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THE DISCOVERY OF RNA SILENCING 

 

RNA silencing is one of the gene regulatory mechanisms conserved among almost 

all eukaryotic organisms, which refers to a collection of RNA-mediated sequence-specific 

inhibition of gene expression, either at the post-transcriptional or transcriptional level 

(Frizzi and Huang 2010). 

    The phenomenon of Post-transcriptional gene silencing (PTGS) phenomenon 

was first discovered in transgenic petunia (Petunia hybrida) plants (Napoli et al. 1990). 

These plants were modified to overexpress the Chalcone Synthase gene (CHS A) that codes 

for deep purple flower. But surprisingly, transgenic plants producing white or patchy 

flowers were obtained instead of dark purple flowers. Somehow both the introduced and 

endogenous forms of the CHS gene were silenced by the transgene and this phenomenon 

was then termed as “co-suppression” (Napoli et al. 1990). Similar observations have also 

been reported for plants engineered to express gene or gene segments derived from the 

viral genome (Baulcombe 1996). In one such study, transgenic tobacco plants expressing 

the tobacco etch virus (TEV) coat protein (CP) were initially susceptible to TEV infection, 

but returned to a "recovered" non-infected state 3-5 weeks later. Molecular analysis of the 

recovered tissue indicated that the gene silencing occurred at the posttranscriptional level 

(Lindbo et al. 1993).  

The underlying mechanisms responsible for this puzzling observation of 

homology-dependent gene silencing remained unknown for many years, until Fire and 
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Mello took the approach of directly testing double-stranded RNA (dsRNA) as the silencing 

trigger in Caenorhabditis elegans and proposed the term RNA interference (RNAi) for the 

first time (Fire et al. 1998). Later on, the potency of dsRNA to induce gene silencing was 

also demonstrated in plants (Waterhouse et al. 1998), protozoa (Ngo et al. 1998), and 

insects (Kennerdell and Carthew 1998). 

The second major breakthrough in RNA silencing was the identification and 

association of small RNA (sRNA) molecules in plants actively undergoing post-

transcriptional gene silencing (PTGS). Hamilton and Baulcombe (1999) screened for 

sRNA species in three types of transgene-induced PTGS and one example of virus-induced 

PTGS (Hamilton and Baulcombe 1999). sRNA molecules of approximately 25 nucleotides 

complementary to the targeted mRNA were detected in all four silencing backgrounds. 

These species of sRNA, typically 21-24 nucleotides long, are now termed short-interfering 

RNAs (siRNAs).   

Subsequent genetic and biochemical analyses in several organisms took the shape 

of RNA silencing pathway. In vitro experiments in fly (Drosophila melanogaster) embryos 

demonstrated that long exogenous dsRNA is cleaved into siRNAs by Dicer, a dsRNA-

specific RNaseIII-like endonuclease (Bernstein et al. 2001), which finally link dsRNA to 

the silencing. The characterization of ARGONAUTE1 (AGO1) protein solved the last 

piece of RNA silencing puzzle in plants (Baumberger and Baulcombe 2005; Eamens et al. 

2008): that is, following the formation of dsRNA from single-stranded sense RNA by 

RNA-dependent RNA polymerase (RdRP), a Dicer-like (DCL) protein recognize and 

process that dsRNA into different classes of siRNAs from which one strand is then 
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incorporated into the RNA-induced silencing complex (RISC) containing the Argonaute 

(AGO) protein and this guides the cleavage of a target RNA with a complementary 

nucleotide sequence. 

We now have a much greater understanding of the gene silencing pathways in plants 

and their crucial roles in a variety of biological regulation processes, such as development, 

plant defense against invading viral nucleic acids, and epigenetic modifications. siRNA 

directed target repression can occur in several levels including decreased RNA stability, 

lowered translational efficiency, and repression of chromatin modifications in the nucleus, 

which leads to transcriptional gene silencing (TGS) (Eamens et al. 2008). In addition, 

recent data demonstrate that plant siRNA plays a role in systemic silencing as a mobile 

signal, so that they can have effects over a long distance (Chitwood and Timmermans 2010; 

Dunoyer et al. 2010; Molnar et al. 2010). In addition to siRNA, another major class of 

small RNA molecules called microRNAs (miRNAs) have also been discovered in plants 

and proved to be an important negative regulator of gene expression (Voinnet 2009b). 

These gene silencing phenomena that are mediated by small non-coding RNAs are 

collectively called RNA silencing (Eamens et al. 2008). 

 

RNA SILENCING PATHWAY IN PLANTS 

 



5 
 

Plants exhibit surprisingly diverse classes of small RNAs and the proteins that 

generate them. The currently known plant small RNAs can be categorized into two major 

groups based on differences in origin, biogenesis and mode of action: siRNA from long 

perfectly dsRNA precursors and miRNAs derived from single-stranded RNA transcripts 

(transcribed from MIR genes) with imperfectly fold-back stem-loop structures. 

Endogenously expressed siRNAs (endo-siRNAs) can be further divided into several 

secondary classifications, including: heterochromatic siRNAs (hc-siRNAs), secondary 

siRNAs and natural antisense transcript siRNAs (NAT-siRNAs) (Axtell 2013; Ghildiyal 

and Zamore 2009). Common features of all small RNAs are that members of the DCL 

family are recruited to process long dsRNAs into ~20-30 nucleotides, and one strand of the 

resulting small RNA duplexes are thereafter incorporated into AGO family proteins to 

hybridize with their complementary targets, functioning in a suppressive manner (Eamens 

et al. 2008). Arabidopsis thaliana encodes six RdRP enzymes (RDR), four DCL proteins 

and ten AGOs, with both unique and redundant functions. Each small RNA group recruits 

consistent and unique sets of RDR, DCL, and AGO family members for their distinct 

modes of biogenesis and function, which are also known to be conserved and to remain 

distinct from one another in multiple plant species. 

 

The exo-siRNA pathway 

 

Early examples of siRNAs were thought to be primarily exogenous in origin, 

derived directly from experimentally introduced dsRNAs or viral RNAs. Exogenous small 
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interfering RNAs (exo-siRNAs) generated from these invasive transcripts form a basis for 

antiviral defense.  

In plants, exogenous sources of siRNAs are not limited to dsRNAs. Single-stranded 

RNAs (ssRNAs) from highly expressed transgenes or virus can be converted to dsRNA by 

RDR6/RDR1, members of the RdRP family that transcribe ssRNA from a RNA substrate 

(Figure 1.1) (Voinnet 2008; Qu et al. 2005). The dsRNA intermediary is then recognized 

and processed by a Dicer enzyme to produce two sizes of siRNAs: 21 and 24 nucleotides 

(Hamilton et al. 2002; Tang et al. 2003). The 21-nt siRNAs are processed by DCL4, but 

DCL2 is able to substitute and produce 22-nt siRNAs in the absence of DCL4 (Gasciolli et 

al. 2005; Deleris et al. 2006; Dunoyer et al. 2007; Xie et al. 2004). The DCl4-produced 21-

mers typically bind AGO1 and guide target transcript cleavage. The 24-nt siRNAs are 

generated by DCL3 and typically incorporated into AGO4 for the formation of repressive 

chromatin (Chan 2008). 

  

The endo-siRNA pathway 

 

hc-siRNA 

 

 Heterochromatic siRNAs are mostly ~24 nucleotides in size, generated from 

intergenic and/or repetitive genomic regions and promote the formation of repressive 

chromatin modifications (DNA methylation and histone modification) at homologous loci 

(Matzke et al. 2009; Law and Jacobsen 2010).  
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The biogenesis of heterochromatic siRNA requires specific members of the RDR, 

DCL, and AGO gene families. In the current model, plant-specific PolIV generates an 

aberrant RNA from methylated DNA templates (Figure 1.2) (Mosher et al. 2008). This 

aberrant RNA is then converted into dsRNA by RDR2 and subsequently processed into 

24nt siRNA duplexes by DCL3 (Xie et al. 2004; Haag et al. 2012). The siRNA duplexes 

are methylated by HEN1 and preferentially bind AGO4-clade AGOs to guide RNA-

directed DNA methylation (RdDM) that is catalyzed by the de novo cytosine 

methyltransferase DRM2 (Law and Jacobsen 2010). A second plant-specific RNA 

polymerase, Pol V is thought to be critical for the actual sequence-specific DNA 

methylation (Wierzbicki et al. 2009). Additional interacting partners are also recruited in 

steps downstream of siRNA biogenesis (Kanno et al. 2004; Kanno et al. 2008; Ausin et al. 

2009; Bies‐Etheve et al. 2009; He et al. 2009). 

The ~24 nt heterochromatic siRNAs, which are easily distinguishable from the 

other classes of endogenous plant small RNAs, are clearly conserved in multiple species 

(Axtell 2013). In fact, small RNA sequencing experiments suggest that 24-nt sRNAs are 

the most abundant size in numerous flowering plants (Axtell 2013). However, it seems that 

only the heterochromatic siRNA pathway is evolutionarily ancient; in contrast,  individual 

heterochromatic siRNA loci appear to have high rates of birth and death possibly due to 

the rapid changes of transposable elements in the plant genome during evolution (Axtell 

2013; Ma et al. 2010). 
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    The function of hc-siRNAs is largely to maintain genome integrity and stability, 

by assembly and maintenance of silent chromatin on transposable elements, which 

ultimately protect the genome from internal and external threats (Fei et al. 2013). 

 

Secondary siRNA 

 

Secondary siRNAs derive from a dsRNA precursor whose synthesis depends on  

the activity of one or more upstream small RNAs. In recent years, a novel class of phased 

secondary siRNA termed trans-acting small interfering RNAs (tasiRNAs), has been 

identified and intensively studied for their biogenesis and functions (Peragine et al. 2004; 

Hunter et al. 2006; Montgomery et al. 2008a; Williams et al. 2005; Xie et al. 2005; 

Yoshikawa et al. 2005; Garcia et al. 2006; Adenot et al. 2006; Allen et al. 2005; Vazquez 

et al. 2004). The generation of tasiRNAs involves components from both siRNA and 

miRNA pathways, including  AGO1, DCL1, HEN1 , HYPONASTIC LEAVES1 (HYL1), 

suppressor of gene silencing 3 (SGS3), and RDR6 (Peragine et al. 2004; Allen et al. 2005; 

Vazquez et al. 2004). Like miRNAs, but in contrast to other classes of endogenous siRNAs, 

tasiRNAs target genes that have little to no overall similarity with the genes from which 

the siRNAs are derived. However, unlike miRNAs, their production requires RDR6 and 

and SGS3 activity, which are originally associated with viral defense (virus induced gene 

silencing) and transgene silencing (posttranscriptional gene silencing) (Mourrain et al. 

2000). The identification of tasiRNAs establishes a link between the miRNA and siRNA 

pathways and also raises the possibility that numerous endogenous genes may be regulated 

by this special subgroup of endogenous siRNAs. 
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The generation of tasiRNAs is triggered by miRNA-guided cleavage of a tasiRNA-

generating (TAS) gene derived transcript. One of the 3' or 5' cleavage products is converted 

to dsRNA by RDR6 and subsequently processed by DCL4 into 21-nt siRNAs that are 

phased with regard to the miRNA cleavage site (Figure 1.2) (Peragine et al. 2004; Allen et 

al. 2005; Xie et al. 2005; Yoshikawa et al. 2005). One strand of the tasiRNA duplex is 

selectively assembled into RNA-induced silencing complex (RISC) to catalyze the 

cleavage or repress the translation of complimentary target mRNAs. Arabidopsis thaliana 

contains eight tasiRNA-generating (TAS) loci belonging to four families. TAS1, TAS2, 

TAS4 only require one miRNA binding site upstream of the tasiRNA-generating region; 

while TAS3 requires two, one upstream and one downstream of the tasiRNA-generating 

region (Fig. 1). These two different classes each requires unique components and unique 

RNA structural features for their biogenesis of tasiRNAs.  

In the current model, both TAS1 and TAS2 require the miR173-AGO1 complex to 

guide the cleavage of transcripts for tasiRNA formation (Montgomery et al. 2008b). The 

synthesis of the complementary strand is directed by RDR6 from the 3' poly(A) tail towards 

the cleavage site, thus it is unknown how the miR173-AGO1 complex transmits a signal to 

recruit RDR6 distally. The 5' RNA fragments may subsequently undergo degradation by 

exoribonucleases, as no small RNAs have been identified from these sequences (Souret et 

al. 2004). TAS4 is a target of miR828, yet it shares the similarity with TAS1/2 in the way 

TAS transcripts are processed (Luo et al. 2012; Rajagopalan et al. 2006).  

Unlike the TAS1/2/4, TAS3 tasiRNAs originate from sequences between two 

miR390 binding sites. In these transcripts, miR390 guides cleavage on the 3' side of the 



10 
 

tasiRNA-generating region to set the processing register. The 5' miR390 complementary 

site is non-cleavable, which seems to be conserved among flowering plants except moss or 

pine (Axtell et al. 2006). In addition, binding of the AGO7-miR390 complex to the 

upstream, non-cleavable miR390 target site is essential for the production of tasiRNAs 

(Montgomery et al. 2008a; Axtell et al. 2006). In contrast, the 3' miR390 target site is 

cleaved across plant species and is not dependent on AGO7 or miR390 specifically, only 

that a functional cleavage site is present (Axtell et al. 2006). Notably, miR390 is unique 

from other miRNAs and is specifically associated with AGO7 (Montgomery et al. 2008a). 

TAS2 has been predicted to produce at least one tasiRNA targeting two clusters of 

pentatricopeptide repeat gene transcripts (PPRs) in Arabidopsis (Allen et al. 2005). 

Interestingly, this TAS2-derived tasiRNA can itself initiate secondary siRNA production on 

these same PPR mRNAs. Although the TAS1 loci do not have extended sequence similarity 

to TAS2, all three loci (TAS1a,TAS1b, and TAS1c) produce identical or very closely related 

tasiRNAs that also target a group of PPR genes as well as another group of genes of 

unknown function (Peragine et al. 2004; Vazquez et al. 2004; Yoshikawa et al. 2005). 

Currently, there is no other targets that has been identified for TAS1 and TAS2 tasiRNAs. 

In contrast to TAS1/2, one of the TAS4-derived tasiRNAs specifically targets a group of 

MYB transcription factors including PAP1, PAP2, and MYB113 which are involved in the 

regulation of the anthocyanin biosynthesis pathway (Rajagopalan et al. 2006). All TAS3 

transcripts identified to date has been predicted to produce at least one tasiRNA (tasiARFs) 

that targets a family of Auxin Response Factor (ARF1, ARF2, ARF3, and ARF4) (Garcia et 
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al. 2006; Fahlgren et al. 2006; Adenot et al. 2006; Williams et al. 2005; Axtell et al. 2006; 

Allen et al. 2005; Hunter et al. 2006; Marin et al. 2010).  

 

NAT-siRNA 

 

Natural antisense transcript siRNAs (NAT-siRNAs) are a third subset of plant endo-

siRNAs derived from two convergently transcribed mRNAs. NAT-siRNAs are further 

categorized into two subgroups: cis-NAT-siRNAs that are transcribed from opposite 

strands of the same locus, and trans-NAT-siRNAs from genes that harbor regions of 

complementarity (Lapidot and Pilpel 2006; Jin et al. 2008; Zhang et al. 2013). Typically, 

one transcript is produced constitutively, whereas the expression of complementary RNA 

only occurs in response to environmental stress, such as bacterial pathogen infection 

(Katiyar-Agarwal et al. 2006; Borsani et al. 2005).  

Unlike other siRNAs, NAT-siRNAs have variable RDR and DCL requirements for 

biogenesis, variable sRNA size distributions and can regulate gene expression through 

distinct mechanisms (Zhang et al. 2013). The most straightforward pathway starts with the 

formation of dsRNAs by hybridization of two complementary RNAs (Figure 1.2). The 

overlap region between the two transcripts is then processed into NAT-siRNAs by the 

endonuclease activity of DCl2 and/or DCl1 (Katiyar-Agarwal et al. 2006; Borsani et al. 

2005; Ron et al. 2010). NAT-siRNAs function mainly at the posttranscriptional level by 

cleavage of one transcript of the pair, and in some cases, trigger the DCl1-dependent 

production of 21-nt secondary siRNAs (Borsani et al. 2005). The accumulation of 
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secondary NAT-siRNAs is dependent on the function of RDR2/RDR6 and SGS3 (Zhang 

and Trudeau 2008; Zhang et al. 2013). 

Genome-wide analysis indicates that up to 9% of Arabidopsis genes are 

overlapping and can potentially generate cis-NAT-siRNAs (Zhang et al. 2013). In 

Arabidopsis, three cis-NAT-siRNAs have been functionally analyzed: nat-siRNASRO5 

induced by salt stress (Borsani et al. 2005), nat-siRNAATGB2 that accumulates in response 

to infection with avirulent bacteria (Katiyar-Agarwal et al. 2006), and nat-siRNA from the 

KPL-ARI14 locus (Ron et al. 2010). However, there are still important unanswered 

questions regarding to the biogenesis and functions of this group of siRNAs, which clearly 

need further exploration. 

 

The miRNA pathway 

 

miRNAs are the second most abundant class of plant small RNAs. Most plants 

encode more than 100 miRNA genes (MIR), mainly found in intergenic regions throughout 

the genome (Rogers and Chen 2013). Several miRNA families are conserved over long 

evolutionary distances, indicating their very ancient origin. These include miR156, miR160, 

miR319, miR390, all of which regulate ancestral transcription factors that impact the 

development, growth, and physiology of plants (Garcia 2008). However, the majority of 

miRNAs present in any given plant species are unique to that species or exist only between 

closely related species (Voinnet 2009a). miRNAs are key negative regulators of eukaryotic 

gene expression, and are widely believed to control a vast array of biological processes in 
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plants and animals, ranging from housekeeping functions to responses to biotic/abiotic 

stress. 

In plants, RNA Pol II produces capped and polyadenylated primary miRNAs (pri-

miRNAs) that contain an imperfect, self-complementary foldback region (Figure 1.2). In 

the nucleus, the pri-miRNA transcript is recognized and cleaved by DCL1, with the help 

of HYPONASTIC LEAVES1 (HYL1), to produce ~70-nucleotide precursor miRNA (pre-

miRNA) molecule. Liberating mature miRNA from the pre-miRNA stem loop structure 

requires a second cleavage step which is again directed by DCL1 and its partner HYL1 

(Vazquez et al. 2008). The two-nucleotide 3’ overhangs of the released miRNA/miRNA* 

duplex are 2′-O-methylated by the methyltransferase HUA ENHANCER1 (HEN1) (Yang 

et al. 2006; Yu et al. 2005). The miRNA duplex is then transported to the cytoplasm, where 

the mature single-stranded miRNA is loaded onto AGO1, to direct the repressive regulation 

of complementary targets. Loss of Dicer or miRNA-associated Argonaute proteins almost 

always result in severe developmental abnormalities in both plants and animals. In 

Arabidopsis species, dcl1 mutants exhibit abnormal embryogenesis, indicating that 

miRNA-mediated regulation is integral to pathways governing growth and development. 

(Nodine and Bartel 2010). 

In flies and mammals, most miRNAs hybridize with their targets through a region 

of 6-8 nucleotides at the 5′ end of the miRNA called the ‘seed region’, and chiefly direct 

translational repression of their targets (Lewis et al. 2003; Lewis et al. 2005). In contrast, 

the activity of plant miRNAs, which are highly complementary to targets throughout their 

length, was previously suggested to be chiefly accomplished via transcript cleavage 
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(Rhoades et al. 2002). Such extensive miRNA/target complementarity is considered the 

norm in plants, which occur most commonly in protein-coding regions of mRNAs (Llave 

et al. 2002; Rhoades et al. 2002; Tang et al. 2003). However, several examples have been 

known where a plant miRNA regulates target’s steady-state protein level in the absence of 

noticeable changes in mRNA level, suggesting that plant miRNAs can also block 

translation (Aukerman and Sakai 2003; Chen 2004; Gandikota et al. 2007; Brodersen et al. 

2008; Dugas and Bartel 2008; Beauclair et al. 2010). Although the mechanism of 

translational repression in plants still remains unknown, genetic studies have begun to 

uncover specific effectors of this pathway (Brodersen et al. 2008; Yang et al. 2012). Further 

analyses have clearly demonstrated that most plant miRNAs repress their targets via some 

combination of cleavage and translational repression, and that AGO catalyzed slicing often 

plays a key role (Carbonell et al. 2012; Yang et al. 2012). Nonetheless, translational 

inhibition is not a simple “back-up” system for slicing, and understanding the balance 

between these two modes of miRNA action (cleavage versus translational repression) 

awaits further investigation.  

Plant miRNAs are predominately 21 nucleotides in size with a 5’ U, indicating their 

DCL1-dependent processing and activities with AGO1 for posttranscriptional gene 

silencing (PTGS) of expressed target genes. (Cuperus et al. 2010; Chen et al. 2010). 

However, DCL1 generates alternative product sizes from foldback precursors containing 

asymmetric bulges (Kurihara and Watanabe 2004; Chen et al. 2010; Cuperus et al. 2010; 

Manavella et al. 2012). Differences in miRNA size may make them functionally distinct, 

for example, 22-nt miRNAs play a key role in triggering the production of secondary 
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siRNAs from target transcripts (for details, see secondary siRNA part) (Manavella et al. 

2012; Cuperus et al. 2010; Chen et al. 2010). The remaining DCLs may produce a small 

subset of total miRNAs (Rajagopalan et al. 2006; Vazquez et al. 2008; Amor et al. 2009). 

In Arabidopsis and rice, DCL3 generates long miRNAs 23 to 25 nucleotides in length, 

which enter the heterochromatic siRNA effector pathway after their production (Vazquez 

et al. 2008). Similar to hc-siRNA, DCL3-dependent long miRNAs are sorted to AGO4 and 

direct cytosine DNA methylation at both MIR and target loci (Wu et al. 2010). 

