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ACADEMIC ABSTRACT 

 

In my first essay, I demonstrate how the Cremers and Petajisto (2009) Active 

Share measure can be re-parameterized into the standard portfolio parameters we 

typically see in other portfolio management studies, namely betas and standard 

deviations.  This demonstrates that Active Share is not very different than the measures 

we traditionally use to study portfolio management.  One of the parameters that results 

from the re-parameterization is a measure of the risk of the manager’s active bets, the 

volatility of the implied hedge position relative to the benchmark.   This parameter is 

equally as strong as Active Share in predicting excess performance and helps give a 

better economic understanding of why Active Share exhibits predictive power.  Active 

Share and this implied hedge measure are like a confidence and information problem.   

In my second essay, I use the idea of benchmark relative investment optimization 

as outlined in Roll (1992).  These portfolios are sub-optimal but they can be better than 

the alternative, i.e. better than the portfolios that the principals could build themselves.  I 

outline the conditions under which delegated managers increase the principal’s utility.  

Additionally, if implemented properly, tracking error constraints, Jorion (2003) and beta 

constraints, Roll (1992), can force the delegated manager to buy a more efficient 

portfolio than the benchmark.  Thus, even though relative utility maximization is sub-

optimal, if the delegated manager is more skillful than the principal in portfolio 

construction, delegated portfolio management is still likely preferred to naively holding 

the benchmark.  
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CHAPTER 1. DISSERTATION SUMMARY 

 

I. Introduction 

Delegated portfolio management is an extremely broad topic.  The fundamental 

idea in studying delegated portfolio management is to study the effects of allocating 

decisions in a manner that separates the portfolio decision-making from the beneficiary’s 

interests.  Most delegated portfolio management literature is concentrated in the broad 

classification of investments research but also central to this idea is the inherent 

principal/agent relationship created by the delegation.  The principal/agent connection 

gives a lot of the research in delegated portfolio management a link to research in 

corporate finance and in particular corporate governance, incentives, contracting, and 

control.  Obviously, the contracts and incentives can both directly and indirectly cause 

the delegated manager to behave in a manner not completely consistent with that of the 

principal.   

A large portion of this research is focused on a relatively narrow definition of 

delegation.  For example the CIO of an investment operation like a pension or 

endowment can hire an external manager to manage all or part of the assets.  This more 

narrow definition is usually referred to as decentralized investment management or 

multistage investment management in the literature.  An exceptionally large amount of 

the money in the financial markets is managed in this way.  This is particularly evident 

when you consider that the entire investment company universe, which includes both 

open end and closed end mutual funds, is explicitly defined in this manner.  Less obvious 
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but just as vast a universe of investment managers is the directed or institutional 

investment management business, which for all intents and purposes is essentially the 

same as a mutual fund relationship albeit designed for more sophisticated investors 

(pension funds, endowments, etc.).  With a looser definition, the private wealth 

management business could be grouped into this category as well.     

Although a large portion of the money in the financial markets is managed in this 

manner, taking a much more nuanced definition of delegated portfolio management 

opens it up to an even much larger universe of implicit and explicit contracts in 

investment decision-making.  For example, any time a separation exists between the final 

beneficiary and the individual making an investment decision, the agent has the potential 

to make decisions that are not completely in the best interests of the principal, even if the 

agent’s intentions are in the principal’s best interests.  In this context, there is also a 

separation between portfolio manager and an analyst on the same investment portfolio.  

There is even a separation between an internal, non-delegated, manager, where all of the 

investment decision-making is done in house, and the beneficiaries of the funds, as in the 

case of an endowment.  It is evident that close to all investment decisions could be 

classified as delegated decisions if you sufficiently loosen the definition. 

Given that this topic spans the universe of financial research from Investment 

Theory, Linear Asset Pricing, Portfolio Management, Economics, Corporate Governance, 

etc., the aspect of this field I have chosen to study is delegated manager portfolio choice 

given the incentive problem.  That is, I am studying some of the metrics and parameters 

we use to choose between different delegated managers, whether those metrics are useful, 
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and how to improve the relationship through controls and constraints.  In order for 

delegation to be efficient, we must believe that external managers can improve upon the 

portfolio that a principal could build himself without the delegation, otherwise we would 

not rationally delegate.  The standard decision-making tool is some form of model or 

parameter that gives us an indication of whether the delegated manager can outperform 

some benchmark, implicit or explicit, pre-specified or not.     

My first essay builds on a metric introduced into the academic literature by 

Cremers and Petajisto (2009).  This paper has been fairly well cited in top academic 

journals since its publication.  Their primary finding is that their measure, Active Share, 

is predictive of future relative performance.  This finding drives their main conclusion 

that Active Share’s predictive power supports the existence of skill in active 

management.  It is a small step to conclude that this measure could perhaps be used to 

predict which managers have the ability to outperform a benchmark.  In my first essay, I 

decompose this measure into two, multiplicative components and show Active Share’s 

relationship to more traditional portfolio risk metrics.  Additionally, this measure is not 

independent of systematic risk but the level of systematic risk inherent in the measure 

does not seem to bias the predictive power.  Therefore, the conclusion of whether this 

measure is actually representative of manager skill is in question.  It could very well be 

just a reflection of something more fundamental, something already known. 

My second essay builds on a long line of portfolio management research that is 

based on Markowitz (1952).  I study the optimality of the relative performance incentive 

on portfolio efficiency for the principal in Markowitz’s mean/variance space.  The 
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relative performance incentive is a structural assumption that defines how a delegated 

manager behaves and is not necessarily consistent with the behavior of the principal.  

Many academics have tried to tackle the problem of whether this type of delegation can 

be efficient with the first true challenge to the problem coming from Sharpe (1981).  

Since then, under differing sets of assumptions, the problem has both asserted efficiency, 

and also proven non-efficiency depending on the specific assumptions.  I approach the 

problem differently than many of my predecessors by using the relative performance 

incentive and Roll (1992) mean-tracking error volatility space, and my results indicate 

that although increasing efficiency is largely uncertain, constraints to tracking error and 

beta can improve efficiency and in certain cases replicate any portfolio that the principal 

would like the agent to build on his behalf. 

The balance of this introduction proceeds as follows.  Section II describes essay 1 

and the general process I use to decompose Active Share into its component parts.  This 

exposes the relationship between Active Share and tracking error (and thus systematic 

risk).  Section III describes essay 2 and the utility problem and primary economic 

assumptions used to model the relative investment incentive in the space of absolute 

mean-variance space.  Finally, Section IV describes the prospect of publishing in 

portfolio management and in particular extensions of these ideas.  There seems to be a 

good amount of very interesting future research in the field of delegated portfolio 

management and there are direct extensions of the research in this dissertation to keep me 

busy for a number of years to come. 

 

4 
 



II. Essay 1 - Active Share and Tracking Error 

The concept of Active Share was introduced to the academic literature in Cremers 

and Petajisto (2009).  This measure represents the portion of a portfolio that deviates 

from its benchmark and is measured in terms of the weight differences of the holdings 

between the portfolio and the benchmark.  It can be expressed as follows: 

 
Active Share = 𝐴𝐴𝐴𝐴𝑝𝑝 =

1
2
��𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�,
𝑁𝑁

𝑖𝑖=1

 
(1) 

where 𝑤𝑤𝑝𝑝,𝑖𝑖 and 𝑤𝑤𝑏𝑏,𝑖𝑖 represent the weights of asset i in the portfolio and the benchmark 

respectively.  Active Share is predictive of future excess performance.  Portfolios with 

higher active share tend to outperform their benchmarks and active portfolios with lower 

active share tend to underperform.  This evidence is used to support the conclusion that 

some active managers have skill.  Active Share is introduced as a measure of the risk of 

active management and placed in direct contrast to Tracking Error Volatility.   

Tracking Error Volatility is a long established tool used in evaluating active 

managers and can be used as both an implicit and explicit risk constraint controlling the 

behavior of active managers.  It is usually defined as follows: 

 Tracking Error = 𝑇𝑇𝑇𝑇𝑝𝑝 = 𝜎𝜎�𝑟𝑟𝑝𝑝,𝑡𝑡 − 𝑟𝑟𝑏𝑏,𝑡𝑡�, (2) 

where 𝜎𝜎(… ) is the standard deviation function and 𝑟𝑟𝑝𝑝,𝑡𝑡 and 𝑟𝑟𝑏𝑏,𝑡𝑡 represent the returns in 

time t of the portfolio and the benchmark respectively.  Evidence on the implementation 

of Tracking Error as a risk tool in active management can be found in Roll (1992), 

Grinold and Kahn (1999), Jorion (2003), and many additional sources.  According to 
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Cremers and Petajisto (2009), tracking error alone does not produce the same predictive 

effects as Active Share. 

 In this essay, my primary contribution is in building the functional relationship 

between the concepts of Active Share and Tracking Error.  The reconciling term is the 

standard deviation of the hedge portfolio whose weights, 𝑤𝑤ℎ,𝑖𝑖, are defined as follows:      

 𝑤𝑤ℎ,𝑖𝑖 =
𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖

1
2∑ �𝑤𝑤𝑝𝑝,𝑖𝑖−𝑤𝑤𝑏𝑏,𝑖𝑖�𝑁𝑁

𝑖𝑖=1
=  

𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖

𝐴𝐴𝐴𝐴𝑝𝑝
. (3) 

The hedge portfolio h, with weights 𝑤𝑤ℎ,𝑖𝑖, has a very important economic interpretation.  

Both the long side and the short side of this portfolio have weights that sum to 1, thus 

both the long and short exposures in this sense are investable.  Also, it is the portfolio that 

the investment manager would buy to differentiate from the benchmark index.  Active 

Share is just the weight that the manager invests in this hedge portfolio.   

 Using the above construction for portfolio h, I can show that the reconciling factor 

between Active Share and Tracking Error is the standard deviation of this hedge 

portfolio, 𝜎𝜎ℎ.  That is: 

 𝐴𝐴𝐴𝐴𝑝𝑝𝜎𝜎ℎ = 𝑇𝑇𝑇𝑇𝑝𝑝. (4) 

This expression represents a decomposition of Tracking Error, the risky deviations a 

portfolio makes from its benchmark, as a product of the volatility of the hedge portfolio, 

essentially the risk of the delegated manager’s information, and the Active Share, the 

weight (or confidence) the delegated manager applies to his/her information.  

 Given that 𝑇𝑇𝑇𝑇𝑝𝑝 is not predictive of either future relative or absolute return, and 

𝐴𝐴𝐴𝐴𝑝𝑝 is predictive, an important distinction can be made about whether it is actually 𝐴𝐴𝐴𝐴𝑝𝑝 

directly creating the pricing effect, 𝜎𝜎ℎ directly creating the pricing effect and it showing 
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up indirectly in 𝐴𝐴𝐴𝐴𝑝𝑝, or a combination of both.  It seems illogical that merely deviating 

from one’s benchmark by generating Active Share should create value, but as a proxy for 

confidence perhaps it does.  However, there must be some information that Active Share 

is capturing to create value.  That information is encapsulated in the hedge portfolio thus 

the direct skill of an active manager should be primarily attributable to this information.  

In this context, Active Share is only a secondary identifier or a proxy for the actual 

information.  Therefore, the purpose of this essay is two-fold: 

1. To expose Active Share’s functional relationship to Tracking Error  

2. To determine whether the predictive power of Active Share in encompassed 

by the level of Active Share or by the risk in the hedge portfolio. 

 

III. Essay 2 - Tracking Error Volatility Optimization 

 The concept of benchmark relative risk, usually expressed as tracking error, is 

almost as old as Modern Portfolio Theory itself.  In a world dominated by Delegated 

Portfolio Management, oftentimes the primary incentive that separates the agents from 

the principals is the agent’s reliance on an implicit or explicit relative performance 

incentive.  If the principal already holds, or has the ability to manage, his optimal 

portfolio, then delegation of the portfolio management responsibilities should not happen.  

This is because any additional constraint imposed by the principal/agent relationship will 

necessarily create a portfolio that is at maximum of equal preference.  Therefore, the first 

assumption that needs to be made in a delegated portfolio management relationship is 
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whether there exists a portfolio with higher utility than the one the principal can build 

himself.      

 Let p represent the best portfolio the principal can build, a the portfolio that the 

agent builds, and m the optimal portfolio given the principal’s utility.  If U(…) is the 

utility function of the principal then we know: 

 𝑈𝑈(𝑝𝑝) < 𝑈𝑈(𝑚𝑚), and 𝑈𝑈(𝑎𝑎) ≤ 𝑈𝑈(𝑚𝑚). (5) 

However for the delegation to be rational, we have to also expect that: 

 𝑇𝑇[𝑈𝑈(𝑎𝑎)] >  𝑇𝑇[𝑈𝑈(𝑝𝑝)]. (6) 

It is unfortunately not always the case that 𝑈𝑈(𝑎𝑎) >  𝑈𝑈(𝑝𝑝).  In fact, the more risk averse 

the principal, the less likely it is that the agent will actually increase utility.  Additionally, 

the more efficient the principle’s original portfolio, the less likely it is that the agent will 

increase utility.   

These propositions become particularly apparent when we consider a standard 

utility relationship where preference is increasing in returns and decreasing in risk.  If we 

frame this problem in the context of mean-variance portfolio optimization, the standard 

procedure is to maximize utility given the satisfaction of a set of parametric equations 

that define the efficient boundary, or the envelope, upon which lies portfolio m.  

However, the relative performance incentive encourages the external manager to 

optimize over relative returns rather than absolute returns which has the consequence of 

the agent also considering risk measures in relative risk rather than absolute risk.      

As a simple example, we can analyze the effects of the agent optimizing a 

quadratic utility function over the standard deviation of relative returns, the tracking error 
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volatility, rather than the typical constraint of optimizing over the standard deviation of 

absolute returns.  The choice this type of decision-making leads the agent to buy a 

portfolio that has a higher expected return than the portfolio that the agent would manage 

themselves, a, but at the same time a higher standard deviation of absolute returns.  This 

leaves the agent’s resulting portfolio in the ambiguous space where it is the structure of 

the utility function, at particular the relative levels of risk aversion, which determines 

whether the agent did indeed increase utility for the principal.   

The balance of this essay explores the Roll (1992) TEV (Tracking Error 

Volatility) space and its theoretical implications of the relative performance incentive 

with a particular interest in how it affects optimal utility when translated back to mean-

variance space.  Therefore, the purpose of this essay is to address the following: 

1. Show how the Agent’s utility function generates the TEV frontier. 

2. Demonstrate how relative decision-making, albeit inefficient, could lead to 

portfolios preferred by the principal. 

3. Provide support for the constraints to tracking error and beta and show how 

these constraints can assure utility improvements.   

There are five main contributions of this essay to the academic literature on 

portfolio management. The first contribution of this essay is in analytically connecting 

the Roll (1992) TEV frontier to the delegated utility optimization problem.   I 

demonstrate, with quadratic utility, how the optimization process in relative returns 

causes the delegated managers to invest on the TEV frontier.  In fact, the TEV frontier is 
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the critical path delegated managers optimize upon given changes to their risk aversion 

levels.  

  The second contribution comes in calculating the optimal Beta and TEV 

constraints based on the definitions of these constraints in the Roll (1992) and Jorion 

(2003).  I demonstrate that if the agent's opportunity set can be estimated then a utility 

optimizing principal can assign a TEV or a Beta constraint to not only assure utility 

improvement but also maximize his utility given the agent's incentives. 

  The third contribution comes in connecting the Roll (1992) Beta constraint and 

the Jorion (2003) TEV constraint.  The combination of these two constraints and my 

setup for the agent's optimization process yields a unique solution in mean-variance 

space.  I show that if a principal can estimate the agent's opportunity set then he can 

assign a Beta/TEV constraint combination that produces any portfolio in mean-variance 

space.  Essentially, the principal can force the agent to optimize the principal's utility 

instead of the agent's utility, removing all of the inefficiency of the delegated incentive. 

  The Fourth contribution is in demonstrating the connection between constraining 

on agent risk aversion and constraining on TEV.  Many authors that solve delegated 

portfolio management problems rely on the knowledge of and ability to constrain agent 

risk aversion.  However, this parameter is rather illusive and a criticism of this literature 

is abundant.  We just cannot reliably estimate agent risk aversion.  TEV on the other hand 

is measurable and directly observable, at least ex-post.  I show that a principal 

constraining an agent on TEV causes the agent to choose a portfolio equivalent to one he 

would have chosen if he had been constrained on agent risk aversion. 
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  Lastly, I discuss, rather arbitrarily, how even if the agent's opportunity set is 

unknown, mild constraints to Beta and TEV still likely lead to utility improvements for 

the principal.  This lends support to the anecdotal proposition that these constraints are 

popular and wildly used in the investment industry.  This paper extends a relatively 

scarce set of literature but a highly important topic in portfolio management and in 

particular delegated portfolio management.  Given the prevalence of delegated 

contracting in the investment industry, and that these contracts can create some rather 

drastic agency problems, the ability of principals to reduce their risks and costs is very 

important. 

 

IV. Summary and Extensions 

 In recent years, portfolio management research has only been mildly popular in 

the top finance journals.  Every year there are usually a handful of very good articles, 

probably on the order of 10, published in these journals.  Personally, I find this topic area 

fascinating and enjoy reconciling the models we use in portfolio management with many 

of the other topics we study in finance.  In fact, most of the successful portfolio 

management literature being published today ties portfolio management together with 

other interesting and usually more popular topic areas in the broader finance literature.  

The two essays in this dissertation are just two of those ideas.  Below I have outlined 

some other connections that are worth studying that have only been mildly covered.  

These are broad ideas and each has multiple extensions built in. 
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First, if it is true that managers can be shown to have skill then this may imply 

that Active Share be evidence of the pricing of “idiosyncratic risk.”  Although this is 

often taken with a fair amount of skepticism, such as in Bali et. al. (2005), the existence 

of excess return pricing in a broad market factor model would be strong support.  My 

suspicion is that if excess return is priced on the idiosyncratic factor in my model, is it 

merely because the benchmark is inefficient and the idiosyncratic factor is picking up real 

systematic exposure to the true market portfolio.  Active Share could help disentangle 

some of these factors and allow us to get a cleaner look at systematic vs. non-systematic 

risk.     

The fundamental law of active management, Grinold and Kahn (2000), says that 

the information ratio is related to the productivity of the information, IC, and the square 

root of the number of bets.  The information ratio is the excess return over the tracking 

error and tracking error is active share times the risk of the hedge.  This makes the slope 

of the models in Active Share comparable to the fundamental law of active management.  

This connection could be studied either by considering it as manager skill, as both 

Cremers and Petajisto and Grinold and Kahn consider it, or by exploring the systematic 

exposure of both measures. 

Since active share is akin to the portion of the portfolio in which you deviate from 

the index, we can consider this portion scalable.  Essentially, we can buy more and sell 

more of the hedge to further lever the position and create more active share.  Why did the 

manager stop where he or she stopped?  Why not lever further?  In reality the implied 

long only constraint would prevent this but theoretically the hedge could expand.  In this 

12 
 



context, the active share number is really a confidence number in the information the 

manager had about the hedge portfolio.  Since the risk of the hedge is the risk of the 

manager’s information, and the active share is the confidence in that information, active 

share can be considered in concert with the risk of the hedge as a confidence and 

information problem.  This is related to Grinold and Kahn (2000) as well. 

The problem of active share and appropriate levels of active share begs the 

connection with agency and fund governance.  This has been studied from the corporate 

side in papers such as Ferris and Yan (2009), Lakonishok, Shleifer, and Vishny (1994), 

and Dybvig, Farnsworth, and Carpenter (2010).  The framework of relative risk, and in 

particular measures of active share and tracking error, are ripe with metrics that can be 

used to measure the cost of agency, the level of interest misalignments, or the 

benefits/detriments of delegated management and monitoring.  These metrics are mostly 

unknown and unstudied in the realm of governance and connecting the worlds of 

corporate governance and delegated portfolio management through the analysis of 

relative portfolio pricing metrics can provide a rich stream of research. 

