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ABSTRACT

High dimensional data are more common nowadays, because the collection of such

data becomes larger and more complex due to the technology advance of the computer

science, biology, etc. The analysis of high dimensional data is different from tradi-

tional data analysis, and variable selection for high dimensional data becomes very

challenging. Structural equation modeling (SEM) analyzes the relationship between

manifest variables and latent variables. The structural equation focuses on analyzing

the relationship between latent variables. New proposed methods of these topics are

discussed in the dissertation.

In the first chapter, we review the basic concept of survival analysis, SEM, and

current method of variable selection in those two scenarios. We also introduce the

available software package for current methods and relevant data set.

In the second chapter, we develop a Bayesian kernel machine model with incorpo-

rating existing information on pathways and gene networks in the analysis of DNA

microarray data. Each pathway is modeled nonparametrically using reproducing ker-

nel Hilbert space. The pathways and the genes are selected via assigning mixture

priors on the pathway indicator variable and the gene indicator variable. This ap-

proach helped us in flexible modeling of the pathway effects, which can capture both

linear and non-linear effect. Moreover, the model can also pinpoint the important

pathways and the important active genes within each pathway. We have also devel-

oped an efficient Markov Chain Monte Carlo (MCMC) algorithm to fit our model.

We used simulations and a real data analysis, [van ’t Veer et al., 2002] breast cancer

microarray data, to illustrate the proposed method.

xii



In the third chapter, we extend the idea of semiparametric structural equation

model where the nonlinear functional relationships are approximated using basis ex-

pansions [Guo et al., 2012]. Many basis expansion methods, including cubic splines,

are known to induce correlations. In this chapter we compare standard Lasso, Fused

Lasso and Elastic Net to account for correlations in both the covariate and basis

expansions. To illustrate the usefulness of the proposed methods, a simulation study

and a real data study have been performed. The semiparametric structural equa-

tion models based on Bayesian fused Lasso and Bayesian elastic-net outperform the

Bayesian Lasso model.

In the fourth chapter, we apply Bayesian Graph Laplacian Model, developed by

[Liu et al., 2014] and generalized the graph Laplacian allowing both positively and

negatively correlated variable, to analyze gene expression data from Michigan prostate

cancer study [Dhanasekaran et al., 2001]. We find out the underlie gene network and

interaction related to prostate cancer and discuss the possible extensions for Bayesian

Graph Laplacian Model, including analyzing multiple pathways simultaneously and

pathways selection, right censored data as response variable and binomial or multi-

nomial data as response variable.

xiii



Chapter 1

Introduction

Survival analysis focus on analyzing time to events such as death, disease occurrence,

and malfunction in mechanical system. The event can be referred to as the failure.

Suppose we analyze the data consisting of time to the occurrence of certain type

of cancer. It is possible that some of the patients have no occurrence at the end of

the study. As a result, the exact failure times of such patients are unknown, but they

are only unknown to be greater than certain amount of time. This feature is referred

to as censoring in survival analysis.

The gene expression microarray data contain the information for thousands of

genes. Oncologist have been trying to identify genes related to different cancers.

Using microarray data and survival time for the patients to identify important genes

presents a challenge in data analysis. This chapter contains a literature review on the

analysis of right-censored survival data and the variable selection in high dimensional

situation.

In psychology, latent variables represent the variables which cannot be measured

1



directly. Structural Equation Modeling (SEM) analyzes the relationship between

latent variables and manifest variables. In this chapter, we present a literature review

on SEM.

We review general concept of survival analysis and survival models under frequen-

tist perspective in section 1.1; in section 1.2, we review parametric and semiparametric

Bayesian model analyzing survival data; section 1.3 covers the current methods on

variable selection in high dimensional data and discusses the difficulties and challenges

of the current methods; we introduce the concept of genetic pathway in section 1.4;

section 1.5 contains the introduction for Structural equation modeling; we discuss the

motivation and outline of this thesis in section 1.6; and section 1.7 lists the available

software package and relevant data set.

1.1 Survival Analysis Under Frequentist Perspec-

tive

Let T be a non-negative continuous random variable denoting the failure time of a

subject. The probability of a subject surviving beyond a specific time t is given by

the survival function, defined as

S(t) = P (T > t), (1.1)

where S(t) is a monotonically decreasing, right-continuous, S(0) = 1 and limt→∞ S(t) =

0 function.

The hazard function, λ(t), is the instantaneous rate at which failures occur given

2



the condition that subjects survive at the time t or later. It is defined as

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
. (1.2)

The probability density function of T is f(t) = −dS(t)/dt, where t ∈ [0,+∞),

therefore (1.2) follows that

λ(t) = f(t)/S(t) = −d logS(t)/dt. (1.3)

Given S(0) = 1, by integrating t from both sides of (1.3) we get

S(t) = exp{−
∫ t

0

λ(s)ds} = exp{−Λ(t)}, (1.4)

whereΛ(t) is called cumulative hazard function and Λ(t) =
∫ t

0
λ(s)ds. Taking deriva-

tive with respect to t in (1.4), we obtain

s(t) = λ(t) exp{−Λ(t)}. (1.5)

We use log logistic probability density function to illustrate the survival function and

responding hazard function in figure (1.1).

One special feature of the survival data is known as censoring. Because of the time

limit, cost concern or incidence related to experimental subjects, the investigators

terminate the research before all subjects realize their event of interest or some of the

subjects leave the research before research ends. As a result, survival times from some

of the subjects are longer than some certain values. It is called right censored when

the survival time of a subject exceeds certain censoring time, Cr, and left censored

3



(a) Survival function (b) Hazard function

Figure 1.1: An example of hazard function and survival function

when the survival time is only know to be less than a censoring time, Cl. Interval

censoring occurs when the precise survival time is unknown, but it is within a known

interval, (Cl,Cr).

1.1.1 Proportional Hazards Regression

Proportional hazards Regression model is one of the regression models for survival

data. According to [Cox, 1972], for a subject with covariate vector x = (x1, x2, · · · , xp)′,

the hazard rate at time t can be expressed as:

λ(t|x) = λ0(t)exp(x′β), (1.6)

where β = (β1, β2, · · · , βp)′ is a p×1 vector of regression parameters corresponding to

x, and λ0(·) is an arbitrary unknown baseline hazard function. With fixed covariate,

the ratio of hazards between each subject is constant over time.

4



The survival function (1.4) corresponding to (1.6) is

S(t|x) = exp{− exp(x′β)

∫ t

0

λ0(µ)dµ}, (1.7)

and the density function of T corresponding to (1.6) is

f(t|x) = λ0(t)exp(x′β) exp{− exp(x′β)

∫ t

0

λ0(µ)dµ}. (1.8)

There are two important extension of the proportional hazards regression model:

(i) stratified Cox model and (ii) time-dependent covariate model. In stratified Cox

model, if λ0(·) is arbitrary and there are J strata in the population, the hazard

function for jth stratum is

λj(t|x) = λ0j(t) exp(x′β), (1.9)

for j = 1, · · · , J , where λ0j(t) is the corresponding baseline hazard function for the

jth stratum.

When the covariates are time-dependent. Cox model can be easily extended to

time-variant covariates:

λ(t|x(t)) = λ0(t)exp(x(t)′β). (1.10)

When n > p and only one subject fails at each time, maximizing the partial

5



likelihood is used to find the estimate of β [Cox, 1975],

L(β) =
∏
k∈D

exp(x′kβ)∑
l∈Rk exp(x′lβ)

, (1.11)

where D is the set of indicators of failure times and Rk is the set of indicator of

subjects at risk right before tk. If there are ties, we use the approximation [Breslow

and Crowley, 1974] or [Efron, 1977] to the partial likelihood (1.11).

1.1.2 Accelerated Failure Time Models

In the hazard function (1.6), the multiplicative effect of the covariate has a clear

meaning, but because of unknown baseline hazard function λ0(·), there is no direction

relationship between covariate x and the survival time T . Suppose a linear model

Y = x′β+ θ, where Y = log(T ) and ε is an error variable with some density function.

The model can be written as T = exp(x′β)V , where V = exp(θ) has hazard function

λ0(v). Then the hazard function for T with covariates x can be written as

λ(t|x) = exp(−x′β)λ0{t exp(−x′β)}. (1.12)

In (1.12), it is obvious that the effect of covariates in the model is multiplicative

on t. When x = 0, there is a baseline hazard function λ0(t); when x 6= 0, the

covariates of each subject affects the hazard rate along with t. The role of covariate is

to accelerate (or decelerate) the time to failure. The corresponding survivor function

6



is

S(t|x) = exp{−
∫ t

0

exp(−x′β)λ0(µe−x
′β)dµ}

= exp{−Λ0(te−x
′β)},

where Λ0(t) =
∫ t

0
λ0(µ)dµ.

The extensions of the model include stratifying the model and incorporating time-

dependent covariates.

1.2 Survival Analysis under the Bayesian Perspec-

tive

1.2.1 Parametric Models

Parametric modeling is straightforward, and many Bayesian analyses in practice are

based on a parametric model. In this section, we cover the Weibull model, one of the

most widely used parametric survival model.

Suppose we have survival times t = (t1, t2, · · · , tn)′, each independent and identi-

cally following Weibull distribution, W(α, λ), as

f(ti|α, λ) = αtα−1
i exp(λ− exp(λ)tαi ), (1.13)

where i = 1, · · · , n. The corresponding survival function is S(ti|α, λ) = exp(− exp(λ)tαi ).

The censoring indicator is given as δ = (δ1, δ2, · · · , δn) with δi = 0 when ti is right cen-

sored time and δi = 1. When ti is a known survival time, we can write the likelihood
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function of (α, λ) as

L(α, λ|n, t, δ) =
n∏
i=1

f(ti|α, λ)δiS(ti|α, λ)1−δi (1.14)

= α
∑n
i=1 δi exp{λ

n∑
i=1

δi +
n∑
i=1

(δi(α− 1) log(ti)− exp(λ)tαi )}.

To form a Weibull regression model, let λi = x′iβ, where the covariate xi is a p×1

vector and corresponding regression coefficient parameter β is also a p× 1 vector.

Let Np(µ0,Σ0) to be the normal prior for β and G(α0, κ0) to be the gamma prior

for α, we have the joint posterior as

π(β, α|n, t,delta) ∝ α
∑n
i=1 δi+α0−1 exp{

n∑
i=1

(δix
′
iβ + δi(α− 1) log(ti)− tαi exp(x′iβ))(1.15)

−κ0α−
(β − µ0)Σ−1

0 (β − µ0)

2
}

The posterior distribution of β does not have a closed form, so numerical integra-

tion or MCMC methods are used to estimate the posterior distribution of β.

1.2.2 Semiparametric Models

In this section, we consider Bayesian semiparametric approach for the accelerated

failure time model and Bayesian Cox proportional model.

Let data set without censoring, t = (t1, t2, · · · , tn)′ be independently and identi-

cally distributed, X is n×p matrix of covariates with ith row x′i representing a vector

of covariates for subject i, and β is the corresponding coefficient of the covariates.
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From section 1.1.2, the probability model is,

ti = exp(−x′iβ)νi, (1.16)

where νi = exp(θi). A mixture of Dirichlet processes (MDP) is used as a prior for θi

by [Kuo and Mallick, 1997]. Assume νi are independently and identically distributed

with density:

f(νi|G) =

∫
f(νi|ψi)G(dψi), (1.17)

where unknown G is given by a Dirichlet-process prior with known parameters and

f(νi|ψi) is a kernel density with kernel parameter ψi. With (1.2.2) and (1.17), the

likelihood function of Y can be written as,

f(Y |β, G) =
n∏
i=1

exp(x′iβ)

∫
f(yi exp(x′iβ)|ψi)G(dψi). (1.18)

Let the prior of β = π(β), the posterior of β is

β|ψ, Y ∝ π(β)
n∏
i=1

exp(x′iβ)f(yi exp(x′iβ)|ψi). (1.19)

[Kuo and Mallick, 1997] has more details. [Ghosh and Ghosal, 2005] prove the

posterior consistency of semiparametric AFT models with censored data. For the

censored data, data augmentation is used. Let δi = I{ti ≤ ci} be the censoring

indicator and W = (w1, · · · , wn)′, where wi = log(ti), be the augmented data, we

have 
wi = log(t∗i ) if δi = 1

wi > log(t∗i ) if δi = 0.

(1.20)
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[Sha et al., 2006] assumes the θ in are iid N(0, σ2), as a result the T ’s are log-

normally distributed. The augmented data follow normal distribution, W |X,β, σ2 ∼

N(Xβ, σ2I), with In×n the identity matrix.

The priors for this model are following,

β ∼ N(β0, σ
2Σ0) (1.21)

σ2 ∼ IG(v0/2, v0σ
2
0/2). (1.22)

[Sha et al., 2006] is interested in variable selection rather than estimation of β’s.

The mixture priors for variable selection is

βj|γj, σ2 ∼ (1− γj)I(0) + γjN(0, σ2τj), (1.23)

where τj is the jth diagonal element of σ0. π(γj) is the prior for γj following in-

dependent Bernoulli distribution. γj = 1 indicates j-th variable is selected in the

model.

After integrating out β and σ2, marginal likelihood of the augmented data is a

multivariate t-distribution,

W |X(γ) ∼ Tv0 [Xβ0, σ0(I +XΣ0X
′)]. (1.24)

Posterior for the γ is,

p(γ|X,W ) ∝
n∏
j=1

p(γj)p(W |X(γ)). (1.25)
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[Sha et al., 2006] also discuss the model with log-t prior for β’s.

The other model is one of the most convenient and popular models for semipara-

metric survival analysis, the Cox proportional hazards model. Instead of assuming

multiplicative effect on the t, cox model assumes a multiplicative effect on the haz-

ard functions. To construct this model, we first consider a finite partition of time,

0 < s1 < s2 < · · · < sK , with sK > ti for all subjects from i = 1, 2, · · · , n. Thus, we

form K intervals, and the k intervals is Ik ∈ (sk−1, sk]. To form a piecewise constant

hazard model, let the baseline hazard λ0(t) = λk for t ∈ Ik and t = (t1, t2, · · · , tn).

The maximum likelihood function is

p(t|β,λ, X, ν, δ) =
n∏
i=1

K∏
k=1

(λj exp(x′iβ))δikνi exp{−δik[λj(ti − sk−1) (1.26)

+
k−1∑
g=1

λg(sg − sg−1)] exp(x′iβ)},

where ν = (ν1, ν2, · · · , νn)′ with νi = 1 if the ith subject has an exact failure time and

0 right censored time, δik = 1 if the ith subject failed or is censored in the interval Ik.

Prior of the baseline hazard λ follows independent gamma distribution and prior

of β follows independent normal distribution,

π(λk) ∼ G(α0k, λ0k) (1.27)

π(βj) ∼ N(0, σ2
0), (1.28)

where α0k, λ0k and σ2
0 are known. And the joint posterior distribution of λ and β is,

p(λ,β|t, X, ν, δ) ∝ p(t|β,λ, X, ν, δ)π(λ)π(β), (1.29)
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[Sinha et al., 1999] considers discrete hazard model allows for time-dependent regres-

sion coefficients.

1.3 Variable Selection in Gene Expression Data

and Related Difficulties

DNA microarrays measure the expression levels of large numbers of genes simulta-

neously. These measurements, gene expression profiling, can identify between cells

that are actively dividing, or show how the cells react to a treatment. One of the

objectives to analyze gene expression is to link the survival time to certain subset

of genes, pathway or both. The identified genes/pathways in the subset can be used

either to inform biologists to do more research on the related subset or to build a

statistical model to predict the survival time of new patients.

In statistics analysis, one difficulty is the incomplete data due to censoring. The

other difficulty is the number of genes(p) is usually much larger than the number of

experimental subjects(n), because of the nature of gene expression data. Therefore

transitional regression analysis is not useful in this scenario. Supervised principal

components [Bair et al., 2006] which reduces the dimension of the predictor can be

used to solve this difficulty.

Even though p � n, the number of genes related to survival time is usually

very small comparing to p. To encourage the sparsity of the coefficients and model

selection in the same time, [Tibshirani, 1996] introduced the least absolute shrinkage

and selection operator (Lasso) penalty based on the L1-norm. The lasso method

makes some coefficient exactly equal to 0 and hence the genes related to survival time
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can be identified. [Tibshirani, 1997] extend the Lasso method to Cox proportional

model. [Gui and Li, 2005] applies least-angle regression (LARS) method to Cox

model. LARS-COX procedure reduce the computational difficulty of Lasso Method

based on the L1-norm in the Cox Model. However, all the methods above can only

select at most n genes. If the n is relatively very small, this limitation would cause a

problem. Bayesian framework can handle this limitation.

Bayesian framework can solve the limitation we mentioned above. Variable selec-

tion under the Bayesian framework traditionally has been done by the SSVS(Stochastic

Search Variable Selection) procedure [George and McCulloch, 2005]. The predictors

that have higher posterior probability can form a promising subset in this procedure.

