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Abstract 
The growing need for energy to be stored in decreasing volumes has resulted in 

extensive amounts of research into materials chemistry, new fabrication techniques, and 

the utilization of nano-materials. In this investigation, we have extensively characterized 

two nanocomposite materials for potential use within energy storage devices. The first 

nanocomposite is a silicon oxycarbonitride (SiOCN) film grown by plasma enhanced 

chemical vapor deposition which demonstrates low leakage current, high breakdown 

strength (>7 MV cm-1), low roughness (<0.7 nm), low stress, and superb chemical 

inertness, making it an ideal candidate for use as a dielectric in thin film capacitors. 

Utilizing this SiOCN material, a technique has been developed to fabricate one-, two-, 

and three-layer thin film capacitors by highly selective etching techniques. The technique 

demonstrates the ability to fabricate devices with different numbers of active capacitive 

layers with the same number of steps.  

The second nanocomposite is a sputtered nanoparticle-in-ionic liquid colloid. 

Careful investigations into the deposited nanoparticle growth mechanism and resulting 

electrochemical properties suggest anions with more localized charges provide increased 

stability and produce single crystal particles and provide increased electrochemical 

performance (e.g. up to a 53% increase in potential window, 4.2x increase in ionic 

conductivity, 2.9x increase in double-layer capacitance), while less localized charges 

promote coalescence and do not provide enhanced electrochemical behavior. These 

properties suggest prospective use as electrolytes for increase energy and power density 

within electrochemical double layer capacitors, as well as improved performance in ionic 

liquid based solar cells and sensors.  
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Chapter 1 – Introduction 
 

 Energy storage devices are necessary to meet the ever increasing energy 

demands of the world. Electronic devices are getting smaller all the time, and energy 

storage devices need to follow suit. Although there are many types of energy storage 

devices that are receiving extensive attention, this work will focus on capacitors – both 

dielectric capacitors and electrochemical double layer capacitors – and the incorporation 

and application of nanotechnology towards current and future advancements. 

 As opposed to other forms of energy storage – such as fuel cells, and batteries 

– capacitors exhibit superior power density. Power density is defined as the rate at which 

energy can be put into or released from the device per unit volume. In other words, for 

the same amount of energy density (the amount of energy stored per unit volume), 

capacitors can charge and discharge at a much faster rate than batteries. Although this 

characteristic is desired for some applications in which fast discharge is needed, such as 

pulsed power applications, it is easy to see that it is highly desired for the fast charging 

rate. For example, current battery-operated devices might take hours to charge, while if 

the battery was replaced with capacitor technology it may charge in minutes or less.  

However, the drawback of capacitors is the significantly inferior energy density. This 

means for the same size, capacitors are not able to provide the necessary energy to power 

the aforementioned device.  

 Extensive amounts of research is being performed striving towards the best of 

both worlds – high power and high energy – and nanotechnology is a common path for 

the attempts to reach this goal. Before discussing some of the ways nanotechnology has 
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impacted capacitor devices, a short description of the basics of capacitors will be 

provided. 

  

1.1 Capacitor Basics 
In simplistic terms, capacitors are devices which utilize the separation of charge 

to store energy (U). Usually, this is demonstrated in terms of a simple set of two parallel 

conductive plates, or electrodes, as shown in Figure 1-1(a). When a potential is applied 

across the two electrodes, opposite charges accumulate on the electrodes. If the supply 

were to be removed, those charges would remain separated. Then, if a load shorts the two 

plates, the charges will flow (current) through the load and recombine, providing energy 

to the load. The capacitance (C) of the device is related its ability to hold charge, and is 

equated to the ratio of the charge on the device (Q) to the potential (V) across the device 

(C=Q/V), and is given in units of Farads (F).  

  

Figure 1-1(a) Illustration of a parallel plate capacitor, and (b) demonstration of how the 
dipoles within a material placed between two charged plates polarize with the electric 
field. 
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If an insulating material were to be placed in between the electrodes, the initially 

randomly oriented internal dipoles within that material will align with the electric field 

developed between the two electrodes, as demonstrated in Figure 1-1(b). Using the same 

amount of charge and keeping the distance between the electrodes constant, the internal 

electric field across the individual dipoles decreases the electric field observed between 

the plates. In other words, for the same potential applied across the electrodes, more 

dipole alignment allows more charge accumulation on the electrodes, resulting in higher 

capacitance. How easily an electric field can transmit through a material is related to the 

material’s permittivity (ε), given in units of F cm-1. The permittivity of free space (εo) is 

equal to 8.854×10-14 F cm-1
. The relative permittivity (εr), also called the dielectric 

constant (κ), of a material is a material-dependent factor, and is related to permittivity by 

ε = εoεr.  The dielectric constant of a material can be a factor of dipole or orientational 

polarization, ionic or molecular polarization, or electronic polarization.1 

The capacitance of the parallel plate example provided is equal to: 

o r A
C

t

 
  (1-1) 

where A is the area of the plates, and t is the thickness of the material between the 

electrodes. In addition, the energy (U) and energy density (u) stored in the dielectric of 

the capacitor is equal to  
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21
2

U CV  (1-2) 

21
2 o ru E   (1-3) 

where V is the applied voltage, and E is the electric field observed across the dielectric (E 

= V/t). As can be seen in the previous equations, to increase the energy density of the 

device, the dielectric constant of the material in between the electrodes must increase, the 

applied potential must increase, or the distance between the electrodes must decrease.  

 Although the equations make increasing the energy density appear easy, inherent 

material properties significantly limit these possibilities. First of all, dielectric materials 

can only withstand a set amount of electric field before it reaches failure, known as 

electrical breakdown strength (EBD), resulting in a short between the two electrodes. In 

other words, you can only decrease the dielectric thickness or increase the applied 

potential to the determined material-dependent amount before the device fails. To 

complicate things ever more, the breakdown strength is inversely proportional to the 

dielectric constant of a material, with a relationship proportional to approximately (κ)-0.5.2 

Table 1-1 displays some examples of the dielectric constant and theoretical breakdown 

strength of various materials, as reported by McPherson et al. 2 

Table 1-1. Dielectric constant and theoretical breakdown strengths for various materials 
with a tetragonal crystal structure, as reported in ref 2. 

Material κ EBD 
(MV cm-1) 

SiO2 3.9 15.0 
Al2O3 9 11.2 
HfO2 25 3.9 
TiO2 95 2.5 

 



5 
 

1.2 Nanocomposites within Capacitors 
 Nanocomposites, which by definition are materials or combinations of 

materials in which at least one of the constituent’s dimensions is on the nanometer scale 

(<100 nm), are being increasingly explored as materials to meet the energy storage needs 

of future capacitors and electrochemical double-layer capacitors (EDLCs). Some 

examples of current investigations utilizing nanocomposite materials within dielectric 

capacitors and EDLCs will be provided below.  

  

1.2.1 Dielectric Capacitors 

Dielectric capacitors, like the parallel plate example described earlier, are energy 

storage devices that are used in applications ranging from pulsed power to signal filters. 

Regardless of the application, there is great need to reduce the size (increase energy 

density), whether it is for more easily deployable weapon systems or to decrease the size 

and weight of circuit boards in electronic devices. Although dielectric capacitors are 

utilized in such a variety of applications, this work will focus on increasing the energy 

density of capacitors used in integrated circuits or on circuit boards. 

Current surface-mount capacitors used on circuit boards are fabricated through 

ceramic processes. In short, a ceramic slurry made of dielectric particles is made into 

sheets, which are screen printed with electrodes from a metal slurry and stacked 

numerous times.  The stacked material is then pressed and diced into individual 

capacitors, followed by firing and a process to connect the electrodes.3, 4 Significant 

improvements have been made to the fabrication process to achieve capacitors that are 

now 1 million times smaller than the same capacitance values achieved in 1961, an 
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achievement reached by investigating different materials and developing methods to 

decrease the thickness of the ceramic slabs.  

One signficant contribution to the decrease in size is a result of decreased particle 

size used within the slurries.  Using smaller particles, such as those on the nanometer 

scale, improves the capacitors in a number of ways. Smaller particles result in smoother 

ceramic slabs, which levels the electric field observed across the dielectric area. In 

contrast, rough layers cause increased electric fields at the peaks of the rough surface, 

inducing increased leakage current and decreased voltage capabilities.3  In addition, 

smaller particles reduce the void fraction observed in the dielectric and metal layers. 

These defects within the layers cause increases in leakage current, decrease the 

breakdown strength of the device, and result in decreased reliability.3  

To obtain next generation devices with even greater reliability and smaller size, 

new fabrication methods should be investigated. Thin film deposition techniques, such as 

physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods, have 

the ability to deposit very smooth, dense films. Another advantage of using thin film 

fabrication techniques is the ability to form the multilayer capacitors on three 

dimensional substrates. These capacitors, sometimes called trench capacitors,5 are 

gaining increasing interest for use within integrated circuits since these capacitors 

efficiently utilize the underlying substrate to achieve larger capacitances without 

increasing the total footprint size.6-9 These qualities make thin film deposition techniques 

a very appealing alternative to current methods. However, typical thin film capacitor 

fabrication techniques are disadvantageous and costly because they require a large 

number of fabrication steps. To overcome this issue, a process which fabricated 
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multilayer thin film capacitors utilizing the same number of fabrication steps despite the 

number of layers, and which can be transferred to processes for the formation of 

capacitors on three-dimensional substrates was developed and elaborated on in Chapter 3.  

Although the use of nanomaterials to achieve enhancments in relative permitivity 

are not a topic of this work, it is worth mentioning a couple methods for the sake of 

elaboration. Nanotechnology has received a lot of interest in the pursuit of increasing the 

dielectric constant of materials as a consequence of the interesting and superior properties 

some nanoparticles exhibit compared to their bulk counterparts. For instance, thin film 

barium titanate has a dielectric constant less than 500, while fabricated <100 nm particles 

can achieve dielectric constants greater than 10,000.5 Similar ultra-high dielectric 

constant nanoparticle fillers have been incorporated into high dielectric strength polymers 

in an attempt to achieve films with increased energy density. This process has achieved 

increasing success, achieving energy densities 42.9% higher than the base polymers.6 

This approach appears to be promising for polymer-based dielectrics, which are 

appealing for low temperature-based fabrication methods. 

In addition, conducting nanoparticles have been incorporated into various media 

resulting in increased dielectric constant.7-13 Depending on the concentration of the 

nanoparticles, the enhanced dielectric constant is a result of different factors. At high 

concentrations just below percolation (the concentration at which the particles will form a 

conducting path between the electrodes), the particles cluster and propagate from the 

electrodes, effectively acting as extensions of the electrode.7-9 This near-percolation 

effect results in large concentrations of parallel particle clusters, and consequently can be 

viewed as a parallel capacitor network with minimal thickness, causing a significant 



8 
 

increase in the observed capacitance of the device. However, even at lower relative 

concentrations, higher dielectric constants have been observed by the incorporation of 

some conducting materials (e.g. Al,10, 11 and Ag12, 13) within a dielectric. The increase in 

permittivity is a result of the incorporated nanoparticles forming additional dipoles within 

the dielectric, in which the inherent or induced charge of the particle and charge carriers 

outside of the particle polarize under the influence of an electric field.10, 11 Unlike the 

near-percolation method, the latter technique has been shown to provide increased 

dielectric constant without significantly altering the electrical characteristics of the bulk 

material,12 increasing the appeal of this method.  

 

1.2.2 Electrochemical Double Layer Capacitors 

 

The other energy storage device discussed herein is an electrochemical double-

layer capacitor (EDLC), sometimes referred to as a ‘supercapacitor.’ EDLCs utilize 

electrolytes, either solid or liquid, instead of a dielectric between the electrodes. When 

the electrode is charged, counter ions from the electrolyte collect near the electrode 

surface to compensate the charge, yet remain separated as displayed in Figure 1-2(a). 

This separation of charge results in capacitance in the same way it does for the parallel 

plate capacitor. In addition, EDLCs can also take advantage of reversible faradaic 

reduction-oxidation (redox) reactions to store charge and contribute to the total 

capacitance of the device. The contribution from these redox reactions is known as 

pseudocapacitance.  
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Recall equation 1-1, which showed the relationship between the capacitance and 

area. The primary advantage of EDLCs is that any electrode surface exposed to 

electrolyte can potentially contribute to the capacitance of the device. Therefore, it is easy 

to see that use of porous electrodes or electrodes made up of nanoscale features 

significantly increase the electrode surface area. An example of such electrodes is 

displayed in Figure 1-2(b), which shows conductive single-walled carbon nanotubes 

(SWCNTs) deposited by electrophoretic deposition. Therefore, EDLCs typically utilize 

electrodes with very high surface area to produce incredible increases in capacitance. For 

this reason, traditional EDLCs have much larger energy densities than dielectric 

capacitors. In comparison to battery technologies, however, the energy density remains 

inferior, resulting in a significant amount of ongoing research to further increase the 

energy storage capability of EDLCs. 
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Figure 1-2. (a) A simplified illustration demonstrating the charge separation and storage 
within an EDLC, and (b) photograph of SWCNT electrode deposited by electrophoretic 
deposition for an EDLC with and an example of an SEM image of the SWCNTs.  

 

As just discussed, nanotechnology has an inherently significant role in EDLCs. It 

is worth noting that it has recently been shown that optimization of the electrode pore 

size is necessary to obtain maximum energy density.14, 15 These reports indicate that the 

pore size should be approximately the same dimension as the ion size for the maximum 

capacitance. In addition, MnO2,
17 Fe2O3,16 and RuO2 17 are popular electrode 

nanomaterials within EDLCs for enhancement in the energy density due to 

psuedocapacitance. These materials have been investigated as independent high surface 

area nanostructured electrodes as well as nanoscale decorations on high surface area 

conducting electrodes. 17, 18 
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Despite the significant interest in nanomaterials for electrodes, there are far less 

investigations into utilizing nanoparticles within the EDLC electrolyte. One of the more 

popular investigations is utilizing silica nanoparticles within lithium ion–ionic liquid 

electrolytes for lithium battery–EDLC hybrid devices or within lithium ion batteries 

using the ionic liquid as a solvent.17-21 One primary issue with EDLCs is that many 

liquid-based electrolytes are volatile, flammable, and have low potential windows. As 

will be elaborated on in Chapter 4 and 5, ionic liquids are excellent electrolyte materials 

because they do not have these issues, providing potential improvements in longevity and 

energy density of the devices. The anions from the lithium salt and ionic liquid in these 

hybrid electrolyte systems have been found to agglomerate with the Li+ ion, and therefore 

prevent the Li+ ion from interacting with the electrode. However, the incorporation of 

silica nanoparticles, which have an inherent hydroxyl-terminated surface, forms hydrogen 

bonds with anions, subsequently freeing Li+ ions.17, 18 Metal nanoparticles within ionic 

liquid electrolytes, such as those investigated in this work, have received even less 

attention. One exemplary example investigated freely suspended AuNPs in IL which 

demonstrated quantized charging behavior.22  

Upon initial investigation of the electrochemical properties of the IL electrolyte 1-

ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with sputter deposited 

metal nanoparticles, it was observed that there was increased  electrochemical window 

and double-layer capacitance when compared to the IL without the nanoparticles. The 

rather perplexing enhancements is what instigated the investigation of the metal 

nanoparticle growth (Chapter 4) as well as a more detailed investigation towards the 

electrochemical properties (Chapter 5) of metal nanoparticles in a variety of ionic liquids. 
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The motivation of these investigations was to develop a theory for the cause of the 

enhancements, so that a future direction could be provided towards even more 

enhancement and prolonged permanence.  

Regardless of the nanocomposite material, it is important to understand the 

fundamental characteristics and even the growth mechanisms to investigate the potential 

use within energy storage devices and provide possible future improvement. On this end, 

this dissertation will cover the characterization and applications of two nanocomposite 

materials towards energy storage devices. A detailed description of the work provided 

herein is described in the following section 

. 

  



13 
 

1.3 Scope of the Dissertation 
 

This dissertation is divided into five chapters discussing different investigated 

nanocomposite materials and their inherent characteristics, as well as their applications 

toward energy storage devices. Chapter 2 reviews a nanocomposite silicon 

oxycarbonitride (SiOCN) thin film grown by plasma-enhanced chemical vapor deposition 

(PECVD). Understanding the film compositional, electrical, and mechanical properties is 

important in determining the applicability of the material towards use within thin film 

capacitors. 

 Chapter 3 describes the development and results of a process to fabricate thin 

film multilayer capacitors. Novel thin film capacitor fabrication techniques are needed in 

order to further miniaturize current electronics by integrating passive components within 

the circuit board itself. A great challenge to this is finding an appropriate method which 

provides a time and cost effective process. The fabrication steps and the device 

characterization will be discussed utilizing the SiOCN dielectric and the highly selective 

etching capabilities of two metals.  

Chapter 4 focuses on the growth mechanisms of sputter deposited metal 

nanoparticles in ionic liquids. This process poses as a potentially cleaner method of 

fabricating nanoparticles in that it does not require reducing or structure forming agents, 

or results in byproducts formed by conventional wet chemistry means. In addition to 

supplying a theory for the growth mechanisms of metal nanoparticles within the liquid, 

suggestions are provided for other researchers utilizing this method for more controlled 
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experiments to investigate the growth. The theory developed in this chapter precedes the 

theory discussed in Chapter 5. 

Chapter 5 provides electrochemical analysis of the nanoparticle-in-ionic liquid 

composites from Chapter 4 utilizing cyclic voltammetry and electrochemical impedance 

spectroscopy as a function of time after deposition. Based on the evidence provided, a 

theory is developed to describe the observed changes in the electrochemical properties of 

the electrolyte, providing potential avenues towards the further enhancement and 

increased longevity of the characteristics. 

To wrap up, Chapter 6 will provide an overview of the major conclusions derived 

from the work and provide direction for potential future work.  
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Chapter 2 – Characterization of SiOCN Grown by PECVD towards 

use in Thin Film Capacitors 
 

2.1 Introduction 

A good candidate for thin film capacitors must meet a number of requirements. 