 Substituting the decomposition of Tracking Error into the Active Share 

decomposition yields an equation for Active Share that clearly shows Active Share is 

dependent upon portfolio beta: 

 
𝐴𝐴𝐴𝐴𝑝𝑝 =

1
𝜎𝜎ℎ
��𝛽𝛽𝑝𝑝 − 1�

2
𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝜀𝜀2�

1 2⁄

 
(7) 

This equation decomposes Active Share into its component Systematic and Idiosyncratic 

exposures.  Although 𝜎𝜎ℎ is also dependent on 𝛽𝛽𝑝𝑝, for the moment I will ignore that 

dependence.  Solving for 𝛽𝛽𝑝𝑝 yields the following: 
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𝛽𝛽𝑝𝑝 = 1 ± �

�𝐴𝐴𝐴𝐴𝑝𝑝𝜎𝜎ℎ�
2
− 𝜎𝜎𝜀𝜀2

𝜎𝜎𝑏𝑏2
�

1 2⁄

. 
(8) 

Alternative methods to estimate portfolio beta typically involve using a long time series 

of historical data as in the market model estimation from above or simultaneously 

estimating 𝑛𝑛(𝑛𝑛 + 1) 2⁄  covariances and applying the same weight vector used to 

calculate the Active Share, 𝑤𝑤𝑝𝑝 − 𝑤𝑤𝑏𝑏, to imply a long historical time series.  The benefit 

of calculating beta using this method is that the Active Share is a stock variable, and the 

only historical data needed is used to estimate three variances, a parameter that can be 

estimated with relative accuracy even in the presence of non-stationary historical data.  

This method suggests that a beta calculated in this way might be able to provide 

information for pricing that is more difficult to estimate when using more standard 

measurement techniques. 

The potential for this the agent TEV optimization constraint to alter aggregate 

equilibrium in the financial markets is possible and could be explored and conditions for 

this constraint to not affect the equilibrium could be outlined.  This could potentially be 

an explanation for the seemingly inexplicable amount of momentum in cross-sectional, 

asset pricing regressions.  Perhaps the aggregate, macroeconomic equilibrium movement 

can be traced to better take advantage of momentum, something that is very difficult to 

build a viable investment strategy around. 

 The second essay studies the problem of portfolio delegation from the perspective 

of a single principal hiring a single delegated agent.  This problem can be and has been 

extended in other research to include a more realistic multi-delegated-manager scenario.  
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The constraints I apply to assure utility improvements have different implications in a 

multi manager scenario but could still be used to assure both utility improvement and 

global optimality.  Additionally, another constraint has to be employed in the multi-

manager scenario to prevent systematic factor cannibalization between external 

managers.   
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CHAPTER 2. ACTIVE SHARE AND THE IMPLIED HEDGE 

 

I. Introduction 

Active portfolio management is a hotly debated and controversial topic.  The 

research is both supportive and critical of a portfolio manager’s ability to “beat an index” 

and significant effort has been made by academics and practitioners alike to both prove 

and disprove the idea of skill in active management.  The evidence supporting skill in 

active management is not particularly robust.  In the aggregate, investment managers 

must underperform their respective benchmarks by their transactions costs and 

management expenses.1  With few exceptions, it is generally accepted that there is no 

magic formula to achieve excess performance through active management.  Nonetheless, 

a large amount of money is managed by professional investment managers on behalf of 

clients, and the evidence strongly suggests that the external investment manager’s 

primary goal is outperformance of a specified benchmark2, whether that goal is explicit 

or implicit.   

 A recent measure, Active Share, introduced into the academic literature in 

Cremers and Petajisto (2009), provides evidence that there is indeed skill in active 

management.  This measure is essentially the percent of the holdings in a portfolio that 

differentiates from the holdings or constituents of a benchmark.  It is calculated as 

follows: 

1 Sharpe (1991) and French (2008) strongly assert this viewpoint. 

2 See Treynor and Black (1973) for an early discussion of this.  
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Active Share =

1
2
��𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

, 
(1) 

where 𝑤𝑤𝑝𝑝,𝑖𝑖 and 𝑤𝑤𝑏𝑏,𝑖𝑖 are the portfolio or constituent weights of asset i in the portfolio or 

the benchmark respectively, and n is the number of securities held.  Cremers and Petajisto 

(2009) finds that Active Share is predictive of excess returns and that there is a positive 

relationship.  That is, portfolio managers that take more Active Share tend to outperform 

their benchmarks by more than managers that have low Active Share.  This result is 

confirmed through the post 2008 financial crisis period in Petajisto (2013). 

 As a measure of benchmark relative decision-making or risk, Active Share is 

compared and contrasted to tracking error volatility, which has become the favored 

measure of active risk over the last 20 or so years.  Tracking error is the standard 

deviation of difference in returns between a portfolio and its benchmark.  This measure 

can be contrasted with the standard deviation of the raw or absolute returns as in the 

sense of Markowitz (1952), which has long been the standard to measure total portfolio 

risk.  Roll (1992) does an analysts of tracking error volatility in mean-variance space 

under the assumption that the tracking error volatility frontier is the efficient set upon 

which delegated managers will optimize.  Further evidence that tracking error is 

considered the standard measure of portfolio manager risk can be found in other works 

such as Jorion (2003), Alexander and Baptisa (2010) and Bertrand (2010), which analyze 

allocation decisions in the style of modern portfolio theory with constraints to relative 

benchmarking and tracking error volatility.  There is also an interesting extension of the 

Modigliani and Modigliani (1997) M-2 measure in which Muralidhar (2000) uses 
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tracking error volatility to expand the M-2 measure into M-3 for the purpose of justifying 

risk-adjusted performance.   

When attempting to find a metric to measure skill in the aggregate or of the 

average investment portfolio, an unbiased statistic of the aggregate skill must net to 

zero3.  In the case of metrics that do seem to predict performance, it is important to 

identify the source of the opposing, counterbalancing effect.  As in the case of portfolio 

beta, the portfolios with beta greater than one are balanced by the portfolios with beta less 

than one.  Essentially, the market cap weighted sum of all portfolio betas should sum to 

one.  When we find factors that are priced, whether that be in absolute or in relative 

performance, and they are not the standard risk factors that we are typically accustomed 

to analyzing, we should approach those factors critically until a determination can be 

made about exactly what we are looking at. 

 If we consider the portfolio weights and a covariance matrix of stocks, the 

tracking error4 can be calculated as follows: 

 

Tracking Error = ����𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑝𝑝,𝑗𝑗 − 𝑤𝑤𝑏𝑏,𝑗𝑗�𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖,𝑗𝑗, 

(2) 

where 𝜎𝜎𝑖𝑖 is the standard deviation of returns from security i, and 𝜌𝜌𝑖𝑖,𝑗𝑗 is the correlation 

between security i and security j.  Tracking error’s connection with Active Share is 

3 This is an application of Sharpe’s (1991) arithmetic of active management. 

4 By tracking error I technically mean tracking error volatility.  Other authors follow 
Grinold and Kahn (1999) in defining tracking error as the root mean square of the 
difference in returns.  My definition is the standard deviation of the difference in returns.  
However, it is common practice to just refer to tracking error volatility as tracking error. 
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immediately detectable since both measures are a function of �𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�.  However, 

even given the relationship between tracking error and Active Share, Cremers and 

Petajisto (2009) finds that whereas Active Share is predictive of relative returns, tracking 

error is not.  At least the evidence is exceedingly weak when compared with the strong 

evidence for Active Share.  Therefore, there is something significant about the difference 

between these two measures that is causing the effect.  In fact, there is a simple, 

functional relationship between these two metrics such that: 

 Active Share × 𝜎𝜎𝐻𝐻 = Tracking Error. (3) 

I will derive and define 𝜎𝜎𝐻𝐻 in Section 3 of this essay, but this measure is essentially an 

investible, “market neutral” hedge portfolio, 100% long and 100% short, that reflects the 

active bets of the portfolio manager, and it can be calculated as follows: 

 

𝜎𝜎𝐻𝐻 = �
2

∑ �𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�𝑛𝑛
𝑖𝑖=1

���𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑝𝑝,𝑗𝑗 − 𝑤𝑤𝑏𝑏,𝑗𝑗�𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖,𝑗𝑗 

(4) 

 A graphical example of the formation of this hedge portfolio can be seen in Figure 

1.  In this figure, the active portfolio and the benchmark portfolio weight vectors are 

shown using bar graphs on the left of the figure and as you work across the figure from 

left to right the relative portfolio is formed and then normalized to create the hedge 

portfolio weight vector. 
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 Cremers and Petajisto (2009) actually use a different measure of tracking error 

that assumes the benchmark relative systematic risk, 𝛽𝛽𝑝𝑝, of every portfolio is equal to 1.  

This measure of tracking error is more popularly thought of as the standard deviation of 

the error term in a linear regression between the portfolio and the benchmark, 𝜎𝜎𝜀𝜀.  The 

tracking error definition from above has a parameterization that illustrates this 

phenomenon well: 

 
Tracking Error𝑝𝑝 = ��𝛽𝛽𝑝𝑝 − 1�

2
𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝜀𝜀2. 

(5) 

It is obvious from this formula that as 𝛽𝛽𝑝𝑝 goes to 1, the tracking error goes to 𝜎𝜎𝜀𝜀.   In the 

context of the difference in weights vector, �𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�, 𝜎𝜎𝜀𝜀 can be written as follows: 

 

𝜎𝜎𝜀𝜀 = ����𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝛽𝛽𝑝𝑝𝑤𝑤𝑏𝑏,𝑖𝑖�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑝𝑝,𝑗𝑗 − 𝛽𝛽𝑝𝑝𝑤𝑤𝑏𝑏,𝑗𝑗�𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜌𝜌𝑖𝑖,𝑗𝑗. 

(6) 

Thus the similarity between Active Share and 𝜎𝜎𝜀𝜀 is also apparent.  𝜎𝜎𝜀𝜀 is simply the 

tracking error where the benchmark weights are scaled by 𝛽𝛽𝑝𝑝.  It is important to note that 

Active Share and Beta are not independent of each other.  As beta deviates from 1, Active 

Share increases.  However, this phenomenon was controlled for in Cremers and Petajisto 

(2009) and examined in this essay as well and the level of systematic risk does not seem 

to affect Active Share’s predictive ability.  Essentially, Active Share is not biased by the 

systematic risk of 𝛽𝛽𝑝𝑝.   However, the existence of this 𝛽𝛽𝑝𝑝 possibly makes tracking error 

volatility, as opposed to the error regression volatility , a more appropriate measure for 

comparison. 
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In this paper, I derive a representation for Active Share that connects it 

theoretically to tracking error volatility.  This re-parameterization suggests that it is 

essentially an adjusted tracking error, adjusted by 𝜎𝜎𝐻𝐻.  Active Share and 𝜎𝜎𝐻𝐻 are just 

reflections of each other around tracking error, a very popular measure of relative risk in 

delegated portfolio management.  Active Share’s predictive power seems at least partially 

related to the information already contained within tracking error.  In particular, some of 

Active Share’s pricing effect is necessarily attributable to the implied hedge volatility, 

𝜎𝜎𝐻𝐻.  However, a substantial and economically significant part of Active Share is still 

unaccounted for in the hedge volatility and would typically still be considered 

representative of manager skill.  The significance of both parameters, 𝜎𝜎𝐻𝐻 and Active 

Share, gives a better picture of how individual portfolio managers obtain and use both 

benchmark differentiation, i.e. deviations in weights to generate excess return, and the 

potential for taking advantage of their specific information.   

The balance of the paper proceeds as follows.  Section II includes a review of the 

relevant research and outlines the contribution of this project.  Section III is a detailed, 

constructive derivation of the re-parameterization into standard portfolio parameters and 

a decomposition of Active Share into its component systematic and non-systematic parts.  

Section IV is a description of the data used.  Section V describes the empirical methods 

and outlines the results of tests used to assert consistency of the model presented in 

Section III.  Section VI discusses extensions and concludes the paper.   
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II. Background and Contribution 

The history of benchmark relative measures of risk is almost as old as modern 

portfolio theory.  This is evident in two particular ratios related to tracking error and 𝜎𝜎𝜀𝜀.  

Both are reminiscent of the Sharpe Ratio, which is originally introduced in Sharpe (1966) 

but revisited in Sharpe (1994).  Rather than representing raw returns over standard 

deviations, the newer measures are indicative of relative performance over relative risk.  

The first of which is commonly referred to as the information ratio and is the benchmark 

excess return over the tracking error volatility: 

 Information Ratio =
𝑟𝑟𝑝𝑝 − 𝑟𝑟𝑏𝑏
𝑡𝑡𝑡𝑡𝑝𝑝

, (7) 

where 𝑡𝑡𝑡𝑡𝑝𝑝 is the tracking error volatility of the portfolio.  This ratio is merely a Sharpe-

style ratio for relative returns since the tracking error is just the standard deviation of 

relative returns or benchmark excess returns.  It is difficult to determine who coined the 

term “information ratio”, but a good description of this ratio is found in Grinold and 

Kahn (1999). 

The second of these two ratios, the Appraisal Ratio, is similar to the Information 

Ratio but is oftentimes confused with it.  Considering the regression of a portfolio’s 

returns on its benchmark, the Appraisal Ratio is the Jensen’s Alpha, which is the intercept 

term from a regression of the portfolio on its benchmark and is described in Jensen 

(1968), divided by the standard deviation of the regression error: 

 Appraisal Ratio =
𝛼𝛼𝑝𝑝
𝜎𝜎𝜀𝜀

, (8) 
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where 𝛼𝛼𝑝𝑝 is Jensen’s Alpha.  Compared to the Information Ratio, the Appraisal Ratio has 

the benefit of not being biased by the presence of benchmark relative systematic risk, or 

beta.  Both, however, are examples of early relative risk measures in in context of 

portfolio theory.  Other definitions of the appraisal ratio have been used in the past (in 

fact the original definition was very different) but this one encompasses the modern 

usage of this term.   

Active Share in particular, as well as tracking error, are highly related to the 

mathematical notion of a p-norms.  Essentially, Active Share is the 1-norm or the 

“length” of the difference in weight vector, �𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�, divided by 2.  A 2-norm 

calculation would provide the true length of the vector in two dimensional space and the 

squared difference terms make the formula look much more like a variance or standard 

deviation (or more importantly a tracking error) albeit without the covariance matrix5: 

 

�𝐰𝐰𝐩𝐩 − 𝐰𝐰𝐛𝐛�2 = ���𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�
2

𝑛𝑛

𝑖𝑖=1

. 

(9) 

This measure is very similar to one devised by Kacperczyk, Sialm, and Zheng (2005) 

called the Industry Concentration Index and is similar to a Herfindahl–Hirschman Index: 

 
Industry Concentration Index = ��𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

. 
(10) 

This measure differs in that, other than the obvious lack of the square root, the counter on 

the sum is a counter for the industry rather than the security.  Cremers and Petajisto 

5 Actually, this measure is equivalent to a standard deviation measure when covariance 
matrix equal to the identity matrix. 
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(2009) compare the analysis of this measure to that of Active Share, and to a measure of 

Active Share calculated on the industry level rather than the security level, and find that it 

is just as significant in pricing regressions however when included together, Active Share 

tends to dominate.  When they analyze the squared calculation at the security level, they 

find no significance whatsoever.  Using a sample of Australian firms however, Brand, 

Brown, and Gallagher (2005) calculate this exact measure and call it the divergence 

index.  They find that their divergence index predicts fund performance. 

 Another interesting permutation of Active Share was analyzed in Jiang, Verbeek, 

and Wang (2011), which creates a cross-sectional average of the relative weights on 

individual securities.  They call their measure Deviations from Benchmark or DFB and it 

is defined as follows: 

 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑡𝑡 = ��𝑤𝑤𝑝𝑝,𝑖𝑖,𝑡𝑡 − 𝑤𝑤𝑏𝑏,𝑖𝑖,𝑡𝑡�

𝑛𝑛𝑖𝑖

𝑝𝑝=1

/𝑛𝑛𝑖𝑖, 
(11) 

where 𝑛𝑛𝑖𝑖 is the number of funds that hold security i.  In this context, the authors are 

trying to measure the average distance a typical fund differentiates from the benchmark 

rather than the specific amount any particular fund differentiates.  Their measure, 

obviously related to Active Share, also produces positive pricing effects thus is 

potentially also a candidate to support the idea of manager skill.  With their measure they 

also find that this skill is particularly evident around earnings announcements. 

 Although the examples above look a lot like Active Share, there is a whole other 

classification of measures that tries to reveal similar information.  Kacperczyk, Sialm, 

and Zheng (2008) measure what they call the return gap.  This is the return difference 
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between a portfolio comprised of the point in time holdings extrapolated forward and the 

actual returns the portfolio experienced, presumably due to changes in the underlying 

holdings since the report date of the holdings.  This return gap is important and used in 

Puckett and Yan (2011).  They find that these interim portfolio changes seem to be what 

drives manager outperformance, not end-of-period holdings.   

Amihud and Goyenko (2013) use a fund’s R2, generated using a multifactor 

regression analysis, as a measure of selectivity and assert that lower R2 significantly 

predicts better performance.  Low R2 is similar in this manner to high Active Share in 

that it allows for greater manager selectivity and control of the portfolio, i.e. less reliance 

on the benchmark.  In fact, the authors contrast their measure of selectivity to Active 

Share and imply strongly that they both measure the same information.  Given the 

relative difficulty of obtaining all of the relevant information required to calculate Active 

Share on a large sample of mutual funds, and the relative ease in obtaining, for example, 

return data, R2 produces just as strong results with less effort.  Active Share and R2 are 

mechanically and functionally related and their connection is due to their relationships to 

both tracking error and the implied hedge volatility.  In another active management skill 

story, Kacperczyk and Seru (2007) show that managers who are sensitive to public 

information (RPI) are less likely to outperform.  Their RPI measure is simply an R2 

measure that attempts to identify benchmark differentiation. 

  Many authors advocate for a method of portfolio construction that emphasizes 

dependence on relative performance, both in risk and return, simply because optimization 

in that space removes the obligation that risk aversion in absolute space be considered.  

26 
 



However, risk aversion in relative space is still essential.  For evidence of this see Becker 

et. al. (1999) and Grinold and Kahn (2000).  A good example of how this is developed 

can also be found in Stutzer (2004).  It also suggests how we can avoid paradoxes such as 

Roll’s critique, Roll (1977).  However, anecdotes of this analysis can be found in many 

highly cited financial papers such as Gompers and Metrik (2001), Pastor and Stambaugh 

(2002a,b), Berk and Green (2004), and Cetin (2006).  Even very recent papers provide 

conclusions based on the assumption of consistency of the relative performance 

optimization.  Examples of these are Cuoco and Kaniel (2011) and Li and Tiwari (2009), 

which further suggests that principals are supportive of this relative optimization in their 

deliberate alignment of incentive contracts with the solutions to a relative optimization 

problem.  

  However, the real problem with relative measures of risk, such as tracking error, 

regression error variance, and Active Share, is that the traditional systematic priced risk 

factors are either symmetric around the horizontal axis6, or explicitly eliminated from the 

measure.  Essentially, increases in a traditional systematic factor, such as beta, above the 

beta of the relative index are equally offset by decreases.  A beta of 1.5 will produce the 

same level of relative risk as a beta of 0.5.  An outline of this phenomenon can be found 

in Jorion (2003) and is hinted at in Roll (1992).  Pricing models with measures of relative 

risk can be thought of as agnostic to the regular systematic factors.  Therefore, if pricing 

is found on relative risk factors, we can be assured that the pricing is not attributable to 

systematic factors, assuming the relative risk factor is not biased in systematic risk.      

6 See Figure 2 for a simple demonstration of this with Active Share. 
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  The first contribution of this essay is in connecting Active Share mathematically 

to these other methods through a simple manipulation of the active bets a manager takes.  

In this manner, Active Share is really just a different way to look at the information we 

have always used when considering and analyzing problems in relative portfolio 

management.  Through this relationship, the standard metrics we have used to measure 

relative or delegated portfolio management throughout time are intimately connected to 

Active Share all through the measure I call the volatility of the hedge.  This measure, 

derived constructively in the next section and gives hints at the economic interpretation 

of Active Share and measures like it.   