[E. et al., 2003] and [Tibshirani et al., 2005b] extend the SSVS procedure to discrete

response models. [Tanner and Wong, 1987] introduce data augmentation by calcu-

lating the posterior distribution of missing data. This approach is widely used to

impute the censored data in survival analysis. [Sha et al., 2006] consider accelerated

failure time (AFT) models to select important genes with augmented survival data

assuming the survival time follows log-normal or log-t distribution. Bayesian gene

selection applies in non-linear binary and multiclass problems by [Chakraborty et al.,

2007] and [Chakraborty, 2009]

1.3.1 Supervised Principal Components Regression

[Bair et al., 2006] propsed supervised principal components regression (SPC) by

adapting ideas of dimension reduction and penalized regression. The idea of SPC

is to compute univariate standard regression coefficients for each predictor and only

keep the predictors whose absolute value of univariate coefficient exceeds a threshold
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θ. The remained predictors form a reduced matrix. Then we compute the first (or

first few) principal component of the reduce matrix and use them to predict the re-

sponse variable. SPC has a consistent estimation for regression coefficient parameters

as n and p→∞, but the usual principal components regression does not.

1.3.2 Cox Univariate Shrinkage Method

[Tibshirani, 2009] proposed Cox univariate shrinkage (CUS) estimator, which finds

estimate using a set of simple one-dimensional maximization with the Lasso penalty

under the assumption that the features are independent. Under this assumption, the

partial likelihood (1.11) can be written as following:

L(β) ∝
p∏
j−1

∏
k∈D

exp(xkjβj)∑
m∈Rk exp(xmjβj)

(1.30)

The log partial likelihood is

l(β) ∝
p∑
j=1

K∑
k=1

(xkjβj − log
∑
m∈Rk

exp(xmjβj)) (1.31)

where K represent the total number of different failure times. The proposed CUS

estimator is as the maximizer of the penalized partial log-likelhood,

J(β) =

p∑
j=1

gj(βj)− λ
∑
|βj| (1.32)

where gj(β) ≡
∑K

k=1(xkjβj− log
∑

m∈Rk exp(xmjβj)) and λ ≥ 0 is the tuning parame-

ter. The problem can be solved for a range of λ values and it is a set of one-dimensional
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maximizations, because each function gj(βj) − λ
∑
|βj| in (1.32) can be maximized

separately.

1.3.3 Iterative Bayesian Model Average

To Analyze survival data with microarray predictors, [Annest et al., 2009] developed

the iterative Bayesian Model Average (BMA) algorithm. In this algorithm, the par-

tial log likelihood of each genomic variable is calculated and the top 25 geneomic

variables with a largest log likelihood value are chosen in the initial model. After ap-

plying iterative BMA algorithm, the 25 genes which have low posterior probabilities,

generally the threshold is 1%, would be removed from the initial model. Suppose we

have k number of genes removed from the initial model, then k genes with highest

log likelihood value next to the initial 25 genes would be selected in the model. The

process continues until all the genes have been considered. The traditional BMA

algorithm includes the leaps and bounds algorithm and it is not efficient when the

number of predictors is greater than 30, so only 25 genes are considered at each it-

eration. As a result, iterative BMA cannot selected more than 25 genes in our case,

more generally, more than the size of the BMA window (maximum 30).

1.3.4 Bayesian Variable Selection in AFT Model

Based on variable selection in regression and multinomial probit models [Sha et al.,

2004], [Sha et al., 2006] extended this Bayesian variable selection approach to accel-

erated failure time (AFT) models. The censored survival times are imputed using a

data augmentation approach proposed by [Tanner and Wong, 1987] with log-normal
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or log-t distributional assumptions. The full conditional of a censored case follows a

univariate truncated t-distribution and it can be updated using Gibbs sampling. The

regression coefficients are assumed to arise from a scale mixture of a point mass at

0 and a normal density [George and McCulloch, 2005] by adding a latent vector, γ,

with Bernoulli distribution to the prior of coefficients. The joint posterior distribution

of γ or the marginal posterior distributions of its elements can be used to make the

variable selection. We discuss the model on detail in section(1.2.2).

There are some major limitations for microarray data analysis when only one gene

is considered individually, because cellular processes often affect sets of genes instead

of one, and the biological mechanisms are more related to moderate changes in several

genes than dramatic change in a single gene [Mootha et al., 2003]. [Liu et al., 2007]

consider a semiparametric regression model with covariates and a genetic pathway.

The covariates are modeled parametrically and the genes in the pathway are modeled

using least-squares kernel machines (LSKMS). The overall effect of the pathway can

be tested in the semiparametric model.

[Stingo et al., 2011] considers the selection of pathways and genes simultaneously

with biological information, which includes the membership of genes in pathways

and the relationships between genes, Kyoto Encyclopedia of Genes and Genomes

(KEGG)[Kanehisa and Goto, 2000].

[Stingo et al., 2011] apply PLS regression of Y on a subset of selected genes and

pathways,

Y = 1α +

Kθ∑
k=1

Tk(γ)βk(γ) + ε, (1.33)

where θ is the indicator of selected pathways, Kθ =
∑K

k=1 θk is the number of selected

pathways, γ is the indicator of selected genes, γ Tk(γ) is the first latent PLS component
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from microarray data of selected pathway k and corresponding selected genes, and

ε ∼ N(0, σ2). The model can be also written as,

Y |X, α,β, σ2 ∼ N(1α +

Kθ∑
k=1

Tk(γ)βk(γ), σ
2I). (1.34)

Priors for regression parameters are,

βk|θk, σ2 ∼ θkN(β0, hσ
2) + (1− θk)δ0(βk) (1.35)

α|σ2 ∼ N(α0, h0σ
2) (1.36)

σ2 ∼ IG(v0/2, v0σ
2
0/2), (1.37)

where α0, β0, h0, h, v0 and σ2
0 are known.

Priors for pathway and gene selection indicator are,

p(θ,γ|µ, η) ∝
K∏
k=1

ψθkk (1− ψk)1−θk exp(µ1′γ + ηγ ′Rγ), (1.38)

where ψk, µ, and η are known. R is the gene relationship matrix.

By multiplying the prior of α, β and σ2 to (1.34) and then integrating out them,

we get a multivariate t-distribution,

f(Y |T ,θ,γ) ∼ Tv0(α01 + Tθ,γβ0, σ
2
0(I = h011′ + Tθ,γΣ0T

′
θ,γ)). (1.39)

And the joint posterior distribution of the pathway and gene selection indicators is

f(θ,γ, η|T , Y ) ∝ f(Y |T ,θ,γ)p(θ,γ|µ, η). (1.40)
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Pathways and genes are selected by three moves: adding/removing a pathway and

a gene; adding/removing a gene; adding/removing a pathway.

1.4 Genetic pathways

A genetic pathway figure(1.2) is the set of interactions occurring between a group

of genes. The interactions together execute certain biological function(s). As we

mention before, biological mechanisms are more related to moderate changes in several

genes than dramatic change in a single gene. Studying pathway makes us better

understanding biological mechanisms. It is possible that more than one pathway

related to a certain disease, and finding those related pathways will help us learn

more about disease process figure(1.3).

1.5 Structural Equation Modeling

Structural Equation Modeling can be used where the data set contain manifest(observed)

and latent(unobserved) variables. Manifest variables can be measured directly, while

latent variables cannot.

1.5.1 Introduction

Exploratory factor analysis (EFA) is a basic SEM, and it is defined as follow:

y = Λω + ε (1.41)
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Figure 1.2: Steroid hormone biosynthesis pathway
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Figure 1.3: Schematic representation of the relationship among genes, pathways and
diseases [Stingo et al., 2011]
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where Λ is a p× q unknown parameter matrix (factor loadings), ω is a q×1 vector of

latent variables, ε is a p× 1 vector of measurement errors. ω and ε are independent.

ω follows a N [0, I] distribution and ε follows normal distribution as N [0,Ψε], where

Ψε is a diagonal matrix. The observable response variables y follows a N [0,Σ], where

Σ = ΛΛT + Ψε.

The latent variables are correlated with each other, which means ε follows a

N [0,Φ] and Φ is a positive definite covariance, so that the previous model becomes

the confirmatory factor analysis (CFA) model, which is a natural extension of the

EFA model. And Σ = ΛΦΛT + Ψε

(1.41) is refereed to be measurement equation, which represent the relationship

between Manifest variables and latent variable. In a general structural equation

model, the relationship among latent variables is also considered. If SEMs assume

linear relations among latent variables [Jőreskog, 1973], the full structural model is

defined as follows:

η = Πη + Γξ + ζ, (1.42)

where η is a q1 × 1 vector of endogenous latent variables and ξ is a q2 × 1 vector of

exogenous latent variables, Π is a q1 × q1 unknown matrix of regression coefficients

relating the latent endogenous variables to each other and Γ is a q2 × q2 unknown

matrix of regression coefficients relating the exogenous latent variables to the en-

dogenous latent variables. In this case, ω can be defined as ω = (ηT , ξT )T , so the

measurement equation for the general structure equation model is still (1.41).
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1.5.2 Bayesian Estimation

To illustrate the Bayesian method, let us consider CFA model. Suppose there are n

observations and i = 1, · · · , n, so (1.41) becomes:

yi = Λωi + εi. (1.43)

Priors

Let Λk be the kth column of Λ and kth diagonal elements of Ψ be ψεk, conjugate

priors for Λk and ψεk are,

Λk|ψεk ∼ N(Λ0k, ψεkH0yk) (1.44)

ψ−1
εk ∼ Gamma(α0εk, β0εk), (1.45)

where α0εk, β0εk, Λ0k and positive definite matrix H0yk are hyperparameters.

For Φ, a conjuage prior is a q dimensional Inverted Wishart distribution:

Φ ∼ IWq(R0, ρ0), (1.46)

where positive definite matrix R0 and ρ are hyperparameters.
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Full conditional distribution

The parameters of interest are θ = (Λ,Ψε,Φ)T . Let Ω = (ω1, · · · ,ωn) and the

conditional distribution of Ω is:

p(Ω|Y ,β) =
n∏
i=1

p(ωi|yi,θ) ∝
n∏
i=1

p(ωi|θ)p(yi|ωi,θ), (1.47)

where ωi ∼ N(0,Φ) and yi|ωi,θ ∼ N(Λωi,Ψε), so

ωi|yi,θ ∼ N((Φ−1 + ΛTΨ−1
ε Λ)−1ΛTΨ−1

ε yi, (Φ
−1 + ΛTΨ−1

ε Λ)−1). (1.48)

For θ, the conditional distributions are:

ψ−1
εk |Y ,Ω ∼ Gamma(n/2 + α0εk, βεk) (1.49)

Λk|Y ,Ω, ψ−1
εk ∼ N(ak, ψεkAk) (1.50)

Φ|Y ,Ω ∼ IWq(ΩΩT +R−1
0 , n+ ρ0), (1.51)

where Ak = (H−1
0yk + ΩΩT )−1 and ak = Ak(H

−1
0ykΛ0k + ΩYk)

The Gibbs sampler can be used to generate the posterior distribution of θ and ω.

1.6 Motivation and Outline of the Study

Much attention has been given recently to the development of methods that utilize

the large quantity of genetic information. Most of the proposed methods look at the

entire set of genes and their impact on a disease. Recently a new philosophy emerged

which considers the genetic pathways, which contain sets of genes, combined effect
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on a disease. Under the new philosophy the goal is to identify the significant genetic

pathways and the corresponding influential genes in regards to different diseases.

In Chapter 2, a Bayesian kernel machine model which incorporates existing in-

formation on pathways and gene networks in the analysis of DNA microarray data

is developed. Each pathway is modeled nonparametrically using a reproducing ker-

nel Hilbert space. Mixture priors on the pathway indicator variable and the gene

indicator variable are assigned. This approach can be used to model both linear and

non-linear pathway effects and can pinpoint the important pathways along with the

active genes within each pathway. An efficient Markov Chain Monte Carlo (MCMC)

algorithm is developed to fit our model. A simulation study and a real data analysis,

using, [van ’t Veer et al., 2002] breast cancer microarray data, are used to illustrate

the proposed method.

In Chapter 3, we focus on Structural equation modeling. Structural equation mod-

els are a well-developed statistical tool for dealing with multivariate data that contain

latent variables. Recently much attention has been given to developing structural

equation models that account for nonlinear relationships between the endogenous la-

tent variable and the covariates and endogenous latent variables. [Guo et al., 2012]

developed a semiparametric structural equation model where the nonlinear functional

relationships were approximated using basis expansions. Many basis expansion meth-

ods, including cubic splines, are known to induce correlations. In this chapter, we

compare standard Lasso, Fused Lasso and Elastic Net to account for correlations in

both the covariate and basis expansions. To illustrate the usefulness of the proposed

method a simulation study has been performed. Results indicate that the Elastic Net

is most efficient at approximating the nonlinear relationships between the endogenous
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latent variable and the covariates and endogenous latent variables.

1.7 Software and Data Sets

1.7.1 Software

The methodologies that we mentioned on 1.3, Supervised Principal Components Re-

gression, Cox Univariate Shrinkage Method and Iterative Bayesian Model Average, R

packages are available. They are superpc, uniCox and iterativeBAMsurv respectively.

Matlab codes for BVSME-Surv and bvssurv are available http://www.stat.rice.edu/ ma-

rina/software.html.

• superpc- The package superpc uses the functions, superpc.train and superpc.predict

to predict a quantitative regression or survival outcome using supervised prin-

cipal components method. The accuracy of the estimation can be set by

n.threshold option, which decides the number of the thresholds to consider.

• uniCox- The package uniCox uses Univariate Shrinkage to fit a high dimensional

Cox model. The estimation accuracy and computation time are decided by the

option nlam, the number of λ values to consider.

• iterativeBAMsurv- The package iterativeBAMsurv use the function iterativeBAM-

surv.train to implement iterative BMA for variable selection on microarray data

and survival analysis.

• BVSME-Surv- The Matlab program BVSME-Surv use function bvsme aft to im-

plement Bayesian variable selection method in AFT model using Metropolis
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search for the micorarray data related to survival time.

• bvssurv The Matlab program bvssurv is used to implement Bayesian variable

selection method to choose important pathways and genes simultaneously by

incorporating information of the relationship of pathway and genes in the anal-

ysis of DNA microarray data.

• Bayesian Lasso for Semiparametric Structural Equation Models Illustrative Code

The C++ program of the Illustrative Code use a simulation study to implement

Bayesian Lasso method with a Markov Chain Monte Carlo (MCMC) algorithm

to SEM.

1.7.2 Data Sets

• NCI breast cancer data [van ’t Veer et al., 2002] - This data set has 295

consecutive patients with primary breast cancer. 151 had lymph-node-negaitve

disease, and 144 had lymph-node-positive disease. It also includes 24481 gene-

expression signatures.

• Monitoring the Future: A Continuing Study of American Youth

(12th-Grade Survey), 2010 - This survey is conducted by the University

of Michigan’s Institute for Social Research. This data set has total 12999 ob-

servations and some 1400 variables.
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Chapter 2

Bayesian Kernel Based Modeling
and Selection of Genetic Pathways
and Genes for Cancer

2.1 Introduction

DNA microarray data have been used as an approach to cancer classification previous

knowledge of those classes [Golub et al., 1999]. A lot of statistical methods have been

develop to identify important genes related certain diseases, prognosis etc. However,

gene selection may not be enough for more completed disease, especially in cancer.

Cancer is result of deregulation of one or more signaling pathways which are caused

by one or several set(s) of gene mutation[Sherr, 1996],[Hanahan and Weinberg, 2000].

Some types of cancers are more complicated, for instance, breast cancer. It is possible

that the genes or pathways which mutate to cause breast cancer are mostly different

between two breast cancer patients. The difference of genes or pathways mutation
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may be related to the patients’ cancer recurrence possibilities and times. Our goal is

to find out those important genes and pathways that might be related to the recur-

rence possibilities and tumor free time. In this chapter, we construct a semiparametric

Bayesian model which enable us to select important pathways and individual impor-

tant genes from the pathway by mixed priors through Bayesian variable selection

scheme.

We extend the idea of AFT models for survival data in the situation where there

are much more variables than observations. The model that we propose consider

both genes and pathways and combines information of pathway relationships and

gene networks in DNA microarray data analysis. The pathway and gene mapping

information are obtained from Kyoto Encyclopedia of Genes and Genomes(KEGG).

The gene networks information is used not only to define Markov random field prior

[Stingo et al., 2011] but also to structure the Markov chain Monte Carlo (MCMC)

moves. The interactions among the genes in one pathway are very complex and the

function form of the overall pathway effects is not clearly understood, so that we adopt

a reproducing kernel Hilbert spaces (RKHS) [Aronszajn, 1950] approach, therefore

we model the pathway effects nonparametrically. A big advantage of our approach is

that both linear and non-linear pathway effect can be used in the model, so that the

model is more flexible. Moreover, the model can perform different important genes

and pathways selection criteria by choosing different kernel functions.

Section 2 of this chapter introduced our semiparametric Bayesian model. Step

by step MCMC algorithm is introduced in Section 3. Section 4 provides simulation

studies and compare the performance of our proposed model against the method

proposed by [Stingo et al., 2011]. The application of the model for a real data set is
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discussed in Section 5. Finally, some discussion and concluding remarks are made in

section 6.