First, the material should have low leakage current and high breakdown strength, to 

reduce loss and offer enhanced energy density. Second, the film should preferably have a 

low residual stress so that the film can be deposited to large thicknesses, providing high 

voltage capability. Third, the material should be very smooth and dense, as elaborated on 

in Chapter 1. Finally, the material should have adequate chemical inertness, so that it is 

impervious to the various etchants required in the thin film capacitor microelectronic 

fabrication steps. 

Plasma-enhanced chemical vapor deposition (PECVD) is a highly desirable 

technique to deposit a material to meet these needs due to the ability to deposit quality 

films at moderate-to-low temperatures, while offering relatively easy tunability of the 

resulting film by changing the deposition parameters. Many of the characteristics and 

growth mechanisms of PECVD deposited silicon-based films (e.g. SiO2, SiC, Si3N4, 

SiCN) have been extensively studied and have found use as dielectrics,1-3 within 

waveguides and other optical devices,4 as barrier layers,5 as well as many other 

applications.6 However, excepting a small number of investigations using PECVD grown 

SiOCN within electronics or studying the hardness and growth 6-9, there are still very few 

studies on this material and its properties, rendering its future applicability undetermined.  
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One of the recurring issues with films deposited by PECVD is the incorporation 

of hydrogen, particularly at low deposition temperatures (e.g. in the form of Si–H, Si–

OH, Si–CH3, etc.). Hydrogen is typically known to be detrimental towards a number of 

electrical, optical, and mechanical properties due to the disruption of the molecular order 

within the films (i.e. the introduction of pores, defect states, and CHx polymeric-like 

components).  For example, hydrogen incorporation is known to decrease dielectric 

constant, breakdown strength, hardness, refractive index, and increase leakage current, to 

name a few. 10-12 

A post-deposition anneal at increased temperatures is a common method to 

decrease the hydrogen concentration within a PECVD grown film. However, to maintain 

the versatility of the coating and the possible substrates which can be used, this method is 

undesirable. Therefore, a more attractive method is the use of hydrogen as a dilution gas 

during the deposition. Hydrogen dilution has been observed to have high reactivity with 

hydrogen-containing  groups and other weak bonds, effectively acting as an etching 

mechanism in competition with the deposition of the film.13, 14 Examples of hydrogen 

dilution can be seen extensively in PECVD grown Si,14, 15 SiC,13, 16-18 SiN,19, 20 as well as 

other Si alloys.21 In conjunction with the optimization of other deposition parameters, 

hydrogen dilution has been observed to decrease the total hydrogen concentration in 

PECVD grown films, and/or promote higher molecular order with decreased 

concentrations of defects and voids, and increased atomic density.19 In addition, hydrogen 

dilution has also shown evidence of increasing the concentration of reactive species 

within the plasma, facilitating the formation of bonds not readily formed otherwise.22  
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 This work investigates the temperature-dependent growth and potentially 

applicable characteristics of the extremely versatile silicon oxycarbonitride (SiOCN) thin 

films towards thin film capacitors. The purpose of developing these SiOCN film was to 

utilize the same process which could be used for a wide variety of applications, such as a 

high voltage insulator, or as a material which could be used as a mask or structure within 

microelectronic fabricated devices. These films were grown by PECVD using two sets of 

precursors at growth temperatures ranging from 100 °C to 400 °C using hydrogen 

dilution. The films were investigated using electron dispersive spectroscopy (EDS), 

Fourier Transform Infrared (FTIR) spectroscopy, electrical measurements, atomic force 

microscopy, and stress measurements. Further characterization and applications of the 

material can be found in Appendix A. 

 

2.2 Materials and Methods 

 

Deposition 

SiOCN was deposited at temperatures of 100 °C, 250 °C, and 400 °C using an 

Applied Materials Precision 5000 PECVD tool at a chamber pressure of 7 Torr and RF 

(13.56 MHz) power of 400 W. Two types of SiOCN were investigated using silane and 

tetramethylsilane (TMS) precursors, from now on referred to as silane- and TMS-based 

SiOCN, respectively. The precursors and corresponding gas flow rates for each type are 

displayed in Table 2-1. These parameters were chosen so that the resulting film had low 

hydrogen concentration for optimized characteristics, including high hardness and 

electrical breakdown strength. The details of the gas optimization will not be discussed in 
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this work but can be found in ref 23. The majority of the characterization was performed 

on the two types of SiOCN deposited to thicknesses ranging from approximately 50 nm 

to 1200 nm on silicon (Si) substrates. Prior to SiOCN deposition, Si substrates were 

cleaned using a modified Shiraki method.24, 25 Additionally, the substrates were plasma-

cleaned once inside the PECVD system using a 200 W RF Ar plasma (1000 sccm) for 

20 sec with the throttle valve fully open.  

 

Table 2-1. SiOCN deposition gas flow rates during deposition for silane- and TMS-based 
coatings. 

 Flow Rate (sccm) 
 Silane TMS 

SiH4 15 --- 
Si(CH3)4 --- 30 

CH4 300 --- 
N2O 150 150 
H2 1800 1800 

 

 

Composition Analysis 

The bonding configurations of the films were investigated with Fourier transform 

infrared spectroscopy (FTIR) using a Nicolet 4700 FTIR spectrometer. The FTIR 

absorption spectra of the films were recorded from 400–4000 cm-1 with a resolution of 4 

cm-1 using a freshly cleaned Si substrate as the background for each spectra. 

Additionally, a FEI Quanta 600 FEG Extended Vacuum Scanning Electron Microscope 

equipped with an Energy Dispersive Spectrometer (EDS) was used to quantitatively 

analyze the atomic concentrations of the films. The atomic concentrations of five 
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randomly selected locations on the ~1000–1200 nm thick films were analyzed under an 

acceleration voltage of 10 kV, which was the minimum voltage required to obtain 

consistent results and should sample the bulk of the film with minimal influence of the Si 

substrate. 

Electrical Characterization 

Electrical characterization was performed on SiOCN deposited on heavily doped 

n(100) Si substrates (0.001 – 0.002 Ωcm) which were used as the bottom electrode of the 

devices. The top electrode, tantalum, was deposited to 100 nm through a shadow mask by 

sputter deposition at a chamber pressure of 4 mTorr, 200 W DC power, and Ar flow rate 

of 20 sccm. Device areas of 0.196 mm2 were used to study dielectric constant, leakage 

current (resistivity), and breakdown strength of the films. An Agilent 4284A LCR Meter 

was used to study the dielectric constant of the ~480–600 nm thick films using 

capacitance–voltage (C–V) measurements taken at 1 kHz. The electrical resistivities of 

the films were measured in a Signatone probe station enclosure with N2 atmosphere using 

a Keithley 4200 SCS. The resistivities were calculated from the slopes of the leakage 

current at low applied potentials (<0.1 MV cm-1) using voltage steps of ~1 kV cm-1 with a 

delay of 12 seconds between subsequent measurements. Finally, the dielectric breakdown 

strength of the SiOCN films were tested using current–voltage (I–V) measurements using 

a Keithley 6487 Picoammeter and a Keithley 248 High Voltage Power Supply with a 

2.4 MΩ series resistor to protect the equipment at the time of failure. The voltage was 

applied to the Si substrate and was increased from 0 with a voltage step of 2 V until 

breakdown was reached, holding the voltage for approximately 2 s before each step due 

to the time delay from system communications.  
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Mechanical Characterization 

Stress measurements were performed using a Tencor FLX 3000 laser deflection 

radius of curvature tool at room temperature, therefore the stress measured  is a sum of 

the extrinsic and intrinsic stresses.  The radius of curvature of Si was measured before 

and after SiOCN deposition on a four inch Si substrate in four different positions.  The 

film stress (σf) was calculated using Stoney’s method:26  
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Where Es is the Young’s modulus for the Si wafer (130 GPa),27 ts is the substrate 

thickness (525 μm), tf is the film thickness, νs is Poisson’s ratio for the Si wafer (0.28),28 

and R1 and R2 are the measured radii of curvature before and after deposition, 

respectively.  

  

2.3 Results and Discussion 
 

EDS 

The semi-quantitative atomic concentrations were calculated from the EDS data 

and plotted in Figure 2-1. Both types of SiOCN have comparable silicon (Si) 

concentrations (TMS 26.7–29.3 at.%, silane 26.6–27.8 at.%), which remain relatively 

unchanged with increasing deposition temperature. However, the incorporated 

concentrations of oxygen (O), carbon (C), and nitrogen (N) are dependent on the 
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deposition temperature, where O is the most prevalent element in both types of films for 

all deposition temperatures. This is a consequence of the thermodynamically favored 

bonding of O to Si as compared to C or N.29, 30 Silane-based SiOCN has higher 

concentrations of O at all deposition temperatures which is probably due to the lower 

dissociation energy of the Si–H bonds in silane compared to the Si–C bonds in TMS, 

resulting in more available Si bonds for the favorable Si–O to form.29 The stronger Si–C 

bonds in TMS also help to incorporate more C in the films for all deposition temperatures 

compared to the CH4 precursor in the silane-based material. These factors also keep the N 

concentration low in both types at low deposition temperatures. However, with increasing 

deposition temperature more energy is supplied to the system so that less favorable 

bonds, such as Si–C and Si–N, can occur, which causes decreasing O concentrations for 

both types, increasing N concentrations for both types, and increasing C concentrations 

for the silane-based films. The C concentration in TMS-based films slightly decreases 

from about 28.6 at.% to 26.3 at.% as the deposition temperature increases, due in part to 

the replacement with N which increases from 1.6 at.% to 8.0 at.%. As shown in the 

results, the N concentration in TMS-based films is also higher than the concentration in 

silane-based films at 250 °C and 400 °C, likely due to the ~23% more N flowing into the 

chamber during deposition. 
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Figure 2-1. EDS calculated atomic concentrations for a) Si, b) O, c) C, and d) N. Error 
bars represent the standard deviation. 

 

Compositional Analysis 

Figure 2-2(a) and Figure 2-2(b) show the FTIR spectra of the investigated silane- 

and TMS-based films, respectively. Baselines of the absorption spectra were corrected to 

provide better comparisons, and was performed by separating the spectra into four 

sections (400 – 1900 cm-1, 1500 – 2100 cm-1, 2100 – 2500 cm-1, and 2500 – 4000 cm-1), 

subtracting a cubic baseline from each section using PeakFit v4.12 software, and then 

splicing the baseline-subtracted data together. As shown in the figure, the absorption 



26 
 

coefficient results reveal similar compositions for both types of SiOCN. The primary 

absorption peaks are displayed in the figure and include the following: overlapping Si–C 

stretching and Si–O bending modes at 800–810 cm-1,4, 31 Si–H bending mode from H–Si–

O3 at ~885 cm-1,1, 6, 32 Si–O–Si symmetric stretching mode between 1020–1060 cm-1,1, 31 

Si–CH3
 bending mode located near ~1275 cm-1,1, 31, 33 a peak consisting of closely 

overlapping Si–H stretching from H–Si–O3 31, 32, 34 and Si–C≡N 35-37 at around 2250 cm-1, 

C–Hx stretching modes between 2830–2970 cm -1,33 N–H stretching at ~3400 cm-1,32, 38 

and –OH stretching modes between 3600–3700 cm-1.32, 33, 39 A list of the prominent 

absorption modes can also be found in Table 2-2.  
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Figure 2-2. FTIR spectra of SiOCN films growth with (a) silane and (b) TMS precursors 
at various deposition temperatures.  

 

The corrected spectra were separated in Figure 3 into sections of 600–1500 cm-1 

(Figure 2-3(a) and Figure 2-3(b)) and 2050–4000 cm-1 (Figure 2-3(c) and Figure 2-3(d)) 
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for better resolution and more detailed analysis of the less pronounced peaks. An 

important observation from the spectra in Figure Figure 2-3(a) and Figure 2-3(b) is the 

growth of the Si–C stretching mode at ~800 cm-1 with increasing deposition 

temperatures, indicating increasing SiC concentration for both silane- and TMS-based 

films. As mentioned in the previous section, O bonding with Si is more 

thermodynamically favored over C or N. Therefore, O readily replaces C after the 

dissociation of the Si–C bonds in the TMS precursor—subsequently, the removed C must 

form other bonds for the C concentration to be minimally influenced by deposition 

temperature—resulting in Si–O, and thus a strong Si–O absorption peak is observed. 

However, as the temperature increases, additional energy is supplied to the reactions, 

promoting Si–C and Si–N bonds. As speculated from the EDS analysis, the higher C 

content of TMS-based films is an outcome of the Si–C bonds already present within the 

precursor, and is observed in these results as a higher concentration of SiC as compared 

to the silane-based films.  

In addition, Figure 2-3(a) and Figure 2-3(b) show the magnitude of the Si–O 

symmetrical stretching peak in the TMS-based films are lower than the silane-based 

films, as supported by the lower O concentrations obtained by EDS. Furthermore, the Si–

O stretching peak shifts from 1057 cm-1 to 1034 cm-1 for silane and 1038 cm-1 to 

1026 cm-1 for TMS films with increasing deposition temperature.  The full width at half 

maxima (FWHM) for these regions increases with increasing temperature, as well, 

caused primarily by the widening of the peak towards lower wavenumbers. The cause of 

the shift and increasing breadth is most likely caused by the increasing Si–N 

concentration,4, 31, 40 whose stretching peak also resides between 900 and 
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1000 cm-1,33, 36, 41, 42 but could also be caused by that of decreasing Si–O–Si angles caused 

by increased density.43 The increase in Si–N stretching absorption is a plausible 

explanation, then, for the appearance of the growing Si–O symmetrical stretching peak 

for the TMS films, despite the O concentration decreasing with increasing deposition 

temperature as indicated by the EDS results. In addition, the shoulder located around 

1100–1200 cm-1 is representative of the Si–O–Si asymmetrical stretching, as well as 

possibly overlapping C–O–C or Si–O–C asymmetric stretching bands.31 Finally, Figure 

2-3(a) and Figure 2-3(b) also display that higher deposition temperatures promote the 

dissociation of hydrogen bonds, as is observed in the H–Si–O3 and Si–CH3 bending 

modes, which tend to decrease with increasing deposition temperature for both types of 

films.  

Figure 2-3(c) and Figure 2-3(d) show peaks consisting of a convolution of C–Hx 

stretching (2830–2970 cm -1),5, 31, 44 N–H stretching (3400 cm-1),32, 33, 38 N–H2 

asymmetrical stretching (3500 cm-1),32, 33 and Si–OH (3650 cm-1)32, 33, 39 stretching modes 

indicating hydrogen is present in a variety of moieties within the films, albeit at relatively 

low concentrations.  The Si–OH peak rises sharply at ~3650 cm-1 and has a rather long 

tail towards lower wavenumbers, which is typically observed from isolated Si–OH, 

where the tail originates from the various bonding strengths and distances of the 

hydrogen to surrounding atoms.39 The Si–OH peak for silane is larger than TMS films 

because of the larger concentration of O to which the hydrogen can bond. The total 

hydrogen concentration decreases with increasing deposition temperature due to the 

additional energy provided to dissociate these bonds, as indicated by the decrease in 

magnitudes. It is important to note that both film types see an even more pronounced 
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decrease in the peak at 2970 cm-1, which is the asymmetrical stretching mode for sp3 –

CH3.31, 44 The strong decrease in the –OH, –NH2, and –CH3 components is extremely 

important because these indicate low concentrations of terminating groups, which would 

prevent long-ordered molecular structures and facilitate the formation of voids. In other 

words, the results suggest lower porosity and enhanced order with increasing deposition 

temperature, which will be demonstrated by other means later. Therefore, the TMS-based 

SiOCN is expected to exhibit higher molecular order than silane-based films since they 

have lower hydrogen concentrations at the same deposition temperatures. 

While the H–Si–O3 bending and stretching peaks at 885 cm-1 and 2250 cm-1, 

respectively, decrease with increasing temperature, a strong relationship between the 

magnitudes of the peaks between all samples is not observed. We therefore attribute the 

peak observed between 2240 cm-1 and 2260 cm-1 to also be representative of Si–C≡N, as 

has been reported repeatedly in PECVD SiCN films.9, 35-37, 42 The H–SiO3/Si–C≡N peak 

is larger in magnitude within TMS-based films due to the larger concentration of N 

within the system during deposition, which may facilitate the formation of CN radicals in 

the plasma with the assistance of hydrogen dilution, as was reported by Wu et al.22 We 

should also note that the decreasing concentration of H–SiO3, as well as the replacement 

of the oxygen with C or N, would also cause a shift of the peak for silane-based films 

from 2260 cm-1 to 2240 cm-1 due to the lower electronegativity of C and N.32, 34 The peak 

for the TMS films, however, is constant at 2240 cm-1 since it consists of a larger portion 

of Si–C≡N. 
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Figure 2-3. Resolved FTIR absorption coefficient spectra ranges for (left) silane- and 
(right) TMS-based SiOCN films.  

Table 2-2. FTIR peak assignments. ν=stretching, δ=bending, ρ=rocking, a=asymmetric, 
s=symmetric 

Vibration Type Peak Position  

(cm
-1

) 

Ref 

ν Si–OH 3650 
32, 33, 39

 

νa N–H2 3500 
32, 33

 

νs N–H 3400 
32, 33, 38

 

νs,a C–Hx 2830–2970 
5, 31, 44

 

ν H–SiO3 2240–2260 
31, 32, 34

 

ν Si–C≡N 2240–2260 
35-37

 

δ Si–CH3 1275 
1, 31, 33

 

νs Si–O–Si 1026–1057 
1, 31

 

ν Si–N 900–1000 
33, 36, 41, 42

 

δ H–SiO3 885 
1, 6, 32

 

ν Si–C 
δ Si–O 

800 
4, 31
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AFM Topography 

 AFM topography images of the ~480–600 nm films are displayed in Figure 

2-4(a–f). The average roughness (ra) of the silane based films (a–c) were found to be 

higher than TMS based films (d–f) for all investigated substrate temperatures, although 

both film types are extremely smooth. The ra also tends to decrease with increasing 

deposition temperature for both film types. For example, the roughness for silane films 

decreased from 0.58 ± 0.01 nm to 0.53 ± 0.01 nm and TMS films decreased from 0.32 ± 

0.01 nm to 0.15 ± 0.01 nm as the deposition temperature increases from 100 °C to 

400 °C, respectively.  