 When attributing tracking error into the product of the volatility of the hedge and 

Active Share, Active Share unambiguously becomes the parameter associated with a 

manager’s confidence level in the information implied by the manager’s active hedge 

against the benchmark.  Active Share’s predictive effects are thus consistent with the idea 

of manager skill.  But on the other side of the coin, the implied hedge volatility also 

contains information about manager skill. It is the risk of the manager’s information.  In 

this context, it is just another form of attribution.  It is an attribution of manager 

confidence and information risk.  In this context, it can be connected to literature in risk 

aversion and signal precision, such as in Admati et. al. (1986). 

 

III. A Constructive Decomposition of Active Share 

Active Share, as introduced to the academic literature in Cremers and Petajisto 

(2009), is an intuitive and simple metric for evaluating benchmark deviation.  In the 
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context that it is introduced, it is by definition the percent of the fund’s holdings that 

deviate from the benchmark.    However, it comes in a difficult and unfamiliar functional 

form.  Active Share is defined as: 

 
𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝑡𝑡 𝐴𝐴ℎ𝑎𝑎𝑟𝑟𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑝𝑝 =

1
2
��𝑤𝑤𝑝𝑝,𝑖𝑖 − 𝑤𝑤𝑏𝑏,𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

=
1
2
�𝐰𝐰𝐩𝐩 − 𝐰𝐰𝐛𝐛�𝟏𝟏 

(12) 

𝑤𝑤𝑝𝑝,𝑖𝑖 and 𝑤𝑤𝑏𝑏,𝑖𝑖 are the portfolio weights of asset i in the fund and in the benchmark.  

�𝐰𝐰𝐩𝐩 − 𝐰𝐰𝐛𝐛�𝟏𝟏 is the 1-norm of the difference in the weight vectors and is simply another 

notation for the absolute value of the summation over i.  Although this calculation is 

simple and intuitive, it is difficult to visualize in the context of how we typically study 

portfolio theory and construction.  Namely, it would be more convenient if we could see 

what Active Share looks like parameterized using more standard portfolio math 

parameters, standard deviation, correlation, beta, etc.   

 The key to the re-parameterization is in the intuition behind the original equation.  

If we consider the benchmark as the base position and make a 100% investment into the 

benchmark, Active Share is the percent invested into each of a long and short portfolio 

that make up the hedge portfolio used to reweight the benchmark to that of the fund in 

question.  Thus, I prove the following statement:   

 

III.A Theorem: TE = AS × σH  

Tracking error volatility is the product of Active Share and the volatility of a 

100% long, 100% short hedge fund (the volatility of the implied hedge).  Essentially, TE 

= AS × σH when: 
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TE = [(wp – wb)′ Ω (wp – wb)]½ 

AS = ½ ∑ | wp,i – wb,i | = ½|| wp – wb || 

σH = [wH′ Ω wH]½ 

Proof:   

Suppose wp and wb represent the n × 1 weight vectors for portfolio p and 

benchmark b respectively such that wp ≠ wb and: 

 wp′1 = 1   and   wb′1 = 1  (t.1) 

Consider the following difference-in-weights vector, xH: 

 xH = wp – wb (t.2) 

Note that by (t.1) and (t.2) we have: 

 xH′1 = (wp – wb)′1 = wp′1 – wb′1 = 1 – 1 = 0 (t.3) 

Therefore, xH is a zero weight hedge portfolio.  Define two new vectors xL and xS so that 

xH is split into its long and short exposures: 

 Let xL = xH when xH > 0 otherwise xL = 0. 

Let xS = – xH when xH < 0 otherwise xS = 0. 

xH = xL – xS 

(t.4) 

(t.5) 

(t.6) 

By (t.3) and (t.6) we have: 

 xH′1 = (xL – xS)′1 = xL′1 – xS′1 = 0 (t.7) 

Thus by (t.7) we have: 

 xL′1 = xS′1 (t.8) 

The lengths of each side of the hedge portfolio, xH, are equal.  Define two new vectors 

wL and wS by normalizing xL and xS as follows: 
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 wL = (xL′1)-1 xL  

wS = (xS′1)-1 xS  

(t.9) 

(t.10) 

Note that both wL and wS sum to 1: 

 wL′1 = (xL′1)-1 xL′1 = 1 

wS′1 = (xS′1)-1 xS′1 = 1 

wL′1 = wS′1 

(t.11) 

(t.12) 

(t.13) 

Both portfolio L and portfolio S are 100% weight vectors and hypothetically investable.  

Additionally, their weights are also equal.  Next, combine these vectors to create portfolio 

H: 

 wH = wL – wS (t.14) 

By (t.11), (t.12), and (t.14):  

 wH′1 = (wL – wS) ′1 = wL′1 – wS′1 = 1 – 1 = 0 (t.15) 

Thus by (t.13) and (t.15), portfolio H is a zero weight hedge portfolio where the long and 

short side of the hedge are both weighted to 100%, i.e. it is a 100% long, 100% short 

hedge portfolio.  From (t.6), (t.9), (t.10), (t.13), and (t.14), the following can be shown:  

 xH = xL – xS = (xL′1)wL + (xS′1)wS = (xL′1)( wL – wS) = (xL′1)wH (t.16) 

Since xL and xS are strictly non-negative the expressions (xL′1) and (xS′1) can be restated 

in terms of a 1-norm, defined as || x || = ∑ | xi |: 

 (xL′1) = || xL || 

(xS′1) = || xS || 

(t.17) 

(t.18) 

Again from (t.6), (t.17), and (t.18), if I take the 1-norm length of xH, the following is true: 

 || xH || = || xL – xS || = || xL || + || xS || = 2 (xL′1) (t.19) 
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And from (t.16) and (t.19), the scalar that relates xH to wH becomes apparent.  It is just 

one half of the 1-norm length of xH: 

 xH = ½|| xH || wH (t.20) 

However, one half the 1-norm length of xH is just the Cremers and Petajisto (2009) 

Active Share, AS.  From (t.2) and the definition of the 1-norm: 

 ½|| xH || = ½|| wp – wb || = ½ ∑ | wp,i – wb,i | = AS (t.21) 

From (t.2), (t.20) and (t.21), the relationship between the portfolio weight vector, wp, the 

benchmark weight vector, wb, and the implied hedge weight vector, wH, is as follows: 

 wp – wb = xH = ½|| xH || wH = AS × wH (t.22) 

Applying the portfolio variance function, where Ω is the n × n covariance matrix, to the 

relationship in (t.22) it can be shown that: 

 wp – wb = AS × wH 

(wp – wb)′ Ω (wp – wb) = AS2 × wH′ Ω wH 

[(wp – wb)′ Ω (wp – wb)]½ = AS × [wH′ Ω wH]½ 

 

 

(t.23) 

And, by the definitions provided in the statement of the theorem, (t.23) shows that 

tracking error volatility is the product of Active Share and the volatility of a 100% long, 

100% short hedge fund (the volatility of the implied hedge).  Essentially: 

 TE = AS × σH □           (t.24) 

III.B Extensions of the identity 

Stated another way, the active share is equal to the fund’s tracking error divided 

by the standard deviation of the risk of the implied hedge position. 

32 
 



 𝐴𝐴𝐴𝐴𝑝𝑝 =
𝑇𝑇𝑇𝑇𝑝𝑝
𝜎𝜎𝐻𝐻

 
(13) 

This expression leads to a very interesting decomposition of active share into its 

systematic and idiosyncratic components.  Consider first the regression of rb on rf in the 

standard market model:  

 𝑟𝑟𝑝𝑝,𝑖𝑖 = 𝛼𝛼𝑝𝑝 + 𝛽𝛽𝑝𝑝𝑟𝑟𝑏𝑏,𝑖𝑖 + 𝜀𝜀𝑝𝑝,𝑖𝑖 (14) 

A popular expression for tracking error is formulated using the parameters from 

the above regression expression: 

 𝑡𝑡𝑡𝑡𝑝𝑝2 = �1 − 𝛽𝛽𝑝𝑝�
2
𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝜀𝜀2 (15) 

In this context, tracking error is decomposed into its systematic and non-

systematic components.  Similarly, due to the relationship between tracking error and 

active share, this decomposition can be used to express active share as a combination of 

systematic and non-systematic components. 

 
𝐴𝐴𝐴𝐴𝑝𝑝2 = �1 − 𝛽𝛽𝑝𝑝�

2 𝜎𝜎𝑏𝑏2

𝜎𝜎𝐻𝐻2
+
𝜎𝜎𝜀𝜀2

𝜎𝜎𝐻𝐻2
 

(16) 

Given the functional relationship above, it is obvious that deviations in active 

share (active share greater than zero) are generated by both systematic deviations 

(benchmark relative) and non-systematic deviations from the benchmark index.  

Therefore, analysis of the uses of active share as a risk measure for pricing purposes must 

recognize that part of the deviation is due to systematic risk. 

Before talking about relative return, we have to provide a framework to in which 

to study it in the same manner as we did for risk above.  Since we rely on the market 
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model in the previous section to parameterize active share, this follow-up is appropriate.  

Therefore, consider the market model for fund p: 

 𝑟𝑟𝑝𝑝 = 𝛼𝛼𝑝𝑝 + 𝛽𝛽𝑝𝑝𝑟𝑟𝑏𝑏 (17) 

We define excess return as the return of the portfolio minus the benchmark and adjusting 

the market model appropriately yields the following relationship: 

 𝑟𝑟𝑝𝑝 − 𝑟𝑟𝑏𝑏 = 𝛼𝛼𝑝𝑝 + (𝛽𝛽𝑝𝑝 − 1)𝑟𝑟𝑏𝑏 (18) 

 Represented in this specification, on the left, is the excess return.  On the right are 

𝛼𝛼𝑝𝑝, the return attributable to idiosyncratic risk, and (𝛽𝛽𝑝𝑝 − 1)𝑟𝑟𝑏𝑏, the return attributable to 

systematic risk.  Figure 2 illustrates this decomposition on a graph. 

 

Figure 2 
Graphical Decomposition of Active Share 
 

 
 

 

 

 

 

 

 

 

 

This figure shows graphically how active share is decomposed and attributed between systematic and 
idiosyncratic risk.  Active Share is on the horizontal axis and Excess return in on the vertical axis.  The 
dotted line represents systematic deviations in benchmark relative beta and the solid line an example of the 
deviations of an example mutual fund.  It is evident that if a fund deviates from its benchmark exposure 
either by increasing or decreasing benchmark beta, large deviations in active share are possible. 

𝛼𝛼𝑝𝑝  , (𝛽𝛽𝑝𝑝 − 1)𝑟𝑟𝑏𝑏  �1 − 𝛽𝛽𝑝𝑝�
2 𝜎𝜎𝑏𝑏2

𝜎𝜎ℎ2
 

𝜎𝜎𝜀𝜀2

𝜎𝜎ℎ2
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IV. Data 

Following Cremers and Petajisto (2009), I use the universe of mutual funds for 

this study. Given the number of products available and the percentage of the total market 

capitalization managed in these portfolios, it is clear that the market is mostly comprised 

and therefore probably also driven by delegated managers, like mutual funds.  According 

to the Investment Company Institute7, as of December 2011 there were $12,968 billion 

invested in 16,506 registered investment companies.  The scope and breadth of external 

management strongly suggests that these externally managed portfolios make up a 

substantial, representative sample of the market.  Therefore, when attempting to analyze 

market pricing phenomena, it seems appropriate to use the cross section of mutual funds 

as a representative sample for the population of delegated investment managers.  

However, the sample if necessarily incomplete as hedge funds, pension funds, trusts, and 

separate accounts are also not trivial.  But, it should be representative.   

This paper relies on five major data sources, CRSP, Thomson Reuters, Petajisto, 

Compustat, and Morningstar.  First, return data on the set of mutual funds is required and 

obtained from CRSP.  When data on mutual fund holdings are needed, I use Thomson 

Reuters although this information is also available in CRSP.  The primary reason to use 

the holdings of mutual funds is to calculate Active Share.  However, I have defaulted to 

using the Active Share calculations already provided by Antti Petajisto on his website8 

because the list is relatively comprehensive.  This also follows other studies that have 

7 http://www.icifactbook.org/ 

8 http://www.petajisto.net/data.html 
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used the Active Share measure in research, e.g. Amihud and Goyenko (2013).  Another 

essential source of data used to calculate Active Share is index constituency.  Access to 

the S&P index constituents is available in Compustat.  To the extent possible, Active 

Shares were recalculated independently and confirmed for the three major S&P indices.  

The lack of availability for the remainder of the index constituencies is not a concern.  

Lastly, I use Morningstar to obtain index returns for all of the indices in the dataset.   

 To begin constructing the dataset, I started with the list of funds and statement 

dates provided by Petajisto on his website.  This list is then matched to CRSP and 

Compustat to obtain fund characteristics, returns, and risk parameters.  The list is 

matched with Morningstar to obtain index returns.  From the combined Morningstar and 

CRSP data, the relative risk parameters can be calculated.  After matching and 

calculating all of the relevant parameters, the data is filtered.  I first remove all funds that 

identify as an index fund or as an enhanced index fund.  The purpose of this study is to 

test active management and these funds by definition do not qualify.  Next, I filter out, 

somewhat arbitrarily, funds that have exceptionally strange characteristics.  Essentially 

this includes removing large outliers that look like incorrectly measured observations.  

Lastly, I filter out all funds that have Active Shares < 5%, or annualized tracking errors < 

0.1%, to account for closet indexers.  The final sample yields 61,857 fund-time 

observations.  The number of observations by time is summarized before the filter in 

Table A1.  All filters together, including removing self-identified index funds, reduced 

the dataset from an original matched 73,317 observations.         
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The final dataset is summarized in Table 1.  This table includes the summary 

statistics for all 61,857 observations in the dataset with active share statement dates 

ranging from 12/31/1990 through 09/30/2009.  The top two entries, activeshare_min and 

trackingerror_min, are the values as reported on Antti Petajisto's website at 

www.petajisto.net.  The remainder of the data points come in the following format: 

##mxPAR 

The number before each calculation, ##, represents the number of months, m, over which 

the calculation is made.  The x is stands for the time period of the calculation and equals 

either p, a, or c.  It signifies that the calculation is made either ex-ante, ex-post, or 

centered on the Active Share statement date.  The final PAR is the parameter under 

consideration.   

Beta is the portfolio’s benchmark relative beta,  

TE is the benchmark relative tracking error volatility,  

SE is the standard deviation of the regression error from market model regression, 

SB is the standard deviation of the benchmark, 

SP is the standard deviation of the Portfolio, 

SH is the standard deviation of the 100% long/short benchmark relative hedge, 

BAA is the benchmark adjusted alpha, 

ER is the excess return measured PR – BR, 

PR is the portfolio return, and 

BR is the benchmark return.     
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Table 1
Summary Statistics

Mean
Standard
Deviation 5th % 25th % 50th % 75th % 95th %

activeshare_min 0.7804 0.1529 0.4960 0.6770 0.8090 0.9100 0.9680
trackingerror_min 0.0661 0.0423 0.0221 0.0385 0.0558 0.0809 0.1464
12maBeta 0.9697 0.2298 0.6248 0.8447 0.9626 1.0804 1.3407
12maTE 0.0612 0.0435 0.0188 0.0334 0.0499 0.0750 0.1425
12maSE 0.0525 0.0355 0.0167 0.0293 0.0435 0.0646 0.1182
12maSB 0.1516 0.0731 0.0636 0.0925 0.1392 0.1915 0.3069
12maSP 0.1577 0.0803 0.0662 0.0993 0.1399 0.1942 0.3126
12maSH 0.0774 0.0509 0.0294 0.0452 0.0635 0.0931 0.1721
12mpBeta 0.9703 0.2240 0.6324 0.8498 0.9642 1.0767 1.3321
12mpTE 0.0601 0.0428 0.0185 0.0328 0.0490 0.0737 0.1393
12mpSE 0.0516 0.0351 0.0164 0.0288 0.0426 0.0635 0.1168
12mpSB 0.1551 0.0744 0.0654 0.0934 0.1430 0.1969 0.3136
12mpSP 0.1607 0.0806 0.0668 0.1010 0.1439 0.1995 0.3152
12mpSH 0.0758 0.0494 0.0293 0.0447 0.0624 0.0909 0.1675
6mpBeta 0.9721 0.2898 0.5514 0.8212 0.9596 1.1018 1.4357
6mpTE 0.0551 0.0428 0.0146 0.0281 0.0439 0.0680 0.1334
6mpSE 0.0438 0.0336 0.0113 0.0224 0.0351 0.0548 0.1051
6mpSB 0.1418 0.0755 0.0558 0.0868 0.1237 0.1744 0.3092
6mpSP 0.1468 0.0824 0.0549 0.0902 0.1271 0.1793 0.3112
6mpSH 0.0694 0.0497 0.0224 0.0385 0.0564 0.0844 0.1595

12maBAA 0.18% 10.27% -13.90% -4.43% -0.27% 4.08% 15.16%
12maER 0.01% 10.86% -14.19% -4.92% -0.67% 3.75% 15.89%
12maBR 7.52% 21.18% -32.29% -4.68% 10.86% 21.13% 38.75%
12maPR 7.53% 23.02% -33.54% -4.77% 9.92% 20.39% 40.86%
1mpER -0.12% 2.26% -3.59% -1.15% -0.11% 0.91% 3.32%
1mpBR 0.61% 5.46% -8.37% -2.45% 1.16% 4.06% 8.37%
1mpPR 0.49% 5.66% -8.91% -2.57% 0.94% 3.91% 8.72%
3mpER -0.07% 4.17% -6.15% -1.96% -0.18% 1.66% 6.23%
3mpBR 1.92% 10.20% -17.41% -3.14% 2.77% 7.49% 17.58%
3mpPR 1.85% 10.80% -17.78% -3.40% 2.51% 7.85% 18.14%
6mpBAA -0.03% 6.46% -9.54% -2.95% -0.11% 2.76% 9.42%
6mpER -0.15% 6.36% -9.07% -3.02% -0.37% 2.35% 9.20%
6mpBR 3.99% 14.75% -26.93% -3.48% 5.97% 11.94% 25.45%
6mpPR 3.84% 15.71% -26.78% -3.78% 5.59% 12.22% 26.30%
12mpBAA -0.02% 9.62% -13.36% -4.43% -0.40% 3.79% 14.04%
12mpER -0.33% 10.18% -14.14% -4.96% -0.83% 3.43% 14.52%
12mpBR 7.99% 22.02% -34.28% -5.38% 11.04% 21.48% 41.77%
12mpPR 7.67% 23.51% -34.65% -5.13% 9.97% 20.66% 43.65%

Panel A: Risk Statistics

Panel B: Performance Statistics

This table includes the summary statistics for all 61,857 observations in the dataset with active share statement dates
ranging from 12/31/1990 through 09/30/2009. The top two entries, activeshare_min and trackingerror_min, are the
values as reported on Antti Petajisto's website at www.petajisto.net. The remainder of the data comes from CRSP and
Morningstar and matched with the Petajisto data. The number before each calculation represents the number of
months over which the calculation is made and the p, a, or c represent whether the calculation was made ex-ante, ex-
post, or centered on the Active Share statement date.  T-statistics are in parentheses.
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The standard deviation risk statistics are all annualized but the return numbers are raw 

returns over the corresponding number of months. 

The average Active Share in the sample is 78.04%.  This is not particularly 

skewed except for the extreme left tail.  The sample average tracking error, depending on 

how it is calculated, is around 6% and this number is highly positively skewed.  The 

average value of the implied hedge volatility is around 7.5% and this number is also 

highly skewed.  The average Beta in the sample is less than 1 at 0.9703.  In the return 

statistics, the negative average excess returns reflect the expectation that the average 

manager underperforms the benchmark by expenses.  In particular, looking at 12mpER, 

this average underperformance seems to be about 0.33%.  The distribution of ER and 

BAA seems mostly symmetric.   

