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ABSTRACT

By interval-censored data, we mean that the failure time of interest is known only

to lie within an interval instead of being observed exactly. Many clinical trials and

longitudinal studies may generate interval-censored data. One common example oc-

curs in medical or health studies that entail periodic follow-ups. An important special

case of interval-censored data is the so called current status data when each subject

is observed only once for the status of the occurrence of the event of interest. That

is, instead of observing the survival endpoint directly, we only know the observation

time and whether or not the event of interest has occurred at that time. Such data

may occur in many fields, for example, cross-sectional studies and tumorigenicity ex-

periments. Sometimes we also refer current status data to as case I interval-censored

data and the general case as case II interval-censored data. In the following, for sim-

plicity, we will refer current status data and interval-censored data to case I and case

II interval-censored data, respectively.

The statistical analysis of both case I and case II interval-censored failure time

data has recently attracted a great deal of attention and especially, many procedures

have been proposed for their regression analysis under various models. However,

due to the strict restrictions of existing regression analysis procedures and practical

demands, new methodologies for regression analysis need to be developed.

For regression analysis of interval-censored data, many approaches have been pro-

posed and for most of them, the inference is carried out based on the asymptotic

normality. It’s well known that the symmetric property implied by the normal dis-

tribution may not be appropriate sometimes and could underestimate the variance of
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estimated parameters. In the first part of this dissertation, we adopt the linear trans-

formation models for regression analysis of interval-censored data and propose an em-

pirical likelihood-based procedure to address the underestimating problem from using

symmetric property implied by the normal distribution of the parameter estimates.

Simulation and analysis of a real data set are conducted to assess the performance of

the procedure.

The second part of this dissertation discusses regression analysis of current status

data under additive hazards models. In this part, we focus on the situation when

some covariates could be missing or cannot be measured exactly due to various rea-

sons. Furthermore, for missing covariates, there may exist some related information

such as auxiliary covariates (Zhou and Pepe, 1995). We propose an estimated partial

likelihood approach for estimation of regression parameters that make use of the avail-

able auxiliary information. To assess the finite sample performance of the proposed

method, an extensive simulation study is conducted and indicates that the method

works well in practical situations.

Several semi-parametric and non-parametric methods have been proposed for the

analysis of current status data. However, most of these methods deal only with the

situation where observation time is independent of the underlying survival time com-

pletely or given covariates. The third part of this dissertation discusses regression

analysis of current status data when the observation time may be related to survival

time. The correlation between observation time and survival time and the covari-

ate effects are described by a copula model and the proportional hazards model,

respectively. For estimation, a sieve maximum likelihood procedure with the use

of monotone I-spline functions is proposed and the proposed method is examined

xi



through a simulation study and illustrated with a real data set.

In the fourth part of this dissertation, we discuss the regression analysis of interval-

censored data where the censoring machanism could be related to the failure time. We

consider a situation where the failure time depend on the censoring mechanism only

through the length of the observed interval. The copula model and monotone I-splines

are used and the asymptotic properties of the resulting estimates are established. In

particular, the estimated regression parameters are shown to be semiparametrically

efficient. An extensive simulation study and an illustrative example is provided.

Finally, we will talk about the directions for future research. One topic related

the fourth part of this dissertation for future research could be to allow the failure

time to depend on both the lower and upper bounds of the observation interval.

Another possible future research topic could be to consider a cure rate model for

interval-censored data with informative censoring.
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Chapter 1

Introduction

1.1 Data Structure

1.1.1 Interval-Censored Data

In statistical literature, interval censoring usually represents a sampling scheme or

an incomplete data structure. In the context of failure time data, interval censoring

means that the failure time variable of interest is observed or known only to lie

within some intervals or windows instead of being observed exactly. One field that

often produces interval-censored data is medical or health studies that entail periodic

follow-up. In this situation, an individual due for the pre-scheduled observations for

a clinically observable change in disease or health status may miss some observations

and return with a changed status. Accordingly, we only know that the true event

time is greater than the last observation time at which the change has not occured

and less than or equal to the first observation time at which the change has been
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observed to occur.

A more specific example of interval-censored data arises in the acquired immune

deficiency syndrome (AIDS) trials (De Gruttola V and Lagakos S., 1989) that, for

example, are interested in times to AIDS for human immunodeficiency virus (HIV)

infected subjects. In these cases, the determination of AIDS onset is usually based

on blood testing, which can be performed obviously only periodically but not con-

tinuously. In consequency, only interval-censored data may be available for AIDS

diagnosis times.

In reality, interval censoring can occur in different forms and each form represents

one type of interval-censored failure time data. Among them, one important special

case of interval-censored data is the so called current status data. In this situation,

each subject is observed only once for the status of the occurrence of the event of

interest, and thus producing either a left- or a right-censored observation. That is,

instead of observing the exact event time of interest, one only knows the observation

time and whether or not the event has occured at the time. One such example is given

by the tumorigenicity study where the time to tumour onset is usually of interest but

not directly observable. As a matter of fact, we only know the exact measurement of

the observation time which is often the death or sacrifice time of the animal. If the

animal dies at time t and if the tumour is present we have the interval (0, t], while if

the tumour is absent we have the interval (t,∞].

Sometimes, we also refer current status data to as caes I interval-censored data

and the general case as case II interval-censored data. For case II interval-censored

data which is referred to as interval-censored data in the following for simplicity, a

time interval (L,R] instead of the exact failure time is observed for a study subject

2



such that the survival time T is contained in this interval.

1.1.2 Non-informative and Informative Censoring

A common assumption for the analysis of interval censored data is that the obser-

vation times are independent of the survival time of interest completely or given the

covariates. Let T denote the survival time of interest, F (t) and S(t) denote the cu-

mulative distribution function and survival function of T , respectively. If we observe

current status data, which are usually denoted by

{Ci, δi = I(Ti ≤ Ci)}ni=1

where Ci represents the observation time on subject i, then the non-informative cen-

soring means that Ti and Ci are independent completely or given covariates.

It is clear that this assumption cannot be directly generalized to interval censoring

since in this case the endpoints of the interval, L and R, together with the survival

time T , have a natural relationship L < T ≤ R. Instead, for interval-censored data,

the non-informative interval censoring assumption specified as

P (T ≤ t|L = l, R = r, L < T ≤ R) = P (T ≤ t|l < T ≤ r) (1.1)

is usually used (Sun, 2006). This is saying that, except for the fact that T lies between

l and r which are the realisations of L and R, the interval (L,R) does not provide

any extra information for T . In other words, the probabilistic behaviour of T remains

the same except that the original sample space T ≥ 0 is now l = L < T ≤ R = r. In

3



the existence of covariates Z, one can relax the assumption (1.1) to

P (T ≤ t|L = l, R = r, L < T ≤ R, Z = z) = P (T ≤ t|l < T ≤ r, Z = z). (1.2)

Instead of the assumptions (1.1) or (1.2), another approach to define the non-informative

interval censoring is through or using the stochastic process that yieds interval cen-

soring (Lawless and Babineau, 2006). For example, one can assume that there exists

a sequence of observation times or an observation process and this process is inde-

pendent of the survival time T .

Although non-informative censoring is a common assumption used in most exsit-

ing literature for analysis of interval-censored data, there exist situations that this

assumption may not hold. As metioned earlier, an example of current status data

is given by tumorigenicity experiments. In these studies, the time to tumour onset

is usually of interest but not observalbe. Instead, only the death (natural death or

sacrifice) time of animals at study and the status of tumour onset at the death time

are observed. If the tumours are non-lethal, meaning that the tumour cannot cause

death and does not alter the risk of death from other causes, it is obvious that we can

reasonably assume that the tumour onset time and the death time are independent.

If the tumours are lethal, meaning that the tumour onset kills animals right away,

then it is reasonable to treat the death time equal to the tumour onset time. Most of

the tumours are between non-lethal and lethal and thus the dealth time may depend

on the tumour onset time.

For interval-censored data, there are also situations that may violate the non-

informative censoring assumption. For example, in a periodic follow-up study, there

could be some symptoms that occur first or together, making the a patient more

4



likely to visit the doctor. Another example is that there could exist some confound-

ing variables influcing both the failure time and and visiting times of patients (e.g.

the general state of health). Note that the censoring mechanism behind interval cen-

soring is usually much more complicated than that behind current status data. In

consequence, it is usually difficult or impossible to generalize the methods developed

for informatively current status data to them. To further see this, note that one can

write the likelihood contribution from a single interval-censored observation as

Pr(L < T ≤ R) = Pr(l < T ≤ r|L = l, R = r)Pr(L = l, R = r).

This indicates that to conduct regression analysis, one would have to specify some

joint models for Pr(L < T ≤ R) or for both Pr(l < T ≤ r|L = l, R = r) and

Pr(L = l, R = r). This is quite different from the case of current status data and

usually not easy.

1.1.3 Two Examples

1.1.3.1 Current Status Data

The data about lung and bladder tumours from 617 animals had been produced

from the ED10 study conducted at the National Center for Toxicological Research

(NCTR). The study lasted 33 months and was about the development of tumors

and time to tumour onset in relationship to the carcinogen 2-acetylaminofluorene (2-

AAF). Originally, 24,000 female mice were involved in the study and were randomized

to either a control group or one of the sevel dose levels of the carcinogen 2-AAF.

As the presence or absence of tumours was determined only through a pathologic
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examination conducted at the time of death, which indicated the development of the

tumours being before or after the death time. And each mouse was dead by either

natural causes or the predetermined sacrifice. Thus we have current status, where the

tumour onset time was the failure time of interest, T and the death time or sacrifice

time was the observation time C. Note that the natural deaths may be related to the

occurrence of tumours since the tumours may not be nonlethal.

1.1.3.2 Interval-Censored Data

A breast cosmesis data had been produced from a retrospective study on early breast

cancer patients at Joint Center for Radiation in Boston between 1976 and 1980. One

goal of this study was to compare early breast cancer patients who had been treated

with primary radiation therapy and adjuvant chemotherapy to those treated with

radiotherapy alone with respect to the cosmetic effects of their treatment.

It’s known that adjuvant chemotherapy improves the relapse-free and overall sur-

vival in at least some subgroups of patients treated initially by mastectomy. How-

ever, there is experimental and clinical evidence which indicates that chemotherapy

enhances the acute reponse of normal tissue to radiation treatment. Acute skin re-

actions are worse when adjuvant chemotherapy is administered in conjunction with

either postoperative radiation or primary radiation treatment for breast cancer. The

long-term impact of adjuvant chemotherapy on the radiation response of the breast

in uncertain. Thus researchers want to compare the patients who received adjuvant

chemotherapy following the initial radiation treatment to those who received only

the radiation treatment, to determine whether the chemotherapy affects the rate of

deterioration of the cosmetic state. Breast retraction was highly correlated with a
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negative overall cosmetic result and was one of the least subjective of the endpoints

that were followed. Thus the failure time of interest here was the time until breast re-

traction. The data consists of 94 early breast cancer patients, 46 of them were treated

by radiotherapy only and the rest of them were treated with adjuvant chemotherapy

in conjunction with primary radiation treatment. More details of this data set can

be found in Finkelstein and Wolfe (1985).

1.2 Some Commonly Used Models

Regression analysis is usually performed if one is interested in quantifying the effect

of some covariates on the survival time of interest or predicting survival probabilities

for new individuals. Of course, the first step for regression analysis is to specify an

appropriate regression model. In this dissertation, we will focus on semi-parametric

models and some corresponding inference procudures for interval-censored data, which

means that the baseline hazard function is treated as an infinite dimension parameter.

Unlike most methods developed for right-censored data, estimating regression param-

eters under interval-censoring usually involves estimation of both the parametric and

the non-parametrc parts. In other words, for interval-censored data, one has to deal

with estimation of some unknown baseline functions in order to estimate regression

parameters.

The proportional hazards model (Cox, 1972) has been the most commonly used

semi-parametric regression model for survival analysis for the past three decades.
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Under the proportional hazards assumption, we have

λ(t|z) = λ0(t) exp(z′β). (1.3)

where λ0(t) denotes the unknown baseline hazard function (the hazard function for

subjects with Z = 0) and β the vector of unknown regression parameters. Then we

could have

S(t) = S0(t)exp(z′β)

Another commonly used semi-parametric model in survival analysis is the propor-

tional odds model. This model can be expressed as

log
{ F (t|z)

1− F (t|z)

}
= h(t) + z′β (1.4)

where h(t) is an unknown monotone-increasing function, also referred to as the base-

line log odds. So that we know

S(t) =
1

1 + exp{h(t) + z′β}

As models (1.3) and (1.4), another attractive semi-parametric regression model is

the additive hazards model given by

λ(t|z) = λ0(t) + z′β (1.5)

It specifies that the effects of the covariates are additive rather than multiplicative as

in model (1.3).
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In addition to the models discussed above, the accelerated failure time model is

also widely used in survival analysis. It assumes that

log(T ) = Z ′β + ε (1.6)

where ε is an error term whose distribution is usually unspecified.

The four semi-parametric models described above are all specific models in terms

of the functional form of the effects of covariates. Sometimes one may prefer a model

that gives more flexibility. One such model is the linear transformation model that

specifies the relationship between the event time and the covariate as

h(T ) = Z ′β + ε (1.7)

where h : R+ → R is an unknown strictly increasing function and the distribution of

ε is assumed to be known.

Several other models or generalisations of the models discussed above are also

available for regression analysis of interval-censored failure time data. For example,

one may apply the partial linear model given by

log(T ) = Z ′1β + g(Z2) + ε,

a generalisation of the accelerated failure time model (1.6). Here both Z1 and Z2 are

covariates which may or may not overlap, g is an unknown smooth function, and ε

follows a pre-specified distribution.

9



1.3 Regression Analysis of Interval-Censored Data

In regression analysis, the primary objective is to estimate the covariate effects on the

event time. Semi-parametric regression analysis of interal-censored data has recently

attracted considerable attention and many procedures have been developed under

various models.

1.3.1 Regression Analysis of Current Status Data

A number of methods have been developed for semi-parametric regression analysis

of current status data. Huang (1996) developed the maximum likelihood approach

for fitting the proportional hazards model to current status data and an ICM-type

algorithm for estimation of unknown parameters. Chen et al. (2009) and Sun and

Shen (2009) considered the same problem in the presence of clustering and competing

risks, respectively. Instead of the proportional hazards model, among others, Huang

(1995) and Rossini and Tsiatis (1996) considered the maximum likelihood approach

under the proportional odds model but used different approximations for the baseline

log odds function. Lin et al. (1998) and Chen and Sun (2009) discussed the fitting

of the additive hazards model and developed some estimating equation-based and

imputation-based procudures, respectively. In particular, the latter model describes

a different aspect of the association between the failure time and covariates compared

to the former model and could be more plausible in many applications. Martinussen

and Scheike (2002) studies the same problem and provided an approach that can be

more efficient than that given in Lin et al. (1998). However, it involves estimation

of the baseline hazard function and can be much more complicated. Furthermore,
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Sun and Sun (2005) investigated regression analysis of current status data arising

from the linear transformation models. Note that all of the methods described above

assume that all covariates are known or can be exactly observed. And also, most of

them assume that assume that the observation time and the survival time of interest

are independent of each other.

In practice, there may be missing covariates or covariates cannot be measured

exactly due to various reasons such as financial limitations or technical difficulties.

In this case, the true covariates may only be measured precisely in a subset of the

study cohort, which is often referred to as the validation set. Furthermore, for miss-

ing covariates, there may exist some related information such as auxiliary covariates

(Zhou and Pepe, 1995). In epidemiological or genetic studies, for example, the mea-

surements of some covariates could be expensive and to save the cost, sometimes

one may instead collect information on some related covariates that can be obtained

relatively cheaply. For statistical analysis of such data, a naive approach would be to

base the analysis only on the subjects in the validation set. It’s not hard to see that

this would lose some efficiency. The authors who investigated approaches that take

into account the available auxiliary covariates include Hu and Lin (2002), Huang and

Wang (2000), Lin and Ying (1993), Liu et al. (2009), Wang et al. (1998), Zhou and

Pepe (1995) and Zhou and Wang (2000).

To address the issue of informative censoring in the context of current status data,

several approaches have been proposed. Dewanji and Kalbfleisch (1986), Dinse (1991)

and Lindsey and Ryan (1993) addressed this problem for univariate current status

data by assuming transition functions and mainly used an expectation-maximization

(EM) algorithm for estimation. Dunson and Dinse (2002) proposed a Baysian ap-
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proach for multivariate current status data with informative censoring and character-

ized the tumor onset and death process in terms of transition probabilities. Instead

of assuming a multistate model like the above procudures, Lagakos and Louis (1988)

gave a different method that assumes that the tumour lethality is known. Zhang et

al. (2005) postulated a frailty variable to characterize the correlation between the

failure time and censoring time.

1.3.2 Regression Analysis of Interval-Censored Data

There also exist many methods for regression analysis of interval-censored failure

time data. Finkelstein (1986) considered the fitting of proportional hazards model

and proposed to apply the Newton-Raphson algorithm to determine the MLE of β

and the baseline cumulative hazard function together. Sattern (1996) proposed a

marginal likelihood method and Goggins et al. (1998) developed a Markov Chain

Monte Carlo EM algorithm for the same problem. Huang and Rossni (1997) and

Shen (1998) applied the sieve estimation procedures under the proportional odds

model. The former employed a piecewise linear function, while the latter used a

monotone spline to approximate the baseline log odds function. Rabinowitz et al.

(2000) discussed the same problem with an alternative method which does not require

estimation of the baseline log odds function but assumed that subjects are still under

follow-up even after the failure event has occured. For inference about the additive

hazards model based on interval-censored data, Zeng et al. (2006) investigated the

maximum likelihood approach. And Chen and Sun (2009) and Zhu et al. (2008) gave

a multiple imputation-based procedure and a transformation approach, respectively.

Rabinowitz et al. (1995) and Betensky et al. (2001) developed some procedures under
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the accelerated failure time model and employed a class of score statistics and the

estimating equation idea, respectively. Both of these two methods require estimation

of the distribution of the error term ε. Li and Pu (2003) investigated the same problem

and employed a rank-based estimating equation which does not require estimation

of the distribution of ε but may not be efficient. Zhang et al. (2005) proposed an

inference approach for fitting the linear transformation models to interval-censored

data.

The inference under most of maximum likelihood methods and estimating equation-

based approaches is performed based on the asymptotic normality. However, the

symmetric property implied by the normal distribution may not be appropriate some-

times. One possible alternative could be the empirical likelihood-based procedure

which does not impose the symmetric assumption on the distribution of the esti-

mated regression parameters. The empirical likelihood has been widely applied in

many different statistical areas over the last 20 or 30 years (Chen, 1994; Owen, 1988;

Qin and Lawless, 1994).

In contrast with that for non-informative interval censoring, only limited literature

exists for regression analysis of informatively interval-censored data, including Zhang

et al. (2007) and Wang et al. (2010). They considered the cases where T follows

proportional hazards model and additive hazards model, recpectively, marginally and

in both cases, the proportional hazards model was also used to model the censoring

variables.
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1.4 Outline of The Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

the regression analysis of interval-censored failure time data arising from the linear

transformation models. It’s well known that the symmetric property of the estimated

regression parameters implied by the normal distribution may not be appropriate

sometimes. For this problem, we propose an empirical likelihood-based procedure

for deriving the confidence regions for regression paremeters. Simulation studies and

analysis of a real data set are conducted to assess the performance of the procedure.

In Chapter 3, we focus on regression analysis of current status data under the

additive hazards model when there exist missing and auxiliary covariates. To address

this problem, we propose an estimated partial likelihood approach for estimation of

regression parameters that makes use of the available auxiliary information. The

method can be easily implemented and the asymptotic properties of the resulting

estimates are established. An extensive simulation study is conducted to assess the

finite sample performance of the proposed method and it indicates that the method

works well in practical situations.

In Chapter 4, we consider the regression analysis of current status data when the

observation time may be related to the survival time. We employ a copula function

to model the correlation between observation time and survival time and use the

proportional hazards model for the covariate effects on both the observation time and

the survival time. For inference, we develop a sieve maximum likelihood estimation

procedure with the use of monotone I-spline functions. Asymptotic properties of the

resulting estimates are established. Furthermore, the proposed method is examined

through a simulation study and illustrated with a real data set.
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In Chapter 5, we discuss the regression analysis of interval-censored data with

informative censoring. We focus on the situation where the failure time depends on

the censoring interval only through its length and model that dependence through a

copula function. A sieve maximum likelihood approach is presented for the analysis

of such data arising from the proportional hazards model. In the approach, monotone

I-splines are used and the asymptotic properties of the resulting estimates are also

established. We also provide estimation results of a simulations study as well as an

illustrative example.

In Chapter 6, several directions for future research are discussed.
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Chapter 2

Empirical Analysis of
Interval-Censored Failure Time
Data with Linear Transformation
Models

2.1 Introduction

Interval-censored failure time data naturally arise in many studies including economic,

epidemiological and medical follow-up studies as well as social sciences (Chen et al.,

2012; Sun, 2006). In this case, the failure time of interest is observed only to belong

to an interval or some windows instead of being observed exactly.

One example is for studies on HIV infection times. If a patient is HIV positive

at the beginning of a study, then the HIV infection time is usually determined by a

retrospective analysis of his or her medical history. Therefore, we are only able to

obtain an interval given by the last HIV negative test date and the first HIV positive
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test date for the HIV infection time.

Many methods have been developed for regression analysis of interval-censored

failure time data under various models and this is especially the case for right-censored

data, a special case of interval-censored data (Kalbfleisch and Prentice, 2002). For

example, among others, Finkelstein (1986) and Huang (1999) considered the fitting

of the proportional hazards model (Cox, 1972; Andersen and Gill, 1982) to interval-

censored data and developed the maximum likelihood approaches. Other models

that have been used for interval-censored data include the additive hazards model

and the proportional odds model, and in these situations, a common tool used for the

development of inference procedures is the estimating equation theory. For example,

Wang et al. (2010) proposed an estimating equation-based approach for interval-

censored data with the additive hazards model; Chen et al. (2007) investigated the

proportional odds model for multivariate interval-censored failure time data.

The models mentioned above are all specific models and sometimes they could

be too restrictive in practice. Corresponding to this, among others, Zhang et al.

(2005) investigated the use of the linear transformation model for regression analysis

of interval-censored data and proposed an estimating equation-based inference pro-

cedure. This latter model provides a class of flexible models and includes both the

proportional hazards model and the proportional odds model as special cases (Chen

et al., 2002). Note that the inference under most of both maximum likelihood meth-

ods and estimating equation-based approaches is performed based on the asymptotic

normality. It is well-known that the symmetric property implied by the normal dis-

tribution may not be appropriate sometimes. Also the method given in Zhang et al.

(2005) could underestimate the variance of the estimated regression parameters.
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To address the issues above, in the following, we propose an empirical likelihood

method for the regression problem with the linear transformation model. The empiri-

cal likelihood has been widely applied in many different statistical areas over last 20 or

30 years (Chen, 1994; Owen, 1988, 1990; Qin and Lawless, 1994). In particular, Zhao

(2010) applied it to the fitting of the linear transformation model to right-censored

failure time data. To present the proposed approach, we will first begin in Section 2.2

with introducing some notation and assumptions, especially the linear transformation

model. Also we will briefly review the estimating equation procedure given by Zhang

et al. (2005) in Section 2.2. An empirical likelihood method is then presented in

Section 2.3 and the asymptotic distribution of the resulting empirical likelihood ratio

is established. Some simulation results are presented in Section 2.4 and indicate that

the presented approach works well for practical situations. An illustrative example is

also provided in Section 2.4 and Section 2.5 contains some discussion and concluding

remarks.

2.2 Linear Transformation Models and Estimation

Consider a survival study that consists of n independent subjects. For subject i, let

Ti denote the failure time of interest and suppose that there exists a p-dimensional

vector of covariates Zi, i = 1, ..., n. Define SZi(t) = P (Ti > t|Zi), the survival

function of Ti given Zi. For the relationship between Ti and Zi, suppose that the Ti’s

follow the linear transformation model specified by

g{SZi(t)} = h(t) + ZT
i β . (2.1)
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Here h(t) is a completely unknown strictly increasing function, g(t) a known decreas-

ing function, and β a vector of unknown regression coefficients. It is easy to see that

model (2.1) can be equivalently expressed as

h(Ti) = −ZT
i β + εi , (2.2)

where the εi’s are random errors following the distribution function F (t) = 1− g−1(t).

Note that model (2.1) or (2.2) gives a class of flexible models and include many

commonly used models as special cases. For example, it gives the proportional hazards

model (Kalbfleisch & Prentice, 2002) if we take g(x) = log(− log(x)) and one gets

the proportional odds model if letting g(x) = −logit(x) (Pettitt, 1982, 1984). Many

authors have considered the inference about model (2.1), especially for the case of

right-censored failure time data (Zhao, 2010; Yu et al., 2011).