The higher roughness observed at lower deposition temperatures is likely a result 

of kinetic limitations. Incoming reactive species require high surface mobility and long 

diffusion times, which increase with temperature, to facilitate the growth of continuous 

and structured films.45 The surface mobility and diffusion times of the incoming reactants 

has been suggested to be more enhanced by the use of hydrogen dilution, which passivate 

dangling bonds on the surface and permit time to find a stronger, more 

thermodynamically favored bond.21 In addition, as proposed by Street,14, 46 the hydrogen 

atoms on the surface and subsurface of the film need adequate mobility for efficient 

hydrogen-bond breaking and increased structural arrangement before subsurface 

reactions establish a final structure. In combination with the lower surface mobility, 

which promotes the formation of more columnar-like structures, the reduced efficiency of 

the hydrogen reactions result in a higher concentration of terminating hydrogen groups 
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(e.g. –OH and –CH3), which promote discontinuous growth and the formation of voids. 

Therefore, the roughness is higher for lower deposition temperatures. As the deposition 

temperature increases, the terminating bond concentrations decrease and surface mobility 

increases resulting in more continuous, i.e. smoother, films. Furthermore, we speculate 

that the TMS-based films are smoother than silane-based films because of the slower 

diffusion rate of the larger reactive TMS molecule. The slower diffusion for this case 

appears advantageous, as it provides more time for the hydrogen atoms from the 

hydrogen dilution to break weak bonds and promote more structure within the films. 

Therefore, from the average roughness results, we can speculate that the TMS films are 

denser than the silane films, and that the density increases with increasing temperature for 

both film types. 
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Figure 2-4. Three-dimensional 500 nm × 500 nm AFM topography images (and 2D inset) 
of films prepared with (a) silane at 100 °C [ra = 0.58 ± 0.01 nm], (b) silane at 250 °C 
[0.69 ± 0.09 nm], (c) silane at 400 °C [0.53 ± 0.01 nm], (d) TMS at 100 °C 
[0.32 ± 0.01 nm], (e) TMS at 250 °C [0.15 ± 0.01 nm], and (f) TMS at 400 °C 
[0.15 ± 0.01 nm]. The Z-axes are normalized for better visualization of the roughness 
comparison. 

 

Electrical Properties 

The SiOCN films were further characterized by electrical measurements. Table 

2-3 shows the dielectric constants of the films versus deposition temperature. The 

dielectric constants of both sample types are about 4.9 ± 0.1 at a deposition temperature 

(a)

(b)

(c) (f)

(e)

(d)
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of 100 °C. At higher deposition temperatures, the dielectric constant decreases. The 

dielectric constant of the TMS-based film remains higher than silane samples, likely due 

to the higher concentration of SiC which has a reported dielectric constant of  ~8 

compared to SiO2 with a dielectric constant of 3.9.47 The slight reduction in dielectric 

constant at higher deposition temperatures may be attributed to the reduction in Si–OH 

bonds (as indicated by the FTIR results discussed earlier) which are characteristically 

more polarizable and have been reported to be the cause of higher dielectric 

constants.48, 49 

Table 2-3. Dielectric constant (κ), total average breakdown strength (BD), and deposition 
rate (rd) versus deposition temperature (TD).  

 Silane TMS 
TD κ BD 

(MV cm-1) 
rd 

(nm s-1) 
κ BD 

(MV cm-1) 
rd 

(nm s-1) 
100 °C 4.9 ± 0.1 8.6 ± 0.5 1.79 4.9 ± 0.1 7.7 ± 0.7 1.89 
250 °C 4.1 ± 0.1 8.1 ± 0.9 1.73 4.5 ± 0.3 8.4 ± 0.8 1.65 
400 °C 4.2 ± 0.3 8.2 ± 0.6 1.66 4.8 ± 0.1 8.5 ± 0.7 1.46 
 

The electrical resistivities of the samples, shown in Figure 2-5, were taken from 

low field (<0.1 MV cm-1) I–V measurements of the ~50 nm and ~1000 nm thick samples. 

The resistivities of both types of samples are on the order of 1015 Ωcm when deposited at 

100 °C, but increase with deposition temperature to a resistivity on the order of high 1016 

to low 1017 Ωcm at both 250 °C and 400 °C. Qualitatively, the trend compares with the 

optical bandgap discussed in Appendix A, in that the gap rather significantly changes 

between the 100 °C to 250 °C deposition temperatures, and changes less between 250 °C 

and 400 °C. The similarity in the jump in characteristics from 100 °C to 250 °C suggest 

that a temperature between these is required to promote adequate hydrogen diffusion to 
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enhance hydrogen bond-breaking and increase structural arrangement, as is also observed 

in the growth of Si.14, 50  In addition, the similarity between the 50 nm and 1000 nm film 

also indicates the initial growths of the films are of comparable compactness and 

structure to thicker films. Although comparison to other film resistivities is clouded by 

the variations in measurement and film preparation techniques, the low bias resistivities 

measured in this work compare with that of thermally grown SiO2, which also has 

reported values of 1015 – 1017 Ωcm.51-53  

 

Figure 2-5. Low field (<0.1 MV cm-1) resistivity versus deposition temperature measured 
for ~50 nm and ~1000 nm thick samples. (Inset) Current density vs. electric field 
measurements for TMS ~1000 nm deposited at various deposition temperatures with best 
linear fits represented by the lines and corresponding slope values (conductivities). 

 

The leakage current at larger biases, however, is significantly impacted by the 

efficacy of hydrogen’s ability to break weak bonds, as is shown in the current density 

versus electric field (J–E) curves in Figure 2-6(a) and Figure 2-6(b) for silane and TMS-
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based films, respectively. The quasi-saturation in current density observed in lower 

deposition temperatures, resulting in the ledge-shape of the curve, is a result of charge 

trapping.54 The trapped charges develop an internal field in opposition to the external 

field, and thereby reduce carrier flow with increasing bias.55 Since the efficacy of 

hydrogen’s ability to break weak bonds is low at 100 °C, the remaining weaker bonds can 

be broken from electrical stress and form defect sites.46 As mentioned previously, the 

TMS-based films exhibit superior bond-breaking ability compared to silane-based films, 

which is why the ledge is no longer apparent at a deposition temperature of 250 °C, while 

still evident in silane films. The dielectric breakdown is observed by the vertical lines 

appearing between 8–9 MV cm-1 for these samples, and is independent of the differences 

in leakage current. 
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Figure 2-6. Examples of the typical current density versus electric field measurements for 
~100 nm thick (a) Silane- and (b) TMS-based films deposited at 100 °C, 250 °C, and 
400 °C. 

 

The average breakdown strengths for all of the silane and TMS samples versus 

deposition temperature and thickness are shown in Figure 2-7(a) and Figure 2-7(b), 
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respectively. Both films have very high breakdown strengths ranging from 

6.8 ± 0.2 MV cm-1 to 9.1 ± 0.3 MV cm-1 — both extremes from silane-based films 

deposited at 250 °C.  Generally speaking, however, there is no clear dependence on 

deposition temperature or film thickness. For this reason, the breakdown strength 

averages of all measured thicknesses are displayed in Table 2-3.The excellent breakdown 

strengths for all film thicknesses and deposition temperatures indicates all of the films 

have a high density and a low enough void concentration to not affect breakdown 

characteristics, even for films deposited at 100 °C. The versatility and excellent electrical 

properties of this material has also initiated an investigation towards improving the 

electrical properties of polymer coatings with high leakage current or low or inconsistent 

breakdown characteristics by depositing a layer of SiOCN on the coating. The results of 

this small study are also discussed in Appendix A.  

The observed breakdown strengths are far superior than other reports on SiC,56, 57  

superior to SiCN,58 SiCO,59 and SiO2,60 and comparable or superior to SiN,61-63 using 

PECVD at similar deposition temperatures. However, it should be mentioned that the 

electrical properties vary depending on the system and parameters of the deposition and 

measurement. For example, SiO2 has been deposited at < 60 °C using electron cyclotron 

resonance PECVD with observed breakdown strengths of ~10 MV cm-1.55 Nevertheless, 

these results indicate either SiOCN film would be an excellent candidate for high voltage 

applications, particularly if the application permits the use of the higher deposition 

temperatures.  
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Figure 2-7. Breakdown strength versus thickness for (a) silane and (b) TMS based 
samples 

 

 



41 
 

Stress Measurements 

 Another important mechanical characteristic which limits the versatility of 

PECVD coatings is the residual stress, which will also limit how thick a coating can be 

deposited. In addition to the breakdown strength, the thickness of the coating will 

determine whether the coating is applicable for high voltage applications. Figure 2-8 

shows the measured stress obtained for the ~1 μm thick silane and TMS samples versus 

deposition temperature. Both sample types had moderate compressive stress, with TMS 

samples demonstrating more compressive stress (-140 MPa to 270 MPa) than the silane 

(-25 MPa to -98 MPa) samples. Both sample types also have increasing compressive 

stress with increasing deposition temperature. 

 

Figure 2-8. Measured stress of the ~1000 nm thick films versus deposition temperature  
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Since detailed thermal and mechanical properties of the films are not known, it is 

not possible to accurately account for how much of the measured stress is a result of 

thermal stress. However, a reasonable range can be obtained by calculating the thermal 

stress which would be obtained from a SiO2 film and a SiC film. To estimate the possible 

range of thermal stress (σTh) developed in the films due to differences in the thermal 

expansion of the film versus the substrate, the following equation can be used: 64 

 (1 )
f

Th s f
f

E
T  


  


  (2-2) 

where Ef is the Young’s Modulus, νf is the Poisson’s ratio, and αf is the coefficient of 

thermal expansion (CTE) of the film, αs is the CTE of the substrate, and ΔT is the 

difference in deposition and measurement temperature. The Young’s Moduli were taken 

from the nanoindention study, where linear extrapolation was performed to estimate the 

Moduli of the films deposited at 250 °C. The parameters used for the silicon substrate are 

α=2.6 ×10-6 °C-1, and ν=0.28.64  

Once the thermal stress has been calculated, the value can be subtracted from the 

measured stress to obtain the residual stress of the film. To demonstrate the possible 

residual stress range the films can have, the thermal stress which would be obtained by a 

SiO2 film and a SiC film were subtracted from the measured stress. The results are 

plotted in Figure 2-9. If we assume the films have a similar CTE and Poisson’s ratio to 

SiO2 (αSiO2=2.6 ×10-6 °C-1, and νSiO2=0.28),64 for instance, silane-based films result in a 

low residual stress of about -20 MPa for all deposition temperatures and TMS-based 

films with a residual stress which decreases from about -130 MPa to -160 MPa with 

increasing deposition temperature. Assuming properties similar to SiC 
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(αSiC=2.6×10-6 °C-1, and νSiC=0.28),64 however, shift the residual stress to more 

compressive values, due to the higher CTE of SiC. It is interesting to note that silane-

based SiOCN films have been grown thicker than 30 μm without delamination or signs of 

fracture. TMS based films, on the other hand, start showing signs of failure after a few 

μm.  Therefore, we can assume that at least the silane-based films have similar thermal 

and mechanical properties to SiO2, because low stress is required to achieve such thick 

films. In addition, since the increasing compressive stress due to increasing deposition 

temperature is mostly accounted for with this assumption in properties (i.e. the stress 

values are more consistent across the deposition temperatures), the thermal stress is likely 

a major contributor for the decrease in stress from increasing temperature. 

 

Figure 2-9. Measured stress and the residual stress calculated by subtracting the 
theoretical thermal stress developed between Si and SiO2 or SiC. 
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Many studies have observed that higher hydrogen concentrations within thin films 

grown by PECVD result in films with more compressive stress.65, 66 This, however, does 

not explain the more compressive nature of the TMS-based films compared to silane-

based films, or the more compressive nature of films at higher deposition temperatures, 

because FTIR results clearly indicate lower concentrations of hydrogen-containing 

moieties. With a higher concentration of Si–C bonds, we might expect the TMS-based 

films to behave more like SiC, which has a higher CTE than Si (as compared to SiO2 with 

a lower CTE) and should consequently result in more tensile stress. Therefore, we 

speculate the additional compressive stress to be caused by other, more complicated 

effects from the differences in the internal structure. For instance, it could be an effect of  

increased density as seen from the AFM images and the lower Si–O–Si stretching 

frequency from FTIR,64 or differences in the bonding configurations within the films.67  

However, further investigation is needed to provide a more detailed explanation.  

 

Etch Resistance 

 Both types of SiOCN have proven to be extremely resistant to many wet etchants 

indicating it can be used as a masking material within MEMs fabrication processes, such 

as those required of the fabrication of thin film capacitors. For example, concentrated 

hydrofluoric acid (37% v/v) in ethanol (1:1 by volume) results in etch rates of roughly 

15 nm min-1 and 1 nm min-1 for silane and TMS based SiOCN deposited at 400 °C, 

respectively. Silane based SiOCN (400 °C) has also shown a slow etch rate of about 1.3 

nm min-1 in phosphoric acid (@ 180 °C) and no discernible etching after 30 min in strong 
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oxidizers such as Aqua Regia (3 HCl : 1 HNO3 @ 75 °C), or Cyantek CR-9 (ceric 

ammonium nitrate solution). 

 

 

2.4 Conclusions 
 

 The characterizations of two types of SiOCN films grown by PECVD have been 

presented. The results suggest the properties of the silane-based SiOCN films render it a 

better candidate for the fabrication of multilayer capacitors discussed in Chapter 3. 

Silane-based films can be grown to large thicknesses, owing to its low residual stress. 

Large thicknesses and high breakdown strengths of > 7 MV cm-1 are properties useful for 

high voltage applications. The low average surface roughness of <0.7 nm and suggested 

high density of the material is also advantageous for thin film capacitors in the prevention 

of electric field enhancements observed at propagating points or from internal voids, as 

mentioned in Chapter 1. Finally, the etch resistance against a number of different etchants 

renders it a good candidate as a masking material within devices fabricated using 

standard microelectronic techniques.  
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Chapter 3 – Thin Film Multi-layer Capacitors by Highly Selective 

Etching Techniques 
 

3.1 Introduction 
 

Passive electronic components components (resistors, inductors, and capacitors) are 

presently mounted on the surface of circuit boards and are connected through vias and 

highways of conducting paths embedded within the circuit board itself. These passive 

components can consume more than 40% of the circuit board area.1 To obtain further 

reduction in electronic device size, research is being conducted to embed these surface-

mounted passive components within the circuit board (Figure 3-1) or integrated circuit 

(IC) packaging. 

 

Figure 3-1. Demonstration of how integrating capacitors into circuit boards will result in 
decreased board size. 
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As touched on in Chapter 1, thin film deposition techniques promise to be the 

future of the miniaturization of passive component development, due to the ability to 

deposit uniform, dense, and smooth dielectric and metal layers, which are all factors 

which can significantly affect the performance and reliability of the current multilayer 

capacitor technology.2 However, many of the recently reported thin film multilayer 

capacitor fabrication methods are disadvantageous in that the electrode layers are 

connected through a series of vias.3, 4 Therefore, the fabrication process is very 

cumbersome and adds a significant number of processing steps, increasing the probability 

of device failure and the overall cost of the device, as well as  wasting valuable footprint 

area. In an attempt to overcome this issue, Imamiya et al.5 demonstrated multilayer 

capacitors fabricated by magnetron sputtering through successive shadow masks to 

outline the features of alternating platinum electrodes and the barium titanate dielectric. 

However, shadow masks require smooth surfaces, can pose as a substrate or device 

scratching hazard, and the masking capabilities are not sufficient for CVD or atomic layer 

deposition processes. 

To achieve a multilayer capacitor process which is more scalable, efficient, 

universal and can be deposited from a variety of deposition systems, a process which 

does not require a separate patterning step for each layer is needed. Such fabrication 

processes have previously been visualized and patented in which two different electrode 

materials with highly selective etchants are alternated throughout the multilayer 

capacitor. 6, 7 The concept is to make the full mulitlayer stack first, and only two or three  

patterning steps are needed to connect alternate electrode layers and create a capacitor 

with an arbitrary number of layers. However, these ideas have not been realized in the 
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market today. The key to the success of this method is finding two electrode materials 

with isotropic etching processes which are extremely selective to only that material, and 

do not attack the other electrode material of the dielectric. Additionally, the electrode 

material would ideally have a high conductivity to reduce loss due to equivalent series 

resistances.  

To this end, we have developed a process utilizing highly selective etching of two 

metals, platinum (Pt) and ruthenium (Ru), to significantly decrease the processing steps 

required in fabricating thin film multilayer capacitors. The current process was developed 

as a proof-of-concept approach in which the investigated dielectric layer (silicon 

oxycarbonitride) was deposited by plasma-enhanced chemical vapor depsoition 

(PECVD), and the metal layers were deposited using sputtering. The advantage of this 

process is that all of the layers are deposited sequentially, followed by the same top-down 

fabrication process regardless of the number of layers. This process could therefore be 

easily transferable to single systems or cluster tools to deposit all of the layers in situ, 

which would reduce the chance for defects or atmospheric contamination.  

3.2 Materials and Methods 
 

Deposition of Layers 

Silicon (Si) wafers were used as the substrate for these devices. The Si substrates 

were cleaved into large pieces, typically ~2 inches × 6 inches, and then rinsed in acetone, 

methanol, and isopropyl alcohol, sonicated in an acetone bath for 10 minutes, and placed 
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in a dilute HF bath followed by rinsing in DI water and subsequent drying under blowing 

nitrogen.  