 

RNAi DELIVERY IN PLANTS  

 

Transgene-induced RNA silencing 

 

Early examples of RNAi were achieved by transforming plants with constructs to 

produce antisense and sense over-expression (cosuppression) RNA (Figure 1.3) (Jorgensen 

et al. 2006). However, RNAi can be more efficiently induced by expressing a transgene 

that is made from an inverted repeat (IR) sequence of the target gene separated by a spacer 

sequence (hairpin structure) (Figure 1.3). hpRNA induced RNAi has been proven to be 

remarkably efficient and could be used to silence a wide selection of target genes: almost 

100% of transgenic plants display gene silencing and the phenotype obtained could be 

similar to those counterpart full loss-of-function mutants (Kusaba 2004; Chuang and 
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Meyerowitz 2000; Wesley et al. 2001; Watson et al. 2005). In fact, the majority transgene-

induced RNA silencing in plants is achieved using a hairpin transgene (Frizzi and Huang 

2010). Using an intron-derived spacer sequence is thought to be beneficial for the stability 

of hpRNA and thus enhance the silencing efficiency (Wesley et al. 2001). If a fragment of 

promoter sequence is used in the IR, TGS accompanied by de novo methylation can be 

efficiently triggered to silence the target gene (Figure 1.3) (Jones et al. 2001; Kanno et al. 

2004; Mette et al. 2000; Sijen et al. 2001; Huettel et al. 2007).  

In recent years, another RNAi delivery method utilizing artificial tasiRNAs has 

been developed and gained even more significant attention because of its success in gene 

silencing in plants (Peragine et al. 2004; Hunter et al. 2006; Montgomery et al. 2008a; 

Williams et al. 2005; Xie et al. 2005; Yoshikawa et al. 2005; Garcia et al. 2006; Adenot et 

al. 2006; Allen et al. 2005; Vazquez et al. 2004). The generation of tasiRNAs is triggered 

by miRNA-guided cleavage of a TAS gene derived transcript, resulting in the production 

of 21 nucleotide siRNAs that are phased with regard to the miRNA cleavage site (Peragine 

et al. 2004; Allen et al. 2005; Xie et al. 2005; Yoshikawa et al. 2005). In an artificial 

tasiRNA inducing vector, the transgene is simply made from a modified TAS gene 

sequence by substituting a single or several copies of native siRNA with atasiRNAs 

targeting particular genes (Felippes and Weigel 2009; Montgomery et al. 2008b; 

Montgomery et al. 2008a; de la Luz Gutiérrez-Nava et al. 2008). Compared with hpRNA, 

the atasiRNA approach is more practical for stacking multiple functional small RNA 

sequences into a single construct and eliminating the possibility of off-target effects.  
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Another promising new approach for RNAi delivery in plants is to engineer the 

endogenous miRNA precursors to produce an artificial miRNA (amiRNA) that selectively 

inhibit the expression of target genes (Figure 1.3). In contrast to hpRNA that are processed 

in to a population of siRNAs having varying sequences, small RNAs from a miRNA locus 

have a strong strand bias and usually only one predominant small RNA is generated. When 

both sequences of the miRNA duplex are altered without changing the structural features, 

amiRNA of desired sequence would be preferentially accumulated at a high level. This 

approach has proven to be effective with improved targeting specificity in various plant 

species (Kim and Somers 2010; Schwab et al. 2006; Khraiwesh et al. 2008; Parizotto et al. 

2004; Alvarez et al. 2006).  The higher precision and strand-specificity made this strategy 

a good alternative for the delivery of RNAi in plants, but one drawback is that one single 

amiRNA might not work well in some instances. 

 

Virus-induced gene silencing (VIGS) 

 

An alternative way to trigger RNA silencing in plants is virus-induced gene 

silencing (VIGS), which employs the plant’s ability to cope with viral RNAs (Figure 1.3) 

(Lu et al. 2003). The replication intermediate dsRNA of the viral genome or the foldbacks 

in single-stranded viral RNA can be processed into siRNAs by DCL proteins. A modified 

viral genome with plant sequences can then generate siRNAs targeting the endogenous 

plant genes (Robertson 2004; Burch‐Smith et al. 2004). VIGS has the advantage that it 

does not require development of stable transformants, and thus rapidly generates 
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phenotypes (Burch‐Smith et al. 2004). However, the current limitation of this method is 

that most reliable and effective VIGS vectors have a limited host range upon which the 

VIGS vector is based (Robertson 2004). 

 

APPLICATION OF RNAi IN SOYBEAN 

 

RNAi is now widely used as a homology-based gene silencing tool to knock down 

specific target genes in various plant species including Rice, Banana, Tomato etc. (Angaji 

et al. 2010; Lopez-Gomollon and Dalmay 2010). It has also been employed for gene 

function analysis and genetic improvement of soybean (Kasai and Kanazawa 2012). Some 

of those applications are briefly discussed below. 

 

Metabolic engineering 

 

Because soybean seeds are the most important product of soybean plants, one of 

the main focus of RNA silencing in soybean has been modifications to seed components. 

Metabolic pathways in developing seeds have been targeted to accumulate nutritional 

valuable metabolites or divert unwanted ones. For instance, the immunodominant soybean 

allergen Gly m Bd 30 K protein has been greatly reduced by RNA silencing in transgenic 

soybean seeds (Herman et al. 2003). In other examples, phytic acids (Nunes et al. 2006; 
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Shi et al. 2007) and saponin (Takagi et al. 2011) were reduced to achieve the desirable 

phenotypes with nutritional or commercial interests. Seed storage protein composition was 

also modified by two independent research groups (Schmidt et al. 2011; Kinney et al. 2001).  

The fatty acid composition of soybean seed has also been modified to lower the 

polyunsaturated fatty acid content for more stable soybean oils. The first manifestation of 

this approach was done by introducing a transgene that transcribes sense RNA homologous 

to the FAD2-1 gene, and seed oleic acid content was increased as a result of the  

cosuppression of the target gene (KINNEY 1996). Metabolic engineering of the fatty acid 

biosynthetic pathway has also targeted soybean Δ15 desaturase to produce very long-chain 

polyunsaturated fatty acids (Chen et al. 2006). A few years later, hpRNA-mediated gene 

silencing was adopted to down-regulate two key fatty acid desaturase genes. Wang et al. 

developed a silencing construct containing an inverted-repeat fragment of the GmFAD2 

gene and obtained high oleic acid content that ranged from 71.5 to 81.9% (Wang and Xu 

2008). At approximately the same time, an hpRNA-based RNAi vector was designed to 

effectively silence the three active members of the soybean FAD3 gene family (Flores et al. 

2008). Due to the 318-nt conserved FAD3 sequence used to generate the inverted repeats, 

the resulting transgenic soybeans exhibited a FAD3 null-like phenotype (Flores et al. 2008). 

In one special case, an intron sequence was used as inverted repeats to successfully down-

regulate the soybean fatty acid desaturase FAD2-1A (Wagner et al. 2011). In contrast to the 

previous belief that RNA silencing is a cytoplasmic event, this result implies that PTGS 

can take place in the nucleus.  
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Virus resistance 

The effectiveness of RNAi technology in soybean was also used to develop 

resistance to diseases, especially those caused by viruses. Resistance to viruses involves 

the use of a transgene that encodes a virus-derived transcript with the purpose to trigger 

RNA silencing against the viral RNA (Goldbach et al. 2003). Using this approach, soybean 

plants resistant against two viruses have been reported to date, that is  Soybean mosaic 

virus (Furutani et al. 2006; Furutani et al. 2007; Wang et al. 2001) and Soybean dwarf virus 

(Tougou et al. 2006; Tougou et al. 2007). 

In addition to viruses, RNAi constructs have also been used effectively to provide 

resistance to nematodes in transgenic soybean plants. Transgenic soybeans were generated 

using inverted repeats targeting the major sperm protein (MSP) gene from H. glycines, in 

which the reproductive potential of H. glycines were significantly reduced by the 

accumulation of MSP-specific siRNAs (Steeves et al. 2006).  Similar strategies were also 

employed by another group for the control of H. glycines (Li et al. 2010) or rootknot 

nematode (Meloidogyne incognita) (Ibrahim et al. 2011). In contrast, use of amiRNA to 

down-regulate the LRR-kinase gene failed to alter the soybean cyst nematode resistance 

(Melito et al. 2010). 

 

Gene function analysis via VIGS 
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VIGS is often used for the functional analysis of plant genes for its ease to make 

constructs and deliver desired nucleic acids into plant cells. This approach does not involve 

a transformation process, thus allows characterization of phenotypes of essential genes.  

(Burch‐Smith et al. 2004; Lu et al. 2003). Up to date, there are at least 11 RNA virus vectors 

and five DNA virus vectors available for gene silencing in plants (Kanazawa 2008; Kasai 

and Kanazawa 2012). Three vectors have been applied to soybean: Bean pod mottle virus 

vector (Zhang and Ghabrial 2006; Zhang et al. 2010; Kachroo et al. 2008; Fu et al. 2009; 

Zhang et al. 2009; Meyer et al. 2009; Pandey et al. 2011; Singh et al. 2011), Cucumber 

mosaic virus vector (Nagamatsu et al. 2007; Nagamatsu et al. 2009; Liu et al. 2010) and 

Apple latent spherical virus vector (Yamagishi and Yoshikawa 2009).  

VIGS has been used to characterize the role of candidate genes of a specific 

pathway in soybean. For example, the gene function of putative flavonoid 3’-hydroxylase 

(F3’H) gene was established using the Cucumber mosaic virus based VIGS vector 

(Nagamatsu et al. 2007). Also, the VIGS of chalcone synthase (CHS) gene was linked to 

the yellow seed coat phenotype in soybean seeds using the same strategy (Nagamatsu et al. 

2007). Similarly, a candidate gene GmTFL1b was successfully associated with the soybean 

Dt1 locus through a VIGS experiment (Liu et al. 2010). In addition to the candidate gene 

approach, VIGS has also been exploited to identify genes involved in disease resistance, 

such as Soybean mosaic virus,  Bean pod mottle virus, Pseudomonas syringae, Phakopsora 

pachyrhizi (Pandey et al. 2011; Fu et al. 2009; Singh et al. 2011; Meyer et al. 2009; Kachroo 

et al. 2008). Especially, Singh et al. demonstrated that silencing of the three GmFAD3 
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homologous enhances jasmonic acid accumulation and, thereby, susceptibility to  Bean pod 

mottle virus and Pseudomonas syringae in soybean (Singh et al. 2011). 

 

IMPROVEMENT OF SYSTEMS FOR RNAi INDUCTION IN 

SOYBEAN 

 

Soybean (Glycine max) is one of the most important crops in the world due to its 

high seed protein and oil content. Products made of soybean represent a great source for 

human foods and livestock feeds. Studying gene functions in soybean could not only help 

to improve its nutritional value but also provide a valuable source for studies on physiology 

and biochemistry. However, due to highly duplicated genome regions and to a large number 

of gene families, exploring gene functions in this crop is considered to be particularly 

difficult (Shoemaker et al. 1996). Hence, RNA silencing has now become the preferred 

methodology for the advantages it holds over conventional strategies, especially when it is 

carried out in a complex genome like soybean. In order to improve RNAi-mediated gene 

silencing as a tool to analyze gene function and manipulate commercial traits in soybean, 

an economically important gene, GmFAD3, was chosen as a test model in the present study.  

 

GmFAD3 
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The oxidative stability and nutritional value of soybean oil is largely determined by 

the degree of saturation of relative triacylglycerol fatty acids (Kinney et al. 2002; Pattee et 

al. 2002). Desaturation of the fatty acids takes place in both the plastidial membrane and 

the endoplasmic reticulum (ER) membrane through the catalytic activity of fatty acid 

desaturases (Ohlrogge and Browse 1995; Singh et al. 2002). So far, at least 29 full-length 

soybean desaturase genes were identified, clustering into nine subfamilies (Chi et al. 2011). 

In the polyunsaturated fatty acid synthesis pathway, omega-3 fatty acid desaturase (FAD3) 

is responsible to add the third double bond to the linoleic acid precursor (18:2) for the 

production of Linolenic acid (18:3).  

Multiple plastid-targeted and microsomal omega-3 fatty acid desaturases have been 

identified in plants, but the microsomal forms are primarily responsible for the seed 

linolenic acid level (Yadav et al. 1993; Bilyeu et al. 2003). Three independent microsomal 

omega-3 acid desaturases (GmFAD3A, GmFAD3B, GmFAD3C) have been characterized 

and linked to low seed linolenic acid phenotype in soybean (Bilyeu et al. 2003). GmFAD3A 

(Glyma14g37350) was significantly upregulated in developing seeds and played a 

predominant role in determining the linonenic acid content of seed storage oil (Bilyeu et 

al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 2011). GmFAD3B 

(Glyma02g39230) shares 94% sequence similarity with GmFAD3A in the coding regions, 

while GmFAD3C (Glyma18g06950) only contain 79% identical DNA sequence. The 

expresison levels of these two genes remained relatively low in developing soybean seeds 

compared to GmFAD3A and accordingly have a less impact on seed linolenic acid levels 

(Bilyeu et al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 2011). 
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One of the most important goals of oil quality breeding in soybean has been to 

lower its α-linolenic acid (18:3) content for improved oxidative stability and flavor to 

eliminate the need for hydrogenation. Inhibition of FAD3 in soybeans reduces the level of 

unstable linolenic acid (18:3) and the resultant soybean oil can be directly used without 

hydrogenation. We choose FAD3 as a test model for our gene silencing assays because it is 

an economically valuable gene with an easily assayed, quantifiable phenotype (Miquel 

1992). Meanwhile, the three gene family members make it an ideal model for the study of 

RNAi-mediated gene silencing in a complex genome like soybean. 
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Figure 1.1 Exogenous siRNA pathways in plants. Courtesy from “Tapping RNA silencing 

pathways for plant biotechnology” (Frizzi and Huang 2010). 
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Figure 1.2 Endogenous small RNA pathways in plants. Courtesy from “RNA silencing in 

plants: yesterday, today, and tomorrow” (Eamens et al. 2008). 
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Figure 1.3 Comparison of transgene/virus‐induced gene silencing pathways in plants. 

Courtesy from “Gene silencing in plants using artificial microRNAs and other small 

RNAs” (Ossowski et al. 2008).  
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ABSTRACT 

 

Since the discovery of RNA silencing in the nineties, the implication and potential 

application of this new technology have been recognized. In the past few years, RNA 

silencing has gained significant attention because its success in genomic scale research and 

also in the genetic improvement of crop plants. In order to improve hpRNA-mediated gene 

silencing in soybean, the GmFAD3 gene family was chosen as a test model. In this study, 

all three family members of GmFAD3 were successfully silenced and the silencing 

phenotype was stably inherited. Silencing levels of FAD3A, FAD3B and FAD3C correlate 

to degrees of sequence homology between the inverted repeats (IR) of hpRNA and 

GmFAD3 transcripts in the RNAi lines. siRNAs generated from the 318-bp IR were 

characterized and associated with the inferred cleavage sites on target transcripts. Small 

RNAs corresponding to the loop portion of the hairpin transcript were detected, implicating 

possible transitive self-silencing of the hairpin transgene. In contrast, much less RNAs 

were found outside of the target region, suggesting that transitivity along endogenous 

transcripts is prohibited by some inherent protective feature. Strikingly, transgenes in two 

of the three RNAi lines were heavily methylated, leading to a dramatic reduction of 

hpRNA-derived siRNAs. Small RNAs encoding part of the transgene promoter as well as 

the bar gene coding sequences were also detected by deep sequencing, but whether they 

induced the methylation of transgenes still need further exploration. 
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INTRODUCTION  

 

Since the discovery of RNA silencing in the nineties, the implication and potential 

application of this new technology have been recognized. RNAi has advantages over 

classic mutagenesis not only because it has the ability of silencing multiple gene family 

members with one single RNAi-inducing construct but also because it has the potential 

capability to control the suppression in a regulated manner. In the past few years, RNA 

silencing has gained significant attention because its success in genomic scale research and 

also in the genetic improvement of crop plants (Frizzi and Huang 2010; Watson et al. 2005). 

For example, RNAi technology was used to suppress the caffeine synthase gene to create 

varieties of Coffee that produces natural coffee with reduced caffeine content (Ogita et al. 

2003). 

In plants, the RNAi pathway primarily deploys siRNAs for sequence-specific target 

mRNA degradation (Frizzi and Huang 2010). The delivery of siRNAs can be achieved by 

expressing a transgene that is made from an inverted repeat sequence of a target gene 

separated by an intron as a spacer (hairpin structure). The resulting 21 nucleotide-long 

small RNA molecules with sequence complementarity to the target mRNA then direct 

either degradation or translational repression of those designated transcripts. hpRNA 

induced RNAi has been proven to be remarkably efficient and could be used to silence a 

wide selection of target genes. : almost 100% of transgenic plants display gene silencing 

and the phenotype obtained could be similar to those counterpart full loss-of-function 



48 
 

mutants (Kusaba 2004).  However, most of the studies until now have been done in model 

plants with relatively simple genomes and the silencing efficiency and specificity of 

siRNA-mediated gene silencing have not been well characterized in crop plants.  

Soybean is one of the most important crops in the world due to its high seed protein 

and oil content. Soybean oil is used extensively in the food industry and represented 57% 

of the world’s oilseed production in 2012 (http://soystats.com/2012). Commodity soybean 

oil typically contains about 7-10% of linolenic acid (18:3), which is undesirable for many 

food applications for its oxidative instability (Liu and White 1992). While chemical 

hydrogenation has been employed to reduce the amount of linolenic acid to improve the 

quality of soybean oil, the process also created undesirable trans-fats that have been linked 

to many health problems in humans, particularly coronary heart disease (Hu et al. 1997; 

Ascherio and Willett 1997). Therefore, one of the most important goals of oil quality 

breeding in soybean has been to lower its linolenic acid content for improved oxidative 

stability and flavor to eliminate the need for hydrogenation. However, due to highly 

duplicated genome regions and to a large number of gene families, exploring gene 

functions and improve commercial traits in soybean is considered to be particularly 

difficult (Shoemaker et al. 1996). Thus, RNAi-mediated gene silencing has become the 

technology of choice for the advantages it holds over conventional strategies, especially 

when it is carried out in a complex genome like soybean. 

Linolenic acid is produced from linoleic acid precursors (18:2) under the catalytic 

activity of omega-3 fatty acid desaturase (FAD3) in the polyunsaturated fatty acid synthesis 

pathway. Thus, inhibition of FAD3 in soybeans reduces the level of unstable linolenic acid 

http://soystats.com/
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and the resultant soybean oil can be directly used without hydrogenation. Multiple plastid-

targeted and microsomal omega-3 fatty acid desaturases have been identified in plants, but 

the microsomal forms are primarily responsible for the seed linolenic acid level (Yadav et 

al. 1993; Bilyeu et al. 2003). Three distinct microsomal omega-3 acid desaturases 

(GmFAD3A, GmFAD3B, GmFAD3C) have been characterized and linked to low seed 

linolenic acid phenotype in soybean using candidate gene based approaches (Bilyeu et al. 

2003). GmFAD3A (Glyma14g37350)  has the highest expression level of the three 

homologs in developing seeds and has been shown to be the major contributor to seed 

linolenic acid levels (Bilyeu et al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 

2011). GmFAD3B (Glyma02g39230) shares 94% sequence similarity with GmFAD3A in 

the coding regions, while GmFAD3C (Glyma18g06950) only contain 79% identical DNA 

sequence. These two genes are much less expressed in developing soybean seeds compared 

to GmFAD3A and accordingly have a less impact on seed linolenic acid levels (Bilyeu et 

al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 2011). We choose FAD3 as a 

test model for our gene silencing assays because it is an economically valuable gene with 

an easily assayed, quantifiable phenotype. Meanwhile, the three gene family members 

make it an ideal model to test the efficacy and specificity of RNAi mediated silencing of 

gene families in soybean. 

In our lab’s previous research, a hpRNA-based RNAi vector pMUFAD was 

designed to effectively silence the three active members of soybean FAD3 gene family 

(Flores et al. 2008). A 318-bp highly conserved nucleotide sequence representing a domain 

common among family members was used for the development of inverted repeats (IR), 
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separated by a spacer fragment derived from the intron of the rice waxy-a gene to form the 

hair-pin structure. A high level of silencing was achieved by transgene produced siRNAs, 

which led to a significant reduction of linolenic acid content in the seed oil. However, 

variations were detected in the down-regulated linolenic acid level between different RNAi 

lines, ranging from 1.2% to 3.6% in the T3 homozygous seeds (Flores et al. 2008). Further 

investigation will then be needed to find out the possible molecular basis responsible for 

this phenomenon. Moreover, the relatively long inverted repeats used to generate RNAi by 

hpRNA may suffer from the off-target effect (Jackson et al. 2003). Furthermore, details 

about the complexity of RNA silencing in stably transformed soybean plants derived from 

Agrobacterium-mediated T-DNA transfer are still elusive. Thus, more effort could be made 

for the optimization of parameters in RNAi approach to generate strong, consistent and 

heritable soybean events with desired trait modifications.  

This research is directed at improving RNAi technology as a tool to analyze gene 

function and manipulate commercial traits in soybean. To fully capitalize on the potential 

of RNAi, the endogenous soybean gene family GmFAD3 was chosen as test model gene. 