2.2 Bayesian Kernel Based Model

Accelerated failure time (AFT) models assumes multiplicative effect of the covariates

on the survival time, and the general AFT model is as,

log(Ti) = α + x′iβ + εi, i = 1, · · · , n (2.1)

where Ti is the survival time, α is the intercept, p-vector xi is covariates, p-vector

β is regression parameters corresponding to the covariates, and εi’s are the error

term which independent and identically distributed random variables with a common

distribution.

Suppose a data set consists of n subjects. For the subject i, we have the survival

time ti. Let ci be the censoring time independent of ti. Let δi = I{ti ≤ ci} to be cen-

sored indicator function and t∗i = min(ti, ci). We impute the censored data by using

the [Tanner and Wong, 1987] data augmentation approach. Let Y = (y1, y2, · · · , yn)′,

and yi is the augmented data as,


yi = log(t∗i ) if δi = 1

yi > log(t∗i ) if δi = 0

(2.2)

The covariates xi = (xi1, xi2, · · · , xip)′ in (2.1) is extended as fi = (f1(X1
i ), f2(X2

i ), · · · , fJ(XJ
i )),

j = 1, 2, · · · , J . fj(X
j
i ) is the overall effect of the pathway j with gene set Xj

i and J
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is the total number of the pathway. Assuming the error term is iid following standard

normal distribution, the model (2.1) becomes:

Yi = α + f1(X1
i ) + · · ·+ fJ(XJ

i ) + ei, ei
iid∼ N(0, σ2) (2.3)

We adopt RKHS approach to model function fj(X
j
i ). A Hilbert space is a vector

space H with an inner product 〈g1, g2〉 and the norm ‖g1‖ = 〈g1, g1〉1/2. An RKHS

H is a Hilbert space of ”smooth” functions defined by kernel. In an RHKS, there is

a function K : T × T → R with the properties:

• K(·,x) ∈ H and

• for any g ∈ H and x ∈ T , 〈K(·,x), g(·)〉 = g(x)

Following the representation theorem [Kimeldorf and Wahba, 1971], we have

fj(X
j
i ) =

n∑
l=1

βjlK(Xj
i ,X

j
l |θj) (2.4)

where K(Xj
i ,X

j
l | θj) is the Kernel, θj > 0, is the Kernel parameter and βjl is the

Kernel weight. In our research, we choose the Kernel as,

K(Xj
i ,X

j
l | θj) = exp(−‖X

j
i −X

j
l ‖

θ
) (2.5)

Our model will become:

Y = α1n +KB + e e ∼ N(0, σ2In)
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where Y = (y1, y2, · · · , yn)′; K is n by n× J matrix,

K =



K(X1
1 ,X

1
1 |θ1) K(X1

1 ,X
1
2 |θ1) · · · K(X1

1 ,X
1
n|θ1) · · · K(XJ

1 ,X
J
n |θJ)

K(X1
2 ,X

1
1 |θ1) K(X1

2 ,X
1
2 |θ1) · · · K(X1

2 ,X
1
n|θ1) · · · K(XJ

2 ,X
J
n |θJ)

...
...

. . .
...

. . .
...

K(X1
n,X

1
1 |θ1) K(X1

n,X
1
2 |θ1) · · · K(X1

n,X
1
n|θ1) · · · K(XJ

n ,X
J
n |θJ)


(2.6)

; and B is n× J vector,

BT = (β1
1 , β

1
2 , · · · , β1

n, β
2
1 , β

2
2 , · · · , β2

n, · · · βJ1 , βJ2 , · · · , βJn ) (2.7)

In order to use the information from KEGG, two matrices, S and R, are con-

structed [Stingo et al., 2011]. S is a J × p matrix representing the relationship

between genes and pathways. If gene k belongs to pathway j sjk = 1, otherwise

sjk = 0, where k = 1, · · · , p. The construction of the matrix R is different from [Li

and Zhang, 2010]. Matrix R indicates the relationship between genes. We consider

two types of gene relationships in our model. The first one is the genes whose coded

proteins combine and form a protein compound. If gene k1 and k2 are in this case,

rk1,k2 = 1. The other relationship between genes is that proteins coded by those genes

signal each other. In this case, rk1,k2 = q, where q > 0. And rk1,k2 = 0 other wise.
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2.2.1 Priors for Regression Parameters

Suppose the ti’s follow a log-normal distribution, the augmented data yi’s in (2.2) are

normally distributed as:

Y |K, α,B, σ2 ∼ N (α1 +KB, σ2In) (2.8)

where I is the identity matrix.

The conjugate priors for the model are given by

α|σ2 ∼ N (α0, aα)

B|σ2 ∼ N (B0, aBσ
2In×J)

σ2 ∼ IG(ν0/2, ν0σ
2
0/2)

(2.9)

where the hyperparameters are α0, aα, B0, aB, ν0 and σ0. We choose vague priors on

α and B: α0 = 0 and large aα; B0 = 0 and small aB. Small value of ν0 gives weakly

informative prior for σ2. Without losing generality and letting α0 = 0 and B0 = 0.

The priors become:

α|σ2 ∼ N (0, aα)

B|σ2 ∼ N (0, aBσ
2I)

σ2 ∼ IG(ν0/2, ν0σ
2
0/2)

(2.10)

2.2.2 Marginal Likelihood of the Augmented data

To simplify the calculation, we integrate out α, B and σ2.
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• First, we integrate out B

p(Y |X,K, α, σ2) =

∫
p(Y ,B|X,K, α, σ2)dB (2.11)

=

∫
p(Y |X,K,B, α, σ2)p(B|σ2)dB

∝ 1

(σ2)n/2
exp[−(Y −KB)T (Y −KB)

2σ2
]

× 1

(aBσ2)Jn/2
exp[−B

TB

2aBσ2
]dB

∝ 1

(σ2)n/2
exp(

Y T (I + aβKKT )−1Y

2σ2
)

• We integrate out α

p(Y |X,K, σ2) =

∫
p(Y , α|X,K, σ2)dα (2.12)

=

∫
p(Y |X,Kα, σ2)p(α|σ2)dα

∝
∫

1

(σ2)n/2
exp(

Y T (I + abetaKKT )−1Y

2σ2
)

1

(aασ2)1/2
exp(− α2

2aασ2
)dα

∝ 1

(σ2)n/2
exp(−Y

T (In + aα1
T1 + aβKKT )−1Y T

2σ2
)

33



• Finally, we integrate out σ2

p(Y |X,K) =

∫
p(Y , σ2|X,K)dσ2 (2.13)

=

∫
p(Y |X,K, σ2)p(σ2)dσ2

∝
∫

(σ2)−ν0/2−1 exp(−ν0σ
2
0/2

σ2
)

1

(σ2)n/2

exp(−Y
T (In + aα1

T1 + aβKKT )−1Y T

2σ2
)dσ2

∝ (ν0σ
2
0 + Y T (In + aα1

T1 + aβKKT )−1Y T )−ν0/2−n/2

2.2.3 Mixture Priors for Variable selection

The regression coefficient B in (2.7) can be written as:

BT = (βT1 ,β
T
2 , · · · ,βTJ ) (2.14)

βj measures the effect of pathway j, but not all pathways are related to the dependent

variable. In order to identify the important pathways, we use Bayesian methods for

variable selection by applying a latent J-vector φ with binary entries. [Chipman et al.,

2001] review a vast amount of literature on Bayesian variable selection methodologies.

[George and McCulloch, 2005] assumed the regression coefficients arise from a scale

mixture of a point mass at 0 and a normal distribution, and our model follows this

assumption, so we have:

βj|φj, σ2 ∼ φjN (0, aβσ
2In) + (1− φj)I(0) (2.15)
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where φj’s are independent Bernoulli random variables. When the pathway j is not

related to the dependent variable Y , the coefficient related to the pathway j, βj are

all 0’s.

2.2.4 Priors for Pathway and Gene Selection indicators

From the previous subsection, we know φj is the pathway selection indicator for jth

pathway. Let φ be the pathway selection indicator, and φ = (φ1, φ2, · · · , φJ).


φj = 1 when pathway is j selected in the model

φj = 0 otherwise

(2.16)

The priors for the pathway selection is:

p(φ|ωj) =
J∏
j=1

ω
φj
j (1− ωj)1−φj (2.17)

where ωj is a constant, which represents the priori probability of pathway j in the

model.

Let the gene selection indicator, γ = (γ1, γ2, · · · , γp)T . The prior distribution

should be able to consider both the pathway membership of each gene and the bi-

ological relationships between genes, which we use matrix R to indicate. We model

these relations using a Markov random field(MRF)[Li and Zhang, 2010]. Different

from [Li and Zhang, 2010], we consider two types of gene relationships. A MRF is a

set of random variables with a Markov property described by an undirected graph. If

two genes are not related, they are considered to be conditionally independent given
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all other genes [Besag, 1974]. The following probability indicates the connections on

the MRF.

p(γk|η, γl, l ∈ Nk) =
exp(γkF (γk))

1 + exp(γkF (γk))
(2.18)

where F (γk) = (µ + η
∑

l∈Nk γk) and Nk is the set of genes in the same protein

compound of gene k and genes that receive/send signal from/to gene k in the MRF

given that the pathway of those genes are in the model. The global distribution on

the MRF is as:

p(γ|φ) ∝ exp(µ1Tp γ + ηγTRγ) (2.19)

where matrix R are introduced in the beginning of this section, µ is the parameter

that relates to the sparsity of the model, and η controls the prior probability of

gene selection depending on how many of its related genes are selected, so η sets the

smoothness of the distribution of γ over the undirected graph. If a protein from one

gene is isolated, then its prior distribution (2.18) becomes a Bernoulli distribution,

p = exp(µ)/[1 + exp(µ)]. On the other hand, the higher values of η is, the more likely

a gene is selected if many of its related genes are alright in the model.

Following [Stingo et al., 2011], three restrictions are needed to make sure both

interpretability and identifiablility of the model.

• Empty pathways, which means a pathways is selected but none of its member

genes are in the model.

• Orphan genes, which means a gene is selected in the model but none of pathways

having this gene is in the model.

• Different selected pathways have the same subset of genes selected in the model.
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Given these three restrictions, some of the combination of φ and γ are not in the

model. The joint prior probability for (φ,γ) is as:

p(φ,γ) ∝


∏J

j=1 ω
φj
j (1− ωj)1−φj exp(µ1Tp γ + ηγTRγ) for valid configurations

0 for invalid configurations

(2.20)

2.2.5 Prior for the Kernel Parameters

θj is the Kernel parameters for the pathway j. We use uniform distribution prior for

θj as:

p(θj) =
1

dθj − cθj
(2.21)

We only consider the θ’s that the corresponding pathways are in the model, so the

overall distribution of Kernel Parameters is:

p(θ) =


∏

j∈J
1

dθj − cθj
J is the subset of pathways that are in the model

0 otherwise

(2.22)
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2.2.6 Marginal Posterior Probabilities

After integrating out (α,β, σ2) in 2.2.2, our model has following parameters (φ,γ,θ).

given all the priors, (2.13) can be written as:

f(Y |X,K,φ,γ,θ) ∝ (ν0σ
2
0 + Y T (In + aα1

T1 + aβKKT )−1Y T )−ν0/2−n/2 (2.23)

This is a multivariate t-distribution

Y |X,K,φ,γ,θ ∼ Tν0 [0, σ0(In + aα1
T1 + aβKKT )] (2.24)

with truncation given by (2.2). When yi is censored with δi = 0, it follows a univariate

truncated t-distribution and can be updated by Gibbs sampling.

The posterior probability distribution of the pathway and gene selection indicators

is as:

f(φ,γ|Y ,X,K,θ) ∝ f(Y |X,K,φ,γ,θ) · p(φ,γ) (2.25)

Similarly, the posterior probability distribution of kernel parameter is:

f(θ|Y ,X,K,φ,γ) ∝ f(Y |X,K,φ,γ,θ) · p(θ) (2.26)

2.3 MCMC algorithm and Posterior Inference

There are two MCMC steps in the model:

• sampling pathway and gene selection indicators from p(φ,γ|Y ,X,K,θ)

• sampling kernel parameters from p(θ|Y ,X,K,φ,γ)
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2.3.1 MCMC algorithm for Pathway and Gene Selection In-
dicators

Metropolis-Hastings algorithm is used when updating the pathway and gene selection

indicators parameter (φ,γ). The MCMC moves follows [Stingo et al., 2011]. In order

to select pathways and genes simultaneously and make sure the selections follow

the these restriction we mentioned before, they choose one of the following moves

randomly in each iteration:

1. Change the indicator of gene and pathway in the same time

• Add a pathway and a gene Randomly select a pathway from the subset of

pathways that are not in the model and neither is their member genes, so

φoj = 0 and poj = 0, where poj represent the number of genes that are included

in the model in pathway j. And then randomly select one gene k from the

pathway j (γoj,k = 0). Include both pathway and gene in the model, so that

φpj = 1 and ppj = 1. The proposed (φpj , p
p
j) is accepted with probability:

min{1, f(φp,γp|Y ,X,K)

f(φo,γo|Y ,X,K)
·
ωj ·

∑J
j=1 I{φoj = 0, poj = 0}∑J

j=1 I{φ
p
j = 1, ppj = 1,C1}

} (2.27)

where C1 is clarified below.

• Remove a pathway and a gene Find a subset of the pathways that are in the

model and only one of their member genes are selected in the model. Randomly

select one of them, so φoj = 1 and poj = 1. In addition, the removal of gene does

not create identical subset of genes in different pathways, and this restriction

is C1. Remove both pathway and gene from the model, so that φpj = 0 and
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ppj = 0. The proposed (φpj , p
p
j) is accepted with probability:

min{1, f(φp,γp|Y ,X,K)

f(φo,γo|Y ,X,K)
·
∑J

j=1 I{φoj = 1, poj = 1,C1}
ωj ·

∑J
j=1 I{φ

p
j = 0, ppj = 0}

} (2.28)

2. Only change the indicator of gene in an included pathway

• Add a gene in an included pathway Find the subset(J ) of pathways that have

some of their member genes, but not all, in the model. And randomly select one

of them j, so φj = 1 and poj < pj, where pj represent the total number of genes

in pathway j. And then randomly select one gene k from non-included genes

from the pathway j(γoj,k = 0). Include the gene in the model, so that γpj,k = 1.

The proposed move is accepted with probability:

min{1, f(φo,γp|Y ,X,K)

f(φo,γo|Y ,X,K)
·

∑J
j=1 I{φoj = 1, poj < pj} ·

∑
j∈J

1

ppj(C2γ, CI2γ)∑J
j=1 I{φ

p
j = 1, ppj > 1,C2θ, CI2θ}

∑
j∈J

1

pj − poj

}

(2.29)

where C2γ, CI2γ, C2θ and CI2θ are clarified below.

• Remove a gene from an included pathway Find the subset(J ) of pathways

that have more than one of their member genes in the model. And randomly

select one of them j, so φj = 1 and poj > 1. Moreover, at least one of the

included genes in the pathway j may not be the sole gene in other included

pathways, so that removal of the gene do not create a empty pathway. The

these restrictions are corresponding to C2θ, CI2θ in (2.29) and (2.30). After the

pathway is selected, the subset of the included member genes is the genes that
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are not solely representative in other included pathways. And this restrictions

are corresponding to C2γ, CI2γ. A gene k is randomly selected from the subset

to be removed. C2θ and C2γ ensure the restrictions of the combination of

pathways and genes. The proposed move is accepted with probability:

min{1, f(φo,γp|Y ,X,K)

f(φo,γo|Y ,X,K)
·

∑J
j=1 I{φoj = 1, poj > 1,C2θ, CI2θ}

∑
j∈J

1

pj − ppj∑J
j=1 I{φ

p
j = 1, ppj < pj} ·

∑
j∈J

1

poj(C2γ, CI2γ)

}

(2.30)

3. Only change the indicator of the pathways not the genes

• Add a pathway Find the subset of the non-included pathways that have some

of the member genes included in the model, and randomly select a pathway j

(φoj = 0 and poj ≥ 0). Change the status of the pathway j, φpj = 1. In addition,

avoid to select a pathway whose included genes are exactly the same as the

include genes from an already included pathway. This is responding to CI3

below. Include the pathway j in the model, ppj = 1. The proposed move is

accepted with probability:

min{1, f(φp,γo|Y ,X,K)

f(φo,γo|Y ,X,K)
·
∑J

j=1 I{φoj = 1, poj ≥ 1,CI3}∑J
j=1 I{φ

p
j = 1, ppj ≥ 1,C3}

} (2.31)

where C3 is clarified below.