In the following, we briefly describe the inference procedure given in Zhang et al.

(2005) based on interval-censored data. For this, suppose that one observes interval-

censored data given by { (Li, Ri], Zi i = 1, ..., n }, where Li < Ti ≤ Ri. Also

suppose that the Zi’s are discrete variables and the censoring is independent in the

sense that

P{Ti ≤ t|Li = l, Ri = r, Li < Ti ≤ Ri, Zi } = P{Ti ≤ t|l < Ti ≤ r, Zi } .

This means the mechanism generating censoring intervals for T is independent of T

given Z. Let HZi denote the distribution function of the Ti’s given Zi and ĤZi the

maximum likelihood estimator of HZi , which can be obtained by the self-consistency
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algorithm among other algorithms (Sun, 2006). Then one can show that

E

{
(aiaj)

−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj) dHZi(ti) dHZj(tj)|Zi, Zj

}
= τ(ZT

ijβ0)) , (2.3)

where Zij = Zi − Zj, ai =
∫ Ri
Li

dHZi(ti), β0 is the true value of β and

τ(t) =

∫ ∞
−∞
{1 − F (s+ t)} dF (s) .

Motivated by the equation above, Zhang et al. (2005) proposed to use the esti-

mation equation

U(β) =
n∑
i=1

n∑
j=1

ωij(β)τ ′(ZT
ijβ)

{
(âiâj)

−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dĤZi(ti)dĤZj(tj)− τ(ZT
ijβ)

}
Zij = 0

(2.4)

for estimation of β. In the above, the ωij(β)’s are some positive bounded weight

functions and the âi’s are the ai’s defined above with HZ replaced by ĤZ . Let β̂ denote

the estimator of β given by the solution to the equation above. Zhang et al (2005)

proved that under some regularity conditions, one can approximate the distribution

of
√
n (β̂ − β0) by the normal distribution with mean zero and the covariance that

can be estimated by Σ̂Z = D̂−1 Γ̂ D̂−1. Here

D̂ =
1

n2

n∑
i=1

n∑
j=1

ωij(β̂) {τ ′(ZT
ij β̂)}2Z⊗2

ij

and

Γ̂ =
1

n3

n∑
i=1

n∑
j=1

n∑
k 6=j

(êij − êji) (êik − êki)ZijZT
ik , (2.5)
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where Z⊗2 = ZZT and êij is equal to

eij(β) = ωij(β)τ ′(ZT
ijβ)

{
(aiaj)

−1

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj(tj)− τ(ZT
ijβ)

}
(2.6)

with β and HZ replaced by β̂ and ĤZ , respectively. It follows that one can obtain

the 100(1− α)% confidence region for β as

R1 = { β : n(β̂ − β)T Σ̂−1
Z (β̂ − β) ≤ χ2

α(p) }

based on the normal approximation above, where χ2
α(p) denotes the upper α-quantile

of the chi-square distribution with degrees of freedom p.

It is obvious that R1 is symmetric. However, the distribution of β̂ may not be,

especially for small n. Another issue related to R1 is that as will be seen below,

it could lead to lower coverage probabilities since the method described tends to

underestimate the variance of the estimated parameters. In the next section, to

address these issues, a new empirical likelihood-based confidence region is developed.

2.3 Empirical Likelihood Procedure

In this section, we present an empirical likelihood procedure for obtaining the confi-

dence region and making the inference about β in model (2.1) or (2.2). For this, let

Ui = (ZT
i , Li, Ri)

T , and define b(Ui, Uj, β) = {Zijeij(β)+Zjieji(β)} and bn(Ui, Uj, β) =

{Zij êij(β)+Zjiêji(β)}, where êij(β) denote the quantity defined in (2.6) with replacing
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HZ by ĤZ . Also define

Wi(β) =
1

n− 1

n∑
j=1,j 6=i

b(Ui, Uj, β)

and

Wni(β) =
1

n− 1

n∑
j=1,j 6=i

bn(Ui, Uj, β) ,

i = 1, ..., n. It is easy to see that the Wi(β)’s are identically distributed and

Sn(β) =
1

n

n∑
i=1

Wi(β)

is a multivariate U -statistic for fixed β. It follows from (2.3) and (2.4) thatE{Wi(β0)} =

0. This suggests the following empirical likelihood function

L(β) = sup

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piWi(β) = 0, pi ≥ 0

}

and thus the estimated empirical likelihood function

Ln(β) = sup

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piWni(β) = 0, pi ≥ 0

}

for β, where p = (p1, . . . , pn)T denotes the probability vector.

Note that without any restriction, the natural estimator of p is given by (1/n, ..., 1/n)T .

This leads to the following empirical likelihood ratio

R(β) = sup

{
n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

piWni(β) = 0, pi ≥ 0

}
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for β. With the use of the lagrange multiplier method, one can easily obtain

l̂(β) = −2 log R(β) = 2
n∑
i=1

log
{

1 + λT Wni(β)
}

(2.7)

with the p-dimensional vector λ given by the equation

1

n

n∑
i=1

Wni(β)

{1 + λTWni(β)}
= 0 . (2.8)

In practice, one can calculate l̂(β) directly through R(β) using the restricted maxi-

mization instead of calculating λ first. It is apparent that one can easily develop a

confidence region for β based on l̂(β) if its distribution is known.

To derive the asymptotic distribution of l̂(β), we need the following regularity

conditions and two lemmas.

Condition 1. The covariate vectors Zi’s are bounded such that ‖ Zi ‖≤ C1 for some

positive constant C1, where ‖ · ‖ denotes the Euclidean norm.

Condition 2. The functions ω(·) and τ(·) defined in the previous section are differen-

tiable and whose derivatives ω′(·) and τ ′(·) are continuous.

Condition 3. The following two matrices

D(β0) = lim
n→∞

E

(
1

n2

n∑
i=1

n∑
j=1

ωij(β0) {τ ′(ZT
ijβ0)}2Z⊗2

ij

)

and

Γ(β0) = lim
n→∞

E

(
1

n3

n∑
i=1

n∑
j=1

n∑
k 6=j

(eij(β0)− eji(β0)) (eik(β0)− eki(β0))ZijZ
T
ik ,

)
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are positive definite.

Define Σ(β) = E{ b(U1, U2, β)bT (U1, U3, β) },Σ = Σ(β0),

Σn =
1

n

n∑
i=1

Wi(β0)W T
i (β0) , Σ̂ =

1

n

n∑
i=1

Wni(β̂)W T
ni(β̂) . (2.9)

Note that by following Hoeffding (1948) on scalar U -statistics, we can obtain

var{Sn(β0) } =
4Σ

n
+ O(

1

n2
) , a.s.

Also by following Hoeffding (1948) on the asymptotic normality for multivariate U -

statistics of degree 2 and Zhao (2010), respectively, one can derive the following two

lemmas.

Lemma 2.1 Assume that E{ b(U1, U2, β0) bT (U1, U2, β0) } < ∞ and Σ is positive

definite. Then as n → ∞, we have

√
nSn(β0)

D−→ N(0, 4 Σ) .

Lemma 2.2 Also assume that E{ b(U1, U2, β0) bT (U1, U2, β0)} < ∞. Then

Σn = Σ + o(1) , a.s.

Now we are ready to describe the main results needed to derive the confidence

region for β.

Theorem 2.1 Assume that the conditions 1 and 2 described above hold. Then as

24



n → ∞, we have

(i).
1

n

n∑
i=1

Wni(β0)W T
ni(β0)

P−→ Σ , (ii). Σ̂
P−→ Σ , (iii). Γ̂

P−→ Γ(β0) .

Theorem 2.2 Assume that the conditions 1-3 described above hold. Then the empir-

ical log likelihood statistic l̂(β)/4 converges in distribution to κ1χ
2
1(1) + · · ·+ κpχ

2
p(1),

where κ1, ..., κp are the eigenvalues of Σ−1Γ(β0) and the χ2
j(1)’s are independent chi-

square random variables with 1 degree of freedom.

The proofs for the two theorems above are given in the Appendix. Theorem 2.2

says that the limiting distribution of the empirical log likelihood ratio is a weighted

sum of iid χ2(1) random variables. To apply it, one needs to estimate the weights

κj’s and it is obvious that a natural way is to use the eigenvalues of matrix Σ̂−1 Γ̂.

Specifically, let κ̂1, ..., κ̂p denote such defined estimates of the κj’s. Then one can

obtain an asymptotic 100(1− α)% empirical likelihood confidence region of β by

R2 = { β : l̂(β)/4 ≤ Cα } ,

where Cα is the upper α-quantile of the distribution of κ̂1 χ
2
1(1) + ... + κ̂p χ

2
p(1).

It is well-known that in general, it is not easy to use the weighted χ2 distribution

and for this, one may want to apply the adjusted empirical log likelihood ratio (Wang

and Rao, 2001). Specifically, define ρ(β) = p/tr{Σ−1(β) Γ(β)}, where tr(A) denotes

the trace of a matrix A. Then it follows from Rao and Scott (1981) that one can

approximate the distribution of ρ(β) {κ1χ
2
1(1) + · · · + κpχ

2
p(1) } by χ2(p). In conse-

quence, this suggests that one can asymptotically approximate the distribution of the
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adjusted empirical log likelihood ratio statistic ρ̂(β) l̂(β)/4 by χ2(p), where ρ̂(β) is

defined as ρ(β) but with Σ(β) and Γ(β) replaced by Σ̂(β) and Γ̂(β), given in (2.9)

and (2.5) with β̂ replaced by β, respectively. To establish this formally, define the

adjusted empirical log likelihood ratio statistic as

l̂ad(β) = γ̂(β) l̂(β) ,

where

γ̂(β) = tr
{

Γ̂−1(β) Ŝ(β)
}

tr−1
{

Σ̂−1(β) Ŝ(β)
}

with

Ŝ(β) =
1

n2

{
n∑
i=1

Wni(β)

} {
n∑
i=1

W T
ni(β)

}
.

The following theorem gives the asymptotic distribution of l̂ad(β).

Theorem 1.3 Assume that the conditions 1-3 described above hold. Then as n → ∞,

the empirical log likelihood ratio statistic l̂ad(β0)/4 converges in distribution to χ2(p).

The proof of the theorem above is similar to that of Theorem 2.2 of Zhao (2010)

and thus omitted. It suggests that an asymptotic 100(1− α)% confidence region for

β can be obtained as

R3 = { β : l̂ad(β)/4 ≤ χ2
α(p) } .

For the determination of R3, note that the adjusted factor γ̂(β) involves the unknown

regression parameter β. To deal with it, one can apply the profile analysis method

and more specifically, by noting the convexity of the function l̂ad(β), one can easily

get left and right end points of the region R3 by solving l̂ad(β)/4 = χ2
α(p) for β.
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2.4 Numerical Studies

An extensive simulation was conducted to assess the performance of the adjusted em-

pirical likelihood procedure (AEL) for obtaining the confidence region R3. For com-

parison, we also obtained the confidence regionR1 given by the normality approximation-

based procedure (NA) proposed in Zhang et al. (2005). In the study, we considered

model (2.1) with

g(t) =

 log{(1− tα) (αtα)−1} if α > 0,

log{− log (t)} if α = 0

and α = 0, 0.5, 1. Note that α = 0 and α = 1 correspond to the proportional

hazards model and the proportional odds model, respectively. For covariates, we

assumed that there exists one covariate with the Zi’s generated from the Bernoulli

distribution with the success probability of 0.5.

To generate the failure times Ti’s of interest, we took h(t) = log(t) and h(t) =

log(0.5t) for the cases with α = 0 and 0.5, respectively, and rounded off the generated

survival times to their first decimal places. For the case with α = 1, we used

h(t) = log(0.08t) and rounded off the generated survival times to the nearest integers.

For the generation of censoring intervals, for the first two cases, the Li’s and Ri’s

were defined to be the generated failure times minus and plus some random numbers

generated from the uniform distribution U{0, 0.1, 0.2}, respectively. Note that as

pointed in Zhang et al. (2005), this does not give completely independent observation

times, but is more practical since it was motivated by and is equivalent to the usual

set-up in follow-up studies. For the third case, the same method was used except

that the uniform distribution U{0, 1, 2} was used. For all situations, we assumed
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that there existed some constant right-censoring times, which were chosen to give

10%, 20%, or 30% right-censored observations. The results given below are based on

1000 replications and the sample size n = 60 or 100.

Table 2.1 presents the 95% empirical coverage probabilities for β given by the

two methods, NA and AEL, under three different right censored ratios (CR) with

β0 = −1,−0.5, 0, 0.5, 1, respectively, and α = 0. The results for the cases with

α = 0.5 and 1 are given in Tables 2.2 and 2.3, respectively. These results suggest

that the proposed empirical procedure, AEL, seems to perform well for the situations

considers here, especially for the cases with α = 0.5 or 1 and n = 100. It is clear

that the performance gets better when the sample size increases as expected. In

comparison, as mentioned before, the NA procedure indeed tends to underestimate

the coverage probability. In the study, we also compared the sizes of the confidence

region given by the two procedures and although the proposed procedure performed

better than the NA procedure sometimes, the improvement is not significant.

To illustrate the proposed inference procedure, we apply it to a set of well-known

interval-censored failure time data arising from a breast cancer study (Finkelstein,

1986; Sun, 2006). The study consists of 94 early breast cancer patients, randomly

assigned to two treatment groups, radiotherapy alone and radiotherapy plus adjuvant

chemotherapy. Here the failure time of interest is the time to breast retraction and

the patients were examined only at different time points. Thus only interval-censored

data are available. One objective of the study is to compare the two treatments with

respect to the time until the appearance of breast retraction.

For the analysis, define Zi = 0 if the patient was given radiotherapy alone and

Zi = 1 otherwise. Table 2.4 gives the results obtained by the two methods AEL

28



and NA under the three models used for the simulation study. They include the

confidence regions and the p-values for testing β = 0. Note that for the three cases

of α = 0, 0.5, 1, the point estimates based on the NA procedure are β̂ = 0.697, 0.866

and 1.041, respectively. One can see from Table 2.4 that all p-values given by both

AEL and NA procedures are very close to each other and less than 0.01 level. In

other words, they all suggest that the patients given the radiotherapy plus adjuvant

chemotherapy had significantly higher risks for breast retraction than those given

only radiotherapy alone.

2.5 Discussion

This chapter discussed regression analysis of interval-censored failure time data arising

from the linear transformation model. Corresponding to the estimating equation

approach proposed in Zhang et al. (2005), we presented an empirical likelihood

procedure for deriving the confidence regions for regression parameters. Under the

procedure, one can either obtain an unadjusted empirical likelihood confidence region

R2 or an adjusted empirical likelihood confidence region R3. For the former, however,

the simulation is needed to obtain the critical value Cα, while the latter can be

implemented much easily.

As mentioned above, one advantage of the proposed empirical inference procedure

is that it does not impose the symmetry assumption on the distribution of the esti-

mated regression parameters. In contrast, the procedure given by Zhang et al. (2005)

and other asymptotic normality-based procedures always yield symmetric confidence

regions, which may not be true for finite sample situations. On the other hand, the
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empirical likelihood method can be relatively complicated in computation compared

to the other procedures as it involves the computation of Lagrange multipliers.
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10%CR 20%CR 30%CR
β n NA AEL NA AEL NA AEL
-1 60 0.916 0.932 0.906 0.925 0.913 0.936

100 0.923 0.941 0.926 0.940 0.907 0.936

-0.5 60 0.919 0.942 0.917 0.951 0.917 0.948
100 0.926 0.942 0.915 0.936 0.919 0.931

0 60 0.918 0.937 0.907 0.935 0.915 0.932
100 0.929 0.935 0.927 0.940 0.925 0.932

0.5 60 0.911 0.930 0.911 0.931 0.908 0.927
100 0.923 0.938 0.921 0.935 0.916 0.924

1 60 0.904 0.913 0.901 0.912 0.891 0.912
100 0.915 0.928 0.907 0.929 0.903 0.930

Table 2.1: Empirical coverage probabilities based on simulated data with α = 0.
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10%CR 20%CR 30%CR
β n NA AEL NA AEL NA AEL
-1 60 0.927 0.946 0.927 0.945 0.927 0.942

100 0.932 0.949 0.932 0.949 0.935 0.951

-0.5 60 0.919 0.946 0.928 0.945 0.921 0.952
100 0.924 0.953 0.929 0.949 0.929 0.948

0 60 0.919 0.948 0.900 0.944 0.904 0.935
100 0.928 0.949 0.923 0.951 0.920 0.950

0.5 60 0.918 0.946 0.915 0.951 0.918 0.939
100 0.930 0.945 0.929 0.945 0.928 0.940

1 60 0.918 0.938 0.920 0.938 0.913 0.945
100 0.938 0.943 0.934 0.949 0.934 0.941

Table 2.2: Empirical coverage probabilities based on simulated data with α = 0.5.

10%CR 20%CR 30%CR
β n NA AEL NA AEL NA AEL
-1 60 0.923 0.943 0.923 0.945 0.925 0.947

100 0.935 0.943 0.935 0.953 0.930 0.946

-0.5 60 0.925 0.949 0.928 0.938 0.928 0.941
100 0.925 0.944 0.926 0.941 0.924 0.948

0 60 0.926 0.944 0.927 0.938 0.930 0.939
100 0.937 0.950 0.933 0.947 0.931 0.953

0.5 60 0.928 0.939 0.914 0.936 0.918 0.938
100 0.928 0.950 0.936 0.946 0.929 0.953

1 60 0.922 0.940 0.912 0.934 0.910 0.930
100 0.925 0.947 0.919 0.936 0.920 0.938

Table 2.3: Empirical coverage probabilities based on simulated data with α = 1.

confidence regions p-values

α β̂ NA AEL NA AEL
0 0.697 [0.2050, 1.1890] [0.1703, 1.1458] 0.006 0.005

0.5 0.866 [0.2568, 1.4738] [0.2119, 1.4179] 0.005 0.005

1 1.041 [0.3199, 1.7701] [0.2543, 1.7026] 0.005 0.005

Table 2.4: Analysis results of the breast cancer study.
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Chapter 3

Regression Analysis of Current
Status Data under the Additive
Hazards Model with Auxiliary
Covariates

3.1 Introduction

This chapter discusses regression analysis of current status or case I interval-censored

failure time data arising from the additive hazards model (Lin et al., 1998; Marti-

nussen & Scheike, 2002; Sun, 2006). As introduced earlier, in current status data,

the failure time of interest is not exactly observed but is either left- or right-censored

at the observation time. One can find current status data in many other areas too

including cross-sectional studies, economics, demographical studies, medical studies,

reliability studies and social sciences (Jewell & van der Laan, 1995; Huang, 1996;

Rossini & Tsiatis, 1996).
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For regression analysis of failure time data, it is apparent that one needs covariate

information. However, in practice, there may be missing covariates or covariates

cannot be measured exactly due to various reasons such as financial limitations or

technical difficulties. In this case, the true covariates may only be measured precisely

in a subset of the study cohort, which is often referred to as the validation set.

Furthermore, for missing covariates, there may exist some related information such

as auxiliary covariates (Zhou & Pepe, 1995). In epidemiological or genetic studies,

for example, the measurements of some covariates could be expensive and to save the

cost, sometimes one may instead collect information on some related covariates that

can be obtained relatively cheaply. For statistical analysis of such data, it is apparent

that a naive approach is to base the analysis only on the subjects in the validation

set. On the other hand, it is not hard to see that this would lose some efficiency

and one should employ some methods that take into account the available auxiliary

covariates. The authors who investigated this include Hu & Lin (2002), Huang &

Wang (2000), Lin & Ying (1993), Liu et al. (2009), Wang et al. (1998), Zhou & Pepe

(1995) and Zhou & Wang (2000).

Many procedures have been developed for regression analysis of current status

failure time data under various models. For example, Huang (1996) developed the

maximum likelihood approach for fitting the proportional hazards model to current

status data and established the asymptotic properties of the maximum likelihood esti-

mates. Chen et al. (2009) and Sun & Shen (2009) considered the same problem in the

presence of clustering and competing risks, respectively. Instead of the proportional

hazards model, among others, Lin et al. (1998) and Chen & Sun (2009) discussed the

fitting of the additive hazards model to current status data and developed some esti-
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mating equation-based and imputation-based procedures, respectively. In particular,

Lin et al. (1998) pointed out that the latter model describes a different aspect of the

association between the failure time and covariates compared to the former model

and could be more plausible than the former in many applications. Furthermore, Sun

& Sun (2005) investigated regression analysis of current status data arising from the

linear transformation model. Note that all of the methods described above assume

that all covariates are known or can be exactly observed. It does not seem to exist an

established approach for regression analysis of current status data in the presence of

auxiliary covariates. In the following, we will discuss this problem under the additive

hazards model.

The remainder of this chapter is organized as follows. We will begin in Section 3.2

with introducing some notation, models and assumptions that will be used through-

out the chapter. Section 3.3 presents the estimation procedures for estimation of

regression parameters in the additive hazards model based on current status data

with auxiliary covariates. The methods can be easily implemented since they do not

involve estimation of an unknown function as some existing ones for the analysis of

current status data (Huang, 1996). Also the determination of the proposed estimates

is straightforward. In addition, the asymptotic properties of the proposed estimates,

including the consistency and the asymptotic normality, are established. In Section

3.4, an extensive simulation study is conducted to evaluate the finite sample perfor-

mance of the proposed method and the results indicate that it works well for practical

situations. An illustrative example is also given in Section 3.4 and Section 3.5 contains

some discussion and concluding remarks.
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3.2 Notation, Models and Assumptions

Consider a failure time study that consists of n independent subjects. For subject

i, let Ti denote the failure time of interest and suppose that there exists a vector of

covariates Zi(t), which may depend on time t. For the relationship between Ti and

Zi(t), in the following, we assume that given the history of covariates up to time t,

the hazard function of Ti has the form

λT (t|Zi(s), s ≤ t) = λ0(t) + β′0Zi(t). (3.1)

That is, Ti follows the additive hazards model (Lin & Ying, 1994). In the above, λ0(t)

denotes an unknown baseline hazard function and β0 a vector of unknown regression

parameters.

In the following, we assume that for some subjects, covariates Zi(t) are missing or

not observed but there exists a vector of auxiliary covariates denoted by Xi(t) that

are known or observed for all subjects. Let V denote the set of indices of the subjects

whose true covariates Zi(t) are known, V̄ the complement of V , and nv and nv̄ the

sizes of V and V̄ , respectively. The set V is usually referred to as the validation

set. Note that here for simplicity, we assume that all components of the covariates

are either known or missing together and some comments will be given below for

the situation where the missing happens only on some of the components. Also we

assume that V is a simple random sub-sample of the whole set of study subjects. For

the data on the failure times Ti’s of interest, it will be assumed that each subject is

observed only once at time Ci and the observed information consists only of Ci and

δi = I(Ti ≥ Ci), i = 1, ..., n. That is, we have current status data.
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In practice, the observation times Ci’s may depend on covariates too. For this,

we will assume that given Zi(t), the hazard function of Ci has the form

λc(t) = λc0(t) eγ
′
0Zi(t) ,

where λc0(t) denotes an unknown baseline hazard function and γ0 a vector of unknown

regression parameters as β0. That is, the Ci’s follow the proportional hazards model.

In the following, we will assume that given Zi, Ti and Ci are independent.

For each i, define Ni(t) = I(Ci ≤ min(t, Ti)) and Yi(t) = I(Ci ≥ t). Then Ni(t)

is a counting process with the intensity process

λi(t|Zi(s), s ≤ t) = λc0(t) e−Λ0(t) e−β
′
0Z
∗
i (t)+γ′0Zi(t) , λc0(t) e−β

′
0Z
∗
i (t)+γ′0Zi(t) (3.2)

(Lin et al., 1998), where Λ0(t) =
∫ t

0
λ0(s)ds and Z∗i (t) =

∫ t
0
Zi(s)ds. Note that

the equation above says that λi(t|Zi(s), s ≤ t) satisfies the Cox proportional hazards

model. Based on this, if all true covariates Zi(t) were observed, Lin et al. (1998)

suggested to estimate both β0 and γ0 by using the partial likelihood function

LP (β) =
n∏
i=1

{
exp(−β′Z∗i (Ci) + γ′Zi(Ci))∑n

j=1 Yj(Ci) exp(−β′Z∗j (Ci) + γ′Zi(Ci))

}δi

. (3.3)

It is apparent that LP (β) is not available for our situation. In the next section, we

will generalize it to the auxiliary covariate situation.