The objectives of this work were: 1) to determine the heritability of the RNAi phenotype 

in stably transformed soybean; 2) to characterize the specificity of hpRNA mediated RNAi; 

and 3) to investigate the potential molecular basis for variations in RNAi silencing 

efficiency in different soybean events. 
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METERIALS AND METHODS 

 

Plant material and growth conditions 

 

T3 transgenic soybean plants were obtained from our lab’s previous work (Flores et 

al., 2008) and grown until the T5 generation. All soybean were grown on Pro-mix soil 

(SunGro, Agawam, MA) in 13-liter pots in a greenhouse under controlled-environmental 

conditions at 23-26°C with supplemental 50-90 Klux day light intensity and 12/12 h 

photoperiod from late May to early November or a 16/8 h photoperiod during the rest 

seasons. Plants were fertilized once with Osmocote 14-14-14 (Hummert International, 

Earth City, MO) at the time of planting and watered as needed.  

 

Fatty acid analysis 

 

The fatty acid profiles of dry mature soybean seeds from transgenic and wild type 

control samples were examined by a gas chromatography (GC) method as previously 

described (Beuselinck et al. 2006). A bulk sample of 5 seeds from each plant was crushed 

in an envelope and used as samples for fatty acid determination. For each transgenic 

soybean line, seeds from three plants were individually analyzed. The individual fatty acid 
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contents of palmitic, stearic, oleic, linoleic, and linolenic acids are presented as a proportion 

of total fatty acids in the extracted oil.  

 

qRT-PCR 

 

Mid-mature soybean seeds of a transgenic plant were collected and immediately 

frozen in liquid nitrogen, then stored at -80 for later use. Total RNA from each seed was 

extracted with TRIzol reagent (Invitrogen) and purified with a DNA-Free RNA kit (Zymo 

Research, Irvine, CA) to remove genomic DNA contamination. First-strand cDNA was 

synthesized from 500ng of the DNase-treated RNA using iScriptTM Reverse Transcription 

Supermix (Bio-Rad, Hercules, CA). The resulting cDNA was diluted to a final 

concentration of 10ng/ul for qRT-PCR analyses.  

Real-time quantitative PCR was performed in triplicate biological and technical 

replications on an CFX-96TM Real-Time system (Bio-Rad, Hercules, CA) with the 

recommended settings for SYBR Green. Each reaction contained 2ul diluted cDNA, 10µM 

of each specific primer, and 10µl of 2x SsoAdvanced™ Universal SYBR® Green 

Supermix (Bio-Rad, Hercules, CA) in a final volume of 20 µl. Genomic DNA and other 

contamination were monitored by no-template and no-RT controls. A standard curve was 

generated from pooled cDNAs to determine the PCR efficiency of each primer pair. The 

following PCR program was used for all PCR reactions: 95°C for 30 s, followed by 35 

https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=hercules+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiF1YWViopZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSre5Lb-_LvYIvO63qkrIqpMPXQfbNgMAK9MdyRhAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CKwBEJsTKAIwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-zlxgXMpVUmPswFg25V6mzXa_oPkAu05mKWEAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CK0BEJsTKAMwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=hercules+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiF1YWViopZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSre5Lb-_LvYIvO63qkrIqpMPXQfbNgMAK9MdyRhAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CKwBEJsTKAIwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-zlxgXMpVUmPswFg25V6mzXa_oPkAu05mKWEAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CK0BEJsTKAMwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=hercules+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiF1YWViopZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSre5Lb-_LvYIvO63qkrIqpMPXQfbNgMAK9MdyRhAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CKwBEJsTKAIwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-zlxgXMpVUmPswFg25V6mzXa_oPkAu05mKWEAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CK0BEJsTKAMwEg
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cycles of 10s denaturation at 95°C, 30s annealing and extension at 60°C. Amplification 

specificity was verified by melting curve analysis at the end of PCR.  

Templates were normalized for differences in cDNA amount using CONS7 

amplification levels. Data were analyzed with BioRad CFX ManagerTM 2.0 Software (Bio-

Rad, Hercules, CA). The comparative threshold cycle method (∆∆Ct) was used to 

determine relative transcript abundance levels. Sequences of applied primers are listed in 

Table 2.1.  

 

Bisulfite Sequencing 

 

Genomic DNA was isolated from mid-mature seeds of FAD3 homozygous lines 

using the CTAB method (lab protocol) and further purified by a Genomic DNA Clean-up 

Kit (Zymo Research, Irvine, CA). 700ng DNA was bisulfite modified in duplicates using 

EZ DNA Methylation-Lightning Kit (Zymo Research, Irvine, CA) according to 

manufacturer’s protocol. Eluted DNAs for each FAD3 sample were mixed together and 

brought in equal volumes (24ul). PCR reactions were performed using 3ul mixed DNA 

sample for the amplification of each region of interest. A hot start Platinum Taq DNA 

Polymerase was used to prevent non-specific amplification (Invitrogen, Carlsbad, CA). 

Primer sequences are shown in Table 2.2. The parameters for the bisulfite PCR was as 

follows, 95°C for 5 min, followed by 5 cycles of 95°C for 1min, 51°C for 1.5min, 72°C for 

2min, then 35 cycles of 95°C for 45s, 51°C for 1min, 72°C for 1.5min, followed by 72°C 

https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=hercules+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiF1YWViopZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSre5Lb-_LvYIvO63qkrIqpMPXQfbNgMAK9MdyRhAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CKwBEJsTKAIwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-zlxgXMpVUmPswFg25V6mzXa_oPkAu05mKWEAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CK0BEJsTKAMwEg
http://www.zymoresearch.com/dna-purification/genomic-dna/genomic-dna-clean-up
http://www.zymoresearch.com/rna-purification/rna-clean-up/dna-free-rna/dna-free-rna-kit
http://www.zymoresearch.com/epigenetics/dna-methylation/bisulfite-treatment/ez-dna-methylation-lightning-kit
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for 15min, and an ending hold at 4°C. PCR products were cloned into the pGEM-T easy 

Vector (Promega, San Luis Obispo, CA), and 10 clones were sequenced to determine the 

methylation status of each region. Sequencing reactions were carried out at the DNA Core 

Facility (University of Missouri, Columbia, MO). Analysis of bisulfite sequencing data 

was performed using the online CyMATE software platform (http://www.cymate.org/). 

This experiment was repeated once. 

 

Small RNA sequencing 

 

 T5 mid-mature soybean seeds of a transgenic plant were harvested into liquid 

nitrogen, and then stored at -80 for later use. Total RNA from each seed was extracted with 

TRIzol reagent (Invitrogen, Carlsbad, CA) and further purified with DNA-Free RNA kit 

(Zymo Research, Irvine, CA) to remove genomic DNA contamination. 2.5ug of RNA was 

submitted to the DNA Core (University of Missouri, Columbia, MO) at a concentration of 

250ng/ul in nuclease-free water for library construction and small RNA sequencing. Each 

library was prepared and barcoded using TruSeq Small RNA Sample Preparation Kit 

(Illumina, San Diego, CA) and sequenced in the same lane of the Illumina HiSeq 2000 

sequencing platform.  

The resulting sequences were first trimmed off adapter sequence and filtered on 

length and quality. Small RNAs were mapped to the Soybean genome using 

Bowtie software (http://bowtie-bio.sourceforge.net) and sequences that did not perfectly 

http://bowtie-bio.sourceforge.net/
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align were discarded. The size of each library was normalized by calculating count per 

million (CPM) of 18 to 25 nt genome-matching small RNA reads.  

5’ RACE 

 

Mid-mature soybean seeds of a T5 transgenic plant were collected and immediately 

frozen in liquid nitrogen, then stored at -80 for later use. Total RNA from each seed was 

extracted and purified as described above. The 5’ rapid amplification of cDNA ends 

(5’RACE) assay was performed using SMARTTM RACE cDNA Amplification kit 

(Clontech, Mountain View, CA). First strand cDNA was synthesized in two separate 

reactions using 500ng purified RNA and diluted to a final concentration of 10ng/ul in 

Tricine-EDTA buffer according to the manufacturer’s protocol. After reverse transcription, 

cDNAs from same samples were pooled together and 2.5ul of the mixed cDNA were used 

for PCR amplification by Advantage® 2 Polymerase Mix using Universal Primer A Mix 

(Clontech, Mountain View, CA) and gene-specific primers with 35 cycles of 95°C for 30s, 

65°C for 30, 72°C for 2min. For the FAD3A gene, 1/50 of the first round of PCR products 

were then subjected to additional 25 cycles of PCR with Nested Universal Primer A 

(Clontech, Mountain View, CA) and FAD3A gene-specific nested primer. Amplification 

products were separated on 1% agarose gel. Fragments with expected size were gel purified 

and cloned into the pGEM-T Easy Vector (Promega, San Luis Obispo, CA) for sequencing. 

Sequencing reactions were carried out at the DNA Core Facility (University of Missouri, 

Columbia, MO). Sequence alignment and were accomplished using Sequencher software 

(http://www.genecodes.com/). Primer information are listed in Table 2.3. 
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Statistical analysis 

Comparison analysis for T5 soybean seeds fatty acid content was done using 

Duncan’s Multiple Range Test with a = 0.01. Comparisons between treatment and control 

presented in qRT-PCR analysis were done using Independent-Samples T Test with P = 

0.01 or 0.05. Both statistical analysis were conducted with Statistical Package for the Social 

Sciences (SPSS Inc., Chicago, IL, USA).  
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RESULTS 

 

Low linolenic acid phenotype of GmFAD3 RNAi lines is inheritable 

 

In our previous study, a hpRNA-based RNAi vector pMUFAD was designed to 

effectively silence the three active members of soybean FAD3 gene family (Flores et al. 

2008). To ensure efficient silencing, a 318-nt conserved region which shared 100% identity 

with GmFAD3A was selected to generate the inverted repeats (IR) of a FAD3 target 

sequence of the hairpin (Flores et al. 2008). In Flores’s et al. work, T3 seeds from three 

homozygous FAD3 RNAi lines were analyzed for the fatty acid phenotype of the seed oil 

(Flores et al. 2008). All three lines displayed a significant reduction in linolenic acid 

content compared to that of WT control “Jack”, suggesting a potent silencing of GmFAD3 

(Table 2.4) (Flores et al., 2008).  

To further investigate if the low linolenic acid phenotype of GmFAD3 RNAi lines 

was heritable, T5 seeds from the same lines were profiled for the fatty acid content of the 

seed oil. In order to reduce the phenotypic variation among seed from one plant, a bulk of 

five seeds from three individual plants were sampled for each line. The RNAi lines 

developed by Flores et al. (2008) demonstrated stable heritability for the low linolenic acid 

trait. The most dramatic reduction of linolenic acid content in T5 seed oil was once again 

observed in line S-24-4D with 1.1% linolenic acid content, compared to 9% in the wild 

type control (Table 2.4). Consistent with previous results observed in T3 RNAi lines, T5 S-
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24-13 and S-24-15 displayed a higher linolenic acid content than S-24-4D, at the level of 

3.9% and 3.1%, respectively (Table 2.4). There was no significant difference in the levels 

of seed linolenic acids between T3 and T5 homozygous lines, suggesting that RNAi of 

GmFAD3 was stably inherited. Moreover, the linoleic acid contents in all tested T5 RNAi 

lines were once again significantly increased as compared with the WT control due to the 

block in the conversion of linoleic acid precursors to linolenic precursors in the seed 

(p<0.05). Likewise, there was no significant changes for the palmitic, stearic, oleic acid 

content levels among the three RNAi lines and WT control. 

 

Silencing levels of FAD3A, FAD3B and FAD3C correlate to degrees of sequence 

homology between inverted repeat and GmFAD3 mRNA transcripts in the RNAi lines 

 

The full fatty acid profiles of the three RNAi lines in this study revealed that RNAi 

targeting GmFAD3 was capable of producing the reduced linolenic acid phenotype. This 

reduction is presumably due to the silencing of the FAD3 gene family targeted by RNAi. 

To confirm this silencing at the transcript level, Flores et. al (2008) performed Northern 

analysis of total mRNA samples of mid-mature seeds to evaluate the silencing status in the 

T0 RNAi hemizygous lines (Flores et al. 2008). As expected, almost no FAD3 transcript 

was detected in five out of ten lines when probed with the 318-nt conserved sequence, 

indicating that all three active FAD3 gene family members were effectively silenced (Flores 

et al. 2008). However, by using Northern blot analysis we were unable to distinguish the 

silencing efficiency for individual FAD3 genes because transcripts of the three family 
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members are about the same length and share a high degree of homology (Data not shown). 

In order to further investigate this, real-time qRT-PCR was utilized to quantify the down-

regulated transcript level of each FAD3 gene family member because of its sensitivity to 

discriminate closely related sequences. 

The qRT-PCR analysis was performed using total mRNA samples from a bulk of 

three mid-mature seed (T5) for each of the RNAi lines S-24-4D, S-24-13 and S-24-15. 

Seeds of three individual plants were sampled as biological replicates and mean gene 

expression level was measured as a ratio compared to WT for the three GmFAD3 family 

members: FAD3A, FAD3B and FAD3C using gene specific primers. Consistent with 

previous results observed by Flores et. al (2008), the transcript level of FAD3A and FAD3B 

were drastically decreased in all three RNAi lines, ranging from 14.6% to 39.8% and 16.5% 

to 32%, respectively, of WT (Figure 2.1 A-B). However, the down-regulation for FAD3C 

mRNA was much less efficient than the other two genes, with the transcript level of ~40% 

in S-24-4D and 80% in S-24-14 and S-24-15 of WT (Figure 2.1C). The different silencing 

efficacies of the three FAD3 family members correspond to the different levels of sequence 

homology between the 318-bp inverted repeat (IR) used in the RNAi construct and 

GmFAD3 target sequences (Figure 2.1D, 2.2). This IR is 100% identical with FAD3A but 

shares 96.5% and 84.3% sequence identity with GmFAD3B and GmFAD3C, respectively. 

Therefore, siRNAs generated from the 318-bp IR region contains an increased number of 

mismatches with the targeted FAD3B and FAD3C mRNAs, reducing transcript cleavage 

efficiency.  
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In addition to the different silencing efficacies of the three FAD3 gene family 

members, the three RNAi lines displayed different silencing levels even for the same gene: 

S-24-4D had the most significant reduction of transcripts in all three target gene families 

than the other two lines (Figure 2.1 A-C). To further examine the association between the 

silencing efficacies and low linolenic phenotypes, we compared phenotypic data from fatty 

acid analysis with the target transcript levels for the three RNAi lines. As expected, the 

highest silencing efficiency in S-24-4D correlated with the lowest linolenic acid content of 

1.1%. By contrast S-24-15 which showed a moderate silencing of FAD3A and FAD3B 

exhibited a higher linolenic acid level of 3.1%. And S-24-13, with the lowest silencing 

efficiency displayed the highest linolenic acid content of 3.6% (Figure 2.1 A-C, Table 2.4). 

Thus far, our data demonstrated a strong association between silencing of target FAD3 

mRNA and the reduced linolenic acid phenotype, indicating that the alteration in linolenic 

acid content is due to a decrease in seed expressed FAD3 enzyme activity caused by the 

reduced level of FAD3 mRNA.  

 

Transgenes are silenced in two of the three RNAi lines 

 

To further investigate the possible cause of different silencing levels of FAD3 genes 

in the three RNAi lines, we first determined hpRNA abundance by qRT-PCR analysis using 

total mRNA samples from a bulk of three mid-mature seed (T5). Mean transcript level was 

measured from three individual plants per RNAi line using primers amplifying the intron 

region. Surprisingly, the hpRNA abundance in S-24-4D was approximately 50-fold higher 
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than the S-24-15 and S-24-13 (Figure 2.3A). Such a substantial fold difference was 

unexpected because it did not correspond proportionally to the target FAD3 mRNA level 

and the fatty acid phenotype. The target gene silencing level that we detected earlier was 

only 2-3 fold higher in S-24-4D than the remaining two lines (Figure 2.1). This unexpected 

result prompted us to examine the expression level of the adjacent transgene, bar to see if 

its abundance was also reduced in S-24-13 and S-14-15. The bar transcript level in S-24-

15 was about 51% relative to that of S-24-4D (Figure 2.3B) whereas in S-24-13, the bar 

transcript almost exceeded the lowest detection limit with less than 0.1% of S-24-4D 

(Figure 2.3B). This low expression level of bar agreed with the herbicide screen phenotype 

of S-24-13. As previously described, all three RNAi lines contained the bar gene as the 

selectable marker, which was supposed to confer an herbicide resistant phenotype. 

However, T4 seedlings from the S-24-13 event displayed an ambiguous phenotype between 

resistant and susceptible (Figure 2.4). These unusual findings indicated that transgenes in 

two of the three RNAi lines were silenced due to some unknown reason, and the silencing 

of the transgene possibly led to a reduced efficacy of down regulating target mRNAs in a 

non-linear correlative manner.  The results of this experiment then prompted us to ask two 

questions: 1) what could cause the transgene silencing in S-24-13 and S-24-15; and 2) how 

hpRNA expression affected the FAD3 target gene silencing. To address these two questions, 

we conducted a new series of experiments.  

 

DNA methylation suppresses transgene expression  
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In plants, gene silencing could be achieved through two different pathways: 

transcriptional silencing maintained by DNA or histone methylation and post-

transcriptional silencing in the form of mRNA cleavage or protein translational repression 

mediated by RNAi. To test the first possibility, we employed Bisulfite sequencing to 

quantify the DNA methylation level of designated genomic regions in T5 seeds of three 

RNAi lines. After bisulfite treatment, unmethylated Cs in a given DNA sequence would be 

converted into Ts, while methylated Cs remains unchanged. The methylation level of one 

particular position is then calculated as the percentage of Cs presented in that position from 

a pool of ten sequences per line. There are three types of methylations in plants, CGN, 

CHG, and CHH. High level of methylation at CGN position would almost always lead to 

the suppression of gene expression, followed by CHG with a less significant impact. While 

methylation at CHH position usually do not affect transcription (Chan et al. 2005).  

Four regions from the two adjacent transgenes were bisulfite sequenced to search 

for possible DNA methylation: one located in the Glycinin promoter region which drives 

the expression of hpRNA, one in the reverse 318-bp IR region of hpRNA, one in the 35S 

promoter region which drives the expression of bar gene, and one in the bar coding 

sequence (Figure 2.5A). The bisulfite sequencing results revealed different methylation 

patterns among the three RNAi lines.  

In the glycinin promoter region, S-24-13 displayed the highest methylation level of 

nearly 100% at the CGN position, followed by S-24-15 with a methylation level of about 

85% (Figure 2.5C). In contrast, only 11% CGNs were methylated in S-24-4D within this 

region. Low methylation level was detected in S-24-4D and S-24-13 at CHG and CHH 
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position with less than 5% methylated Cs. However, S-24-15 were found to be highly 

methylated at these two positions, ranging from 70% to 48%, respectively. Similar bisulfite 

sequencing results were obtained from the reverse 318-bp IR region (Figure 2.5C). S-24-

13 was again nearly 100% methylated at CGN position but only less than 15% and 10% 

Cs were methylated at the CHG and CHH position, respectively. The methylation level in 

S-24-15 was to a less degree at the CGN position than S-24-13, but this line still displayed 

higher methylation level at the CHG and CHH positions than the other two lines, at 57% 

and 38%, respectively. S-24-4D remained unmethylated at all three positions.  

Within the 35S promoter region, S-24-13 displayed highest methylation level at all 

three positions among the three RNAi lines, ranging from 87.5% at CGN, approximately 

71% at CHG to 17% at CHH position, respectively (Figure 2.5C). In contrast, none or very 

limited methylated Cs were found in S-24-4D and S-24-15 at any of the three positions. 

Within the bar gene coding region, S-24-13 displayed a similar methylation level at the 

three positions to the 35S promoter region (Figure 2.5C). While S-24-15 was more heavily 

methylated at the CGN and CHG position when compared to that of 35S promoter, with 

methylation level at 35% and 18%, respectively. S-24-4D remained unmethylated at all 

three positions.  

The methylation analysis conducted here revealed severe DNA methylation of 

transgenes in two of the three RNAi lines S-24-13 and S-24-15.  When compared with 

transgene transcript abundance obtained through qRT-PCR analysis, these two experiments 

together demonstrated a strong correlation between DNA methylation and transgene 

transcript levels in analyzed RNAi lines. For example, highly methylated Cs in both 
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Glycinin promoter and IR regions of hpRNA were found in S-24-13 and S-24-15, both of 

which also showed ~50 times less hpRNA transcripts than that of S-24-4D (Figure 2.3A; 

Figure 2.5C). Likewise, S-24-13, in which almost no bar gene transcript was detected, was 

heavily methylated both at 35S promoter region and bar gene coding sequence, compared 

to the other two lines (Figure 2.3A; Figure 2.5C).  Thus, we concluded that the silencing 

of transgenes observed in S-24-13 and S-24-15 by qRT-PCR analysis was due to DNA 

methylation, which might further reduced the silencing efficacy of target gene by RNAi.  

 

No DNA methylation was detected in endogenous glycinin gene  

 

Since the Glycinin promoter used to drive the expression of hpRNA also exists in 

soybean, there is a possibility that the expression of endogenous glycinin gene could also 

be affected through DNA methylation. To investigate this possibility, promoter and coding 

sequence region of endogenous glycinin gene were also bisulfite sequenced (Figure 2.5B). 

No considerable methylation was detected in two of the three RNAi lines compared to the 

wild type control, while S-24-15 was about 20% methylated at all three methylation 

positions in the endogenous glycinin promoter region (Figure 2.5C). However, the 

expression level of endogenous glycinin gene remained unchanged in all three RNAi lines 

compared to WT (data not shown), indicating that this amount of methylation may be 

tolerated by the soybean glycinin gene.  
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Small RNA sequencing results uncovers hpRNA processing patterns in stably 

transformed RNAi lines 

 

The above results demonstrated that the hpRNA transcript level was correlated with 

the silencing efficacy of the target gene in analyzed RNAi lines. Given the fact that target 

gene silencing is mediated by siRNAs generated from the hpRNA intermediate, small RNA 

sequencing was performed to uncover potential differences in the species, quantity and 

position of transgene IR-derived siRNAs in different RNAi lines. Importantly, the 

discovery of these sequence and binding features of siRNAs in relation to the target gene 

down-regulation could provide a new insight into the siRNA-mediated cleavage 

mechanism, facilitating the design of the most effective siRNAs. 