 Table 2 includes correlation statistics.  The first thing to note is that the original 

measure of trackingerror_min (which is actually the volatility of the regression error, an 

SE measure) from Cremers and Petajisto (2009) is highly correlated to both my measures 

TE and SE from the 12ma and 12mp period.  I also have these statistics calculated for the 

12mc period and the centered period has even higher correlations, as should be expected. 

The other highlighted cells represent the correlation between the SE and TE calculation.  

Recall that these two measures are highly related, particularly when Beta is close to 1.  

The boxes are around the correlations that would signify persistence in the risk measures.  

The 12ma period represents the 12 months immediately preceding the 12mp period.  

These correlations are very high and although I haven’t provided any robust evidence for 

this persistence, it seems initially likely.  The SH measure is substantially higher in 
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correlation when compared to the tracking error numbers than is Active Share.  Active 

Share still is rather correlated but to a lesser degree. 

 

 

 

 

 

 

 

Table 2
Correlation Table for Risk Statistics
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activeshare_min 1 0.4022 -0.0324 0.3757 0.3853 0.1021 -0.0497 0.3956 0.4056 0.1294
trackingerror_min 0.4022 1 0.0139 0.8267 0.7701 0.7560 0.0090 0.6736 0.6041 0.5989
12maBeta -0.0324 0.0139 1 0.0536 0.1364 0.0627 0.4899 0.0606 0.1172 0.0746
12maTE 0.3757 0.8267 0.0536 1 0.9323 0.9384 0.0683 0.6570 0.5977 0.5851
12maSE 0.3853 0.7701 0.1364 0.9323 1 0.8667 0.1286 0.6519 0.6326 0.5769
12maSH 0.1021 0.7560 0.0627 0.9384 0.8667 1 0.0868 0.5713 0.5054 0.6006
12mpBeta -0.0497 0.0090 0.4899 0.0683 0.1286 0.0868 1 0.0446 0.1154 0.0637
12mpTE 0.3956 0.6736 0.0606 0.6570 0.6519 0.5713 0.0446 1 0.9339 0.9398
12mpSE 0.4056 0.6041 0.1172 0.5977 0.6326 0.5054 0.1154 0.9339 1 0.8676
12mpSH 0.1294 0.5989 0.0746 0.5851 0.5769 0.6006 0.0637 0.9398 0.8676 1

This table includes correlation statistics for all 61,857 observations in the dataset with active share statement dates
ranging from 12/31/1990 through 09/30/2009. The top two entries, activeshare_min and trackingerror_min, are the
values as reported on Antti Petajisto's website at www.petajisto.net. The remainder of the data comes from CRSP and
Morningstar and matched with the Petajisto data. The highlighted cells are emphasized to identify consistency with
two of the concerns with this paper. First, Cremer and Petajisto's calculation of tracking error, although slightly
different than the ones in this paper, have very high correlations with my calculations. Also, the correlation between
tracking error and regression standard error is extremely high. The boxes highlight the persistence of the risk
parameters from one period to the next. All of the risk statistics seem, at least in correlation, highly persistent. T-
statistics are in parentheses.
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In general, this final dataset seems representative of a reasonable sample of 

actively managed portfolios.  It is also reflective of the samples from other papers such as 

Kacperczyk, Sialm, and Zheng (2008), Amihud and Goyenko (2013), and of course 

Cremers and Petajisto (2009).  Given the performance statistics, at least on the surface, it 

doesn’t seem that the data is biased by survivorship and the distribution of the risk 

parameters are within reasonable thresholds for magnitude and distribution.  

 

V.  Date Analysis and Model Justification  

V.A The Determinants of Active Share 

 A major component and conclusion of Cremers and Petajisto (2009) is that a 

substantial portion of Active Share is described by tracking error.  As shown in section 

III, there is a fundamental and mathematically factual relationship that makes this 

relationship true.  In fact, the expression: 

 TE = AS σH (19) 

is an identity, at least for every individual fund/time observation where the difference 

between the two parameters is merely the volatility of the implied hedge.   

 This identity doesn’t make the cross sectional regression of one component on the 

other irrelevant however.  Take for instance the average value of SH from table 1, 

0.0774.  When regressing Tracking error as the independent variable on Active Share as 

the dependent variable should yield a cross sectional average regression parameter 

reflective of the inverse of the average SH, about 12.9.  In table 3, this regression, 

specification (2), yields a parameter of 1.3205 suggesting that there is some significant  
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Table 3
The Determinants of Active Share and the Volatility of the Implied Hedge

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept N/A 0.6996 N/A -0.0222 N/A 0.0103 N/A -0.0009
(711.2203) (26.3247) (84.0938) (8.3742)

12maTE 8.9144 1.3205 1.2085 1.0971
(387.9639) (100.8285) (1216.7348) (675.2632)

activeshare_min 0.0795 0.1069
(387.9639) (100.8285)

12maSH 0.7943 0.8026
(1216.7348) (675.2632)

N 61857 61857 61857 61857 61857 61857 61857 61857
R2 0.7087 0.1565 0.7087 0.1565 0.9599 0.8805 0.9599 0.8805

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept N/A 0.6933 N/A -0.0173 N/A 0.0122 N/A 0.0057
(684.5689) (25.2686) (67.2289) (43.6280)

12maSE 10.7247 1.6598 1.4020 1.2420
(409.0891) (103.8412) (840.8160) (432.1168)

activeshare_min 0.0681 0.0894
(409.0891) (103.8412)

12maSH 0.6559 0.6048
(840.8160) (432.1168)

N 61857 61857 61857 61857 61857 61857 61857 61857
R2 0.7301 0.1484 0.7301 0.1484 0.9195 0.7512 0.9195 0.7512

This table includes all observations with active share statement dates ranging from 12/31/1990 through 09/30/2009.
This table mirrors the active share determination table from Cremers and Petajisto (2009) with the addition of
regressing on the implied hedge volatility. Additionally, recognizing the functional relationship between Active
Share, Tracking Error Volatility, and the Implied Hedge Volatility, this analysis flips the dependent and independent
variables as well as regressing with a zero constant. Given the theoretical relationship between these three
parameters, these simple regressions give insight into whether these parameters can be measured cross-sectionally.
T-statistics are in parentheses.

activeshare_min 12maTE 12maTE

Panel A: Regressions with Tracking Error Volatility

Panel B: Regressions with the Regression Standard Error

12maSH

activeshare_min 12maSE 12maSH 12maSE
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misfit or misspecification in the model.  However, when forcing the intercept to 0, the 

parameter jumps to 8.8144, more in line with our expectation about the theoretical value 

of this parameter.   

 Rather than regress in this direction, the theoretical model suggests that perhaps 

we should regress SE on TE as in specifications (3) and (4).  Note that the value of the 

parameter in specification (3) is 0.0795, which is pretty close to the average value from 

table 1.  This is repeated for SH and TE, attempting to estimate Active Share in the cross 

section and the values are 0.7943 in specification (7) and 0.8026 in specification (8).  

Compared to an average value of 0.7804 in table 1, this is incredibly accurate.  Statistical 

tests to show that the cross-sectional regressed values are different than the averages are 

highly significant but one cannot argue that they are at least in the same economic 

ballpark.  The results of these regressions are highly consistent with the construction from 

section 3 of this essay.  To some extent, this is not surprising given the results from 

Cremers and Petajisto (2009), but the tests here are more theoretically appropriate for 

measuring determination.   

 

V.B The Pricing of Active Share in Relative Performance 

 One of the major conclusions of Cremers and Petajisto (2009) is that Active Share 

is predictive of excess performance.  Additionally, tracking error seems not particularly 

predictive.  The functional relationship in this paper shows that if Active Share has 

predictive power and tracking error does not, then the implied hedge volatility must also 

have predictive power, and in the opposite direction.   
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Table 4
Predictive Regressions of the 6 Month Benchmark Adjusted Alphas Following Active Share Statement Dates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept -0.0117 -0.0005 -0.0117 -0.0017 -0.0014 0.0248 -0.0033 0.0027 -0.00565 0.0029
(8.6629) (1.1552) (8.4676) (3.7075) (3.1215) (22.0710) (5.5453) (4.6701) (2.1597) (0.9179)

activeshare_min 0.0146 0.0147 0.0093 -0.0022
(8.6190) (8.5941) (5.0018) (0.7344)

12maSH 0.0035 -0.0010 -0.1181
(0.6832) (0.1973) (4.9826)

12maTE 0.0226 -0.0865 0.0531
(3.7917) (4.8750) (1.6009)

12maSE 0.0223 0.2043 0.2118
(3.0483) (8.5577) (8.8568)

12maBeta -0.0258 -0.0052 -0.0047
(22.9358) (2.3111) (2.0700)

12maSB 0.0200 0.1569 0.1627
(5.6432) (11.2582) (11.6374)

12maSP -0.0187 -0.1651 -0.1699
(5.7829) (10.9828) (11.2800)

N 61857 61857 61857 61857 61857 61857 61857 61857 61857 61857
R2 0.0012 0.0000 0.0012 0.0002 0.0002 0.0084 0.0005 0.0005 0.0118 0.0121

6mpBAA

The dependent variable in these regressions is the 6 month trailing benchmark adjusted alpha, following Active Share
statement dates. All of the independent variables are calculated over the 12 preceding months, except for Active
Share which is a stock variable, and thus provide a look at the predictive nature of the risk parameters. These tests
are full sample, cross-sectional, time-series regressions but are filtered as per the directions in Section 4. T-statistics
are in parentheses.  
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Table 4 is mostly reflective of the data used for these tests in Cremers and 

Petajisto (2009).  The dependent variable is 6 month trailing benchmark adjusted alphas.  

Active Share is highly significant in predicting 6 month trailing benchmark adjusted 

alpha.  For every 1% increase in active share you get about 1.5 bps in excess performance 

over the next 6 months.  Other risk measures are included for robustness.  In fact, it 

seems that the SH is completely insignificant.  In specification (9), Active Share holds its 

level of significance even in the presence of many other potential related risk factors.  

What is surprising is that in specification (10), when SH is reintroduced into the 

regression, is cannibalizes all of the explanatory power of both TE and Active Share.  It 

has a significant effect of -0.1181 thus for a 1% increase in SH, you lose about 12bps of 

risk-adjusted performance for the trailing 6 month period. 

 Table 5 reproduces this analysis using only the trailing 1 month returns.  

Additionally, I have removed the risk-adjusted component of the relative return and this 

table represents only the raw excess return, PR – BR.  Referring to specification (10) 

again, over the following 1 month, for a 1% increase in SH you lose 2.1bps of excess 

performance, which is non-coincidently about 12bps / 6.  Moving left in the table doesn’t 

bode well for Active Share’s significance.  For the trailing 1 month, Active Share does 

particularly poorly explaining the excess performance and SH seems to work well in 

every specification in which it is included.  It is possible that depending on the period in 

which you are interested, either Active Share or SH could both be useful in predicting 

excess return. 
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Table 5
Predictive Regressions of the 1 Month Excess Return Following Active Share Statement Dates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intercept -0.0010 -0.0005 -0.0005 -0.0007 -0.0008 -0.0059 -0.0001 -0.0006 -0.00169 -0.00012
(2.0179) (3.2537) (1.0565) (4.3045) (4.9135) (14.6774) (0.6399) (2.9714) (1.8324) (0.1082)

activeshare_min -0.0003 0.0000 0.0006 -0.0015
(0.5660) (0.0662) (0.9106) (1.4554)

12maSH -0.0087 -0.0087 -0.0217
(4.9001) (4.8678) (2.6057)

12maTE -0.0088 -0.0097 0.0160
(4.2307) (1.5494) (1.3724)

12maSE -0.0080 0.0032 0.0046
(3.1197) (0.3831) (0.5468)

12maBeta 0.0048 0.0011 0.0012
(11.9563) (1.4456) (1.5690)

12maSB -0.0071 -0.0080 -0.0069
(5.7477) (1.6336) (1.4103)

12maSP -0.0039 0.0034 0.0025
(3.4830) (0.6348) (0.4677)

N 61857 61857 61857 61857 61857 61857 61857 61857 61857 61857
R2 0.0000 0.0004 0.0004 0.0003 0.0002 0.0023 0.0005 0.0002 0.0009 0.0010

1mpER

The dependent variable in these regressions is the 1 month trailing benchmark excess return, calculated PR - BR,
following Active Share statement dates. All of the independent variables are calculated over the 12 preceding
months, except for Active Share which is a stock variable, and thus provide a look at the predictive nature of the risk
parameters. These tests are full sample, cross-sectional, time-series regressions but are filtered as per the directions
in Section 4.  T-statistics are in parentheses.  
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 Active Share does not seem to perform very when the metric of interest is non-

risk adjusted excess performance.  Table 6 regresses the major risk parameters of interest, 

Active Share, SH, TE, and Beta, on trailing excess returns for 1, 3, 6, and 12 months.  SH 

seems to predict excess performance pretty well across every specification and Active 

share falters, except in the specifications of 6mpER and 12mpER when SH is not 

included in the regression.  It seems that in the presence of SH and TE, TE is 

cannibalizing the significance of Active Share.  This should not be surprising given the 

functional relationship between these variables.  In general, it can be stated that SH tends 

to perform better in the short term and AS in the long term.  I suspect this is due to Active 

Share being more highly persistent that SH.  However, in the presence of TE and SH, 

Active Share seems to lose its role as a predictor of excess return.  

 Rather than considering different time periods of return, Table 7 looks at differing 

measures of absolute and excess performance.  Controlling for TE and Beta, SH gives 

predictable and significant results and those results are meaningful for both ER and BAA.  

Active Share’s results are significant but not as strong and as I have shown before, mixed 

when controlling for SH.  Given this evidence, Active Share is a very useful measure for 

determining the potential for skill in active management, meaning that it is predictive of 

excess returns.  However, when considering SH, Active Share’s contribution is 

overshadowed slightly and SH seems to be the driving force behind the pricing power. 

 Another interesting fact in Table 7 is the relationship between these risk 

parameters and both Benchmark and Portfolio Return, PR and BR.  High Active Share 

seems to signify high future market performance, and symmetrically, low SH also seems  
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to signify high future market performance.  There could potentially be an explanation 

behind the momentum factor of Carhart (1997) and Jagadeesh and Titman (1993) related 

to the idea of aggregate Active Share.  Any persistent factor over time could be a 

candidate.     

  

V.C Alpha sorts as a Robustness Check 

 A major component of Cremers and Petajisto (2009) is that low Active Share 

portfolios tend to underperform on a risk-adjusted basis in addition to high Active Share 

funds outperforming.  Table 8 reaffirms this result.  Low active share funds tend to 

underperform on the trailing 6 months by 0.31% in raw returns and by 0.22% on a risk-

adjusted basis.  And, high Active Share funds tend to outperform by 0.26% in raw excess 

return and by 0.58% in risk adjusted returns.  This pattern for the implied hedge volatility 

is much less obvious.  From quintiles 1-5 in SH the relationship seems to be far from 

monotonic.  When broken down by Active Share quintile, the relationship seems in the 

right direction except in the highest Active Share quintile.  This is the case for both the 

benchmark excess returns and for the benchmark adjusted alphas.  Thus, although the 

Active Share story seems straightforward, there is obviously more going on with SH than 

can be described in a simple cross-sectional regression. 

 Another concern, particularly given the relationship between both Active Share 

and SH to beta, is whether these measures seem to be biased by systematic risk.  For 

Active Share, this has been partially answered by the analysis done in Cremers and 

Petajisto (2009) since they do alpha sorting on risk-adjusted performance for benchmark  
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Table 8
6 Month Equal Weighted Alphas Double Sorted on Active Share and the Volatility of the Implied Hedge

1 2 3 4 5 All 5 - 1

5 -0.26% -0.30% -0.13% 0.04% 1.26% 0.26% 1.51%
(6.6853) (6.8698) (2.4644) (0.5985) (10.6056) (3.2219) (12.1504)

4 -0.04% 0.01% 0.15% -0.12% -0.33% -0.09% -0.29%
(1.1334) (0.1656) (2.5945) (1.7450) (3.4381) (1.4236) (2.8197)

3 -0.11% -0.07% -0.37% -0.61% 0.02% -0.36% 0.13%
(3.3048) (1.7023) (7.5969) (10.4755) (0.2389) (6.5541) (1.5092)

2 -0.12% -0.01% -0.48% -0.27% -0.15% -0.26% -0.04%
(4.0995) (0.2474) (12.5470) (5.6447) (2.3537) (6.1067) (0.5318)

1 -0.12% -0.33% -0.28% -0.18% -0.25% -0.31% -0.13%
(5.5313) (13.5681) (9.8073) (4.6839) (5.0863) (9.5137) (2.4514)

All -0.31% -0.39% -0.42% -0.24% 0.60% -0.15% 0.91%
(26.3971) (25.0229) (20.7910) (9.1672) (14.0312) (5.9159) (20.5869)

5 - 1 -0.14% 0.03% 0.15% 0.22% 1.50% 0.57%
(3.1698) (0.6132) (2.4809) (2.6986) (11.7433) (6.6022)

5 0.12% 0.22% 0.41% 0.56% 1.11% 0.58% 0.98%
(2.7684) (4.4262) (6.9113) (7.0649) (9.4254) (7.1003) (7.8247)

4 -0.04% 0.01% 0.15% -0.12% -0.33% -0.07% -0.29%
(1.1334) (0.1656) (2.5945) (1.7450) (3.4381) (1.1020) (2.8197)

3 -0.11% -0.07% -0.37% -0.61% 0.02% -0.24% 0.13%
(3.3048) (1.7023) (7.5969) (10.4755) (0.2389) (4.3933) (1.5092)

2 -0.12% -0.01% -0.48% -0.27% -0.15% -0.20% -0.04%
(4.0995) (0.2474) (12.5470) (5.6447) (2.3537) (4.6422) (0.5318)

1 -0.12% -0.33% -0.28% -0.18% -0.25% -0.22% -0.13%
(5.5313) (13.5681) (9.8073) (4.6839) (5.0863) (6.7748) (2.4514)

All -0.08% -0.04% -0.10% -0.09% 0.17% -0.03% 0.26%
(6.0322) (2.2235) (4.3521) (3.3213) (4.2937) (1.0643) (6.0222)

5 - 1 0.24% 0.55% 0.69% 0.74% 1.35% 0.80%
(4.8774) (9.8721) (10.5060) (8.3976) (10.6555) (9.0932)

Funds are sorted by two dimensions of risk attributable to active management. The measures of active management
are computed as defined in Section 4. Fund returns are NAV returns are the raw returns for the 6 month period
immediately following the Active Share statement date.  T-statistics are in parentheses.
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Table 9
6 Month Equal Weighted Alphas Double Sorted on Active Share and Beta

1 2 3 4 5 All 5 - 1

5 0.07% 0.07% 0.43% 0.82% 0.20% 0.26% 0.13%
(0.9326) (1.0430) (5.9968) (10.0299) (2.2044) (3.2219) (1.0673)

4 0.54% 0.04% 0.09% 0.04% -0.87% -0.09% -1.41%
(8.8340) (0.7450) (1.4614) (0.5741) (10.6901) (1.4236) (13.8540)

3 0.15% -0.37% -0.23% -0.21% -0.50% -0.36% -0.65%
(2.6082) (7.5898) (5.0790) (3.8932) (8.0294) (6.5541) (7.7187)

2 0.17% -0.17% -0.30% -0.34% -0.28% -0.26% -0.45%
(3.9224) (4.6717) (7.4905) (7.7039) (5.7251) (6.1067) (6.8800)

1 0.33% -0.11% -0.33% -0.25% -0.52% -0.31% -0.84%
(8.2537) (3.6413) (10.9295) (8.4882) (12.6067) (9.5137) (14.8056)

All -0.24% -0.51% -0.29% 0.14% 0.16% -0.15% 0.40%
(8.2936) (23.7931) (14.5308) (6.0780) (4.9511) (5.9159) (9.2700)

