein/CMC mixed systems can be improved by heated 

WPI-CMC soluble complex. Heating whey protein and CMC together to form the 

soluble complex promoted the interactions between the two biopolymers, which 

contributed to the reduced the micro-phase separation with smoother and less 

porosity of gel structures, thus improving gel hardness and water holding capacity. 
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CHAPTER 5 

CONCLUSIONS 

  

   This research demonstrated that formation of both unheated and heated 

WPI-CMC soluble complexes at near neutral pH (pH > pI) can improve emulsion 

stabilization and acid-induced gelation properties of the protein. Molecular weight 

and concentration of CMC significantly affect the properties of the complexes. High 

Mw CMC at optimum concentration resulted in the improvement of emulsion 

stability and gel properties. 

5.1 Emulsification of soluble WPI-CMC complex  

   Modification of protein to provide good emulsification and emulsion 

stabilization near its pI is needed in the food and beverage industry. We have shown 

that complexation of WPI and CMC can lead to stable emulsion at pH 5.2. In the 

absence of CMC, the oil droplets formed large flocs due to very low electrostatic 

repulsive force. The presence of CMC led to the formation of WPI-CMC complex 

and resulted in improved surface activity of protein as shown by higher protein 

surface coverage and significantly more negative charges on the droplets. WPI-CMC 

stabilized emulsions showed smaller droplet size and had improved stability. Overall, 

increasing CMC concentration up to 0.1% enhanced the adsorption of protein at the 

interface and increased the negative charge of the droplets, resulting in smaller 

droplet size and more stable emulsions. Above 0.1% CMC, the droplet surfaces were 
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saturated with CMC as shown by little or no change in droplet size and ζ-potential, 

and protein surface coverage. Further addition of CMC would increase the viscosity 

of the continuous aqueous phase and/or form weak gel-like network. Consequently, 

the emulsions were more stable against creaming. 

   Although CMC molecular weight did not show significant difference on 

ζ-potential or droplet size of the emulsion, it significantly influenced protein 

adsorption as well as the flow behavior and the stability of the emulsions. Overall, 

higher Mw CMC contributed to more stable emulsions compared to lower Mw CMC 

according to the creaming index. This was likely due to combined effects of 

increased protein surface coverage on the droplets and viscosity of the emulsions. 

Viscosity effect strongly dominated at high CMC concentration with emulsions 

containing high Mw being the most stable. Complexation between WPI and CMC 

even at pH > pI provided improved the surface properties of the protein and 

enhanced the electrostatic as well as steric repulsion of the adsorbed layers, 

contributing to the stability of acidified WPI/CMC-stabilized emulsions. 

5.2 Acid-induced gelation of heated soluble WPI-CMC complex   

   Acid-induced gels formed from WPI-CMC complex (biopolymers heated 

together) were firmer compared to those formed from polymer-CMC (biopolymer 

heated separately). Though microstructural analysis showed less phase-separated 

structure in gels from WPI-CMC complex, this difference was not shown in water 

holding capacity measurement. The only exception was at 0.05 wt% CMC 750k 
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where significant difference in WHC between WPI-CMC complex and 

polymer-CMC was observed. CMC molecular weight and biopolymer ratio were the 

major factors affecting the properties of acid-induced WPI-based gels. With different 

molecular weight of CMC, gel hardness showed significant different trends as a 

function of CMC concentration. When WPI-CMC complex was heated at higher 

initial protein concentration (9%), significantly higher WHC and gel hardness were 

shown compared to those from heated at 6% protein.  

   In conclusion, this study demonstrated that gelation properties of whey 

protein/CMC mixed systems can be improved by heated WPI-CMC soluble complex. 

Heating whey protein and CMC together to form the soluble complex promoted the 

interactions between the two biopolymers, which contributed to the reduced 

micro-phase separation with smoother and less porosity of gel structures, thus 

improving gel hardness and water holding capacity.   

5.3 Overall benefits and future directions 

   Soluble WPI-CMC complexes have a great potential to be novel food ingredients 

due to their improved functional properties. Understanding different factors that 

affect their formation and functional properties could lead to the design of the 

complexes that are suitable for different applications. The study demonstrates that 

both unheated and heated soluble WPI-CMC complex can be used as a novel 

ingredient in food emulsion and cold-set food gels. Firstly, the improved stability of 

WPI-CMC stabilized emulsion may contribute to the stability and long-term shelf 



	
   73	
  

life of emulsion-based products and acidified protein drinks. Secondly, the enhanced 

gel hardness and water holding capacity has its potential to be applied in yogurt, 

meat and other high protein low pH food products.  We have shown here that 

molecular properties and biopolymer ratios are the major factors affecting the 

properties of the complexes.  This could lead to future research on modification of 

polysaccharides to achieve certain molecular sizes in order to maximize their 

properties in complexation with proteins and in food applications. 
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APPENDIX 

 
Table 1. Data of zeta-potential and droplet size for emulsions prepared with different 
Mw CMC. 
 