 

          Overall size distribution of small RNAs 

 

A total of 12 bar-coded small RNA libraries were constructed from three 

replications of the three RNAi lines and WT control and was subjected to high-throughput 

sequencing. After trimming the adaptor sequences and removal of sequences that did not 

map to the soybean genome or that matched to noncoding structural RNAs (rRNA, tRNA, 

snRNA), sequencing reads of libraries varied from 4,652,538 to 12,356,079 represented by 

1,084,072 to 3,130,572 distinct sequences (Table 2.5). The average frequency of the three 

replications of small RNAs ranged from 18 to 25 nucleotides were plotted in Figure 2.6A-

B for the three RNAi lines and WT control. When distinct sequences were compared among 
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these plant lines, the small RNA size distribution patterns of all libraries were nearly 

identical, indicating that transgene produced siRNAs only had a minor impact on small 

RNA size profiles. The 24-nt small RNAs were dominant in sequenced samples with an 

average proportion of about 71% (Figure 2.6A). This result is consistent with previous 

findings in model plant Arabidopsis that this size class is rich in sequence diversity and is 

the most abundant size in numerous flowering plants (Axtell 2013). For the total sequence 

abundance, two major peaks at 21 and 24 nucleotides was found in all libraries as a result 

of DCL-dependent processing (Figure 2.6B). S-24-13 exhibited a slightly higher 

proportion of 24-nt small RNAs at about 37% compared to the other RNAi lines and WT 

with an average proportion of about 31%. 

 

Size distribution of hpRNA-produced siRNAs 

 

The size profile of 318-nt IR produced siRNAs were further analyzed by plotting 

the length of siRNA sequences ranging from 18 to 25 nucleotides versus the average 

number of distinct sequences or the average normalized abundance from three replications 

(Figure2.6C-D). Since siRNAs could be generated from both strands of the dsRNA 

precursor, sense and antisense siRNAs were distinguishingly presented on the plus or 

minus side of Y-axis.  When distinct sequences were examined, size distribution patterns 

of the three RNAi lines were still similar; however, sizes of distinct siRNAs were 

distributed more evenly than that of the genome-wide analysis. Particularly, 21-nt siRNAs 

become the dominant species on both strands followed by 22-nt siRNAs. Another minor 
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peak was found at 24 nucleotide as well in all three RNAi lines (Figure 2.6C). In general, 

the number of distinct siRNAs found on the antisense strand was slightly less than that of 

the sense strand for each size class. Among the three averaged RNAi line libraries, S-24-

4D exhibited the highest number of distinct siRNAs in the set regardless of size classes. 

Especially in case of the 21-nt siRNAs, S-24-4D displayed 287 out of 298 total distinct 

siRNAs that can be generated from the 318-nt IR. S-24-13 and S-24-15 shared a similar 

number of distinct siRNAs in all cases. Unexpectedly, a peak at 21 nucleotides was 

observed in WT control, although the number of reads is significantly lower than that of 

the RNA lines. 

In case of total sequences, the abundance of each sequence in a library was 

normalized by calculating reads per million (CPM) of 18 to 25 nucleotides genome-

matched small RNAs. The abundance of siRNAs in WT is nearly negligible compared to 

the three RNAi lines, indicating the origin of transgene-produced siRNAs in the analyzed 

RNAi lines (Figure 2.6D). Size distribution patterns of the three RNAi lines were still 

similar on both strands as found in distinct siRNAs and the abundance of siRNAs from the 

antisense strand was also slightly less than that of the sense strand for every size class. 

However, the distribution of siRNAs had such a strong size bias that the accumulation of 

21-nt siRNAs was extremely higher than other size classes followed by 22-nt and 24-nt 

siRNAs. This result confirmed other researchers’ findings that in plants DCL4 is normally 

responsible for processing exogenous hpRNA supplemented by DCL2 and DCL3 

(Gasciolli et al. 2005; Deleris et al. 2006; Dunoyer et al. 2007; Xie et al. 2004; Hamilton 

et al. 2002; Tang et al. 2003). Similar with the hpRNA expression level, the accumulation 
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of siRNAs from S-24-4D were about 10 to 20 times higher than the other two lines for all 

size classes on both strands (Figure 2.6D). This strong association indicated that siRNA 

accumulation is directly determined by the abundance of their hpRNA precursor.  S-24-13 

and S-24-15 shared very similar overall siRNA abundance, except that S-24-13 

accumulated more siRNAs than S-24-15 at 21 nucleotides. In WT, 21-nt small RNAs were 

also the most abundant size class, although quantity of which is significantly lower than 

that of the RNAi lines. 

 

siRNA distribution along 318-bp IR 

 

In order to investigate whether a few abundant siRNAs predominate in the FAD3 

siRNA-producing locus or whether the abundance is distributed among a larger number of 

siRNAs, small RNAs perfectly mapped to the 318-bp IR region were plotted along the 

sequence versus the average of their normalized abundance from three replications (Figure 

2.7A). Plus Y-axis labels represent siRNAs from the sense strand of 318-bp region, while 

minus Y-axis indicate siRNAs found on the opposite strand. As shown in Figure 2.7, 

siRNAs were not evenly distributed within the 318-nt region, instead a few prominent 

siRNAs exhibited high abundance. All three RNAi lines shared the same high abundant 

siRNA-producing regions, with 3 main peaks around 80, 145, and 275 nucleotides on the 

sense strand and one predominant peak within 250-300 nucleotides on the antisense strand. 

This plotting result implies that prominent small RNAs of high abundance could be 
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generated from transgene siRNA loci in addition to highly distributed low-abundance 

distinct siRNAs. 

For most of the siRNAs, no corresponding spots with similar quantities could be 

found on the opposite strand. This result confirmed other researcher’s findings that only 

one strand of the siRNAs duplex (guide strand) is selected to assemble into the active RISC, 

the other strand (passenger strand) is cleaved for subsequent degradation (Rand et al. 2005; 

Matranga et al. 2005). And the selection of guide strand is not random, one strand of the 

siRNA duplex is consistently more favored by the AGO protein and is used to direct the 

repressive regulation of complementary targets (Takeda et al. 2008; Chen et al. 2008; 

Khvorova et al. 2003; Schwarz et al. 2003).  

Consistent with the size distribution analysis, the plotting data in Figure 2.7A also 

provided evidence that S-24-4D not only exhibited much higher total sequence abundance 

than the other two RNAi lines but also displayed more distinct siRNAs. Considering the 

fact that hpRNA transcript level in this line is about 50 times higher than the other two 

RNAi lines, it is very likely that high level of substrate hpRNA in S-24-4D increased its 

chance of being processed by DCL proteins, which resulted in overall higher siRNA 

abundance and more distinct siRNAs. Specifically, among the distinct siRNAs generated 

from the 318-bp IR in all three RNAi lines, about 40% were only present in S-24-4D 

(Figure 2.7B). However, all three lines shared 79% identity of top 1000 abundant siRNAs 

in each line, while most of those S-24-4D specific siRNAs only showed very low 

abundance (Figure 2.7C). These results implies that DCL proteins mainly processed the 

FAD3 hpRNA in a similar way as in all three RNAi lines, regardless of the substrate hpRNA 
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expression level or genotype. Nevertheless high level of substrate did increase the quantity 

of products and chance of random processing. Additionally, for those siRNAs of high 

abundance, 21nt siRNAs were obviously the predominant size class followed by 22nt and 

24nt siRNAs. This is another evidence that exogenous dsRNA intermediary is mainly 

recognized and processed by DCL4, DCL2 and DCL3 in plants (Gasciolli et al. 2005; 

Deleris et al. 2006; Dunoyer et al. 2007; Xie et al. 2004; Hamilton et al. 2002; Tang et al. 

2003).  

The above findings provided direct evidence that high level of total sequence 

abundance and distinct siRNAs in S-24-4D promote its efficient silencing of FAD3A gene, 

while the majority of most abundant siRNAs shared by S-24-13 and S-24-15 also ensured 

their silencing of FAD3A referred to above.  

 

Association of hpRNA-produced siRNAs to differential silencing efficacy of target 

genes in RNAi lines 

 

To further investigate the association between hpRNA-produced siRNAs and target 

mRNA silencing efficacy, siRNAs from the 318-bp IR of FAD3A were mapped to the same 

region of other two FAD3 genes, respectively (Figure 2.8). As shown in Figure 2.8, the 

number of distinct siRNAs mapped to FAD3B 318-bp region was greatly reduced compared 

to that of FAD3A, while only siRNAs around 175 nucleotides share 100% homology with 

the same region of FAD3C. Particularly, the total number of distinct antisense siRNAs, 
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which are triggers of target gene silencing, decreased from 1371 in FAD3A to 49 in FAD3C 

(Figure 2.8). Moreover, the total antisense siRNA abundance also fell from 7441.89 to 

34.73 CPM, 482.92 to 2.37 CPM, 340.53 to 1.93 CPM in S-24-4D, S-24-13, S-24-15, 

respectively (Figure 2.8, Table 2.5). As mentioned previously, the 318-bp IR used to 

generate FAD3 siRNAs is 100% identical with GmFAD3A but only shares 96.5% and 84.3% 

sequence homology with GmFAD3B and GmFAD3C, respectively (Figure 2.1D, 2.2). 

Therefore, siRNAs generated from the 318-bp IR region contained a considerable number 

of mismatches especially with FAD3C, which might abort their function through the failure 

of target binding or transcript cleavage. As a result, much less noticeable changes in mRNA 

level was achieved for FAD3C than FAD3A and FAD3B (Figure 2.1A-C). However, the 

silencing efficacy of FAD3B seemed not affected by the reduced amount of functional 

siRNAs, probably because it still shares relatively high identity with FAD3A, and the 

amount of functional siRNAs was sufficient to conduct an efficient silencing.  

 

Potential transitivity of Small RNAs 

 

In addition to the potential off-target effect that siRNA generated from 318-bp IR 

might cause, a second specificity problem can occur via the generation of secondary siRNA 

from regions outside of the sequence initially targeted by trigger-derived primary siRNA. 

This phenomenon, termed transitive silencing, leads to the degradation of secondary targets 

without sequence homology with the initial silencing inducer (Eamens et al. 2008). 

Although transitivity along endogenous transcripts appears to occur rarely in plants, we 
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should not rule out and still need to pay careful attention to the possible involvement of 

endogenous transcripts in signal amplification of RNAi (Bleys et al. 2006; Vaistij et al. 

2002; Kościańska et al. 2005; Petersen and Albrechtsen 2005; Sanders et al. 2002; Miki et 

al. 2005). In order to explore this possibility, perfectly matched small RNA was mapped to 

the three target FAD3 transcripts. The 318-bp siRNA target region was indicated by a black 

horizontal line beneath the x-axis (Figure 2.9). 

As shown in Figure 2.9A-C, all three RNAi lines exhibited small RNAs outside of 

the original 318-bp target region on the three FAD3 transcripts and apparently 21-nt small 

RNAs were dominant in all cases. Particularly, small RNAs from the antisense strand 

implicated their possible origin from dsRNA produced via the activity of RdRP directed by 

IR-derived siRNAs. Moreover, more distinct small RNAs were found on the FAD3A 

transcript than FAD3B and FAD3C, which might be a result of the greater amount of 

primary siRNAs targeting the transcript. However, all of these small RNAs outside of 

original 318-bp target region exhibited low CPM around 0.1, suggesting that even if 

transitivity exists, it happens at a relatively low frequency. The above finding is consistent 

with previous studies, that endogenous sequences are protected from transitivity by some 

inherent feature (Bleys et al. 2006; Vaistij et al. 2002; Kościańska et al. 2005; Petersen and 

Albrechtsen 2005; Sanders et al. 2002; Miki et al. 2005) 

In addition to small RNAs found outside of the target sequences, perfectly matched 

small RNAs were detected within the rice waxy-a intron region (Figure 2.9D). In this case, 

low abundance small RNAs were evenly distributed on both strand in all three RNAi lines. 

There is still no obvious difference among the three lines in terms of total small RNA 
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abundance. When the distinct sequences were examined, S-24-4D exhibited greater 

amount of 21-nt small RNAs than other size classes, while the other two lines accumulate 

more 22-nt small RNAs. In another study, small RNAs corresponding to the loop portion 

of the hairpin transcript were also detected, and such phenomenon is due to the transitive 

self-silencing of the hairpin transgene (Mlotshwa et al. 2008). Thus, our results provide 

another example that secondary siRNAs could be generated via primary stem siRNAs 

targeting the hpRNA itself. However, the relative low abundance of loop secondary 

siRNAs implicate that such transitive self-silencing is not very effective and may not be 

the primary cause of the silenced transgenes in S-24-13 and S-24-15.  

 

small RNA encoding part of the transgene 

 

Small RNA encoding part of the Glycinin promoter and 35S promoter 

 

Previous investigation implicated that the expression of a transgene was highly 

suppressed by DNA methylation. According to the literature, methylation of transgene 

could be induced by small RNA targeting of its promoter or 5’UTR region (Eamens et al. 

2008; Huettel et al. 2007; Mourrain et al. 2007). However, siRNAs generated from the 318-

bp IR should have not targeted the Glycinin promoter or 35 promoter as a result of low 

sequence homology. In order to further investigate this, small RNA from the 318-bp IR or 

from the entire library were used to search for small RNAs targeting the two promoter 
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regions, respectively. Small RNAs perfectly mapped to the two targets were plotted along 

the sequence using the same approach as described in previous sections. 

Small RNA mapping result indicated that no siRNAs generated from the 318-bp 

region also share 100% homology with either of the two promoter sequences, indicating 

that methylation of the transgene was not likely mediated by FAD3 siRNAs. However, all 

three RNAi lines displayed significantly higher amount of small RNAs targeting the 

Glycinin promoter region than WT, although none of these small RNAs were expressed at 

high levels (CPM < 1). These small RNAs were found on both strands of the target 

sequence, and no significant difference was found between the non-methylated line S-24-

4D and the two methylated lines S-24-13 and S-24-15 regarding to the overall abundance 

of small RNAs (Figure 2.10A, Table 2.5). When the distinct sequences were examined, S-

24-4D exhibited greater amounts of 21-nt and 22-nt small RNAs than other size classes, 

while the other two lines group were closer together and displayed significantly high level 

of 22-nt and 24-nt small RNAs (Figure 2.10A, Table 2.5). Since most of the identified 

siRNAs involved in RdDM are 24-nt long, we compared 24-nt small RNAs mapped to the 

antisense strand of target sequence among the three RNAi lines. The comparison did reveal 

a few S-24-13 and/or S-24-15 specific small RNAs; however, these small RNAs were 

expressed at very low level (CPM < 0.2) and only one of them were present in all three 

replications in S-24-13. One the other side, S-24-4D exhibited greater amount of specific 

24-nt small RNAs than the other two methylated RNAi lines (Figure 2.10C). Taken 

together, we speculate that these 24-nt small RNAs were not likely the inducers of DNA 

methylation in these two RNAi lines.  
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Similarly, significant amount of small RNAs from sources other than 318-nt were 

found in the 35S promoter region in the three RNAi lines compared to WT. Among the 

three RNAi lines, S-24-13 exhibited highest abundance of both total and distinct small 

RNAs (Figure 2.10B, Table 2.5). 22-nt small RNAs were again dominant on both of the 

strands in S-24-13, followed by 21-nt and 24-nt (Figure 2.10B, Table 2.5). In contrast, S-

24-4D and S-24-15 displayed higher level of 21-nt small RNAs than other size classes. 

When 24-nt small RNAs from the antisense strand were examined, 56 distinct small RNAs 

were found in S-24-13, while only two and none was present in S-24-4D and S-24-15, 

respectively (Table 2.5). Given the fact that S-24-13 was severely methylated in the 35S 

promoter region, such a significant difference in 24-nt antisense small RNAs among the 

three lines may reveal the molecular basis of this phenomenon; that is, S-24-13 specific 

24-nt small RNAs were probably the inducers of DNA methylation in that line. 

 

Small RNAs share homology with endogenous Glycinin transcript 

  

The investigation outlined above revealed that both the Glycinin promoter and 35S 

promoter were targeted by non-FAD3 small RNAs in analyzed RNAi lines. In order to 

further investigate whether endogenous glycinin is affected by T-DNA insertion, small 

RNA from the 318-bp IR or from the entire library were mapped to the Glycinin gene 

coding region and plotted along the sequence using the same approach as described in 

previous section. 
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Consistent with previous results, no siRNAs generated from the 318-bp region 

displayed 100% homology with glycinin gene coding sequence (Figure 2.11). However, all 

three RNAi lines and WT exhibited considerable amount of non-FAD3 small RNAs in 

region, although none of these small RNAs were expressed at high levels (CPM < 1). There 

is no significant differences between S-24-4D, S-24-13 and WT, in terms of total small 

RNA abundance and distinct small RNAs, while that of S-24-15 was lower than others 

(Figure 2.11A, Table 2.5). Within the 5’ UTR region (identical sequence with transgene), 

all three RNAi lines displayed greater amount of small RNAs than WT, especially the two 

methylated lines. Otherwise, small RNAs were evenly distributed along the template 

(Figure 2.11A). Sequence analysis implicated that the three RNAi lines and WT share a 

proportion of distinct small RNAs but also displayed considerable amount of specific ones 

of their own (2.11B). In addition to methylation analysis results, the above investigation 

also provided evidence that endogenous Glycinin gene was unaffected by the insertion of 

transgene even if they share the same promoter. Thus, we speculate that small RNAs found 

in the Glycinin promoter and 35S promoter region are probably restricted to transgenes 

only. 

 

Small RNAs encoding part of the bar coding sequence 

 

In addition to small RNAs encoding part of the two transgene promoter regions, 

perfectly matched small RNAs were found within the bar coding region. Strikingly, 

significantly high level of total small RNAs abundance and distinct small RNAs were 

found within the bar gene coding region (Figure 2.12). Especially in S-24-15, bar gene-
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derived small RNA displayed total reads of 13836 CPM compared to 841 CPM of 318-bp 

IR derived small RNAs in the same line (Figure 2.12, Table 2.5), while the other two lines 

still possess about 20-fold higher 318-bp small RNAs than those encoding part of the bar 

gene. The majority of high abundant bar gene-derived small RNAs in S-24-15 were 21 

nucleotide in length (Figure 2.12, Table 2.5). When compared with previous results that 

bar gene transcript level is 50% down-regulated in S-24-15 than that of S-24-4D, we 

speculate that post-translational silencing of the bar gene might be induced by high 

abundant small RNAs that share sequence homology.  

 

5’ RACE revealed the cleavage site directed by siRNAs 

 

Previous investigation using small RNA sequencing uncovered that target mRNA 

silencing efficacy is correlated with 318-bp siRNA accumulation in the three RNAi lines. 

However, details about how siRNAs abundance could have affected target mRNA cleavage 

is still elusive. In order to further investigate this, 5’RACE was performed to identify 

cleavage sites within target FAD3 mRNAs. The sequence differences among the three 

FAD3 transcripts were utilized to develop the 5’RACE assay. A common forward primer 

which binds to the 5’ Oligo Adapter sequence was used to amlify of all targets. We were 

successful in designing reverse primers annealing uniquely to FAD3A and FAD3C; however, 

the high homology between FAD3A and FAD3B and rich A/T content within the FAD3B 

unique sequence proved to be challenging for primer design specifically amplifying FAD3B. 

Therefore, only FAD3A and FAD3C were used as templates for the identification of 
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cleavage sites. Since the two FAD3 mRNAs could be cleaved at any position within the 

318-bp target region, corresponding PCR product sizes for FAD3A and FAD3C are 281-

599 bp and 143-461 bp, respectively. Fragments with expected size were separated on a 

standard agarose gel and purified for sequencing.  

Figure 2.13 shows inferred cleavage sites as detected by 5’ RACE, with the fraction 

of cloned 5’ RACE PCR products terminating at that position. Similar with small RNA 

distribution patterns, cleavage sites on FAD3A mRNA were not evenly distributed along 

the 318-bp sequence either (Figure 2.13A). Most of the inferred cleavage sites were located 

within the last fifty nucleotides in all three lines, indicating that this region is more prone 

to be cleaved by siRNAs. A total of 4 cleavage sites were conserved among the three RNAi 

lines, all of which exhibited relatively higher cleavage frequency than other non-conserved 

positions. The two major cleavage sites detected at 297-298 and 301-302 nucleotide 

position together displayed more than 50% (13/23) and 40% (10/25) cleavage events in S-

24-4D and S-24-13, respectively. In contrast, only one predominant cleavage site at 274-

275 nucleotides was identified in S-24-15, accounting for 35% of total sequenced cleavage 

products. Since 5’ RACE was performed on products with a range of sizes, cleavage sites 

were also detected in WT due to natural mRNA degradation. On the other hand, all cleavage 

events identified in S-24-4D are within the 318 region, while, 8 out of 28 clones sequenced 

in WT were located outside of the 318-bp, indicating that cleavage products detected in 

WT could be a result of mRNA degradation in the transcriptome. And the cleavage site at 

274-275 nucleotide position shared by the three RNAi lines and WT might be the position 

where degradation of FAD3A transcript most likely occur.   
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Similarly, most of the cleavage sites identified on FAD3C mRNA were located on 

the second half of the 318-bp sequence for all three lines with an average of ~85% (Figure 

2.13B-C). However, no predominant cleavage site was detected and only one cleavage site 

at nucleotide position 225-226 was found in all three RNAi lines. The inferred cleavage 

sites in WT were more evenly distributed on both half of the 318-bp sequence. Moreover, 

6 out of 25, 13 out of 27, 7 out of 24 and 12 out of 33 sequenced clones located on the 

outside of the 318-bp region in S-24-4D, S-24-13, S-24-15 and WT, respectively. This 

result implies that cleavage of FAD3C mRNA was not that efficient as FAD3A thus the 

sequenced clones should contain a number of natural degradation products other than those 

of RNAi.  