5 - 1 -0.25% 0.18% 0.75% 1.07% 0.72% 0.57%
(2.9111) (2.3946) (9.7590) (12.3312) (7.2051) (6.6022)

5 1.51% 0.87% 0.71% 0.60% -0.99% 0.58% -2.50%
(19.5585) (11.7536) (10.0302) (7.1088) (10.2921) (7.1003) (20.2896)

4 0.54% 0.04% 0.09% 0.04% -0.87% -0.07% -1.41%
(8.8340) (0.7450) (1.4614) (0.5741) (10.6901) (1.1020) (13.8540)

3 0.15% -0.37% -0.23% -0.21% -0.50% -0.24% -0.65%
(2.6082) (7.5898) (5.0790) (3.8932) (8.0294) (4.3933) (7.7187)

2 0.17% -0.17% -0.30% -0.34% -0.28% -0.20% -0.45%
(3.9224) (4.6717) (7.4905) (7.7039) (5.7251) (4.6422) (6.8800)

1 0.33% -0.11% -0.33% -0.25% -0.52% -0.22% -0.84%
(8.2537) (3.6413) (10.9295) (8.4882) (12.6067) (6.7748) (14.8056)

All 0.68% 0.03% -0.10% -0.09% -0.67% -0.03% -1.35%
(24.7286) (1.3490) (4.6281) (3.6688) (20.5498) (1.0643) (31.6825)

5 - 1 1.19% 0.98% 1.03% 0.86% -0.47% 0.80%
(13.6588) (12.2603) (13.4943) (9.5255) (4.5017) (9.0932)

Funds are sorted by two dimensions of risk attributable to active management. The measures of active management
are computed as defined in Section 4. Fund returns are NAV returns are the raw returns for the 6 month period
immediately following the Active Share statement date.  T-statistics are in parentheses.
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Table 10
6 Month Equal Weighted Alphas Double Sorted on the Volatility of the Implied Hedge and Beta

1 2 3 4 5 All 5 - 1

5 0.65% 0.34% 0.37% 1.81% 0.28% 0.60% -0.36%
(7.1027) (3.8869) (3.9835) (19.0482) (2.8251) (6.2750) (2.6593)

4 0.15% -0.14% 0.11% 0.00% -0.44% -0.24% -0.58%
(2.5458) (2.5074) (1.8033) (0.0734) (6.4862) (4.0997) (6.5731)

3 0.68% -0.28% -0.14% -0.23% -0.48% -0.42% -1.16%
(15.0970) (5.6859) (2.8825) (4.3533) (9.7164) (9.2980) (17.3396)

2 0.69% 0.10% -0.26% -0.28% -0.37% -0.39% -1.07%
(18.3362) (2.7368) (6.7271) (6.8842) (8.8986) (11.1906) (18.8925)

1 0.48% 0.13% -0.16% -0.25% -0.31% -0.31% -0.79%
(14.6187) (4.1961) (5.4312) (8.6925) (8.6624) (11.8052) (16.3100)

All -0.24% -0.51% -0.29% 0.14% 0.16% -0.15% 0.40%
(8.2936) (23.7931) (14.5308) (6.0780) (4.9511) (5.9159) (9.2700)

5 - 1 0.16% 0.21% 0.53% 2.07% 0.59% 0.91%
(1.6809) (2.2068) (5.4525) (20.7589) (5.5339) (9.2068)

5 1.06% 0.55% 0.42% 0.85% -1.12% 0.17% -2.18%
(13.0013) (6.3321) (4.8643) (9.1688) (11.5103) (1.9202) (17.1757)

4 0.15% -0.14% 0.11% 0.00% -0.44% -0.09% -0.58%
(2.5458) (2.5074) (1.8033) (0.0734) (6.4862) (1.4853) (6.5731)

3 0.68% -0.28% -0.14% -0.23% -0.48% -0.10% -1.16%
(15.0970) (5.6859) (2.8825) (4.3533) (9.7164) (1.9463) (17.3396)

2 0.69% 0.10% -0.26% -0.28% -0.37% -0.04% -1.07%
(18.3362) (2.7368) (6.7271) (6.8842) (8.8986) (0.9944) (18.8925)

1 0.48% 0.13% -0.16% -0.25% -0.31% -0.08% -0.79%
(14.6187) (4.1961) (5.4312) (8.6925) (8.6624) (2.6977) (16.3100)

All 0.68% 0.03% -0.10% -0.09% -0.67% -0.03% -1.35%
(24.7286) (1.3490) (4.6281) (3.6688) (20.5498) (1.0643) (31.6825)

5 - 1 0.58% 0.42% 0.58% 1.10% -0.81% 0.26%
(6.5504) (4.5043) (6.3804) (11.3623) (7.8449) (2.6932)

Beta Quintiles

Panel A: Benchmark Excess Returns

Panel B: Benchmark Adjusted Alphas

Funds are sorted by two dimensions of risk attributable to active management. The measures of active management
are computed as defined in Section 4. Fund returns are NAV returns are the raw returns for the 6 month period
immediately following the Active Share statement date.  T-statistics are in parentheses.
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relative Alphas and four factor alphas9.  However, for comparison refer to Table 9.  This 

is a double sort of Active Share and Beta.  This table attempts to answer the question 

about whether active share and beta have a relationship.  Except for a few exceptions, 

Active Share seems to retain its property of outperformance in the highest quintile and 

underperformance in the lowest quintile under both specifications of the relative 

performance.  Beta on the other hand is particularly mixed.  As we would expect, in raw 

excess return, high beta outperforms low beta but in benchmark adjusted alphas, is 

strongly significantly underperforms.  This is consistent with the cross sectional 

regressions from the previous part. 

 Table 10 is a double sort of implied hedge volatility on Beta.  Just as with the 

sorts of SH and Active Share, SH seems to behave rather strangely in the highest quintile.  

Whereas it behaves as expected in the lower 4 quintiles, the highest quintile SH actually 

outperforms rather than underperforms.  Beta’s characteristics are similar to the results 

from Table 9 in that the lowest quintile outperforms the highest quintile all around.  In 

aggregate, this analysis is consistent with the regressions but the strange result in the 5th 

SH quintile probably deserves further consideration. 

  

VI.  Conclusion 

 Active Share was introduced to the academic literature by Cremers and Petajisto 

(2009).  Active Share takes a difficult functional form and they show that it is predictive 

of excess return.  In this paper, I re-parameterized Active Share into a more familiar and 

9 See Carhart (1997) and Fama and French (1993) 
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usable analytical form.  This form includes the metrics we are accustomed to analyzing in 

portfolio analysis.  I compared and contrasted the predictive power of Active Share with 

its new counterpart, the implied hedge volatility.  This attribution shows that Active 

Share and the implied hedge volatility are reflections of each other around tracking error.  

And, if one has predictive power in excess return, the other probably does as well.  I 

follow this theoretical attribution and re-parameterization with empirical analysis to both 

reaffirm the predictive effects of Active Share and to compare the predictive effects of 

Active Share with that of the implied hedge volatility.  Active Share dominates in 

benchmark adjusted alpha style relative return prediction but the implied hedge volatility 

tends to dominate when looking at raw excess returns.  Additionally, as you extend the 

time period of estimation, Active Share’s predictive power strengthens.  However, the 

implied hedge volatility is significant throughout all time periods (but perhaps diminishes 

around 12 months). 
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CHAPTER 3. TEV OPTIMIZATION AND UTILITY 

 

I.  Introduction 

Delegated contracting in investment management is the most popular and 

predominant form of management in the modern investment industry.  This delegated 

portfolio management creates a classical incentive problem where the additional 

incentives that affect the agent, the delegated manager, are not completely consistent with 

the incentives of principal.  It is generally accepted and consistently asserted through 

theory that this delegated incentive leads to sub-optimal, less-good, portfolios.  This is 

particularly true when comparing the portfolio that the principal would build, given the 

same level of expertise and opportunity, to the portfolio the agent would build given the 

delegated incentives.  If the portfolio choice problem is thought of as an optimization 

problem, then it is not difficult to imagine that the delegated incentives create binding 

constraints that can at best generate portfolios that are equally preferred to the 

unconstrained choice.  Most likely the constraints will lead to sub-optimal portfolios.  

This sub-optimality is often considered as borderline irrational in the literature and is 

used as an argument either for passive investment management or for the inefficiency of 

using benchmarks portfolios as performance measures.  However, given the 

pervasiveness of delegated contracting in the investment industry, it is difficult to think 

that so many professionals have it wrong.  The more important question is, “Do the 

predominant delegated incentives lead to better portfolios than the principals could build 

themselves since they have less skill and opportunity?”       
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 Portfolio theory and asset pricing were developed under the assumption that the 

agent in the delegated relationship is a perfect agent whose incentives are perfectly 

aligned with those of the principal.  Seminal work such as Markowitz (1952), Sharpe 

(1964), and Lintner (1965) paved the path for most modern investment research but like 

most foundational research, simplifying assumptions are made that potentially distort 

reality.  It is evident that researchers and practitioners alike were concerned with the 

delegated incentive problem from the early life of investment theory but not many had 

done work critiquing how the relative incentive affected the theoretical models.  An early 

example of an influential paper that discusses the delegated portfolio management 

situation in depth is Treynor and Black (1973).  Although this paper is much more about 

reconciling inefficiency in markets, exploited through security selection, with an 

equilibrium look at an efficient market, the structure of how researchers approach the 

delegated incentive problem derives from Treynor and Black’s approach in considering 

security selection versus the market portfolio, a benchmark.         

 One of the earliest criticisms and direct recognitions of the unrepresentativeness 

of Markowitz mean-variance space and subsequently the CAPM came from Professor 

Sharpe himself in Sharpe (1981).  Sharpe hypothesizes that it is highly unlikely that 

mean-variance efficiency can be obtained in a decentralized portfolio management setting 

where the investment decision-making responsibilities are delegated to an agent, in 

particular multiple agents.  He proposes the foundation of a delegated incentive problem 

in multiple external agents and is skeptical of an optimal solution.  Elton and Gruber 

(2004) solve the problem, albeit with some very narrow constraints, suggesting that 
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delegated portfolio management could reach optimality.  However, vanBisburgen, 

Brandt, and Koijen (2008) revisits the problem relaxing the assumption about the 

certainty of the agents’ risk appetite and concludes that serious inefficiency exists without 

this assumption.  Blake et. al. (2013) uses the BBK framework and applies it to the 

delegated relationships in the pension industry and, among many other things, shows that 

the delegated incentive is pervasive in professional investment management. 

 Although Sharpe (1981) may have motivated the study of delegated portfolio 

management, another seminal paper in the area is Bhattacharya and Pfleiderer (1985).  

This paper set the stage for studying the delegated incentive as a principal/agent problem.  

In this paper they model a utility relationship between the principal and the agent.  Their 

model implies the same conclusions of the other research, that it is unlikely that the 

delegation can reach optimality in utility.  A direct follow-up to this work, Admati and 

Pfleiderer (1997), assumes that the motivating factor behind the delegated incentive 

involves a conditional optimization and a benchmark that is the solution to the Markowitz 

optimization problem given the limited set of information.  Their conclusion is again 

consistent with the other literature on the subject; the conditional optimization leads to 

necessary sub-optimality in portfolio choice.      

 This is the same conclusion reached in Roll (1992) albeit by a slightly different 

construction.  Roll builds a framework much more closely related to Markowitz (1952) 

but instead of investment managers optimizing in mean/variance space, they optimize in 

mean and tracking error variance, the relative variance.  This leads to a frontier, the TEV 

(Tracking Error Volatility) frontier that passes through the benchmark portfolio.  The 
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dependence on a benchmark as a relative incentive is the connection between Admati and 

Pfleiderer (1997) and Roll (1992).  The overriding implication of Roll’s construction is 

that agents optimize utility in mean and tracking error volatility, not in mean and 

variance.  If we assume that the principal derives utility in mean-variance space and that 

the relative incentive causes the delegated agent to derive utility in mean-TEV space, 

then the broad implication of Roll’s TEV frontier optimization is that we need to study 

the transformation of the agent’s utility from a relative optimization to the principal’s 

utility in absolute optimization.   

If, for example, we assume that the portfolio used to benchmark the external 

manager is the principal’s best option, then we can consider the principal’s utility curve 

going through that benchmark as the highest utility the principal can obtain given his 

information.  The delegation to an external manager, as long as the principal’s utility 

curve is not tangent to his opportunity set, the TEV frontier, at the benchmark, 

necessarily has a utility increasing deviation for the principal as long as the agent has 

better information or more skill than the principal and proper constraints are applied.  The 

contribution of this essay is in directly extending Roll’s framework by recognizing that 

the relative optimization problem can produce higher utility for the principal.  Although it 

is true that the principal, given all the information and skill of the agent, would build a 

different and better portfolio, except for a very specific and unlikely case, the agent can 

still create higher utility for the principal than the default benchmark, even given the 

inefficiency of relative optimization. 

60 
 



The closest application of a utility problem directly to Roll’s TEV frontier is in 

Bertrand (2010).  In this paper he considers the problem of a fixed risk aversion 

constraint in mean/variance and its ability to generate preferred portfolios.  My 

assumption is slightly different that Bertrand’s in that managers cannot, in my 

framework, be constrained on risk aversion in mean and variance but only in risk 

aversion in mean and TEV.  Although these spaces are related, they are different enough 

that they lead to very different conclusions.  Based on my assumptions, Bertrand’s iso-

risk aversion curves are the path that a principal would like to follow, not the path the 

delegated manager actually follows.  In section II, I look at the space of mean-TEV and 

translate it back to mean-variance.  It is a direct application of Roll’s construction with a 

relative utility overlay.  The path an unconstrained relative optimizer would follow is far 

inferior to the efficient frontier and equivalent to the TEV frontier at the agent’s portfolio 

choice given changes in the agent’s risk aversion level.  However it is still likely that this 

path increases utility for the principal, at least over some controllable range of 

possibilities.  Section III considers the relationship of principal utility in the space of 

mean and variance given the principal’s best alternative, investing in the benchmark, to 

the TEV frontier in mean-variance.  I show that the delegated manager can almost 

universally increase the principal’s utility. 

Another important paper that stems directly from Roll (1992) is Jorion (2003), in 

which Jorion considers the frontier in mean variance space given a constraint to tracking 

error variance.  This is an important problem in practice because in examples of real 

world delegated investment management, oftentimes external managers are constrained 
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by a tracking error bound.  In a similar fashion to Roll, Jorion concludes that the tracking 

error bound most likely incentivizes agents to take more variance than the benchmark in 

portfolio selection and that this constraint should be used with caution when applied to 

external managers.  Using my relative utility framework, I show in section IV of this 

paper that when given only a tracking error constraint, principals can control the risk 

level of the external manager to guarantee that the portfolio selected by an agent will 

increase the principal’s utility.  If implemented properly, the tracking error constraint 

placed by principals on external managers is rational. 

  Another pervasive constraint applied to external managers in the industry is the 

constraint related to style drift.  We can calculate beta relative to the underlying 

benchmark and consider deviations from factor sensitivity of 1 to be deviations due to 

style drift.  Although this constraint is controversial in the industry, it is necessary for 

many of the theoretical conclusions in active portfolio management, most notably the 

Fundamental Law of Active Management, which is summarized well in Grinold and 

Kahn (2000).  Roll (1992), in addition to deriving the TEV frontier, also considers a 

number of other problems, one being constraining benchmark relative beta.  His 

conclusion is that the beta constraint generates a necessarily superior frontier to the TEV 

frontier in the region over which external managers are likely to optimize.  I look at this 

beta constraint in the context of my relative utility overlay in section V and conclude 

much the same with similar caveats.  However, the most interesting result of analyzing 

the beta constraint is that it always has the potential to increase the principal’s utility.  

There are a couple scenarios under the tracking error constraint that, however unlikely, 
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could cause the delegated manager to act against the interests of the principal.  As long as 

the benchmark is above the global minimum variance portfolio in return, the beta 

constraint always has the potential to increase principal utility, particularly if the 

benchmark has a higher expected return that the minimum variance portfolio.  Thus, just 

like the tracking error constraint, constraining external managers on beta is also rational. 

The beta constraint itself is not enough to guarantee a superior portfolio from 

delegated management either.  It is quite possible for the external manager, given low 

enough levels of risk aversion, to build a portfolio less efficient than without the 

constraint.  Additionally, the tracking error constraint, however rational and possibly 

utility increasing, still lies on a frontier below that of a constrained beta frontier.  It seems 

natural that the combination of these two constraints could force a delegated manager to 

invest on a frontier superior to the TEV frontier and additionally assure the principal that 

the external manager will not invest in a portfolio risky enough to erode utility.  In 

section VI, I analyze the inclusion of both the tracking error constraint and the beta 

constraint in controlling a delegated agent.  These constraints, if implemented properly, 

necessarily cause the delegated manager to choose a portfolio that increases utility for the 

principal.  I use these constraints to develop a benchmarking strategy to force external 

managers to not only build a portfolio that increases utility, but to build a portfolio that 

maximizes the principal’s utility given the agents opportunity set.  Essentially, if the 

parameters are known, setting the tracking error and beta constraints to the levels of the 

desired portfolio, even the global optimal portfolio for the principal, incentivizes the 

agent to buy that exact portfolio.  These two constraints are enough to pin the delegated 
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manager to an exact location within investment opportunity set.  They guarantee not only 

a unique but a superior portfolio. 

The conclusion of this work is that if we believe delegated investment managers 

to have skill and expertise, then it is not only rational but preferred to delegate our 

investment management responsibilities to those individuals, even given that they are 

relative TEV optimizers.  The big caveat here is the assumption that the external manager 

really does have the ability to outperform a benchmark.  Two of the most popular risk 

control metrics in the industry, beta constraints and tracking error constraints, can be used 

to pin the external manager to an exact spot in mean-variance space.  If the principal 

understands his own utility in this space, and has an idea of what the external manager’s 

skill and capabilities are, then this spot is a necessary utility increase for the principal.  

The delegated portfolio choice, when delegated to a skillful agent and under the tracking 

error and beta constraints, is always better than the portfolio a principal could build 

himself.  

 

II.  The TEV Frontier and the Agent’s Objective Function 

 The Markowitz mean-variance optimization problem involves minimizing the 

variance of a portfolio of securities.  There are many well-known solutions to the 

Markowitz problem but perhaps the most popular is considering the problem as a 

quadratic programming problem.  Below are the variable definitions and the problem’s 

statement and solution.  Matrices and vectors are in boldface. 
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 w  - n × 1 the weight vector of the portfolio 

 Ω - n × n covariance matric (symmetric and positive definite) 

 r - n × 1 vector of returns 

 1 - n × 1 vector of 1’s 

The problem is to minimize the variance as a function of return given that the weight 

vector sums to 100%: 

 min
𝐰𝐰

𝐰𝐰′𝛀𝛀𝐰𝐰   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1  𝑎𝑎𝑛𝑛𝑎𝑎 𝐰𝐰′𝐫𝐫 = 𝑟𝑟 (1) 

We can set up the Lagrangian as follows: 

 L(𝐰𝐰,  𝜆𝜆1,  𝜆𝜆𝑟𝑟) = 𝐰𝐰′𝛀𝛀𝐰𝐰 −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1)  −  𝜆𝜆𝑟𝑟 (𝐰𝐰′𝐫𝐫 − 𝑟𝑟) (2) 

Next we differentiate and set the results to 0: 

 2𝛀𝛀𝐰𝐰 −  𝜆𝜆1𝟏𝟏 −  𝜆𝜆𝑟𝑟𝐫𝐫 = 𝟎𝟎 

𝐰𝐰′𝟏𝟏 = 1 

𝐰𝐰′𝐫𝐫 = 𝑟𝑟 

 

(3) 

Solving this system for w yields the following: (notation such as [1    r] is an n × 2 

augmented matrix where the first column is all 1’s and the second is the return vector; 

also, the last matrix in this notation is a 2 × 1 vector with the constants 1 and r): 

 𝐰𝐰 =  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫] �[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�
−𝟏𝟏
� 1 
𝑟𝑟 � 

(4) 

This weight vector can be plugged back into variance function and the parabola of the 

minimum variance set, i.e. the efficient frontier, can be expressed with the variance of the 

portfolio, σ2, as a function of the return constant, r. In essence, this is the equation for the 

efficient frontier. 
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 𝜎𝜎2 = 𝐰𝐰′𝛀𝛀𝐰𝐰 = � 1 
𝑟𝑟 �

′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏
� 1 
𝑟𝑟 � 

(5) 

The Tracking Error Variance or TEV Frontier from Roll (1992) can be derived similarly 

but with a slightly different objective function.  If the weight vector for the benchmark is 

denoted as b, then Roll’s framework requires minimizing tracking error variance by 

choosing w.  The problem proceeds similarly but with a slight complication because of 

the differenced weight vector (w – b).  Below is a statement of the problem and the 

subsequent Lagrangian: 

 min
𝐰𝐰

 𝑇𝑇2 =  min
𝐰𝐰

(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛)   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1  𝑎𝑎𝑛𝑛𝑎𝑎 𝐰𝐰′𝐫𝐫 = 𝑟𝑟 

L(𝐰𝐰,  𝜆𝜆1,  𝜆𝜆𝑟𝑟) = (𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛)  −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1)  −  𝜆𝜆𝑟𝑟 (𝐰𝐰′𝐫𝐫 − 𝑟𝑟) 

(6) 

(7) 

Below is the system of simultaneous equations to be solved.  It is the same as the original 

problem but with the extra term, 2Ωb: 

 2𝛀𝛀𝐰𝐰− 2𝛀𝛀𝐛𝐛 −  𝜆𝜆1𝟏𝟏 −  𝜆𝜆𝑟𝑟𝐫𝐫 = 𝟎𝟎 

𝐰𝐰′𝟏𝟏 = 1 

𝐰𝐰′𝐫𝐫 = 𝑟𝑟  

 

(8) 

In a similar form to what was derived for the variance minimization, in the case of 

tracking error variance we choose the following weight vector where rb = b′r. 