• Remove an included pathway Find the subset of the included pathways that

all of the included member genes are associated with other included pathways

and randomly select one of them j(φoj = 1 and C3). This guarantees that no
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orphan gene in the model. Remove the pathway j from the model, ppj = 0. The

proposed move is accepted with probability:

min{1, f(φp,γo|Y ,X,K)

f(φo,γo|Y ,X,K)
·
∑J

j=1 I{φoj = 1, poj ≥ 1,C3}∑J
j=1 I{φ

p
j = 1, ppj ≥ 1,CI3}

} (2.32)

2.3.2 MCMC algorithm for Kernel Parameters

From (2.22), θ have flat priors. Metropolis algorithm is used when updating θ. For

each included pathway, the proposed θpj is accepted with probability

min{1,
f(θpj |Y ,X,K,φ,γ)

f(θoj |Y ,X,K,φ,γ)
} (2.33)

2.3.3 Posterior Inference

In each iteration, the MCMC algorithm produce one model with included pathways

and gene, indicated by φ and γ respectively. And the whole procedure produce

a list of models. To estimate the marginal posterior probability for pathway j,

p(φj|Y ,X,K), we can count the number of the pathway j appeared in the included

pathways for every iteration after certain burnin point and then divide the count by

the total iteration after the burnin point. If the posterior probabilities of the pathways

pass some threshold, they are identified as the important pathways. Similarly, poste-

rior probabilities of gene k in the important pathway j, p(γk|Y ,X,K, I{φjsjk = 1})

can be calculated. The other way to find out important genes is to count the number

of gene k appear in the model ignoring whether it is in the important pathways. The

posterior probabilities of gene k can be calculate as p(γk|Y ,X,K}).
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2.4 Simulation Study

In this section, we evaluate the proposed model performance using simulated data

and comparing the result with [Stingo et al., 2011].

To simulate the data, we randomly chose 50 pathways from 243 pathways, and

1656 genes responding to these 50 pathways. The relationship between the pathways

and genes in the simulation data are based on the gene-pathway relations, S, and the

gene relations, R. We randomly chose 4 important pathways from the 50 pathways.

For each of the 4 important pathways, one important gene is selected randomly and

also the genes near it to code the same protein compound. Moreover, we selected the

genes that send or receive signals from the important protein compound. Then we

have 4 pathways and 27 important genes: 5 important genes out of 14 genes from

the first pathway, 6 out of 11 from the second, 8 out of 43 form the third and 8

out of 38 from the fourth. To simulate the data like these is based on the fact the

one gene mutation usually will not form cancer, but several related genes mutation

might cause cancer. We also add 2 fake important genes and 2 corresponding fake

important pathways in the model to check if the proposed model can avoid those 2

fake important pathways and genes. In reality, it is possible that patients have some

mutation genes not related to cancer.

To generate important genes’ microarray data, we first pick a gene which only

sends, but not receives signal among the important genes in a pathway and let X00

represent the value of that gene. Let X0 be either 2 or −2, and draw X00 from

X00 ∼ U(X0−.5, X0+.5). For the other genes that are in the same protein compound,

select one of them and denote it by X01 and X01 ∼ N (ρX00, .5), where ρ a multiplier

and here we let ρ = .95. For the kth genes in the same protein compound, its value
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is generated by X0j ∼ N (ρX0(j−1), .5). In the neighborhood protein compound, the

gene that receives the signal from X00 is denoted by X10 and X10 ∼ N (ρX00, .5)

and we can generate other genes value by X1j ∼ N (ρX1(j−1), .5). If we have other

neighborhood protein compound, their values are generated in similar format. For

the fake important gene, we only need to draw X00 from X00 ∼ U(X0 − .5, X0 + .5).

The rest of unimportant genes are simulated from a stand normal distribution. We

assume non-linear relationship between the response variable and the important genes

variable. The response variables are generated from:

• Let the effect of the first important pathway to be F1 and X1
k to be the kth

important genes in the first important pathway.

F1 = cos(X1
1 )−1.5(X1

2 )2+exp(−X1
3 )X1

4−.8 sin(X1
5 ) cos(X1

3 )+2X1
1 ∗X1

5 (2.34)

• Let the effect of the second important pathway to be F2 and X2
k to be the kth

important genes in the first important pathway.

F2 = cos(X2
1 )−1.5(X2

2 )2 +exp(−X2
3 )X2

4− .8 sin(X2
5 ) cos(X2

3 )+2X2
1 ∗X2

5 + .9X2
6

(2.35)

• Let the effect of the third important pathway to be F3 and X3
k to be the kth

important genes in the first important pathway.

F3 = cos(X3
1 )− 1.5(X3

2 )2 + exp(−X3
3 )X3

4 − .8 sin(X3
5 ) cos(X3

3 ) (2.36)

+2X3
1 ∗X3

5 + .9X3
6 sin(X3

7 )− .8 cos(X3
6 )X3

7 + 2X4
8
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• Let the effect of the forth important pathway to be F4, and it can be generated

similar to the third pathway.

• The response variables y would be

y = F1 + F2 + F3 + F4 + ε, ε ∼ N (0, 1) (2.37)

We choose weak information priors for our prior parameters. On 2.2.1, we already

set α0 = 0 and B0 = 0. Moreover, we set aα = 100 and aβ = 0.1. The variance of the

inverse gamma distribution exists when the shape parameter greater than 2 and we set

the shape parameter, ν0/2 = 3, which is the smallest integer that greater than 2. The

scale parameter, ν0σ
2
0/2 = 0.6, which form a weakly informative prior. µ decides the

sparsity of the model. In simulation our goal is to select 2 to 6 important pathways for

each iteration, but different simulation data set require slightly different µ to achieve

this goal. We let the model change the µ value based on average pathways in the

model in very 2000 iterations. The change of value of µ will increase the instability of

the pathway selection, but once the suitable µ is selected, it will unlikely change. We

choose η = 0.08, which controls the prior probability of gene selection depending on

how many its related genes are selected. We set ω = .1 as the prior for the probability

of important pathway.

We have two different simulation scenarios: first one is that the important genes

are only in the important pathways; the other one is that the important genes are

not only in the important pathways, but the subset of them are in other pathways.

The detail of the scenarios setting is as:

• Simulation 1 We make sure the 27 important genes only appear in the four
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TP FP TN FN
True 4 0 46 0
Est. 3.24 0.26 45.74 0.76

Est. by [Stingo et al., 2011] 2.46 10.78 35.22 1.54

Table 2.1: Comparison between our model and [Stingo et al., 2011] model in simula-
tion 1

important pathways. The sample size n = 100. We replicate the simulation 50

times, generating 50 different data sets. µ = −2.8 is the initial value.

• Simulation 2 Similar to simulation, except we add subset of the important genes

to 3 different pathways and µ = −5 is the initial value.

We compare to result with [Stingo et al., 2011] model in the Simulation 1, table(2.1).

On average, in our method, we choose 3.42 out of 4 important pathways and that is

almost 1 more than [Stingo et al., 2011] model. Our model have 0.26 false pathway

selection, which is much less than theirs(10.78). In 50 different simulations, our model

selected none of the 2 fake important pathways. For each selected important path-

ways, at least one of the important genes are selected and none of the non-important

genes are selected. Our model does not select any of the fake important pathways

during the 50 different simulations; while [Stingo et al., 2011] model selects one of

the fake important pathways frequently. This is a very good advantage of our model,

because model does not select those mutated genes, when mutation happens during

cell reproduction process but not related to the metastasis.

Table(2.2) shows the result of simulation 2. Our model selected 3.02 out of 4

important pathways on average, which is slightly lower than simulation 1, while the

false selection becomes 1.02, which is greater than the simulation 1. Most of the false
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TP FP TN FN
True 4 0 46 0
Est. 2.92 1.04 44.96 1.08

Est. by [Stingo et al., 2011] 1.78 11.12 34.88 2.22

Table 2.2: Comparison between our model and [Stingo et al., 2011] model in simula-
tion 2

selections are related to non-important pathways with important genes. [Stingo et al.,

2011] model also performs worse than the simulation 1.

2.5 Application

We used the [van ’t Veer et al., 2002] breast cancer microarray data. In the data set

there are 337 patients with 24481 microarray probes. We focus on 54 lymph-node-

negative stage 0 patients. 21 of them developed distant metastasis and the rest of

them are censored. our goal is to identify the pathways and genes related to breast

cancer distant metastasis.

Follow [Troyanskaya et al., 2001] imputation method, we applied a 10-nearest

neighbor algorithm to impute missing gene expressions data. The pathway and gene

mapping information are obtained from Kyoto Encyclopedia of Genes and Genomes(KEGG).

The gene identifiers are Entrez Gene in KEGG and GenBank accession in breast can-

cer microarray data. We convert the GenBank accession to Entrez Gene by using

Gene ID converter http://idconverter.bioinfo.cnio.es/. We then were able to match

the gene expression data with the pathway and gene mapping information. A total

of 243 pathways and 4363 genes were included in this study.

We set ω = .1 as the prior for the probability of important pathway, and µ = −1.7
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(a) The number of selected pathways after
burnin (b) The number of selected genes after burnin

Figure 2.1: The trace plots for the number of selected pathways and selected genes

and η = 0.04 for the gene selection. We choose weak information priors for our prior

parameters. We set α0 = 0, B0 = 0 section(2.2.1), and aα = 1000, aβ = 0.1. Similar

to the simulation study, the variance of the inverse gamma distribution exists when

the shape parameter greater than 2 and we set the shape parameter, ν0/2 = 3, which

is the smallest integer that greater than 2. The scale parameter, ν0σ
2
0/2 = 0.6, which

form a weakly informative prior.

We used 100,000 iterations with burnin 50,000 iterations. Figure(2.1) shows the

number of selected pathways and genes after burnin. The number selection pathways

for each iteration mostly is between 10 and 20; while the number selection genes is

always between 80 and 110.

Figure(2.2) shows that the 9 selected pathways which have highest posterior prob-

abilities. We chose 0.4 as threshold, because there is a gap between 0.3 and 0.4 in

the figure. Figure(2.3) shows the posterior probabilities of selected genes. We also
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chose 0.4 as the threshold, and we got 94 important genes Table2.3. From literature

search, we noticed that at least one of the important genes in each selected pathways

are related to breast cancer or breast cancer metastasis.

Let us look at some of the important pathways:

• Steroid Hormone Biosynthesis pathway Figure(2.4). Steroid hormones belong

to the group of chemical compounds known as steroids. These compounds are

biologically synthesized by several organs of the human as well as other animals

and they perform essential functions to maintain homeostasis. These functions

include control of metabolism, inflammation, immune functions, salt and water

balance, development of sexual characteristics, and the ability to cope with ill-

ness and injury. Such functional activities of steroid hormones require a strict

balance of their synthesis to assure appropriate host response. Any abnormal

changes in the biosynthetic pathway for steroid hormones can lead to imbal-

ance of the hormonal level in the body. A consequence of such an event will

be the abnormality in cellular function and abnormal growth. Postmenopausal

women have altered level of steroid hormones and are more susceptible to de-

velop breast cancer. Studies have shown that higher blood levels of testosterone

may increase the risk of breast cancer in postmenopausal women. Furthermore,

some evidence suggests that higher blood levels of testosterone may also increase

breast cancer risk in premenopausal women. Estrogen plays a critical role in

hormone-receptor-positive breast cancer growth. These findings underscore the

importance of the association of several enzymes and other bioactive molecules

in the steroid hormone biosynthetic pathway for analyzing the possibility of the

involvement of some of these molecules in breast cancer growth and spread.
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Important Pathways Important Genes(Entrez) Total number of Genes
Steroid Hormone Biosynthesis 10720 10941 1109 1543 1545 1551

1576 1577 1584 1586 1588 3283 24
3284 3290 3291 3293 3294 6715
7364 7365 7366 7367 8630 8644

Tyrosine Metabolism 124 125 126 127 128 130 13
131 218 220 221 222 2954
4128

Glutathione Metabolism 2678 2877 2878 2879 2882 2937
2938 2939 2940 2941 2946 2947 24
2948 2949 2950 2952 2953 2954

373156 4257 4258 4259 51060 9446
Arachidonic Acid Metabolism 1558 1562 1571 1579 2678 2877 11

2878 2882 8644 873 874
Folate Biosynthesis 10170 10720 10941 124 125 126

127 128 130 131 1543 1544
1548 1551 1553 1558 1562 1576
1577 1579 1592 216 50700 53630 37
54884 56603 5959 6121 7364 7365
7366 7367 8228 8608 8854 9227
9249

Retinol Metabolism 10720 10941 7364 7365 7366 7367 6
Porphyrin & Chlorophyll 10720 10941 1109 124 125 126

Metabolism 127 128 130 131 1543 1544
1545 1548 1551 1553 1558 1562
1565 1571 1572 1576 1577 2052
218 220 221 222 22977 27294 57
2938 2939 2940 2941 2946 2947
2948 2949 2950 2952 2953 2954
3290 3291 373156 4257 4258 4259
7364 7365 7366 7367 8574 8644
873 874 9446

Drug Metabolism - 10720 10941 124 125 126 127
Cytochrome P450 128 130 131 1544 1548 1551

1553 1558 1562 1565 1571 1576
1577 218 220 221 222 2326
2327 2328 2329 2330 2938 2939 50
2940 2941 2946 2947 2948 2949
2950 2952 2953 2954 373156 4128
4257 4258 4259 7364 7365 7366
7367 9446

Drug Metabolism - 10720 10941 1548 1551 1553 1576 11
Other Enzymes 1577 7364 7365 7366 7367

Table 2.3: Summation of Important Pathways and Genes
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• Tyrosine Metabolism Figure(2.5). Tyrosine is an amino acid that plays an

essential role in the metabolism. Tyrosine metabolism is crucial component to

breast cancer and other cancer as well.

• Glutathione Metabolism Figure(2.6). Glutathione plays important roles in an-

tioxidant defense, nutrient metabolism, and regulation of cellular events includ-

ing gene expression, DNA and protein synthesis, cell proliferation and apopto-

sis, signal transduction, cytokine production and immune response, and protein

glutathionylation.Physiological relevance of glutathione makes the pathway and

components of glutathione metabolism a vital part of cancer-associated studies.

• Arachidonic Acid Metabolism Figure(2.7). Arachidonic acid and certain other

polyunsaturated fatty acids may be transformed into prostaglandins (PG) by

the enzyme prostaglandin endoperoxide synthase (PES). Level of prostaglandin

E2 is elevated in malignant human breast tissue. An increase of inflammatory

component may have a direct consequence in the development of inflammatory

breast cancer, a deadliest form of breast cancer.

Additionally, , the boxes represent the protein compound coded by genes. The red

number above the boxes are the important genes known to be related to breast cancer

that our model found. The number is Entrez. In the lower center of the graph, Entrez

gene 1588 is called CYP19A1. CYP19A1 gene codes for an enzyme called aromatase.

One of the critical functions of this aromatase is to convert testosterone to estradiol,

a form of estrogen [Meinhardt and Mullis, 2002]. Increased activity of aromatase has

been linked to breast cancer due to abundance of estradiol accumulation in the cancer

cells [Chen, 1998]. Estradiol increases tumor growth in breast cancer by promoting
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cell proliferation [L. et al., 2013]. In cancer cells it binds to estrogen receptor which

subsequently activates a group of hormone-responsive genes that promote DNA syn-

thesis and cell proliferation [DeMayo et al., 2002]. Therefore over-active CYP19A1

gene in breast cancer cells has a poor prognosis for patients due to over-expression

of aromatase-driven estradiol synthesis. Consequently, specific aromatase inhibitors

have been found to be useful in the treatment of breast cancer [M. et al., 1999].

Some of selected pathways and genes are known to be related to breast cancer

and breast cancer metastasis. Some of genes have no information according to the

literature search. From the biology research point of view, the biologists can use the

information from the posterior probability to prioritize the pathways and genes for

future research.

2.6 Discussion

In this chapter, we have proposed a Bayesian variable selection model with prior

biological information from pathways and genes relationship. We have considered

AFT to model the relationship between covariates and augmented failure time. We

have adopted an RKHS-based method to nonparametrically model the pathways effect

and have built into the model a variable selection mechanism that selects genes and

pathways simultaneously. Simulation studies and breast cancer microarray data have

been used to illustrate the proposed method.
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Figure 2.2: Marginal posterior probabilities for pathway selection, p(φj|Y ,X,K) >
0.4
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Figure 2.3: Marginal posterior probabilities for gene selection, p(γj|Y ,X,K) > 0.4
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Figure 2.4: Steroid hormone biosynthesis pathway with important genes that related
to breast cancer
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Figure 2.5: Tyrosine Metabolism pathway with important genes that related to breast
cancer
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Figure 2.6: Glutathione Metabolism pathway with important genes that related to
breast cancer
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Figure 2.7: Arachidonic acid metabolism pathway with important genes that related
to breast cancer
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Figure 2.8: Retinol metabolism pathway with important genes that related to breast
cancer
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Figure 2.9: Porphyrin and chlorophyll metabolism pathway with important genes
that related to breast cancer
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Figure 2.10: Metabolism of xenobiotics by cytochrome P450 pathway with important
genes that related to breast cancer

61



Figure 2.11: Drug metabolism - cytochrome P450 pathway with important genes that
related to breast cancer
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Figure 2.12: Drug metabolism - other enzymes pathway with important genes that
related to breast cancer
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Chapter 3

Bayesian Elastic-Net and Fused
Lasso for Semiparametric
Structural Equation Models

3.1 Introduction

Structural equation models (SEMs) are a well developed statistical tool that are useful

for datasets with latent variables, which are not observed directly, but are estimated

from observed variables. SEMs consist of two parts, a measurement equation and a

structural equation. The measurement equation investigates the relationship between

the unobservable latent variables and observed manifest variables; whereas the struc-

tural equation measures the relationship between the endogenous latent variables and

exogenous latent variables, and the covariates. The primary research interest is typi-

cally the structural equation. SEMs are commonly used in Psychology, Biology, etc.,

where latent variables are common. For example, see [Martens, 2005], [Lee and Zhu,
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2000], [Liu et al., 2008], etc.