Detection of preferential cleavage by 318-bp siRNAs compared with siRNA 

abundance in the same region suggests the effect is due to the particularly high level of 

corresponding antisense siRNAs. This result echoes that previous report as “hot spot” (De 

Paoli et al. 2009). 

 

Putative functional siRNAs 

 

The above investigation using 5’ RACE implicated that preferred cleavage sites on 

FAD3A mRNA are located within same region producing high abundant antisense siRNAs.  

In order to associate 318-bp IR-derived siRNAs with identified cleavage events, siRNAs 

that cover either of the two cleavage sites at 297-298 and 301-302 nucleotide were selected 
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for analysis. Since target mRNA cleavages is almost always directed by 21-nt antisense 

siRNAs, only these siRNA were counted. In addition, cleavage is more likely to happen in 

the center of the siRNA sequence, siRNAs exhibit the two cleavage sites within the first or 

last two nucleotides were discarded.  

A total of 20 siRNAs were found to be the potential inducer of cleavage events 

occurred in either of the two positions (Table 2.6).  Since the abundance of siRNAs are also 

important for their function, these siRNAs are ranked according their CMP in S-24-4D 

from high to low and the corresponding expression level in each RNAi line and WT was 

also listed. Putative functional siRNAs were mapped to the target FAD3A mRNA in Figure 

2.14 with red arrows indicated the two cleavage sites. We anticipate that it is likely these 

siRNAs are most responsible of the cleavage events detected by 5’ RACE. 
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DISCUSSION 

 

This study is directed at improving RNAi technology as a tool to analyze gene 

function and manipulate commercial traits in soybean. To fully capitalize on the potential 

of RNAi, the endogenous soybean gene family GmFAD3 was chosen as a test model gene. 

In our lab’s previous research, a hpRNA-based RNAi vector pMUFAD was designed to 

effectively silence the three active members of soybean FAD3 gene family (Flores et al. 

2008). High level of silencing was achieved by transgene produced siRNAs, which led to 

a significant reduction of linolenic acid content in the seed oil. However, variations were 

detected in the down-regulated linolenic acid level between different RNAi lines (Flores et 

al. 2008). 

The work in this study furthered our understanding of hpRNA-mediated RNAi in 

several ways. We demonstrated that the low linolenic phenotype achieved via hpRNA-

derived siRNAs could be inherited stablely at least as far as the T5 generation and the 

transgene is expected to persist.  To date, the stability of hpRNA-mediated RNAi were only 

reported in a few studies. In Arabidopsis, the mutant trait obtained by hpRNA transgenes 

is inherited stably until the T5 generation (Stoutjesdijk et al. 2002). And the hpRNA 

transgene in a commercial rice RNAi line appears to have been stable for over 20 

generations (Kusaba et al. 2003). Our study is the first time that stability of hpRNA-

induced RNAi were reported in soybean. RNAi induced by hpRNA does not require the 
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generation of dsRNA mediated by RdRP, which might be the reason why this type of RNA 

silencing is inherited more stably than other RNAi delivery method (Béclin et al. 2002). 

The association between silencing of target FAD3 mRNA and the reduced linolenic 

acid phenotype indicated that the alteration of linolenic acid content is presumably due to 

decrease in seed expressed FAD3 enzyme activity caused by the reduced level of FAD3 

mRNA. Among the three targets, down-regulation of FAD3C mRNA was much less 

efficient than FAD3A and FAD3B. Our small RNA sequencing data clearly showed that the 

reduced silencing efficacy of FAD3C is caused by relatively low sequence homology with 

the 318-bp IR. Both the total siRNA abundance and the number of distinct 318-bp IR-

derived antisense siRNAs decreased dramatically in FAD3C when compared with FAD3A. 

That means, most of the siRNAs generated from the 318-bp IR region contained a 

considerable number of mismatches with the targeted FAD3C mRNA, which possibly 

resulted in the failure of binding or transcript cleavage. The silencing efficacy of FAD3B 

seemed not affected by the reduced amount of functional siRNAs, probably because it still 

shares relatively high identity with FAD3A, and the amount of functional siRNAs was 

sufficient to conduct an efficient silencing. The low linolenic seed phenotype observed in 

the three RNAi lines seemed not affected by the relatively unchanged FAD3C transcript 

level. According to the literature, GmFAD3A  has the highest expression level of the three 

homologs in developing seeds (William 82, soybean growth stage R5) and has been shown 

to be the major contributors to seed linolenic acid levels (Bilyeu et al. 2003; Bilyeu et al. 

2005; Bilyeu et al. 2006; Bilyeu et al. 2011). The other two genes are much less expressed 

compared to GmFAD3A and accordingly have a less great impact on seed linolenic acid 
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content (Bilyeu et al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 2011). 

Consistent with these findings, our qRT-PCR results implicated that transcript level of 

FAD3A in mid-mature seeds (Jack, soybean growth stage R6.5) was about 3-4 times higher 

than FAD3B and FAD3C. Thus, the low linolenic phenotype observed in the three RNAi 

lines is presumably due to the high silencing level of FAD3A.  

In addition to the different silencing efficacy observed in the three target genes, the 

three RNAi lines also displayed different silencing level even for the same gene. Our qRT-

PCR analysis demonstrated that the relatively less efficient target gene silencing observed 

in S-24-13 and S-24-15 is caused by 50-fold reduced transcript level of hpRNA relative to 

that of S-24-4D. High level of substrate hpRNA in S-24-4D resulted in overall higher 

siRNA abundance and more distinct siRNAs in that line as our small RNA data have 

demonstrated, which further increased the silencing efficacy of target gene by RNAi. In 

spite of the differences in siRNA abundance, all three lines shared 79% identity of top 1000 

abundant siRNAs in each line, while most of those S-24-4D specific siRNAs only showed 

very low abundance. These results implied that DCL proteins mainly processed the FAD3 

hpRNA in a similar way in all three RNAi lines, regardless of the substrate hpRNA 

expression level or genotype. The above findings provided direct evidence that high level 

of total sequence abundance and distinct siRNAs in S-24-4D promote its efficient silencing 

of FAD3A gene, while the majority of most abundant siRNAs shared by S-24-13 and S-24-

15 also ensured their silencing of FAD3A referred to above.  

The plotting approach used in this study further revealed that prominent small 

RNAs of high abundance could be generated from hairpin transcript in addition to highly 
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distributed low-abundance distinct siRNAs. Among all the siRNAs generated from the 

318-bp IR, 21nt siRNAs were obviously the predominant size class followed by 22nt and 

24nt siRNAs. This result confirmed other researchers’ findings that DCL4 is normally 

responsible for processing exogenous hpRNA supplemented by DCL2 and DCL3 

(Gasciolli et al. 2005; Deleris et al. 2006; Dunoyer et al. 2007; Xie et al. 2004; Hamilton 

et al. 2002; Tang et al. 2003). However, our sequencing data demonstrated a significant 

accumulation of 22-nt 318-bp IR siRNAs, that even higher than that of 24-nt siRNAs. Such 

accumulation of 22-nt stem siRNAs was previously reported in Mlotshwa’s et al. work, 

where DCL2 is required for the transitive self-silencing of the hairpin transgene in 

Arabidopsis (Mlotshwa et al. 2008). Similarly to their findings, small RNAs corresponding 

to the loop portion of the hairpin transcript (Rice waxy-a intron) were also detected in this 

study (Mlotshwa et al. 2008). In addition, detailed sequencing data revealed different loop 

secondary siRNA accumulation patterns in the three RNAi lines, where S-24-13 and S-24-

15 exhibited predominant 22-nt siRNAs while 21-nt siRNAs dominate in S-24-4D. Thus, 

our results provide another example that a hairpin transgene could become a target for 

transitive silencing activated by self-derived secondary siRNAs. The relative low 

abundance of loop secondary siRNAs implicate that such transitive silencing is not very 

effective and may not be the primary cause of the silenced transgenes in S-24-13 and S-24-

15. However, given the fact that secondary siRNAs targeting the transgene are able to 

induce methylation of the corresponding DNA, such possibility cannot be entirely ruled 

out (Vaistij et al. 2002). Thus, further exploration will be needed to investigate the origin 

of high abundant 22-nt stem siRNAs, the possible cause of different secondary siRNA 
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accumulation patterns observed in the three RNAi lines and whether secondary siRNAs 

directed DNA methylation on the hairpin transgene.  

In addition to the transitive silencing of the transgene, small RNAs outside of the 

original 318-bp target region on the three FAD3 transcripts were detected in all three RNAi 

lines. Especially, small RNAs from the antisense strand implicated their possible origin 

from RdRP-dependent dsRNA precursor.  However, here 21-nt small RNAs are dominant 

in all cases, indicating that they might be generated via the activity of DCL4. All small 

RNAs outside of original 318-bp target region exhibited low CPM around 0.1, suggesting 

that endogenous FAD3 transcripts are less favored substrates for RdRP-dependent 

production of siRNAs than the hairpin transcript. The above finding is consistent with 

previous studies, that transitivity along endogenous transcripts is prohibited by some 

inherent protective feature (Bleys et al. 2006; Vaistij et al. 2002; Kościańska et al. 2005; 

Petersen and Albrechtsen 2005; Sanders et al. 2002; Miki et al. 2005). 

The methylation analysis conducted in this study revealed severe DNA methylation 

of transgene promoters in two of the three RNAi lines S-24-13 and S-24-15. When 

associated with qRT-PCR results, the low level of transgene transcript observed in S-24-13 

and S-24-15 seemed to be induced by DNA methylation, which further reduced the 

silencing efficacy of the target gene by RNAi. In contrast, no considerable methylation was 

detected in both promoter and coding sequence region of endogenous glycinin gene. In 

addition, expression level of the endogenous glycinin gene remained unchanged in all three 

RNAi lines compared to WT (data not shown). These results implicated that the 
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endogenous Glycinin gene was unaffected by the insertion of the transgene even if they 

share the same promoter.  

With the aid of deep sequencing, we discovered high amount of small RNAs 

targeting the two transgene promoter regions in the three RNAi line, although none of these 

small RNAs were expressed at high levels, while no significant differences was found 

between S-24-4D, S-24-13 and WT in terms of small RNA targeting glycinin gene coding 

sequence. Generally speaking, the methylated region in the transgene always exhibited 

greater amount of 22-nt and 24-nt small RNAs than other size classes, while within non-

methylated region 21-nt and 22-nt small RNAs are predominant. Our observation is similar 

to what was reported in earlier work, that the 35S promoter and 5’ coding regions of the 

bar gene were highly methylated in transgenic gentian (Mishiba et al. 2005). The authors 

proposed that no small RNAs encoding part of the 35S promoter sequence could be 

detected using Northern blot (Mishiba et al. 2005). However, in another study, the 35S 

promoter siRNAs were found to trigger homology-dependent transcriptional silencing of 

35S promoter in some T-DNA insertion mutant lines (Mlotshwa et al. 2010). The author 

inferred that generation of 35S promoter siRNA is promoted by complex integration 

patterns of the T-DNA (Mlotshwa et al. 2010). Consistent with Mlotshwa’s et al finding, 

our sequencing data showed that a total of 446 distinct small RNAs was detected within 

the 35S promoter region in the three RNAi lines, while the average total abundance of these 

small RNAs are less than 14 CPM, which might be the reason why no 35S promoter small 

RNA were detected in Mishiba’s et al work (Mishiba et al. 2005). However, much effort is 

needed to uncover the mechanism for how the transgene promoter in S-24-4D as well as 
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endogenous glycinin promoter escape away from DNA methylation. Also, the origin of 

these promoter small RNAs is still elusive and needs further exploration. 

In addition to small RNAs encoding part of the two transgene promoter regions, 

perfectly matched small RNAs were found within the bar gene coding region. Strikingly, 

small RNAs encoding part of the bar gene exhibited ~16-fold higher abundance than that 

of 318-bp IR-derived siRNAs in S-24-15, most of which are 21 nucleotide in length. 

Considering that the bar gene transcripts were ~50% reduced in S-24-15 compared to that 

of S-24-4D, we speculate post-transactional silencing of the bar gene might be induced by 

high abundant small RNAs that share sequence homology. Based on previous studies that 

spreading of RNA targeting could happen via the generation of secondary siRNA from 

RdRP-dependent dsRNA precursor, we speculate that such a high level of bar-derived 

small RNA accumulation might be part of transitive silencing activity (Bleys et al. 2006; 

Vaistij et al. 2002; Kościańska et al. 2005; Petersen and Albrechtsen 2005; Sanders et al. 

2002; Miki et al. 2005). However, further exploration will be needed to investigate the 

origin of such high abundant bar gene small RNAs and whether these small RNAs induced 

PTGS of bar gene in S-24-15.   

Previous investigation using small RNA sequencing uncovered that target mRNA 

silencing efficacy is correlated with 318-bp siRNA accumulation in the three RNAi lines.  

In FAD3A, detection of preferential cleavage sites within the high abundant siRNA 

accumulation region suggests such effect is due to the particularly high level of 

corresponding antisense siRNAs. However, 5’ RACE failed to reveal preferred cleavage 

events within the same region where 318-bp siRNAs share 100% homology with FAD3C 
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(nucleotide 171-202). Among the three RNAi lines, only S-24-4D exhibited relatively 

higher cleavage frequency between nucleotide 188-189. In contrast, one cleavage site 

between nucleotide 225-226 is universal among the three RNAi lines. Such observations 

in FADC together suggest that plant siRNAs may also trigger gene silencing with limited 

complementation, as previously demonstrated (Jackson et al. 2006; Senthil‐Kumar et al. 

2007; Qiu et al. 2005). Such limited sequence specificity can potentially increase the 

chance of off-target effect that siRNAs may silence non-target genes (Small 2007). 

Consistent with other studies, in this work, degradation sites were detected in WT due to 

relatively broad size range of 5’ RACE PCR products (Alemán et al. 2007). In order to 

associate 318-bp siRNAs with identified cleavage events, we’ve identified 20 siRNAs that 

cover either of the two preferred cleavage sites at nucleotide 297-298 and 301-302 on 

FAD3A transcript. Further experiment will then be needed to investigate which siRNAs are 

most responsible for the detected cleavage events in 5’ RACE. 

One specific issue we experienced in this work is that samples used for small RNA 

sequencing suffer from cross-contamination, as transgene derived small RNAs were also 

found in WT control. Such contamination may happen during preparation for the small 

RNA libraries, and the high sensitivity of deep sequencing was taken advantage of to reveal 

this problem. In a recently published article, contaminations from exogenous RNA was 

experimentally evaluated, that even low amount of plant miRNAs could be detected in 

human samples (Tosar et al. 2014). The author further analyzed sequencing data generated 

by other researchers, and found that contaminant sequences were ubiquitous (Tosar et al. 

2014). Indeed, contamination with nucleic acids from unrelated organisms could be easily 
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removed, while cross-contamination between samples from the same organisms may foster 

concern about the validity of sequencing results. In this study, the abundance of foreign 

small RNAs in WT are negligible when compared to the three RNAi lines. Thus, the 

validity of this part of work should not have been affected. 
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Figure 2.1 FAD3 gene expression level of T5 homozygous RNAi lines. Data are averages 

of biological triplicates ± SD normalized to CONS7 mRNA. Independent-Samples T Test 

was used to test the significance. Asterisks indicate significant differences in relative 

expression between transgenic lines and control. (*, p < 0.05; **, p < 0.01). S24-4D, S-24-

13, S-24-15 are T5 homozygous for the pMUFAD transgene. Soybean cultivar Jack is used 

as wild-type control. (A) to (C) Normalized gene expression level of GmFAD3A, 

GmFAD3B and GmFAD3C, respectively. The values of wild-type plants were arbitrarily 

fixed to 1.0. (D) Percentage of mismatches between the 318-bp IR and corresponding 

regions in GmFAD3A, GmFAD3B and GmFAD3C, respectively.  
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Figure 2.2 Alignments of nucleotide sequence of the 318-nt inverted repeat (IR) with 

partial cDNAs of GmFAD3A, GmFAD3B, and GmFAD3C (genotype ‘‘Jack’’). Conserved 

nucleotides are highlighted in black. The position of each FAD3 sequence is marked 

beginning from start codon and indicated at the beginning of each line of the alignment. 

Sequence alignment were accomplished using CLUSTALW2 

(https://www.ebi.ac.uk/Tools/msa/clustalw2/) (Flores et al., 2008). 

 

 

 

 

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 2.3 hpRNA and Bar transcript level of pMUFAD homozygous lines. Data are 

averages of biological triplicates ± SD normalized to CONS7 mRNA. Independent-

Samples T Test was used to test the significance. Asterisks indicate significant differences 

in relative expression (*p < 0.05, **p < 0.01). S-24-4D, S-24-13, S-24-15 are T5 

homozygous for the pMUFAD transgene. Soybean cultivar Jack is used as wild-type 

control. (A) and (B) Normalized transcript level of hpRNA and bar, respectively. The 

values of S-24-4D plants were arbitrarily fixed to 1.0.  
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A                                                            B 

      

 

Figure 2.4 Leaf painting phenotype comparison on seedling of T4 S-24-13 and WT. Painted 

leaves were highlighted with red rectangle. Pictures were taken three days after painting. 

Herbicide glufosinate was applied at a concentration of 100mg/L. (A) WT; (B) S-24-13. 

Seedling of T4 S-24-13 displayed an ambiguous phenotype between resistant and 

susceptible. 
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(Figure 2.5 continued) 

   

 

Figure 2.5 DNA methylation analysis of T5 homozygous RNAi lines. (A) Schematic 

presentation of the T-DNA region of the plant transformation vector, pMUFAD (Flores et 

al., 2008). The expression cassette for the RNAi of GmFAD3 is highlighted in grey. LB 

and RB represent T-DNA left and right borders, respectively; Tvsp represent soybean 

vegetative storage protein gene terminator; bar indicate bialaphos resistance gene; TEV 

indicate tobacco etch virus translational enhancer; CaMV35S stand for Cavliflower mosaic 

virus 35S promoter; OCS 3’ stand for octopine synthase gene terminator; IR-R and IR-F 

represent the 318-bp inverted repeats of GmFAD3 target sequence in reverse and forward 

directions, respectively; Rice Waxy-a Intron indicate rice Waxy-a gene intron; GlyP stand 

for soybean glycinin gene promoter (Flores et al., 2008).  
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(Figure 2.5 continued) 

Lines beneath the schematic represent region I, II, III and IV examined by bisulfite 

sequencing. (B) Schematic of the Glycinin gene (GenBank: AB113349.1). The darkened 

rectangle represents exon and horizontal line represents intron. The black arrow indicates 

transcription starting site. Lines beneath the schematic represent region V and VI examined 

by bisulfite sequencing, with numbers indicating the corresponding position. (C) 

Methylation status of a 338 bp region I (294bp Glycinin promoter, 32bp vector backbone, 

12bp forward inverted-repeat of the FAD3 hair-pin), a 276bp region II, a 281bp region III 

and a 352bp region IV within the plant transformation vector pMUFAD; a 297 bp region 

V (-295 bp to 2bp) and a 255 bp region VI (1105 bp to 1359bp) within soybean Glycinin 

gene (GenBank: AB113349.1). Bar heights represent the percentage of methylation at each 

CGN, CHG and CHH (where N= A, T, G or C; H= A, T, or C) cytosines of 10 clones 

analyzed by bisulfite sequencing. Two biological replications were performed and similar 

results were obtained. 
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Figure 2.6 Small RNA size distribution. The size of small RNA from each sample was 

plotted versus frequency among distinct sequences (A) or total sequences (B) to eliminate 

the bias of different sequencing depth. (C) and (D) Size profiles of the 318-bp IR small 

RNAs for distinct sequences and total sequences, respectively. Data are average of three 

replication. 