 𝐰𝐰 = 𝐛𝐛 +  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫] �[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�
−𝟏𝟏
� 0 
𝑟𝑟 − 𝑟𝑟𝑏𝑏

� (9) 

This weight vector can be plugged bask into the variance function and an expression for 

the parabola of the TEV frontier as a function of r can be obtained.  If we define σb
2 = 

b’Ωb then: 
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𝜎𝜎2 = 𝐰𝐰′𝛀𝛀𝐰𝐰 = 𝜎𝜎𝑏𝑏2 + � 0 

𝑟𝑟 − 𝑟𝑟𝑏𝑏
�
′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏
�  0 
𝑟𝑟 − 𝑟𝑟𝑏𝑏

�

+ 2 � 1 
𝑟𝑟𝑏𝑏
�
′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏
� 0 
𝑟𝑟 − 𝑟𝑟𝑏𝑏

� 

(10) 

The relationship between the efficient frontier from (5) and the TEV frontier from (10) is 

illustrated and analyzed thoroughly in Roll (1992).  Roll’s primary conclusion is that the 

TEV frontier is less optimal than the efficient frontier whenever the benchmark portfolio 

is not on the efficient frontier.  This is illustrated in Figure 1, Panel A.  The TEV frontier 

is to the right of the efficient frontier because optimization on relative tracking error 

variance rather than absolute variance is less efficient.  The horizontal axis in this figure 

is standard deviation.  However, it is probably more useful to look at this diagram with 

tracking error volatility on the horizontal axis.  This graph, with tracking error on the 

horizontal axis, is depicted in Figure 1 panel B and the equations for the curves are 

derived as follows. 

 First recall that the tracking error variance, T 2, is defined as follows: 

 𝑇𝑇2 = (𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) (11) 

For the TEV frontier, we simply take the weight vector from (9) and move b to the left 

hand side. 

 (𝐰𝐰− 𝐛𝐛) =  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫] �[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�
−𝟏𝟏
� 0 
𝑟𝑟 − 𝑟𝑟𝑏𝑏

� (12) 

Plugging this vector into the tracking error variance equation yields the following 

parabola where T 2 is a function of r.  This is the TEV frontier in the space of mean and 

tracking error variance rather than in mean and variance.  This is, not coincidently, just 

one of the terms from equation (10). 
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Figure 1
The TEV Frontier and the Agent’s Objective Function

Panel A: Mean-Variance Space

Panel B: Mean-TEV Space

This figure shows how an agent, when maximizing utility in mean-TEV space, chooses a portfolio 
along the TEV frontier in Panel B.  This portfolio is translated back into mean-variance space, in 
Panel A, and as is evident, the portfolio lies along the sub-optimal TEV frontier in that space as 
well.
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𝑇𝑇2 = � 0 

𝑟𝑟 − 𝑟𝑟𝑏𝑏
�
′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏

� 0 
𝑟𝑟 − 𝑟𝑟𝑏𝑏

� 
(13) 

Given the weight vector for the efficient frontier from equation (4), we can adjust it by 

differencing it with the benchmark as follows.  Note that a b was just subtracted from 

both sides. 

 (𝐰𝐰− 𝐛𝐛) =  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫] �[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�
−𝟏𝟏
� 1 
𝑟𝑟 � − 𝐛𝐛 (14) 

Plugging this vector into the tracking error variance equation yields the following 

parabola.  This is the equation for the efficient frontier when plotted in the space of 

tracking error variance. 

 𝑇𝑇2 = � 1 
𝑟𝑟 �

′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏
� 1 
𝑟𝑟 � + 𝜎𝜎𝑏𝑏2

− 2 � 1 
𝑟𝑟𝑏𝑏
�
′
�[𝟏𝟏 𝐫𝐫]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫]�

−𝟏𝟏
� 1 
𝑟𝑟 � 

(15) 

The mean variance frontier, when mapped to tracking error variance space is to the right 

of the TEV frontier just like the TEV frontier is to the right of the efficient frontier when 

in the space of absolute variance.  This is the phenomenon illustrated in Figure 1, Panel 

B. 

One of the most important implications of the TEV frontier is the implication 

about how delegated managers choose portfolios given a relative performance incentive.  

That is, they optimize return relative to tracking error rather than variance or standard 

deviation.  This implication also directly asserts that agents will optimize a utility 

function that is parameterized with tracking error volatility as the risk measure rather than 

standard deviation.  No matter the exact structure of the utility relationship, utility and 
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preference in relative space can be thought of exactly like it is thought of in absolute 

space.  The preference set is a closed, convex set and increases to the “northwest” just as 

it does in mean-variance.  Also, the iso-utility curve is upward sloping with a non-

negative second derivative.  The iso-utility curve associated with optimizing utility in 

relative space sits exactly tangent to the TEV frontier in relative space and this is 

illustrated in Figure 1 Panel B.  For the purposes of illustration, I derive all of the utility 

relationships using quadratic utility but it should be evident that any properly formed 

utility function generally obeys all of the rules of the quadratic utility for the purposes of 

this essay. 

 Suppose the utility function for the agent is as follows where θ is the coefficient 

of risk aversion: 

 𝑈𝑈 = 𝑟𝑟 − 𝜃𝜃 𝑇𝑇2 = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) (16) 

The problem is to maximize utility subject to the constraint on the weight vector. 

 max
𝐰𝐰

 𝑈𝑈 =  max
𝐰𝐰

 𝐰𝐰′𝐫𝐫 − 𝜃𝜃(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛)   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 

L(𝐰𝐰,  𝜆𝜆1) = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛)  −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1)  

(17) 

(18) 

Differentiating the Lagrangian and finding the critical value yields the following solution 

for the optimal weight vector:  

 
𝐰𝐰 =

1
2𝜃𝜃

𝛀𝛀−𝟏𝟏 �𝐫𝐫 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

𝟏𝟏� + 𝐛𝐛 
(19) 

The portfolio representing this optimal weight vector is depicted in Figure 1, Panels A 

and B, with two different levels of risk aversion.  In Panel A, it is necessarily along the 

TEV frontier above the benchmark portfolio and it is notable that it not possible for this 

portfolio to be on the efficient frontier unless the benchmark is also on the efficient 
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frontier.  As the agent’s risk aversion coefficient decreases, the agent chooses a portfolio 

further and further up the TEV frontier.  In Panel B, this portfolio is the optimal 

allocation and along the TEV frontier.  Also depicted in Panel B is the iso-utility curve 

associated with this portfolio’s level of utility.  It can be back-solved simply by 

rearranging the utility function from (16) and plugging in the weight vector from (19), 

and it is expressed as follows: 

 𝑟𝑟 = 𝑈𝑈 + 𝜃𝜃 𝑇𝑇2 = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) + 𝜃𝜃 𝑇𝑇2

= 𝑟𝑟𝑏𝑏 +
1

4𝜃𝜃
�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
� + 𝜃𝜃 𝑇𝑇2 

 

(20) 

Delegated managers that are incentivized by a relative return incentive will optimize 

along the TEV frontier and maximize relative utility in the space of mean and tracking 

error volatility.  This gives rise to the utility relationship as depicted in (20).  This is the 

agent’s iso-utility curve and in general it is inconsistent with the process of maximizing 

utility in mean/variance space, the space in which the principal derives utility. 

 Table 1 calculates the quadratic utility deviations for the principal under differing 

scenarios.  Panel A depicts the utility increase or decrease for the principal from 

unconstrained delegated contracting.  The delegated performance incentive has the 

potential to increase utility for the principal but this is far from certain.  Given the levels 

of utility I use in the figures for this paper, the utility decreases by 5.15% through 

delegation.  Panel B shows the utility depreciation from the principal's global optimal 

portfolio.  This is necessarily non-positive.  In this paper, the agent chooses a portfolio 

that 9.25% less optimal in utility than the principal's global optimal.  This example is  
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consistent with what was shown above.  Although the agent has the potential to increase 

utility above that of the benchmark, unconstrained there is no guarantee for utility 

improvement. 

 

III.  The Principal’s Utility and Improvements Along the TEV Frontier 

 As is conventional in portfolio management literature, I assume that the principal 

investor derives utility in mean-variance space.  Thus his goal is to maximize utility 

subject to the constraint of the mean-variance efficient frontier.  The premise of this essay 

is that principals delegate portfolio management responsibilities because they lack the 

ability or opportunity to build efficient portfolios themselves.  The principal expects the 

delegated manager to build a portfolio better than the principal could build.  Therefore 

the most logical basis for determining whether an agent improves upon the principal’s 

utility is to compare the agent portfolio choice to whatever the principal could build given 

his limited skill level and opportunity set.  If we suppose that the principal benchmarks 

the external manager against his best alternative, and incentivizes the agent relative to 

this benchmark (implicitly or explicitly), then this necessitates that the principal’s utility 

curve pass through that benchmark portfolio.  In the previous section we showed how the 

agent derives utility to create the TEV frontier.  The relative positioning and interaction 

between these two curves, the TEV frontier and the principal’s iso-utility curve, is what 

determines whether the agent can indeed improve the principal’s utility given the 

delegated performance incentive.    
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 Just as before when discussing the agent’s utility, as long as the principal’s utility 

is well formed, upward sloping with a non-negative second derivative in mean-variance 

space, the exact expression of the utility relationship is irrelevant to the conclusions of 

this essay.  Utility is increasing for the principal to the “northwest” and the preference set 

is closed and convex.  Notably, the opportunity set underneath the TEV envelope in 

mean-variance space is also a closed convex set.  As discussed previously, these two sets 

intersect at least once, at portfolio b, which lies on the boundary of both sets.  Unless the 

TEV frontier and the utility curve are exactly tangent at the benchmark portfolio, then the 

opportunity for utility improvement exists because in this framework there would be an 

overlap between the sets.  There are four interesting cases of how these two sets could 

intersect, and these cases affect how the principal should constrain the external manager 

to assure utility improvement.  The first three cases involve the slope of the sets at the 

intersection point, b, assuming b is above the minimum variance point.  The slope of the 

utility curve can be steeper, flatter, or the same as the TEV frontier at this point.  The 

fourth case is when the intersection happens given b is below the minimum variance 

portfolio.  These cases are analyzed heuristically in Figure 2 and analytically with 

derivations in quadratic utility.     

 The steepness of the utility relationship is equivalent to the level of risk aversion.  

The higher the coefficient of risk aversion is, the steeper is the utility relationship in mean 

and variance.  Below is an example of the utility function of the principal and note that is 

it parameterized in mean and variance.  θ is the coefficient of risk aversion.  And once 

again, quadratic utility is used in this example for simplicity in expression.  In general, all 
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of the assertions and conclusions in this essay are true no matter the exact form of the 

utility function.  Thus, suppose principals maximize utility by choosing w given the 

following relationship: 

 𝑈𝑈 = 𝑟𝑟 − 𝜃𝜃 𝜎𝜎2 = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰 (21) 

If the principal had the ability and opportunity to maximize this utility function given the 

universe of all investment opportunities, he would choose a portfolio by maximizing this 

function, unconstrained as follows: 

 max
𝐰𝐰

 𝑈𝑈 =  max
𝐰𝐰

 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 

L(𝐰𝐰,  𝜆𝜆1) = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰 −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1) 

(22) 

(23) 

Differentiating the Lagrangian and finding the critical value yields the following result. 

 
𝐰𝐰 =

1
2𝜃𝜃

𝛀𝛀−𝟏𝟏 �𝐫𝐫 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

𝟏𝟏� 
(24) 

This is the weight vector of the portfolio that the principal would ideally like to hold 

given the agent’s opportunity set.  Applying this vector to the utility relationship in (21) 

reveals the maximum iso-utility curve given the constraint of the efficient frontier. 

 𝑟𝑟 = 𝑈𝑈 + 𝜃𝜃 𝜎𝜎2 = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰 + 𝜃𝜃 𝜎𝜎2

=
1

4𝜃𝜃
�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
� + 𝜃𝜃 𝜎𝜎2 

 

(25) 

This level of utility is practically unreachable however because of the principal’s lack of 

ability and opportunity.  I assumed earlier that the principal can select a portfolio b that 

maximizes utility given his constrained skillset.  If this is the portfolio on which the 

principal measures and incentivizes the agent, then this is the same b from the TEV 
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analysis in section II.  The utility of portfolio b and the iso-utility curve associated with 

the utility of portfolio b are expressed as follows: 

 𝑈𝑈 = 𝐛𝐛′𝐫𝐫 − 𝜃𝜃𝐛𝐛′𝛀𝛀𝐛𝐛 = 𝑟𝑟𝑏𝑏 − 𝜃𝜃 𝜎𝜎𝑏𝑏2 

𝑟𝑟 = 𝑈𝑈 + 𝜃𝜃 𝜎𝜎2 = 𝑟𝑟𝑏𝑏 − 𝜃𝜃 𝜎𝜎𝑏𝑏2 + 𝜃𝜃 𝜎𝜎2 = 𝑟𝑟𝑏𝑏 + 𝜃𝜃 (𝜎𝜎2 − 𝜎𝜎𝑏𝑏2) 

(26) 

(27) 

Thus, we are concerned about the interaction between the curve from (27) and the curve 

from (10), the TEV frontier. 

 Figure 2, Panel A shows the most likely (or at least the most convenient) scenario 

for this relationship.  In this case, the slope of the TEV frontier is steeper than the slope 

of the principal’s utility curve at b.  Recall from section II and also from Roll (1992) that 

an agent optimizing based on a relative incentive will choose a portfolio by moving along 

the TEV frontier up from the benchmark portfolio.  In this case, since the utility curve has 

a flatter slope than the TEV frontier at the intersection point b, the preference set, the set 

above the iso-utility curve, overlaps with the opportunity set, the set underneath the TEV 

envelope, and every point in the intersection is a utility increase for the principal.  In 

particular, as the agent’s risk aversion level decreases, he differentiates from the 

benchmark and moves up the curve into this preferred space.  Eventually however, the 

agent’s risk aversion level could get so low that his optimization process pushes the 

portfolio back out of the preferred space.  Therefore, if the agent is allowed to act on his 

own unconstrained utility, it is still likely that he will build a portfolio that decreases the 

principal’s utility even though he could have increased it by buying a portfolio within the 

preferred region.  I will discuss a method to constrain the agent in the next section but  
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Figure 2
Different Scenarios of how the TEV Frontier can Interact with Principal Utility

Panel A: TEV Frontier Steeper than Utility Curve at b

Panel B: TEV Frontier Flatter than Utility Curve at b
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Panel C: TEV Frontier Steeper tangent to Utility Curve at b

Panel D: Benchmark portfolio, b, Below the Minimum Variance Portfolio

This figure depicts the 4 cases of interaction between the TEV frontier and the principal's iso-utility curve.  
The utility curve of the principal passes through the benchmark, b, and this is the point the principal is 
trying to improve upon through delegation.  The MV frontier is shown as a lightly dotted line.  Except for 
the case of Panel C, there is always a utility improvement for the principal along the TEV frontier.
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what should be evident at this point is that delegated portfolio management very likely 

could increase principal utility. 

 Figure 2, Panel B shows the opposite scenario to Panel A.  In this case, the 

principal’s utility curve is steeper than the TEV frontier at b.  Although a space still 

exists in the intersection of the preference set and the opportunity set, this space is on the 

wrong side of b.  The process the agent follows when incentivized with the relative return 

inventive will push the portfolio choice away from the preferred region rather than into it.  

This may seem like a dire situation, but there is a simple transformation in this space that 

allows the relative incentive to continue to be used to the principal’s advantage.  First we 

should recognize that the principal’s utility must have a flatter slope at b than the line 

segment that connects portfolio b to the origin.  This is true only if we assume that the 

origin could be a potential long investment opportunity for the principal.  If the line 

segment is not steeper than the utility curve then there exists a portfolio on the line 

segment with a higher utility than portfolio b, and this violates the assumption behind 

portfolio b.  That is, portfolio b must be the highest utility portfolio available to the 

principal given his skill level and opportunity set.  This condition assures us that this line 

segment intersects the TEV frontier below the set where the preference set intersects with 

the opportunity set.  If we define this lower intersection point as point bL, then we have 

transformed the Case B problem into a Case A problem.  If the delegated manager is now 

benchmarked against bL, then we are back into a situation where the delegated manager 

can create a utility increase under the right constraints.  Care must be taken in this 

situation however because the principal needs to worry not only about the agent taking 
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too much risk but also not taking enough risk.  Deviations up the TEV frontier from bL 

must cross a threshold before the preferred region is reached.          

 Figure 2, Panel C depicts the situation when the utility curve is exactly tangent to 

the TEV frontier at b.  Given that the intersection is a single point, there is no region in 

which a preferred deviation would be made by a delegated manager incentivized by a 

relative return incentive alone.  This truly is a dire situation for delegated management.  

In this scenario, it would be irrational to delegate portfolio management responsibilities 

to an unconstrained agent because the principal already holds the best possible portfolio 

given the delegated performance incentive.  This situation is most comparable to the 

situation analyzed in Admati and Pfleiderer (1997).  They find, among other things, that 

when a delegated manager is incentivized by a relative performance incentive, given an 

efficiently allocated benchmark, there is no possibility for utility improvement through 

delegation.  This would indicate that the principal should choose not to delegate.  

However, in the Roll (1992) framework, which I am using in this essay, there is a way to 

constrain the external manager to necessarily improve utility even in this dire situation.  

This involves the beta constraint proposed by Roll and it is applicable to all three cases 

presented thus far.  The beta constraint is analyzed in this paper in sections V and VI.   

 Figure 2, Panel D is the case when the benchmark portfolio, b, lies below the 

minimum variance portfolio and equivalently also below the minimum point on the TEV 

frontier.  This is a special case of Case A.  The reason it is special is because no matter 

the slope of the utility curve at b, deviations up from b along the TEV frontier always 

increase utility.  As favorable as this situation seems, at least anecdotally, I consider this 
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situation highly unlikely but not impossible.  In order for this to occur, however, there 

would have to be massive inefficiency in the investment set available to the principal.  

Thus, although this case is intellectually curious, it is probably also practically 

impossible.   