CMC concentration (%) 
Zeta-potential 

(mV) Droplet size (µm) 

Without CMC -2.22±1.8 9.36±1.5 

CMC 2,500k 

0.04 -26.7±1.9 7.23±1.5 
0.08 -33.5±0.4 3.63±0.3 
0.1 -35.1±0.1 3.72±0.3 
0.3 -44.0±1.1 4.75±0.1 
0.5 -46.6±0.8 4.55±0.3 

CMC 750k 

0.04 -30.8±3.4 6.19±0.5 
0.08 -34.8±3.6 5.47±0.1 
0.1 -36.1±3.1 4.35±0.2 
0.3 -42.0±1.6 4.63±0.0 
0.5 -46.1±1.0 4.14±0.0 

CMC 270k 

0.04 -30.2±0.6 6.27±1.0 
0.08 -34.1±1.8 5.47±0.0 
0.1 -35.2±2.2 4.73±0.4 
0.3 -39.6±1.7 4.41±0.1 
0.5 -40.5±0.1 4.21±0.1 
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Table 2. Data of creaming index for emulsions prepared with different Mw CMC 
during 15-day storage. 
 

 Creaming index (%) 
CMC concentration (%) day 5 day 10 day 15 

Without CMC 52.4±4.5 57.1±2.4 61.0±3.6 

CMC 
2,500k 

0.04 9.16±0.1 13.7±2.0 19.1±0.9 
0.08 0 0 0 
0.1 5.46±1.0 8.58±0.9 8.58±0.9 
0.3 6.86±1.0 11.4±3.1 16.8±2.0 
0.5 0 0 6.98±1.2 

CMC 
750k 

0.04 46.2±0.0 53.1±1.1 57.7±1.1 
0.08 29.2±2.2 49.2±2.2 65.4±3.3 
0.1 22.3±1.1 24.6±4.4 54.6±3.3 
0.3 12.3±0.0 19.2±1.1 30.0±1.1 
0.5 10.4±1.6 20.0±4.4 30.8±8.7 

CMC 
270k 

0.04 47.0±6.4 56.1±4.3 58.3±5.4 
0.08 36.6±3.9 61.8±1.7 64.1±1.5 
0.1 32.8±1.4 63.4±3.9 71.8±0.8 
0.3 26.7±0.8 66.4±0.4 67.2±1.4 
0.5 22.1±1.3 42.3±1.1 53.8±2.2 

 
Table 3. Data of protein surface coverage of emulsions prepared with different Mw 
CMC. 
 

CMC concentration (%) Protein surface coverage 
(mg/m2) 

Without CMC 0.22±0.08 

CMC 2,500k 

0.04 0.84±0.00 
0.08 2.13±0.04 
0.1 1.54±0.23 
0.3 1.04±0.11 
0.5 1.17±0.01 

CMC 750k 

0.04 0.82±0.08 
0.08 0.78±0.19 
0.1 1.42±0.18 
0.3 1.25±0.01 
0.5 1.17±0.33 

CMC 270k 

0.04 0.49±0.04 
0.08 0.99±0.29 
0.1 1.18±0.21 
0.3 0.69±0.16 
0.5 1.23±0.10 
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Table 4. Data of initial force and water holding capacity (WHC) for gels from 
WPI-CMC complex and polymer-CMC. 
 

 Initial force (g) WHC (%) 
CMC concentration (%) complex polymer complex polymer 

Without CMC  99.23.4  93.2±1.1 

CMC 270k 

0.01 137.9±13.7 105.8±16.0 93.7±0.2 93.2±0.4 
0.025 144.1±8.5 132.9±12.8 92.2±0.5 91.7±0.5 
0.05 158.8±18.0 125.1±15.6 80.0±9.8 67.5±2.6 
0.075 197.3±29.2 146.0±6.4 51.7±4.3 46.3±0.8 
0.1 205.7±20.0 178.4±20.5 35.5±2.5 33.2±1.3 

0.125 249.6±21.1 189.5±13.7 29.4±1.4 25.3±0.9 

CMC 680k 

0.01 149.8±30.8 139.5±10.0 93.9±1.6 92.9±0.4 
0.025 166.9±28.6 163.3±17.7 92.1±0.9 91.9±0.5 
0.05 179.3±31.9 196.5±18.0 78.6±3.5 80.2±5.1 
0.075 198.6±29.6 167.0±17.8 37.8±2.7 33.0±0.3 
0.1 200.4±47.2 108.0±12.1 29.5±0.8 26.1±0.8 

0.125 137.7±36.6 - 28.6±2.5 - 

CMC 750k 

0.01 159.9±10.4 131.6±17.5 93.2±1.5 93.6±0.2 
0.025 192.2±17.4 175.4±11.5 88.3±5.0 88.8±8.2 
0.05 249.8±7.7 194.9±7.6 74.4±10.6 44.6±1.3 
0.075 202.4±7.7 144.7±17.9 28.1±0.5 26.0±2.1 
0.1 54.7±16.6 37.7±13.9 28.7±1.1 28.3±0.3 

0.125 - - - - 
 

 

Table 5. Data of initial force and water holding capacity (WHC) for gels from 
9%WPI-CMC complex. 

CMC concentration 
(%) 

Initial force (g) WHC (%) 

Without CMC 171.0±15.7 97.6±0.1 
0.01 205.5±30.3 97.3±0.5 
0.025 241.5±33.2 97.0±0.5 
0.05 272.5±32.8 97.2±0.3 
0.075 283.6±39.7 91.9±2.9 
0.1 267.6±35.5 77.8±9.7 

0.125 301.2±38.7 94.7±1.0 
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