37



3.3 Estimation Procedures

Now we consider estimation of regression parameters β0 as well as γ0. For the sim-

plicity of presentation, first we will consider the situation where γ0 = 0 and then

discuss the general situation.

Assume that γ0 = 0. That is, the observation times Ci’s do not depend on the

covariates. To estimate β0, as mentioned above, the partial likelihood function LP is

not available as the right side of equation (3.2) is unknown for some i. To deal with

this, by following Prentice (1982) and for such i, it is natural to consider the intensity

conditional on Xi(t) rather than on Zi(t) or the induced intensity process

λ̃i(t) = λc0(t)E
{
e−β

′
0Z
∗
i (t)|Yi(t) = 1, Xi(t)

}
.

It is easy to see that this is still the proportional hazard model with the relative risk

function

φi(t, β0) , E
{
e−β

′
0Z
∗
i (t)|Yi(t) = 1, Xi(t)

}
.

This suggests that for estimation of β0, one could employ the induced partial likeli-

hood function

LIP (β) =
n∏
i=1

{
Φi(Ci, β)∑n

j=1 Yj(Ci)Φj(Ci, β)

}δi

,

where

Φi(t, β) = φi(t, β) I(i ∈ V̄ ) + ϕi(t, β) I(i ∈ V )

with ϕi(t, β) = e−β
′Z∗i (t).

Of course, LIP (β) is still not applicable since the relative risk function φi(t, β) is

still unknown. On the other hand, Prentice (1982) argued that, if φi(t, β) could be
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calculated or estimated as a function of β, then statistical inference could be based on

the corresponding induced partial likelihood. To estimate φi(t, β), we will assume that

the Xi(t)’s are discrete and take only finite values. Then an intuitive and unbiased

estimate of φi(t, β) is given by

φ̂i(t, β) =

∑
j∈V Yj(t) I(Xj(t) = Xi(t))ϕj(t, β)∑

j∈V Yj(t) I(Xj(t) = Xi(t))

based on the validation set V . Some comments will be given below for the situation

where the Xi(t)’s are continuous. Let Φ̂i(t, β) denote Φi(t, β) with φi(t, β) replaced

by φ̂i(t, β). Then it is natural to base the estimation of β0 on the following estimated

partial likelihood function

LEP (β) =
n∏
i=1

{
Φ̂i(Ci, β)∑n

j=1 Yj(Ci) Φ̂j(Ci, β)

}δi

.

It is apparent that if all true covariates Zi(t)’s are known or observed, LEP (β) reduces

to LP (β).

Let β̂EP denote the estimate of β0 defined as the value of β that maximizes the

estimated partial likelihood function LEP (β). For the determination and investigation

of the asymptotic properties of β̂EP , we need some more notation. Let τ denote the

longest follow-up time and define

Ŝ(j)
n (t, β) =

1

n

n∑
i=1

Yi(t)Φ̂
(j)
i (t, β) , j = 0, 1, 2,

D
(j)
nl (t, β) =

1

n

n∑
i=1

Yi(t)

(
Φ̂

(j)
i (t, β)

Φ̂i(t, β)

)⊗l
Φi(t, β0) , l = 1, 2; j = 1, 2,
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s(j)(t, β) = E
{
Yi(t) Φ

(j)
i (t, β)

}
, j = 0, 1, 2,

and

d
(j)
l (t, β) = E

Yi(t){Φ
(j)
i (t, β)

Φi(t, β)

}⊗l
Φi(t, β0)

 , l = 1, 2; j = 1, 2 .

In the above, f (j)(t, β) denotes the j-order partial derivative of function f(t, β) with

respect to β, and A⊗l = 1, A and AA′, respectively, for l = 0, 1, 2. Also define

Ft = σ{Ci ≤ t,Xi(u), Zi(u), Yi(u) , i = 1, ..., n, 0 ≤ u ≤ t }

and

Mi(t) = Ni(t) −
∫ t

0

Yi(u) Φi(u, β0)λc0(u) du , i = 1, ..., n,

which are martingales.

Using the notation above, we have

lEP (β) = log{LEP (β)} =
n∑
i=1

δi

{
log
(

Φ̂i(Ci, β)
)
− log

(
n∑
j=1

Yj(Ci)Φ̂j(Ci, β)

)}
,

UEP (β) =
∂lEP (β)

∂β
=

n∑
i=1

∫ τ

0

Φ̂
(1)
i (t, β)

Φ̂i(t, β)
dNi(t)−

n∑
i=1

∫ τ

0

∑n
j=1 Yj(t)Φ̂

(1)
j (t, β)∑n

j=1 Yj(t)Φ̂j(t, β)
dNi(t)

=
n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)
dMi(t)

+
n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)
Φi(t, β0)Yi(t)λ

c
0(t)dt ,
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and

1

n

∂UEP (β)

∂β
=

1

n

n∑
i=1

∫ τ

0

Φ̂
(2)
i (t, β)

Φ̂i(t, β)
−

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)

)⊗2

−

 Ŝ(2)
n (t, β)

Ŝ
(0)
n (t, β)

−

(
Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)⊗2
 dMi(t)

+
1

n

n∑
i=1

∫ τ

0

Φ̂
(2)
i (t, β)

Φ̂i(t, β)
−

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)

)⊗2

−

 Ŝ(2)
n (t, β)

Ŝ
(0)
n (t, β)

−

(
Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)⊗2
Yi(t)dΛΦi(t)

, A1(τ, β) + A2(τ, β) ,

where dΛΦi(t) = Φi(t, β0)λc0(t)dt. It is easy to see that lEP (β) is a concave function

with a unique maximum at β̂EP . That is, β̂EP can be determined by solving the

estimated partial likelihood score equation UEP (β) = 0. The following theorems give

the consistency and the asymptotic normality of β̂EP .

Theorem 3.1 Suppose that the regularity conditions (1) - (4) given in the Appendix

hold. Then as n → ∞, we have β̂EP − β0
P−→ 0.

Theorem 3.2 Suppose that the regularity conditions (1) - (6) given in the Appendix

hold. Then as n → ∞,
√
n (β̂EP − β0) is asymptotically normally distributed with

mean zero and the covariance matrix

ΣEP (β0) = Σ(β0)−1 { (1− ρ)Σ1(β0) + ρΣ2(β0) } Σ(β0)−1, (3.4)

where ρ denotes the limit of nv/n as n→∞,

Σ(β0) =

∫ τ

0

(
d

(1)
2 (t, β0)− (s(1)(t, β0))⊗2

s(0)(t, β0)

)
λc0(t)dt,
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Σ1(β0) =

∫ τ

0

E


Yi(t)

(
φ

(1)
i (t, β0)

)⊗2

φi(t, β0)

− (s(1)(t, β0)
)⊗2

s(0)(t, β0)

λc0(t)dt ,

and

Σ2(β0) = E

{∫ τ

0

(
ϕ

(1)
j (t, β0)

ϕj(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
dMj(t)

−1− ρ
ρ

∫ τ

0

(
φ

(1)
j (t, β0)

φj(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
(ϕj(t, β0)− φj(t, β0))Yj(t)λ

c
0(t)dt

}⊗2

.

The proofs of the two theorems above are sketched in the Appendix. Also in the

Appendix, we show that the matrics Σ(β0), Σ1(β0) and Σ2(β0) can be consistently

estimated by

Σ̂(β) = − 1

n

∂2lEP (β)

∂β∂β′
, Σ̂1(β) =

1

nv̄

∑
i∈V̄

∫ τ

0

(
φ̂

(1)
i (t, β)

φ̂i(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)⊗2

dNi(t) ,

and

Σ̂2(β) =
1

nv

∑
i∈V

{∫ τ

0

(
ϕ

(1)
i (t, β)

ϕi(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)(
dNi(t)− Yi(t)ϕi(t, β)dΛ̂c

0(t)
)
− nv̄
nv
Q̂i

}⊗2

,

respectively, with β replaced by β̂EP . In the above,

Q̂i =

∫ τ

0

(
φ̂

(1)
i (t, β)

φ̂i(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)(
ϕi(t, β)− φ̂i(t, β)

)
Yi(t)dΛ̂c

0(t)

and

Λ̂c
0(t) =

∫ τ

0

∑n
i=1 dNi(t)∑n

j=1 Yj(t)Φ̂j(t, β)
.
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Thus the covariance matrix of β̂EP can be consistently estimated by using (3.4) with

Σ(β0), Σ1(β0) and Σ2(β0) replaced by their estimates given above and ρ by nv/n.

Now we consider the general situation where γ0 is unknown. That is, the ob-

servation times Ci’s may depend on the covariates through the proportional hazards

model specified above. In this case, it is actually straightforward to generalize the

estimation procedure described above. More specifically, one can easily show that the

induced intensity process λ̃i(t) and partial likelihood function LIP defined above now

have the forms

λc0(t) e−Λ0(t) E
{
e−β

′
0Z
∗
i (t)+γ′0Zi(t)|Yi(t) = 1, Xi(t)

}
, (3.5)

and
n∏
i=1

(
Φ̃i(Ci, β, γ)∑n

j=1 Yj(Ci)Φ̃j(Ci, β, γ)

)δi

,

respectively. In the above

Φ̃i(t, β, γ) =
{
φ̃i(t, β, γ)I(i ∈ V̄ ) + ϕ̃i(t, β, γ)I(i ∈ V )

}
,

where φ̃i(t, β, γ) = E{e−β′Z∗i (t)+γ′Zi(t)|Yi(t) = 1, Xi(t)} and ϕ̃i(t, β, γ) = e−β
′Z∗i (t)+γ′Zi(t).

For the simultaneous estimation of β0 and γ0, motivated by LEP (β), we can employ

the estimated partial likelihood function

L∗EP (β, γ) =
n∏
i=1

 ˆ̃Φi(Ci, β, γ)∑n
j=1 Yj(Ci)

ˆ̃Φj(Ci, β, γ)

δi

, (3.6)

43



where ˆ̃Φi(t, β, γ) is equal to Φ̃i(t, β, γ) with φ̃i(t, β, γ) replaced by

ˆ̃φi(t, β, γ) =

∑
j∈V Yj(t)I(Xj(t) = Xi(t))ϕ̃j(t, β, γ)∑

j∈V Yj(t)I(Xj(t) = Xi(t))
.

It is easy to see that the only difference between LEP (β) and L∗EP (β, γ) is the dimen-

sion of the covariates involved.

Define θ = (β′, γ′)′ and θ0 = (β′0, γ
′
0)′. Also define the estimate θ̄EP = (β̄′EP , γ̄

′
EP )′

of θ as the value of θ that maximizes the the estimated partial likelihood function

L∗EP (β, γ). Then one can show that as with β̂EP , θ̄EP is consistent and the distribu-

tion of
√
n(θ̄EP −θ0) can be approximated by the normal distribution with mean zero

and the covariance matrix

ˆ̄Σ−1(θ̄)
{

(1− nv
n

) ˆ̄Σ1(θ̄) +
nv
n

ˆ̄Σ2(θ̄)
}

ˆ̄Σ−1(θ̄) .

Here ˆ̄Σ(θ̄), ˆ̄Σ1(θ̄) and ˆ̄Σ2(θ̄) are Σ̂(β), Σ̂1(β) and Σ̂2(β) with all ϕ
(j)
i (t, β), φ̂

(j)
i (t, β)

and Φ̂
(j)
i (t, β) replaced by ϕ̃

(j)
i (t, θ̄), ˆ̃φ

(j)
i (t, θ̄) and ˆ̃Φ

(j)
i (t, θ̄), respectively, j = 0, 1.

3.4 Numerical Studies

In this section, we conduct an extensive simulation study to evaluate the performance

of the estimation procedures proposed in the previous section with the focus on the

situation where γ0 = 0. As mentioned above, the estimation procedure based on

L∗EP (β, γ) is a simple generalization of that based on LEP (β) by incorporating a

large vector of covariates. In the simulation study, we considered three situations

for the true covariate Zi(t), generated from the Bernoulli distribution B(1, 0.5), the
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uniform distribution U(0,
√

3) or the normal distribution N(0, 0.25). Given the Zi’s,

the failure times Ti’s of interest were assumed to follow model (3.1) with λ0(t) = 1

and the observation times Ci’s were generated from the exponential distribution with

the hazard rate λc(t) = 0.5, 1.0, or 1.5. For the generation of the auxiliary covariate

Xi, we first generated Wi = Zi + ei with the ei’s being the random sample from

N(0, σ2) and then define Xi = I(Wi ≤ 0) + 2 I(Wi > 0). Note that here the

parameter σ controls the strength of the association between Zi and Wi and also

between Zi and Xi and as σ increases, Xi becomes less informative about Zi. The

results given below are based on 1000 replications and the sample size n = 200.

Table 3.1 presents the results on estimation of β0 with the Zi’s generated from

B(1, 0.5), β0 = −0.5, 0, or 0.5, σ = 0.1 or 0.4, and the fraction of the validation set

being 50% of the total sample. The results include the estimated biases (Bias) given

by the averages of the point estimates β̂EP minus the true values, the averages of the

standard error estimates (SEE), the sampling standard errors of the point estimates

(SSE), and the 95% empirical coverage probabilities (CP). For comparison, we also

obtained the naive estimates of β0, denoted by β̂P , given by maximizing LP (β) given

in (3) based only on the validation sample, and include them in the table along with

the relative efficiency (RE) given by SSE(β̂P )/SSE(β̂EP ). The results indicate that

the proposed estimate seems to be approximately unbiased and the proposed variance

estimate also seems to be reasonable. It is clear that β̂EP is more efficient, suggesting

that the auxiliary information and the proposed estimation procedure should be used.

Tables 3.2 and 3.3 give the results obtained on estimation of β0 with the Zi’s

generated from U(0,
√

3) and N(0, 0.25), respectively. All other set-ups are the same

as those used for Table 3.1. All results are similar to those given in Table 3.1 and yield
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the same conclusions. Also they all indicate that as expected, the estimate β̂EP is

more accurate for smaller σ. In order to assess the normal distribution approximation

to the distribution of β̂EP , we studied the quantile plots of the standardized β̂EP

against the standard normal random variable. Figures 3.1, 3.2 and 3.3 present the

quantile plots corresponding to the simulated data used in Tables 3.1, 3.2 and 3.3

with β0 = −0.5, 0 and 0.5, λc = 1 and σ = 0.1, respectively. They suggest that

the normal approximation is reasonable for the situations considered here. We also

considered many other set-ups and obtained similar results.

To illustrate the estimation procedures proposed in the previous sections, we apply

them to a set of current status data arising from a 2-year tumorigenicity study con-

ducted by National Toxicology Program (Wang et al., 2008). In the study, the groups

of 100 male and female F344/N rats and B6C3F1 mice were exposed to chloroprene

at concentrations of 0, 12.8, 32, or 80 ppm by inhalation for 2 years. Each animal was

examined for various tumors at its death time. Some animals died naturally during

the study and the others were sacrificed at the end of study. Since the tumor status

was only examined at death time, thus only current status data are available for the

tumor onset time, the variable of interest. In the following, we will focus on the ani-

mals in the control (0 ppm) and high dose (80 ppm) groups with respect to a specific

type of lung tumor, the Alveolar/Bronchiolar Adenoma (A/B A). One objective of

interest is to compare the tumor growth rates between the two groups and investigate

the dose effect.

For the analysis, let T denote the onset time of A/B A tumor and C the death time

in months. Define Z to be 1 for the mice in the high dose group and 0 otherwise. To

generate auxiliary covariates, we randomly select the 1 − p percentage of the animals
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for whom the covariate Z is assumed to be missing and generate the auxiliary covariate

X in the same way as in the simulation study above for all animals. Note that here

p represents the percentage of the subjects in the validation set. Table 3.4 gives the

estimated dose effects given by the two estimation procedures proposed in the previous

section and the naive estimation procedure described above with p = 0.3, 0.5 or 0.7

and σ = 0.1, 0.2 or 0.4. In addition, the table includes the estimated standard errors

and the p-values for testing no dose effect. The top part of the table is for the case

where we assume γ0 = 0, while the bottom part corresponds to the general situation.

Note that for both parts, the true values or estimates of the dose effect, corresponding

to p = 100% or no missing covariates, are also given for comparison.

One can see from Table 3.4 that for the case assuming γ0 = 0, all of the estimates

given by the proposed method suggest that there seems to exist moderate or significant

difference between the tumor growth rates of the two dose groups, which is the same

as the conclusion that one would obtain if there are no missing covariates. On the

other hand, almost all estimates given by the naive method suggest that the two

tumor rates are statistically same. For the situation that dose not assume γ0 = 0,

again all of the estimates given by the proposed method yielded the same conclusion

as that one would obtain if there are no missing covariates. In contrast, the results

given by the naive method that ignores the missing covariates depend on the values

of σ, or the association between the true and auxiliary covariates. In summary, these

results indicate that the use of auxiliary covariates is needed and necessary when

there exist missing covariates.
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3.5 Discussion and Concluding Remarks

This chapter discussed regression analysis of current status failure time data arising

from the additive hazards model when there exist missing and auxiliary covariates.

For the problem, two estimated partial likelihood approaches were developed for es-

timation of regression parameters. The approaches are generalizations of the method

proposed in Lin et al. (1998) for the case where all covariates can be observed. The

asymptotic properties of the proposed estimates have been established. The numeri-

cal results indicate that the proposed methodology works well for practical situations

and performs better than the naive method that bases the estimation only on the

subjects with known covariates.

As the method given in Lin et al. (1998), the presented estimation procedures have

the advantage that they do not involve any complicated nonparametric estimation of

the distribution of the failure time of interest and thus can be easily implemented.

In particular, the maximization of the proposed partial likelihood functions or the

determination of the proposed estimates can be easily carried out by any software

packages that can maximize a partial likelihood function given by right-censored

failure time data. For example, one such function, which was used in the numerical

study above, is the Matlab function fminsearch. Note that in the preceding sections,

we have assumed that auxiliary covariates are discrete. Sometimes this may not

be true and they are continuous. For the latter case, one can apply the same idea

discussed above, but needs to employ different approaches to estimate φi(t, β). One

such approach could be the kernel nonparametric estimation discussed in Nadaraya

(1964) and Watson (1964) among others.

Also in the preceding sections, we have assumed that all components of covariates
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are either observed or missing together. Actually the estimation methods developed

above can be used to the case where some components are observed and some are

subject to missing with auxiliary information. In this case, we can rewrite the additive

hazards model (3.1) as

λT (t|Zi(s), ξi(s), s ≤ t) = λ0(t) + β′1 Zi(t) + β′2 ξi(t) ,

where Zi(t) denotes the part of covariates that may be subject to missing and ξi(t)

the part that is always observed. It follows that for the case where γ0 = 0, the

relative risk function has the form

e−β
′
2ξ
∗
i (t)E

{
e−β

′
1Z
∗
i (t)|Yi(t) = 1, Xi(t), ξi(t)

}

and we have

Φi(t, β) =
{
ψi(t, β1)I(i ∈ V̄ ) + ϕi(t, β1)I(i ∈ V )

}
e−β

′
2ξ
∗
i (t) .

For the general situation, the relative risk function has the form

e−β
′
2ξ
∗
i (t)+γ′2ξi(t)E

{
e−β

′
1Z
∗
i (t)+γ′1Zi(t)|Yi(t) = 1, Xi(t), ξi(t)

}

and we have

Φi(t, β, γ) =
{
ψ̃i(t, β1, γ1)I(i ∈ V̄ ) + ϕ̃i(t, β1, γ1)I(i ∈ V )

}
e−β

′
2ξ
∗
i (t)+γ′2ξi(t) .

In the above,
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ξ∗i (t) =
∫ t

0
ξi(s) ds, β = (β′1, β

′
2)′, γ = (γ′1, γ

′
2)′, ψi(t, β) = E

{
e−β

′Z∗i (t)|Yi(t) = 1, Xi(t), ξi(t)
}

,

and ψ̃i(t, β, γ) = E
{
e−β

′Z∗i (t)+γ′Zi(t)|Yi(t) = 1, Xi(t), ξi(t)
}

. Similarly as before, one

can develop an estimation procedure for regression parameters and establish their

asymptotic properties.

There exist several directions for future research related to the problem discussed

here. One is that although the proposed methods can be easily implemented, they may

not be fully efficient. To develop a more efficient estimation procedure, by following

the suggestion of Lin et al. (1998), one may consider a two-stage approach that

estimates γ0 first and then estimates β0. More specifically, define ri(u, γ) = eγ
′Zi(u),

ei(u, γ) = E(eγ
′Zi(u)|Yi(u) = 1, Xi(u)) and Ri(u, γ) = ei(u, γ)I(i ∈ V̄ ) + ri(u, γ)I(i ∈

V ). Then one can estimate γ0 by the value of γ0 that maximizes

Lc(γ) =
n∏
i=1

R̂i(Ci, γ)∑n
j=1 Yj(Ci)R̂j(Ci, γ)

,

where

R̂i(t, γ) = êi(t, γ)I(i ∈ V̄ ) + ri(t, γ)I(i ∈ V )

=

∑
j∈V Yj(t)I(Xj(t) = Xi(t))ri(t, γ)∑

j∈V Yj(t)I(Xj(t) = Xi(t))
I(i ∈ V̄ ) + ri(t, γ)I(i ∈ V ) .

Let γ̃ denote the estimate of γ0 defined above. Then β0 can be estimated by maxi-

mizing

L(β, γ̃) =
n∏
i=1

 ˆ̃Φi(Ci, β, γ̂)∑n
j=1 Yj(Ci)

ˆ̃Φj(Ci, β, γ̂)

δi

. (3.7)

Another method for the development of an efficient estimation procedure is to gener-

alize the efficient score estimation procedure given in Martinussen & Scheike (2002),

who discussed the same problem as that considered in Lin et al. (1998). It is easy
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to see that both of these two ideas are much more complicated than that discussed

above.