 As depicted in Figure 2, it is highly likely that given the interaction between the 

principal’s utility curve and the TEV frontier, that benchmarking and the implied relative 

return incentives could potentially create a utility increase for the principal.  However, 

care must be taken in this relationship to ensure that the agent does not take too much risk 

as to exceed the region in which a preferred portfolio could be chosen.  Thus at this point 

the framework is set to analyze the proposed constraints on external managers.  How can 

we force the external manager to buy a portfolio within the preferred region?   

 

IV.  Constraining the Agent’s Risk Appetite using a TEV Constraint 

To control the behavior of external managers, other papers have assumed a direct 

constraint on agent risk aversion, such as Bertrand (2010).  However, risk aversion is the 

parameter that defines the behavior of the individual and trying to forcibly constrain (or 

extend) an agent’s risk level is akin to trying to constrain a law of nature.  A principal 

could filter potential delegated managers based on his perceived notion of the agent’s risk 

aversion but implicit in this filtering is a situation that creates more uncertainty, i.e. more 

risk, due to the potential for asymmetric information.  Additionally, there is no good way 

to either ex-ante or ex-post measure an agent’s risk aversion level.  It can be proxied ex-

post but would require a substantial amount of data.  Practically however, if it could be 

81 
 



done, constraining on agent risk aversion would peg the external manager to the optimal 

point for the principal along the TEV frontier.  Constraining risk aversion would only 

allow the delegated manager to move so far up the frontier until the point where the 

principal’s utility is optimized.  But, why use the something so elusive when a 

conventional measure exists that is more tangible, measurable, and serves the same 

purpose: tracking error volatility. 

Jorion (2003) considers the problem of maximizing (and minimizing) return given 

a tracking error constraint in mean-variance space.  Equivalently we could minimize (and 

maximize) standard deviation or variance given a tracking error constraint.  If the 

problem is set up in this fashion, on variance, it looks like the following: 

 min
𝐰𝐰

𝐰𝐰′𝛀𝛀𝐰𝐰   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1  𝐰𝐰′𝐫𝐫 = 𝑟𝑟 𝑎𝑎𝑛𝑛𝑎𝑎 (𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) = 𝑇𝑇2 (28) 

And the Lagrangian can be set up like this: 

 L(𝐰𝐰,𝜆𝜆1, 𝜆𝜆𝑟𝑟 , 𝜆𝜆𝑇𝑇2)

= 𝐰𝐰′𝛀𝛀𝐰𝐰 − 𝜆𝜆1(𝐰𝐰′𝟏𝟏 − 1) − 𝜆𝜆𝑟𝑟(𝐰𝐰′𝐫𝐫 − 𝑟𝑟)

− 𝜆𝜆𝑇𝑇2((𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) − 𝑇𝑇2) 

 

(29) 

Differentiating yields the following set of simultaneous equations. 

 2𝛀𝛀𝐰𝐰− 𝜆𝜆1𝟏𝟏 − 𝜆𝜆𝑟𝑟𝐫𝐫 − 𝜆𝜆𝑇𝑇2(2𝛀𝛀𝐰𝐰− 2𝛀𝛀𝐛𝐛) = 𝟎𝟎 

𝐰𝐰′𝟏𝟏 = 1 

𝐰𝐰′𝐫𝐫 = 𝑟𝑟 

(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) = 𝑇𝑇2 

 

(30) 

Solving this system for w yields the following weight vector: 
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𝐰𝐰 = 𝐛𝐛 + �

𝜆𝜆1𝟏𝟏 + 𝜆𝜆𝑟𝑟𝐫𝐫 − 2𝜆𝜆𝑇𝑇2𝛀𝛀𝐛𝐛
2(1 − 𝜆𝜆𝑇𝑇2) � 

(31) 

And applying this weight vector to the variance calculation yields the following ellipse in 

mean-variance space.  Jorion calls this the constant TEV frontier. 

 

 �𝜎𝜎
2 − 𝜎𝜎𝑏𝑏2 − 𝑇𝑇2
𝑟𝑟 − 𝑟𝑟𝑏𝑏

�
′

⎣
⎢
⎢
⎢
⎡𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)2

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
−2�𝑟𝑟𝑏𝑏 −

𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

�

−2�𝑟𝑟𝑏𝑏 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

� 4 �𝜎𝜎𝑏𝑏2 −
1

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
⎦
⎥
⎥
⎥
⎤
�𝜎𝜎

2 − 𝜎𝜎𝑏𝑏2 − 𝑇𝑇2
𝑟𝑟 − 𝑟𝑟𝑏𝑏

�

− 𝑇𝑇2 �
�
𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)2

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
−2�𝑟𝑟𝑏𝑏 −

𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

�

−2�𝑟𝑟𝑏𝑏 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

� 4 �𝜎𝜎𝑏𝑏2 −
1

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
�
� = 0 

 

 

(32) 

The notation |…| is the determinant of the matrix.  This ellipse is illustrated in Figure 3, 

Panel A.  Note that this is an ellipse in mean and variance and this figure is in mean and 

standard deviation, so the ellipse is slightly distorted.  This ellipse grows and shrinks as 

the constant, T 2, is increased and decreased.  However, since this is an ellipse, it is only 

defined over a limited region in r.  As Jorion (2003) shows, this ellipse reaches its 

maximum and minimum values in return along the TEV frontier at the following levels, 

given a fixed T:   

 
𝑟𝑟 = 𝑟𝑟𝑏𝑏 ± 𝑇𝑇��𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�  

(33) 

This expression is actually equivalent to equation (13) from Section II of this essay, the 

TEV frontier in mean and tracking error volatility.  Equation (13) is just solved for the 

return.  The constant TEV frontier is graphed with the TEV frontier in relative space in 

Figure 3, Panel B.  The constant TEV frontier is just a vertical line connecting the top of  
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Figure 3
Constraining the Agent’s Risk Appetite using a Tracking Error Constraint

Panel A: Mean-Variance Space

Panel B: Mean-TEV Space

This figure shows that constraining an agent on tracking error causes the agent to chose a 
portfolio further down the TEV frontier.  This decreases agent utility but has the potential to 
increase principal utility.  Depicted in this figure are an arbitrary constraint of T=8% and the 
principal's optimal constraint of about 4.3%.  Note that the principal's utility curve is tangent to the 
TEV frontier at the optimal tracking error constraint.
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the curve to bottom of the curve and it should be evident from this figure that the 

maximum and minimum must be reached along the frontier.   

The expression with the radical from (33) is the slope of the line extending from 

the intercept and is also the maximum possible information ratio given the return vector 

and the covariance matrix.  This is an important constant and it even appeared in equation 

(20) from this essay.  Many other authors, stemming from Merton (1972), define this 

constant by giving it a name (usually d).  The equivalence between constraining in 

tracking error volatility and agent risk aversion is also evident in equation (33)’s 

similarity to equation (19), the external manager’s optimal choice given a level of risk 

aversion.  If we take the transpose of equation (19) and multiply it by the return vector, 

we get the following: 

 
𝐰𝐰′𝐫𝐫 = 𝐛𝐛′𝐫𝐫 +

1
2𝜃𝜃

�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

𝟏𝟏′𝛀𝛀−𝟏𝟏𝐫𝐫� 

𝑟𝑟 = 𝑟𝑟𝑏𝑏 +
1

2𝜃𝜃
�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)2

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
� 

(34) 

 

(35) 

And, by setting equation (35) equal to equation (33), equivalence between the agent’s 

quadratic utility risk aversion coefficient, θ, and the tracking error volatility, T, can be 

obtained: 

 
𝑇𝑇 =

1
2𝜃𝜃

��𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�  

(36) 

This shows that constraining on tracking error is a practical way of constraining 

delegated managers to act as if their risk aversion had been constrained.  The constraint 
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does not change the agent’s level of risk aversion.  It merely forces the external manager 

to buy a portfolio as if he had a higher level of risk aversion. 

What is obvious when considering the utility maximization problem of the agent, 

equation (16), is that if tracking error is constrained to be fixed, then the agent’s utility 

maximization problem just becomes a return maximization problem: maximize r given a 

fixed T.   

 max
𝐰𝐰

 𝑈𝑈 =  max
𝐰𝐰

 𝐰𝐰′𝐫𝐫 − 𝜃𝜃(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) ,

𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 (𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛) = 𝑇𝑇2 

(37) 

Solving this problem will yield the following weight vector but equation (36) could also 

be substituted into equation (19) to arrive at the same result: 

 
𝐰𝐰 = 𝑇𝑇 �𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −

(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
−𝟏𝟏 𝟐𝟐⁄

𝛀𝛀−𝟏𝟏 �𝐫𝐫 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

𝟏𝟏� + 𝐛𝐛 
(38) 

Note that this equation is independent of the agent’s risk aversion parameter.  

Equivalently, the minimization problem for (37) could be solved and it yields a similar 

solution to (38) except that the first term is negative. 

 The return for this weight vector is already given in equation (35) and the tracking 

error is fixed.  This could be verified by plugging the weight vector in (38) into the 

tracking error equation (11).  The combination of this return and tracking error are plotted 

in Figure 3, Panels A and B.  Additionally, the utility curve associated with this portfolio 

is plotted alongside the agent’s maximal utility curve.  This constraint is necessarily 

utility decreasing for the agent.  The opposite is true for the principal however.  Since the 
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principal cares mostly about the variance of this weight vector (38), plugging this into the 

variance equation yields the following: 

 
𝐰𝐰′𝛀𝛀𝐰𝐰 = 𝑇𝑇2 + 𝜎𝜎𝑏𝑏2 + 2𝑇𝑇 �𝑟𝑟𝑏𝑏 −

𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

��𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
−𝟏𝟏 𝟐𝟐⁄

 
(39) 

This is the variance of the portfolio above the benchmark on the TEV frontier as a 

function of tracking error, T.  Similarly, the portfolio below the benchmark on the TEV 

frontier at the same level of tracking error has a variance with a similar equation but with 

one small difference: the third term in (39) is negative.  

 Given that the delegated manager will choose a portfolio on the TEV frontier, a 

principal can maximize his own utility relative to the TEV frontier by choosing the 

appropriate tracking error bound to apply to an external manager.  Since the return and 

standard deviation can be parameterized in T, then we simply maximize the principal’s 

utility function (21) with respect to T by substituting in equations (33) and (39) for the 

return and variance. 

 max
𝑇𝑇

 𝑈𝑈 =  max
𝑇𝑇

 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰 

= max
𝑇𝑇

 𝑟𝑟𝑏𝑏 + 𝑇𝑇 �𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
𝟏𝟏 𝟐𝟐⁄

− 𝜃𝜃 �𝑇𝑇2 + 𝜎𝜎𝑏𝑏2

+ 2𝑇𝑇 �𝑟𝑟𝑏𝑏 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

��𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
−𝟏𝟏 𝟐𝟐⁄

�  

 

 

(40) 
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And the solution is: 

 
𝑇𝑇 =

1
2𝜃𝜃

�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
𝟏𝟏 𝟐𝟐⁄

− �𝑟𝑟𝑏𝑏 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

��𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 −
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
�
−𝟏𝟏 𝟐𝟐⁄

 

(41) 

This is the tracking error bound a principal with quadratic utility should choose to force 

the delegated manager to buy a portfolio that maximizes the principal’s utility subject to 

the constraint of the TEV frontier.  If this bound is chosen, and the agent abides by the 

constraint, then as is depicted in Figure 3, Panel A, the principal’s utility curve associated 

with this constraint is tangent to the TEV frontier at the intersection of the frontier with 

the constant TEV ellipse.  This level of utility is preferred to the one associated with 

holding the benchmark albeit still less preferred than the one associated with the 

principal’s global optimization problem. 

 Table 2 calculates the quadratic utility deviations for the principal under differing 

scenarios of agent and principal risk aversion.  Panel A depicts the utility increase or 

decrease for the principal from a fixed tracking error constraint of 8%.  The delegated 

performance incentive with a tracking error constraint has the potential to increase utility 

for the principal if the constraint is chosen appropriately.  Given the levels of utility I use 

in the figures for this paper, the utility increases by 0.20% through delegation with an 8% 

constraint.  Panel B shows the utility increase from the benchmark given an optimal 

tracking error constraint; this is necessarily non-negative.  Also depicted is that the level 

of utility increase is independent of agent risk aversion.  Essentially, values down each  
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column is identical.  Recall that the tracking error constraint substitutes for the agent’s 

risk aversion level. 

 

V.  Constraining Benchmark Relative Beta  

In addition to the tracking error constraint, another pervasive constraint applied in 

the modern investment industry is the benchmark relative beta constraint.  The colloquial 

way to consider a beta constraint is to put a limitation on “style drift” but the beta 

constraint is about much more than just the technical definition of style drift.  Most 

delegated investment management is done in two stages: a strategic allocation stage, 

where the asset class weights (the beta or factor sensitivities) are set, then the tactical 

asset allocation is made to improve performance over each factor.  When hiring an 

external manager to manage all or part of an allocation to a particular asset class, the 

principal is mostly concerned with whether the agent manages the factor sensitivity 

appropriately.  If an agent creates factor sensitivity different than β = 1 against the 

benchmark, this hurts the optimality of the strategic allocation either by altering the 

agent’s mandated factor sensitivity and therefore the effective weight of that allocation in 

the overall portfolio, or though the agent cannibalizing factor sensitivity from a different 

delegated manager.  However, even in the case of a single delegated manager, the beta 

constraint seems justified.  Agents are being hired to use their skill to the benefit of the 

principal.  As per our assumptions, the principal already has the skill to buy and therefore 

lever the factor sensitivity of the benchmark, at least downward.  Thus some form of beta 

constraint seems rational when trying to control delegated managers. 
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Many external managers will argue that the beta constraint limits their ability to 

generate returns for the principal.  And, just like the tracking error constraint, the beta 

constraint necessarily reduces the utility of the agent but has the potential to increase 

utility for the principal.  Roll (1992) analyzes the beta constraint and shows that when the 

benchmark is above the minimum variance portfolio in return the beta constrained TEV 

frontier is superior to the unconstrained TEV frontier for some finite region above the 

benchmark portfolio.  We can set up the minimization problem as follows.    

 min
𝐰𝐰

(𝐰𝐰− 𝐛𝐛)′𝛀𝛀(𝐰𝐰− 𝐛𝐛)   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 𝐰𝐰′𝐫𝐫 = 𝑟𝑟 𝑎𝑎𝑛𝑛𝑎𝑎 𝐰𝐰′𝛀𝛀𝐛𝐛 = 𝛽𝛽𝜎𝜎𝑏𝑏2 (42) 

This problem is actually set up with a constraint to covariance, w′Ωb, rather than beta but 

since the variance of the relative benchmark is a constant, constraining on beta and 

constraining on covariance are equivalent.  Also, it should be noted that under the 

constraint on beta, or covariance, the minimization problem on tracking error and the 

minimization problem on variance are also equivalent since the tracking error is now a 

function of the variance of the portfolio and two constants, covariance and the variance of 

the benchmark.  Thus the following problem could be solved for w and an identical 

solution would be obtained.  

 min
𝐰𝐰

𝐰𝐰′𝛀𝛀𝐰𝐰   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 𝐰𝐰′𝐫𝐫 = 𝑟𝑟 𝑎𝑎𝑛𝑛𝑎𝑎 𝐰𝐰′𝛀𝛀𝐛𝐛 = 𝛽𝛽𝜎𝜎𝑏𝑏2 (43) 

Unlike the situation with unconstrained TEV optimization, under the condition of a beta 

constraint, the delegated manager and the principal are, at least, now optimizing against 

the same curve.  Below is the Lagrangian based on equation (43) 
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 L�𝐰𝐰,  𝜆𝜆1,  𝜆𝜆𝑟𝑟 ,  𝜆𝜆𝛽𝛽�

= 𝐰𝐰′𝛀𝛀𝐰𝐰 −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1)  −  𝜆𝜆𝑟𝑟 (𝐰𝐰′𝐫𝐫 − 𝑟𝑟)

−  𝜆𝜆𝛽𝛽(𝐰𝐰′𝛀𝛀𝐛𝐛 − 𝛽𝛽𝜎𝜎𝑏𝑏2) 

(44) 

Differentiating yields the following system of equations: 

 2𝛀𝛀𝐰𝐰 −  𝜆𝜆1𝟏𝟏 −  𝜆𝜆𝑟𝑟𝐫𝐫 −  𝜆𝜆𝛽𝛽𝛀𝛀𝐛𝐛 = 𝟎𝟎 

𝐰𝐰′𝟏𝟏 = 1 

𝐰𝐰′𝐫𝐫 = 𝑟𝑟 

𝐰𝐰′𝛀𝛀𝐛𝐛 = 𝛽𝛽𝜎𝜎𝑏𝑏2 

 

(45) 

Solving this system yields the following weight vector: 

 
𝐰𝐰 =  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛] �[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�

−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

� 
(46) 

And the equation for the parabola in mean-variance space is derived by plugging the 

weight vector from (46) into the variance equation as follows.  This curve is depicted in 

Figure 4, Panel A for the cases β = 1, β >1, and β < 1.   

 
𝜎𝜎2 = 𝐰𝐰′𝛀𝛀𝐰𝐰 = �

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

�

′

�[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�
−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

� 
(47) 

The equation for the curve in relative mean-tracking error space can be computed 

by first differencing the weight vector in (46) with b: 

 
(𝐰𝐰− 𝐛𝐛) =  𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛] �[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�

−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

� − 𝐛𝐛 
(48) 

Next, the differenced vector in equation (48) can be plugged into the tracking error 

variance equation to yield the following: 
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𝑇𝑇2 = �

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

�

′

�[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�
−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

� + 𝜎𝜎𝑏𝑏2

− 2 �
1
𝑟𝑟𝑏𝑏
𝜎𝜎𝑏𝑏2
�

′

�[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�
−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

�

= �
1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

�

′

�[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]′𝛀𝛀−𝟏𝟏[𝟏𝟏 𝐫𝐫 𝛀𝛀𝐛𝐛]�
−𝟏𝟏
�

1
𝑟𝑟
𝛽𝛽𝜎𝜎𝑏𝑏2

�

+ (1 − 2𝛽𝛽)𝜎𝜎𝑏𝑏2 

 

 

 

(49) 

This curve is depicted in Figure 4, Panel B also for three cases, β = 1, β >1, and β < 1.  

Note that these curves are all at best as good at the TEV frontier in preference and a 

principal requiring a beta constraint will most likely require the agent to suffer a utility 

deterioration.  The weight vector the external manager will choose can be derived by 

maximizing his utility function however this time with the addition of a beta constraint.   

Just as with the derivation of the beta constrained TEV frontier, maximizing the 

agent’s utility function parameterized in tracking error and maximizing the principal’s 

utility function parameterized in variance yields the same choice vector, given the same 

value for θ, because the beta, or covariance, constraint makes w′Ωw the only free variable 

in the risk calculation.  However, there is no reason why the risk aversion parameter 

would be the same so it is still likely an agent and a principal would choose a different 

portfolio.  Below is the utility to be optimized, parameterized in variance. 

 max
𝐰𝐰

 𝑈𝑈 =  max
𝐰𝐰

 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰   𝑎𝑎. 𝑡𝑡.  𝐰𝐰′𝟏𝟏 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 𝐰𝐰′𝛀𝛀𝐛𝐛 = 𝛽𝛽𝜎𝜎𝑏𝑏2 

L�𝐰𝐰, 𝜆𝜆1, 𝜆𝜆𝛽𝛽� = 𝐰𝐰′𝐫𝐫 − 𝜃𝜃𝐰𝐰′𝛀𝛀𝐰𝐰 −  𝜆𝜆1 (𝐰𝐰′𝟏𝟏 − 1) − 𝜆𝜆𝛽𝛽(𝐰𝐰′𝛀𝛀𝐛𝐛 − 𝛽𝛽𝜎𝜎𝑏𝑏2) 

(50) 

(51) 

93 
 



  

Figure 4
Constraining Benchmark Relative Beta 

Panel A: Mean-Variance Space

Panel B: Mean-TEV Space

This figure demonstrates how the agent's portfolio choice changes with the benchmark relative 
beta constraint.  In general, the agent's utility is increasing in beta.  However, there is an optimal 
beta constraint for the principal.  This constraint is depicted as the β < 1 curve.  Not coincidently, 
this is the beta of the principal's global optimal portfolio.
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Differentiating the Lagrangian, finding the critical value and solving for w yields the 

following vector: 

 
𝐰𝐰 =

1
2𝜃𝜃

𝛀𝛀−𝟏𝟏 �𝐫𝐫

− [𝟏𝟏 𝛀𝛀𝐛𝐛]�[𝟏𝟏 𝛀𝛀𝐛𝐛]′𝛀𝛀−1[𝟏𝟏 𝛀𝛀𝐛𝐛]�
−1
�[𝟏𝟏 𝛀𝛀𝐛𝐛]′𝛀𝛀−1𝐫𝐫

− 2𝜃𝜃 � 1
𝛽𝛽𝜎𝜎𝑏𝑏2

��� 

(52) 

This is the weight vector for the portfolio that the principal and the agent would choose 

given a risk aversion level of θ and a beta constraint of β. 