Traditionally, SEMs assume linear relationships among latent variables in the

structural equation. [Kenny and Judd, 1984] introduced a nonlinear SEM (NSEM)

that extended this methodology to include relationships such as interaction and

quadratic terms. [Lee, 2007] generalized NSEM to include a broader set of nonlinear

relationships. However, misspecification of the parametric form at the latent level,

whether the model is linear or nonlinear, can result in very poor estimation. Recently,

some semiparametric approaches have been developed. [Bauer, 2005], [Fahrmeir and

Raach, 2007], [Guo et al., 2012], etc used basis expansions to approximate the non-

linear structural relationships using semiparametric SEM (SSEM). To achieve simul-

taneous estimation and model selection [Guo et al., 2012] applied the Bayesian Lasso

method to the SSEM. The Bayesian Lasso performs well in SSEM, however, it ignores

correlation of the features which leads to inefficient parameter estimation and model

selection.

This is concerning when cubic splines are used, because they tend to be highly

correlated since each column is a transformed version of the same variables [Keele,

2008]. This chapter accesses this correlation by considering fused Lasso and elastic

net. The fused lasso has been shown to be a good method for multiple linear regres-

sion when the features have a natural order, specifically when there is side by side

correlation [Tibshirani et al., 2005a]. [Zou and Hastie, 2005], show that elastic net

often outperforms regular Lasso in both real world data set and simulation studies,

and they still have a similar sparse representation. In addition, the elastic net en-

courages a grouping effect, where strongly correlated predictors tend to be in or out

of the model together.
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3.2 Model

3.2.1 Semiparametric Structural Equation Models

Semiparametric structural equation models consist of two parts, a measurement equa-

tion and a structural equation. For a random sample of n independent subjects, the

measurement equation defines the relationship between the observed p× 1 vector of

manifest variables yi and the unobserved q×1 vector of latent variables wi as follows:

yi = Aci + Λwi + εi, i = 1, 2, ..., n

where ci is an r × 1 vector of known functions of the s× 1 vector of fixed covariates

xi, A and Λ are unknown parameter matrices, εi is a p × 1 vector of measurement

errors.

The latent variable wi is written in two parts, a q1×1 vector of endogenous latent

variables ηi and a q2 × 1 vector of exogenous latent variables ξi, i.e. wi = (ηTi , ξ
T
i )T .

Then the structural equation, which defines the relationship between the exogenous

and endogenous latent variables, is

ηi = Πηi + F (xi, ξi) + ζi, i = 1, 2, ..., n, (3.1)

where ζi is a vector of residuals and F (xi, ξi) is a vector of unknown functions of the

covariates xi and exogenous latent variables ξi.

For this model, we require the following assumptions:

• εi are independently distributed as N(0,Ψε) with Ψε = diag(ψε1, ψε2, ..., ψεp).

66



• wi and εi are independent, and wi are independently distributed.

• ζi follows N(0,Ψζ) with Ψζ = diag(ψζ1, ψζ2, ..., ψζq1).

• ξi and ζi are independently distributed, and ξi follows N(0,Φ)

• Π0 = I − Π is nonsingular and |Π0| is independent of the elements of Π.

Theoretically, F (xi, ξi) can be any linear or nonlinear function of of xi and ξi with

or without interaction terms like ξi1ξi2. In this project, we consider a nonparametric

structural equation similar to [Guo et al., 2012] and we approximate the nonparamet-

ric function F (xi, ξi) using basis expansions. The structural equation 3.1, in general

case, can be represented as

ηi = Πηi +BH(xi, ξi) + ζi,

where H(xi, ξi) is an NH × 1 vector of basis functions, and Bqi×NH is the coefficient

parameter matrix associated with H(xi, ξi).

To illustrate the structural equation, consider a simple example with Π = 0, one

covariate, one endogenous and two exogenous latent variables. Any function F (xi, ξi)

can be decomposed into two parts, functions with only one variable as f1, f2 and f3,

which could be constant, and functions with interactions as f12, f13 and f23, which

must be functions of both two parameters, i.e.,

ηi = F (xi, ξi1, ξi2) + ζi

= f1(xi) + f2(ξi1) + f3(ξi2) + f12(xi, ξi1) + f13(xi, ξi2)

+ f23(ξi1, ξi2) + f123(xi, ξi1, ξi2) + ζi,
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It indicates that for modeling f1, f2 and f3, a linear basis expansion can be used,

such as piecewise polynomials, natural cubic splines, etc. In such cases,

fj(.) =

Mj∑
mj=1

βjmjhjmj(.), j = 1, 2, 3

where {hjmj(.),mj = 1, ...,Mj} are basis functions. For modeling f12, f13 and f23,

tensor product basis expansion can be used as follows:

fkl(., .) =

Mk∑
mk=1

Ml∑
ml=1

β(kl)
mkml

hkmk(.)hlml(.), k, l = 1, 2, 3.

3.2.2 Bayesian Fused Lasso in the Semiparametric SEM

The unknown parameters in the measurement equation are Λy = (A,Λ) and Ψε, in

structural equation, the unknown parameters are Λw = (Π,B), Ψζ and Φ. Some

elements of Λy must be fixed for identifiability purposes.

For the measurement equation, an index matrix M = (mkj)p×(r+q) is created as

follows [Lee and Zhu, 2000],

mkj =

 1 if λykj is unknown

0 otherwise

where λykj is the kj-th element of Λy. If there is an unknown parameter in k-th row

of Λy for k = 1, ..., p, this means that ryk =
∑r+q

j=1 mkj > 0. We denote Λ∗yk as the
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ryk × 1 vector of unknown parameters and specified a conjugate prior for {Λ∗yk, ψεk},

Λ∗yk|ψεk ∼ Nryk(µ
∗
0yk, ψεkH

∗
0yk) (3.2)

ψ−1
εk ∼ Gamma(α0εk, β0εk) (3.3)

where µ∗0yk, H
∗
0yk, α0εk and β0εk are hyperparameters.

For the structural equation, let Λwhbe the h-th row of Λw where h = 1, ..., q1. As

mentioned earlier, we assigned Bayesian fused Lasso priors for each Λwh and assigned

the inverse-Wishart prior for Φ.

Λwh|ψζh, τΛwh ,υΛwh ∼ N(0, ψζhDΛwh),

ψ−1
ζh ∼ Gamma(α0ζh, β0ζh),

π(τ 2
Λwh

) ∝
q1∏
j=1

λ2
Πh

2
e
−λ2

Πh
τ2
Πhj

/2
NX∏
j=1

λ2
B1h

2
e
−λ2

B1h
τ2
B1jj

/2
NT∏
j=1

λ2
B2h

2
e
−λ2

B2h
τ2
B2hj

/2
,

π(υ2
Λwh

) ∝
NT∏
j=1

µ2
B2h

2
e
−µ2

B2h
υ2
B2hj

/2
,

Φ ∼ IW (R0, ρ0),

where Nh is the number of non-constant spline basis functions, and Nh = Nx + NT ,

where Nx is the number of basis functions related x’s, and NT is the number of

basis functions related to exogenous latent variables. Bh = (BT
1h,B

T
2h)

T , where

B1h are the coefficients corresponding to the x’s and B2h are the coefficients cor-

responding to the exogenous latent variables. τΛwh and υΛwh are mutually inde-

pendent, and the covariance matrix D−1
Λwh

is a diagonal tridiagonal mixed matrix.
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D−1
Λwh

= diag(D11
q1×q1 ,D

22
NX×NX ,D

33
NT×NT ), where D11

q1×q1 is a diagonal matrix with

main diagonal =
{ 1

τ 2
Πhj

, j = 1, ..., q1

}

D22
NX×NX is also a diagonal matrix with

main diagonal =
{ 1

τ 2
B1hj

, j = 1, ..., NX

}

D33
NT×NT is a tridiagonal matrix with

main diagonal =
{ 1

τ 2
B2hj

+
1

υ2
B2hj−1

+
1

υ2
B2hj

, j = 1, ..., NT

}

off diagonals =
{
− 1

υ2
B2hj

, j = 1, ..., NT − 1
}

All the λ’s are tuning parameters with gamma priors.

The extended Bayesian Fused Lasso prior has additional parameters, however,

with the priors specified as above, it is straightforward to derive the full conditional

distribution[Kyung et al., 2010]. As a result we can use MCMC methods to generate

samples from the joint posterior distribution of parameters.

The model can be easily extended to the case where X’s has side by side correlation.

We only need to change D22
NX×NX to tridiagonal matrix with

main diagonal =
{ 1

τ 2
B1hj

+
1

υ2
B1hj−1

+
1

υ2
B1hj

, j = 1, ..., NX

}

off diagonals =
{
− 1

υ2
B1hj

, j = 1, ..., NX − 1
}
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π(υΛwh) ∝
NX∏
j=1

µ2
B1h

2
e
−µ2

B1h
υ2
B1hj

/2
NT∏
j=1

µ2
B2h

2
e
−µ2

B2h
υ2
B2hj

/2
,

It is easy to derive the full conditional distribution and use MCMC methods to

generate samples from the joint posterior distribution of parameters for this scenario

as well.

3.2.3 Bayesian Elastic Net in the Semiparametric SEM

The measurement equation is exactly the same as in 3.2.2, however, for the structural

equation, the priors become:

Λwh|ψζh, τΛwh ,υΛwh ∼ N(0, ψζhDΛwh),

ψ−1
ζh ∼ Gamma(α0ζh, β0ζh),

π(τΛwh) ∝
q1∏
j=1

λ2
Πh

2
e
−λ2

Πh
τ2
Πhj

/2
NG∏
k=1

Nk∏
j=1

λ2
1Bhk

2
e
−λ2

1Bhk
τ2
Bhkj

/2

Φ ∼ IW (R0, ρ0),

where X is reordered. Strongly correlated covariates are grouped together, so we

have NG blocks of X’s, including one block for independent X’s if any exists. And

k = 1, · · · , NG. For block, k, Nk is the total number of members in the block. DΛwh

is a diagonal matrix with diagonal elements. If X’s in the corresponding block k are

correlated, the diagonal elements are (τ−2
Bhkj

+ λ2Bhk)
−1; if X’s in the corresponding

block k are independent, the diagonal elements are τ 2
2Bhkj

, in other words λ2Bhk = 0.

And similar to the Bayesian fused lasso, all the λ’s have gamma priors. It is still

straightforward to derive the full conditional distribution [Li and Lin, 2010], and
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use MCMC methods to generate samples from the joint posterior distribution of

parameters.

3.3 Posterior Distribution in the Semiparametric

SEM

3.3.1 Posterior Distribution in the measurement equation

Using the conjugate prior for Λ∗yk and ψεk from 3.2 and 3.3, we can easily get the

posterior distributions as:

Λ∗yk|rest ∼ Nryk(Hyk(H
∗−1
0yk µ

∗
0yk +Gyky

∗
k), ψεk(H

∗−1
0yk +GykG

T
yk)
−1) (3.4)

ψ−1
εk |rest ∼ Gamma(α0εk + n/2, β0εk +

1

2
(y∗Tk y

∗
k + µ∗T0ykH

∗−1
0yk µ0yk − µTykH−1

yk bmµyk))

(3.5)

where Gy = (CT ,ΩT )T , C = {c1, · · · , cn} and Ω = {ω1, · · · ,ωn}.

3.3.2 Posterior Distribution in the Structure Equation of
Fused Lasso

Let Gω = (gω1, · · · , gωn), where gωi = (ηTi ,H(xi, ξi)
T )T . Full conditionals in the

structure equation for the h-th row of Λω is:

Λwh|Ω, ψζh, τΛwh ,υΛwh ∼ Nq1+NH ((GT
ωGω+D−1

Λwh
)−1GT

ω(ηh−β0h1n), ψζh(G
TGω+D−1

Λwh
)−1),

(3.6)

where Λωh = (ΠT
h ,B

T
h )T . Nh is the number of non-constant spline basis functions,
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and Nh = Nx +NT , where Nx is the number of basis functions related x’s, and NT is

the number of basis functions related to exogenous latent variables.

LetBh = (BT
1h,B

T
2h)

T , whereB1h are the coefficients corresponding to the x’s and

B2h are the coefficients corresponding to the exogenous latent variables. Note that

τΛωh = (τΠ2
h1
, · · · , τΠ2

hq1
, τΠ2

Bh1
, · · · , τΠ2

BhNH
)T , and the full conditional distribution for

τΛωh are:

1/τ 2
Πhj
|Πh, ψζh ∼ IN(

√
λ2

Πh
ψζh

Π2
hj

, λ2
Πh

)

1/τ 2
B1hj
|B1h, ψζh ∼ IN(

√
λ2
B1h

ψζh

(B1hj)2
, λ2

B1h
)

1/τ 2
B2hj
|B2h, ψζh ∼ IN(

√
λ2
B2h

ψζh

(B2hj)2
, λ2

B2h
)

1/υ2
B2hj
|B2h, ψζh ∼ IN(

√
λ2

4ψζh
(B2h(j+1) −B2h(j))2

, λ2
4)

for j = 1, · · · , NT − 1.

The full conditional of ψζh is:

ψζh|Λwh,Gω ∼ IG(α0ζh +
n+ q1 +NH + 1

2
, β1ζh)

where β1ζh = β0ζh +
1

2
[(ηh − β0h1n −GT

ωΛωh)
T (ηh − β0h1n −GT

ωΛωh) + ΛT
ωhD

−1
ωhΛωh]

Let the prior of λ’s to be Gamma distribution and the full conditional distributions

of them is:

λ2
Πh
|τΠh ∼ Gamma(q1 + r0ω,

q1∑
j=1

τ 2
Πhj

/2 + δ0Π)
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λ2
B1h
|τB1h

∼ Gamma(NX + r0B1 ,

NX∑
j=1

τ 2
B1hj

/2 + δ0B1)

λ2
B2h
|τB2h

∼ Gamma(NT + r0B2 ,

NT∑
j=1

τ 2
B2hj

/2 + δ0B2)

λ2
4|υB2h

∼ Gamma(NT + r0B22 − 1,

NT−1∑
j=1

υ2
B2hj

/2 + δ0B22)

3.3.3 Posterior Distribution in the Structure Equation of
Elastic Net

Full conditionals in the structure equation for the h-th row of Λω is:

Λwh|Ω, ψζh, τΛwh ,∼ Nq1+NH ((GT
ωGω+D−1

Λwh
)−1GT

ω(ηh−β0h1n), ψζh(G
TGω+D−1

Λwh
)−1),

1/τBhkj|Λωh, ψζh ∼ IG(

√
λ2

1Λhk
ψζh

Λ2
ωhkj

, λ2
1Λhk

)

for j = 1, · · · , Nk, where λ1Λhk = λ1Πhk, when Λwhk are the coefficients of the en-

dogenous latent variables; and λ1Λhk = λ1Bhk, when Λwhk are the coefficients of the

exogenous latent variables.

The full conditional of ψζh is:

ψζh|Λwh,Gω ∼ IG(α0ζh +
n+ q1 +NH + 1

2
, β1ζh)

where β1ζh = β0ζh +
1

2
[(ηh − β0h1n −GT

ωΛωh)
T (ηh − β0h1n −GT

ωΛωh) + ΛT
ωhD

−1
ωhΛωh]

Let the prior of λ’s to be Gamma distribution and the full conditional distributions
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of them is:

λ2
Πh
|τΠh ∼ Gamma(q1 + r0Π,

q1∑
j=1

τ 2
Πhj

/2 + δ0Π)

λ2
1Bhk
|τΛhk ∼ Gamma(Nk + r1Bhk ,

Nk∑
j=1

τ 2
1Bhkj

/2 + δ1Bhk)

λ2
2Bhk
|B ∼ Gamma(Nk + r2Bhk ,

1

2ψζh

Nk∑
j=1

Λ2
ωhkj + δ2Bhk)

where Λωhk represent the Λ’s belong to the group k.

3.3.4 MCMC Algorithm

The parameters from the measurement equation are denoted as θT1 = {Λy,Ψε}, while

the parameters from the structure equation are denoted as θT2 = {Λω,Ψξ,Φ}. Let the

parameter of interest be θ = (θT1 , θ
T
2 )T .

Here are the variables we use in MCMC Algorithm:

• Y = {y1, · · · ,yn}, and yi is p× 1 vector of manifest variables.

• X = {x1, · · · ,xn}, and xi is s× 1 vector of fixed covariates.

• C = {c1, · · · , cn}, and ci is r × 1 vector of known function of xi.