Throughout the chapter, we have assumed that the failure times of interest follow

the additive hazards model (3.1). Of course, sometimes this may not be true and it

would be useful to develop similar estimation procedures for other regression models

such as the proportional hazards model. Also the method proposed above only applies

to case I interval-censored data and it would be helpful to generalize it to more general

case II interval-censored data (Sun, 2006). The latter means that the failure time of

interest is observed to belong to some intervals and reduces to case I interval-censored

data if the interval contains either zero or infinity.
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β σ λc Bias SSE SEE CP RE

β̂EP -0.5 0.1 0.5 -0.0235 0.2482 0.2180 0.943 1.4142

β̂EP 1.0 -0.0062 0.2721 0.2545 0.942 1.4425

β̂EP 1.5 -0.0035 0.3281 0.3114 0.948 1.3977

β̂EP 0.4 0.5 -0.0152 0.2638 0.2420 0.942 1.3306

β̂EP 1.0 -0.0083 0.2918 0.2783 0.947 1.3451

β̂EP 1.5 -0.0119 0.3625 0.3388 0.944 1.2651

β̂P 0.5 -0.0449 0.3510 0.3359 0.953

β̂P 1.0 -0.0471 0.3925 0.3739 0.955

β̂P 1.5 -0.0127 0.4586 0.4416 0.944

0 0.1 0.5 -0.0065 0.2868 0.2687 0.951 1.5847

β̂EP 1.0 0.0072 0.3238 0.2976 0.943 1.4336

β̂EP 1.5 -0.0045 0.3512 0.3491 0.945 1.4846

β̂EP 0.4 0.5 -0.0013 0.3345 0.2979 0.953 1.3587

β̂EP 1.0 0.0011 0.3521 0.3275 0.948 1.3184

β̂EP 1.5 -0.0030 0.3983 0.3819 0.953 1.3091

β̂P 0.5 0.0248 0.4545 0.4238 0.972

β̂P 1.0 0.0067 0.4642 0.4438 0.965

β̂P 1.5 0.0264 0.5214 0.5049 0.957

β̂EP 0.5 0.1 0.5 0.0260 0.3884 0.3557 0.946 1.5633

β̂EP 1.0 0.0225 0.3757 0.3557 0.949 1.5193

β̂EP 1.5 -0.0068 0.3989 0.3978 0.953 1.5275

β̂EP 0.4 0.5 0.0459 0.4527 0.3941 0.943 1.3413

β̂EP 1.0 0.0167 0.4188 0.3901 0.945 1.3629

β̂EP 1.5 0.0265 0.4716 0.4380 0.947 1.2920

β̂P 0.5 0.0578 0.6072 0.5650 0.961

β̂P 1.0 0.0363 0.5708 0.5510 0.966

β̂P 1.5 0.0319 0.6093 0.5919 0.965

Table 3.1: Estimation of β based on simulated data with Z ∼ B(1, 0.5).
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β σ λc Bias SSE SEE CP RE

β̂EP -0.5 0.1 0.5 -0.0162 0.1859 0.2272 0.958 1.3131

β̂EP 1.0 -0.0199 0.2545 0.2613 0.962 1.2570

β̂EP 1.5 -0.0159 0.3205 0.3208 0.961 1.2799

β̂EP 0.4 0.5 -0.0115 0.2053 0.3517 0.957 1.1890

β̂EP 1.0 -0.0070 0.2615 0.2862 0.963 1.2233

β̂EP 1.5 -0.0068 0.3423 0.3599 0.959 1.1984

β̂P 0.5 -0.0189 0.2441 0.2411 0.958

β̂P 1.0 -0.0377 0.3199 0.3136 0.959

β̂P 1.5 -0.0377 0.4102 0.3972 0.947

β̂EP 0 0.1 0.5 0.0032 0.3199 0.3083 0.954 1.3298

β̂EP 1.0 0.0060 0.3288 0.3212 0.963 1.3209

β̂EP 1.5 0.0020 0.4013 0.3817 0.954 1.2781

β̂EP 0.4 0.5 -0.0014 0.3299 0.3322 0.959 1.2895

β̂EP 1.0 0.0023 0.3628 0.3604 0.958 1.1971

β̂EP 1.5 0.0023 0.4327 0.4205 0.960 1.1853

β̂P 0.5 0.0156 0.4254 0.4091 0.967

β̂P 1.0 -0.0125 0.4343 0.4427 0.966

β̂P 1.5 -0.0142 0.5129 0.5112 0.958

β̂EP 0.5 0.1 0.5 0.0216 0.4493 0.4221 0.951 1.4407

β̂EP 1.0 0.0276 0.4428 0.4155 0.949 1.3957

β̂EP 1.5 0.0118 0.4967 0.4591 0.946 1.3511

β̂EP 0.4 0.5 0.0409 0.5077 0.4665 0.949 1.2750

β̂EP 1.0 0.0130 0.4775 0.4507 0.950 1.2942

β̂EP 1.5 0.0074 0.5327 0.5023 0.952 1.2598

β̂P 0.5 0.0366 0.6473 0.6064 0.970

β̂P 1.0 0.0456 0.6180 0.5955 0.968

β̂P 1.5 0.0338 0.6711 0.6419 0.953

Table 3.2: Estimation of β based on simulated data with Z ∼ U(0,
√

3).
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β σ λc Bias SSE SEE CP RE

β̂EP -0.5 0.1 0.5 -0.0192 0.3111 0.2925 0.948 1.3208

β̂EP 1.0 -0.0110 0.3448 0.3201 0.945 1.3736

β̂EP 1.5 -0.0051 0.3986 0.3748 0.950 1.3846

β̂EP 0.4 0.5 -0.0289 0.3184 0.3205 0.945 1.2905

β̂EP 1.0 -0.0203 0.3741 0.3415 0.950 1.2660

β̂EP 1.5 -0.0068 0.4457 0.4116 0.947 1.2383

β̂P 0.5 -0.0544 0.4109 0.3925 0.958

β̂P 1.0 -0.0526 0.4736 0.4424 0.946

β̂P 1.5 -0.0435 0.5519 0.5180 0.948

β̂EP 0 0.1 0.5 -0.0030 0.3084 0.2849 0.941 1.3693

β̂EP 1.0 -0.0063 0.3308 0.3172 0.948 1.3736

β̂EP 1.5 -0.0012 0.3938 0.3788 0.947 1.4137

β̂EP 0.4 0.5 0.0015 0.3415 0.3114 0.942 1.2366

β̂EP 1.0 -0.0054 0.3798 0.3494 0.946 1.1964

β̂EP 1.5 0.0010 0.4266 0.4116 0.947 1.3050

β̂P 0.5 0.0063 0.4223 0.4115 0.958

β̂P 1.0 -0.0087 0.4544 0.4478 0.952

β̂P 1.5 0.0050 0.5567 0.5219 0.958

β̂EP 0.5 0.1 0.5 0.0115 0.2954 0.2791 0.953 1.4320

β̂EP 1.0 0.0130 0.3377 0.3181 0.954 1.4516

β̂EP 1.5 0.0267 0.4115 0.3771 0.948 1.2994

β̂EP 0.4 0.5 0.0099 0.3282 0.3094 0.942 1.2888

β̂EP 1.0 0.0114 0.3614 0.3438 0.951 1.3564

β̂EP 1.5 -0.0112 0.4404 0.4113 0.953 1.2141

β̂P 0.5 0.0580 0.4230 0.3945 0.952

β̂P 1.0 0.0381 0.4902 0.4420 0.957

β̂P 1.5 0.0578 0.5347 0.5017 0.959

Table 3.3: Estimation of β based on simulated data with Z ∼ N(0, 0.25).
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Assuming γ0 = 0
Proposed method Naive method

σ p β̂EP SEE p-values β̂P SEE p-values
0.1 30% -0.0168 0.0084 0.0455 -0.0243 0.0177 0.1698

50% -0.0168 0.0085 0.0481 -0.0160 0.0116 0.1678
70% -0.0168 0.0086 0.0508 -0.0208 0.0105 0.0476

0.2 30% -0.0168 0.0084 0.0455 -0.0091 0.0154 0.5546
50% -0.0181 0.0085 0.0332 -0.0069 0.0116 0.5520
70% -0.0168 0.0086 0.0508 -0.0104 0.0101 0.3031

0.4 30% -0.0161 0.0091 0.0769 -0.0062 0.0085 0.4657
50% -0.0157 0.0089 0.0777 -0.0105 0.0120 0.3816
70% -0.0207 0.0091 0.0229 -0.0130 0.0102 0.2025

100% -0.0163 0.0086 0.0580 -0.0163 0.0086 0.0580
Without assuming γ0 = 0

Proposed method Naive method

σ p β̄EP SEE p-values β̄P SEE p-values
0.1 30% 0.0776 0.0617 0.2086 0.1340 0.1989 0.0298

50% 0.0776 0.0623 0.2086 0.3344 0.4253 0.0000
70% 0.0776 0.0617 0.2084 0.1385 0.1057 0.0248

0.2 30% 0.0748 0.0607 0.2177 0.0209 0.0807 0.7301

50% 0.0776 0.0619 0.2097 0.0749 0.0911 0.1995
70% 0.0776 0.0619 0.2103 0.0563 0.0598 0.3636

0.4 30% 0.0887 0.0975 0.3628 0.3168 0.3184 0.0012
50% 0.0413 0.0593 0.4860 0.0600 0.0795 0.3121
70% 0.0569 0.0588 0.3336 0.0767 0.0742 0.1921

100% 0.0776 0.0619 0.2103 0.0776 0.0619 0.2103

Table 3.4: Analysis results for the mice example.
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Figure 3.1: QQ-plot of β̂EP corresponding to Table 3.1.
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Figure 3.2: QQ-plot of β̂EP corresponding to Table 3.2.
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Figure 3.3: QQ-plot of β̂EP corresponding to Table 3.3.
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Chapter 4

Spline-Based Regression Analysis
of Current Status Data with
Dependent Censoring

4.1 Introduction

The statistical analysis of current status data has recently attracted considerable at-

tention and a number of semi-parametric and non-parametric methods have been

proposed. For example, Andersen and Ronn (1995) and Sun (1999) developed non-

parametric tests for treatment comparison based on current status data. Among

others, Huang (1996), Rossini and Tsiatis (1996), and Lin et al (1998) investigated

regression analysis of current status data under the proportional hazards model, pro-

portional odds model and additive hazards model, respectively. Most of these papers

assumed that the observation time is independent of the survival time of interest

completely or conditional on covariates. That is, the observation time is treated as a
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noninformative censoring time.

However, the dependence between observation time and survival time may exist

in practical examples, such as the tumorigenicity example we discussed earlier. For

the current status data when the observation time could depend on the survival time,

some approaches have been proposed. Most of the literature has focused on assum-

ing a multistate model which is usually complicated (Dewanji and Kalbfleisch, 1986;

Dinse, 1991; Lindsey and Ryan, 1993). Lagakos and Louis (1988) proposed another

approach by assuming that the tumour lethality is known. Zhang et al. (2005) pos-

tulated a frailty variable to characterize the correlation between the observation time

and survival time where estimating equations for both regression parameters about

the survival time and the observation time were constructed. More recently, Chen et

al. (2012) considered a general class of semiparametric transformation models with

log-normal frailty to allow correlation between the two times and an EM algorithm

is used for inference.

Note that in tumorigenicity experiments, the animals could die from natural causes

or the predetermined sacrifice, that is, observation time can sometimes consist of two

parts: time that depends on survival time (e.g. natural death time) and time that is

independent of survival time (e.g. sacrifice time). In this case, the real observed time

is the minimum of the two times. In the following, for convenience, the two times

will be referred to as observation time and censoring time, respectively.

In this chapter, we discuss regression analysis of current status data under the

proportional hazards model and takes into account the dependence between the ob-

servation time and the survival time. To develop the maximum likelihood estimation

approach, following Zhang et al. (2010), we employ the sieve method by using I-
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splines (Lu et al., 2007; Ramsay, 1988) to approximate the baseline cumulative haz-

ard functions for both the observation time and the survival time. Note that unlike

B-splines in Zhang et al. (2010), for which some order restrictions are needed to

guarantee the monotonicity, the monotonicity of the I-spline functions is guaranteed

by the nonnegativity constraints and thus no order restrictions is needed in optimiza-

tion. For the correlation between the observation time and survival time, the copula

model will be applied (Wang et al. 2012; Titman 2013).

The rest of this chapter is organized as follows. We will begin in Section 4.2 with

describing the notation, assumptions and models that will be used throughout the

chapter as well as the likelihood function. Section 4.3 presents the sieve semipara-

metric maximum likelihood estimation approach for all parameters. The resulting

estimates are shown to be consistent and furthermore, we prove that the estimated

regression parameters are asymptotically efficient and normally distributed. Section

4.4 gives some simulation results obtained from a simulation study performed to eval-

uate the finite sample performance of the proposed method and they suggest that

the approach works well for the situations considered. In Section 4.5, we apply the

method to a real data set and Section 4.6 contains some discussion and concluding

remarks.

4.2 Cox Models and Likelihood

Consider a failure time study that involves n independent subjects. Let T denote

the failure time of interest, C the observation time which may depend on T and Z a

p-dimensional vector of covariates. In the following, we assume that given Z, T and
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C both follow the proportional hazards model with

λ(T )(t|Z) = λ1(t) exp(Z ′β), (4.1)

λ(C)(c|Z) = λ2(c) exp(Z ′γ). (4.2)

where λ1(t) and λ2(c) denote the unknown baseline hazard functions for T and C,

respectively. β and γ are p-dimensional vectors of regression parameters that denote

the effect of covariates on T and C, respectively. Let FT and FC denote the marginal

distributions of T and C, respectively, and F their joint distribution. Then it is

well-known that there exists a copula function Cα(u, v) defined on I2 = [0, 1]× [0, 1]

such that F (t, c) = Cα(FT (t), FC(c)) (Nelsen, 2006). Here α is often referred to

as the association parameter representing the relationship between T and C, with

Cα(u, 0) = Cα(0, v) = 0, Cα(u, 1) = u and Cα(1, v) = v. It follows that

P (T ≤ t|C = c, Z) =
∂Cα(u, v)

∂v
|u=FT (t),v=FC(c) := mα(FT (t), FC(c)). (4.3)

Note that the models and problems similar to these described above have been

discussed for current status data in Wang et al., 2012 and Titman, 2013 among

others and also other areas such as the competing risks analysis with dependent

right-censored data (Zhang and Klein, 1995; Huang and Zhang, 2008; Chen, 2010).

Especially, they showed that without prior or extra information, the association pa-

rameter α is not identifiable given the copula function. Among others, one use of

the inference procedures developed under these situations is for sensitivity analysis.

Following these arguments, we will assume that both the copula function and α are

known. More discussion on this is given below.
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Define C̃ = min{C, ζ} with ζ being an administrative censoring due to the end of

study independent of T and C. Define ∆ = I(C ≤ ζ) and δ = I(T ≤ C̃) and suppose

that the observed data are i.i.d. replications of X = (∆, δ, C̃, Z), denoted by

{Xi = (∆i, δi, C̃i, Zi) , i = 1, ..., n } .

Then the likelihood function can be written as

L(θ) =
n∏
i=1

{{
mα(FT (c̃i), FC(c̃i))

}δi{1−mα(FT (c̃i), FC(c̃i))
}1−δifC(c̃i)

}∆i

×
{{
FT (c̃i)− Cα(FT (c̃i), FC(c̃i))

}δi{1− FT (c̃i)− FC(c̃i) + Cα(FT (c̃i), FC(c̃i))
}1−δi

}1−∆i

where θ = (β, γ,ΛT (·),ΛC(·)) and

FT (t) = 1− exp{−ΛT (t) exp(Z ′β)}

FC(c) = 1− exp{−ΛC(c) exp(Z ′γ)}

fC(c) = λ2(c) exp(Z ′γ) exp{−ΛC(c) exp(Z ′γ)}

with ΛT (t) =
∫ t

0
λ1(s)ds and ΛC(c) =

∫ c
0
λ2(s)ds.

4.3 Spline-Based Sieve Semiparametric Maximum

Likelihood Estimation

Now we discuss the estimation of all unknown parameters θ = (β, γ,ΛT (·),ΛC(·)). For

this, it is apparent that a natural method is to maximize the log likelihood function
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l(θ) = logL(θ). On the other hand, it is easy to see that this is difficult due to the

dimension of ΛT (·) and ΛC(·). To address this, following Huang and Rossini (1997)

and others, we consider the sieve maximum likelihood approach by approximating

ΛT (·) and ΛC(·) with I-spline functions.

More specifically, let M denote a positive constant and { Ij(t) }m+kn
j=1 the I-spline

base functions with order m and number of interior knots kn, where kn = o(nν) with

0 < ν < 0.5. The selection of m and kn will be discussed below. Let ϕ = (ΛT ,ΛC)

and define

Θn =
{
θn = (β, γ, ϕn) : ϕn = (ΛTn,ΛCn)

}
= B ⊗M1

n ⊗M2
n ,

where B = {(β, γ ∈ R2p, ‖β‖+‖γ‖ ≤M},M1
n = {ΛTn : ΛTn(t) =

∑m+kn
j=1 ξjIj(t), ξj ≥

0, j = 1, . . . ,m+kn, t ∈ [0, uc]} andM2
n = {ΛCn : ΛCn(t) =

∑m+kn
j=1 ηjIj(t), ηj ≥ 0, j =

1, . . . ,m + kn, t ∈ [0, uc]} with uc being the upper bounds of the finite observation

times {C̃i : i = 1, 2, . . . , n}. Note that we propose to use the same I−spline bases for

ΛTn and ΛCn. This is because we only observe C̃i’s in the data, it’s reasonable to use

the same knots for the I−spline bases.

Also denote by ‖a‖ the Euclidean norm of a vector a, ‖f‖∞ = supt |f(t)| the

supremum norm of a function f, and ‖f(X)‖2 = (
∫
f 2dP )1/2 the L2(P ) norm of a

function f with X being distributed according to the probability measure P . For

θi = (βi, γi,Λi
T ,Λ

i
C), i = 1, 2, define the distance d2(θ1, θ2) = ‖β1 − β2‖2

2 + ‖γ1 −

γ2‖2
2 +‖Λ1

T −Λ2
T‖2

2 +‖Λ1
C−Λ2

C‖2
2. Let θ0 = (β0, γ0,ΛT0,ΛC0) denote the true values of

θ. Then for any θ ∈ Θ, there exists θn = (β, γ,ΛTn,ΛCn) ∈ Θn such that d(θ, θn) ≤

c(‖ΛT0 − ΛTn‖∞ + ‖ΛC0 − ΛCn‖∞) = O(n−rν) for some constant c with r defined in

condition(A4) in the appendix. It thus follows from Lemma A1 of Lu et al. (2007)
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that Θn can be used as a sieve space of Θ .

For estimation of θ = (β, γ,ΛT (·),ΛC(·)), we define the estimate θ̂ = (β̂, γ̂, Λ̂Tn(·), Λ̂Cn(·))

as the value of θ that maximizes the log likelihood function l(θ) over Θn. Let

θ0 = (β0, γ0,ΛT0,ΛC0) denote the true values of θ. The following three theorems

give the asymptotic properties of θ̂.

Theorem 4.1.Assume that the conditions A1 - A4 given in the Appendix hold. Then

β̂ and γ̂ are strongly consistent, and ‖Λ̂Tn − ΛT0‖2−→0 and ‖Λ̂Cn − ΛC0‖2−→0

almost surely as n→∞.

Theorem 4.2. Again assume that the conditions A1 - A4 given in the Appendix

hold. Then as n→∞, we have

‖Λ̂Tn − ΛT0‖2 + ‖Λ̂Cn − ΛC0‖2 = Op(n
−(1−ν)/2 + n−rν) .

Theorem 4.3. Suppose that the conditions A1 - A5 described in the Appendix hold

and r > 2 in the condition A4. Then as n→∞, we have

n1/2
{

(β̂ − β0)′, (γ̂ − γ0)′
}′
→ N(0,Σ)

in distribution, and furthermore, (β̂′, γ̂′)′ is semiparametrically efficient, where Σ is

defined in the appendix.

To implement the estimation procedure above, one needs to choose m and kn. The

choice for m is associated with the smoothness of the true baseline cumulative hazard

functions. Usually, quadratic or cubic spline functions should work sufficiently well.
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A simple approach for selection is clearly to try different values of them and compare

the obtained results. As an alternative, one can also apply the Akaike information

criterion (AIC) to choose m and kn that give the smallest AIC. Note that in the

method developed above, we have to assume that both copula function Cα(·, ·) and

the association parameter α are known without prior or extra information. In practice,

we actually could consider different possible choices for them too and apply the AIC

for their selection together with m and kn. More comments on this are given in

Section 4.5.

To use the estimation procedure, it is apparent that one also needs to estimate

the covariance matrix of β̂ and γ̂. For this, a natural and simple method is to employ

the inverse of the observed information matrix by treating ΛTn and ΛCn as finite-

dimensional nuisance parameters. Of course, this could be computationally intensive.

On the other hand, if the functions ΛT and ΛC is smooth enough, a small value of

knots is generally sufficient and the simulation results indicate that it seems to work

reasonably well.

4.4 Simulation Studies

To evaluate the estimation procedure proposed above, a simulation study is per-

formed. In the study, we assume that the covariate Z is a Bernoulli variable with the

success probability of 0.5. For the copula function, four choices are investigated,

Cα(u, v) = (u−α + v−α − 1)−1/α , α > 0

Cα(u, v) = exp
{
−[(− log u)α + (− log v)α]1/α

}
, α ≥ 1
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Cα(u, v) = logα

{
1 +

(αu − 1)(αv − 1)

α− 1

}
, α ≥ 0, α 6= 1

and

Cα(u, v) = uv + αuv(1− u)(1− v) , −1 ≤ α ≤ 1

The four models are usually referred to as Clayton, Gumbel, FGM and Frank models,

respectively. Note that for different copula models, the range of the association

parameter α is different. So in the following, we use the Kendall’s τ to measure the

association between T and C. For the Clayton copula, τ = α/(α+2), for the Gumbel

copula, we have τ = 1−1/α. The FGM copula gives τ = 2α/9, and the Frank copula

has that τ = 1+4ρ−1{D1(ρ)−1}, where ρ = − logα and D1(ρ) = ρ−1
∫ ρ

0
t(et−1)−1dt.

To generate the observed data, we first generated the Ti’s under the model (4.1)

with ΛT0(t) = t and then the Ci’s from its conditional distribution given the Ti’s.

More specifically, with the random number a generated from the uniform distribution

U(0, 1), we solve the equation

P (C ≤ ci|T = ti, Z) =
∂Cα(u, v)

∂u
|u=FT (ti),v=FC(ci) = a

for ci. Furthermore, given Ti, Ci and ζ, we defined C̃i = min{Ci, ζ}, ∆i = I(Ci ≤ ζ)

and δi = I(Ti ≤ C̃i). The results given below are based on 500 replications with the

sample size n = 200 or 400.

Table 4.1 presents the results on estimation of regression parameters β and γ

based on the simulated data generated under the Clayton model with τ = 0.2, 0.5,

γ = 0.5, 1, β0 = −0.5, 0, 0.5 for τ = 0.2 and β = 0.5, 1 for τ = 0.5. Here for the

approximation of ΛT0 and ΛC0, the quadratic splines were used with the 0.25, 0.5, 0.75

quantiles of the C̃i’s chosen as the 3 interior knots. ζ was chosen to give about 16%
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right censoring rates for Ci’s. The results include the estimated bias (Bias) given

by the average of the estimates minus the true value, the sample standard deviation

(SSE) of the estimates, the average of the estimated standard errors (SEE), and the

95% empirical coverage probability (CP). The results obtained under the Gumbel

model are given in Table 4.2 with the same set-ups as above and the results obtained

under the FGM model are given in Table 4.3 with τ = −0.1, 0.1, β = −0.5, 0, 0.5.

And similarly, the results under the Frank model are given in Table 4.4 with τ =

−0.5,−0.2, 0.2, 0.5, β = −1,−0.5 for τ = −0.5, β = −0.5, 0, 0.5 for τ = ±0.2 and

β = 0.5, 1 for τ = 0.5. These results indicate that the proposed estimate seems to be

unbiased and the variance estimation method also seems to work well. In addition,

the asymptotic distribution seems to perform well too in the situations considered

here and as expected, the results become better as the sample size increases.

4.5 An Application

In this section, we apply the proposed methodology to a set of current status data

arising from a 2-year tuorgenicity study conducted by National Toxicology Program

which has been studied by Wang et. al. (2008). In the study, the groups of 50 male

and female F344/N rats and B6C3F1 mice were exposed to chloroprene at concen-

trations of 0, 12.8, 32 or 80 ppm by inhalation, 6h per day, 5 days per week, for 2

years. Each animal was examined for various tumors at its death time. Some animals

died naturally during the study, and those who survived at the end of study were

sacrificed for examinations. Since the tumor status was only examined at death time,

only current status data are available for the tumor onset time, the variable of inter-
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est. Among others, one objective of the study is to compare the tumor growth rates

between the different dose groups and investigate the dose effect. In the following, we

will focus on a specific type of lung tumor, the Alveolar/Bronchiolar Adenoma(A/B

A), for male and female B6C3F1 mice in the control (0 ppm) and high dose (80 ppm)

groups.

For the analysis, let T denote the onset time of A/B A tumor and C the death

time in months up to 25 months, the end of the study. Define Zi = 1 if the mice is

in high dose group and Zi = 0 otherwise. In both groups, there were many mice that

survived at the end of the study and were sacrificed for tumour examinations. Thus,

we have right censored data available for the death time C. To apply the estimation

procedure proposed in the previous section, we considered Frank and Gumbel copulas

and kn = 3, 4, 5, 6 based on the sample size here. Given the copula function, we

considered several values of τ and applied the AIC to choose both kn and τ together.

Under the Frank copula, we found that the smallest AIC is given by kn = 5 and

τ = 0.25, while under the Gumbel model, the choice is kn = 5 and τ = 0.05.

Table 4.5 gives the results obtained on the estimation of the dose effect on the

tumor onset time with kn = 5 and several values of τ under both models. One can

easily see that the results are quite different and depends on the possible correlation

between the tumor onset time and the observation time. All the p−values in this

table, for both β and γ are significant with any reasonable level of significance. That

is, mice in the high dose group have significantly shorter tumor onset time. This is

consistent with the results obtained by other authors. For comparison, we also present

the results obtained with kn = 3 in Table 4.6 and they give similar conclusions.
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4.6 Concluding Remarks

In this chapter, we discussed regression analysis of current status data using the

proportional hazards model when observation time may be related to the survival

time of interest. For inference, the sieve maximum likelihood estimation approach has

been developed with the use of I−splines and the copula function. The asymptotic

properties of the resulting estimates were established. Note that one advantage of I-

spline functions over B-spline functions is that they do not need the order restriction

on spline coefficients as required by the latter. The simulation study suggested that

the approach works well in practical situations.

Note that in the developed methodology, it has been assumed that both the obser-

vation time and the survival time of interest follow the proportional hazards models.

It is straightforward to generalize the proposed method to other models such as the

linear transformation model (Zhang et al., 2005).