A PECVD grown Silicon oxycarbonitride (SiOCN) was chosen as the dielectric 

for the fabrication of the devices, the deposition parameters of which are described in 

Chapter 2. In short, silane (15 sccm), methane (150 sccm), nitrous oxide (300 sccm), and 

hydrogen (1800 sccm) were introduced into an Applied Materials Precision 5000 PECVD 

deposition chamber at a pressure of 7 Torr, RF power of 400 W, and substrate 

temperature of 400 °C. As previously discussed, silane-based SiOCN was chosen because 

of the good electrical properties, low residual stress, ability to deposit very thick films, 

and observed excellent chemical resistance to all of the etchants used throughout the 

process. This material was chosen for fabrication proof-of-concept, and it should be 

mentioned that other materials will also be suitable for this process. In fact, SiO2 and 

HfO2 also show excellent etch resistance to the Ru and Pt etchants. 

The Ru and Pt electrodes were deposited using a magnetron sputter deposition 

system (AJA International, Inc.). Both metals were sputter deposited to ~30 nm using a 

2 in. target (Kurt J. Lesker) at 200 W RF power, chamber pressure of 4 mTorr, argon 

flow rate of 20 sccm, and target-to-substrate distance of 6 inches. Titanium (~5 nm) was 

deposited before and after the Pt electrode for adhesion, but for simplification of the 

process description we will refer to this Ti/Pt/Ti layer as solely a Pt layer. Chromium (Cr) 

was sputtered for use as a dry etching mask and the sidewall electrode, and was also 

sputtered using the same conditions as above except with a 3 inch target and 200 W DC 

power.  
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Electrical Characterization 

The capacitance and dissipation of the devices were measured using an Agilent 

4284A LCR Meter. The measurements were performed at room temperature with an 

oscillating voltage of 30 Vrms and bias of 0 V. Two hundred data points were collected 

between a frequency range of 200 Hz to 1 MHz. The electrical breakdown strengths of 

devices with 1 μm thick dielectric layers were tested using current-voltage (I-V) 

measurements via a Keithley 6487 Picoammeter/Voltage Source with a 2.4 MΩ series 

resistance to protect the equipment at the time of failure. The voltage on the power supply 

was increased from 0 with steps of 1 V until breakdown was reached, averaging 10 

current measurements per step, and holding the voltage for approximately 1 s before each 

step due to the time delay from system communications. Due to the higher voltage 

capabilities of devices made with 3.5 μm thick dielectric layers, these thicker devices 

were tested using the Keithley 6487 Picoammeter and a Keithley 248 High Voltage 

Power Supply. The high voltage setup also had the same 2.4 MΩ series resistance, but the 

voltage step was 10 V and system communication delay between each step was roughly 

2 s.  

3.3 Fabrication Procedure 
 

The fabrication procedure is achieved using a top-down approach after the 

deposition of all of the desired layers. Although the development of the process was 

achieved using two separate deposition systems, the process can be easily transferred to a 

system with the ability to deposit all layers in situ, which would increase the reliability of 
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the process and decrease the probability of defects. Figure 3-2 illustrates a simplified 

fabrication process flow, with a detailed description provided below.  

 

Figure 3-2. Thin film multi-layer capacitor fabrication process for a two-layer device. A 
short description of the process as is follows: (a) deposit all layers alternating Pt and Ru 
electrodes until desired number of layers is achieved and pattern devices with Cr hard 
mask, (b) dry etch to define device area, (c) remove Cr mask, expose one side of devices 
using photolithography and selectively etch Ru, (d) deposit Cr sidewall to connect all 
exposed Ru electrodes, (e) expose opposite side using photolithography and selectively 
undercut Pt, (f) deposit another Cr sidewall to connect all exposed Pt electrodes to 
complete the devices. An elaborated process description is provided in the text. 
Illustration not drawn to scale. 

The following steps were followed to deposit all of the layers to achieve the 

structure illustrated in Figure 3-2(a) prior to device fabrication: i) SiOCN was first 

deposited as an insulating layer on the Si substrate, ii) a Pt layer was deposited as the first 

electrode, iii) SiOCN was deposited again to a thickness of either 1 μm or 3.5 μm to test 

the changes in electrical properties from different dielectric thicknesses, iv) a Ru layer 

was deposited as the second electrode, v) SiOCN was deposited  again to the same 

thickness as Step iii, and vi) the process was repeated from Step ii until the desired 
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number of layers had been reached. The device finishes with a SiOCN deposition because 

this is also necessary for electrical insulation when the sidewall electrodes are deposited 

to connect alternate electrodes. We will refer to the devices tested within this work as 

one-, two-, or three-layer devices, which correspond to the number of active capacitive 

layers (e.g. a two-layer device consists of a Si substrate-

SiOCN/Pt/SiOCN/Ru/SiOCN/Pt/SiOCN stack). 

After deposition of all the layers was completed, a ~800 nm thick Cr mask was 

then sputtered and patterned on the stack into 2.5 mm x 2.5 mm squares using standard 

photolithography techniques. Cr was chosen as the mask material as it exhibited superior 

etching protection compared to photoresist or aluminum. All photolithography steps 

throughout the fabrication process were performed using Futurexx NR5-8000 negative 

photoresist, which was selected owing to its adequate etch resistance for the wet etch 

processing. The photoresist was removed using Futurexx RR-41 resist remover solution 

at a temperature of ~60 °C. 

The devices were etched out of the layers using magnetically-enhanced reactive 

ion etching using the Applied Materials Precision 5000 etching chamber, resulting in 

devices similar to that displayed in Figure 3-2(b). The etching recipes corresponding and 

etch rates are displayed in Table 3-1. The devices were etched down to at least 300 nm 

into the bottom-most insulating SiOCN layer to ensure the bottom-most electrode was 

well exposed. The SiOCN etching was cycled between the ‘Dielectric Etch’ for 5 min, 

followed by a 60 s delay, a 10 s ‘Cr Etch,’ another 60 s delay, and repeating until the 

metal layer was exposed. The ‘Cr Etch’ step was found to significantly improve the 

etching uniformity and resulting roughness, which is believed to have been caused by Cr 
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being physically sputtered onto the surrounding SiOCN surface. Oxygen-based plasmas 

were chosen for the etching of the metal layers because chlorine-based etching was 

unavailable at the time of fabrication. Even though oxygen-based plasmas are not the 

most effective way to etch Pt or Ru,8 the method is still found in literature9, 10 and proved  

effective enough for the fabrication of the studied devices. As can be seen, this step can 

be significantly modified to meet the needs of the device, e.g. utilizing different masking 

materials or anisotropic etching techniques.  

Table 3-1. List of etch recipes 

 Dielectric Etch Cr Etch Metal Etch 
Magnetic Field [Gauss] 60 60 60 
Pressure [mTorr] 50 50 10 
Power [W] 400 400 350 
Gasses  
(flow rate [sccm]) 

CHF3 (20) O2 (52) O2 (12) 
--- CF4 (3) CF4 (3) 

Etch rate [nm min-1] 90 30 15 
 

After the dry etching was completed, the devices were placed in a phosphoric acid 

bath at 160 °C for <1 min to selectively etch the Cr mask. This etchant did not have an 

observable etching rate for Pt or Ru, and a slow etching rate of ~1 nm min-1 for the 

SiOCN dielectric. The devices were subsequently dipped in a DI water bath, rinsed in 

isopropanol, and dried under blowing nitrogen. 

The fabrication method up to this point oxidizes the exposed Pt surface on the 

vertical faces of the device to PtOx, as suggested by the significant reduction in the Aqua 

Regia (3 HCl : 1 HNO3 @ 85 °C) etching efficacy of the Pt electrode as compared to Pt 

films unexposed to the fabrication processes thus far.11, 12 We speculate that the dry 

etching procedure is the culprit, since it is known that oxygen plasma oxidizes Pt,11 and 
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the efficacy of the etch was less affected for the bottom-most Pt electrode — i.e. the 

electrode exposed to the least amount of plasma reactions. The PtOx was reduced back to 

Pt by annealing the devices under vacuum (base pressure ~10-7 Torr) at 400 °C for 

30 min.13 

The next steps selectively etched one of the electrode materials away from one of 

the vertical faces of the device, subsequently depositing a sidewall electrode to connect 

the remaining exposed electrodes. The undercut etch depths were measured by optical 

microscopy, made possible since the SiOCN dielectric is transparent, as shown in Figure 

3-3. The undercut depths on lower layers were imaged after sacrificially undercutting the 

upper-most layers. The current depths were chosen somewhat arbitrarily to demonstrate 

that deep undercuts are achievable, and in attempt to reduce leakage current and increase 

the potential before arcing between the undercut electrode and sidewall electrode.  

Although no significant difference in electrical properties were measured for these rather 

preliminary devices with undercut depths ranging from ~5 μm to 10 μm, additional 

studies will need to be performed to determine the best undercut depth depending on 

factors such as dielectric, desired working potential, and type of material (if any) of 

which the undercut is filled. 
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Figure 3-3. Optical microscopy image of the device showing (a) before and (b) after a Ru 
undercut etching. 

 

Photolithography was used again to expose only one side of the device. The 

window in the photoresist had dimensions of 0.7 mm × 2.9 mm, and was placed so that it 

overlapped with the device by approximately 0.2 mm, as illustrated in Figure 3-4(a). The 

samples were subsequently placed in a Cyantek CR-9 etchant at 35 °C under slight 

agitation for 10 min to selectively etch the Ru electrode about 8–10 μm away from the 

edge of the structure. Performing the etch at room temperature for 30 min only undercuts 

the Ru about 5 μm, after which point the etch rate was significantly hindered, probably a 

result of the long diffusion lengths of the reactants and products, as well as the formation 

of bubbles.  The former process was utilized for the devices with 1μm thick dielectric 

layers, while the latter process was used during the formation of the devices with 3.5 μm 



63 
 

thick dielectric layers. This etching step had no measurable Pt or SiOCN removal, 

resulting in only the Pt electrodes remaining exposed on the face of the device, as 

observed in Figure 3-2(c). The devices were rinsed in DI water followed by a 90 s O2 

plasma (100 sccm O2, 250 mTorr, 100W RF, 60 Gauss) to clean the surface, which was 

found to improve Cr adhesion to SiOCN after the Ru etching step. The devices were 

subsequently placed within the sputter tool, where Cr was deposited as the sidewall 

electrode material to connect all exposed Pt electrodes, followed by lift-off. The devices 

were then as shown in Figure 3-2(d). Sputter deposition was chosen to deposit the 

sidewall electrode since sputtering results in more uniform coverage over sidewalls than 

evaporation techniques. The Cr sidewall electrode was deposited to thicknesses ranging 

from 300 nm to 750 nm as measured on a flat substrate. The various thicknesses were 

investigated because the Cr was originally intended to be used as a mask as well as 

electrode during the Aqua Regia etching step, since the etch rate was observed to be a 

low ~1 nm min-1. Despite this low etch rate, it was anomalously discovered that the Cr 

itself provided no significant masking capability. During the etching step, the electrical 

contact between the Pt and Cr was lost, therefore requiring the use of another photoresist 

mask for the Pt etch. No significant differences were observed in the investigated 

electrical characteristics between the different Cr sidewall thicknesses. 

Photolithography was performed one last time to expose only the opposite side of 

the device using the same method as that in the Ru selective etching step. The devices 

were left undisturbed at ambient conditions for at least one hour after developing the 

photoresist. This step was discovered to be necessary to ensure the photoresist did not 

delaminate or crack during the Aqua Regia etching step. After 30 min of etching under 
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slight agitation, the Pt layers were undercut about 5-10 μm away from the edge of the 

device. The large range in undercut depth is a result of irregular reproducibility across 

devices and etching attempts, warranting further investigation towards improvement. 

Again, this selective etching step had no measurable Ru or SiOCN removal, resulting in 

only the Ru electrodes remaining exposed on this face of the device (Figure 3-2(e)). It 

should be mentioned that the Aqua Regia reacts with the NR5-8000 photoresist, but the 

masking is adequate within the investigated etching time for proper device fabrication. 

The reacted photoresist was removed with the resist remover and the devices were re-

patterned exposing the same area, followed by another O2 plasma. To complete the 

devices (Figure 3-2(f)), a Cr sidewall was deposited to make contact between all Ru 

electrodes followed by lift-off.  

3.4 Results and Discussion 
 

A photograph of six completed devices is presented in Figure 3-4(b). Figure 

3-4(c) shows a SEM image of a one-layer completed device with 1 μm SiOCN dielectric 

layers. The image demonstrates the undercut Pt layer and confirms the contact between 

the Ru layer and Cr sidewall electrode.  
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Figure 3-4. (a) Illustration demonstrating the dimensions of the devices and Cr sidewall 
electrode pads with units in mm, (b) photograph of six completed devices, and (c) cross-
sectional SEM image of completed one-layer device with 1 μm thick dielectric layers 
showing the Pt layer undercut and connection between the Ru layer and the Cr sidewall. 

One-layer devices with 1 μm dielectric layers produced capacitance 

measurements of 277 ± 3 pF, very close to the expected value of 262 pF after considering 

stray capacitances and using the dielectric constant of 4.2 for SiOCN. As expected, the 

parallel connected two- and three-layer capacitors resulted in approximately double and 

triple the capacitance of the one-layer devices, with capacitances of 508 ± 5 pF and 

763 ± 5 pF, respectively. The devices possessed low loss, with dissipation factors 

measured at 10 kHz of 0.0010 ± 0.0005, 0.0011 ± 0.0006, and 0.0013 ± 0.0003 for the 

one-, two-, and three-layer devices, respectively. The capacitance and dissipation results 

are displayed in Figure 3-5(a) with the calculated expected capacitance. Additionally, the 

capacitance versus frequency measurements shown in Figure 3-5(b) reveal that the 

devices are relatively independent of frequency up to 1 MHz, except for some noise 

located between ~300-750 kHz. Finally, capacitors fabricated with a 3.5 μm thick 

dielectric resulted in a capacitance of 101 ± 2 pF. The capacitance is larger than what 
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would be expected based on the samples with 1 μm thick SiOCN, and is a result of higher 

sidewall-sidewall stray capacitance from a thinner first SiOCN insulating layer. 

 

Figure 3-5. (a) Averages and standard deviations of capacitances and dissipation factors 
measured at 10 kHz versus number of layers for 1 μm thick dielectric devices, and (b) 
average capacitance versus frequency for  one-, two-, and three-layer devices (standard 
deviation of <6 pF for all data points). 

The best obtained IV curves for one-, two-, and three-layer devices with 1 μm 

thick dielectric and one-layer devices with 3.5 μm thick dielectric are given in Figure 

3-6(a) and Figure 3-6(b), respectively. Although the devices exhibit very low leakage 
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currents, the IV characteristics of these developmental devices are disappointing 

considering the high breakdown strength of >7 MV cm-1 for SiOCN. The data in Figure 

3-6 were truncated after the first sudden rise in leakage current, which occurred at 

<2 MV cm-1 for all devices tested. It should be noted that this rise is not indicative of 

dielectric failure. After this point, the IV curve is extremely noisy and is a result of arcing 

from the Pt or Ru electrode to the Cr sidewall through the undercut gap and/or across the 

side of the device between the Pt and Ru electrodes. Subsequent capacitance and IV 

measurements show that the arcing burns away weak points on the device (and in many 

cases causes apparent physical damage, resulting in incremental decreases in 

capacitance), rather than causing a permanent short observed in the event of dielectric 

failure. Consequently, the removal of weak points increases the voltage at which the 

arcing is observed. The successive IV sweeps revealed that some devices could withstand 

over 250 V before the resulting damage to the devices was sufficient to cause layers to 

disconnect or short.  

In an attempt to reduce arcing, the devices were encapsulated with Parylene. 

However, the IV characteristics for the devices with 1 μm thick dielectric were 

unaffected, resulting in maximum pre-arcing potentials of 147 V, 140 V, and 73 V for 

one-, two-, and three-layer devices, respectively. The decrease in potential with 

increasing layers is likely a result of the increased probability of arc-inducing weak 

points. On the contrary, the Parylene coating did appear to improve the arcing voltage for 

the devices with 3.5 μm thick dielectric, in which one-layer devices reached up to 640 V 

on the first sweep, as demonstrated in Figure 3-6(b), as opposed to a maximum of 370 V 

without the coating. 
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Figure 3-6. Best obtained current leakage measurements for (a) one-, two-, and three-
layer devices with 1 μm thick dielectric layers, and (b) one-layer devices with 3.5 μm 
thick dielectric layers. Inset: Current density versus electric field, calculated from the area 
of the device (2.5 mm × 2.5 mm) and the corresponding dielectric thickness. 
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Although this work clearly demonstrates a relatively simple process for the 

fabrication of multilayer capacitors, the IV characteristics demonstrate that much 

improvement is needed to achieve device-readiness. Future work will consist of 

developing a process to fill the undercut gap with a dielectric material as well as electric 

field modeling to provide pathways towards improving the voltage capabilities. 

Regardless, this work demonstrates a method to fabricate thin film multilayer capacitors, 

which can potentially be deposited from wide variety of methods, including cluster tools, 

sputter deposition, and atomic layer deposition (ALD). The transferability to ALD is 

particularly desirable, as it permits the ability to incorporate the devices on three-

dimensional substrates with high aspect ratio surfaces, which has received considerable 

attention recently.14-17 

 

3.5 Conclusions 
Although further optimizations are required to achieve device-ready capacitors, 

we have demonstrated the successful fabrication of multilayer capacitors using the same 

number of steps independent of the number of layers. The resulting process is potentially 

scalable to capacitors with tens or even hundreds of layers, and is a good candidate for 

the potential integration of thin film capacitors into circuit boards or IC packaging. 
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Chapter 4 – Investigations into the Crystal Growth of Nanoparticles 

Sputter-Deposited into Ionic Liquids 
 

4.1 Introduction 
 

Ionic liquids (ILs) are room temperature molten salts, in other words, liquids 

consisting entirely of ions. ILs are typically composed of a large, asymmetric cation and 

charge-delocalized anion, resulting in a fairly weak interionic interaction, and thereby, 

low melting temperatures.  