• Ω = {ω1, · · · ,ωn}, and ωi is q × 1 vector of latent variables.

where i = 1, · · · , n

Ω are unobservable latent variables, we can generate it from the full conditional

distribution p(Ω|Y ,X,C,θ). Because the latent variables are independent among

the subjects, we can write the full conditional distribution as p(Ω|Y ,X,C,θ) =
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∏n
i=1 p(ωi|yi,xi, ci,θ). Let gyi = (cTi ,ω

T
i )T . The full conditional distribution of ωi

is:

p(ωi|yi,xi, ci,θ) ∝ p(yi|ci,ωi, θ1)p(ηi|xi, ξi, θ2)p(ξi|θ2)

∝ exp{−1

2
(yi − Λygyi)

TΨ−1
ε (yi − Λygyi)−

1

2
ξTi Φ−1

i Φi

−1

2
(ηi − β0 − Λωgωi)

TΨ−1
ζ (ηi − β0 − Λωgωi)} (3.7)

ωi can be sampled using Metropolis Hastings (MH) algorithm with a proposal

distribution q(ω∗i |σ2
ω) ∼ N(ω

(j)
i , σ2

ωΣω), where ω∗i is the proposed new value and ω
(j)
i

is the value from previous step (jth step). From [Guo et al., 2012],

Σ−1
ω = ΛTΨ−1Λ +

 ΠT
0 Ψ−1

ζ Π0 −ΠT
0 Ψ−1

ζ B∆H

−∆T
HB

TΨ−1
ζ Π0 Φ−1 + ∆T

HB
TΨ−1

ζ B∆H

 (3.8)

where ∆H = ∂H(xi, ξi)/∂ξ
T
i |ξi=0. The proposed ω∗i can be accepted with the prob-

ability min{1, p(ω
∗
i |yi,xi, ci,θ)

p(ω
(j)
i |yi,xi, ci,θ)

}. Ω can be sampled using Gibbs sampler.

For θ1, sample Λ∗yk|rest and ψεk|rest from 3.4 and 3.5 respectively.

For θ2, the posterior distribution of the parameters are different between Bayesian

fused Lasso and Bayesian Elastic Net. We can sample the unknown parameters from

the posterior distribution we get on section 3.3.2 and section 3.3.3.

3.4 Simulation Study

To illustrate the fused Lasso and elastic net we have considered the case where the

covariates have correlations. Under this framework it is of interest to compare among

76



the Bayesian Lasso, the Bayesian fused Lasso and Bayesian elastic net.

3.4.1 Simulation 1

We follow the simulation setup on [Guo et al., 2012], setting n = 500, p = 9, q1 = 1,

q2 = 2 and A = diag(0∗, 0∗, 0∗, µ4, . . . , µ9), ci = (1, . . . , 1)T ,

ΛT =


1.0∗ λ21 λ31 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 1.0∗ λ52 λ62 0∗ 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 1.0∗ λ83 λ93

 ,

where µ4 = . . . = µ9 = λ21 = . . . = λ93 = ζ = .36 and {φ11, φ12, φ22} = {1, .25, 1}.

The function, f(ξi1, ξi2) = f1(ξi1) + f2(ξi2) + f12(ξi1, ξi2), where f1(ξi1) = sin(ξi1) −

ξi1, f1(ξi1) = exp(ξi2)/2.5 − 3.0 and f12(ξi1, ξi2) = 0, has been used to define the

underlying relationship between the endogenous and exogenous latent variables. Also,

this function is considered unknown and will be approximated using natural cubic

splines, i.e.,

fj(ξij) ≈ βj2ξij

K−2∑
m=1

βj,m+2 (dm(ξij)− dK−1(ξij))

f12(ξi1, ξi2) ≈ β
(12)
12 ξi1ξi2 +

K−2∑
m1=1

ξi2 (dm1(ξi1)− dK−1(ξi1))

+
K−2∑
m2=1

ξi1 (dm2(ξi2)− dK−1(ξi2))

+
K−2∑
m1=1

K−2∑
m2=1

(dm1(ξi1)− dK−1(ξi1)) (dm2(ξi2)− dK−1(ξi2)) ,

77



with dk(ξij) =
[
(ξij − κk)+ − (ξij − κk)+

]
/ (κK − κk) where K is the number of knots

and (κk, k = 1, . . . , K) are the location of the knots. The knot locations are selected

using a truncated power series basis developed in [Hastie et al., 2009]. In general

cubic splines will be correlated, thus the use of the fused Lasso is appropriate.

We consider s = 35 with true parameter values

bl =



0.5 if l ∈ {1, 2, 3}

−0.7 if l ∈ {4, 5}

0.85 if l ∈ {6, · · · , 15}

0.7 if l = 32

0.5 if l = 33

0 otherwise

.

To induce correlation of the covariates x1, . . . , x31, x34, x35 are simulated from

a multivariate standard normal distribution where corr(xi, xj) = .5|i−j|, i 6= j ∈

(6, . . . , 15), corr(xi, xj) = .7, i − j = 1, i ∈ (1, 2, 3), corr(xi, xj) = .9, i 6= j ∈ (4, 5)

and all other correlations equal to 0. The covariate of x32 ∼ 2Binomial(1, .5) and

x33 ∼ N(−0.5, 1).

Table 3.1 summarizes the parameter estimates from the 50 simulations using the

fused Lasso, elastic net and standard Lasso. The bi parameters which relate the co-

variates to the endogenous latent variable are slightly closer to the true value when

the fused Lasso is used, however for most of the parameters it is only a slight improve-

ment. The covariates with corr(xi, xj) = .7, i 6= j ∈ (1, 2, 3) have the most marked

improvement when the fused Lasso is used instead of the standard Lasso or elastic
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net. All models are efficient at shrinking the insignificant parameters to 0.

There is a fairly significant difference in the spline estimates between the standard

Lasso and the other two models. For the spline parameters that are not equal to zero

it is not possible to determine which of the models is better in terms of estimation.

However, in many of these cases the standard deviations of standard Lasso model are

significantly higher; while fused lasso and elastic net are similar to each other. For

the spline parameters that are equal to zero both fused Lasso and elastic net models

shrink the estimates nearer to zero than standard Lasso and many have significantly

lower standard deviations. Moreover, elastic net is slightly better than fused Lasso.

To measure the models efficiency at predicting the endogenous latent variable

using the covariates and exogenous latent variables, we consider three measures of

RMSE.

• RMSE(f̂) =

√∑n
i=1

(
f̂(ξi1, ξi2)− f(ξi1, ξi2)

)2

/n is a measure of the models

ability to approximate the nonlinear relationship between the endogenous and

exogenous latent variables,

• RMSE(B̂) =

√∑n
i=1

(
XB̂ −XB

)2

/n is a measure of the models ability to

relate the covariates to the endogenous latent variables and

• RMSE =

√∑n
i=1

((
XB̂ + f̂(ξi1, ξi2)

)
− (XB + f(ξi1, ξi2))

)2

/n is a measure

of the models overall ability to predict the endogenous latent variable.

The most significant improvement in the fused Lasso and elastic net appears to

be in the RMSE(f̂) which suggests that it is much better at defining the relationship

between the endogenous and exogenous latent variables. And RMSE(f̂) of elastic net

is slightly lower than fused Lasso’s. A possible reason there was little impact from
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on the covariate parameters is that it is very difficult to simulate complex correlation

structures. If more covariance structures are examined we believe the difference could

be significant.

3.4.2 Simulation 2

In order to compare the difference defining the relationship between the endogenous

and exogenous latent variables among these three model. We randomly choose one

of the simulation study and let the coefficient of the covariate to be zeros and plot

the surface of f(ξi1, ξi2). Figure(3.1) shows the true relationship between exogenous

latent variables and endogenous latent variable based on function η = F (x, ξ); figure

(3.2) shows the relationship between them based on the simulation data, and some

of the surface does not have data. figure(3.3, 3.4 and 3.5) show the estimated surface

via original Lasso, Fused Lasso and Elastic Net. In figure(3.3), Lasso perform badly

when η1 and η2 both greater than 0. From figure(3.2), there are no data when both

η1 and η2 are greater than 2.5. Fused Lasso and Elastic perform similarly. In this

simulation, Fused Lasso might perform a little better, when both η1 and η2 are less

than 0.

3.5 Application

We apply Lasso and Elastic net models to analyze Monitoring the Future: A Con-

tinuing Study of American Youth (12th-Grade Survey). There are three exogenous

latent variables of interests, cigarette morbidity, marijuana morbidity and behavior

risk index; one endogenous latent variable, alcohol morbidity. We want to analyze
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Fused Elastic Net Standard
Para. True Est. STD Est. STD Est. STD
b1 0.5 0.4604 0.0885 0.4417 0.1241 0.4524 0.1767
b2 0.5 0.5596 0.1230 0.5768 0.1739 0.5685 0.2484
b3 0.5 0.4512 0.0909 0.4374 0.1280 0.4469 0.1798
b4 -0.7 -0.6817 0.0808 -0.6800 0.0894 -0.6793 0.0949
b5 -0.7 -0.7120 0.0809 -0.7099 0.0908 -0.7143 0.0955
b6 0.85 0.8430 0.0429 0.8460 0.0485 0.8460 0.0481
b7 0.85 0.8466 0.0537 0.8480 0.0612 0.8481 0.0608
b8 0.85 0.8465 0.0519 0.8405 0.0598 0.8409 0.0586
b9 0.85 0.8408 0.0542 0.8448 0.0634 0.8455 0.0643
b10 0.85 0.8579 0.0555 0.8543 0.0623 0.8523 0.0638
b11 0.85 0.8470 0.0513 0.8440 0.0574 0.8439 0.0562
b12 0.85 0.8454 0.0516 0.8433 0.0537 0.8428 0.0535
b13 0.85 0.8430 0.0510 0.8499 0.0549 0.8495 0.0547
b14 0.85 0.8499 0.0502 0.8404 0.0568 0.8415 0.0566
b15 0.85 0.8513 0.0488 0.8582 0.0507 0.8581 0.0490
b16 0 0.0043 0.0382 0.0014 0.0387 0.0026 0.0425
b17 0 0.0049 0.0380 0.0051 0.0347 0.0063 0.0388
b18 0 0.0050 0.0432 0.0036 0.0418 0.0036 0.0454
b19 0 -0.0003 0.0382 -0.0003 0.0362 -0.0001 0.0389
b20 0 0.0048 0.0397 0.0004 0.0400 0.0006 0.0440
b21 0 -0.0006 0.0393 -0.0034 0.0367 -0.0036 0.0400
b22 0 -0.0030 0.0377 -0.0017 0.0399 -0.0025 0.0427
b23 0 -0.0024 0.0429 -0.0021 0.0417 -0.0014 0.0452
b24 0 -0.0028 0.0413 0.0022 0.0353 0.0030 0.0380
b25 0 0.0027 0.0388 -0.0042 0.0374 -0.0048 0.0399
b26 0 -0.0030 0.0367 -0.0031 0.0368 -0.0017 0.0422
b27 0 0.0039 0.0388 0.0026 0.0337 0.0022 0.0376
b28 0 -0.0015 0.0385 0.0024 0.0368 0.0018 0.0403
b29 0 0.0061 0.0408 0.0052 0.0377 0.0052 0.0402
b30 0 0.0008 0.0360 -0.0029 0.0367 -0.0033 0.0401
b31 0 0.0036 0.0361 -0.0009 0.0337 -0.0016 0.0364
b32 0.7 0.6908 0.0452 0.6870 0.0442 0.6948 0.0443
b33 -0.5 -0.4932 0.0407 -0.4932 0.0412 -0.5001 0.0409
b34 0 -0.0064 0.0368 -0.0028 0.0363 -0.0029 0.0406
b35 0 0.0055 0.0384 0.0047 0.0384 0.0052 0.0421
β0 - -2.1529 0.0917 -2.1641 0.0940 -2.2231 0.1641
β12 - -0.1947 0.0772 -0.2165 0.0788 -0.2744 0.1721
β13 - -0.0607 0.0233 0.0117 0.0403 0.3379 0.4499
β14 - -0.0380 0.0283 -0.0308 0.0267 -0.0199 0.0465
β15 - -0.0213 0.0322 -0.0793 0.0456 -0.3637 0.3492
β22 - 0.0805 0.0404 0.0781 0.0611 0.1753 0.1352
β23 - 0.1528 0.0324 0.1163 0.0354 -0.0002 0.1777
β24 - 0.1985 0.0556 0.1766 0.0478 0.1118 0.0704
β25 - 0.1866 0.0650 0.2782 0.1173 0.3291 0.2340

β
(12)
22 0 0.0411 0.0632 0.0208 0.0551 0.1011 0.1753

β
(12)
23 0 -0.0320 0.0634 -0.0256 0.0553 -0.1101 0.1630

β
(12)
24 0 -0.0446 0.0808 -0.0198 0.0618 -0.0912 0.1752

β
(12)
25 0 -0.0369 0.0732 -0.0148 0.0688 -0.0600 0.2716

β
(12)
32 0 -0.0207 0.0331 -0.0093 0.0234 -0.0823 0.1394

β
(12)
33 0 0.0197 0.0190 0.0190 0.0273 0.0406 0.2214

β
(12)
34 0 0.0415 0.0304 0.0279 0.0344 0.1178 0.1546

β
(12)
35 0 0.0444 0.0329 0.0378 0.0431 0.2527 0.2123

β
(12)
42 0 0.0009 0.0318 -0.0110 0.0263 -0.0676 0.1108

β
(12)
43 0 0.0205 0.0329 0.0155 0.0319 -0.0275 0.1377

β
(12)
44 0 0.0362 0.0439 0.0246 0.0390 0.0510 0.1011

β
(12)
45 0 0.0382 0.0472 0.0352 0.0480 0.1807 0.2341

β
(12)
52 0 -0.0029 0.0461 -0.0118 0.0310 -0.0572 0.1702

β
(12)
53 0 0.0190 0.0569 0.0116 0.0381 -0.1153 0.1802

β
(12)
54 0 0.0469 0.0848 0.0215 0.0451 -0.0199 0.1947

β
(12)
55 0 0.0760 0.1133 0.0323 0.0538 0.1275 0.4199

RMSE(f̂) 0 0.6676 0.3864 0.6493 0.3778 1.5127 1.5713

RMSE(B̂) 0 0.2323 0.0299 0.2350 0.0291 0.2436 0.0278
RMSE 0 0.6966 0.3738 0.6764 0.3693 1.5311 1.5627

Table 3.1: Simulation Result for Fused Lasso, Elastic Net and Standard Lasso
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Figure 3.1: True surface for η = F (x, ξ) Figure 3.2: True surface for simulated data

Figure 3.3: Estimated surface via Lasso
Figure 3.4: Estimated surface via Fused
Lasso

Figure 3.5: Estimated surface via Elastic
Net
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how cigarette morbidity, marijuana morbidity and behavior risk index affect alcohol

morbidity. We used the subset from the Monitoring the Future data: 1878 students

who had drinking experience.

The endogenous latent variable, alcohol morbidity, is measured by following items:

• The occasions that students had alcoholic beverages to drink, more than just a

few sips in their lifetime.

• The occasions that students had alcoholic beverages to drink, more than just a

few sips last year.

• The occasions that students had alcoholic beverages to drink, more than just a

few sips last month.

• The number of times that the students had five or more drinks in a row in the

last two weeks.

The first exogenous latent variable, cigarette morbidity, is measure by following

items:

• The occasions that students smoked cigarettes in their lifetime.

• The occasions have students smoked cigarettes during the past 30 days.

The second exogenous latent variable, marijuana morbidity, is measure by follow-

ing items:

• The occasions that students smoked marijuana in their lifetime.

• The occasions that students smoked marijuana last year.
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• The occasions that students smoked marijuana last month.

The third exogenous latent variable, behavior risk index, is measure by following

items:

• During the last four weeks, the number of whole days of school students have

missed because they skipped.

• During the last four weeks, the number of whole days of school students have

missed because other reasons.

• During a typical week, the number of evenings students go out for fun and

recreation.

• On the average, how often students go out with a date.

• During an average week, how much students usually drive.

As a result, there are totally 14 manifest variables. The Λ in the measurement

equation is:

ΛT =



1 λ21 λ31 λ41 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 λ62 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 λ83 λ93 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 λ11,4 λ12,4 λ13,4 λ14,4


(3.9)

LetA = diag(0, · · · , 0, µ5, · · · , µ14) and ci = (1, · · · , 1)T . In addition, we have five

covariates, which are gender, geographic area, living with siblings, father education

level and mother education level. Let xi = (x1i, · · · , x5i) To study the interaction

84



between the exogenous latent variables and endogenous latent variable, we proposed

following structure equation model:

ηi = xib
T + f1(ξ1i) + f2(ξ2i) + f3(ξ3i) + f12(ξ1i, ξ2i) + f13(ξ1i, ξ3i) + f23(ξ2i, ξ3i) (3.10)

where b = (b1, · · · , b5). Similar to simulation study, natural cubic splines are used

in function f(·) with 5 knots. MCMC chains of 20,000 iterations are generated and

the burnin is 10,000. We use both Bayesian fused lasso and Bayesian elastic net to

solve the problem, and compare the result with Bayesian Lasso. Table 3.2 shows the

estimates from measurement equation. The estimates are very similar among three

methods.
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Para. Fused LASSO Est. Elastic Net Est. LASSO Est.