As pointed out above, among others, one use of the proposed approach is for

sensitivity analysis and it is usually difficult or impossible to estimate the underlying

copula model and the association parameter without other information. On the other

hand, if prior or external information is available on the association between the

observation time and the survival time, the approach can incorporate such information

to yield valid analysis.
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n τ β0 Bias SSE SEE CP γ0 Bias SSE SEE CP
200 0.2 -0.5 -0.013 0.224 0.233 0.968 0.5 0.002 0.167 0.156 0.948

0 0.013 0.228 0.227 0.959 0.5 0.003 0.167 0.156 0.944

0.5 0.044 0.255 0.239 0.946 0.5 0.005 0.167 0.156 0.946

0.5 0.5 0.009 0.213 0.225 0.940 0.5 0.009 0.149 0.156 0.958

1 0.032 0.263 0.250 0.954 0.5 -0.005 0.149 0.156 0.958

0.2 -0.5 -0.021 0.254 0.252 0.956 1 0.008 0.175 0.162 0.928

0 0.013 0.249 0.243 0.950 1 0.008 0.176 0.162 0.938

0.5 0.049 0.261 0.249 0.948 1 0.010 0.175 0.162 0.934

0.5 0.5 -0.004 0.224 0.256 0.953 1 0.012 0.173 0.163 0.938

1 0.020 0.236 0.249 0.936 1 0.016 0.175 0.163 0.942

400 0.2 -0.5 -0.020 0.148 0.160 0.966 0.5 -0.004 0.107 0.110 0.958

0 -0.010 0.147 0.156 0.956 0.5 -0.004 0.108 0.110 0.956

0.5 0.010 0.164 0.164 0.962 0.5 -0.002 0.108 0.110 0.960

0.5 0.5 0.010 0.149 0.157 0.950 0.5 0.002 0.108 0.110 0.956

1 0.004 0.174 0.168 0.956 0.5 0.003 0.114 0.110 0.954

0.2 -0.5 -0.032 0.183 0.175 0.944 1 0.006 0.125 0.114 0.924

0 -0.016 0.164 0.168 0.958 1 -0.002 0.109 0.114 0.954

0.5 0.006 0.170 0.172 0.956 1 0.001 0.110 0.114 0.952

0.5 0.5 -0.030 0.177 0.178 0.956 1 -0.004 0.128 0.115 0.936

1 -0.005 0.179 0.159 0.962 1 -0.004 0.123 0.114 0.944

Table 4.1: Simulation results for Clayton copula.
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n τ β0 Bias SSE SEE CP γ0 Bias SSE SEE CP
200 0.2 -0.5 -0.057 0.221 0.239 0.970 0.5 0.008 0.167 0.156 0.936

0 -0.023 0.222 0.226 0.966 0.5 0.008 0.161 0.156 0.952

0.5 0.040 0.243 0.238 0.944 0.5 0.007 0.147 0.156 0.952

0.5 0.5 0.036 0.223 0.236 0.958 0.5 0.012 0.150 0.156 0.964

1 0.096 0.308 0.264 0.921 0.5 0.013 0.150 0.156 0.966

0.2 -0.5 -0.065 0.254 0.249 0.940 1 0.027 0.155 0.163 0.956

0 -0.063 0.230 0.233 0.952 1 0.028 0.154 0.163 0.958

0.5 0.007 0.234 0.241 0.954 1 0.023 0.154 0.163 0.952

0.5 0.5 -0.036 0.207 0.229 0.956 1 0.016 0.156 0.162 0.960

1 0.066 0.252 0.248 0.941 1 0.019 0.155 0.163 0.954

400 0.2 -0.5 -0.055 0.156 0.165 0.954 0.5 0.010 0.116 0.110 0.940

0 -0.031 0.149 0.156 0.964 0.5 0.007 0.116 0.110 0.940

0.5 0.019 0.170 0.165 0.944 0.5 0.005 0.116 0.110 0.940

0.5 0.5 0.012 0.149 0.163 0.964 0.5 0.001 0.114 0.110 0.950

1 0.044 0.194 0.181 0.942 0.5 0.005 0.107 0.110 0.952

0.2 -0.5 -0.062 0.169 0.172 0.954 1 0.009 0.109 0.114 0.956

0 -0.063 0.151 0.161 0.944 1 0.011 0.109 0.114 0.958

0.5 -0.022 0.163 0.166 0.956 1 0.005 0.109 0.114 0.960

0.5 0.5 -0.054 0.140 0.156 0.956 1 -0.002 0.113 0.114 0.952

1 0.032 0.165 0.171 0.945 1 0.005 0.113 0.114 0.952

Table 4.2: Simulation results for Gumbel copula.
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n τ β0 Bias SSE SEE CP γ0 Bias SSE SEE CP
200 -0.1 -0.5 -0.032 0.264 0.242 0.934 0.5 0.006 0.162 0.156 0.940

0 -0.001 0.268 0.243 0.940 0.5 0.006 0.162 0.156 0.938

0.5 0.029 0.278 0.260 0.932 0.5 0.006 0.162 0.156 0.938

0.1 -0.5 -0.034 0.247 0.234 0.942 0.5 0.008 0.161 0.156 0.938

0 -0.013 0.250 0.230 0.934 0.5 0.009 0.161 0.156 0.940

0.5 0.010 0.248 0.239 0.954 0.5 0.009 0.161 0.156 0.940

-0.1 -0.5 -0.030 0.288 0.269 0.942 1 0.014 0.168 0.162 0.934

0 0.008 0.273 0.262 0.948 1 0.014 0.168 0.162 0.936

0.5 0.040 0.302 0.277 0.940 1 0.014 0.168 0.162 0.940

0.1 -0.5 -0.041 0.272 0.253 0.934 1 0.014 0.165 0.162 0.942

0 -0.004 0.264 0.245 0.942 1 0.014 0.164 0.162 0.940

0.5 0.023 0.279 0.252 0.932 1 0.015 0.164 0.162 0.938

400 -0.1 -0.5 -0.017 0.171 0.165 0.946 0.5 -0.007 0.112 0.110 0.948

0 0.003 0.172 0.166 0.936 0.5 -0.007 0.112 0.110 0.948

0.5 0.025 0.176 0.179 0.958 0.5 -0.007 0.112 0.110 0.946

0.1 -0.5 -0.018 0.160 0.160 0.963 0.5 -0.005 0.114 0.110 0.940

0 -0.007 0.159 0.157 0.946 0.5 -0.005 0.114 0.110 0.940

0.5 0.014 0.172 0.165 0.948 0.5 -0.005 0.114 0.110 0.940

-0.1 -0.5 -0.015 0.185 0.184 0.946 1 0.001 0.118 0.114 0.946

0 0.001 0.179 0.180 0.950 1 0.001 0.118 0.114 0.944

0.5 0.023 0.191 0.189 0.936 1 0.001 0.118 0.114 0.942

0.1 -0.5 -0.027 0.176 0.175 0.948 1 -0.004 0.119 0.114 0.940

0 -0.011 0.172 0.169 0.942 1 -0.003 0.119 0.114 0.942

0.5 0.015 0.180 0.174 0.938 1 -0.002 0.119 0.114 0.938

Table 4.3: Simulation results for FGM copula.
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n τ β0 Bias SSE SEE CP γ0 Bias SSE SEE CP
200 -0.5 -1 -0.046 0.306 0.307 0.939 0.5 0.007 0.155 0.156 0.956

-0.5 -0.016 0.281 0.299 0.956 0.5 0.006 0.156 0.156 0.952

-0.2 -0.5 -0.032 0.272 0.248 0.938 0.5 0.001 0.164 0.156 0.936

0 0.005 0.277 0.255 0.931 0.5 -0.001 0.164 0.156 0.938

0.5 0.049 0.286 0.281 0.947 0.5 -0.001 0.164 0.156 0.934

0.2 -0.5 -0.050 0.234 0.232 0.950 0.5 0.002 0.158 0.156 0.944

0 -0.029 0.214 0.225 0.960 0.5 -0.007 0.166 0.156 0.926

0.5 0.010 0.232 0.233 0.956 0.5 -0.005 0.166 0.156 0.926

0.5 0.5 0.006 0.232 0.231 0.956 0.5 -0.006 0.161 0.156 0.942

1 0.040 0.279 0.256 0.933 0.5 -0.005 0.162 0.156 0.938

-0.5 -1 -0.022 0.304 0.358 0.948 1 0.006 0.161 0.162 0.942

-0.5 0.030 0.303 0.358 0.950 1 0.013 0.160 0.162 0.956

-0.2 -0.5 -0.023 0.294 0.278 0.948 1 0.021 0.160 0.163 0.950

0 0.014 0.297 0.275 0.939 1 0.007 0.167 0.162 0.930

0.5 0.057 0.326 0.298 0.943 1 0.006 0.167 0.162 0.932

0.2 -0.5 -0.062 0.254 0.247 0.952 1 -0.001 0.172 0.162 0.934

0 -0.036 0.236 0.238 0.942 1 0.001 0.172 0.162 0.934

0.5 -0.001 0.245 0.243 0.958 1 0.002 0.172 0.162 0.930

0.5 0.5 -0.049 0.207 0.222 0.942 1 -0.008 0.169 0.162 0.942

1 0.005 0.231 0.233 0.955 1 -0.005 0.169 0.162 0.942

400 -0.5 -1 -0.026 0.206 0.209 0.943 0.5 -0.002 0.112 0.110 0.942

-0.5 -0.020 0.202 0.208 0.936 0.5 0.012 0.115 0.110 0.940

-0.2 -0.5 -0.018 0.176 0.171 0.944 0.5 0.008 0.112 0.110 0.944

0 -0.002 0.175 0.172 0.944 0.5 0.007 0.112 0.110 0.942

0.5 0.024 0.190 0.187 0.956 0.5 0.007 0.112 0.110 0.940

0.2 -0.5 -0.034 0.144 0.160 0.962 0.5 -0.001 0.112 0.110 0.956

0 -0.017 0.151 0.155 0.952 0.5 -0.001 0.112 0.110 0.954

0.5 0.009 0.163 0.162 0.954 0.5 0.001 0.112 0.110 0.958

0.5 0.5 -0.010 0.151 0.157 0.956 0.5 -0.005 0.111 0.110 0.960

1 0.042 0.193 0.174 0.924 0.5 -0.003 0.112 0.110 0.952

-0.5 -1 -0.018 0.226 0.249 0.945 1 0.012 0.120 0.115 0.940

-0.5 0.001 0.211 0.246 0.948 1 0.011 0.119 0.115 0.942

-0.2 -0.5 -0.011 0.202 0.193 0.954 1 0.012 0.119 0.115 0.942

0 0.003 0.192 0.189 0.956 1 0.012 0.119 0.115 0.940

0.5 0.018 0.201 0.200 0.946 1 0.011 0.119 0.115 0.942

0.2 -0.5 -0.049 0.169 0.172 0.952 1 0.003 0.113 0.114 0.954

0 -0.032 0.157 0.165 0.948 1 0.003 0.113 0.114 0.956

0.5 0.002 0.171 0.169 0.944 1 0.005 0.113 0.114 0.958

0.5 0.5 -0.031 0.152 0.156 0.947 1 -0.011 0.115 0.114 0.944

1 0.007 0.163 0.163 0.940 1 -0.003 0.115 0.114 0.952

Table 4.4: Simulation results for Frank copula.
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copula τ β̂ SEE p(×109) γ̂ SEE p(×109) AIC
Frank -0.5 1.9484 0.3264 2.3788 1.2004 0.2020 2.7882 1099.771

-0.25 1.9998 0.3375 3.1172 1.3328 0.2002 0.0278 1066.116

0 2.2785 0.3939 7.2524 1.3750 0.2003 0.0067 1057.002

0.25 2.4722 0.3632 0.0100 1.3893 0.2005 0.0042 1055.845

0.5 2.3357 0.3476 0.0182 1.3926 0.2003 0.0036 1057.551

Gumbel 0 2.2785 0.3939 7.2524 1.3750 0.2003 0.0067 1057.002

0.05 2.3798 0.3798 0.3710 1.3762 0.2004 0.0065 1056.944

0.25 2.6423 0.3724 0.0013 1.3823 0.2006 0.0056 1057.299

0.5 2.5029 0.3584 0.0029 1.3911 0.2010 0.0045 1058.163

Table 4.5: Estimating results for kn = 5 (p denotes the p-value).

copula τ β̂ SEE p(×109) γ̂ SEE p(×109) AIC
Frank -0.5 1.9081 0.3211 2.7997 1.2773 0.2050 0.4616 1112.888

-0.25 1.9945 0.3347 2.5510 1.3796 0.2011 0.0069 1084.576

0 2.2795 0.3945 7.5175 1.4112 0.2004 0.0019 1077.819

0.15 2.4494 0.3667 0.0239 1.4189 0.2004 0.0015 1076.529

0.25 2.4837 0.3541 0.0023 1.4180 0.2005 0.0015 1076.769

0.5 2.3625 0.3258 0.0004 1.4164 0.1996 0.0013 1078.927

Gumbel 0 2.2795 0.3945 7.5175 1.4112 0.2004 0.0019 1077.819

0.15 2.5697 0.3724 0.0052 1.4125 0.2004 0.0018 1077.713

0.25 2.6667 0.3692 0.0005 1.4141 0.2006 0.0018 1077.768

0.5 2.5341 0.3440 0.0002 1.4240 0.2008 0.0013 1078.619

Table 4.6: Estimating results for kn = 3 (p denotes the p-value).
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Chapter 5

Sieve Maximum Likelihood
Regression Analysis of Dependent
Interval-Censored Data

5.1 Introduction

The development of regression analysis of interval-censored data has been very active

in the last decade. And most of the work has been focusing on semiparametric models,

notably the Cox regression model (Finkelstein 1986, Huang 1996, Goggins et al. 1998,

Goggins and Finkelstein 2000, Seaman and Bird 2001, Zhang et al. 2005, Zhang et

al. 2010). Most of these existing methods for regression analysis of interval-censored

data require ’non-informative’ censoring mechanism. However, as we discussed earlier

in Chapter 1, there exist situations under which such assumption may not hold.

The literature on the topic of informative interval censoring is very limited due to

the complexity of the dependence structure between the failure time and censoring.

76



van der Lann and Robins (1998) proposed a locally efficient estimation procedure by

introducing an inverse probability of censoring weighted estimator of the distribution

function of the single monitoring time. And their approach requires conditional in-

dependence between failure time and monitoring time given covariates. Zhang et al.

(2005) also discussed the current status data when the dependence structure between

the failure time and the monitoring time can be modeled through an unobservable

random effect. Finkelstein et al. (2002) and Betensky and Finkelstein (2002) investi-

gated one-sample problem of general interval-censored data with dependent interval

censoring. Their approaches assume that the complete visit compliance process is

known. Zhang et al. (2007) proposed to model the dependence between the cen-

soring variables and the failure time through some latent variables. Their method

requires discretization of the baseline function and asymptotic properties of parame-

ter estimates are not provided. Given the fact that sometimes patients may tend to

visit more frequently when they get sicker, we propose a method where the failure

time depend on the observation interval only through its length. In stead of the latent

variables, we employ the copula model approach to model this dependence jointly,

which applies to much more general situations.

The rest of this chapter is organized as follows. We will begin in Section 5.2

with describing the notation, assumptions and models that will be used throughout

the paper as well as the likelihood function. As mentioned above, we will jointly

model the failure time and the observation interval length together and consider the

marginal proportional hazards model for covariate effects. Section 5.3 presents the

sieve semiparametric maximum likelihood estimation approach for estimation of un-

known parameters and for this, we will employ I-splines (Lu, et al. 2007, Ramsay
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1988) to approximate the baseline cumulative hazard function. The resulting esti-

mators are shown to be consistent and furthermore, we prove that the estimated

regression parameters are asymptotically efficient and normally distributed. In Sec-

tion 5.4, we present some results obtained from an extensive simulation study, and

they suggest that the approach works well for the situations considered. Section 5.5

applies the method to a motivating example from a breast cosmesis study and Section

5.6 contains some discussion and concluding remarks.

5.2 Notation, Models and Likelihood Function

Consider a failure time study that involves n independent subjects and in which

each subject is observed periodically. For subject i, let Ti denote the failure time of

interest, (Li, Ri) be the pair of examination times bracketing the event time Ti, with

P (Li < Ti ≤ Ri) = 1, and Zi is a p−dimensional vector of covariates, i = 1, . . . , n.

Note that Li is the last examination time before and Ri is the first examination

time after the event time Ti. In the following, we suppose that Ti may be related to

(Li, Ri) even given covariates and in this case, there usually exists a censoring time

ζi such as the administrative stop time of observations. For example, in a cancer

study with periodic follow-ups, Ti, Li, Ri and ζi represent the time to cancer, last

examination time before cancer, first examination time after cancer and study stop

time, respectively. Also, we assume that Ti is related to the observation interval

(Li, Ri] only through its length. That is, P (T ≤ t|L,R, Z) = P (T ≤ t|W,Z) with

W = R−L. This assumption is motivated by the fact that in clinical trials comparing

different treatments in terms of efficacy or toxicity, patients who receive a less effective
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or more toxic treatment may visit clinical centers for examination more frequently

than other patients.

Define δi = I(Ri <∞), then the observed data have the form

Xi = (Li, Ri, δi, Zi), i = 1, . . . , n.

To describe the effects of covariates, in the following, we assume that given Zi, Ti

and Wi follow the marginal proportional hazards models given by

λT (t|Z) = λ1(t) exp(Z ′β) (5.1)

and

λW (w|Z) = λ2(w) exp(Z ′γ), (5.2)

respectively. Here λ1(t) and λ2(w) denote unknown baseline hazard functions and β

and γ are p-dimensional vectors of regression parameters. Let FT and FW denote the

distribution of T,W given Z, respectively. Then under the models above, we have

FT (t) = 1− exp(−Λ1(t) exp(Z ′β))

and

FW (w) = 1− exp(−Λ2(w) exp(Z ′γ)),

respectively, where Λ1(t) =
∫ t

0
λ1(s)ds and Λ2(w) =

∫ w
0
λ2(s)ds,

Let K denote the joint distribution of Ti and Wi. Then it is well known that there
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exists a copula function Cα(u, v), defined on I2 = [0, 1]× [0, 1] such that

K(t, w) = Cα(FT (t), FW (w)), t ≥ 0, w ≥ 0 (5.3)

(Nelsen, 2006). Here α is often referred to as the association parameter representing

the relationship between Ti and Wi, and Cα(u, 0) = Cα(0, v) = 0, Cα(u, 1) = u and

Cα(1, v) = v. It follows that

P (T ≤ t|W = w,Z) =
∂Cα(u, v)

∂v
|u=FT (t),v=FW (w) := mα(FT (t), FW (w)). (5.4)

and the resulting likelihood function has the form

L(θ) =
n∏
i=1

{
[mα(FT (Ri), FW (wi))−mα(FT (Li), FW (wi))]fW (wi)

}δi
×
{

1− FW (ζi − Li)− FT (Li) + Cα(FT (Li), FW (ζi − Li))
}1−δi

. (5.5)

In the above, θ = (β, γ,Λ1(·),Λ2(·)) and

fW (wi) = λ2(wi) exp(Z ′iγ) exp{−Λ2(wi) exp(Z ′iγ)}.

Note that the formulation (5.3) or the copula model approach in general is com-

monly used in multivariate failure time data analysis (Hougaard, 2000). It has also

been applied to the analysis of univariate failure time data in the presence of informa-

tive censoring. For example, by using the idea, Zheng and Klein (1995), Chen (2010)

investigated the estimation of a marginal survival function based on right-censored

data in the presence of dependent competing risks and the regression analysis of the

80



data with the same structure, respectively. Wang et. al. (2012) and Titman (2013)

studied the nonparametric estimation of a survival function based on dependent cur-

rent status data. In particular, they showed that without prior or extra information,

the association parameter α is not identifiable given the copula function as pointed

out before, and one application of the methods developed under the framework is

for sensitivity analysis. In the following, following these authors, we will assume that

both the copula function and α are known and our main goal is to estimate regression

parameter β as well as γ.

5.3 Sieve Semiparametric Maximum Likelihood Es-

timation

Now we discuss the estimation of the regression parameters or θ. For this, it is

apparent that a natural approach is to maximize the log likelihood function l(θ) =

logL(θ). On the other hand, it is easy to see that this is difficult due to the dimension

of Λ1 and Λ2. To address this, following Huang and Rossini (1997) and others, we

consider the sieve maximum likelihood approach by approximating Λk(k = 1, 2) with

I−spline functions.

More specifically, Let M denote a positive constant and {Ij(t)}m+kn
j=1 denote the

I-spline base functions with order m and kn interior knots, where kn = o(nν) with

0 < ν < 0.5. The selection of m and kn will be discussed below. Let ϕ = (Λ1,Λ2)

and define

Θn =
{
θn = (β, γ, ψn) : ϕn = (Λ1n,Λ2n)

}
= B ⊗M1

n ⊗M2
n
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where B = {(β, γ ∈ R2p, ‖β‖+‖γ‖ ≤M},M1
n = {Λ1n : Λ1n(t) =

∑m+kn
j=1 ξjIj1(t), ξj ≥

0, j = 1, . . . ,m + kn, t ∈ [lt, ut]}, M2
n = {Λ2n : Λ2n(w) =

∑m+kn
j=1 ηjIj2(w), ηj ≥ 0, j =

1, . . . ,m + kn, w ∈ [lw, uw]}, where [lt, ut] and [lw, uw] are the range of {Li, Ri, i =

1, 2, . . . , n} and the range of {min(Wi, ζi − Li), i = 1, 2, . . . , n}, respectively.

For a vector a and a function f , let ‖a‖ denote the Euclidean norm and ‖f‖∞ =

supt |f(t)|, the supremum norm. Also let ‖f(X)‖2 = (
∫
f 2dP )1/2, the L2(P ) norm,

withX being distributed according to the probability measure P . For θi = (βi, γi,Λi
1,Λ

i
2),

i = 1, 2, define the distance

d2(θ1, θ2) = ‖β1 − β2‖2
2 + ‖γ1 − γ2‖2

2 + ‖Λ1
1 − Λ2

1‖2
2 + ‖Λ1

2 − Λ2
2‖2

2 .

Then it is easy to see that for any θ ∈ Θ, there exists a sequence of θn = (β, γ,Λ1n,Λ2n) ∈

Θn such that

d(θ, θn) ≤ c (‖Λ1 − Λ1n‖∞ + ‖Λ2 − Λ2n‖∞) = O(n−rν)

for some constant c and r = m+ η, where η is defined in the condition (A4) given in

the Appendix. It thus follows from Lemma A1 of Lu et al. (2007) that Θn can be

used as a sieve space of Θ .

For estimation of θ = (β, γ,Λ1(·),Λ2(·)), we define the estimate θ̂ = (β̂, γ̂, Λ̂1n(·), Λ̂2n(·))

as the value of θ that maximizes the log likelihood function l(θ) over Θn. Let

θ0 = (β0, γ0,Λ10,Λ20) denote the true values of θ. The following three theorems

give the asymptotic properties of θ̂.

Theorem 5.1. Under Assumptions A1-A4 described in the Appendix, β̂ and γ̂ are

strong consistent estimators of the true coefficients β0, γ0 and ‖Λ̂1n − Λ10‖2−→0,
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‖Λ̂2n − Λ20‖2−→0, almost surely.

Theorem 5.2. Under Assumptions A1-A4 described in the Appendix, it holds that

‖Λ̂1n − Λ10‖2 + ‖Λ̂2n − Λ20‖2 = Op(n
−(1−ν)/2 + n−rν).

Theorem 5.3. Suppose that r > 2 and the conditions A1 - A5 described in the

Appendix hold. Then we have

n1/2 ( (β̂ − β0)′, (γ̂ − γ0)′)′ → N(0,Σ)

in distribution and furthermore, (β̂′, γ̂′)′ is semiparametrically efficient, where Σ is

given in the appendix.

The proofs for the results above are sketched in the Appendix. Note that to

implement the estimation procedure above, one needs to choose m and kn and then

maximize l(θ). In general, the degree m should be decided by the smoothness of

the true baseline cumulative hazard functions and either quadratic or cubic spline

functions usually work sufficiently well. Of course, one could try different values of

them and compare the obtained results. As an alternative, one can apply the Akaike

information criterion (AIC) to choose m and kn that give the smallest AIC. Given m

and kn, the determination of θ̂ is relatively easy as one can simply employ the existing

procedures such as the function nlm in R. Note that in the method developed above, it

has been assumed that both the copula function Cα(·, ·) and the association parameter

α are known without prior or extra information. In practice, one could actually apply

the AIC too for their selection. More comments on this are given in Section 5.
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To implement the estimation procedure proposed above, it is apparent that one

needs to estimate the covariance matrix of β̂ and γ̂ or Σ. For this, one approach is to

apply the profile likelihood approach, which may be difficult. A natural and simple

alternative method, which will be used below in numerical studies, is to employ

the inverse of the observed information matrix by treating Λ1n and Λ2n as finite-

dimensional nuisance parameters. The simulation results below suggest that it works

well for practical situations.