ILs are being investigated as superior alternative solvents or electrolytes for 

numerous applications, such as EDLCs, owing to the significant number of desirable 

properties, from high ionic conductivity, significant electrochemical windows, negligible 

vapor pressure, high temperature stability, to application-specific tunability (e.g. 

functionalizing ILs with amines for enhanced CO2 capture), among others.1-4 The 

negligible vapor pressure of ILs has allowed the usage of novel, cleaner, methodologies 

using physical vapor deposition techniques to form unique nano-materials. Direct 

deposition of materials into IL allows development of nano-materials without external 

structure-directing agents or byproducts formed by conventional wet chemistry 

techniques. As these agents and byproducts lead to additional electrochemical reactions 

increasing the complexity of analytes or the products, it is particularly desirable that they 

are absent while studying native electrochemical properties of nano-materials,5, 6 which 

will be expanded upon in the next chapter. 
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Torimoto et al. first reported sputter deposition of gold into ILs,7 and further 

demonstrated the ability to form metal alloys,8 and metal oxides.9 Since then, deposition 

of metal NPs in ILs by sputter deposition,10 thermal evaporation,11 or by laser ablation 

deposition12 is an area of active research, resulting in emerging applications of NP-in-IL 

systems ranging from utilizing the catalytic behavior of the formed Pd NPs to 

incorporating the IL with deposited Ag NPs into a thin film for pronounced antimicrobial 

properties.13, 14 Investigations into the formation of the NPs formed via physical vapor 

deposition in ILs show the particles start off as atoms/small clusters and continuously 

increase in size over hours to days.10 Such growth is modulated by the deposited material 

concentration, ionic structure, viscosity, and the concentration of impurities.10, 11, 15 

However, observations of NP-in-IL dispersions over longer temporal scales clearly show 

pronounced NP instability.10, 15 

The classical inverse relationship of viscosity and temperature for ILs infers the 

thermal stability of NPs at low temperatures, due to a significant decrease in Brownian 

motion of the particles.16-18 Here, the thermal stability is exploited by using low 

temperatures to not only drastically retard the growth rate of NPs, but also provide long-

term storage options. This has opened new vistas for better resolved investigation of NP 

size-dependent phenomena. Additionally, we characterized NP growth within the IL 

system using UV–Vis and transmission electron microscopy (TEM) and provided 

explanations toward the crystalline growth mechanisms of the resultant NPs from low-

energy sputter deposition. Although many ILs were studied in this work, a more detailed 

analysis was performed on [emim][EtSO4] since this IL showed more significant 
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electrochemical enhancement after the incorporation of sputtered NPs, as will be 

discussed in the next chapter. 

 

4.2 Materials and Methods 
 

Ionic Liquid 

The ionic liquids used in the studies were purchased from vendors and included the 

following: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([emim][Tf2N], Covalent Associates >99.5%), 1-ethyl-3-methylimidazolium ethyl sulfate 

([emim][EtSO4], BASF >95%), 1-ethyl-3-methylimidazolium dicyanamide 

([emim][DCA], BASF >98%), 1-butyl-1-methylpyrrolidinium 

bis(trifluoromethylsulfonyl)imide ([Bmpy][Tf2N], Aldrich >98%), 1-Hexyl-3-

methylimidazolium tetrafluoroborate ([hmim][BF4], Aldrich >97%), 1-Hexyl-3-

methylimidazolium hexafluorophosphate ([hmim][PF6], Fluka >97%), and 1-Methyl-3-

octylimidazolium tetrafluoroborate ([omim][BF4], Aldrich >97%). The ILs were dried 

over night at ~30 mTorr and 50 °C to remove water.  The IL was subsequently placed 

under 5 × 10–7 Torr for at least 6 h for further drying before testing and deposition.  

 

Sputter Deposition 

One half mL of the IL was spread over a clean silicon substrate to form a thin film within 

a ~13 cm diameter area followed by introduction into the sputtering system (ATC 2000 

V, AJA International Inc., N. Scituate, MA) as shown in Figure 4-1(a). Gold or silver was 

deposited using a 2 inch target (99.99%, Kurt J. Lesker) at 30 W RF power using an Ar 
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flow rate of 20 sccm, chamber pressure of 4 mTorr, and a target-to-substrate distance of 

6 inches. The approximate Ag or Au volume deposited into the IL was calculated using 

the IL coverage area of about 133 cm2, and the metal thickness as measured on a flat 

substrate. The resulting metal NP−containing ILs, with concentrations ranging between 

roughly 40 ppm v/v and 340 ppm v/v, were transferred to 2 mL glass vials by carefully 

scraping the IL off the substrate using a Teflon sheet. The concentrations for each of the 

ionic liquids investigated are shown in Table 4-1. It should be noted that the listed values 

are approximate since the IL was placed upside down due to system limitations, and 

occasionally a drop of IL would fall before or during deposition. Additionally, the area of 

the IL would change from the substrate not being completely level (Figure 4-1(b)), 

resulting in a change in the volume of IL or incorporated material, respectively. The 

items listed in Table 4-1 were originally part of a design of experiments to observe 

particle growth and how the NPs affect the electrochemical properties. However, due to 

the drastically different properties of the neat ILs and the comparatively insignificant 

changes of most of the metal-in-IL samples led to no significant conclusions. However, 

some interesting trends and results were discovered and investigated further, in particular 

[emim][EtSO4] with ~340 ppm (v/v) Au, which will be discussed in detail in Chapter 5. 
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Table 4-1. List of investigated ILs and concentrations (v/v) of Ag or Au 

 Material 
 

Concentration 
(ppm v/v) 

[emim][DCA] Ag 170 
Au 340 

[emim][Tf2N] Ag 340 
Au 40 

[Bmpy][Tf2N] Ag 40 
Au 170 

[emim][EtSO4] Ag 170 
Au 340 

[hmim][BF4] Ag 170 
Au 40 

[omim][BF4] Ag 40 
Au 170 

[hmim][PF6] Ag 340 
Au 170 

 

 

Figure 4-1. IL spread on a Si wafer (a) before and (b) after Au deposition 

 

UV–Vis  

UV–Vis absorbance spectra were recorded from 200 nm to 900 nm at room temperature 

using a Shimadzu UV-2401PC spectrophotometer. The measurements were performed by 

placing the IL with NPs into a quartz cuvette with 1 mm path length using clean IL (no 



77 
 

NPs) as the reference. To observe dynamic trends in the absorbance spectra, 10 μL AuNP 

IL was diluted with 200 μL Au-free control IL for each measurement time. Small 

differences in the resulting volume ratio, however, resulted in spectra without a baseline 

trend. The resulting spectra were then normalized to the weight ratio for the first 

measurement (taken 15 min after deposition).  This normalization procedure can be 

performed since it is reasonable to assume the absorbance values of the diluted solution 

follow Beer’s Law. 

 

TEM  

The growth rate, size distribution, and crystal structure of the deposited NPs were studied 

using a JEOL 1400 TEM or a Tecnai F20 HRTEM at acceleration voltages of 120 kV and 

200 kV, respectively. Prior to imaging, the IL with NPs was placed on a carbon grid for 

5 min followed by dipping the grid into ethanol with light agitation for 1 min to dissolve 

the IL.  

 

 

4.3 Results And Discussion 
 

Sputter Deposition Considerations 

The growth mechanism for sputtered NPs remains hotly debated. Recently, 

Vanect et al.
10  observed time-dependent bimodal size distributions from the resulting 

sputtered NPs which indicated an aggregative growth mechanism and suggests the 

formation of polycrystalline NPs.19  
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It is noteworthy that the growth process is a result of a number of different factors 

including the deposition parameters as well as the IL composition, as will be discussed 

later. Our group has recently shown the sputter deposition parameters are important to 

control the energy of the deposited materials.20 A decrease in the mean-free path of 

sputtered atoms/clusters due to high power (consisting of a higher atomic flux/deposition 

rate) or deposition at high pressures, consequently increases the process of 

thermalization. Thermalization of the sputtered atoms results in a reduction of 

atom/cluster energy due to collisions and interactions with neighboring atoms/clusters 

subsequently resulting in higher concentrations of larger atomic clusters being 

incorporated into the IL.  

Once the sputtered atoms/clusters enter the IL surface, Brownian motion within 

the IL takes over. It is worth noting that Ag and AuNPs enter the IL surface with a slight 

positive charge and thus are likely to attract anions to form a charge shielding layer.21 

The effective root mean square Brownian velocity (ve) of particles within a liquid can be 

given by the formula   

3 b
e

e

k T

m
    (4-1) 

where kb is the Boltzmann constant, T the temperature, and me is the effective particle 

mass.22 In this case, me would include the mass of the particle with the additional mass of 

the counter-ion sheath surrounding the NP. This assumption is made in accordance with 

relatively strong interaction between the anions in the IL and metal. When the metal 

atoms/clusters have a small effective mass, the Brownian dynamics are pronounced and 

these metal atoms/clusters can move within the IL and due to high free energy (particle 

free energy is inversely proportional the particle size), can fuse with other atoms or 
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clusters and form single crystal seeds which grow into single crystalline NPs. If during 

sputtering the atoms/clusters undergo pronounced thermalization before entering the IL, 

the average cluster size would be enhanced and the particle free energy from Brownian 

dynamics of these clusters would be reduced. The result would be agglomerative growth 

of nanoparticles and an absence of single crystal domains. The study performed by 

Vanect et al.
10 used a high deposition pressure of 75 mTorr which likely contributed to 

the observed agglomerative growth for these reasons. Based on these assumptions, we 

used low power, low gas pressure and thus low deposition rate for better control in 

studying crystal growth. 

 

UV–Vis 

Immediately following the deposition, the resulting liquid is a dark brown (Figure 

4-1(b)). UV–Vis absorbance spectra of diluted [emim][EtSO4] with 340 ppm v/v AuNP 

with respect to time after deposition are plotted in Figure 4-2(a). The peak observed at 

~510 nm is characteristic of the surface plasmon resonance (SPR) of AuNPs. A baseline 

fit was then subtracted from the data to obtain peak position and absorbance from the 

NPs while removing absorbance due to scattering as shown in Figure 4-2(b). The NPs 

initially exhibit a low SPR absorbance peak because the sample consists of a large 

fraction of sub-nanometer particles, which do not show the SPR behavior in the 

investigated wavelength range.23 The corresponding peak position and peak absorbance 

values from Figure 4-2(b) were then plotted in Figure 4-2(c) and Figure 4-2(d), 

respectively. The peak position was found to shift towards higher wavelengths and the 
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peak absorbance increased with time, characteristic of particle growth which will be 

discussed further in the following section. 

 

 

Figure 4-2. (a) raw UV–Vis spectra of diluted [emim][EtSO4] with AuNPs at various 
times after deposition, (b) SPR peak growth with time, (c) peak wavelength position, and 
(d) peak absorbance values over time (data in (c) and (d) are taken from marked points in 
(b)). Results are normalized to the wt% of the first measurement. 

 

TEM 

Figure 4-3(a-c) shows examples of the obtained HRTEM images of [emim][EtSO4] 

with 300 ppm v/v AuNP at 0.5 h, 7.5 h, and 43.3 h after deposition with the 

corresponding size distribution histograms. The particle size of 1.3 ± 0.7 nm measured 

only 0.5 h after deposition indicates that the atoms are able to move and form particles 
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rapidly. As time continues, the particles grow larger. It is interesting to note that contrary 

to other reported sputter-deposited growth within different ILs,10 we do not observe a bi-

modal distribution for sputtered AuNPs in [emim][EtSO4]. Larger particles (~5 nm) were 

observed within 30 min of deposition, but further investigation revealed these to be 

agglomerations of smaller particles formed during grid preparation. As expected, similar 

trends in the time-dependent peak absorbance growth from UV-Vis (Figure 4-2(c)) and 

the average particle size growth is observed in Figure 4-3(d).  
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Figure 4-3. HRTEM images of AuNPs in [emim][EtSO4] (a) 0.5 h, (b) 7.5 h, (c) 43.3 h 
after deposition with corresponding size histogram and mean particle sizes of 1.3 ± 0.7 
nm, 3.0 ± 1.2, and 4.9 ± 2.9 nm, respectively. (d) Peak absorbance and particle size 
measured versus time after deposition.  

 

Investigations into the crystal structure, shown in Figure 4-4(a) and Figure 4-4(b) 

for 7.5 h and 43.3 h after deposition, respectively, reveal that the AuNPs in 

[emim][EtSO4]  grow and remain as single crystals within the investigated timeframe. 

The crystal structure of the smaller NPs (i.e. at 0.5 h) could not be well resolved because 
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IL which was not dissolved completely made focusing on the particles difficult. The 

obtained HRTEM images confirmed nearly equidimentional FCC AuNPs.  

Examples of TEM images of other ionic liquids and metals are shown in Figure 

4-5. Here, we observed some ionic liquids with BF4
–, PF6

–, and DCA– anions which 

tended to promote particle coalescence and formed large particles or dendritic structures 

([hmim][BF4] with AuNPs) over longer investigated time periods. Ionic liquids with 

[Tf2N]– and [EtSO4] – anions, on the other hand, formed regions of accumulated 5-10 nm 

Au or Ag particles which were separated by thin layers of ionic liquid, thereby preventing 

coalescence. Table 4-2 provides a generalization of the resulting particle sizes, where ‘L’ 

denotes that large particles were typically formed, and ‘S’ denotes that the particles 

remained small and separated. It should be noted that all samples contained some fraction 

of large and small particles, but the notations are given to describe which trend was 

observed more frequently.  

These general trends suggest that the interaction between the anion and the metal 

plays a significant role in particle growth.  It should be noted that [Tf2N]– and [EtSO4]– 

have more pronounced negatively charged regions which suggests higher interaction 

energy with the highly electronegative Au surface than charge distributed anions such as 

[BF4]– and [PF6]–,24, 25 for example. Additionally, the anions would have lower interaction 

energy with the less electronegative Ag surface, suggesting Ag would be less stable.  
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Figure 4-4. HRTEM images of (a) a 3.4 nm particle 7.5 h after deposition and (b) a 5.7 
nm particle 43.3 h after deposition with the corresponding fast Fourier transform (FFT) 
pattern obtained from ImageJ software provide in the inset. The FFT pattern represent an 
FCC crystal along the <110> zone axis.  
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Figure 4-5. TEM images of (a) [hmim][BF4] Au50, (b) [emim][Tf2N] Ag340 with higher 
magnification supplied in the inset, and (c) [hmim][PF6] Ag340. 
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Table 4-2. Generalization of the resulting particles sizes. L denotes that large particles 
were formed, and S denotes that the particles remained small and separated. 

Ionic Liquid Au Ag 
[emim][Tf2N] S S 
[Bmpy][Tf2N] S S 
[emim][EtSO4] S S 
[emim][DCA] S L 
[omim][BF4] S L 
[hmim][BF4] L L 
[hmim][PF6] S L 
 

 

Particle Crystal Growth 

The results in this work in conjunction with other reports show that the IL 

composition also plays an important role in which, for example, anion size and the ion–

NP interaction energy are major contributors to the growth mechanism.26, 27 The ILs act 

as stabilizing media for the NP formation, but most importantly, they display high self-

organization on the nanomolecular scale.21 The ILs tend to form extended hydrogen-bond 

networks at the liquid state and therefore are by definition ‘‘supramolecular’’ fluids. This 

structural organization of ILs can be used as ‘‘entropic drivers’’ (the so-called ‘‘IL 

effect’’) for the spontaneous, well-defined and extended ordering of nanoscale 

structures.21 There is additional evidence indicating that the non-functionalized ILs 

interact relatively strongly with the surface of metal NPs either dispersed in ILs or even 

when isolated. For instance, Janiak et al. 26, 28 used density functional theory (DFT) 

calculations to show how the localization of charge on anions affect the interaction 

energy between the anion and Au clusters. The results indicate that the more localized the 

charge, the larger the interaction energy. In fact, the group demonstrated experimentally 

that by incorporating Au into an IL with Cl– anions, there is very little or no NP growth 
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because the interaction energy between the Cl– and the Au is higher than that between 

small Au clusters and Au atoms. In other words, the Cl– interacts so strongly with the Au 

surface that it prevents additional Au atoms from fusing with the cluster. Interestingly, 

we have also seen this exact phenomenon using the sputter deposition method with 

[P14,666][Cl] (prepared in-house by Dr. Baker, University of Missouri). Figure 4-6 shows a 

photograph and corresponding UV-Vis measurement of the IL after Au deposition, in 

which no SPR peak was evident or color change observed, indicating the nanoparticles, if 

present, are < 1 nm in size.19 

 

Figure 4-6. Photograph of [P14,666][Cl] after ~90 nm Au deposition showing no color 
change and (inset) resulting UV-Vis showing no SPR peak indicating Au particles (if 
present) remain <1 nm.  

 

The interaction energies between Au and most other anions, however, are lower 

than that between small Au clusters and Au atoms, thereby promoting NP growth. It is 

also known that the surface energy of a NP decreases as the particle grows,29 resulting in 
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decreased ion–NP interaction energy.  Therefore, it is likely the ions act as a barrier to 

prevent agglomeration yet still promote single crystal growth until a critical size is 

reached, at which point agglomeration and polycrystalline growth takes effect. 

Figure 4-7 illustrates a schematic demonstrating the developed theory for crystal 

growth mechanisms for metal nanoparticles in ionic liquid. The process is described as 

follows: (A) High concentrations of single atoms are initially deposited into the liquid 

where (B) they collide and form small clusters or crystal seeds; (i) sufficiently high 

interaction energy between the anion and the Au cluster (e.g. [P14,666][Cl]) prevents 

further growth; (ii) interaction energy which is high enough to prevent clusters from 

fusing (i.e the IL acts as a barrier between clusters), yet low enough to permit single 

atoms, will promote single crystal growth; (iii) low interaction energy renders the IL 

ineffective as a barrier against cluster agglomeration and coalescence, promoting 

polycrystalline nanoparticles. As mentioned, it is possible the interaction energy will be 

low enough after a critical crystal size has been achieved to promote agglomeration and 

the formation of polycrystalline particles of the larger crystals, as well. It should also be 

noted that although it is expected that the interaction energies would be different for other 

materials, we expect the trends described in this theory to remain applicable.  