λ2,1 0.8477 0.8358 0.836

λ3,1 0.5202 0.5067 0.5069

λ4,1 0.4098 0.3982 0.3983

λ6,2 1.0505 0.9976 1.047

λ8,3 1.2825 1.2866 1.2965

λ9,3 1.2088 1.2127 1.2219

λ11,4 0.7485 0.5973 0.6634

λ12,4 0.3364 0.4089 0.3993

λ13,4 0.1659 0.1558 0.1583

λ14,4 0.109 0.1978 0.1796

µ5 3.133 3.1667 3.1099

µ6 1.9161 1.9526 1.8925

µ7 5.3888 5.4149 5.4285

µ8 4.4709 4.5048 4.5217

µ9 2.8753 2.9067 2.9222

µ10 2.0841 2.1565 2.1203

µ11 1.7787 1.8275 1.8065

µ12 3.9871 4.0141 3.999

µ13 3.1242 3.1356 3.1303

µ14 3.5832 3.5943 3.5879

Para.: parameter

Est. posterior estimates

Table 3.2: Non-Spline Parameter Estimation
The structure equation results for fused Lasso and Elastic Net are on Table 3.3

and Table 3.4 respectively. Some of the β’s from Elastic Net are not converged.
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Comparing to the result form Bayesian Lasso Table 3.5. All the β’s from Bayesian

Lasso are not converged. Fused lasso performed best in this application, all the

β’s from Fused Lasso converge, and result shows that there is interaction between

marijuana morbidity and behavior risk index. The main effect of cigarette morbidity is

also significant. The graphs of the two-way interaction of these three exogenous latent

variables shows their relation with endogenous latent variable. Figure 3.6 shows there

is not obviously interaction between cigarette morbidity and marijuana morbidity,

but both main effects are significant. When cigarette morbidity or/and marijuana

morbidity increase, alcohol morbidity increases. Figure 3.7 shows similar pattern

with cigarette morbidity and behavior risk index. Figure 3.8 shows the interaction

between marijuana morbidity and behavior risk index. When behavior risk index is in

the higher level, as marijuana morbidity increases, alcohol morbidity increases faster.
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Para. Est. Para. Est. Para. Est. Para. Est.

b1 0.1216∗ β
(12)
1 -0.0553 β

(13)
1 -0.0156 β

(23)
1 −0.1149∗

b2 0.0243 β
(12)
2 -0.008 β

(13)
2 0.0073 β

(23)
2 -0.0056

b3 0.0835 β
(12)
3 0.0081 β

(13)
3 0.0179 β

(23)
3 0.0246

b4 0.0845 β
(12)
4 0.0152 β

(13)
4 0.0248 β

(23)
4 0.0327

b5 -0.0322 β
(12)
5 0.0258 β

(13)
5 0.033 β

(23)
5 0.0286

β0 5.8534∗ β
(12)
6 0.0063 β

(13)
6 0.007 β

(23)
6 0.0165

β12 0.2729∗ β
(12)
7 -0.0045 β

(13)
7 -0.0041 β

(23)
7 0.009

β13 0.0303 β
(12)
8 -0.0044 β

(13)
8 -0.0029 β

(23)
8 0.0068

β14 -0.0037 β
(12)
9 0.0166 β

(13)
9 0.0163 β

(23)
9 0.0113

β15 0.0067 β
(12)
10 0.0007 β

(13)
10 -0.006 β

(23)
10 0.0002

β22 0.1142∗ β
(12)
11 -0.0086 β

(13)
11 -0.0139 β

(23)
11 -0.0047

β23 0.0654∗ β
(12)
12 -0.0065 β

(13)
12 -0.012 β

(23)
12 -0.0066

β24 0.0382 β
(12)
13 0.0176 β

(13)
13 0.0048 β

(23)
13 -0.002

β25 0.0441 β
(12)
14 -0.0025 β

(13)
14 -0.0273 β

(23)
14 -0.0168

β32 0.1745∗ β
(12)
15 -0.0151 β

(13)
15 -0.0529 β

(23)
15 -0.0252

β33 0.0986∗ β
(12)
16 -0.0217 β

(13)
16 -0.0824 β

(23)
16 -0.0314

β34 0.0417

β35 -0.0039

Para.: parameter

Est. posterior estimates

* marked values indicates 90% of the distribution is greater than 0 or

less than 0.

Table 3.3: Spline Parameter Estimation using Bayesian Fused Lasso
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Para. Est. Para. Est. Para. Est. Para. Est.

b1 0.0169 β
(12)
1 -0.0026 β

(13)
1 -0.1193 β

(23)
1 0.0023

b2 0.0018 β
(12)
2 -0.0054 β

(13)
2 -0.4759 β

(23)
2 0.0031

b3 0.0035 β
(12)
3 -0.005 β

(13)
3 0.462 β

(23)
3 0.0039

b4 0.004 β
(12)
4 -0.0045 β

(13)
4 2.5223§ β

(23)
4 0.0046

b5 -0.0042 β
(12)
5 0.0022 β

(13)
5 -0.3639 β

(23)
5 -0.0008

β0 5.9121 β
(12)
6 0.0012 β

(13)
6 -0.4635 β

(23)
6 0.0015

β12 -0.0291 β
(12)
7 0.0013 β

(13)
7 -0.6698 β

(23)
7 0.0018

β13 -0.0016 β
(12)
8 0.0011 β

(13)
8 −1.2979§ β

(23)
8 0.0027

β14 0.0043 β
(12)
9 0.003 β

(13)
9 -0.1049 β

(23)
9 -0.0011

β15 0.0156 β
(12)
10 0.0021 β

(13)
10 -0.1743 β

(23)
10 0.0021

β22 -0.0002 β
(12)
11 0.0022 β

(13)
11 -0.5128 β

(23)
11 0.0021

β23 -0.0026 β
(12)
12 0.0022 β

(13)
12 −1.5011§ β

(23)
12 0.003

β24 -0.0025 β
(12)
13 0.0044 β

(13)
13 1.0263§ β

(23)
13 -0.0011

β25 -0.0026 β
(12)
14 0.0045 β

(13)
14 1.3305§ β

(23)
14 0.0017

β32 2.4961§ β
(12)
15 0.0042 β

(13)
15 0.4733 β

(23)
15 0.0024

β33 18.3222§ β
(12)
16 0.0041 β

(13)
16 -0.53 β

(23)
16 0.0031

β34 −35.6403§

β35 16.0324§

Para.: parameter

Est. posterior estimates

§ indicates the estimates are not converged..

Table 3.4: Spline Parameter Estimation using Bayesian Elastic Net
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Para. Est. Para. Est. Para. Est. Para. Est.

b1 0.0159 β
(12)
1 −2.7382§ β

(13)
1 1.0451§ β

(23)
1 0.2214§

b2 0.0014 β
(12)
2 8.284§ β

(13)
2 22.0392§ β

(23)
2 0.3895§

b3 0.0008 β
(12)
3 −3.644§ β

(13)
3 −3.7627§ β

(23)
3 4.5003§

b4 0.0074 β
(12)
4 −1.4991§ β

(13)
4 −15.6498§ β

(23)
4 −2.7686§

b5 -0.0038 β
(12)
5 9.7528§ β

(13)
5 −7.5459§ β

(23)
5 1.2014§

β0 5.9608 β
(12)
6 −5.0116§ β

(13)
6 −11.514§ β

(23)
6 −7.5515§

β12 −1.3933§ β
(12)
7 −3.7479§ β

(13)
7 −10.617§ β

(23)
7 −18.5468§

β13 −9.2749§ β
(12)
8 −1.6634§ β

(13)
8 4.8088§ β

(23)
8 −6.5395§

β14 8.9574§ β
(12)
9 −7.53§ β

(13)
9 2.7655§ β

(23)
9 −4.1878§

β15 0.6507§ β
(12)
10 −0.5455§ β

(13)
10 0.9769§ β

(23)
10 3.9873§

β22 −1.7371§ β
(12)
11 3.0895§ β

(13)
11 0.6814§ β

(23)
11 4.1692§

β23 3.1955§ β
(12)
12 5.5655§ β

(13)
12 18.2107§ β

(23)
12 34.5997§

β24 −1.5914§ β
(12)
13 0.4208§ β

(13)
13 3.3887§ β

(23)
13 2.5759§

β25 −0.5296§ β
(12)
14 −0.4141§ β

(13)
14 −1.0071§ β

(23)
14 8.6044§

β32 4.3805§ β
(12)
15 1.5452§ β

(13)
15 −2.2612§ β

(23)
15 −0.4574§

β33 3.9027§ β
(12)
16 −1.8298§ β

(13)
16 −2.0676§ β

(23)
16 −21.5666§

β34 −5.7997§

β35 1.9083§

Para.: parameter

Est. posterior estimates

§ indicates the estimates are not converged.

Table 3.5: Spline Parameter Estimation using Bayesian LASSO

90



Figure 3.6: Estimated surface for
cigarette morbidity and marijuana mor-
bidity

Figure 3.7: Estimated surface for
cigarette morbidity and behavior risk in-
dex

Figure 3.8: Estimated surface for mari-
juana morbidity and behavior risk index
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3.6 Discussion

We adapt Bayesian fused Lasso and Bayesian elastic net for using in semiparametric

structural equation models. Basis expansions are used to approximate the nonpara-

metric relationships between the endogenous latent variables and the exogenous latent

variables and covariates. When cubic splines are used as the basis expansion, it is

beneficial to use the fused Lasso or the elastic net to estimate the parameters since

cubic splines are correlated in general. In the simulation study, both fused Lasso

and elastic net reduce the standard deviations of the spline parameters and shrink

the estimates of the spline parameters closer to zero when the true values of those

parameters are equal to zero. More importantly, RMSE(f̂) of fused Lasso and elastic

net is about half of RMSE(f̂) of standard Lasso.

There are benefits to use the fused Lasso to estimate the coefficients of the covari-

ates, however, it is difficult to generate realistic correlation structures. The usefulness

of this method will depend greatly on the type of correlation. In our simulation study,

the fused Lasso has a remarkable improvement over the standard Lasso for the tridi-

agonal structure with correlation equal to 0.70. However, it is difficult to simulate

tridiagonal structures since we often get negative eigenvalues. We believe that if a

natural order are present in a real data set the fused Lasso would lead to much better

results.

In the application, we treated the ordinal valuables as continuous. All of these

three methods have similar estimates for the measurement equations. However, the

Bayesian Lasso and Bayesian Elastic Net are not converged when estimating the struc-

ture equation. Bayesian fused Lasso is converged and show the interaction between

behavior risk index and marijuana morbidity.
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The proposed model includes two way interaction of the exogenous latent vari-

ables, and it is straightforward to extend to three way interaction, when the problem

has at least three exogenous latent variables. However, that will increase a great

amount of the number of coefficients needed to estimate, depending on the number

of knots. In our study, the options of the psychology survey are mostly ordinal data.

In some cases, the options might be dichotomous and that would violate the contin-

uous assumption of the manifest variable. Further research is needed to extend the

manifest variable to binary and nominal response. Also it is worthwhile to extend it

to other basis expansion methods.
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Chapter 4

Discovering Gene Network and
Interactions using Bayesian Graph
Laplacian Model

4.1 Introduction

In chapter 2, we select important pathways and genes with the help of pathways

information and genes relationship. The matrix R in chapter 2 indicates what genes

are related, but does not specify how strong they are related. Also, there are other

limitation: it is possible that different diseases cause genes interact differently within

the same pathway; biology technology upgrades frequently and new findings in genetic

research happen all the time, which means the genes relationship matrix R might be

renewed every few years. It will be a great advantage in statistical analysis if we

can remove the independence assumption, a priori between variables or a completely

known dependence structure, i.e., matrix R, when analyze the data. [Liu et al., 2014]
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propose a Bayesian method that models the dependence structure through a graph

Laplacian matrix. The main methods to find out similarity between data points and

spectral clustering are Graph Laplacian matrices. We believe this method can be used

to show the underlie dependent structure among the genes, which can be used as a

potential guideline for further biological study about the interaction among genes.

4.2 Graph Laplacian Matrix

Spectral clustering algorithms concentrate on finding good clusters in statistical learn-

ing and data mining. One of the main tools of spectral clustering algorithms are graph

Laplacian or the laplace matrices of graphs. Followed [von Luxburg, 2007], let simi-

larity graph G = (V,E) represent a set of n data points, and vi represents a vertex,

i = 1, · · · , n and E is a set of edge. Let sij ≥ 0 be the measure of similarity between

two vertices vi and vj, and they are connected by an edge sij > 0. Define a weighted

adjacency matrix W = (wji)i,j=1,··· ,n and wij = wji ≥ 0. di =
∑n

j=1 wij is the degree

of a vertex vi. LetD = diag(d1, · · · , dn) and the graph Laplacian of G is L = D−W .

The spectral clustering algorithms works effectively, but there are several limitations.

In regression analysis, it clusters the independent variables rather than their coeffi-

cients; secondly, it is under an assumption that there is available information about

the weighted adjacency matrix, but that is not necessary the case when we analyze

gene relationship; lastly, the restriction of wij ≥ 0 is not realistic by assuming positive

partial correlations between all pairs of variables. [Liu et al., 2014] overcome these

difficulties by extending the graph Laplacian model.
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4.3 Graph Laplacian Model

Consider a linear regression:

Y = Xβ + ε, (4.1)

where dependent variable Y is a n × 1 vector, independent variables X is n × p

matrix, corresponding β is a p× 1 vector and ε ∼ N(0, σ2In).

4.3.1 Prior Distribution

The prior distribution for β is:

β = N(0,
σ2

r
Λ−1), (4.2)

where r ≥ 0 and Λ is the graph Laplacian matrix:

Λ =



1 + λ11 +
∑

j 6=1 |λ1j| λ12 · · · λ1p

λ21 1 + λ22 +
∑

j 6=2 |λ2j| · · · λ2p

...
...

. . .
...

λp1 · · · · · · 1 + λpp +
∑

j 6=p |λpj|


(4.3)

where λij = λji and λii > 0

The prior for λ’s is as follows:

π(λ) ∝ Ca,b|Λ|−1/2

p∏
i=1

λ
−3/2
ii exp(− a2

2λii
)I(λii > 0)

∏
j<i

|λij|−3/2 exp(− b2

2|λij|
) (4.4)

where λ is the collection of all λ’s in Λ and Ca,b is the normalizing constant.
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The prior for σ2 is π(σ2) ∝ 1/σ2

4.3.2 Posterior Distribution

The likelihood function from (4.1) is:

L(β,λ;X,y) = (2πσ2)−n/2 exp{−(y −Xβ)′(y −Xβ)

2σ2
} (4.5)

After multiplying the priors of σ2, β and λ, the joint posterior distribution is:

π(σ2,β,λ|X,y) ∝ (4.6)

σ−(n+p+2){
∏
i

λ
−3/2
ii

∏
j<i

|λij|−3/2} exp{−(y −Xβ)′(y −Xβ)

2σ2
}

× exp{− r

2σ2
β′Λβ − a2

2

∑
i

λ−1
ii −

b2

2

∑
j<i

|λij|−1}

The full conditional posterior distribution for β is followed a normal distribution

as:

β|σ2,λ,X,Y ∼ Np((X
′X + rΛ)−1X ′ỹ, σ2(X ′X + rΛ)−1) (4.7)

Integrating out β from (4.6), they get the posterior distribution of σ2:

σ2|λ,X,y ∼ Inv −Gamma(n/2,y′(In −X(X ′X + rΛ)−1X ′)y/2) (4.8)

The conditional posterior distribution for λ does not have a closed form, but it
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can be obtained as:

π(λ|β, σ2,X,y) ∝
∏
i

λ
−3/2
ii

∏
j<i

|λij|−3/2 exp{− r

2σ2
β′Λβ− a

2

2

∑
i

λ−1
ii −

b2

2

∑
i<j

|λij|−1}

(4.9)

4.3.3 MCMC

In order to sample from (4.9), the parameter space is augmented. Let ηij = |λij| and

cij = sign(λij). And cij can be either +1 or -1 here. Let pij be the probability that

cij = +1, and cij follows Bernoulli distribution:

π(cij|β, σ2,X,y) = pij (4.10)

where pij = [1 + exp{−rb(|βi − βj|+ |βi + βj|)/2σ}]−1

η can be divided into 2 cases, ηii and ηij.

ηii|β, σ2,X,y ∼ Inv −N(aσ|
√
rβi|−1, a2) (4.11)

and

ηij|β, σ2,X,y ∼ Inv −N(bσ|
√
r(βi + cijβj)|−1, b2) (4.12)

The Gibbs sampler is developed as follow:

• Update σ2 from (4.6).

• Update β from (4.7).