 The idea of the principal choosing an optimal beta constraint is slightly more 

ambiguous than the principal’s choice of a tracking error constraint.  The tracking error 

problem eliminated the need to estimate the agent’s risk aversion, but the risk aversion 

level is still a prominent parameter in the beta constrained TEV frontier as is evident in 

equation (47).  The delegated manager’s weight vector in (52) could be used in the 

portfolio variance and return functions, plugged into the principal’s utility function, and 

that function could be solved for the critical value on beta to arrive at the optimal beta.  

But, there is an easier way to discover this value by inspection.  Recognize that since the 

optimization happens on the same curve in absolute and relative space, if the principal 

and agent have the same value for their individual risk aversion constants, the principal 

could constrain the agent based on the beta of the global optimal portfolio and the agent 

would buy the global optimal portfolio.  However, it is more likely that their risk aversion 

levels differ.  But, this is not a concern.  When you plug the weight vector from (52) into 
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the principal’s utility function and differentiate on beta, the agent’s risk aversion 

constants cancel in the only remaining terms.  Thus, the optimal beta constraint is 

independent of the agent’s risk aversion level.  And, since we already discovered it given 

equal risk aversion levels, it must be equal to this value, the beta of the global optimal 

portfolio.  Therefore, to obtain the optimal beta constraint, all one needs is to go back to 

the portfolio choice made in the principal’s utility given the principal’s risk aversion level 

of θ, and calculate the beta of the optimal choice portfolio.  Beta is calculated as follows: 

 
𝛽𝛽 =

1
𝜎𝜎𝑏𝑏2

𝐰𝐰′𝛀𝛀𝐛𝐛 
(53) 

Thus, we simply plug-in the weight vector from equation (24) and the optimal beta is 

calculated: 

 
𝛽𝛽 =

1
2𝜃𝜃𝜎𝜎𝑏𝑏2

�𝐫𝐫′𝐛𝐛 −
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

𝟏𝟏′𝐛𝐛� =
1

2𝜃𝜃𝜎𝜎𝑏𝑏2
�𝑟𝑟𝑏𝑏 −

𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

� 
(54) 

This result could be verified by going through the standard process of maximizing a 

utility function described in the last paragraph.  This optimal beta constrained TEV curve 

is depicted in Figure 4, Panels A and B and in this case is represented by the curve where 

β < 1.  As is evident from the figure, the iso-utility curves are plotted for an agent with a 

higher risk appetite than the principal.  The agent’s utility curve under a beta constraint is 

always below his optimal utility curve and therefore this is a utility decrease for the 

agent.  However, as depicted in the figure, this constraint could be a possible utility 

increase for the principal. 

 Table 3 calculates the quadratic utility deviations for the principal under differing 

scenarios.  Panel A depicts the utility increase or decrease for the principal from a fixed  
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Beta constraint of 1.  The delegated performance incentive with a beta constraint has the 

potential to increase utility for the principal if the constraint is chosen appropriately.  

Given the levels of utility I use in the figures for this paper, the utility increases by 1.90% 

through delegation and a beta of 1.  Although utility increase is relatively certain, if the 

agent’s risk aversion level is low enough, he can still destroy utility under a beta 

constraint.  Panel B shows the utility increase from the benchmark given an optimal beta 

constraint; this is necessarily better than Panel A.  Essentially, cell my cell the utility 

level is higher in Panel B than in Panel A.  Note that just like Panel A, the level of utility 

increase is substantial and relatively certain under reasonable levels of risk aversion, but 

still not guaranteed. 

 

VI.  Maximizing Principal Utility by Constraining TEV and Beta 

In section IV, I discussed controlling the level of risk an external manager takes 

by using a tracking error constraint, similar to Jorion (2003).  This constrains the 

delegated manager to purchase a portfolio that optimizes principal utility despite the 

agent’s actual level of risk aversion.  In section V, I discussed using a beta constraint to 

encourage the external manager to invest on a frontier superior (at least for some finite 

region) to the TEV frontier, similar to Roll (1992).  Both of these constraints have the 

ability to increase the principal’s utility and have the unfortunate downside of decreasing 

agent utility.  The combination of these two constraints should allow the principal to 

potentially increase utility to a greater extent than either constraint can accomplish alone.  

The inclusion of both a beta and tracking error constraint limits the set of possible 
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portfolios to either 2, 1, or 0 real solutions in both mean-variance and mean-TEV space.  

The evidence that there are at most 2 solutions to these intersections is more technically 

understood from an analysis of equation (49).  This is an equation parameterized in T, β, 

and r.  T and β are constrained to be fixed, and since the equation is quadratic in r, it has a 

maximum of 2 solutions. 

Since the values for T and β are derived from the same data, there are 

combinations of these calculations that are not feasible in a real sense based on the return 

vector and the covariance matrix, thus the option of zero solutions is a definite 

possibility.  Also as was discussed in the analysis of the agent’s portfolio choice along the 

TEV frontier, if there are two solutions to the optimization problem, one of the solutions 

always dominates the other solution in the agent’s portfolio choice based on his utility 

function.  Thus the proper use of a beta and TEV constraint, as long as the combination is 

consistent, could direct the external manager to buy any portfolio underneath the 

envelope of the efficient frontier.  “Any portfolio” obviously includes the principal’s 

global optimal portfolio.  Therefore, a principal would calculate the optimal constraints 

by maximizing his global utility function, unconstrained, then merely calculate the beta 

and tracking error of this portfolio and provide those constraints to the agent.  Again, this 

would force the agent to buy the principal’s global optimal portfolio. 

The optimal beta constraint was calculated in the previous section and recall that 

this constraint is not dependent on the risk aversion level of the agent.  Thus, the optimal 

beta constraint is always as is given in equation (54).  Additionally, the tracking error 

constraint requirement made the agent’s risk aversion irrelevant.  However, just as with 
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controlling agent risk level along the TEV frontier by increasing and decreasing tracking 

error, the principal controls the agent’s risk level along the beta constrained frontier with 

a tracking error constraint.  As the tracking error constraint is increased, the agent moves 

further and further up the constrained beta frontier until the point where the constraint is 

reached, at the optimal portfolio.  The tracking error variance of the global optimal 

portfolio can be calculated by using the weight vector of the principal’s optimal portfolio 

choice from equation (24) and substituting it into the definition of tracking error variance: 

 
𝑇𝑇2 =

1
2𝜃𝜃

�𝐫𝐫′𝛀𝛀−𝟏𝟏𝐫𝐫 − 2�
𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

� 𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 +
(𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃)𝟐𝟐

𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏
� + 𝜎𝜎𝑏𝑏2

−
1
𝜃𝜃
�𝑟𝑟𝑏𝑏 −

𝐫𝐫′𝛀𝛀−𝟏𝟏𝟏𝟏 − 2𝜃𝜃
𝟏𝟏′𝛀𝛀−𝟏𝟏𝟏𝟏

� 

 

(55) 

 

This is the tracking error of the principal’s global optimal portfolio given an optimization 

on the agent’s information.  In this context, the tracking error constraint is definitely a 

function of the principal’s risk aversion coefficient.  

 In Figure 5, Panel A and B the curves of the mean-variance frontier, the constant 

TEV ellipse, and the constant beta frontier are graphed for various scenarios.  

Additionally, the global maximum portfolio is identified and the associated iso-utility 

curves are drawn; the principal’s utility is depicted in Panel A and the agent’s utility is 

depicted in Panel B.  It is evident in the figure that the constant beta frontier can cross the 

constant TEV ellipse in at most 2 places and also that it is possible for the curves to have 

no real intersections, indicating a set of inconsistent constraints.  The constant beta 

frontier is also tangent to the mean-variance frontier at exactly one point.  If the tracking 

error and beta constraints are as was defined above, then the curves of the efficient  
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Figure 5
Maximizing Principal Utility by Constraining Both the Tracking Error and Beta

Panel A: Mean-Variance Space

Panel B: Mean-TEV Space

This figure shows various levels of beta and tracking error constrained frontiers along with the 
principal's optimal constraints.  Given the optimal constraints, the agent will choose the principal's 
global optimal portfolio.  It is evident from the figure that the agent's utility is sub-optimal but that 
the principal's utility is maximized.  The optimally constrained beta and tracking error curves and 
the efficient frontier are all tangent to the principal's utility curve at the agent's choice portfolio.
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frontier, the constant beta frontier, and the constant TEV ellipse are exactly tangent at one 

point, the global mean-variance optimal portfolio.  Thus the intersection of these curves 

reflects that the constraints incentivize the delegated manager to buy the principal’s 

global optimal portfolio.  

 However, the constraints associated with the global maximum portfolio may be 

too loose.  For example, in the dataset used to build the figures in this paper, the beta 

constraint of the global optimal portfolio is about 0.68 and the tracking error volatility 

constraint is about 10%.  These constraints seem rather ridiculous to give an external 

manager in the context of delegated management.  In particular, the concern with a loose 

tracking error constraint is whether it is even possible to generate that type of tracking 

error versus a benchmark without buying another uncorrelated systematic risk.  This 

theory implies that all of the differentiation is done with the delegated manager’s 

uncorrelated alpha generating process.  Which leads to the second concern: if you 

benchmark a manager and give him a beta constraint of 0.6, what does the manager do 

with the other 0.4?  If the external manager’s uncorrelated, idiosyncratic strategy, their 

alpha strategy, takes factor exposure to any asset class other than the mandated asset 

class, then that creates inefficiency in in the principal’s overall portfolio. 

 That however is only the first concern.  It is not only probable but highly likely 

that it is not possible for the principal to identify his global optimal portfolio much less 

calculate the tracking error variance and beta of the portfolio.  This is particularly true 

considering the set of information he would need to optimize over is the agent’s set of 

information, information for which he would be hiring the delegated manager because the 
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principal does not know this information.  As other authors have suggested, using general 

bounds for these two constraints is probably more realistic.  Roll (1992) emphasizes the 

beta constraint of β = 1.  This constraint has the benefit of a guaranteed utility increase no 

matter the slope of the principal’s utility and is also consistent with the idea of preventing 

style drift.  The tracking error constraint can be imposed to move up the beta constrained 

frontier.  Below I calculate the optimal tracking error constraint given a beta constraint of 

1; however, it is likely that a moderate tracking error constraint would also be good 

enough.  Not coincidently, these two constraints, with reasonable values, are exactly the 

way principals control delegated managers in the investment industry.   

 Thus, the problem is to optimize principal utility by choosing tracking error given 

the constraint of β = 1.  We could parameterize the principal’s utility as a function of 

tracking error.  Similar to the problem of optimizing agent utility given a tracking error 

constraint, under the conditions of a fixed tracking error and a fixed beta, optimizing 

either agent or principal utility is now just a return maximization problem.  The 

relationship between tracking error and variance is a simple one, particularly with β = 1.  

The expression is just as follows: 

 𝜎𝜎2 = 𝑇𝑇2 + 𝜎𝜎𝑏𝑏2 (56) 

Calculating the level of return associated with the two constraints is a rather complicated 

expression but could be done by solving equation (49) for r.  It could also be done by 

using equation (52) above, setting beta equal to zero and using the principal’s risk 

aversion instead of the agent’s risk aversion. 
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Plugging this weight vector into the return function yields the following: 
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And the optimal constraint to T is chosen by applying that weight vector to the tracking 

error function: 
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This is the optimal constraint to T given a beta of 1 and the agent’s optimization process 

in relative space. 

 Just for reference, the numerical value of this point in my figures is about 9%.  

Realistically, this may also be a particularly loose tracking error constraint.  Even if a 

constraint is lower than where the optimal point is chosen, this is still guaranteed to be a 

utility increase for the principal since any deviation from the benchmark below the 

optimal point and above the benchmark must be a utility increase.  Jorion (2003) agrees 

with the idea of a general tracking error constraint.  His analysis brings up the point of 

using a tracking error bound to not extend variance too far and I am emphasizing that the 

bound should be set to maximize utility.  But, those two goals consistent with each other 

once the optimal tracking error bound is reached. 

 The constraints described above are depicted in Figure 6, Panels A and B.  It is 

evident from the figure that the constrained beta frontier when β = 1 passes thought the 

benchmark at its minimum point.  The frontier is superior to the TEV frontier over a good 

portion of its region, and the curve is tangent to the efficient frontier at a point well up the 

curve from the global efficient portfolio.  Increasing constant TEV ellipses eventually at 

the point of the optimally constrained portfolio are depicted.  The principal’s iso-utility 

curves are included in Panel A at the level of the benchmark, the optimally constrained 

portfolio, and the global optimal portfolio.  Utility at the optimally constrained portfolio 

has increased from the benchmark and the utility curve is tangent to the constrained beta 

frontier at this point.  Additionally, the optimal TEV ellipse passes through the chosen 

portfolio at this point.  The utility of this portfolio is obviously less than the utility of the  
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Figure 6
Maximizing Principal Utility by Choosing Tracking Error given a Beta Constraint of 1

Panel A: Mean-Variance Space

Panel B: Mean-TEV Space

In this figure, the principal uses a fixed beta constraint of 1 and chooses a tracking error to 
maximize his utility given the agent's portfolio choice.  The constrained TEV ellipse passes through 
the point at which the principal's utility is tangent to the constrained beta curve.  Also depicted are 
the agent's unconstrained choice and the principal's global optimal portfolios.
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global optimal but recall that it is unlikely that the principal knows the location of this 

portfolio anyway.  The agent’s utility curves are drawn in Panel B along with the 

optimization curves and it is apparent that utility in this space decreases for the agent. 

 

VII  Conclusion 

 This paper revisits the problem of Roll (1992) where a delegated investment 

manager optimizes over tracking error volatility rather than standard deviation.  In 

comparison to mean-variance optimization, TEV optimization creates a frontier that is 

inferior to the efficient frontier.  I show how this directly implies that the agent is 

optimizing over a utility function that is parameterized in tracking error volatility rather 

than in variance.  This framework is a prominent feature of modern investment 

management and arises through both a direct and an indirect performance incentive.  This 

performance incentive has been studied by many other authors and they arrive at various 

conclusions, mostly implying that relative optimization over tracking error is inefficient.  

Therefore delegated management, because of this inefficiency, is likely to be inferior for 

a principal even if the delegated manager has more skill and information. 

 However, I show that the principal’s preference is really dependent upon the 

interaction of the TEV frontier and the principal’s utility function.  Except for a very 

unlikely case, the case where the benchmark is perfectly optimal over the agent’s 

information, substantial utility improvements exist for the principal if the delegated agent 

is properly controlled.  Given industry anecdotes related to tracking error constraints and 

beta constraints, I reanalyze the tracking error constraint from Jorion (2003) and the beta 
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constraint from Roll (1992) in the context of a principal’s utility function to show that 

there are levels of these constraints that likely increase utility for the principal. 

 In isolation, the tracking error constraint is used to limit the level of standard 

deviation an unconstrained delegated manager would likely take.  Without the tracking 

error constraint, an agent could buy a portfolio so far up the TEV frontier that it actually 

decreases the principal’s utility therefore making the delegation a bad idea.  By imposing 

this constraint, the principal could ensure that the agent buy a portfolio within the region 

that increases utility.  If “good enough” information is available to the principal, I show 

how the principal could optimize the level of the tracking error constraint (given 

quadratic utility) thus, by imposing this optimal TEV constraint, could maximize his 

utility given the delegated performance incentive.  This level of utility is necessarily a 

utility increase except for the special case mentioned above.  I also show how the TEV 

constraint is effectively just a risk aversion constraint.  So, rather than trying to constrain 

or filter delegated managers directly on their level of risk aversion, tracking error allows 

principals to force managers to invest as if their risk aversion level was known to the 

principal.  The agent’s actual level of risk aversion is an unnecessary element of how to 

set the tracking error constraint.  Only the principal’s risk aversion level matters. 

Additionally, as Roll (1992) shows, the beta constrained TEV frontier is superior 

to the unconstrained TEV frontier and therefore is also a guaranteed utility increase for 

the principal as long as the beta constraint is set appropriately.  A beta constraint of 1 

always has a positive utility deviation for the principal.  Just as an optimal tracking error 

can be calculated, there is an optimal beta constraint that can be used to maximize the 
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principal’s utility.  Perhaps surprisingly, this beta constraint is constant despite the level 

of risk aversion of agent and is, once again, only dependent on the level of the principal’s 

risk aversion.  It happens to be equal to the beta of the principal’s global optimal 

portfolio, the portfolio optimized in principal utility over the agent’s information.  

Choosing this beta constraint is necessarily a utility increase for the principal and thus 

makes a beta constrained portfolio, in the context of delegated portfolio management a 

good idea. 

Given that these two constraints both work well in isolation, it is likely that a 

combination of these constraints lead to an even better portfolio.  Additionally, because 

of the intersection of the beta constrained frontier with the constant TEV ellipse, and the 

agent’s utility function, these two constraints can be used to pin a delegated manager to 

exactly one point underneath the envelope of the efficient frontier.  Since this includes 

the principal’s global optimal portfolio, setting the tracking error constraint and the beta 

constraint, which is just the same as the optimal beta constraint in isolation, to the levels 

of the global optimal portfolio forces the delegated manager to buy the optimal portfolio.  

However, since it is unlikely that a principal has the information to make this calculation, 

setting the constraints to reasonable levels are also likely to generate a utility increase for 

the principal.  Following Roll and Jorion, who both suggest considering reasonable levels 

for these constraints rather than a rigorous calculation, I assume that the beta constraint is 

set to one, the case with an unambiguous utility increase.  Under this assumption, I 

calculate the optimal tracking error constraint but it should be noted that any reasonable 
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tracking error constraint under this scenario is almost certainly a utility increase for the 

principal.   

Overall, delegated portfolio management is less efficient that doing it yourself.  

However, the reality of asymmetric information and differences in skill necessitate the 

delegation of a good portion of the assets that are managed in the modern investment 

industry.  Even given the inefficiency of delegated management, it is still possible to 

create utility increases for the principal if constraints are properly imposed.  In fact, under 

the scenario built in this essay, it is even possible to constrain the agent to act in a manner 

identical to that which the principal would act given exactly the same information and 

skill level.  This work is supportive of the idea of delegated portfolio management and 

shows clearly that it can be an efficient and rational exercise if the delegated managers 

are properly controlled and not left to maximize their own (agent) utility at the expense of 

the principal.  
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Table A1
Numerical Values Used to Build the Figures and Tables

r b
0.06 0 0.01114 0.00639 0.00522 0.00127
0.10 1 0.00639 0.01836 0.00948 0.00843
0.13 0 0.00522 0.00948 0.01779 0.00676
0.04 0 0.00127 0.00843 0.00676 0.01245

Ω

Every figure and calculation done in this paper were built with these three matrices.  I tried to be a 
pure as I could in the expressions without redefining variables, as much as possible.  These values 
were chosen somewhat arbitrarily for ease of depiction and exposition.  The final examples are mildly 
representative of a realistic scenario but not actually done with real calculations.
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