In support of the provided theory, Watanabe et al.
30 have reported the use of the 

Derjaguin–Landua–Verwey–Overbeek (DLVO) theory to approximate the attractive 

energy versus distance between nanoparticles in ILs and observed local energy 

minimums with anion–dependent energy barrier heights. From this, we can speculate that 

for the nanoparticles formed with [Tf2N]– and [EtSO4] – anions for example, the energy is 
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at a local minimum with an energy barrier height sufficiently high to prevent (or reduce 

the probability of) coalescence, resulting in small particles separated by ionic liquid.  

 

Figure 4-7. Schematic showing proposed nanoparticle growth mechanism depending on 
interaction energy between metal and ions. (A) The sputtered material first enters the 
ionic liquid as atoms which (B) start to come together as single crystals, and depending 
on the interaction energy between the ions and the metal form (i) remain small (<1 nm) 
crystals for sufficiently high interaction energy, (ii) single crystal nanoparticles for 
intermediate interaction energy, and (iii) polycrystalline nanoparticles due to low 
interaction energy. 

 

With the exception of [P14,666][Cl] with AuNPs, all investigated ILs eventually 

lead to precipitation of the NPs. In addition to this study, Vanect et al. 10, 15 have studied 

the AuNP stability in a number of other ILs and also observed eventual precipitation, the 

rate of which is primarily dependent on the IL viscosity. Since even the samples which 
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showed accumulations of small NPs showed precipitation, it is possible that the 

accumulations of NPs eventually leads to coalescence and formation of larger particles 

which are less likely to be captured when collecting near the top of the sample for TEM 

imaging. Another explanation is that the accumulations are behaving as one large mass 

similar to large particles, and the underlying IL does not provide adequate support to 

prevent the accumulation from crashing out. 

 

Demonstration of decreased particle growth rate 

The growth rate of particles can be assumed to be dependent on and limited by the 

collision rate (ν) between two particles based on the following equation:31 

3
bk T

a





   (4-2) 

where kb is Boltzmann’s constant, T is temperature, ϕ is the particle volumetric 

concentration, η is viscosity, and a is the particle radius. The temperature plays a very 

significant role in the particle diffusion and collision rate since the viscosity of ILs is 

inversely proportional to temperature.32 As discussed previously, the metal atoms or 

clusters must also overcome the attractive energy between the ions and the metal surface 

in order to form larger particles. Decreasing the thermal energy of the solution would 

therefore decrease the probability of overcoming this barrier. The combination of these 

two factors suggests a significant increase in the stability of the solution. 

 Figure 4-8 shows the UV–Vis spectra of the [emim][EtSO4] with AuNPs using 

the previously described procedures to compare the effect of decreased storage 

temperature. The spectrum shows very little change from the measurement just after 

deposition (Day 0) at a storage temperature of -5 °C indicating very little particle growth.  
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According to the manufacturer, the melting point of [emim][EtSO4] is less than -30 °C, 

so the sample is still liquid at this temperature. The small observed changes from the 

initial spectra are likely due to the time left at room temperature (RT) to take the 

measurements. On the contrary, the SPR peak becomes much more prominent over time 

when stored at RT, indicative of particle growth. It is evident from this study that storing 

NP-in-IL suspensions at reduced temperature significantly retards particle growth, 

suggesting it as a superb storage option. 

 

Figure 4-8. UV–Vis absorbance spectra of Au in [emim][EtSO4] comparing the effects of 
storage at room temperature and at -5 °C. 
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In addition, [N10,111][Beti] (prepared in-house by Dr. Baker, University of 

Missouri), which has a melting temperature of about 25 °C, was further investigated at 

storage temperatures of +5 °C, i.e. the liquid was solidified with the deposited NPs during 

storage. Figure 4-9(a) shows the SPR absorbance change from the first UV–Vis 

measurement as a function of time for a sample left at room temperature just after Au 

deposition and one stored at +5 °C for about 27 days before leaving at RT. Plotting the 

change in absorbance over time after being left at room temperature in Figure 4-9(b), the 

trends are very similar. The initially faster growth of the sample stored at +5 °C is due to 

the growth which occurred when the sample was brought up to RT to perform the 

previous measurements. 
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Figure 4-9. (a) Change in SPR absorbance as a function of time for the sample left at 
room temperature following Au deposition and a sample stored at +5 °C for 27 days prior 
to storing at RT. (b) the change in absorbance as a function of time where 0 h is the time 
placed at RT. 

 

4.4 Conclusion 

 

In summary, we have provided a theory on the crystal growth mechanisms of sputter 

deposited metals within ionic liquid. Evidence in support of this theory has been provided 
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by investigating the particle structures developed in ionic liquids with different anions. 

The developed theory presents a pathway towards potential long-term stability and 

nanoparticle size control using ionic liquids with highly charge-localized anions. Such 

ionic liquids will need to be investigated to take advantage of the electrochemical 

enhancements brought on by the incorporation of these nanoparticles demonstrated in 

Chapter 5. 
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Chapter 5 – Electrochemical Enhancement of Nanoparticle-in-ionic 

liquid based electrolytes for Supercapacitor Applications 
 

5.1 Introduction 

 

As mentioned in Chapter 4, the highly desirable electrochemical properties have 

warranted extensive investigation of ILs as electrolytes within electrochemical double-

layer capacitors. As a result, significant discussion of the interaction of the ions with 

charged surfaces has occurred. For instance, the measured double-layer capacitance (Cdl) 

is a function of the ion sizes,1, 2 as well as the specific and non-specific adsorption of 

anions or cations on the electrode surface.3 Imidazolium-based cations adsorb to the 

surface of metals (Au, Pt, etc.) due to π-bonding which results in adsorption-induced 

pseudocapacitance.2 Sum frequency generation spectroscopy showed that imidazolium-

based cations at an electrified surface change orientation, from normal to parallel to the 

surface at small and large anodic potential, respectively, with respect to the potential of 

zero charge (the applied potential resulting in no inherent charge on the electrode).4-6 

Such orientation of the ions affects Cdl by specifically altering the capacitive length-

scales at the ion-surface interface. Further, it has been observed that the different 

diffusion coefficients of the ions leads to anomalous behavior, where the cation diffuses 

faster despite it being larger than the anions in the investigated IL.7 High ion 

concentrations in ILs have also shown anomalous increase in Cdl with increasing 

temperature.1, 8 This behavior is attributed to the decrease in ion-pairing due to increased 

thermal energy, which results in lower viscosity and increased conductivity, allowing 

more ions to adsorb and interact near the surface.1, 9 Prediction of the behavior of ILs at 
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charged surfaces using different modeling techniques have been complicated by the 

complexity of such systems and hence the best validation tools for the dependence of the 

IL is still experimental observations.10, 11 

As discussed in Chapter 1, the electrochemical measurements of some NP-in-ILs 

have been investigated. However, to our knowledge no one has studied the 

electrochemical properties of the nanocomposites by sputter deposition, which provides 

the ability for a time-resolved investigation into how the size of the nanoparticles affects 

the properties. In this work, we demonstrate enhanced double-layer capacitance and ionic 

conductivity from the sputtered nanoparticle-in-IL electrolytes from Chapter 4 through 

cyclic voltammetry (CV), ionic conductivity probe, and electrochemical impedance 

spectroscopy (EIS) measurements. An explanation of the possible interactions of the NPs 

with the IL is provided to illustrate the complex nature of the electrode-IL interface. 

These results suggest these sputtered NP-in-IL electrolytes should be investigated further 

for improved energy storage and quicker device response for applications ranging from 

EDLCs to sensors. 

 

5.2 Materials and Methods 

 

Electrochemical cell preparation.  

Cell 1: Au-coated stainless steel sheets were cut into 1 mm and 3 mm wide strips to a 

length of about 1 cm, used as the working and counter electrodes, respectively. A 0.5 mm 

diameter Pt wire was used as a pseudo-reference electrode (PSE). The sheets were 

soldered to copper leads and the three electrodes were placed about 5 mm into the IL 
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within the 2 mL vial. A silicon septum in the cap of the vial allowed insertion of a needle 

to flow N2 into the cell during testing as well as keep the sample under vacuum during 

storage. 

Cell 2: Glass slides were cleaned by placing them in a standard piranha solution (3 

H2SO4 : 1 H2O2) at room temperature for at least 20 min. The slides were rinsed with DI 

water, dried under flowing nitrogen, and immediately placed in the sputtering system. 

Chromium (30 nm) was deposited as an adhesion layer followed by 200 nm Au. Two 

parallel electrodes were subsequently patterned using standard photolithography 

procedures to form electrodes 0.1 cm wide and 0.3 cm apart.  A polydimethylsiloxane 

well (~0.60 cm × 0.38 cm × 0.2 cm) was bonded to the cell using standard O2 plasma 

procedures12 followed by an additional O2 plasma to clean the completed cell.  The cells 

were then rinsed with isopropyl alcohol (IPA) and placed in an oven at 80 °C overnight.  

Prior to testing, the cell was copiously rinsed again with IPA, and placed on a hot plate at 

110 °C for at least 2 min. The same Pt wire used in Cell 1 (0.5 mm dia.) was dipped in 

the IL as the PSE. Approximately 100 µL of the IL sample was placed into the well. The 

cell was placed in a small enclosure and let stand under N2 atmosphere for 5 min prior to 

cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

measurements. 

 

Electrochemical Analysis  

The electrochemical properties of the NP-in-IL samples were measured as a function of 

time with IPA rinsing of the electrodes and baking in between each consecutive 

measurement. For the tests conducted using cell 2, the proper NP-free control was also 
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measured immediately following the NP sample in an attempt to remove error due to 

atmospheric changes. For instance, we observed the electrochemical properties of 

[emim][EtSO4] to be significantly affected by humidity due to the intrinsic hygroscopic 

and hydrophilic nature of the IL.  

Cyclic voltammetry was performed using a CH Instruments CHI800B 

Electrochemical Analyzer. The cathodic and anodic breakdown limitations of the IL were 

studied by gradually increasing the upper and lower voltage limits until a sharp increase 

in current was observed using a rate of 100 mV s-1 and steps of 1 mV. Due to the 

inconsistency of electrode area within Cell 1, the breakdown positions were taken at a 

point just prior to the sharp increase in current. The breakdown positions of Cell 2 were 

taken arbitrarily at 2 mA cm-2. A sweep from -1 to 1 V vs. PSE was also performed on 

[emim][EtSO4] using Cell 2 to obtain a more accurate representation of the formed Cdl, 

the range of which was chosen as it is well within the anodic and cathodic breakdown 

limits of [emim][EtSO4] which was found to be approximately ±2.3 V at 2 mA cm-2. All 

CV measurements were cycled ten times before collecting the data for evaluation.  

Zheng et al. 13, 14 suggested that multiple CV scan rates should be performed to 

construct a model of the system based on CV data, which can then be compared to EIS 

data. However, the comparatively lengthy times required for multiple scans would result 

in errors when evaluating the data since the particles are continuously growing. The 

moderate scan rate of 100 mV s-1  was chosen so that the measurement could be taken in 

a relatively quick manner (~7 min) while keeping the scan rate slow enough as to allow 

adequate time for reactions to occur. 
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 Ionic conductivities of the samples were measured using a Jenway 4520 

conductivity probe. According to the manufacturer, the applied frequency is 800 Hz for 

conductivities > 100 μS cm-1. 

EIS was performed on the [emim][EtSO4] sample with 340 ppm Au using an 

Agilent 4294A Impedance Analyzer with a 0.5 Vrms signal with frequencies between 

40 Hz and 110 MHz. The model was fitted using Matlab via a code written by Jean-Luc 

Dellis provided on the Mathworks website.  

 

5.3 Results and Discussion 
 

5.3.1 Potential Windows 

  

The voltage windows of the ILs were studied as a function of time after deposition. 

Figure 5-1 shows an example of [hmim][PF6] with 340 ppm v/v of Ag just after 

deposition and 34 days after deposition. Immediately following deposition (Day 0, Figure 

5-1(a)), the window decreased from about 3.8 V to 3.2 V, the cause of which will be 

discussed further in the next section. After 34 days, the voltage window increased to 

about 5.8 V, a 53 % increase in window with respect to the control as shown in Figure 

5-1(b). The calculated window versus time after deposition is displayed in Figure 5-1(c). 

As demonstrated in Table 5-1, some samples also showed increases in electrochemical 

windows, while others had little or no change. Although the cause of this anomalous 

increase is uncertain, it is plausible to assume that some of the increase in window may 

be that the impurities (which causes decreased windows)15 adsorb to the nanoparticles. 

As the nanoparticles precipitate, the impurities are removed, as well.  
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Figure 5-1. CV measurements taken (a) immediately following Ag deposition into 
[hmim][PF6], (b) after 34 days after deposition, and (c) calculated CV voltage windows 
over time after deposition. Dashed lines are provided to guide the eye only. The black 
line in (c) represents the control value. 
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Table 5-1. CV Voltage windows measured at least 3 weeks after metal deposition  

 Control 
Window 

(V) 

Material and 
Concentration 

(ppm v/v) 

Window 
(V) 

% Change 

[Bmpy][Tf2N] 3.2 Ag40 4.1 28 
Au170 3.9 22 

[emim][DCA] 2.3 Ag170 2.5 9 
Au340 2.3 0 

[emim][EtSO4] 3.7 Ag170 3.4 -8 
Au340 3.9 5 

[emim][Tf2N] 3.4 Ag340 3.8 12 
Au40 3.8 12 

[hmim][BF4] 3.8 Ag340 3.8 0 
Au40 3.9 3 

[hmim][PF6] 3.8 Ag340 5.8 53 
Au170 4.7 24 

[omim][BF4] 3.6 Ag40 3.7 3 
Au170 4.0 11 

 

5.3.2 Double-layer Capacitance 

 

Although [emim][EtSO4] with ~340 ppm Au did not show a significant 

enhancement in potential window, it was chosen for further investigation due to the 

significant increase in ionic conductivity, which will be discussed in the next section. 

Electrochemical cell 2 was chosen for measuring the double-layer capacitance (Cdl) 

because it had more control of the exposed electrode area, which is necessary for accurate 

measurements. CV measurements were performed by sweeping from –1 to 1 V to 

determine the Cdl of [emim][EtSO4] with and without Au NPs. The resulting CV scans for 

the AuNP ILs and Au-free ILs are shown in Figure 5-2. Compared to the control, an 

increase in current at higher applied potentials is also observed post deposition. The 

observed increase indicates a decrease in the electrolyte resistance which decreases 

reaction overpotentials and adsorption rates, and also resembles characteristics observed 
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in increasing electrolyte concentrations,16 suggesting the concentration of ions which are 

responding to the perturbations has increased. Additionally, the potential window post-

deposition decreased from 4.6 V to 4.2 V at 2 mA cm–2,  also indicating reduced 

overpotentials as the window is still comparable to reported values.17 This same trend 

was observed in many of the ILs. As the NPs grow, the bulk resistance and overpotential 

increases back towards the initial value. 

 

 

Figure 5-2. CV measurements taken (a) 1 h, (b) 2 h, (c) 8 h, and (d) 20 h after Au 
deposition 
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The effective Cdl was taken from the CV curves at the minimum point of Eq. (5.1) 

( )
2

f r
dl

I I dE
C

dt


   (5-1) 

where If and Ir are the forward and reverse sweep currents, respectively, and dE/dt is the 

voltage sweep rate. It has been suggested, although debated, that the minimum value 

corresponds to the potential of zero charge and is representative of the Cdl of the IL.3, 10 

The calculated capacitance values are plotted versus time after deposition in Figure 

5-3(a). Immediately following deposition, the measured capacitance is at the highest 

measured value, up to 2.9x that of the control, subsequently decreasing exponentially 

with increasing time (particle size).  Figure 5-3(b) individually plots the forward and 

reverse sweeping currents used in calculating Cdl versus time. It can be observed that 

while the forward sweeping current remains comparable to the control, the reverse 

sweeping current is the primary cause of the experimental increase in calculated 

capacitance. The observed asymmetrical increase in current post deposition verifies that 

the AuNPs are not promoting significant electrical conduction, as would be expected 

since the Au concentration is orders lower than percolation limits.18 Rather, the results 

suggest increased interaction between the cations and the Au electrode. It should be 

mentioned that freely suspended AuNPs in IL can show quantized charging behavior.19 

However, the derivatives of our CV curves did not result in any discernible charging 

peaks, so we cannot conclude that it is a contributing mechanism for the observed 

capacitance increase.  
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Figure 5-3. (a) Calculated double-layer capacitance from CV measurements calculated by 
averaging the currents obtained from the final three scans and (b) mean difference in 
forward and reverse sweeping currents with respect to time after deposition. The dashed 
lines are provided to guide the eye only.  
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5.3.3 Ionic Conductivity 

 

 Figure 5-4(a) and Figure 5-4(b) present the conductivities of [omim][BF4] and 

[Bmpy][Tf2N], respectively, as a function of time after deposition. As demonstrated in 

these figures, immediately following metal deposition, the ionic conductivity of many of 

the investigated ILs increased. Gradually over time, the conductivity reduced back to 

values similar to the control, which will be elaborated on later.  

The Walden Plot is a common method to determine the “ionicity” of ILs based on 

viscosity and molar conductivity (Λ) (i.e. how close the ionic conduction is to ideal, fully 

dissociated values).20 Measured ionic conductivity of ILs is reduced from  the theoretical 

conductivity due to factors such as ion pairing, viscosity (η), and ion size differences, and 

in some cases has been reported to be as low 4% that of the theoretical values.20 The 

Walden Plot of the molar conductivities of neat ILs and conductivities immediately 

following deposition are shown in Figure 5-5. The data used in calculating the plotted 

data are demonstrated in Table 5-2. The data was plotted with the assumption that the 

viscosity remained unchanged post-deposition.   
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Figure 5-4. Examples of ionic conductivity versus time after deposition for (a) 
[omim][BF4] and (b) [Bmpy][Tf2N]. Dashed lines are provided to guide the eye only. 
Black line represents the control value. 
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Figure 5-5. Waldon plot of the investigated ILs with Au or Ag NPs 
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Table 5-2. Parameters used to plot within the Waldon plot. Values were taken from the 
manufacturer unless specified otherwise.  