5.4 Simulation Studies

An extensive simulation was conducted to assess the performance of the proposed

methodology. In the study, we assumed that the covariate Z to be a Bernoulli variable

with success probability 0.5 and considered three copula models:

Cα(u, v) =


exp{−[(− log u)α + (− log v)α]1/α} Gumbel, α ≥ 1

uv + αuv(1− u)(1− v) FGM, −1 ≤ α ≤ 1

logα{1 + (αu − 1)(αv − 1)/(α− 1)} Frank, α > 0, α 6= 1

Note that for different copula models as above, the range of the association parameter

α is different, thus we use the Kendall’s τ to measure the association between T and

W in the following. Specifically, for the Gumbel copula, we have τ = 1 − 1/α. The

FGM copula gives τ = 2α/9. And the Frank copula has τ = 1 + 4ρ−1{D1(ρ) − 1},

where ρ = − logα and D1(ρ) = ρ−1
∫ ρ

0
t(et − 1)−1dt.

To generate the observed data, we first generate the failure time Ti’s under the

proportional hazards model (5.1) with Λ10(t) = t and then Wi’s from their the con-
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ditional distribution given Ti’s. More specifically, given Ti and a random number a

generated from the uniform distribution U(0, 1), we solve the equation

P (W ≤ wi|T = ti, Z = zi) =
∂C(u, v)

∂u
|u=FT (ti),v=FW (wi) = a

for wi, where Λ20(w) = 2w. The constant censoring times ζi = ζ’s were then chosen

to give approximate right censoring rates (ARC) of 20%, or 40%. The situation with

no right-censoring subjects (ARC=0%) is also considered in the simulation study.

To generate the observation interval, we set Li as the largest number in {0,Wi, 2Wi, 3Wi, . . . }

that is smaller than the minimum of Ti and ζ and let Ri = Li + Wi. The subject

with Ri ≥ ζ is considered to be right censored. And Wi for a right-censored subject

is only known to be greater than ζ − Li. The results given below are based on 400

replications with the sample size n = 200.

Table 1 presents the results on estimation of regression parameters β and γ

based on the simulated data generated under the Gumbel model with β0 = 0, 0.2,

γ0 = −0.2, 0, 0.2 and τ = 0.5, 0.7. Quadratic splines with 4 interior knots are used

to estimate Λ10(t) and Λ20(w). For estimating Λ10(t), we consider 0.2, 0.4, 0.6, 0.8

quantiles of the pooled set of all Li’s and the uncensored Ri’s, as the 4 interior knots.

Correspondingly, we consider the 0.2, 0.4, 0.6, 0.8 quantiles of the pooled set of Wi’s

of non-right-censored subjects and (ζ−Li)’s of right censored subjects, as the interior

knots for estimation of Λ20(w). The results in the table include the estimated bias

(Bias) given by the average of the estimates minus the true value, the sample stan-

dard deviation (SSE) of the estimates, the average of the estimated standard error

(SEE), and the 95% empirical coverage probability (CP). Table 2 gives the results

obtained under the FGM model with τ = −0.1, 0.1, and the results obtained under
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the Frank model with τ = −0.5, 0.5 are displayed in Table 3. Other set-ups for Table

2 and Table 3 are the same as for Table 1. Note that different values of parameters

were used for different copula models because the parameter range and the correlation

described in different models are different. One can see that all results indicate that

the proposed estimation procedure seems to work well for the situations considered

here. In particular, the estimator seems to be unbiased and the variance estimation

appears to be reasonable. The CP and the Q-Q plots, which are not shown here,

also suggest that the normal approximation to the distribution of the estimated re-

gression parameters is appropriate. We also considered other set-ups and obtained

similar results.

5.5 An Application

In this section, we apply the proposed methodology to the breast cosmesis study con-

ducted by Beadle et al. (1984). The study has also been analyzed by Zhang, Hua and

Huang (2010). The trial consists of 94 early breast cancer patients, randomly assigned

to radiotherapy alone (46 patients) or radiotherapy plus chemotherapy (48 patients).

The failure time of interest is the time to breast retraction and only interval-censored

data are available. One objective of the study is to compare the two treatments with

respect to time until the appearance of breast retraction.

For the analysis, define Zi = 0 if the patient was given radiotherapy alone and

Zi = 1 otherwise. In this study, the last possible examination time or the study

end time is not available. For patients with right-censored event time, we assume

ζ to be the largest examination time among all the patients which is 60. For the
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application of the proposed estimation procedure, as in the simulation study, we

employed the quadratic splines and considered the three copulas investigated there

with kn = 1, 2, 3, 4 and different values of τ . For each set-up, we calculated the AIC

and found that the smallest AIC is given by the Frank copula with kn = 3 and τ = 0.6

. Actually many AIC values are quite close.

Table 4 presents the estimated treatment effect, β̂, obtained with kn = 3 and

several values of τ under the three copula models, along with the estimated standard

error (SEE) and the p-values for testing no treatment effect. For comparison, the

results obtained with kn = 4 are included in Table 5. One can easily see thta the

marginal estimation results are quite different and depend on the possible correlation

between the time to breast retraction and the length of observation interval. If we

ignore the correlation between them by taking τ = 0, we would get a very significant

treatment effect. This is consistent to the results in the previously mentioned pa-

pers. However, if there exist moderate positive correlation as suggested by AIC, the

estimated results would suggest that the adjuvant chemotherapy doesn’t significantly

increase the hazard of breast retraction.

5.6 Concluding Remarks

In this chapter, we proposed an approach for regression analysis of interval-censored

failure time data under the Cox proportional hazards model when censoring mecha-

nism may be dependent on the failure time of interest. We assume the failure time

depend on the censoring interval only through its length and propose to model the

dependence via a copula function. For estimation of the baseline cumulative hazard
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functions, we propose to use an I−spline function which avoids the order restriction

of the spline coefficients compared to using a monotone B-spline function. Also, under

the copula model of the dependence, one can use techniques such as AIC to determine

the degree of correlation between the failure time and interval length.

Although our method is proposed under Cox model, it should be straightforward to

apply this method to other semiparametric regression models with interval-censored

data. Specifically, it can be easily extended to the linear transformation models

studied by Zhang et al. (2005). Another topic related to the proposed method for

future research is to allow the failure time to depend on both the lower and upper

bounds of the observation interval.
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β̂ γ̂
n ARC τ β0 γ0 Bias SSE SEE CP Bias SSE SEE CP

200 0% 0.5 0 -0.2 0.004 0.134 0.131 0.950 -0.005 0.136 .130 0.942

0 0.002 0.133 0.130 0.948 0.001 0.135 0.129 0.955

0.2 0.002 0.134 0.129 0.943 0.006 0.132 0.128 0.940

0.2 -0.2 0.013 0.140 0.134 0.950 -0.006 0.134 0.130 0.932

0 0.010 0.134 0.132 0.957 -0.001 0.134 0.130 0.952

0.2 0.009 0.135 0.130 0.943 0.008 0.133 0.129 0.943

0.7 0 -0.2 0.003 0.132 0.128 0.953 -0.009 0.135 0.128 0.938

0 0.001 0.129 0.127 0.942 -0.001 0.132 0.126 0.944

0.2 -0.001 0.130 0.127 0.950 0.003 0.127 0.126 0.957

0.2 -0.2 0.003 0.137 0.134 0.935 -0.007 0.132 0.128 0.937

0 0.010 0.132 0.128 0.955 -0.002 0.133 0.127 0.947

0.2 0.005 0.131 0.128 0.945 0.003 0.133 0.127 0.935

20% 0.5 0 -0.2 0.007 0.155 0.153 0.945 0.013 0.162 0.154 0.945

0 0.002 0.151 0.152 0.945 0.005 0.158 0.152 0.945

0.2 -0.005 0.153 0.151 0.943 -0.001 0.157 0.151 0.952

0.2 -0.2 0.015 0.150 0.154 0.958 0.051 0.152 0.155 0.937

0 0.004 0.155 0.153 0.958 0.041 0.151 0.153 0.937

0.2 -0.003 0.155 0.152 0.960 0.031 0.150 0.152 0.950

0.7 0 -0.2 -0.009 0.152 0.148 0.947 0.011 0.158 0.148 0.937

0 -0.003 0.147 0.146 0.945 0.003 0.156 0.146 0.932

0.2 -0.020 0.151 0.149 0.945 -0.015 0.153 0.149 0.940

0.2 -0.2 -0.005 0.153 0.154 0.965 0.031 0.153 0.152 0.942

0 0.005 0.153 0.148 0.950 0.030 0.153 0.148 0.932

0.2 0.002 0.152 0.146 0.938 0.018 0.157 0.146 0.940

40% 0.5 0 -0.2 0.022 0.178 0.177 0.948 0.030 0.179 0.179 0.950

0 -0.007 0.184 0.175 0.950 0.004 0.183 0.177 0.945

0.2 -0.024 0.181 0.174 0.945 -0.016 0.180 0.176 0.955

0.2 -0.2 0.016 0.176 0.171 0.950 0.077 0.181 0.171 0.933

0 0.007 0.176 0.170 0.940 0.052 0.174 0.170 0.932

0.2 -0.003 0.177 0.168 0.935 0.030 0.174 0.169 0.938

0.7 0 -0.2 0.008 0.173 0.163 0.947 0.025 0.170 0.163 0.942

0 -0.007 0.182 0.169 0.940 0.001 0.176 0.170 0.947

0.2 -0.027 0.177 0.167 0.938 -0.029 0.172 0.168 0.947

0.2 -0.2 0.036 0.175 0.175 0.950 0.077 0.177 0.175 0.927

0 0.009 0.180 0.172 0.937 0.047 0.173 0.171 0.935

0.2 -0.013 0.178 0.169 0.935 0.029 0.176 0.170 0.942

Table 5.1: Estimation of regression parameters under the Gumbel copula.
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β̂ γ̂
n ARC τ β0 γ0 Bias SSE SEE CP Bias SSE SEE CP

200 0% -0.1 0 -0.2 0.010 0.143 0.146 0.950 -0.018 0.136 0.143 0.953

0 0.011 0.145 0.146 0.940 -0.013 0.136 0.142 0.953

0.2 0.012 0.143 0.145 0.950 -0.010 0.137 0.143 0.953

0.2 -0.2 0.017 0.146 0.148 0.948 -0.018 0.136 0.143 0.950

0 0.015 0.142 0.147 0.950 -0.014 0.136 0.142 0.952

0.2 0.017 0.144 0.147 0.945 -0.010 0.137 0.143 0.950

0.1 0 -0.2 0.013 0.148 0.146 0.935 -0.015 0.139 0.143 0.953

0 0.011 0.145 0.145 0.938 -0.011 0.138 0.142 0.948

0.2 0.013 0.145 0.144 0.943 -0.008 0.140 0.143 0.945

0.2 -0.2 0.019 0.148 0.147 0.943 -0.015 0.139 0.143 0.955

0 0.019 0.147 0.146 0.938 -0.011 0.139 0.142 0.950

0.2 0.017 0.145 0.146 0.935 -0.007 0.139 0.143 0.948

20% -0.1 0 -0.2 0.006 0.159 0.163 0.948 -0.025 0.156 0.159 0.948

0 0.008 0.160 0.162 0.950 -0.013 0.155 0.158 0.955

0.2 0.009 0.157 0.161 0.958 0.001 0.154 0.157 0.945

0.2 -0.2 0.010 0.164 0.165 0.943 0.013 0.156 0.160 0.955

0 0.009 0.159 0.163 0.943 0.027 0.156 0.159 0.948

0.2 0.011 0.160 0.162 0.940 0.037 0.156 0.158 0.940

0.1 0 -0.2 0.010 0.168 0.164 0.950 -0.023 0.164 0.165 0.945

0 0.008 0.164 0.162 0.935 -0.013 0.163 0.163 0.945

0.2 0.010 0.164 0.161 0.940 -0.002 0.165 0.163 0.948

0.2 -0.2 0.016 0.171 0.166 0.938 0.027 0.168 0.166 0.955

0 0.015 0.168 0.164 0.953 0.036 0.166 0.164 0.953

0.2 0.014 0.164 0.163 0.940 0.044 0.167 0.164 0.945

40% -0.1 0 -0.2 0.008 0.190 0.191 0.965 -0.048 0.185 0.187 0.960

0 0.014 0.184 0.187 0.968 -0.019 0.183 0.183 0.960

0.2 0.016 0.178 0.185 0.963 0.013 0.179 0.181 0.955

0.2 -0.2 0.009 0.190 0.194 0.948 0.027 0.190 0.190 0.948

0 0.010 0.184 0.191 0.960 0.057 0.183 0.186 0.935

0.2 0.007 0.186 0.188 0.948 0.089 0.175 0.184 0.943

0.1 0 -0.2 0.017 0.193 0.191 0.935 -0.023 0.198 0.193 0.948

0 0.013 0.188 0.188 0.948 -0.009 0.193 0.190 0.945

0.2 0.013 0.178 0.186 0.950 0.001 0.189 0.189 0.955

0.2 -0.2 0.015 0.196 0.195 0.955 0.058 0.193 0.195 0.940

0 0.003 0.188 0.191 0.953 0.069 0.191 0.192 0.938

0.2 0.003 0.185 0.188 0.953 0.085 0.190 0.190 0.933

Table 5.2: Estimation of regression parameters under the FGM copula.
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β̂ γ̂
n ARC τ β0 γ0 Bias SSE SEE CP Bias SSE SEE CP

200 0% -0.5 0 -0.2 -0.005 0.131 0.131 0.955 0.002 0.135 0.132 0.948

0 -0.005 0.131 0.131 0.958 0.007 0.134 0.131 0.950

0.2 -0.007 0.131 0.131 0.960 0.012 0.135 0.132 0.958

0.2 -0.2 -0.001 0.133 0.132 0.958 0.001 0.134 0.133 0.958

0 -0.002 0.132 0.132 0.958 0.006 0.134 0.132 0.948

0.2 -0.003 0.133 0.132 0.958 0.010 0.135 0.132 0.950

0.5 0 -0.2 0.003 0.138 0.137 0.935 -0.004 0.139 0.135 0.955

0 -0.006 0.144 0.136 0.938 0.001 0.130 0.134 0.958

0.2 0.003 0.134 0.136 0.950 0.005 0.136 0.134 0.963

0.2 -0.2 0.006 0.140 0.138 0.925 -0.003 0.139 0.135 0.953

0 -0.001 0.145 0.137 0.945 0.002 0.130 0.134 0.955

0.2 0.008 0.136 0.137 0.940 0.008 0.137 0.134 0.960

20% -0.5 0 -0.2 -0.013 0.137 0.141 0.958 -0.008 0.140 0.144 0.953

0 -0.009 0.137 0.141 0.955 0.007 0.142 0.142 0.948

0.2 -0.004 0.136 0.140 0.963 0.022 0.140 0.142 0.948

0.2 -0.2 -0.004 0.139 0.142 0.958 0.011 0.140 0.145 0.955

0 0.001 0.138 0.142 0.960 0.027 0.140 0.143 0.955

0.2 0.005 0.138 0.142 0.953 0.040 0.140 0.143 0.945

0.5 0 -0.2 0.011 0.162 0.159 0.943 0.008 0.170 0.164 0.948

0 0.012 0.158 0.157 0.960 0.008 0.166 0.162 0.965

0.2 0.007 0.160 0.156 0.950 -0.002 0.164 0.162 0.958

0.2 -0.2 0.010 0.175 0.161 0.940 0.048 0.172 0.165 0.940

0 0.008 0.175 0.159 0.938 0.042 0.172 0.163 0.940

0.2 0.022 0.161 0.157 0.948 0.040 0.165 0.163 0.945

40% -0.5 0 -0.2 -0.001 0.160 0.166 0.965 -0.044 0.161 0.164 0.960

0 -0.014 0.167 0.163 0.945 0.009 0.157 0.159 0.950

0.2 0.001 0.167 0.162 0.945 0.037 0.156 0.157 0.943

0.2 -0.2 -0.007 0.176 0.168 0.935 0.008 0.163 0.167 0.960

0 0.009 0.173 0.166 0.938 0.038 0.158 0.163 0.945

0.2 0.023 0.171 0.165 0.945 0.066 0.158 0.161 0.935

0.5 0 -0.2 0.004 0.190 0.178 0.938 0.017 0.181 0.181 0.948

0 -0.017 0.188 0.176 0.935 -0.010 0.186 0.180 0.950

0.2 -0.001 0.177 0.175 0.948 -0.020 0.172 0.179 0.970

0.2 -0.2 0.020 0.186 0.182 0.945 0.072 0.187 0.184 0.940

0 -0.010 0.186 0.179 0.943 0.038 0.186 0.182 0.943

0.2 0.011 0.175 0.177 0.945 0.043 0.171 0.181 0.960

Table 5.3: Estimation of regression parameters under the Frank copula.
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copula τ β̂ SEE p−value γ̂ SEE p-value AIC
Gumbel 0 0.8958 0.2870 0.0018 0.6773 0.2781 0.0149 720.0236

0.25 0.8053 0.2853 0.0048 0.7126 0.2799 0.0109 683.4300

0.5 0.6330 0.2793 0.0235 0.6586 0.2767 0.0173 660.2347

0.6 0.5187 0.2761 0.0603 0.5983 0.2735 0.0287 656.2529

0.75 0.3847 0.2734 0.1594 0.5065 0.2704 0.0610 663.4234

FGM -2/9 0.9738 0.3107 0.0018 0.4208 0.2878 0.1438 772.3420

-1/9 0.9239 0.2911 0.0015 0.6147 0.2824 0.0295 742.4282

0 0.8958 0.2870 0.0018 0.6773 0.2781 0.0149 720.0236

1/9 0.8531 0.2875 0.0030 0.6885 0.2760 0.0126 702.5803

2/9 0.7716 0.2884 0.0075 0.6685 0.2768 0.0157 688.7241

Frank -0.5 1.0324 0.3325 0.0019 0.1037 0.3019 0.7314 858.0332

-0.25 0.9519 0.2937 0.0012 0.5321 0.2876 0.0644 773.7172

0 0.8958 0.2870 0.0018 0.6773 0.2781 0.0149 720.0236

0.25 0.7970 0.2856 0.0053 0.6923 0.2708 0.0106 682.5733

0.5 0.6203 0.2823 0.0280 0.6042 0.2637 0.0219 658.2527

0.6 0.5128 0.2794 0.0665 0.5280 0.2620 0.0438 654.6860

0.75 0.2776 0.2725 0.3083 0.3283 0.2599 0.2065 665.2190

Table 5.4: Estimating results for kn = 3.
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copula τ β̂ SEE p−value γ̂ SEE p-value AIC
Gumbel 0 0.8967 0.2872 0.0018 0.6856 0.2782 0.0137 725.9535

0.25 0.8095 0.2861 0.0047 0.7281 0.2790 0.0093 688.9773

0.5 0.6456 0.2808 0.0215 0.6890 0.2775 0.0130 665.3454

0.6 0.5372 0.2773 0.0527 0.6318 0.2741 0.0212 661.0255

0.75 0.4223 0.2749 0.1244 0.5519 0.2714 0.0420 667.4047

FGM -2/9 0.9800 0.3114 0.0016 0.4190 0.2874 0.1449 777.7934

-1/9 0.9247 0.2915 0.0015 0.6188 0.2829 0.0287 748.3515

0 0.8967 0.2872 0.0018 0.6856 0.2782 0.0137 725.9535

1/9 0.8520 0.2877 0.0031 0.6965 0.2758 0.0116 708.3712

2/9 0.7666 0.2885 0.0079 0.6738 0.2765 0.0148 694.3282

Frank -0.5 1.0606 0.3304 0.0013 0.0662 0.2971 0.8236 860.8833

-0.25 0.9513 0.2944 0.0012 0.5251 0.2878 0.0680 779.1396

0 0.8967 0.2872 0.0018 0.6856 0.2782 0.0137 725.9535

0.25 0.7929 0.2858 0.0055 0.6990 0.2704 0.0097 688.1050

0.5 0.6166 0.2823 0.0289 0.6132 0.2637 0.0200 663.3364

0.6 0.5158 0.2793 0.0648 0.5437 0.2621 0.0380 659.4415

0.75 0.2999 0.2728 0.2715 0.3626 0.2604 0.1637 669.0695

Table 5.5: Estimating results for kn = 4.
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Chapter 6

Future Research

There exist many open questions in the analysis of interval-censored data. In this

chapter, we will discuss sever potential directions for future research that related to

the questions investigated in the previous chapters.

6.1 Multivariate Copula Models for Regression Anal-

ysis of Informatively Interval-Censored Data

In Chapter 5, we assumed that the failure time of interest depends on the censoring in-

terval only through its length which could be restrictive in some cases. An alternative

would be to allow the failure time to depend on both the lower and upper bounds of

the censoring interval and use a multivariate copula model for the correlation between

them.
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6.2 Cure Rate Models for Interval-Censored Data

with Informative Censoring

In medical and health studies with period follow-ups where interval-censored data

arises naturally, it often involves the analysis of time to a specific event where some

individuals under study are highly susceptible to the event while others are at much

lower risk, for example, some of the individuals get treated. Such situations motivate

another possible future topic, which is to consider cure rate models for interval-

censored data when the censoring mechanism could depend on the failure time of

interest.
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Appendix A

Theoretical proofs

A.1 Proofs of the Main Results in Chapter 2

A.1.1 Proof of Theorem 2.1

Let

Σ̂n =
1

n

n∑
i=1

Wni(β0)W T
ni(β0).

In order to prove (i), it is sufficient if we can show that Σ̂n = Σn + op(1). For any

a ∈ Rp, we have

aT (Σ̂n − Σn)a =
1

n

n∑
i=1

(aT (Wni(β0)−Wi(β0)))2 +
2

n

n∑
i=1

(aTWi(β0))(aT (Wni(β0)−Wi(β0)))

, D1 +D2. (A.1)
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Denote

ψij(β0) =
Zijωij(β0)τ ′(ZT

ijβ0)
∫ Ri
Li

∫ Rj
Lj
I(ti ≥ tj)dHZi(ti)dHZj(tj)

(HZi(Ri)−HZi(Li))(HZj(Rj)−HZj(Lj))
,

|aTψij(β0)| =
|aTZijωij(β0)τ ′(ZT

ijβ0)|
∫ Ri
Li

∫ Rj
Lj
I(ti ≥ tj)dHZi(ti)dHZj(tj)

(HZi(Ri)−HZi(Li))(HZj(Rj)−HZj(Lj))

≤
|aTZijωij(β0)τ ′(ZT

ijβ0)|
∫ Ri
Li

(
HZj (Rj)−HZj(Lj)

)
dHZi(ti)

(HZi(Ri)−HZi(Li))(HZj(Rj)−HZj(Lj))

= |aTZijωij(β0)τ ′(ZT
ijβ0)| , |αij(β0)|.

Let ψ̂ij(β) be ψij(β) with H replaced by Ĥ. Let t∗i denote ((ti ∧Rj) ∨ Lj) . We have

|aT (ψ̂ij(β0)− ψij(β0))| =
|αij(β0)(I1 + I2)|
B(Rij, Lij)

,

whereB(Rij, Lij) = (ĤZi(Ri)−ĤZi(Li))(ĤZj(Rj)−ĤZj(Lj))(HZi(Ri)−HZi(Li))(HZj(Rj)−

HZj(Lj)),

I1 = (HZi(Ri)−HZi(Li))(HZj(Rj)−HZj(Lj))

∫ Ri

Li

ĤZj(t
∗
i )dĤZi(ti)

−(ĤZi(Ri)− ĤZi(Li))(ĤZj(Rj)− ĤZj(Lj))

∫ Ri

Li

HZj(t
∗
i )dHZi(ti),

I2 = (HZi(Ri)−HZi(Li))
(
ĤZi(Ri)− ĤZi(Li)

)
S(Rj, Lj)

with S(Rj, Lj) =
(
HZj(Rj)−HZj(Lj)

)
ĤZj(Lj)−

(
ĤZj(Rj)− ĤZj(Lj)

)
HZj(Lj).

By a straightforward computation, we have

|S(Rj, Lj)| = |HZj(Rj)(ĤZj(Lj)−HZj(Lj)) +HZj(Lj)(HZj(Rj)− ĤZj(Rj))|

≤ |ĤZj(Rj)−HZj(Rj)|+ |ĤZj(Lj)−HZj(Lj)|.
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Hence we have

|I2| ≤ |ĤZj(Rj)−HZj(Rj)|+ |ĤZj(Lj)−HZj(Lj)|.