 

 

 

 

 

 

 



99 
 

 A 

 

 

   B                                                          C          

        

Figure 2.7 Comparison of 318-bp IR-derived siRNAs in the three RNAi lines. (A) Small 

RNAs matching the 318-bp IR were plotted versus the average of their normalized 

abundance from three replications. For visual clarity, the Y-axis of each diagram is adjusted 

based on the corresponding small RNA abundance. (B) and (C) Venn diagram represents 

common and specific reads from total and top 1000 abundant small RNAs in S-24-4D, S-

24-13 and S-24-15, respectively.  
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(Figure 2.8 continued) 

Figure 2.8 318-bp IR-derived siRNAs targeting FAD3B and FAD3C. (A) and (B) Small 

RNAs generated from the 318-bp IR matching the corresponding FAD3B and FAD3C 

target regions were plotted versus the average of their normalized abundance from three 

replications, respectively. For visual clarity, Y-axis of each diagram is adjusted according 

to the small RNA abundance. 
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(Figure 2.9 continued) 
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(Figure 2.9 continued) 

Figure 2.9 RNAi-induced transitivity. (A) - (D) Small RNAs matching the GmFAD3A, 

GmFAD3B, GmFAD3C transcript sequences and the rice waxy-a intron were plotted versus 

the average of their normalized abundance from three replications, respectively. The 318-

bp siRNA generating IR on GmFAD3A and corresponding target regions on GmFAD3B 

and GmFAD3C are indicated with black lines. For visual clarity, Y-axis of each diagram 

is adjusted according to the small RNA abundance. 
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(Figure 2.10 continued) 

   C 

   

Figure 2.10 small RNA encoding part of transgene promoters. Small RNAs matching 

Glycinin (A) and 35S (B) promoter regions were plotted versus the average of their 

normalized abundance from three replications, respectively. (C) Venn diagram represents 

common and specific reads from 24-nt antisense small RNAs matching Glycinin promoter 

region in S-24-4D, S-24-13 and S-24-15, respectively.  
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Figure 2.11 Small RNAs matching endogenous Glycinin transcript. (A) Small RNAs 

matching endogenous Glycinin gene coding sequence were plotted versus the average of 

their normalized abundance from three replications, respectively. The 5’ UTR region 

(identical sequence with transgene) was indicated with black lines. (B) Venn diagram 

represents common and specific reads from small RNAs matching endogenous Glycinin 

gene coding sequence in S-24-4D, S-24-13 and S-24-15, respectively.  
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Figure 2.12 Small RNAs encoding part of the bar coding sequence. Small RNAs matching 

the bar gene coding sequence of pMUFAD were plotted versus the average of their 

normalized abundance from three replications, respectively. For visual clarity, Y-axis of 

each diagram is adjusted according to the small RNA abundance. 
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(Figure 2.13 continued) 
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(Figure 2.13 continued) 

Figure 2.13 5’RACE on GmFAD3A and GmFAD3C mRNAs in T5 RNAi lines. Arrows indicate the inferred cleavage sites and numbers 

above represent the fractions of cloned 5’ RACE PCR products terminating at this position. Degradation sites detected with high 

frequency are highlighted in red, and those present across the three RNAi lines are highlighted with asterisks. (A) Summary of the 5’ 

RACE analysis performed on the 318-bp region of GmFAD3A mRNA. (B) and (C) Summary of the 5’ RACE analysis performed on 

the corresponding region of GmFAD3C mRNA. 
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Figure 2.14 Putative functional siRNAs. 21-nt antisense 318-bp IR-derived siRNA 

sequences that cover either of the two cleavage sites at 297-298 and 301-302 nucleotide 

were mapped to the 318-bp template. Rank order is based on the corresponding CPM from 

high to low in S-24-4D. siRNAs cover the two cleavage sites within the first or last two 

nucleotides were not counted.  
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Table 2.1 Sequences of primers used for qRT-PCR analysis. 

        
 Gene Primer name  Primer sequence  
              
 FAD3A qRT-FAD3A-F  AGCGACACAAGCAGCAAAAT 
  qRT-FAD3A-R  GTCTCGGTGCGAGTGAAGGT 
 FAD3B qRT-FAD3B-F  CCCACCCAGTGAGAGAAAA  
  qRT-FAD3B-R  AGCACTAGAAGTGGACTAGTTATGAAT 
 FAD3C qRT-FAD3C-F  CTCAGAAATCTGGGCCATTG 
  qRT-FAD3C-R  TCGCTAACGAAGTGATCCTGA 
 CONS7 qRT-CONS7-F  ATGAATGACGGTTCCCATGTA 
  qRT-CONS7-R  GGCATTAAGGCAGCTCACTCT 
 Rice waxy-a Intron qRT-Intron-F  GCTCAAAGCTCTGTGCATCTCC 
  qRT-Intron-R  CAGTTTCTTGGGTGGCTAGGG 
 Bar qRT-Bar-F  GGTGGGTGTAGAGCGTGGA 
   qRT-Bar-R  GCTATCCCTGGCTCGTCG  
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Table 2.2 Sequences of primers used in Bisulfite sequencing. 

        
 Amplified Fragment Primer name Primer sequence  
              
 Glycinin Promoter meth-GlyP-F GAAGAAAAGAAATGAAATTATGTATG 
  meth-GlyP-R AACAAAAAAAAAAAACTAACTTAACC 
 Glycinin CDS meth-GlyGene-F TAACTTCTCATCCTCTTCTTCTTC 
  meth-GlyGene-R GGAATTAAGAGTAAGAGTTTTTAAAATAT 
 pMUFAD-Glycinin meth-GlyP-F GAAGAAAAGAAATGAAATTATGTATG 
  Promoter meth-pMUFAD-GlyP-R AACAAATATCCAATATAAAATTCCAT 
 pMUFAD-Inverted  meth-pMUFAD-318RVS-F TAGGGGAAATGGTAATGGTG    

 Repeat meth-pMUFAD-318RVS-R CTCAAACTCTATAAAATTCCATATT 
 pMUFAD-35S meth-pMUFAD-35S-F TTTTTTTATATAGAGGAAGGGTTT 
  Promoter meth-pMUFAD-35S-R CAATTAAAACTTTTCAACAAAAA 
 pMUFAD-Bar meth-pMUFAD-Bar-F GGATTTYAGYAGGTGGGTGTAGAG 
   meth-pMUFAD-Bar-R CATTTCTTTTAAAACAAAAACAATTTT 
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Table 2.3 Sequences of gene specific primers used in 5' RACE. 

        
  Gene Primer name Primer sequence   
 FAD3A RACE-FAD3A TGTGAATGCTCTGTGCAAGTGGTAG 
  RACE-FAD3A-NEST TTCCATTGAGGCCCACTATGAATTCC 
  FAD3C RACE-FAD3C TAGTTGGACTGGGTCCAAGAATCTTTG 
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Table 2.4 Fatty acid analysis of T3 and T5 soybeans for homozygous RNAi lines. 

            

Line name Fatty acid content (%) 
16:00 18:00 18:01 18:02 18:03 

T3
 1           

WT 10.2 3.4 16.6 58.9a 4 10.6a 
S-24-4D 10.9 3.7 16.1 68.1b 1.2c 
S-24-13 9.9 3.7 18.2 65.8b 2.4c 
S-24-15 10.2 3.6 15.3 67.4b 3.6b 

T5 
2           

WT 10.6 ± 0.6 3 3.7 ± 0.2 18.2 ± 3.1 58.4 ± 1.8A5 9.0 ± 0.7A 
S-24-4D 11.0 ± 0.3 4.0 ± 0.8 17.2 ± 2.1 66.7 ± 1.7C 1.1 ± 0.1B 
S-24-13 10.4 ± 0.3 3.9 ± 0.5 18.9 ± 1.6 63.0 ± 1.4B 3.9 ± 0.2C 
S-24-15 10.2 ± 0.4 3.7 ± 0.4 22.4 ± 2.5 60.7 ± 2.7AB 3.1 ± 0.2D 

 

1 Fatty acid profile data for T3 soybeans were obtained from our lab's previously 

published paper (Flores et al., 2008). Mean fatty acid content is based on 2 to 4 

replications (seeds) for each soybean line. Jack is the control line with normal fatty acid 

content. 

2 Fatty acid profile data for T5 offspring seeds from the same T3 RNAi lines were 

analyzed.  

3 Mean fatty acid content plus and minus one standard division. The mean value and 

standard division are based on 3 replications of 5 seeds bulk samples for each soybean 

line. Mean fatty acid content is based on 5 seeds bulk samples from 3 individual plants 

for each soybean line. Jack is the control line with normal fatty acid content. 

4 Means within the same column followed by the same letter were not significantly 

different from each other at a = 0.01 level as detected by Duncan’s Multiple Range Test. 

5 Means within the same column followed by the same letter were not significantly 

different from each other at P = 0.01 level as detected by Independent-Samples T Test. 



2.5 Summary of distinct small RNA and total small RNA abundance for each RNA template.  
  
  Sense  Antisense   
  S-24-4D S-24-13 S-24-15 WT  S-24-4D S-24-13 S-24-15 WT  
            

 18 1121/23.822 29/1.64 22/1.33 2/0.04  94/45.71 23/2.2 16/1.92 2/0.08  
 19 162/62.09 44/3.94 42/2.9 3/0.08  132/31.45 36/2.33 29/1.89 2/0.07  
 20 233/177.26 109/11.77 86/10.14 4/0.15  200/158.75 79/9.63 70/8.14 0/0  
 21 287/7407.27 246/488.77 230/328.7 48/6.78  277/6200.15 202/402.24 182/274.39 44/5.14  
FAD3A-318 22 259/1611.58 186/123.03 164/105.43 17/1.15  227/735.06 140/45.3 119/33.98 12/0.58  

 23 185/127.65 70/11.43 73/9.88 7/0.23  144/50.42 43/3.11 35/2.98 4/0.13  
 24 221/539.95 127/44.02 122/40.51 5/0.39  202/217.28 110/17.55 93/16.67 8/0.25  
 25 84/20.07 27/1.58 20/1.79 2/0.05  59/3.08 11/0.56 9/0.57 0/0  
 Total 1543/9969.68 838/686.17 759/500.69 88/8.87  1335/7441.89 644/482.92 553/340.53 72/6.26  

                        
            
 18 55/8.41 11/0.71 11/0.41 0/0  37/3 6/0.18 4/0.17 0/0  
 19 70/34.24 19/2.31 17/1.17 2/0.05  53/6.66 17/0.68 8/0.32 1/0.04  
 20 107/78.7 49/5.21 41/4.61 2/0.09  88/42.67 28/2.85 24/2.06 0/0  
 21 134/3091.2 107/204.91 99/128.21 22/3.22  126/754.77 84/50.27 71/36.41 12/0.53  
FAD3B-318 22 113/883.27 72/63.81 65/56.77 4/0.67  92/211.09 45/13.45 43/8.66 4/0.23  

 23 73/17.07 18/0.96 22/1.12 3/0.07  51/12.19 16/0.84 12/0.89 1/0.04  
 24 82/99.59 49/8.5 48/6.67 1/0.04  69/27.51 28/2.58 26/2.43 3/0.07  
 25 24/5.47 6/0.44 7/0.41 0/0  17/0.62 2/0.05 0/0 0/0  
 Total 658/4217.94 331/286.85 310/199.39 34/4.14  533/1058.5 226/70.89 188/50.92 21/0.9  
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(Table 2.5 continued) 

                        
            
 18 6/0.25 0/0 0/0 0/0  3/0.89 0/0 1/0.08 0/0  
 19 6/0.51 0/0 2/0.04 0/0  4/0.16 1/0.02 1/0.02 0/0  
 20 11/2.73 5/0.24 4/0.25 0/0  9/2.02 2/0.09 3/0.15 0/0  
 21 12/226.58 12/10.99 11/9.92 3/0.17  10/28.19 8/2.02 6/1.43 0/0  
FAD3C-318 22 11/35.17 9/2.77 9/1.64 1/0.04  7/2.14 3/0.15 1/0.08 0/0  
 23 8/0.95 1/0.07 3/0.08 1/0.04  2/0.06 0/0 2/0.07 0/0  
 24 9/7.82 5/0.5 6/0.77 0/0  8/1.19 2/0.05 3/0.1 1/0.02  
 25 1/0.03 0/0 0/0 0/0  2/0.08 1/0.03 0/0 0/0  
 Total 64/274.05 32/14.57 35/12.7 5/0.24  45/34.73 17/2.37 17/1.93 1/0.02  

                        

 18 115/23.9 31/1.68 24/1.37 3/0.07  98/45.84 23/2.2 18/1.96 2/0.08  
 19 168/62.24 50/4.2 47/3.04 3/0.08  136/31.57 40/2.43 32/1.99 2/0.07  
 20 262/178.55 131/12.48 102/10.92 4/0.15  214/159.31 97/10.14 84/8.79 0/0  
 21 395/7428.45 355/505.29 343/345.44 51/6.85  388/6212.22 300/411.18 294/284.27 46/5.18  
GmFAD3A 22 293/1615.02 220/125.41 193/107.53 18/1.17  255/738.38 167/46.71 135/34.85 12/0.58  

 23 193/128.2 75/11.66 79/10.12 9/0.28  149/50.54 49/3.27 38/3.07 4/0.13  
 24 236/540.76 138/44.57 134/41.04 5/0.39  213/217.66 118/17.91 97/16.83 8/0.25  
 25 90/20.36 31/1.7 24/1.94 3/0.07  62/3.15 12/0.58 11/0.65 0/0  
 Total 1752/9997.47 1031/706.99 946/521.41 96/9.07  1515/7458.66 806/494.42 709/352.4 74/6.3  
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 18 57/8.47 11/0.71 13/0.46 1/0.04  40/3.1 7/0.19 7/0.25 0/0  
 19 73/34.32 20/2.34 23/1.33 2/0.05  57/6.77 18/0.71 10/0.36 1/0.04  
 20 121/79.4 57/5.39 51/4.98 3/0.11  100/43.08 39/3.16 34/2.49 1/0.02  
 21 228/3099.52 192/210.77 180/135.97 24/3.26  218/765.7 153/57.41 155/45.5 13/0.54  

GmFAD3B 22 147/884.87 92/64.61 92/57.78 4/0.67  117/214.34 66/15.09 57/10.06 4/0.23  
 23 80/17.27 24/1.09 25/1.26 4/0.11  58/12.4 22/1.01 14/0.93 1/0.04  
 24 104/100.67 58/9 60/7.24 2/0.05  78/28.17 38/2.97 35/2.79 3/0.07  
 25 26/5.56 8/0.48 11/0.55 0/0  18/0.64 2/0.05 0/0 0/0  
 Total 836/4230.09 462/294.39 455/209.58 40/4.3  686/1074.21 345/80.6 312/62.39 23/0.94  
                        
            
 18 6/0.25 0/0 1/0.02 1/0.02  4/0.92 0/0 1/0.08 0/0  
 19 9/0.61 0/0 3/0.09 0/0  5/0.18 1/0.02 1/0.02 0/0  
 20 14/2.82 6/0.27 7/0.39 0/0  10/2.05 6/0.18 7/0.26 1/0.02  
 21 31/227.37 34/11.73 34/10.74 4/0.2  35/29.57 26/2.65 20/2.21 0/0  

GmFAD3C 22 20/35.47 12/2.83 14/1.84 2/0.05  15/2.36 4/0.17 5/0.2 0/0  
 23 12/1.13 1/0.07 8/0.34 1/0.04  3/0.09 0/0 4/0.13 0/0  
 24 29/9.24 9/0.58 17/2.42 1/0.02  27/2.37 3/0.08 17/1.46 1/0.02  
 25 4/0.11 1/0.02 1/0.18 1/0.02  2/0.08 1/0.03 1/0.02 0/0  
 Total 125/277 63/15.5 85/16 10/0.35  101/37.62 41/3.13 56/4.39 2/0.04  
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(Table 2.5 continued) 

                        
            
 18 0/0 0/0 0/0 0/0  3/0.11 0/0 2/0.07 0/0  
 19 1/0.04 4/0.09 0/0 0/0  8/0.23 2/0.06 2/0.06 0/0  
 20 17/0.67 9/0.25 3/0.12 0/0  17/1.06 7/0.26 8/0.27 0/0  
 21 131/9.77 31/0.88 18/0.61 0/0  154/19.32 49/2.44 27/1.39 0/0  

Rice intron 22 38/1.65 122/7.08 58/3.6 1/0.02  46/3.24 155/18.27 71/7.52 0/0  
 23 1/0.04 14/0.47 8/0.35 0/0  3/0.07 24/0.61 6/0.22 0/0  
 24 7/0.23 16/0.46 24/1 0/0  11/0.3 41/1.25 44/2.95 0/0  
 25 0/0 0/0 1/0.04 0/0  1/0.02 0/0 2/0.04 0/0  
 Total 195/12.38 196/9.23 112/5.72 1/0.02  243/24.35 278/22.89 162/12.53 0/0  
                       
             

 18 1/0.02 1/0.02 1/0.04 0/0  0/0 2/0.05 0/0 0/0  
 19 1/0.02 0/0 0/0 0/0  2/0.12 2/0.04 0/0 0/0  
 20 2/0.05 3/0.08 2/0.07 0/0  2/0.24 5/0.1 2/0.06 0/0  
 21 31/1.98 17/0.44 15/0.78 0/0  43/5.81 20/0.8 11/0.43 1/0.04  

Glycinin  22 40/2.02 57/4.13 29/1.49 0/0  38/3.17 70/4.79 30/1.93 0/0  
promoter 23 4/0.09 7/0.18 11/0.54 0/0  6/0.28 10/0.26 6/0.18 0/0  

 24 20/1.48 32/2.03 35/3.52 1/0.02  25/1.55 28/1.37 20/1.5 0/0  
 25 0/0 1/0.02 3/0.07 0/0  0/0 0/0 1/0.03 0/0  
 Total 99/5.66 118/6.9 96/6.5 1/0.02  116/11.16 137/7.42 70/4.12 1/0.04  
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(Table 2.5 continued) 

                       
             

 18 2/0.04 2/0.06 0/0 0/0  0/0 0/0 0/0 0/0  
 19 0/0 3/0.08 0/0 0/0  2/0.04 10/0.31 2/0.04 0/0  
 20 11/0.49 25/0.68 2/0.07 0/0  4/0.12 10/0.29 0/0 0/0  
 21 72/7.92 63/4.07 18/0.94 0/0  61/3.35 57/2.23 17/0.74 0/0  

35S  22 15/0.66 199/29.8 4/0.18 4/0.09  19/0.57 192/24.6 2/0.07 0/0  
promoter 23 0/0 30/1.56 0/0 0/0  0/0 32/1.3 0/0 0/0  

 24 0/0 63/3.95 6/0.22 0/0  2/0.08 56/2.73 2/0.04 0/0  
 25 1/0.03 0/0 0/0 0/0  0/0 0/0 2/0.04 0/0  
 Total 101/9.14 385/40.22 30/1.4 4/0.09  88/4.15 357/31.46 25/0.95 0/0  
                       
             

 18 350/21.48 290/12.94 193/9.66 319/18.07  0/0 0/0 0/0 0/0  
 19 389/23.92 285/14.04 171/8.11 332/19.17  0/0 1/0.02 2/0.06 0/0  
 20 383/24.38 311/14.61 193/9.19 341/19.19  5/0.16 6/0.13 10/0.37 5/0.15  
 21 414/28.17 359/19.65 259/16.3 351/22.04  33/1.19 59/2.1 68/2.84 28/0.86  

Glycinin  22 397/26.15 336/16.2 193/10.1 352/19.68  11/0.42 26/1.19 19/0.89 4/0.12  
gene 23 361/21.46 283/12.65 196/8.66 334/16.61  2/0.04 1/0.03 8/0.26 0/0  

 24 395/23.32 306/12.95 166/7.74 327/16.73  10/0.27 16/0.73 26/2.08 2/0.06  
 25 362/18.07 303/12.75 165/6.84 336/15.56  1/0.04 2/0.04 1/0.02 0/0  
 Total 3051/186.95 2473/115.79 1536/76.61 2692/147.05  62/2.12 111/4.25 134/6.52 39/1.18  
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(Table 2.5 continued) 

                        
            
 18 38/2.22 8/0.29 131/43.18 1/0.02  53/2.82 7/0.16 152/60.79 3/0.07  
 19 68/4.84 6/0.16 169/116.3 0/0  84/6.02 12/0.32 211/99.13 3/0.13  
 20 85/28.86 15/0.59 214/418.13 6/0.46  108/37.03 13/0.61 239/510.63 9/0.39  
 21 240/405.71 52/5.95 337/4599.64 36/3.75  280/345.94 76/6.02 362/4236.21 52/3.57  

Bar 22 101/40.95 91/19.76 209/1909.42 20/1.48  135/31.65 112/12.89 255/890.59 14/0.73  
 23 22/2.52 16/0.65 98/87.92 1/0.02  34/1.37 19/0.59 128/64.13 1/0.04  
 24 23/1.57 25/0.95 169/332.18 9/0.24  50/2.58 29/1.23 214/447.18 6/0.29  
 25 3/0.11 1/0.03 57/9.58 0/0  16/0.49 2/0.04 75/11.01 0/0  
 Total 580/486.78 214/28.38 1384/7516.35 73/5.97  760/427.9 270/21.88 1636/6319.65 88/5.21  
                        

 

1 Number of distinct small RNAs. 

2 Total small RNA abundance. 
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Table 2.6 Putative functional siRNAs. 

Sequence1 strand length S-24-4D2 (CPM) S-24-13 (CPM) S-24-15 (CPM) WT (CPM) 

AAUGGUGCAGAUCUUUCUGGC - 21 1262.59 89.94 50.69 1.35 
GUAAUGGUGCAGAUCUUUCUG - 21 88.62 6.49 4.75 0.15 
AAUGGUAAUGGUGCAGAUCUU - 21 34.45 2.67 1.36 0.04 
AUGGUGCAGAUCUUUCUGGCU - 21 19.19 0.96 0.84 0.02 
CAGAUCUUUCUGGCUCACGGU - 21 16.64 1.19 0.66 0 
AGAUCUUUCUGGCUCACGGUA - 21 16.36 0.84 0.64 0 
GAUCUUUCUGGCUCACGGUAA - 21 11.4 0.41 0.28 0.04 
GCAGAUCUUUCUGGCUCACGG - 21 5.14 0.23 0.17 0 
AUCUUUCUGGCUCACGGUAAU - 21 4.05 0.11 0.1 0 
UGCAGAUCUUUCUGGCUCACG - 21 3.27 0.18 0 0 
UGGUGCAGAUCUUUCUGGCUC - 21 3.06 0.28 0.16 0 
UAAUGGUGCAGAUCUUUCUGG - 21 2.79 0.14 0.13 0 
AAAUGGUAAUGGUGCAGAUCU - 21 2.25 0.24 0.11 0 
GUGCAGAUCUUUCUGGCUCAC - 21 1.58 0.08 0.1 0 
GGUGCAGAUCUUUCUGGCUCA - 21 1 0.04 0.04 0 
AUGGUAAUGGUGCAGAUCUUU - 21 0.97 0.04 0 0 
UCUUUCUGGCUCACGGUAAUA - 21 0.51 0.02 0.02 0 
GAAAUGGUAAUGGUGCAGAUC - 21 0.33 0 0.04 0 
UGGUAAUGGUGCAGAUCUUUC - 21 0.25 0.05 0.04 0 