 ρ 
(g cm-3) 

η 
(cP) 

σcontrol 
(mS cm-1) 

Material & 
Concentration 

(ppm v/v) 

σmetal 
(mS cm-1) 

[emim][DCA] 1.0621 2121 25.0 Ag170 40.6 
Au340 28.6 

[emim][Tf2N] 1.524 3322 8.8 Ag340 8.7 
Au40 8.9 

[Bmpy][Tf2N] 1.39823 7323 2.8 Ag40 2.9 
Au170 3.0 

[emim][EtSO4] 1.239 92 24 4.0 Ag170 7.2 
Au340 16.6* 

[hmim][BF4] 1.149 19525 1.3 Ag170 1.8 
Au40 1.5 

[omim][BF4] 1.12 32525 0.6 Ag40 0.8 
Au170 0.9 

[hmim][PF6] 1.419 71126 0.6 Ag340 0.7 
Au170 0.6 

*taken from the ratio of σmetal/ σcontrol from EIS measurements and multiplied by the 
σcontrol measured from the probe. 

 

From Figure 5-5, we can see that [emim][EtSO4] is the most affected by the 

incorporation of metal NPs. Additionally, the general trend from these results indicate 

that the anion plays an important role in the change in conductivity. The increase in 

conductivity is greatest for the [EtSO4]– anion, followed by [DCA] –, [BF4] –
, [PF6] –, and 

finally [Tf2N]– which showed very little enhancement with NP incorporation.  We can 

eliminate enhanced electronic conduction as a possible explanation as mentioned 

previously, which is also verified by the similar metal concentrations not showing 

comparable enhancement. Additionally, enhanced conduction due to quantum charging 

(if it were present) can be ruled out since the electron transfer rate is known to be slow,27 

so electrons are incapable of responding to such high frequencies such as those described 
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in the next section. Therefore, if we assume the enhanced conduction is due to a change 

in viscosity, using [emim][EtSO4] as an example, the AuNPs would have to decrease the 

viscosity approximately 3x based on the Walden Plot to achieve the same conductivity 

enhancement. A decrease in viscosity by the incorporation of NPs goes against Einstein’s 

equations,28 but the incorporation of NPs into fluids has previously been observed to 

provide anomalous decreased viscosity with reported values less than 50% those of the 

controls.29-32 Regrettably, viscosity measurements could not be performed due to the 

small quantity used in the study.  

The incorporation of small NPs, with highest surface area and strongest anion 

interaction energy, likely disrupts the well-ordered structure and separates ion 

agglomerates within the IL. The disruption results in nanodomains consisting of free 

cations with high self-diffusion coefficients resulting in an apparent decrease in viscosity. 

Another plausible explanation is that the aforementioned structure disruption results in an 

increase in free volume, which has been shown to be the limiting factor for viscosity and 

ionic conductivity in ILs.33-35 The enhancement due to the disruption in the structure is 

surely a factor controlled by the ion shape and location of charge, which will affect its 

ability to structure around the NPs. As the NPs grow, the concentration of the disrupted 

nanoscale domains decreases, resulting in a decrease in the enhanced electrochemical 

properties. 
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5.3.4 Electrochemical Impedance Spectroscopy 

 

EIS was used to analyze the frequency – dependent electrochemical interactions 

between the IL [emim][EtSO4] and the electrodes. A Randles circuit, as shown in Figure 

5-6(a), is typically used to describe electrolyte-electrode interactions obtained by EIS,36 

and is represented by a capacitor in parallel with a resistor and Warburg element 

connected in series. These elements represent Cdl, charge transfer resistance (Rct), and 

diffusion, respectively. Additionally, a resistor is connected in series to represent the 

electrolyte resistance (RE), and the capacitance of the cell is neglected. The Randles 

circuit, however, assumes similar diffusion properties and interactions with the electrode 

for both ions, which is not typically the case for ILs, as discussed previously. Therefore, 

EIS was evaluated using the equivalent circuit model presented in Figure 5-6(b). The 

model consists of three circuits, representative of the cation, anion, and the bulk 

properties.  The cation– and anion–electrode interactions can be represented individually 

because the ions exhibit different diffusion properties.7, 37, 38 These ion – electrode 

interfaces are represented by a modified Randles circuit in which Cdl and the Warburg 

elements are replaced by constant phase elements (CPE) with an equivalent impedance of 

σ(jω)-n, where σ is the constant, ω is the angular frequency, and n is an exponent 

(0 ≤ n ≤ 1). A CPE element is typically used to replace Cdl due to inhomogeneity of the 

ion–electrode interface.39, 40 We also chose to represent the Warburg element with a CPE 

to account for non-ideal diffusive behavior, ion orientation changes under the applied AC 

signal, as well as pseudocapacitive adsorption of ions.4, 41 Finally, the bulk resistance 

(RHF) and capacitance (CHF) are represented by a parallel R-C circuit.42 It should be noted 

that we deduced the high frequency (HF) results to be indicative of the bulk properties as 



115 
 

they proved independent of perturbation amplitude, the frequency range selected was in 

the region which has been used to determine the static dielectric constant of the IL,43 and 

the results were reasonably close to the reported bulk properties as will be discussed later. 

These three circuit configurations are tied in series with an additional inductor (LLead) and 

resistor (RLead) to represent the lead connections and electrode impedance. Other 

previously reported models and slight modifications thereof were attempted, but the 

results proved inadequate in comparison to the chosen model.4, 41, 44 

  

Figure 5-6. (a) Randles circuit, (b) cartoon representation of the cross-sectional view of 
the electrochemical test cell, and (c) the circuit model used for fitting the experimental 
EIS data. 

 

The fitting results are shown in Appendix B. The bulk capacitance for the control 

sample was measured to be about 1.25 ± 0.06 pF, higher than ~ 0.6 pF calculated from E-

field simulations using the reported dielectric constant for [emim][EtSO4] of ~35,43 likely 
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due to the adsorption of ions on the Au electrode surface and the onset of interfacial 

polarization effects. The bulk resistance of the control IL was measured to be 

1.48 ± 0.25 kΩ.  By using the area and the distance between the electrodes to calculate 

the ionic conductivity, we obtain a value of about 5 ± 1 mS cm-1. This is reasonably close 

to the reported value45 of 4 mS cm-1 where the error is due to the geometrical factors 

(Figure 5-6(c)).  

Figure 5-7 shows the impedance Nyquist Plots for the IL with AuNPs 0.3 h to 

20 h after deposition with the corresponding control measurement.  Just after deposition, 

the HF semicircle reduces in size and shifts towards higher frequencies, verifying the 

changes in ionic conductivity measurements are a result of changes in the bulk properties 

of the IL. Figure 5-8(a) shows the RHF ratio between the sample with Au and neat IL 

versus time after deposition showing that bulk resistance decreases to a value about 0.24x 

that of the control immediately following deposition. Subsequently, the resistance 

approaches values close to the control as the particles grow.  
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Figure 5-7. Nyquist plots (a) 0.3 h, (b) 2 h, (c) 7.5 h, and (d) 20 h after Au deposition. 
Symbols are experimental results, and lines represent best fit. 
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Figure 5-8. Ratio between the (a) electrolyte resistances and (b) double layer CPE 
coefficients with AuNP with respect to neat [emim][EtSO4]. The dashed lines are 
provided to guide the eye only. 

 



119 
 

The fitted results also indicate the bulk capacitance increases just after deposition. 

The cause of which may be due to the decrease in electrolyte resistance. Decreased 

resistance suggests increased mobility of the ions, requiring higher frequencies to achieve 

a closer representation of bulk capacitance because of increased interfacial polarization 

effects at lower frequencies, resulting in a higher measured capacitance as well as 

increased fitting error.43 Additionally, the incorporation of conducting materials, such as 

carbon nanotubes, into an electrolyte has also shown to increase bulk capacitance 

measured in the HF regime.46 

The impedance curves at lower frequencies result in a steep line, indicative of the 

capacitive nature of the IL at the electrode surface. The fitting results show the ion double 

layer CPEcdl1 exponent (n) is approximately 0.80 ± 0.02, whereas the counterion circuit 

CPEcdl2 represents almost ideal capacitive behavior with an exponent of approximately 1.  

The low exponent for the ion circuit is likely caused from the geometry of the cell 

resulting in varying electric field and current densities across the surface. The Warburg 

CPE exponents for the ion and counterion circuits are 0.34 ± 0.05 and 0.60 ± 0.03, 

respectively. These results indicate a more capacitive behavior for the counterion circuit 

and more resistive behavior for the ion circuit, the cause of which warrants further 

investigation, but may be due to the specific adsorption of one of the ions on the Au 

electrode surface.  

The EIS results for the samples after Au incorporation show very similar behavior 

to the control in the two low frequency circuits. One noticeable difference between them 

is the value of the double layer CPE constants (σ), which increases up to 27% and 36% 

just after deposition for the ion and counterion circuits, respectively, followed by an 
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approach to the control values over time (Figure 5-8(b)). This behavior resembles that 

seen from the CV scans, although on a different scale, an issue which has been reported 

when comparing the two measurement techniques.13  

To reiterate, the observed electrochemical enhancements can be explained as an 

effect of the adsorption of ions onto the NP surface. Sufficiently small, neutral Ag and 

AuNPs resulting from sputter deposition are expected to attract anion adsorption due to 

the electron deficient metal surface.47 The interaction energy between molecules and NPs 

is also known to increase with decreasing NP size, owing to the low coordination 

numbers of the atoms on the NP surface.48, 49 Higher interaction energies with the NP 

surface is also expected of anions with more localized charges,50 such as that expected in 

[EtSO4]. As mentioned previously, the attraction of anions to the NPs results in a change 

in charge distribution and ionic liquid structure, seemingly dependent on the ionic 

composition and anion charge distribution, consequently “freeing” additional cations to 

respond and interact with the electrode surface, as well as decreasing the electrolyte 

resistance (Figure 5-9). Indeed, the increase in currents at anodic potentials of the CV 

scan indicates an increase in cation interaction with the electrode, suggesting the NPs are 

attracting anions. Similarly, the decrease in electrolyte resistance observed indicates 

increased self-diffusion coefficients of the ions caused by the aforementioned changes. 

The total surface area and attractive energy of the NPs decreases as the NPs grow 

resulting in a decrease in adsorbed anion strength and free cation concentrations with 

time.  



121 
 

 

Figure 5-9. Cartoon illustrating plausible ion adsorption and resulting free ions after 
incorporation of AuNPs. 

 

5.4 Conclusion 
 

In summary, we report a significant enhancement in the electrochemical window, ionic 

conductivity, and capacitance of ionic liquids with the introduction of metal nanoparticles 

via sputter deposition. The interaction energy between the ionic constituents and nano-

material has been linked as a significant contributor to enhanced electrochemical 

properties and to the particle growth mechanism, warranting in-depth investigation into 

ILs bearing tailored ions.    
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Chapter 6 – Conclusions and Future Work 
 

6.1 Conclusions 

6.1.1 Multilayer Capactitor 

 

This work has demonstrated the characterization and application of two nanocomposite 

systems. The characterization results of the nanocomposite SiOCN film grown by 

PECVD shows excellent versatility, and properties well suited towards use within thin 

film capacitors. Utilizing the aforementioned SiOCN as a proof-of-concept dielectric, 

high voltage multi-layer thin film capacitors have been fabricated using a highly selective 

etching technique. The developed technique proves advantageous over many other thin 

film multilayer capacitor fabrication methods in that it can be fabricated from a variety of 

deposition systems, and the number of steps is independent from the number of 

capacitive layers. 

 

6.1.2 Nanoparticle-in-Ionic Liquid   

The unique negligible vapor pressure property of ionic liquids has been taken 

advantage of to investigate the growth mechanisms and electrochemical behavior of Au 

and Ag nanoparticles deposited by sputter deposition. The results indicate the growth 

mechanism is strongly correlated with the anion, in which anions with a more localized 

charge provides more control in the crystal growth and nanoparticle size. The 

enhancement provided by the metal nanoparticles include electrochemical window 

increases of as much as 53%, ionic conductivity increased as much as 320%, and the 

double layer capacitance was also observed to increase 60% after sputter deposition of 
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metal nanoparticles. In conjunction with the theory obtained from the growth 

investigation, the anion-metal nanoparticle interaction is also proposed as the mechanism 

resulting in these electrochemical enhancements. These results suggest further 

investigation into tailored anions to achieve optimum results. The anomalous 

enhancement in the electrochemical properties promises increased energy and power 

densities of ionic liquid based EDLCs, and also suggests improved device performance in 

ionic-liquid based solar cells, fuel cells, and sensors.  

 

6.2 Future Direction  

6.2.1 Multilayer Capactitor 

Although the multilayer capacitor fabrication process has successfully 

demonstrated the ability to achieve multilayer capacitors with the same number of steps 

despite the thickness or number of capacitive layers, the work also shows that there is a 

lot of room for improvement before they could be considered ready for incorporation into 

circuit boards or ICs.  More specifically, the IV characteristics of the device need 

improvement. To achieve this, a process to fill the undercut gap with a dielectric material 

must be developed. Even though other techniques can be investigated, atomic layer 

deposition (ALD) is one such technique which may be a superior method, since it can 

deposit high quality layers on three-dimensional surfaces owing to the surface reactions 

necessary for deposition.  

Figure 6-1provides an illustration depicting a simplified process flow of how 

filling the undercut could be achieve. First, instead of depositing a sidewall electrode 

after the first undercut, the other electrode on the opposite side of the device should be 
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undercut, as well. Additionally, one or both electrodes could be undercut around the 

entire device (except for the face where the sidewall needs to make contact to the 

electrodes), which will help ensure the devices do not show arcing across the sides of the 

device. The devices should subsequently be placed in the ALD system, where a quality 

material can be deposited into the undercut region and all over the device (Figure 6-1(a)). 

Second, the material should be selectively etched to re-expose the electrodes on the face 

of the device (Figure 6-1(b)). Finally, the device can be patterned using photolithography 

and the sidewall electrodes can be deposited to finish the device (Figure 6-1(c)). 

 

Figure 6-1.  Simplified process flow of the fabrication process in which the undercut gaps 
are filled to improve performance. 

 

The fabrication process developed in this work as well as the proposed future 

improvements provides exciting new opportunities for the incorporation of thin film 

capacitors within circuit boards or ICs. The process allows the ability to deposit all layers 

sequentially, permitting fabrication from a variety of deposition systems. One particularly 

interesting deposition technique is the ability to deposit the devices using ALD. ALD is 

well known to have superb coverage on three-dimensional substrates as well as 

depositing high quality dielectric and metal layers. As mentioned in Chapter 3, capacitors 

deposited on three-dimensional substrates have been receiving increasing attention, 

because the devices can achieve higher capacitance within the same footprint area.1-4 
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Figure 6-2 demonstrates what the devices might look like on a three-dimensional 

substrate after the fabrication process described in Chapter 3.  

 

 

Figure 6-2. Illustration of how the multilayer capacitor fabrication process can be utilized 
to  incorporate devices onto three-dimensional substrates. 

 

 

6.2.2 Nanoparticle-in-Ionic Liquid   

The ever increasing number of ionic liquids being discovered (i.e. fabricated ) will 

provide large potential for the future stability and increased performance of metal 

nanoparticle-in-ionic liquid electrolytes for use within EDLCs or many other devices. 

The theory developed in Chapter 4 indicates the long term stability of metal nanoparticles 

is possible from ionic liquids with highly charge localized anions. The observation of 

[P14,666][Cl] to prevent the growth of nanoparticles indicates that a possible path for future 

work. For instance, the deposition of metal into an ionic liquid which promotes 
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nanoparticle growth, followed by subsequent incorporation of an ionic liquid with a 

highly charge localized anion, such as [P14,666][Cl], could be investigated to study the 

effectiveness of the second IL in preventing further growth at various nanoparticle sizes. 

The study would provide further evidence of the proposed theory as well as proof 

towards the long term stability of the nanocomposites.  

In addition to investigating paths towards the long term stability of the composite, 

further work is possible for the investigation of electrochemical enhancement. Based on 

the work outlined in this dissertation, the next step would be to investigate ionic liquids 

with anions similar in structure to ethylsulfate ([EtSO4]–), such as octylsulfate (Figure 

6-3). Based on the theory on the cause of electrochemical enhancement developed in 

Chapter 5, the highly localized charge and extra asymmetry of the octylsulfate anion 

make it an ion of interest for enhanced ion pair separation and nanoparticle stability. 

However, to ensure nanoparticle-in-IL systems have a future within EDLCs or other 

devices, the ideal ionic liquid should initially have a rather low viscosity and moderate 

electrochemical properties.  

      

         Ethylsulfate     Octylsulfate 

Figure 6-3. Molecular structures for ethylsulfate and octylsulfate. 
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Appendix A – Further Characterization and Applications of SiOCN 
 

The work provided in Chapter 2 was focused on the characterization methods 

which would provide an understanding of how the material is grown, as well as 

investigate the characteristics which would be applicable for using SiOCN as a dielectric 

within thin film capacitors fabricated using microelectronic fabrication techniques, such 

as those described in Chapter 3. However, much more work has been performed on 

characterizing and discovering more applications of SiOCN which is worth mentioning. 

 

Additional Characterization Methods 
 

Mechanical Characterization 

Nanoindentation experiments were conducted using an Agilent Nano Indenter 

G200 using a standard XP head. The Continuous Stiffness Measurement (CSM) method 

was performed on 15 regions of each sample with a constant load to loading rate ratio 

held at 0.05 sec-1. The average hardness and Young’s Modulus were calculated from the 

penetration depth range of 350–450 nm. The tested samples were deposited to 

thicknesses >1000 nm to minimize influence of the Si substrate.  