Similarly, we can obtain that

|I1| ≤
∣∣∣∣∫ Ri

Li

ĤZj(t
∗
i )dĤZi(ti)−

∫ Ri

Li

HZj(t
∗
i )dHZi(ti)

∣∣∣∣+ |ĤZi(Ri)−HZi(Ri)|

+|ĤZi(Li)−HZi(Li)|+ |ĤZj(Rj)−HZj(Rj) + |ĤZj(Lj)−HZj(Lj)|

, |A1|+ |ĤZi(Ri)−HZi(Ri)|+ |ĤZi(Li)−HZi(Li)|

+|ĤZj(Rj)−HZj(Rj)|+ |ĤZj(Lj)−HZj(Lj)|,

where

A1 =

∫ Ri

Li

(ĤZj(t
∗
i )−HZj(t

∗
i ))dĤZi(ti) +

∫ Ri

Li

HZj(t
∗
i ))dĤZi(ti)−

∫ Ri

Li

HZj(t
∗
i ))dHZi(ti)

=

∫ Ri

Li

(ĤZj(t
∗
i )−HZj(t

∗
i ))dĤZi(ti)−

∫ Ri

Li

(ĤZj(ti)−HZj(ti))dHZi(t
∗
i )

+HZj((Ri ∧Rj) ∨ Lj)(ĤZi(Ri)−HZi(Ri))−HZj((Li ∧Rj) ∨ Lj)(ĤZi(Li)−HZi(Li)).

By Groeneboom & Wellner (1992), we have that

k1 = sup
t∈R
|ĤZ(t)−HZ(t)| = op(1).
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Next note that

|aT (Wni(β0)−Wi(β0))| =
1

n− 1

n∑
j=1,j 6=i

|aT (ψ̂ij(β0)− ψij(β0)) + aT (ψ̂ji(β0)− ψji(β0))|

≤ 1

n− 1

n∑
j=1,j 6=i

(
8|αij(β0)|k1

B(Rij, Lij)
+

8|αji(β0)|k1

B(Rji, Lji)

)
≤ 8k1

B1

(αij(β0) + αji(β0)),

where B1 = min{B(Rij, Lij)|i, j = 1, . . . , n}.

We also have

|aTWi(β0)| ≤ 1

n− 1

n∑
j=1,j 6=i

(|aTψij(β0)|+ |aTψji(β0)|)

+
1

n− 1

n∑
j=1,j 6=i

(
|aTZijωij(β0)τ ′(ZT

ijβ0)τ(ZT
ijβ0)|+ |aTZjiωji(β0)τ ′(ZT

jiβ0)τ(ZT
jiβ0)|

)
.

By the conditions 1 and 2, thus |aTZijωij(β0)τ ′(ZT
ijβ0)τ(ZT

ijβ0)| and |aTψij(β)|,

i.e, |αij(β0)| are bounded and denoted by C1/2 and C2/2 for constants C1 and C2,

respectively. So we have

|D2| ≤
16C2(C1 + C2)k1

B1

= op(1). (A.2)

Similarly, we can show that |D1| = op(1). Combining (A.1) and (A.2), we obtain that

(i) holds.

In order to prove (ii), we only need to show that Σ̂ = Σ̂n + op(1). For any a ∈ Rp,
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we have

aT (Σ̂n − Σn)a =
1

n

n∑
i=1

(aT (Wni(β̂)−Wni(β0)))2 +
2

n

n∑
i=1

(aTWni(β0))(aT (Wni(β̂)−Wni(β0))).

By some straightforward computation, we have

aT (Wni(β̂)−Wni(β0))

=
1

n

n∑
j=1,j 6=i

{
aT (ψ̂ij(β̂)− ψ̂ij(β0)) + aT (ηij(β̂)− ηij(β0))

+aT (ψ̂ji(β̂)− ψ̂ji(β0)) + aT (ηji(β̂)− ηji(β0))
}
,

where ηij(β) = Zijωij(β)τ ′(ZT
ijβ)τ(ZT

ijβ). Under conditions 1 and 2 applying the dif-

ferential mean value theorem, and using the consistency and the asymptotic normality

of β̂ obtained by Zhang et al. (2005), we have

|aT (ψ̂ij(β̂)− ψ̂ij(β0))| = Op(n
− 1

2 ) and |aT (ηji(β̂)− ηji(β0))| = Op(n
− 1

2 ) for 1 ≤ i, j ≤ n.

Thus we have

|aT (Wni(β̂)−Wni(β0))| = Op(n
− 1

2 ).

Seen from the proof for the result (i), it can be seen that |aTWni(β0)| ≤ C3 for a

constant C3. Therefore, we have

|aT (Σ̂n − Σn)a| = Op(n
− 1

2 ).
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The result (ii) follows. By using the same proof method as above, we can show the

result (iii).

This completes the proof of Theorem 2.1.

A.1.2 Proof of Theorem 2.2

Let Yn = max
1≤i 6=j≤n

‖ b(Ui, Uj, β0) ‖ . Under conditions 1 and 2, it is easy to see that

E ‖ b(U1, U2, β0) ‖2< ∞. We have Yn = o(n
1
2 ), a.s. (refer to the result of Jing et al

(2008) on page 605). Note that

‖ Wi(β0) ‖≤ 1

n− 1

n∑
j=1,j 6=i

‖ b(Ui, Uj, β0) ‖≤ Yn, for i = 1, . . . , n.

Thus,

max
1≤i≤n

‖ Wi(β0) ‖= o(n
1
2 ), a.s. (A.3)

Note that

Wni(β0)−Wi(β0) =
1

n− 1

n∑
j=1,j 6=i

{
(ψ̂ij(β0)− ψij(β0)) + (ψ̂ji(β0)− ψji(β0))

}
,
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and

B(Rij, Lij)(ψ̂ji(β0)− ψji(β0))

= κij(β0)
(
ĤZj(Rj)− ĤZj(Lj)

){∫ Ri

Li

ĤZj(t
∗
i )− ĤZj(Lj)

ĤZj(Rj)− ĤZj(Lj)
dĤZi(ti)

×
∫ Ri

Li

∫ Rj

Lj

dHZi(ti)dHZj(tj)−
∫ Ri

Li

dĤZi(ti)×
∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj(tj)

}

= θij(β0)

{∫ Ri

Li

(
ĤZj(t

∗
i )− ĤZj(Lj)

ĤZj(Rj)− ĤZj(Lj)
− 1

)
dĤZi(ti)

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dHZi(ti)dHZj(tj)

}

+κij(β0)

∫ Ri

Li

∫ Rj

Lj

I(ti ≥ tj)dĤZi(ti)dĤZj(tj)×
∫ Ri

Li

∫ Rj

Lj

I(ti < tj)dHZi(ti)dHZj(tj),

where κij(β0) = Zijωij(β0)τ ′(Zij(β0)) and θij(β0) = κij(β0)
(
ĤZj(Rj)− ĤZj(Lj)

)
. So

we have

‖ ψ̂ji(β0)− ψji(β0) ‖ ≤ 1

ĤZi(Ri)− ĤZi(Li)

×
‖ Zijωij(β0)τ ′(ZT

ijβ0) ‖
∫ Ri
Li

∫ Rj
Lj
I(ti ≥ tj)dHZi(ti)dHZj(tj)

(HZi(Ri)−HZi(Li))(HZj(Rj)−HZj(Lj))

≤ C4 ‖ ψij(β0) ‖

for a constant C4. It follows from (A.3) that

max
1≤i≤n

‖ Wni(β0)−Wi(β0) ‖≤ 2C4 max
1≤i 6=j≤n

‖ ψij(β0) ‖= op(n
1
2 ).

Hence we have

max
1≤i≤n

‖ Wni(β0) ‖≤ max
1≤i≤n

‖ Wni(β0)−Wi(β0) ‖ + max
1≤i≤n

‖ Wi(β0) ‖= op(n
1
2 ). (A.4)
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From the Appendix of Zhang et al (2005), we obtain that 2U(β0) = (n−1)
∑n

i=1 Wni(β0) =

Op(n
3
2 ). It follows from (2.8) and the arguments as those in Owen (1990) that

‖ λ ‖= Op(n
− 1

2 ). (A.5)

Then by (A.4) and (A.5), we have

max
1≤i≤n

|λTWni(β0)| = op(1). (A.6)

It follows (A.6) and the arguments as those in Owen (1990), by using the Taylor’s

expansions to (2.7) and (2.8), refer to the Taylor’s expansions of the functions 1/(1+x)

and log(1 + x) as x→ 0, we obtain that

l̂(β0)

4
=

1

4

n∑
i=1

λTWni(β0) + op(1)

=
1

4

(
n−

3
2 2U(β0)

)T ( 1

n

n∑
i=1

Wni(β0)W T
ni(β0)

)−1 (
n−

3
2 2U(β0)

)
+ op(1)

=
(

Γ−
1
2 (β0)n−

3
2U(β0)

)T (
Γ

1
2 (β0)Σ−1Γ

1
2 (β0)

)(
Γ−

1
2 (β0)n−

3
2U(β0)

)
+ op(1).

From the Zhang et al (2005), we have that Γ−
1
2 (β0)n−

3
2U(β0)

D−→ N(0, Ip). Since

Γ
1
2 (β0)Σ−1Γ

1
2 (β0) is a real symmetric and invertible matrix, what’s more, the eigen-

values of this matrix is the same as those of matrix Σ−1Γ(β0). Theorem 2.2 follows.

A.2 Proofs of the Main Results in Chapter 3

For the asymptotic properties of β̂EP , we need the following regularity conditions.
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(1) Z(t) is bounded.

(2) P{Yi(t) = 1} > 0, for all t ∈ [0, τ ] and i = 1, . . . , n.

(3)
∫ τ

0
λ0(t)dt <∞.

(4) There exists a neighborhoodB of the true parameter β0 such that (∂2/∂βi∂βj)ϕ(t, β)

exists and is uniformly continuous on B; the function φ(t, β) is bounded away from

0 on [0, τ ]×B. The matrix Σ(β0) is positive definite.

(5) Assume that

E

{
sup

[0,τ ]×B
|Y (t)Φ(j)(t, β)|

}
<∞, j = 0, 1, 2,

E

 sup
[0,τ ]×B

∣∣∣∣∣∣Y (t)

∥∥∥∥∥
(

Φ(1)(t, β)

Φ(t, β)

)⊗2
∥∥∥∥∥
j

Φ(t, β0)

∣∣∣∣∣∣
 <∞, j = 1, 2,

E

{
sup

[0,τ ]×B

∣∣∣∣∣Y (t)

∥∥∥∥Φ(2)(t, β)

Φ(t, β)

∥∥∥∥j Φ(t, β0)

∣∣∣∣∣
}
<∞, j = 1, 2.

(6) sup
t∈[0,τ ]

|H(j)
X (t)| = Op(1), where

H
(j)
X (t) =

√
nv

{
1

nv

∑
i∈V

I(Yi = 1, Xi = x)ϕ
(j)
i (t, β)− E(I(Yi = 1, Xi = x)ϕ

(j)
i (t, β))

}
, j = 0, 1.

A.2.1 Proof of Theorem 3.1

To prove the consistency of β̂EP , first note the fact that n−1UEP (β̂EP ) = 0. Thus

it follows from the arguments of Foutz (1977) that it is sufficient to show that the

following four statements hold.

(a) n−1(∂UEP (β)/∂β) exists and is continuous in an open neighborhood of β0.
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(b) n−1(∂UEP (β0)/∂β0) is negative definite in probability.

(c) n−1(∂UEP (β)/∂β) converges in probability to a fixed function, say, Σ(β), uni-

formly in an open neighborhood of β0.

(d) n−1UEP (β0) converges to 0 in probability.

First (a) holds obviously. For (b) and (c), using a similar method to that used

in the proof of Lemma A.1 of Fan et al (2006), under conditions (1) and (2), we can

obtain that

sup
B×[0,τ ]

‖ Ŝ(j)
n − s(j) ‖−→ 0, a.s. for j = 0, 1, 2, (A.7)

sup
B×[0,τ ]

‖ D(1)
n2 − d

(1)
2 ‖−→ 0, a.s., and ‖ D(2)

n1 − d
(2)
1 ‖−→ 0, a.s. (A.8)

Also by the conditions (1) and (3), we can prove that

1

n

n∑
i=1

∫ τ

0

Φ̂
(2)
i (t, β)

Φ̂i(t, β)
−

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)

)⊗2
 dMi(t) −→ 0, in probability in B.

Furthermore, note that

1

n

n∑
i=1

∫ τ

0

S(2)
n (t, β)

S
(0)
n (t, β)

−

(
Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)⊗2
 dMi(t) (A.9)

is asymptotically equivalent to a local square integrable martingale. Therefore by the

inequality of Lenglart (Andersen and Gill, 1982), we have that the function (A.9)

converges to 0 in probability uniformly in B. Thus we get A1(τ, β)→ 0 in probability
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in B. For A2(τ, β), note that

A2(τ, β) =

∫ τ

0

(
D

(2)
n1 (t, β)− Ŝ

(2)
n (t, β)

Ŝ
(0)
n (t, β)

S(0)
n (t, β0)

)
λc0(t)dt

−
∫ τ

0

D(1)
n2 (t, β)−

(
Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)⊗2

S(0)
n (t, β0)

λc0(t)dt,

which converges in probability to

∫ τ

0

[(
d

(2)
1 (t, β)− s(2)(t, β)

s(0)(t, β)
s(0)(t, β0)

)
−

(
d

(1)
2 (t, β)−

(
s(1)(t, β)

s(0)(t, β)

)⊗2

s(0)(t, β0)

)]
λc0(t)dt.

(A.10)

So (c) holds. By replacing β with β0 in equation (A.10), (b) follows from the condition

(4) immediately.

For (d), using some similar arguments used as above, we can obtain that n−1UEP (β0)

converges to the same limit as that of

D(τ, β0) ,
1

n

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β0)

Φ̂i(t, β0)
− Ŝ

(1)
n (t, β0)

Ŝ
(0)
n (t, β0)

)
Φi(t, β0)Yi(t)λ

c
0(t)dt.

Thus it is sufficient to show that D(τ, β0) converges to 0 in probability. Note that

1

n

n∑
i=1

Φ̂
(1)
i (t, β0)

Φ̂i(t, β0)
Φi(t, β0)Yi(t) =

1

n

∑
i∈V̄

φ̂
(1)
i (t, β0)

φ̂i(t, β0)
Yi(t)φi(t, β0)− 1

n

∑
i∈V

Z∗i (t)Yi(t)e
−β0Z∗i (t) , L− L̃.

By the condition (5) and the law of large numbers, we have

L =
nv̄
n

1

nv̄

∑
i∈V̄

φ̂
(1)
i (t, β0)

φ̂i(t, β0)
Yi(t)φi(t, β0)

P−→ (1− ρ)
m∑
l=1

φ
(1)
il (t, β0)E{Yi(t)I(Xi(t) = xl)},
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where φil(t, β) = E(e−βZ
∗
i (t)|Yi = 1, Xi(t) = xl). On the other hand, by the law of

large numbers, L̃
P−→ ρE(Z∗i (t)Yi(t)e

−β0Z∗i (t)). Therefore, we have that

1

n

n∑
i=1

Φ̂
(1)
i (t, β0)

Φ̂i(t, β0)
Φi(t, β0)Yi(t)

P−→ s(1)(t, β0). (A.11)

Hence it follows from the law of large numbers, equations (A.7) and (A.11) that

D(τ, β0) converges to 0 in probability. That is, (d) is true and we complete the proof.

A.2.2 Proof of Theorem 3.2

First note that

1√
n
UEP (β) =

1√
n

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)
− S

(1)
n (t, β)

S
(0)
n (t, β)

)
dMi(t)

+
1√
n

n∑
i=1

∫ τ

0

(
Φ̂

(1)
i (t, β)

Φ̂i(t, β)
− Ŝ

(1)
n (t, β)

Ŝ
(0)
n (t, β)

)
Φi(t, β0)Yi(t)λ

c
0(t)dt,

and

1√
n
UEP (β0) = − 1√

n
(UEP (β̂EP )− UEP (β0)) =

{
− 1

n
(∂/∂β∗)UEP (β∗)

}√
n(β̂EP − β0),

(A.12)

where β∗ is between β̂EP and β0. To prove the asymptotic normality, it suffices to prove

that n−1/2UEP (β0) converges to a normal random variable in distribution and that

n−1(∂/∂β∗)UEP (β∗) converges to an invertible matrix. The latter is straightforward

by the consistency of β̂EP and the convergence proof of n−1(∂/∂β)UEP (β) for (c).
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That is,

−n−1(∂/∂β∗)UEP (β∗)
P−→ Σ(β0). (A.13)

For the asymptotic normality of n−1/2UEP (β0), note that by applying the first-

order expansion (Zhou and Pepe, 1995),

x

y
=
x0

y0

+
x− x0

y0

− (y − y0)x0

y2
0

+ o{(x− x0)2 + (y − y0)2},

to Φ̂
(1)
i /Φ̂

(0)
i and Ŝ

(1)
n /Ŝ

(0)
n at Φ

(1)
i /Φ

(0)
i and s(1)/s(0), respectively. We can show that

the second term of n−1/2UEP (β0) is equal to

− 1√
n

n∑
i=1

∫ τ

0

(
Φ

(1)
i (t, β0)

Φi(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
Yi(t)(Φ̂i(t, β0)− Φi(t, β0))λc0(t)dt+ op(1)

= − 1√
n

∑
i∈V̄

∫ τ

0

(
φ

(1)
i (t, β0)

φi(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
Yi(t)(φ̂i(t, β0)− φi(t, β0))λc0(t)dt+ op(1)

, Γ(τ, β0) + op(1).

By the conditions (1) - (6), we have that

Γ(τ, β0) = − 1√
n

∑
i∈V̄

∫ τ

0

(
φ

(1)
i (t, β0)

φi(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
1

P (X = Xi, C ≥ t)
Yi(t)

×

(
1

nv

∑
j∈V

I(Xj = Xi)Yj(t)(ϕj(t, β0)− φi(t, β0))

)
λc0(t)dt+ op(1)

= − 1√
n

nv̄
nv

∑
j∈V

∫ τ

0

(
φ

(1)
j (t, β0)

φj(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
(ϕj(t, β0)− φj(t, β0))Yj(t)λ

c
0(t)dt+ op(1)

, − 1√
n

nv̄
nv

∑
j∈V

Qj + op(1).
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Therefore n−1/2UEP (β0) can be rewritten as

1√
n

∫ τ

0

∑
i∈V̄

(
φ

(1)
i (t, β0)

φi(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
dMi(t)

+
1√
n

∑
j∈V

{∫ τ

0

(
ϕ

(1)
j (t, β0)

ϕj(t, β0)
− s(1)(t, β0)

s(0)(t, β0)

)
dMj(t)−

nv̄
nv
Qj

}
+ op(1)

, I1 + I2 + op(1).

By the martingale central limit theorem (Fleming and Harrington, 1991), I1 con-

verges weakly to the normal variable with mean zero and the covariance (1−ρ)Σ1(β0).

Note that I2 is a summation of independent identically distributed terms from the

subjects in the validation sample set, and the terms in I2 have mean zero since that

Mj(t) is a martingale and E(Qj) = 0. Through the simple central limit theorem, we

obtain that I2 is asymptotically normal with mean zero and covariance ρΣ2(β0). It

thus follows from the independence between I1 and I2 that n−1/2UEP (β0) converges

to a mean zero normal random vector with covariance (1− ρ)Σ1(β0) + ρΣ2(β0). The

theorem thus follows from combining equations (A.12), (A.13) and the asymptotic

normality of I1 + I2.

A.3 Proofs of the Asymptotic Properties in Chap-

ter 4

Assumptions

(A1) Z has a bounded support in Rp where p is the dimension of Z.

(A2) C(·, ·) has a bounded first order partial derivatives for C on (0, 1)2. ∂C(u,v)
∂u

and

∂C(u,v)
∂v

be Lipschitz.
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(A3) sup
d(θ,θ0)>ε

Pl(θ,X) < Pl(θ0, X).

(A4) The mth derivatives of ΛT (·), ΛC(·), denoted by Λ
(m)
T (·), Λ

(m)
C (·). ΛT (·), ΛC(·)

belong to A = {Λ : |Λ(m)(t1)−Λ(m)(t2)| ≤M |t1− t2|η} for some η ∈ (0, 1] and for all

t1, t2 ∈ (l, u), k = 1, 2 and M is some constant. Denote r = m+ η.

(A5) E(SϑS
′
ϑ) is finite and positive definite with ϑ = (β′, γ′)′ where Sϑ defined in

the proof of Theorem 4.3.

Note that the conditions above are mild and usually satisfied in practical situations

(e.g., Huang and Rossini, 1997; Zhang et al. 2010). Condition (A3) states that the

true parameters should be well separated from the point of maximum in terms of

the Kullback-Leiber divergence, which is usually imposed for the consistency of M-

estimators (van der Vaart and Wellner, 1996, page 286). The proofs of Theorems 4.1

- 4.3 involve the theory of empirical processes and some techniques commonly used in

nonparametric literature. For ease of exposition, we denote Pg =
∫
g(x)dP (x) and

Png = n−1
∑n

i=1 g(Xi) with the empirical process indexed by function g(X).

A.3.1 Proof of Theorem 4.1

To establish the consistency using empirical process theory, we consider a class of

functions Ln defined by {l(θ,X) : θ ∈ Θn}. For any θ1 = (β1, γ1,Λ1
T ,Λ

1
C), θ2 =

(β2, γ2,Λ2
T ,Λ

2
C) ∈ Θn,

110



|l(θ1, X)− l(θ2, X)|

= |lβ(θ̃, X)(β1 − β2)|+ |lγ(θ,X)(γ1 − γ2)|

+|lΛT (θ̃, X)(Λ1
T − Λ2

T )|+ ‖lΛC (θ,X)(Λ1
C − Λ2

C)|

≤ K(‖β1 − β2‖+ ‖γ1 − γ2‖) +K‖Λ1
T − Λ2

T‖∞ +K‖Λ1
C − Λ2

C‖∞

≤ K(‖β1 − β2‖+ ‖γ1 − γ2‖+ ‖Λ1
T − Λ2

T‖∞ + ‖Λ1
C − Λ2

C‖∞

where θ̃ lies between θ1 and θ2,

lβ(θ,X) = ∆
{ δ

mα(FT , FC)
+

1− δ
1−mα(FT , FC)

}∂FT
∂β

+(1−∆)
{ δ

FT − Cα(FT , FC)
+

1− δ
1− FT − FC − Cα(FT , FC)

}∂FT
∂β

,

lγ(θ,X) = ∆
{ δ

mα(FT , FC)
+

1− δ
1−mα(FT , FC)

}∂FT
∂γ

+(1−∆)
{ δ

FT − Cα(FT , FC)
+

1− δ
1− FT − FC − Cα(FT , FC)

}∂FC
∂γ

+
1−∆

fC

∂fC
∂γ

,

lΛT (θ,X) = ∆
{ δ

mα(FT , FC)
+

1− δ
1−mα(FT , FC)

}∂mα

∂FT

∂FT
∂ΛT

,

+(1−∆)
{ δ

FT − Cα(FT , FC)

[∂FT
∂ΛT

− ∂Cα
∂FT

∂FT
∂ΛT

]
,

+
1− δ

1− FT − FC − Cα(FT , FC)

[
− ∂FT
∂ΛT

− ∂Cα
∂FT

∂FT
∂ΛT

]}
,

lΛC (θ,X) = ∆
{ δ

mα(FT , FC)
+

1− δ
1−mα(FT , FC)

}∂mα

∂FC

∂FC
∂ΛC

+
∆

fC

∂fC
∂ΛC

+(1−∆)
{ δ

FT − Cα(FT , FC)

[
− ∂Cα
∂FC

∂FC
∂ΛC

]
+

1− δ
1− FT − FC − Cα(FT , FC)

[∂FC
∂ΛC

− ∂Cα
∂FC

∂FC
∂ΛT

]}
.

Denote pm = 2p + 2(m + kn). By the calculation of van der Vart and Well-
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ner(1996)(p.94), we have

N
(
ε,Ln, L1(Pn)

)
≤ N

( ε

3M
,B, ‖ · ‖

)
·N
( ε

3Mn

,M1
n, L∞

)
·N
( ε

3Mn

,M2
n, L∞

)
≤
(9M

ε

)2p

·
(9M2

n

ε

)m+kn
·
(9M2

n

ε

)m+kn

≤ KM2pM4(m+kn)
n ε−pm .

Applying the inequality (31) of Pollard (1984), we have

sup
θ∈Θn

∣∣Pnl(θ,X)− Pl(θ,X)
∣∣→ 0 (A.14)

almost surely.