GGUAAUGGUGCAGAUCUUUCU - 21 0.13 0 0 0 
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(Table 2.6 continued) 

1 Sequence is ranked from CPM high to low in S-24-4D. 

2 CPM is average of three biological replications. 
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CHAPTER 3 

 

Development of atasiRNA-based Vectors for Efficient Gene Silencing 

in Soybean 
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ABSTRACT 

 

In this study, we developed two Arabidopsis TAS1a-based atasiRNA constructs 

targeting the GmFAD3 gene family using online siRNA design tool OligoWalk. However, 

computational predicted siRNAs does not represent their in vivo efficacy. Further 

investigation is needed to detrmine whether siRNA candidates could conduct efficient 

silencing of target genes in plants. The Agrobacterium-mediated transformation results 

may reveal an adverse effect of miR173 overexpression during soybean transformation as 

well as the instability of RNAi. For the two resultant transgenic RNAi lines, elevated 

linoleic acid content was obtained, but the proof that such an increase was achieved through 

the silencing of FAD3 genes still need further exploration. A transient expression assay 

through leaf-infiltration of both cDNA and atasiRNA binary constructs carried within 

Agrobacterium strains was developed to validate the silencing efficacy of candidate 

atasiRNAs, but the down-regulation of the target gene was not as efficient as in stably 

transformed soybean plants. Thus, we suggest to incorporate both cDNA and atasiRNA 

expression cassette into a single binary vector, to minimize variations caused by separate 

constructs. Furthermore, to simplify the deployment of atasiRNA platform and investigate 

the utility of miR390 and TAS3 as a gene silencing tool in soybean, spacial and temporal 

analysis of miR390 was performed. Our results implicated that miR390 is consistently 

expressed in all sampled tissues with the highest abundance in flowers and early stage of 

pod development, which makes miR390 a good candidate to trigger the formation of 

atasiRNA in soybean. 
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INTRODUCTION  

 

Endogenous non-coding small RNAs are important regulators of gene expression 

that act at the transcriptional or post-transcriptional level. In recent years, a novel class of 

21-22nt regulatory siRNA termed tans-acting small interfering RNA (tasiRNA) has been 

identified and intensively studied for their biogenesis and functions (Peragine et al. 2004; 

Hunter et al. 2006; Montgomery et al. 2008; Williams et al. 2005; Xie et al. 2005b; 

Yoshikawa et al. 2005; Garcia et al. 2006; Adenot et al. 2006; Allen et al. 2005; Vazquez 

et al. 2004) 

The generation of tasiRNAs is triggered by miRNA-guided cleavage of tasiRNA-

generating (TAS) gene derived transcript. One of the 3' or 5' cleavage products is converted 

to dsRNA by RDR6 and subsequently processed by DCL4 into 21-nt siRNAs that are 

phased with regard to the miRNA cleavage site (Peragine et al. 2004; Allen et al. 2005; Xie 

et al. 2005b; Yoshikawa et al. 2005). One strand of the tasiRNA duplex is selectively 

assembled into RNA-induced silencing complex (RISC) to catalyze the cleavage or repress 

the translation of complimentary target mRNAs. The identification of tasiRNAs establishes 

a link between the miRNA and siRNA pathways and also raises the possibility that 

numerous endogenous genes may be regulated by this special subgroup of siRNAs. 

Arabidopsis thaliana contains eight trans-acting siRNA (TAS) loci belonging to 

four families. TAS1 and TAS2 were the first characterized TAS transcripts targeted by 

miR173, and these non-protein-coding genes are only found in Arabidopsis (Allen et al. 
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2005; Vazquez et al. 2004; Yoshikawa et al. 2005; Vaucheret 2005). tasiRNAs from TAS4 

locus was identified much later than TAS1/2 due to low tasiRNA abundance (Rajagopalan 

et al. 2006). Unlike TAS1/2, the TAS4 transcript is a target of miR828 and is known to exist 

in dicots (Rajagopalan et al. 2006). TAS3 is conserved among higher plant species and its 

tasiRNAs originate from sequences between two miR390 binding sites (Montgomery et al. 

2008). There are three TAS3 loci in Arabidopsis: TAS3a (At3g17185), TAS3b (At5g49615), 

and TAS3c (At5g57735) (Howell et al. 2007). TAS1, TAS2, TAS4 only require one miRNA 

binding site upstream of the tasiRNA-generating region; while TAS3 require two miR390 

binding sites, one upstream and one downstream of the tasiRNA-generating region. These 

two different classes each requires unique components and unique RNA structural features 

for their biogenesis of tasiRNAs.  

In recent years, artificial tasiRNA (atasiRNA)-directed gene silencing has been 

developed and gained significant attention in plants (Felippes and Weigel 2009; de Felippes 

et al. 2011; Zhang 2014; Feng et al. 2013; de la Luz Gutiérrez-Nava et al. 2008; Ossowski 

et al. 2008; Carbonell et al. 2014). In an atasiRNA inducing vector, the transgene is simply 

made from a modified TAS gene sequence by substituting a single or several copies of 

native siRNA with atasiRNAs targeting particular genes (Ossowski et al. 2008; Felippes 

and Weigel 2009; de Felippes et al. 2011; de la Luz Gutiérrez-Nava et al. 2008; Carbonell 

et al. 2014). Compared with hpRNA, the atasiRNA approach is more practical for stacking 

multiple functional small RNA sequences into a single construct and minimizing the 

possibility of off-target effects (Ossowski et al. 2008; Zhang 2014). However, most of the 
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studies on atasiRNA-mediated gene silencing has been done in model plants with relatively 

simple genomes. 

Soybean (Glycine max) ranks among the top oil and protein crops in the U.S.. One 

of the most important goals of oil quality breeding in soybean has been to lower its α-

linolenic acid (18:3) content for improved oxidative stability and flavor to eliminate the 

need for hydrogenation. In soybean developing seed, α-linolenic acid (18:3) is produced 

from linoleic acid (18:2) under the catalytic activity of omega-3 fatty acid desaturase 

(FAD3) enzyme. Inhibition of FAD3 in soybeans reduces the level of unstable linolenic 

acid (18:3) and the resultant soybean oil can be directly used without hydrogenation. Three 

independent microsomal omega-3 acid desaturases (GmFAD3A, GmFAD3B, GmFAD3C) 

have been characterized and linked to low seed linolenic acid phenotype in soybean (Bilyeu 

et al. 2003).  Of the three, GmFAD3A (Glyma14g37350)  has been shown to be the major 

contributors to seed linolenic acid levels (Bilyeu et al. 2003; Bilyeu et al. 2005; Bilyeu et 

al. 2006; Bilyeu et al. 2011). GmFAD3B (Glyma02g39230) and GmFAD3C 

(Glyma18g06950) shares 94% and 79% sequence similarity with GmFAD3A in the coding 

regions, respectively. These two genes have a less impact on seed linolenic acid levels 

(Bilyeu et al. 2003; Bilyeu et al. 2005; Bilyeu et al. 2006; Bilyeu et al. 2011).  

This research has been undertaken to employ atasiRNA technology as a tool to 

analyze gene function and manipulate commercial traits in soybean. To fully capitalize on 

the potential of atasiRNA-mediated silencing, the GmFAD3 gene family was chosen as a 

test model for our gene silencing study. The primary goal of this work was to validate and 

further improve atasiRNA-mediated RNAi as a gene silencing strategy in soybean for 
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potent and specific gene silencing with desired trait modification(s). Our long-term goal is 

to achieve gene stacking through atasiRNA. 
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METERIALS AND METHODS 

 

Plant material and growth conditions 

 

Soybean elite genotype “Maverick” (2010) was obtained from the Missouri 

Foundation Seeds (Portageville, MO) and used for development of transgenic soybean 

lines. All soybean were grown on Pro-mix soil (SunGro, Agawam, MA) in 13-litter pots in 

a greenhouse under controlled-environmental conditions at 23-26°C with supplemental 50-

90 Klux day light intensity and 12/12 h photoperiod from late May to early November or 

a 14/10 h photoperiod during the rest seasons. Plants were fertilized once with Osmocote 

14-14-14 (Hummert International, Earth City, MO) at the time of planting or transplanting 

and watered as needed.  

 

RNAi vector construction 

 

The base vector pUB14 for all ata-siRNA constructs was assembled. One key 

feature of this vector is that harbored two separate T-DNAs. T-DNA one contained multiple 

cloning sites for the insertion of the gene of interest, while T-DNA two carried the bar 

(bialaphosresistance) gene expression cassette as a plant selection marker. OligoWalk 

(http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oliGowalkform.cgi) was used 

for the design and quality control of the 21-bp artificial tasiRNA (Table 3.1). Arabidopsis 

http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oliGowalkform.cgi
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TAS1a transcript (At2g27400) was modified by substituting the native siR255 sequence 

with an atasiRNA sequence as described by Felippes et al. (Felippes and Weigel 2009). The 

2x 35S or soybean Glycinin promoter (Flores et al. 2008a) and the soybean vegetative 

storage protein gene terminator (Tvsp) (Rhee and Staswick 1992) were added at the 5’ and 

3’ end of the modified TAS1a sequence as well as a sequence containing a foldback 

structure of Arabidopsis MIR173 (Chen et al. 2010), respectively. The resultant two 

cassettes were synthesized (Genscript, Piscataway, NJ) and cloned sequentially as EcoRI-

BamHI/BamHI-PstI fragments into the T-DNA one region of pUB14 and the resultant 

vector was introduced into A. tumefaciens strain AGL1 by the freeze-thaw method (Figure 

3.1) (Chen et al. 1994).  

 

cDNA overexpression vector construction 

 

Full length cDNAs of GmFAD3A (Glyma14g37350), GmFAD3B (Glyma02g39230) and 

GmFAD3C (Glyma18g06950) were cloned from soybean genotype ‘‘Jack’’ and ligated to 

pCR®8/GW/TOPO® TA vector using pCR®8/GW/TOPO® TA Cloning Kit (Invitrogen). 

The cDNA sequence, now in the resultant entry clone, was subsequently introduced into 

pEearleyGate203 vector via Gateway recombination cloning  using Gateway® LR 

Clonase® enzyme mix (Invitrogen) (Earley et al. 2006).  

 

Plant transformation  
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Soybean transformation followed the Agrobacterium-mediated cotyledonary-

node transformation system as previous described (Zhang et al. 1999a; Zeng et al. 2004; 

Wright et al. 2010). Major modifications include the addition of “dip-wounding” during 

the explant preparation. In this procedure, explants were prewounded before cocultivation 

with blade dipped in Agrobacterium suspension to increases transformation frequency 

(Barampuram and Zhang 2011). In addition, a revised selection scheme of glufosinate was 

applied at 0, 10, and 4mg/L during first and second shoot initiation and shoot elongation 

stages, respectively. 

 

Transgene integration and segregation analysis  

 

Regenerated plants were leaf-painted three times with 200mg/L Liberty Herbicide 

(Bayer CropScience, Monheim am Rhein, Germany) to screen for putative transformants 

as previously described (Zhang et al. 1999b). All of the screened plants were then sampled 

and analyzed by PCR to verify the insertion of the bar gene and/or the gene of interest 

using the REDExtract-N-AmpTM Plant PCR kit (Sigma-Aldrich, St. Louis, MO). The 

parameters for the PCR were as follows, 94°C for 3min, then 35 cycles of 30s denaturation 

at 94°C, 30s annealing at 60°C, 30s extension at 72°C, and 10min final extension at 72°C. 

Primer information is listed in Table 3.2. Putative transgenic soybean lines were 

subsequently subjected to progeny segregation analysis by leaf-painting assay and PCR 

analysis to determine the inheritance of transgenes from T0 plants.  
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Fatty acid analysis 

 

The fatty acid profiles of dry mature soybean seeds from transgenic and wild type 

control samples were examined by a gas chromatography (GC) method as previously 

described (Beuselinck et al. 2006). Ten seeds from each plant were crushed in an envelope 

and used for fatty acid determination. For each transgenic soybean event, seeds from three 

plants were individually analyzed. The individual fatty acid contents of palmitic, stearic, 

oleic, linoleic, and linolenic acids are represented as a proportion of total fatty acids in the 

extracted oil.  

 

Agroinfiltration 

 

Wild type Nicotiana benthamiana plants were grown from seed and maintained in 

a growth chamber under a 16 h light/8 h dark photoperiod at 25°C. Four week old plants 

were used for the infiltration assay. 

For agroinfiltraion, all T-DNA constructs were introduced into A. tumefaciens 

GV3101 using the freeze-thaw method (Chen et al. 1994). Recombinant A. tumefaciens 

was grown overnight at 28 °C in 10ml LB liquid medium containing 50 mg/L kanamycin, 

10mg/L rifampicin and 20 µM acetosyringone to an OD600=1.0. Cells were harvested by 

centrifugation and resuspended to a final concentration of OD600=0.6 in 10mM 

MgCl2,10mM MES, pH 5.6, 150 µM acetosyringone. The cell suspension was incubated 
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for 5h at room temperature before infiltration. A. tumefaciens cultures containing the 

atasiRNA or control vector and target gene-myc construct were mixed at a 1:1 ratio. The 

mixtures were co-infiltrated into leaves of N. bethamiana plants using a 1ml syringe with 

no needle, and the infiltrated area was outlined with a marker pen. For each construct, a 

total of 6 leaves on two  N. bethamiana plants were infiltrated.  

 

qRT-PCR 

 

The marked area on each infiltrated N. bethamiana leaf was collected 60 hrs after 

infiltration. For each construct, total RNA was extracted using TRIzol reagent (Invitrogen, 

Carlsbad, CA) from a bulk sample of 6 infiltrated leaves from two individual plants. 

One-step real-time quantitative PCR was performed in triplicate biological and 

technical replications on an CFX-96TM Real-Time system (Bio-Rad, Hercules, CA) with 

the recommended settings for SYBR Green. Each reaction contained 2 µl DNase I 

(Invitrogen, Carlsbad, CA) treated RNA, 10µM of each specific primer, 0.25 µl iScript 

Reverse Transcriptase and 10µl of 2x SsoAdvanced™ Universal SYBR® Green Supermix 

(Bio-Rad) in a final volume of 20 µl. Genomic DNA and other contamination were 

monitored by no-template and no-RT controls. A standard curve was generated from 

cDNAs to determine the PCR efficiency of each primer pair. The following PCR program 

was used for all PCR reactions: 50 °C for 10 min, 95°C for 1 min, followed by 40 cycles 

https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=hercules+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiF1YWViopZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSre5Lb-_LvYIvO63qkrIqpMPXQfbNgMAK9MdyRhAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CKwBEJsTKAIwEg
https://www.google.com/search?rlz=1C1KMZB_enUS577US577&espv=210&es_sm=93&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gXGBYa55ihIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-zlxgXMpVUmPswFg25V6mzXa_oPkAu05mKWEAAAA&sa=X&ei=9fAbU6zMHITD2wWNw4CIBA&ved=0CK0BEJsTKAMwEg
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of 10s denaturation at 95°C, 30s annealing and extension at 60°C. Amplification specificity 

was verified by melting curve analysis at the end of PCR.  

Templates were normalized for difference in RNA amount using L23 amplification 

levels (Liu et al. 2012). Data were analyzed with BioRad CFX ManagerTM 2.0 Software 

(Bio-Rad). The comparative threshold cycle method (∆∆Ct) was used to determine relative 

transcript abundance levels. Sequences of applied primers are listed in Table 3.3. 

 

stem–loop RT-PCR  

 

The expression profile of mature miR390a was assayed by stem–loop RT-PCR and 

performed as previously described (Varkonyi-Gasic et al. 2007). The Gma-miR390a 

mature sequence (Accession NO. MI0007214) was obtained from miRBase database 

(http://www.mirbase.org). Stem–loop RT primers were designed according to previouse 

protocols (Varkonyi-Gasic et al. 2007; Chen et al. 2005) with a six-nucleotide extension 

complementary to the 3’ end of mature miRNA and a Universal ProbeLibrary Probe #21 

sequence binding site. cDNA was synthesized from 500ng DNase I (Invitrogen) treated 

total RNA using Superscript III reverse transcriptase (Invitrogen) with miRNA specific 

stem-loop primers. The reaction was incubated at 16°C for 30 min, followed by pulsed RT 

of 60 cycles at 30°C for 30s, 42°C for 30s and 50°C for 1s and finally 5 min at 85°C. 2µl 

of cDNA product from each sample were subjected to quantitative real-time PCR analysis 

using a miRNA-specific forward primer and a universal reverse primer. Each 20µl PCR 

http://www.mirbase.org/
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reaction contained 10µM forward primer, 10µM reverse primer, 5µM UPL probe #21 and 

1× Bio-rad SsoFast Probes Supermix (Bio-Rad). The PCR reaction was performed in 

triplicate biological and technical replications on an CFX-96TM Real-Time system (Bio-

Rad) at 95°C for 5min, followed by 45 cycles of 95°C for 5s, 60°C for 10s, and 72°C for 

1s. 

PCR efficiency of each primer pair was determined by standard curves based on a 

fivefold dilution series. Data were analyzed with BioRad CFX ManagerTM 2.0 Software 

(Bio-Rad). The comparative threshold cycle method (∆∆Ct) was used to determine relative 

transcript abundance levels. 5.8S rRNA was used as the inner control. Sequences of stem–

loop RT primers, miRNA-specific PCR primers and universal primers are listed in Table 

3.4. 
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RESULTS 

 

Comparison of atasiRNA candidates designed by OligoWalk with putative functional  

siRNAs experimentally determined by 5’ RACE 

 

In our previous study, a hpRNA-based RNAi vector pMUFAD was designed to 

effectively silence the three active members of soybean FAD3 gene family (Flores et al. 

2008b). To ensure efficient target silencing and compare atasiRNA strategy with hpRNA-

mediate RNAi , the 318-nt IR of pMUFAD was used to generate atasiRNA candidates using 

the online siRNA design tool  OligoWalk (http://rna.urmc.rochester.edu/cgi-

bin/server_exe/oligowalk/oligowalk_form.cgi) (Lu and Mathews 2008). A total of 78 

siRNA candidates were generated for the 318-bp target and computationally ranked by 

sequence complementarity and hybridization energy (Table 3.1). At that time, we chosed a 

21-nt siRNA candidate starting at position 149 with a 90.54% possibility of being efficient 

siRNA from the top of the OligoWalk output list to construct the atasiRNA construct. This 

siRNA candidate shares 100% sequence homology with GmFAD3A and GmFAD3B, and 

exhibited one mismatch with GmFAD3C at position 4 from the 5’ end of siRNA sequence. 

As shown in Table 3.1, more than 50% of the siRNA candidates designed by 

OligoWalk are located at the first half of the 318-nt IR. Especially, 9 out of 10 top 

candidates showed a starting position prior to nuleotide 159. When compared with the 5’ 

RACE result conducted in the previous chapter, only two out of the 78 listed siRNA 
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candidates cover one or both of the two predominant cleavage sites (297-298, 301-302). 

The possibility for these two candidates being an efficient siRNA is 71.99% and 69.97%, 

ranked 42th and 49th on the putative siRNA list, respectively. The inconsistency between 

OligoWalk designed siRNA candidates and experimentally determined cleavage sites may 

reflect that the OligoWalk ranking could not accurately predict optimal siRNAs in vivo. 

However, the cleavage events directed by 318-bp siRNAs were also affected by their 

relative abuandance when processed from the hpRNA precursor. Thus, whether siRNA 

candidates designed by OligoWalk could deliver efficient silencing of target genes still 

need further investigation. 

 

Agrobacterium-mediated transformation did not yield enough transgenic plants 

 

For Agrobacterium-mediated transformation, a total of 3,627 explants were 

inoculated with 4 different plasmids (Table 3.5). The two control vectors, 35S-173 and 

GlyP-173, contain a miR173 expression cassette under the control of 35S and Glycinin 

promoter, respectively, while the two atasiRNA vectors, 35S-FAD and GlyP-FAD, contain 

both miR173 and modified TAS1a expression cassette with one atasiRNA targeting 

GmFAD3.   

The percentage of good regeneration ranged from 20.6% to 30.24% and shoot 

regeneration frequency was around 4%, which seemed normal. However, only less than 

half of the shoots survived till greenhouse stage. Of the four plasmids, 35S-FAD exhibited 
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highest number of putative transgenic plants based on leaf painting results. Surprisingly, 

all of the 21 regenerated plants from GlyP-173 showed a susceptible phenotype after leaf 

painting. Because a two T-DNA vector was used to as a backbone for these constructs, all 

regenerated plants were PCR screened for the presence of bar and TAS1a cassette. Instead 

of an independent insertion mode, PCR results implicated that insertion of the two T-DNAs 

were tightly linked.  For the 15 transgenic T0 plants, only 3 of them passed the transgene 

to the next generation. No control plants were obtained at this point.  

 

Fatty acid profile revealed increased linoleic acid content in two of the analyzed RNAi 

lines 

 

The full fatty acid profiles of the seeds of the three RNAi lines were analyzed using 

gas chromatography. 10 T2 seeds from three individual plants of three hemizygous FAD3 

RNAi lines were sampled. Individual fatty acid contents are presented as the relative 

percent of palmitic, stearic, oleic, linoleic, and linolenic acids from the total amount of 

extracted oil. Although only one of the nine transgenic plants displayed a significant 

reduction in linolenic acid content compared to that of WT control “Maverick” (=0.05), 

suggesting a potent silencing of GmFAD3 (Table 3.6), all six plants containing 35S-FAD 

accumulated significantly higher linoleic acid levels in the seed oil than WT control, 

ranging from 59.4% to 60.5% (=0.05, Table 3.6). This effect might result from a decrease 

in seed expressed FAD3 enzyme activity responsible for converting linoleic acid precursors 

into linolenic acid precursors. By contrast, all of the three transgenic plants containing 
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GlyP-FAD displayed similar linoleic acid and higher linolenic content of WT, indicating 

that the atasiRNA expression cassette driven by glycinin promoter did not work efficiently 

or was not inherited. However, due to the lack of control plants only expressing miR173, 

further investigation is needed to determine whether elevated linoleic acid content observed 

in this study was achieved through the silencing of FAD3 genes. It is possible such increase 

was induced by the expression of miR173, which does not exist in soybean. 