• Update c from (4.10).
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• Update η from (4.11) and (4.12). Set λii = ηii and λij = cijηij

4.3.4 Choice for Hyperparameters

Conditioned on c and β, the hyperparameters r, a, and b are:

r|a, b, c,β ∼ Gamma(
p

2
+ hr,

∑
i β

2
i

2σ2
+
a
∑

i |βi|
2σ

+
b
∑

i<j |βi + cijβj|
2σ

) (4.13)

a|r, b, c,β ∼ exp(ga +
r
∑

i |βi|
2σ

) (4.14)

b|r, a, c,β ∼ exp(ga +
r
∑

i<j |βi + cijβj|
2σ

) (4.15)

In order to get a relatively flat prior, ga, hb and gb should be small. In each

iteration, these hyperparameters are updated by drawing samples from their full

conditional distributions.

4.4 Software

RCPP package, BVSG.cpp, is available to preform Bayesian Graph Laplacian Model.

ga, hb and gb should be set to small values. The function BVSGR can be used to

find out the posterior of β’s and the correlation matrix between them. The function

myheatmap can be used to show the correlation matrix graphically. Beside heat maps,

it also includes the dependence structure among the β’s.
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4.5 Application

The data we use are from the Michigan prostate cancer study [Dhanasekaran et al.,

2001]. In order to screen prostate cancer, Prostate Specific antigen (PSA) is used as

a biomarker. [Dhanasekaran et al., 2001] shows that some of the genetic pathways

relative to non-cancerous tissue seemed to be impaired in the prostate cancer, and

[Tang et al., 2013] indicates 16 KEGG pathways might be related to prostate cancer.

Due to the complexity of the gene interaction within a pathway, we use the Bayesian

Graph Laplacian Model to model the pathway effect.

There are 101 patients with 7103 gene microarray expression in the data set. We

select 77 patients who had preoperative prostate-specific antigen (PSA) information

and 368 genes from 16 KEGG pathways related to prostate cancer in our study. We

applied [Liu et al., 2014] method to the prostate cancer data. For each pathway,

preoperative PSA is the response variable and the genes are independent variables.

We used 20,000 iterations with burnin 10,000 iterations. If the absolution values

of the coefficients are greater than 2 or the correlation between two genes are great

than 0.2 or less than -0.2, we consider those genes are important. Table 4.1 and 4.2

summarized those important genes. Based on literature research, * marked genes are

related to cancer and § marked genes are related to prostate cancer. For example, one

of the critical determinants for the development and progression of human prostate

cancers is the androgen receptor (AR). In prostate cancer cells, AR-mediated gene

expression is suppressed by inhibition of PI3K activity, and [Zhu et al., 2008] shows

PIK3R1 (hsa:5295) is one of the primary genes they are interested in after the treat-

ment with PI3K inhibitors. Figure 4.1 to 4.32 show the heat map and dependent

structure among the genes in these 16 pathways. Graph Laplacian shows us what
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genes might be related and how strong their relations are. For instance, Figure 4.5

shows the heat map of mTOR signaling pathway. The tiles off the diagonal show the

correlation between two genes. The darker the color is, the stronger the correlation

is. If the absolute value of the correlation between two genes are more than 0.2,

the two genes are assumed to be related. Figure 4.6 shows the dependent structure

among the genes. The number indicates the order of the genes in mTOR signaling

pathway. For example, 4 denotes hsa:9706 and 12 denotes hsa:7248. Those two genes

are connected with a blue line, which indicates that they are related. The thicker the

blue line is, the stronger the two genes are related.

The information of how strong the genes are related is not available in the KEGG

data, let alone the interaction between genes might be different among different dis-

eases. By using the graph Laplacian model, we can find out underlie relationship

between the genes in response to prostate cancer or other diseases.
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Important Important Genes(Entrez) Important Genes

Pathways |β| > 2 correlation great than 0.2

MAPK signaling pathway 3845 9261 1386 5062∗ 10746§ 9479§ 5320 6654∗ 776 3925

5530 7157∗ 4217§ 10746§ 4609∗

ErbB signaling pathway 6198∗ 5062∗ 6777 3725∗ 5291∗ 5894∗ 3725∗ 5062∗ 5295§ 5894∗

673 3845

mTOR signaling pathway 51719∗ 673 9706 6194∗ 6198∗ 7422∗ 51719∗ 6198∗ 6194∗ 9706

7248 6195∗ 6197§ 5291∗ 5295§ 5296 6199∗ 3091§ 5291∗ 7422∗

7249 7248 6195∗ 6197§

5290∗ 5295§ 3479

Wnt signaling pathway 5530 8322∗ 8324 5881∗ 595 3725∗ 5332∗ 3725∗ 4316 4609∗

1488 6885∗ 5515 5516 1454 8454∗ 6424

Axon guidance 2773 7852∗ 5881∗ 4775 5530 5532 5881∗ 5058∗ 64221 1969∗

5533 3983∗ 2534 5747∗ 998∗ 9475 1948 5530 9475 4690

5058∗ 5062∗ 387§ 3688 4690 64221 1949∗ 4233∗ 6387∗ 2932

1969∗ 1947∗ 2048∗ 2050 23365§ 3845

5362 6405∗ 10500 9901 6387∗

Focal adhesion 5728∗ 5747∗ 1292 3909 7058∗ 7060 10398 1281 5290∗ 3480§

858 7422∗ 5062∗ 5295§ 7414 2335 7058∗

3479 3725∗

Long-term potentiation 5530 6195∗ 5566 10411 5894∗ 673 5578§ 4659 5894∗ 5908

3845 5502 1387 5530 5906 5330∗

5332∗

Neurotrophin signaling pathway 5291∗ 3845 673 4217§ 3667 9261 5295§ 4217§ 3725∗ 397

998

Insulin signaling pathway 7248 51763 5792∗ 5565 5573 31 2194 5567 5257 8835∗

6194∗ 2308 3845 6464 6198∗ 7249 6198∗ 31 673 5290∗

673 5106∗ 10891 5291∗ 2932 5584

5590 10211

Pathways in cancer 3908 3909 5728∗ 8322∗ 8324 3815 3688 999∗ 3685∗ 3480§

2261 7175 7184 2932 4193∗ 6772 5290∗ 5295§ 2335 3815

673 5979 2353 54583 4436 1488 3725∗ 2950§ 5602∗ 7175

2950§ 5915 3728 5371 8554§ 9063 3479 6772 3091§ 4436

5925∗ 329 9618 7422∗ 1436 2247 7042 5743∗ 329

* marked indicates the gene related to cancer

§ marked indicates the gene related to prostate cancer

Table 4.1: Summary of the important genes in 16 pathways (1)
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Important Important Genes(Entrez) Important Genes

Pathways |β| > 2 correlation great than 0.2

Colorectal cancer 8322∗ 8324 5291∗ 4436 3845 5295§ 3725∗

Endometrial cancer 3845 2932 842 6934 83439 5728∗ 6654∗ 5295§

4609∗ 5291∗ 5295§ 5894∗ 673

Glioma 1956∗ 5156 6464 5894∗ 673 5290∗ 3479 6464 6654∗ 1956∗

5291∗ 207 5728∗ 1019∗ 1021 5925 5154 5291∗ 3480§ 5295§

1869§ 5335 3845 1021 5335 3845

Prostate cancer 5728∗ 2308 3845 5925∗ 2932 7184∗ 1956∗ 3480§ 3479

5291∗ 673

Chronic myeloid leukemia 7042 3066∗ 1488 6777 4792 6464 3066∗ 5291∗ 5290∗ 5295§

5925∗ 5291∗ 5296 5894∗ 673 3845 3845

Non-small cell lung cancer 842 5291∗ 5296 1019∗ 1021 1869§ 5578§ 842 5291∗ 1021

3845 1956∗ 6789∗ 2064∗ 5925∗ 5915 5295§ 6654∗ 207 595

369 5894∗ 673 3845 1956∗ 6655

* marked indicates the gene related to cancer

§ marked indicates the gene related to prostate cancer

Table 4.2: Summary of the important genes in 16 pathways (2)

4.6 Discussion

In this Chapter, we apply the Bayesian Graph Laplacian Model to analyze the gene

network and interaction in response to prostate cancer. The table 4.1 and 4.2 shows

the model findings. According to current research literature, we notice that the im-

portant genes picked up by interaction relationship are more likely related to prostate

cancer or cancer than those picked up by larger absolute value of β’s. This might be

because cancer is caused by the interaction of a set of genes rather than individual

genes. In genetic study, the gene relationship is not available sometimes, and often

incomplete. It is also possible that genes relate differently in response to different dis-
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Figure 4.1: Heat Map of MAPK
signaling pathway

Figure 4.2: Dependence Structure
among Genes of MAPK signaling
pathway

Figure 4.3: Heat Map of ErbB sig-
naling pathway

Figure 4.4: Dependence Structure
among Genes of ErbB signaling
pathway

Figure 4.5: Heat Map of mTOR
signaling pathway

Figure 4.6: Dependence Structure
among Genes of mTOR signaling
pathway
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Figure 4.7: Heat Map of Wnt sig-
naling pathway

Figure 4.8: Dependence Structure
among Genes of Wnt signaling
pathway

Figure 4.9: Heat Map of Axon
guidance

Figure 4.10: Dependence Struc-
ture among Genes of Axon guid-
ance

Figure 4.11: Heat Map of Focal
adhesion

Figure 4.12: Dependence Struc-
ture among Genes of Focal adhe-
sion
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Figure 4.13: Heat Map of Long-
term potentiation

Figure 4.14: Dependence Struc-
ture among Genes of Long-term
potentiation

Figure 4.15: Heat Map of Neu-
rotrophin signaling pathway

Figure 4.16: Dependence Struc-
ture among Genes of Neu-
rotrophin signaling pathway

Figure 4.17: Heat Map of Insulin
signaling pathway

Figure 4.18: Dependence Struc-
ture among Genes of Insulin sig-
naling pathway
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Figure 4.19: Heat Map of Path-
ways in cancer

Figure 4.20: Dependence Struc-
ture among Genes of Pathways in
cancer

Figure 4.21: Heat Map of Colorec-
tal cancer

Figure 4.22: Dependence Struc-
ture among Genes of Colorectal
cancer

Figure 4.23: Heat Map of En-
dometrial cancer

Figure 4.24: Dependence Struc-
ture among Genes of Endometrial
cancer
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Figure 4.25: Heat Map of Glioma
Figure 4.26: Dependence Struc-
ture among Genes of Glioma

Figure 4.27: Heat Map of Prostate
cancer

Figure 4.28: Dependence Struc-
ture among Genes of Prostate can-
cer

Figure 4.29: Heat Map of Chronic
myeloid leukemia

Figure 4.30: Dependence Struc-
ture among Genes of Chronic
myeloid leukemia
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Figure 4.31: Heat Map of Non-
small cell lung cancer

Figure 4.32: Dependence Struc-
ture among Genes of Non-small
cell lung cancer

eases. One of the advantages of Bayesian Graph Laplacian Model is that a completely

known dependence structure is not needed.

[Liu et al., 2014] compares the performance of Bayesian Graph Laplacian Model

with that of Lasso, EN, OSCAR, Bayesian Lasso and Bayesian Elastic Net in 5

different scenario simulation studies. Bayesian Graph Laplacian Model preform best

in four scenarios and second to the best in one scenario.

[Liu et al., 2014] proposed method can be used for one pathway each time, with

the information that we already know the potential important pathways. Some of the

diseases, especially cancers, might be caused by the multiplied pathways interacting

with each other. It is worthwhile to extend the method to pin point important

pathways among all potential disease related pathways. We could possibly find out

the interaction between pathways through the interaction among genes, because one

disease related gene can be in multiple different pathways.
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Chapter 5

Future Study

5.1 Multiple Pathways Simultaneous Analysis and

Pathways Selections

When we analyze the gene expression data in Chapter 4, one of the limitations of

Bayesian Graph Laplacian Model is that we can only analyze each pathway individ-

ually. However, in disease research, especially in cancer, it is important to consider

the interaction between pathways, as some of the diseases are the result of several

pathways interactions. According to the current biology research, there are more

than 200 pathways information available ,but most of the pathways are unrelated to

the diseases, so it is important for us to select possible disease related pathways. We

would like to extend the Graph Laplacian method with pathway selection.

First consider a linear regression function,

yi = x
(1)T
i β1 + x

(2)T
i β2 + · · ·+ x(L)T

i βL + ei, (5.1)
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where ei ∼ N(0, σ2), yi is continuous variables for ith observation, i = 1, · · · , n, x
(l)
i

is the microarray expression data for lth pathway, and l = 1, · · · , L. In this section yi

is continuous variable , similar to preoperative PSA. x
(l)T
i βl is the lth pathway effect

and we assume additive effect on the response variable.

Similar to chapter 2, we assume the regression coefficients arise from a scale mix-

ture of a point mass of 0 and a normal distribution, so we have:

βl|φl = φlNpl(0,
σ2

rl
Λ−1
l ) + (1− φl)I(0), (5.2)

where φl is the pathway selection indicator for lth pathway,


φl = 1 when pathway is l selected in the model

φl = 0 otherwise

(5.3)

and it follows Bernoulli distribution:

φl = ωφll (1− ωl)φl (5.4)

And σ2
l ∼ IG(al, bl), a, b, rl ≥ 0 and ωl are hyperparameters. Moreover, Λ−1

l is

the inverse of the graph Laplacian matrix, and it is as follows:

Λl =



1 + λ
(l)
11 +

∑
j 6=1 |λ

(l)
1j | λ

(l)
12 · · · λ

(l)
1p

λ
(l)
21 1 + λ

(l)
22 +

∑
j 6=2 |λ

(l)
2j | · · · λ

(l)
2p

...
...

. . .
...

λ
(l)
p1 · · · · · · 1 + λ

(l)
pp +

∑
j 6=p |λ

(l)
pj |


(5.5)
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where λ
(l)
ij = λ

(l)
ji and λ

(l)
ii > 0 The prior for λ(l) is:

π(λ(l)) ∝ Ca,b|Λl|−1/2

p∏
i=1

(λ
(l)
ii )−3/2 exp(− a2

2λ
(l)
ii

)I(λ
(l)
ii > 0)

(l)∏
j<i

|λij|−3/2 exp(− b2

2|λ(l)
ij |

)

(5.6)

The prior distribution for β’s will shrink the β’s values close to 0 when those β’s

and corresponding pathways are not important. In such way, we can select pathways.

5.2 Survival Time as Response Variable

In disease related research, it is common to use survival time as the response variable.

We would like to extend the Graph Laplacian method with right censored response.

We replace the original regression model with Accelerated Failure Time (AFT) mod-

els. AFT models assume multiplicative effect of the pathway effect on the survival

time:

log(ti) = x
(1)T
i β1 + x

(2)T
i β2 + · · ·+ x(L)T

i βL + ei, (5.7)

where we have the survival time ti for subject i. Let ci be the censoring time indepen-

dent of ti. Let δi = I{ti ≤ ci} to be censored indicator function and t∗i = min(ti, ci).

We impute the censored data by using the [Tanner and Wong, 1987] data augmenta-

tion approach. Let Y = (Y1, Y2, · · · , Yn)′, and yi is the augmented data as,


Yi = log(t∗i ) if δi = 1

Yi > log(t∗i ) if δi = 0

(5.8)
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Assuming the error term is iid following standard normal distribution, the model

(5.7) becomes:

Yi = x
(1)T
i β1 + x

(2)T
i β2 + · · ·+ x(L)T

i βL + ei, ei
iid∼ N(0, σ2) (5.9)

5.3 Binary Response Variable

In medical research, sometimes, researchers are interested in classifying or discriminat-

ing different diseases or cancers. In this case, the response variables are dichotomous

or categorical. So we would like to extend the Graph Laplacian method with binary

response and multinomial response to analyze those research questions.

Suppose yi is binary random variables, where i = 1, · · · , n, and yi = 1 or yi = 0.

We use the data augmentation method introduced by [Tanner and Wong, 1987]. Let

z1, · · · , zn be n latent variables, and zi are independent N(XT
i B, 1), where Xi =

c((x
(1)
i )T , · · · , (x(L)

i )T )T and B = c(β1, · · · ,βL). Let


yi = 1 if zi > 0

yi = 0 if z1 ≤ 0

(5.10)

As a result, yi follows Bernoulli distribution with pi = P (y1 = 1) = Φ(XT
i B). The

prior of βl is the same as (5.2).

For the multinomial response, if the responses are ordinal variables, we suppose

yi takes K ordered categories. Let pik = P (yi = k) and cumulative probabilities

ηik =
∑K

k=1 pik, where k = 1, · · · , K − 1. Following [McCullagh, 1980], we have

ηik = Φ(γk −XT
i B). Similarly, if zi are independent N(XT

i B, 1), let yi = k, when
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we have γk−1 < zi ≤ γk.

Lastly, if the responses are nominal variables. [Aitchison and Bennett, 1970]

applied Gibbs sampling approach to multinomial probit model. In our specific model

setting, let zi = zi1, · · · , ziK , where i = 1, · · · , n and K > 2, we have:

zik = XT
ikBk + eik, (5.11)

where ei = (ei1, · · · , eiK). Pathway selections are different in different diseases, so

disease k has its own set of genes Xik and corresponding βk. Disease k is observed if

zik > zim for all k 6= m.

We believe with these three extensions, Bayesian Graph Laplacian Model can be

used in most of biological or medical research data.
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