Let

M(θ,X) = −l(θ,X),

ζ1n = sup
θ∈Θn

|PnM(θ,X)− PM(θ,X)|,

ζ2n = PnM(θ0, X)− PM(θ0, X).

Denote Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn}.

inf
Kε
PM(θ,X) = inf

Kε

{
PM(θ,X)− PnM(θ,X) + PnM(θ,X)

}
≤ inf

Kε

{
|PM(θ,X)− PnM(θ,X)|+ PnM(θ,X)

}

≤ ζ1n + inf
Kε
PnM(θ,X). (A.15)
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If θ̂n ∈ Kε, we have

inf
Kε
PnM(θ,X) = PnM(θ̂n, X) ≤ PnM(θ0, X) = PnM(θ0, X)−PM(θ0, X)+PM(θ0, X)

= ζ2n + PM(θ0, X). (A.16)

By condition (A3), we obtain that inf
Kε
PM(θ,X)− PM(θ0, X) = δε > 0.

By (A.15) and (A.16), we have

inf
Kε
PM(θ,X) ≤ ζ1n + ζ2n + PM(θ0, X) = ζn + PM(θ0, X)

with ζn = ζ1n+ζ2n. Hence, we can get that ζn ≥ δε. Furthermore, we have {θ̂n ∈ Kε} ⊆

{ζn ≥ δε}. By (A.14) and Strong Law of Large Numbers, we have ζ1n = o(1) almost

surely, ζ2n = o(1) almost surely. Therefore, by ∪∞k=1∩∞n=k{θ̂n ∈ Kε} ⊆ ∪∞k=1∩∞n=k{ζn ≥

δε}, we complete the proof.

A.3.2 Proof of Theorem 4.2

To show the convergence rate.

For any η > 0, define the class Fη = {l(θn0, X) − l(θ,X) : θ ∈ Θn, d(θ, θn0) ≤ η}

with θn0 = (β0, γ0,ΛTn0,ΛCn0). Following the calculation of Shen and Wong (1994)

(p.597), we can establish that logN[](ε,Fη, ‖·‖2) ≤ CN log(η/ε) with N = 2(m+kn).

Moreover, some algebraic calculations lead to ‖l(θn0, X) − l(θ,X)‖2
2 ≤ Cη2 for any

l(θn0, X)− l(θ,X) ∈ Fη.
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Therefore, by Lemma 3.4.2 of van der Vaart and Wellner (1996), we obtain

EP‖n1/2(Pn − P )‖Fη ≤ CJη(ε,Fη, ‖ · ‖2)

{
1 +

Jη(ε,Fη, ‖ · ‖2)

η2n1/2

}
, (A.17)

where Jη(ε,Fη, ‖ · ‖2) =
∫ η

0
{1 + logN[](ε,Fη, ‖ · ‖2)}1/2dε ≤ CN1/2η. The right-hand

side of (A.17) yields φn(η) = C(N1/2η + N/n1/2). It is easy to see that φn(η)/η de-

creasing in η, and r2
nφn(1/rn) = rnN

1/2 + r2
nN/n

1/2 < 2n1/2, where rn = N−1/2n1/2 =

n(1−ν)/2 with 0 < ν < 0.5 Hence n(1−ν)/2d(θ̂, θn0) = OP (1) by Theorem 3.2.5 of van

der Vaart and Wellner (1996). This, together with d(θn0, θ0) = Op(n
−rν) (Lemma

A1 in Lu et al. 2007) yields that d(θ̂, θ0) = Op(n
−(1−ν)/2 + n−rν). The choice of

ν = 1/(1 + 2r) yields the rate of convergence of d(θ̂n, θ0) = Op(n
− r

1+2r ).

A.3.3 Proof of Theorem 4.3

Denote V as the linear span of Θ0− θ0 where θ0 denote the true value of θ = (θ, γ, ψ)

and Θ0 denote the true parameter space. Let l(θ,W ) be the log-likelihood for a sample

of size one and δn = (n−(1−ν)/2 + n−rν). For any θ ∈ {θ ∈ Θ0 : ‖θ − θ0‖ = O(δn)},

define the first order directional derivative of l(θ,X) at the direction v ∈ V as

l̇(θ,X)[v] =
dl(θ + sv,X)

ds

∣∣∣
s=0

,

and the second order directional derivative as

l̈(θ,X)[v, ṽ] =
d2l(θ + sv + s̃ṽ, X)

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

=
dl̇(θ + s̃ṽ, X)

ds̃

∣∣∣
s̃=0

.
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Define the Fisher inner product on the space V as

< v, ṽ >= P
{
l̇(θ,X)[v]l̇(θ,X)[ṽ]

}

and the Fisher norm for v ∈ V as ‖v‖1/2 =< v, v > . Let V̄ be the closed linear span

of V under the Fisher norm. Then (V̄ , ‖ · ‖) is a Hilbert space.

Define the smooth functional of θ as

γ(θ) = b′1β + b′2γ,

where b = (b′1, b
′
2)′ is any vector of 2p dimension with ‖b‖ ≤ 1. For any v ∈ V, we

denote

γ̇(θ0)[v] =
dγ(θ0 + sv)

ds

∣∣∣
s=0

= r(v).

Note that γ(θ) − γ(θ0) = γ̇(θ0)[θ − θ0]. It follows by the Riesz representation

theorem that, there exists v∗ ∈ V̄ such that γ̇(θ0)[v] =< v∗, v > for all v ∈ V̄ and

‖v∗‖2 = ‖γ̇(θ0)‖.

Let εn be any positive sequence satisfying εn = o(n−1/2). For any v∗ ∈ Θ0, by

(A4), Corollary 6.21 of Schumaker (1981) (p.227), there exists Πnv
∗ ∈ Θn such that

‖Πnv
∗−v∗‖ = o(1) and δn‖Πnv

∗−v∗‖ = o(n−1/2). Also define g[θ−θ0, X] = l(θ,X)−
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l(θ0, X)− l̇(θ,X)[θ − θ0]. Then by definition of θ̂, we have

0 ≤ Pn[l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )]

= (Pn − P )[l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )] + P [l(θ̂,W )− l(θ̂ ± εnΠnv

∗,W )]

= ±εnPnl̇(θ,W )[Πnv
∗] + (Pn − P )

{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

+P
{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

= ∓εnPnl̇(θ;W )[v∗]± εnPnl̇(θ,W )[Πnv
∗ − v∗] + (Pn − P )

{
g[θ̂ − θ0,W ]

−g[θ̂ ± εnΠnv
∗ − θ0,W ]

}
+ P

{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

:= ∓εnPnl̇(θ,W )[v∗] + I1 + I2 + I3.

For I1, it follows from Conditions (A1)-(A2), Chebyshev inequality and ‖Πnv
∗ −

v∗‖ = o(1) that I1 = εn × op(n−1/2).

For I2, we have

I2 = (Pn − P )
{
l(θ̂,W )− l(θ̂ ± εnΠnv

∗,W )± εnl̇(θ0,W )[Πnv
∗]
}

= ∓εn(Pn − P )
{
l̇(θ̃,W )− l̇(θ0,W )[Πnv

∗]
}
,

where θ̃ lies between θ̂ and θ̂ ± εnΠnv
∗. By Theorem 2.8.3 in of van der Vaart and

Wellner (1996), we know that {l̇(θ;W )[Πnv
∗] : ‖θ − θ0‖ = O(δn)} is Donsker class.

Therefore, by Theorem 2.11.23 of van der Vaart and Wellner (1996), we have I2 =

εn × op(n−1/2).
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For I3, note that

P (g[θ − θ0,W ]) = P{l(θ,W )− l(θ0,W )− l̇(θ0,W [θ − θ0])}

= 2−1P{l̈(θ̃,W )[θ − θ0, θ − θ0]− l̈(θ0,W )[θ − θ0, θ − θ0]}

+2−1P{l̈(θ0,W )[θ − θ0, θ − θ0]}

= 2−1P{l̈(θ0,W )[θ − θ0, θ − θ0]}+ εn × op(n−1/2)

where θ̃ lies between θ0 and θ and the last equation is due to Taylor expansion,

(A1)-(A2) and r > 2. Therefore,

I3 = −2−1{‖θ̂ − θ0‖2 − ‖θ̂ ± εnΠnv
∗ − θ0‖2}+ εn × op(n−1/2)

= ±εn < θ̂ − θ0,Πnv
∗ > +2−1‖εnΠnv

∗‖2 + εn × op(n−1/2)

= ±εn < θ̂ − θ0, v
∗ > +2−1‖εnΠnv

∗‖2 + εn × op(n−1/2)

= ±εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2)

where the last equality holds since δn‖Πnv
∗ − v∗‖ = o(n−1/2), Cauchy-Schwartz in-

equality, and ‖Πnv
∗‖2 → ‖v∗‖2. Combing the above facts, together with P l̇(θ0,W [v∗]) =

0, we can establish that

0 ≤ Pn{l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )}

= ∓εnPnl̇(θ0,W )[v∗]± εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2)

= ∓εn(Pn − P ){l̇(θ0,W )[v∗]} ± εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2).

Therefore, we obtain
√
n < θ̂ − θ0, v

∗ >=
√
n(Pn − P ){l̇(θ0,W )[v∗]} + op(1) →
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N(0, ‖v∗‖2), where the asymptotic normality is guaranteed by Central limits Theorem

and the the asymptotic variance being equal to ‖v∗‖2 = ‖l̇(θ0,W )[v∗]‖2. This implies

n1/2(γ(θ̂) − γ(θ0)) = n1/2 < θ̂ − θ0, v
∗ > +op(1) → N(0, ‖v∗‖2) in distribution. The

semiparametric efficiency can be established by applying the result of Bickel and

Kwon (2001) or Theorem 4 in Shen (1997).

For each component ϑq, q = 1, 2, · · · , 2p, we denote by ψ∗q = (b∗1q, b
∗
2q) the solution

to

inf
ψ∗q
E
{
lϑ · eq − lb∗1 · b

∗
1q − lb∗2 · b

∗
2q

}2

. (A.18)

where lϑ = (l′β, l
′
γ)
′, lb∗1 and lb∗2 can be calculated as lΛT (θ,X) and lΛC (θ,X) in the

proof of Theorem 4.1. Now let ψ∗ = (ψ∗1, · · · , ψ∗q ). By the calculations of Chen et al.

(2006), we have ‖v∗‖2 = ‖γ̇(θ0)‖ = supv∈V̄ :‖v‖>0
|γ̇(θ0)[v]|
‖v‖ = b′Σb, where Σ = E(SϑS

′
ϑ),

Sϑ = {lϑ − lb∗1b
∗
1 − lb∗2b

∗
2}. Now, since b′((β̂ − β0)′, (γ̂ − γ0)′) =< θ̂ − θ0, v

∗ >, the

conclusion of the theorem follows by the Cramér-Wold device.

A.4 Proofs of the Asymptotic Properties in Chap-

ter 5

Assumptions

(A1) Z has a bounded support in Rp where p is the dimension of Z.

(A2) C(·, ·) has a bounded first order partial derivatives for C on (0, 1)2. ∂C(u,v)
∂u

and

∂C(u,v)
∂v

be Lipschitz.

(A3) For any positive number ε, it holds that

sup
d(θ,θ0)>ε

Pl(θ,X) < Pl(θ0, X).
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(A4) The mth derivative of Λk(·), denoted by Λ
(m)
k (·), is Holder continuous with the

exponent η, i.e., |Λ(m)
k (t1) − Λ

(m)
k (t2)| ≤ M |t1 − t2|η for some η ∈ (0, 1] and for all

t1, t2 ∈ (l, u), k = 1, 2 and M is some constant. Denote r = m+ η.

(A5) E(SϑS
′
ϑ) is finite and positive definite with ϑ = (β′, γ′)′ where Sϑ defined in

the proof of Theorem 5.3.

A.4.1 Proof of Theorem 5.1

To establish the consistency using empirical process theory, we consider a class of

functions Ln defined by

{l(θ,X) : θ ∈ Θn}.

For any θ1 = (β1, γ1,Λ1
1,Λ

1
2), θ2 = (β2, γ2,Λ2

1,Λ
2
2) ∈ Θn, by Taylor’s expansion, we

have

|l(θ1, X)− l(θ2, X)|

= |lβ(θ̃, X)(β1 − β2)|+ |lγ(θ,X)(γ1 − γ2)|

+|lΛ1(θ̃, X)(Λ1
1 − Λ2

1)|+ ‖lΛ2(θ,X)(Λ1
2 − Λ2

2)|

≤ K(‖β1 − β2‖+ ‖γ1 − γ2‖) +K‖Λ1
1 − Λ2

1‖∞ +K‖Λ1
2 − Λ2

2‖∞

≤ K(‖β1 − β2‖+ ‖γ1 − γ2‖+ ‖Λ1
1 − Λ2

1‖∞ + ‖Λ1
2 − Λ2

2‖∞
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for some constant K. Denote pm = 2p+ 2(m+ kn). Then we have

N
(
ε,Ln, L1(Pn)

)
≤ N

( ε

3M
,B, ‖ · ‖

)
·N
( ε

3Mn

,M1
n, L∞

)
·N
( ε

3Mn

,M2
n, L∞

)
≤
(9M

ε

)2p

·
(9M2

n

ε

)m+kn
·
(9M2

n

ε

)m+kn

≤ KM2pM4(m+kn)
n ε−pm .

where the second inequality is based on calculation of van der Vart and Wellner(1996)(p.94).

Applying the inequality (31) in Pollard (1984) (p.31), we have

sup
θ∈Θn

∣∣Pnl(θ,X)− Pl(θ,X)
∣∣→ 0 (A.15)

almost surely.

Let M(θ,X) = −l(θ,X) and

ζ1n = sup
θ∈Θn

|PnM(θ,X)− PM(θ,X)|, ζ2n = PnM(θ0, X)− PM(θ0, X).

Denote Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn}.

inf
Kε
PM(θ,X) = inf

Kε

{
PM(θ,X)− PnM(θ,X) + PnM(θ,X)

}
≤ ζ1n + inf

Kε
PnM(θ,X). (A.16)

If θ̂n ∈ Kε, we have

inf
Kε
PnM(θ,X) = PnM(θ̂n, X) ≤ PnM(θ0, X) = ζ2n + PM(θ0, X). (A.17)
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By condition (A3), we obtain that inf
Kε
PM(θ,X)− PM(θ0, X) = δε > 0.

By (A.16) and (A.17), we have

inf
Kε
PM(θ,X) ≤ ζ1n + ζ2n + PM(θ0, X) = ζn + PM(θ0, X)

with ζn = ζ1n+ζ2n. Hence, we can get that ζn ≥ δε. Furthermore, we have {θ̂n ∈ Kε} ⊆

{ζn ≥ δε}. By (A.15) and Strong Law of Large Numbers, we have ζ1n = o(1) almost

surely, ζ2n = o(1) almost surely. Therefore, by ∪∞k=1∩∞n=k{θ̂n ∈ Kε} ⊆ ∪∞k=1∩∞n=k{ζn ≥

δε}, we complete the proof.

A.4.2 Proof of Theorem 5.2

To show the convergence rate.

For any η > 0, define the class Fη = {l(θn0, X) − l(θ,X) : θ ∈ Θn, d(θ, θn0) ≤ η}

with θn0 = (β0, γ0,Λ1n0,Λ2n0). Following the calculation of Shen and Wong (1994)

(p.597), we can establish that logN[](ε,Fη, ‖·‖2) ≤ CN log(η/ε) with N = 2(m+kn).

Moreover, some algebraic calculations lead to ‖l(θn0, X) − l(θ,X)‖2
2 ≤ Cη2 for any

l(θn0, X)− l(θ,X) ∈ Fη.

Therefore, by Lemma 3.4.2 of van der Vaart and Wellner (1996), we obtain

EP‖n1/2(Pn − P )‖Fη ≤ CJη(ε,Fη, ‖ · ‖2)

{
1 +

Jη(ε,Fη, ‖ · ‖2)

η2n1/2

}
, (A.18)

where Jη(ε,Fη, ‖ · ‖2) =
∫ η

0
{1 + logN[](ε,Fη, ‖ · ‖2)}1/2dε ≤ CN1/2η. The right-hand

side of (A.18) yields φn(η) = C(N1/2η + N/n1/2). It is easy to see that φn(η)/η de-

creasing in η, and r2
nφn(1/rn) = rnN

1/2 + r2
nN/n

1/2 < 2n1/2, where rn = N−1/2n1/2 =
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n(1−ν)/2 with 0 < ν < 0.5 Hence n(1−ν)/2d(θ̂, θn0) = OP (1) by Theorem 3.2.5 of van

der Vaart and Wellner (1996). This, together with d(θn0, θ0) = Op(n
−rν) (Lemma

A1 in Lu et al. 2007) yields that d(θ̂, θ0) = Op(n
−(1−ν)/2 + n−rν). The choice of

ν = 1/(1 + 2r) yields the rate of convergence of d(θ̂n, θ0) = Op(n
− r

1+2r ).

A.4.3 Proof of Theorem 5.3

Denote V as the linear span of Θ0− θ0 where θ0 denote the true value of θ = (θ, γ, ψ)

and Θ0 denote the true parameter space. Let l(θ,W ) be the log-likelihood for a sample

of size one and δn = (n−(1−ν)/2 + n−rν). For any θ ∈ {θ ∈ Θ0 : ‖θ − θ0‖ = O(δn)},

define the first order directional derivative of l(θ,X) at the direction v ∈ V as

l̇(θ,X) =
dl(θ + sv,X)

ds

∣∣∣
s=0

, (A.19)

and the second order directional derivative as

l̈(θ,X) =
d2l(θ + sv + s̃ṽ, X)

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

=
dl̇(θ + s̃ṽ, X)

ds̃

∣∣∣
s̃=0

. (A.20)

Define the Fisher inner product on the space V as

< v, ṽ >= P
{
l̇(θ,X)[v]l̇(θ,X)[ṽ]

}
(A.21)

and the Fisher norm for v ∈ V as ‖v‖1/2 =< v, v > . Let V̄ be the closed linear span

of V under the Fisher norm. Then (V̄ , ‖ · ‖) is a Hilbert space.
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Define the smooth functional of θ as

γ(θ) = b′1β + b′2γ, (A.22)

where b = (b′1, b
′
2)′ is any vector of 2p dimension with ‖b‖ ≤ 1. For any v ∈ V, we

denote

γ̇(θ0)[v] =
dγ(θ0 + sv)

ds

∣∣∣
s=0

= r(v) (A.23)

whenever the right hand-side limit is well defined.

Note that γ(θ) − γ(θ0) = γ̇(θ0)[θ − θ0]. It follows by the Riesz representation

theorem that, there exists v∗ ∈ V̄ such that γ̇(θ0)[v] =< v∗, v > for all v ∈ V̄ and

‖v∗‖2 = ‖γ̇(θ0)‖.

Let εn be any positive sequence satisfying εn = o(n−1/2). For any v∗ ∈ Θ0, by

(A4), Corollary 6.21 of Schumaker (1981) (p.227), there exists Πnv
∗ ∈ Θn such that

‖Πnv
∗−v∗‖ = o(1) and δn‖Πnv

∗−v∗‖ = o(n−1/2). Also define r[θ−θ0, X] = l(θ,X)−

l(θ0, X)− l̇(θ,X)[θ − θ0]. Then by definition of θ̂, we have

0 ≤ Pn[l(θ̂, X)− l(θ̂ ± εnΠnv
∗, X)]

= (Pn − P )[l(θ̂, X)− l(θ̂ ± εnΠnv
∗, X)] + P [l(θ̂, X)− l(θ̂ ± εnΠnv

∗, X)]

= ±εnPnl̇(θ,X)[Πnv
∗] + (Pn − P )

{
r[θ − θ0, X]− r[θ̂ ± εnΠnv

∗ − θ0, X]
}

+P
{
r[θ − θ0, X]− r[θ̂ ± εnΠnv

∗ − θ0, X]
}

= ∓εnPnl̇(θ,X)[v∗]± εnPnl̇(θ,X)[Πnv
∗ − v∗] + (Pn − P )

{
r[θ − θ0, X]

−r[θ̂ ± εnΠnv
∗ − θ0, X]

}
+ P

{
r[θ − θ0, X]− r[θ̂ ± εnΠnv

∗ − θ0, X]
}

:= ∓εnPnl̇(θ,X)[v∗] + I1 + I2 + I3.
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By (A1)-(A2) and Chebyshev inequality, independent and identical distribution

data, and ‖Πnv
∗ − v∗‖ = o(1), we have I1 = op(n

−1/2).

For I2, we have

I2 = (Pn − P )
{
l(θ̂, X)− l(θ̂ ± εnΠnv

∗, X)± εnl̇(θ0, X)[Πnv
∗]
}

= ∓εn(Pn − P )
{
l̇(θ̃, X)− l̇(θ0, X)[Πnv

∗]
}
,

where θ̃ lies between θ̂ and θ̂ ± εnΠnv
∗. By Theorem 2.8.3 in of van der Vaart and

Wellner (1996), we know that {l̇(θ,X)[Πnv
∗] : ‖θ − θ0‖ = O(δn)} is Donsker class.

Therefore, by Theorem 2.11.23 of van der Vaart and Wellner (1996), we have I2 =

εn × op(n−1/2).

Note that

P (r[θ − θ0, X]) = P{l(θ,X)− l(θ0, X)− l̇(θ0, X)[θ − θ0])}

= 2−1P{l̈(θ̃, X)[θ − θ0, θ − θ0]− l̈(θ0, X)[θ − θ0, θ − θ0]}

+2−1P{l̈(θ0, X)[θ − θ0, θ − θ0]}

= 2−1P{l̈(θ0, X)[θ − θ0, θ − θ0]}+ εn × op(n−1/2)

where θ̃ lies between θ0 and θ and the last equation is due to Taylor expansion,

124



(A1)-(A2) and r > 2. Therefore,

I3 = −2−1{‖θ̂ − θ0‖2 − ‖θ̂ ± εnΠnv
∗ − θ0‖2}+ εn × op(n−1/2)

= ±εn < θ̂ − θ0,Πnv
∗ > +2−1‖εnΠnv

∗‖2 + εn × op(n−1/2)

= ±εn < θ̂ − θ0, v
∗ > +2−1‖εnΠnv

∗‖2 + εn × op(n−1/2)

= ±εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2)

where the last equality holds since δn‖Πnv
∗ − v∗‖ = o(n−1/2), Cauchy-Schwartz in-

equality, and ‖Πnv
∗‖2 → ‖v∗‖2. Combing the above facts, together with P l̇(θ0, X)[v∗] =

0, we can establish that

0 ≤ Pn{l(θ̂, X)− l(θ̂ ± εnΠnv
∗, X)}

= ∓εnPnl̇(θ0, X)[v∗]± εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2)

= ∓εn(Pn − P ){l̇(θ0, X)[v∗]} ± εn < θ̂ − θ0, v
∗ > +εn × op(n−1/2).

Therefore, we obtain
√
n < θ̂ − θ0, v

∗ >=
√
n(Pn − P ){l̇(θ0, X)[v∗]} + op(1) →

N(0, ‖v∗‖2), where the asymptotic normality is guaranteed by Central limits The-

orem (Theorem 4.1 in Chapter 14 of Shorack, 2000)and the the asymptotic variance

being equal to ‖v∗‖2 = ‖l̇(θ0, X)‖2. This, together with A5 imply n1/2(γ(θ̂)−γ(θ0)) =

n1/2 < θ̂ − θ0, v
∗ > +op(1) → N(0, ‖v∗‖2) in distribution. The semiparametric ef-

ficiency can be established by applying the result of Bickel and Kwon (2001) or

Theorem 4 in Shen (1997).

For each component ϑq, q = 1, 2, · · · , 2p, we denote by ψ∗q = (b∗1q, b
∗
2q) the solution
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to

inf
ψ∗q
E
{
lϑ · eq − lb∗1 · b

∗
1q − lb∗2 · b

∗
2q

}2

. (A.24)

where lϑ = (l′β, l
′
γ)
′, lb∗1 and lb∗2 can be calculated as lΛ1(θ,X) and lΛ2(θ,X) in the

proof of Theorem 5.1. Now let ψ∗ = (ψ∗1, · · · , ψ∗q ). By the calculations of Chen et al.

(2006), we have ‖v∗‖2 = ‖γ̇(θ0)‖ = supv∈V̄ :‖v‖>0
|γ̇(θ0)[v]|
‖v‖ = b′Σb, where Σ = E(SϑS

′
ϑ),

Sϑ = {lϑ − lb∗1b
∗
1 − lb∗2b

∗
2}. Now, since b′((β̂ − β0)′, (γ̂ − γ0)′) =< θ̂ − θ0, v

∗ >, the

conclusion of the theorem follows by the Cramér-Wold device.
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