 

Test silencing efficacy of atasiRNA constructs using transient expression assay 

 

Since stable transformation experiment did not yield enough transgenic plants, a 

transient expression assay using agroinfiltrated N. bethamiana plants were developed to 

test the silencing efficacy of atasiRNA constructs designed by OligoWalk. Prior to 

infiltration a suspension of Agrobacterium harboring cDNA plasmids of GmFAD3A, 

GmFAD3B, and GmFAD3C was mixed in a 1:1 ratio with a GV3101 suspension as positive 

controls. Suspensions of Agrobacterium harboring atasiRNA plasmids, pMUFAD, and 

control plasmids were mixed in a 1:1 ratio with a bacterial suspension carrying 

corresponding cDNA plasmids. GV3101 infiltrated and WT N. benthamiana leaf samples 

were used as negative control. To reduce experiment variation, a bulk of 6 infiltrated leaves 

from 2 individual plants were sampled for each treatment. Relative target gene cDNA 

levels in infiltrated Nicotiana benthamiana leaves were detected using qRT-PCR. 
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As shown in Figure 3.2, the cDNA positive control always had the highest 

expression among all treatments, suggesting that mix of Agrobacterium carrying two 

different plasmids may affect the expression of each other in infiltrated Nicotiana 

benthamiana leaves. All of the RNAi vectors exhibited lower target transcript levels when 

compared to the corresponding control vector, indicating the potential silencing of target 

genes. However, the differences between control and atasiRNA/hpRNA treatment were not 

significant except pMUFAD targeting FAD3C. This result is inconsistent with that obtained 

in stably transformed soybean plants of pMUFAD, where the silencing of FAD3A and 

FAD3B was much efficient than FAD3C. Since not all plasmids share the same expression 

levels in infiltrated Nicotiana benthamiana leaves, the inefficient silencing observed in this 

experiment might be due to the low expression level of RNAi vector relative to that of 

cDNA vector. Besides, the transcript level of over expressed cDNAs are much higher than 

that of endogenous FAD3 genes, which might make efficient target silencing more difficult. 

 

MiR390 temporal and spacial expression analysis 

 

Our soybean stable transformation experiment using atasiRNA constructs did not 

yield good results. One possibility is that Arabidopsis miR173 might have an adverse effect 

on regeneration. As mentioned previously, tasiRNAs generated from TAS3 locus is 

triggered by miR390, which eliminate the need of miR173 as an inducer. Thus, atasiRNA 

approach employing miR390 and TAS3 seems a good alternative as a gene silencing tool 

in soybean. 
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 miR390 is conserved among plant species, which indirectly regulate a family of 

Auxin Response Factor that impact the development, growth, and physiology of plants 

(Garcia 2008; Marin et al. 2010). According to the literature, overexpression, of essential 

miRNAs could lead to developmental abnormalities (Garcia 2008). Introduction of a 

strongly expressed extra copy of miR390 into soybean might be hazardous. Thus, it is 

important to obtain a comprehensive understanding of endogenous soybean miR390 

expression pattern in different tissue and development stage. Two miR390 loci was found 

in Arabidopsis, ath-MIR390a (miRBase: MI0001000) and ath-MIR390b (miRBase: 

MI0001001), both of which share the same mature miRNA sequence (Xie et al. 2005a). 

Soybean possesses 7 MIR390 loci, but only gma-MIR390a (miRBase: MI0007214), gma-

MIR390f (miRBase: MI0021702) and gma-MIR390g (miRBase: MI0021703) produce 

mature miR390 identical to that in Arabidopsis (Subramanian et al. 2008; Joshi et al. 2010; 

Radwan et al. 2011; Turner et al. 2012).  

In this study, the abundance of mature miR390 identical to the one in Arabidopsis 

was determined using a stem-loop RT-PCR approach (Varkonyi-Gasic et al. 2007; Chen et 

al. 2005).  A total of 9 different development stages were selected for the temporal 

expression analysis and 8 different tissue types were chosen for the spacial expression 

analysis. The abundance of miR390 in each sample was determined relative to that in one 

day germinating seed (Figure 3.3). miR390 is consistently expressed in all sampled tissues. 

Leaf samples exhibited overall higher abundance than that in stems and roots. The 

expression of miR390 in vegetative tissue exhibited no significant changes over time, with 

slightly higher abundance in seedlings. In contrast, high abundant miR390 in flowers and 
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young pods were detected, implicating that miR390 are actively involved in regulatory 

pathways specifically within these two types of tissues, while the expression of miR390 

remains relatively low in developing seeds.   
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DISCUSSION 

 

In this study, we developed two Arabidopsis TAS1a-based atasiRNA constructs 

targeting the GmFAD3 gene family. The atasiRNA candidates were generated from the 318-

bp IR of pMUFAD using online siRNA design tool  OligoWalk 

(http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oligowalk_form.cgi) (Lu and 

Mathews 2008). However, experimentally determined siRNA-mediated cleavage sites in 

the previous chapter suggested different functional siRNAs from OligoWalk predicted 

optimal siRNAs. It is possible that the OligoWalk ranking using sequence complementarity 

and hybridization energy does not represent siRNA’s in vivo efficacy. In a recent study, Li 

et al. tested the amiRNA efficacy designed by another web-based tool WMD 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi), and found the same problem with 

computational predicted amiRNAs (Li et al. 2013). Thus, further investigation is needed to 

detrmine whether siRNA candidates designed by OligoWalk could conduct efficient 

silencing of target genes in plants. Meanwhile, further design of atasiRNA may not be 

limited to the 318-bp IR region to further secure effective silencing of GmFAD3. 

Agrobacterium-mediated transformation using atasiRNA constructs did not yield 

enough transgenic plants. Although all experiments produced the normal amount of 

regenerated plants, most of them are escapes with no T-DNA insertions. Such a high escape 

rate is intriguing, which may suggest an adverse effect of miR173 during soybean 

transformation. For those PCR-confirmed transgenic T0 plants, only 20% of them passed 

http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/
http://wmd3.weigelworld.org/cgi-bin/webapp.cgi
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the transgene to the next generation. This result raised our concern about the instability of 

miR173-mediated RNAi, which might need further exploration before applying this 

technology for the genetic improvement of crop plants. 

The full fatty acid profiles of two RNAi lines containing 35S-FAD implicated 

significantly increased linoleic acid levels in the seed oil than WT control. This effect might 

result from the silencing of GmFAD3 which blocked the conversion of linoleic acid 

precursors to linolenic precursors in the soybean seed. While all of the three transgenic 

plants containing GlyP-FAD displayed similar linoleic acid and higher linolenic content of 

WT, indicating that the atasiRNA expression cassette driven by glycinin promoter did not 

work efficiently or was not inherited. However, due to the lack of control plants only 

expressing miR173, further investigation is needed to determine whether elevated linoleic 

acid content observed in this study was achieved through the silencing of FAD3 genes. In 

any case we noticed that silencing potency of 35S-FAD transgenic plants (this study) were 

much less than that of pMUFAD transgenic counterparts (Chapter II), suggesting that either 

most effective atasiRNA candidate remains to be selected and deployed or the atasiRNA 

platform is intrinsically less potent than hpRNA. 

Due to the unsuccessful stable transformation experiment, we developed a transient 

expression assay to test the silencing efficacy of atasiRNA constructs. By using a bulk of 

6 infiltrated leaf samples from 2 individual plants, technical variations were successfully 

restricted within a small range. However, the down-regulation of target gene was not as 

efficient as in stably transformed soybean plants. Since different plasmids may exhibit 

variant expression levels in infiltrated Nicotiana benthamiana leaves, the inefficient 
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silencing might be due to the low expression level of RNAi vector relative to that of cDNA 

vector. Besides, the transcript level of over expressed cDNAs are much higher than that of 

the endogenous FAD3 genes, which might make efficient target silencing more difficult. 

Thus, for the comparison of atasiRNA efficacy, it would be better to incorporate both cDNA 

and atasiRNA expression cassette into the same binary vector, to eliminate any possibility 

variations caused by expression differences. 

In order to investigate whether miR390 and TAS3 could be employed as a gene 

silencing tool in soybean, spatiotemporal expression of soybean miR390 was investigated. 

Our results implicated that miR390 is consistently expressed in all sampled tissues with 

the highest abundance in flowers and young pods, which makes miR390 a good candidate 

to trigger the formation of atasiRNA in soybean. 
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FIGURES 
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Figure 3.1 Schematic presentation of the atasiRNA-producing region of 35S-FAD and GlyP-

FAD. Tvsp represent soybean vegetative storage protein gene terminator; 35SP stand for 

Cavliflower mosaic virus 35S promoter; GlyP stand for soybean glycinin gene promoter; 

miR173 indicate precursor sequence of Arabidopsis MIR173; TAS1a represent the 

Arabidopsis TAS1a transcript (At2g27400); FAD3, 21-nt GmFAD3 target sequence 

substitute the native siR255 sequence. 
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Figure 3.2 Relative target gene cDNA levels in agro-infiltrated Nicotiana benthamiana 

plants. Data are averages of biological triplicates ± SD normalized to L23 mRNA. 

Independent-Samples T Test was used to test the significance. Asterisks indicate significant 

differences in relative expression between RNAi lines and control. (*, p < 0.05). FAD3A, 

FAD3B and FAD3C, cDNA vectors. pMU103, control hpRNA vector with no IR. 35S-173 

and GlyP-173, control atasiRNA vectors containing only miR173 expression cassette. 

pMUFAD, hpRNA-producing vector targeting GmFAD3. 35S-FAD, GlyP-FAD, 

atasiRNA-generating vector containing both miR173 and modified TAS1a expression 

cassette targeting GmFAD3. GV3101 infiltrated and WT N. benthamiana leaf samples were 

used as negative control. (A) to (C) Normalized cDNA level of GmFAD3A, GmFAD3B, 

and GmFAD3C, respectively. The values of FAD3A, FAD3B and FAD3C were arbitrarily 

fixed to 1.0.  

 



158 
 

 

Figure 3.3 Temporal and spacial expression analysis of gma-MIR390. X-axis indicates 

soybean development stages. Bar heights represent mean relative expression level from 3 

biological replications in different tissue samples. The expression level of miR390 in one 

day germinating seed was arbitrarily fixed to 1.0. 
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TABLES 
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Table 3.1 Sequences of atasiRNA candidates generated from the 318-nt IR. 

 Position on 
target 

Probability of being efficient 
siRNA siRNA Sequence(5'->3') 

1 69 0.912286 UUUCUGAUGAUGACCAUGGUG 
2 149 0.905375 UUGAUCCAACCAUAGUCACGA 

3 105 0.904108 UAAAUAACUCCAUUCCUUGCC 
4 101 0.902297 UAACUCCAUUCCUUGCCGCGA 
5 151 0.895925 UAUUGAUCCAACCAUAGUCAC 
6 243 0.891511 UUUUGCUGCUUGUGUCGCUUC 
7 41 0.889758 UAUGUGACAAAGUCCAGCCAC 
8 106 0.870204 UUAAAUAACUCCAUUCCUUGC 
9 104 0.869841 AAAUAACUCCAUUCCUUGCCG 

10 152 0.858755 UUAUUGAUCCAACCAUAGUCA 
11 246 0.855118 UGAUUUUGCUGCUUGUGUCGC 
12 68 0.853079 UUCUGAUGAUGACCAUGGUGA 
13 103 0.845048 AAUAACUCCAUUCCUUGCCGC 
14 255 0.844936 UCCAAGAACUGAUUUUGCUGC 
15 20 0.84468 AUAACAAAUAUCCAAUAUGGA 
16 215 0.837463 UGAUAAUGAGGAAUUUGAGGG 
17 47 0.825638 UGCAAGUAUGUGACAAAGUCC 
18 193 0.822864 AAAGAUGGUGAAUAACAUGGG 
19 48 0.812863 AUGCAAGUAUGUGACAAAGUC 
20 192 0.807478 AAGAUGGUGAAUAACAUGGGU 
21 204 0.797656 AAUUUGAGGGAAAAGAUGGUG 
22 142 0.797124 AACCAUAGUCACGAUCCACAG 
23 102 0.787651 AUAACUCCAUUCCUUGCCGCG 
24 277 0.786095 UUUCUGGCUCACGGUAAUACU 
25 252 0.782637 AAGAACUGAUUUUGCUGCUUG 
26 138 0.779683 AUAGUCACGAUCCACAGUUGU 
27 150 0.778212 AUUGAUCCAACCAUAGUCACG 
28 194 0.766777 AAAAGAUGGUGAAUAACAUGG 
29 162 0.76444 AUGGUGAAUGUUAUUGAUCCA 
30 81 0.751588 AUACCAAGGCAGUUUCUGAUG 
31 146 0.751173 AUCCAACCAUAGUCACGAUCC 
32 14 0.748847 AAUAUCCAAUAUGGAAUUCCA 
33 167 0.748479 AUGUCAUGGUGAAUGUUAUUG 
34 54 0.741574 AUGGUGAUGCAAGUAUGUGAC 
35 249 0.739477 AACUGAUUUUGCUGCUUGUGU 
36 155 0.737448 AUGUUAUUGAUCCAACCAUAG 
37 116 0.735764 AGACCACCUCUUAAAUAACUC 
38 44 0.735201 AAGUAUGUGACAAAGUCCAGC 
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39 189 0.734806 AUGGUGAAUAACAUGGGUGCC 
40 203 0.722761 AUUUGAGGGAAAAGAUGGUGA 
41 76 0.721614 AAGGCAGUUUCUGAUGAUGAC 
42 294 0.719859 UGGUAAUGGUGCAGAUCUUUC 

43 62 0.711927 UGAUGACCAUGGUGAUGCAAG 
44 15 0.709613 AAAUAUCCAAUAUGGAAUUCC 
45 118 0.709417 UGAGACCACCUCUUAAAUAAC 
46 60 0.69822 AUGACCAUGGUGAUGCAAGUA 
47 50 0.681862 UGAUGCAAGUAUGUGACAAAG 
48 154 0.681801 UGUUAUUGAUCCAACCAUAGU 
49 297 0.679695 AAAUGGUAAUGGUGCAGAUCU 

50 7 0.676354 AAUAUGGAAUUCCAUAGAGCU 
51 182 0.673615 AUAACAUGGGUGCCAAUGUCA 
52 183 0.662516 AAUAACAUGGGUGCCAAUGUC 
53 267 0.661053 ACGGUAAUACUCUCCAAGAAC 
54 259 0.659138 ACUCUCCAAGAACUGAUUUUG 
55 43 0.648106 AGUAUGUGACAAAGUCCAGCC 
56 129 0.637282 AUCCACAGUUGUGAGACCACC 
57 191 0.636849 AGAUGGUGAAUAACAUGGGUG 
58 107 0.615882 CUUAAAUAACUCCAUUCCUUG 
59 156 0.598292 AAUGUUAUUGAUCCAACCAUA 
60 71 0.590162 AGUUUCUGAUGAUGACCAUGG 
61 180 0.589798 AACAUGGGUGCCAAUGUCAUG 
62 97 0.57064 UCCAUUCCUUGCCGCGAUACC 
63 248 0.569816 ACUGAUUUUGCUGCUUGUGUC 
64 40 0.569711 AUGUGACAAAGUCCAGCCACA 
65 115 0.549348 GACCACCUCUUAAAUAACUCC 
66 185 0.543143 UGAAUAACAUGGGUGCCAAUG 
67 210 0.5 AUGAGGAAUUUGAGGGAAAAG 
68 132 0.5 ACGAUCCACAGUUGUGAGACC 
69 32 0.491879 AAGUCCAGCCACAUAACAAAU 
70 209 0.477479 UGAGGAAUUUGAGGGAAAAGA 
71 278 0.474752 CUUUCUGGCUCACGGUAAUAC 
72 22 0.455902 ACAUAACAAAUAUCCAAUAUG 
73 21 0.452734 CAUAACAAAUAUCCAAUAUGG 
74 251 0.424382 AGAACUGAUUUUGCUGCUUGU 
75 207 0.394758 AGGAAUUUGAGGGAAAAGAUG 
76 218 0.350684 AGGUGAUAAUGAGGAAUUUGA 
77 198 0.297146 AGGGAAAAGAUGGUGAAUAAC 
78 2 0.22725 GGAAUUCCAUAGAGCUUGAGC 
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(Table 3.1 continued) 
*   All listed atasiRNA candidates were designed by OligoWalk 
(http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oligowalk_form.cgi). 
**   atasiRNA candidate used to construct the atasiRNA construct is highlighted in red. 

*** atasiRNA candidates cover the two predominant cleavage sites identified by 5’ RACE 

are highlighted in blue. 
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Table 3.2 Sequences of primers used for the screen of transgenic plants. 

 Gene Primer name Primer sequence     

 TAS1a TAS1a-F ATAAACCTAAACCCCTAAGCGGC 
 TAS1a-R AACAGAGAGGGCGACGGGA  
 MIR173 miR173-F CGGCGGTCTCATCGTAATCT  
 miR173-R CACAGAGAATCACAGAGGAAAGAGAC 
 bar Bar-F CACCATCGTCAACCACTACATCG 
 Bar-R CAGCAGGTGGGTGTAGAGCGT 
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Table 3.3 Sequences of primers used for qRT-PCR analysis. 

 Gene Primer name Primer sequence       
 FAD3A qRT-FAD3A-F AGCGACACAAGCAGCAAAAT  
  qRT-FAD3A-R GTCTCGGTGCGAGTGAAGGT  
 FAD3B qRT-FAD3B-F CCCACCCAGTGAGAGAAAA  
  qRT-FAD3B-R AGCACTAGAAGTGGACTAGTTATGAAT 
 FAD3C qRT-FAD3C-F CTCAGAAATCTGGGCCATTG  
  qRT-FAD3C-R TCGCTAACGAAGTGATCCTGA  
 L23 qRT-L23-F AAGGATGCCGTGAAGAAGATGT  
   qRT-L23-R GCATCGTAGTCAGGAGTCAACC  
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.4 Sequences of primers used in stem-loop qRT PCR. 

 Gene Primer name Primer sequence           
 Universal qRT-Universal-R GTGCAGGGTCCGAGGT     
 miR390 RT-miR390 GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGGCGCT 
 qRT-miR390-F GCGGCAAGCTCAGGAGGGAT       

 5.8S rRNA RT-5.8S GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGACACC 
 qRT-5.8S-F TTCATTAGGGCACGCCTGCCTG          

 

UPL probe #21 binding site is highlighted in red. 
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3.5 Summary of Agrobacterium-mediated transformation*. 

Plasmid1 #explant %Reg %GD %Green #shoot #GH #LP-R #LP-S Bar GOI T1 

35S-FAD 893 83 20.6 66.7 28 11 9 2 9 9 2 
GlyP-FAD 1568 86.89 23.65 73.86 71 26 11 15 3 3 1 

35S-173 397 95.98 30.24 84.37 13 7 4 3 3 3 0 
GlyP-173 769 95.74 28.49 89.28 30 21 0 21 0 0 0 

 

* This part of work was completed by Sha Lu, Liwen Zhou, Sandra Valdes and Muruganantham Mookkan. 

1 35S-173 and GlyP-173 are control vectors with miR173 expression cassette under the control of 35S and Glycinin promoter, 

respectively. 35S-FAD and GlyP-FAD are atasiRNA vectors containing both miR173 expression cassette and modified TAS1a 

sequence targeting GmFAD3.  
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Table 3.6 Fatty acid analysis of T2 hemizygous seeds from atasiRNAi lines. 

  Fatty acid content (%)  

Plasmid Line name 16:00 18:00 18:01 18:02 18:03  

 Maverick1 11.8±0.53 3.5±0.2 20.9±3.3 55.3±2.8ab4 8.6±0.7bc  

35S-FAD L11-4-62 11.5±0.4 3.9±0.3 16.7±2.1 60.2±1.4c 7.7±0.7a  

 L11-4-8 11.4±0.4 3.7±0.3 16.9±1.9 60.2±1.4c 7.9±0.5ab  

 L11-4-11 11.7±0.3 3.6±0.3 16.6±1.0 60.0±1.2c 8.1±0.9ab  

 L11-18-1 11.2±0.3 3.5±0.2 17.1±1.3 60.5±1.1c 7.8±0.5ab  

 L11-18-2 11.1±0.5 3.3±0.3 18.2±5.8 59.4±4.8c 8.1±0.8ab  
 L11-18-5 11.5±0.5 3.7±0.3 17.1±1.7 59.5±0.7c 8.2±0.9ab  
GlyP-FAD ZHOU-LS-1-5-1 12±0.4 3.3±0.2 20.4±3.0 54.8±2.3a 9.5±0.7d  

 ZHOU-LS-1-5-2 11.7±0.3 3.3±0.2 19.1±2.4 55.5±2.2ab 10.4±1.2e  

  ZHOU-LS-1-5-3 12±0.4 3.6±0.3 18.2±1.7 57.2±1.9b 9.0±0.8cd  

 

1 Maverick is the WT control line with normal fatty acid content. 

2 Three individual plants were sampled for each RNAi line. 

3 Mean fatty acid content is based on 10 T2 seed samples for each plant.  

4 Means within the same column followed by the same letter were not significantly 

different from each other at a = 0.05 level as detected by Duncan’s Multiple Range Test. 
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