In addition, to demonstrate the feasibility of this coating as a protective layer on 

polymer-based windows, a 1μm thick silane-based SiOCN deposited at 100 °C on 

isopropanol cleaned polycarbonate (PC) slabs (1 in. x 3 in. x 0.2 in.) was tested under 

sand-water wiper abrasion testing.  For this experiment, commercial rubber windshield 

wiper blades (1.5 in. long) were clamped rigidly to a solid metal backing plate with a 
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carriage weight of 1.874 lb. Arizona medium test dust (ISO 12103–1, A3; Reade 

Advanced Materials) was mixed with water to a mass ratio of 53 g dust to16 kg water. 

The slurry was continuously stirred in a reservoir and fed to the test surface using a 

peristaltic pump with a flow rate of 1 gallon per hour. The wiper blade was cycled across 

the samples up to 75,000 times. The UV–Vis transmittance and topography (using a 

Veeco Optical Profilometer) with and without a SiOCN coating were measured 

periodically throughout the experiment to gauge the effectiveness of the coating. 

Finally, as a preliminary demonstration of the flexibility and adhesion strength of 

thick silane-based SiOCN, a 10 μm thick film was deposited at 400 °C on a two inch 

diameter, 800 μm thick brush-finish Al substrate cleaned with acetone sonication. The 

sample was rounded around cylindrical objects with diameters ranging from 172 mm to 

51 mm by pressing firmly against the objects. The sample was rounded around objects of 

decreasing diameter until the SiOCN film cracked in a similar fashion as that laid out in 

ASTM D522.5 Using this technique, an estimate of the strain at the time of failure was 

calculated.  

Direct Charge Nuclear Capacitor 

Self-recharging energy storage devices using radioisotopes has gained renewed interest 

due to the proposed long-term life (based on half-life of isotope), low maintenance, and 

potential to reduce the batteries weight on military personnel. Our group participated in 

research with a collaborator, TRACE Photonics, Inc., to investigate a direct charge 

nuclear capacitor (DCNC) using SiOCN as a dielectric. DCNCs are devices which utilize 

the charge of beta-emitting sources to directly charge capacitors.6, 7 
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Prior to testing within a direct charge nuclear capacitor, SiOCN films were tested 

for radiation hardness by irradiating with gamma to a dose of ~140 MGy. The coatings 

were tested using FTIR and electrical measurements before and after irradiation, and 

were found to have no change, suggesting SiOCN is resistant to radiation damage. 

SiOCN was deposited at 400 °C to 10 μm, 17 μm, and 28 μm on aluminum substrates for 

testing within a direct-charge nuclear capacitor. A 4π, ~2 in. diameter promethium-147 

beta-emitting source with an activity of ~0.26 Ci (at time of testing) and active area of 5.1 

cm2 as provided by the University of Missouri Research  Reactor (MURR). The 

fabrication of the source is described elsewhere.6, 7 Briefly, the source was prepared as a 

casted film using a sol-gel method and was sandwiched between thin Al foils (1 μm and 8 

μm thick on the top and bottom, respectively). The source was packaged in a vacuum (< 

1 mTorr) enclosure to reduce loss due to air ionization and was spaced ~ 1mm from the 

SiOCN layer as shown in Figure A-1. The SiOCN-coated Al substrate was connected to a 

large resistance (1-3 TOhm) in series with a Keithly 6487 picoammeter to measure the 

collected current. The ammeter ‘low’ and the source were then connected to complete the 

circuit. The measured current and load resistance were used to calculate the voltage and 

power supplied by the capacitor.   
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Figure A-1. Schematic of the direct charge nuclear capacitor test setup (not to scale). 

 

Optical measurements 

The refractive index (@630 nm) and thicknesses of the films deposited on Si were 

measured using a J.A. Woolhams Variable Angle ellipsometer. The absorbance spectra of 

the ~1 μm thick films deposited on quartz or polycarbonate were recorded from 190 nm 

to 900 nm at room temperature using a Shimadzu UV–2401PC spectrophotometer.  

Additional Characterization Results 
 

Nanoindentation Hardness  

Table A-1 displays the hardness and Young’s modulus obtained from the CSM 

nanoindentation study. The results show that the TMS-based films have a hardness that 

increases from 6.3 ± 0.2 GPa to 13.3 ± 0.2 GPa, while the silane-based films increase 

from 4.8 ± 0.1 GPa to 10.4 ± 0.2 GPa as the deposition temperature increases from 

100 °C to 400 °C. The higher hardness of the TMS-based films is attributed to the lower 
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hydrogen concentration and higher density, as well as the increased concentration of SiC, 

SiN, and CN structures incorporated within the film, each of which can exhibit 

hardnesses of over 30 GPa themselves depending on the processing conditions.8-11 Also, 

for this same reason, despite Si–O bonds comprising a large portion of both types of 

SiOCN, films grown at 400 °C are harder than the fused silica control, and all samples 

are harder than other reported SiOCN films deposited at 300 °C.12 

Table A-1. Nanoindentation hardness and Young’s Modulus obtained using the CSM 
method 

Type Deposition 
Temperature 

Hardness 
(GPa) 

Young’s Modulus 
(GPa) 

Silane 100 °C 4.8±0.1 44.7±0.4 
400 °C 10.4±0.2 82.9±1.0 

TMS 100 °C 6.3±0.2 52.3±0.8 
400 °C 13.3±0.2 113.9±1.1 

Fused Silica --- 9.6±0.1 73.6±0.5 
 

Optical Properties 

 Figures A-2(a) and Figure A-2(b) show the absorption coefficient versus 

wavelength plots obtained by UV–Vis spectroscopy for silane and TMS-based SiOCN 

deposited at various temperatures, respectively. The results show that both types of 

SiOCN are transparent in the visible region, and absorb UV, where increasing UV 

absorption is observed with increasing deposition temperature. Figure A-2 also displays 

the energy associated with an absorption coefficient of 104 cm-1 (E04) as an estimate of 

the bandgap, since the films are too transparent for accurate Tauc band gap 

approximations.13 The films deposited at 100 °C did not achieve an absorption coefficient 

of 104 cm-1 within the investigated region, so the E04 could not be measured, suggesting 
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the optical bandgap is larger than 6.5 eV for these samples. The large drop in the optical 

band gap from 100 °C to 250 °C will be discussed later. For the 250 °C and 400 °C 

depositions, the E04 for the silane films is higher than TMS films, caused by the higher 

concentrations of SiO. The gap also decreases from 6.0 eV to 5.8 eV for the silane-based 

film and 5.6 eV to 5.5 eV for the TMS-based film between 250 °C and 400 °C 

depositions, respectively. This decrease, although small, can be attributed to the 

increasing SiC concentration (reported optical band gap of around 2–3 eV)14, 15 and/or 

decreasing hydrogen concentration16 within the films with increasing deposition 

temperature, as demonstrated in the FTIR analysis.  These measurements suggest that 

either type of SiOCN is a good candidate as a transparent coating material, which will be 

the subject of further discussion later.  
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Figure A-2. Absorption coefficient versus wavelength for (a) silane-based and (b) TMS-
based SiOCN films deposited at 100 °C, 250 °C, and 400 °C. 

 

Figure A-3 shows the refractive index for the two types of SiOCN versus 

deposition temperature. Both silane- and TMS-based films demonstrate increasing 

refractive index with increasing temperature, likely due to the decreasing hydrogen 

concentration and increasing SiC (n~2.3)15 and SiN (n~2.1)17, 18 concentration. The larger 
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concentration of SiO2 (n=1.46), lower C and N concentration, and higher hydrogen 

content within the silane-based film at all substrate temperatures causes the refractive 

index to be lower than TMS-based films. 

 

Figure A-3. Average refractive index of all thicknesses tested versus deposition 
temperature for (black) silane and (red) TMS-based films. The error bars represent the 
standard deviation. 

 

Applications 
 

As demonstrated so far, the combination of optical transparency, low residual 

stress, good mechanical and electrical properties, and the ability to deposit thick films 

indicate silane-based SiOCN can be utilized in more versatile applications than TMS-

based SiOCN. To demonstrate the possible applications which silane-based SiOCN can 

be used for, we will demonstrate the use of the material as a protective layer on polymer 
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windows, as a coating on flexible substrates, and also demonstrate the resistance to 

radiation damage by using the material as a dielectric in a direct charge nuclear capacitor. 

 

Abrasion Resistant Coating 

 

 Due to the increased interest in providing coatings which can be used as a 

protective layer on polymer-based windows,19, 20 we demonstrate the feasibility of using 

the silane-based SiOCN film deposited at 100 °C by performing a very rigorous 

accelerated wiper abrasion wear test using sand-water. Although TMS-based films were 

attempted, they  were not testable because the films cracked as the samples cooled after 

deposition, a consequence of the comparatively larger inherent compressive stress in 

addition to the induced stress from the large CTE mismatch. Figure A-4(a) and Figure A-

4(b) illustrate three-dimensional optical profilometer topography images of a PC and 1 

μm silane-based SiOCN coated PC sample after 15,000 wiper abrasion cycles, 

respectively. The average roughness of the PC and SiOCN coated PC is plotted versus 

abrasion cycles in Figure A-4(c). The roughness of the PC increases about 36x within the 

first 5000 cycles, while the SiOCN coated sample roughness increases only 1.6x. The 

transmittance measurements for a polycarbonate and a SiOCN coated polycarbonate 

sample is shown in Figure A-4(d) for various amounts of sand-water wiper abrasion 

cycles. After 75,000 abrasion cycles, the PC transmittance reduced to about 64% that of 

non-abraded PC, while the SiOCN coated PC transmittance remained within 95% non-

abraded PC. These results reveal that the transparency, adhesion strength, and the 
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abrasion resistance of low deposition temperature SiOCN films suggest it is an excellent 

candidate for the protection of polymer windows.  

 

 

Figure A-4. Three-dimensional optical profilometry topography images with 
corresponding contour plots inset of (a) PC and (b) SiOCN coated PC after 15,000 sand-
water wiper abrasion cycles with average roughness of 94.5 ± 1.5 nm and 3.0 ± 0.5 nm, 
respectively. (c) Average roughness versus abrasion cycles for PC and SiOCN coated PC 
(d) Transmittance of PC and SiOCN coated PC after different numbers of sand-water 
wiper abrasion cycles. PC was used as the reference. 

 

Coating on Flexibile Substrates 

 

 The flexibility and adhesion strength of a 10 μm thick silane-based SiOCN 

deposited at 400 °C on an Al substrate was tested by pressing the substrate firmly against 
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cylindrical objects with diameters ranging from 172 mm to 51 mm in succession until the 

SiOCN film cracked, as shown in Figure A-5. It should be noted that the film did not lose 

adhesion from the substrate throughout the test. 

 The strain observed at the top of the film (εtop) can be estimated by using the 

equation 21 

 
  

1 2
2 1 1

f
top

d ds

R

 


 

   
      

 

where df is the film thickness, ds is the substrate thickness (~800 μm), R is the radius of 

the object, η=df/ds, and χ is the ratio of the film’s modulus (82.9 GPa as obtained via 

nanoindentation) to the substrate’s modulus (69 Gpa).22 The strain observed by the film at 

the time of failure was between 1.2% (R=3.5 cm) and 1.6% (R=2.6 cm), which compares 

well with other similar investigations of chemical vapor deposited phosphorus-doped 

SiO2 films yet superior to PECVD grown Si3N4 films deposited on Al substrates.23 The 

result of this test not only demonstrates the ability of the silane-based SiOCN to be 

deposited to large thicknesses, but also demonstrates that the film can be used as a 

coating on flexible substrates. 
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Figure A-5. Photographs of 10 μm silane based SiOCN deposited on an Al substrate at 
various curvatures. 

 

Direct Charge Nuclear Capacitor 

 

 Before incorporating SiOCN into a DCNC, the maximum beta penetration depth 

versus beta energy was found using the Casino v2.42 software, which is a program to 

simulate electron paths in materials from an electron beam. Although it is not extremely 

accurate, it provides an easy way to approximate electron penetration depths.24 The 

atomic concentrations found from the XPS data for the 400 °C silane-based SiOCN 
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(hydrogen was neglected) and an estimated density of 2.8 g cm-3 were used for the 

simulation. The density was arbitrarily estimated to be 2.8 g cm-3 because it is in between 

SiO2 (2.65 g cm-3) and SiC (3.21 g cm-3), which as shown previously are the primary 

components of SiOCN. Figure A-6 shows the obtained maximum depth versus energy 

plot. The average beta energy of Pm-147 is approximately 64 keV with a maximum 

energy of about 225 keV.6 As the data shows, the maximum penetration depth for a beta 

from Pm-147 is approximately 200 μm, and the maximum depth an average beta can 

penetrate is about 20 μm.  

 

Figure A-6. Maximum β penetration depth in 400 °C silane-based SiOCN calculated 
from the Casino v2.42 software. 

 

Initial DCNC accumulated voltage vs. time tests with various SiOCN thicknesses  

showed that the accumulated voltage is independent of dielectric thickness within the 

investigated thickness range (<28 μm), but thicker films charged quicker due to the 

decrease in RC time constant (capacitance decreases with increasing thickness). The film 
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thickness does not affect the accumulated voltage because high concentrations of the 

emitted beta are able to penetrate completely through the SiOCN layer within the 

investigated thickness range.  

 A 10 μm thick SiOCN dielectric was then measured with a 1 TΩ and 3 TΩ load 

resistor to measure the effects of load resistance. Figure A-7(a) shows the accumulated 

voltage versus time. The collected current from the device was approximately 145 pA 

(Figure A-7(b)), resulting in accumulated voltages of about 150 V and 450 V for the 

1 TΩ and 3 TΩ load, respectively. Since the measurement only accounts for the beta 

collected from one side of the source, we can assume the maximum available charging 

current from beta is approximately 770 pA. The measured current was about 145 pA for 

both load resistances, meaning the capacitor is collecting roughly 19% of the maximum 

available current from the beta alone. Some of the loss may be due to any remaining air 

in the test setup or the sample holders, which will ionize and promote conduction away 

from the dielectric, electron trajectories not falling onto the dielectric (due to the spacer), 

and the backscattering of electrons which will increase with increasing potential. With a 

3 TΩ load, the output power of the device reached about 60 nW. 
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Figure A-7. (a) Accumulated voltage versus charging time using a 10 μm SiOCN 
dielectric with 1 TΩ and 3 TΩ load resistors, (b) measured collected current and resulting 
output power of device, (c) equivalent circuit diagram of the DCNC (modified from 25). 

  

One of the primary issues with a solid state DCNC using the Pm-147 is that the 

energy of the emitted betas are relatively large, so they can penetrate further into 

materials. When ionizing radiation penetrates into a material, the irradiated region (IR) 

develops a space charge due to the formation of electron-hole pairs. The formed space-

charge region has an induced conductivity (G) which can be approximated using the 

following equation:25 



148 
 

0.5 1o
o

D
G G

D


 

     
 

   (A-1) 

where D is the absorbed dose rate, Do is a reference dose rate, Go is the conductivity at 

Do, and Δ is the trap and energy distribution constant. For a rough approximation, if we 

take a source with an activity of 0.26 Ci and a stopping power of 4.857 MeV cm2 g-1 for a 

beta energy of 60 keV (calculated from the NIST ESTAR program),26 a film thickness of 

10 μm would acquire a dose rate of ~0.18 Gy s-1. Accordingly, the resistivity of the film 

will decrease at least a few orders.27 A 10 μm SiOCN film on a 2 in. diameter substrate 

and a resistivity on the order of 1017 Ω cm (from Chapter 2) results in a film resistance of 

about 5 TΩ. Referring to the provided DCNC circuit model in Figure A-7(c), the 

resistance of the non-irradiated region (NIR) for these SiOCN films is non-existent since 

the beta can penetrate completely through the dielectric (RNIR is shorted). Without any 

induced conductivity, if the source were to be placed directly on the dielectric to conserve 

space, the maximum possible current (assuming all emitted beta charge is collected) 

through a 1 TΩ load is reduced to 83.3% (50% for a 5 TΩ load, etc. since RIR || RLOAD). 

Therefore, it is clearly indicated that any induced conductivity would be completely 

detrimental to device performance if the vacuum spacer were to be removed. This issue 

can be resolved by switching to a source with much lower beta energy (and thus lower 

penetration depth), or by increasing the thickness of the dielectric until it is much thicker 

than the maximum penetration depth. The TRACE Photonics group had much more 

success using the former, with a tritium source and a polyimide dielectric.28 Regardless, 

this experiment verified SiOCN’s radiation hardness and potential as a dielectric within 

radioisotope devices.  
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Multi-layer dielectrics 

 

 The excellent electrical properties of the SiOCN films indicate that it can be used 

as a dielectric material itself or as a coating to improve the electrical properties of a base 

material. As a proof-of-concept, the organosilicate polymer poly(methylsilsesquioxane) 

(PMSSQ) film was spin coated  to about 1.5 μm thick followed by 0.5 μm silane based 

SiOCN deposition. The dielectric properties of polymer materials are degraded by their 

inherent voids, which leads to decreased breakdown strength and inconsistency (Figure 

A-8(a)). For this film, the breakdown strength was 0.5 ± 0.4 MV cm-1. As shown in 

Figure A-8(b), the reliability and breakdown strength of the final two-layer film was 

significantly improved post SiOCN deposition, with all devices studying showing 

breakdown >1 MV cm-1. Despite the capacitance of the device decreasing from ~4.6 pF 

to 3.6 pF after deposition, the increase in voltage from a maximum of 150 V to at least 

300 V is sufficient enough to increase the overall energy density at least 2x.  
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Figure A-8. Current density-Electric Field curves for (a) PMSSQ and (b) SiOCN-coated 
PMSSQ 
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Appendix B. EIS fitting results 
 

Table B.1. (A) EIS modelling results for neat [emim][EtSO4] 

Tim
e (hr) 

Lead Ion Circuit Bulk Counterion Circuit 

L
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R
lead [Ω
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W
2 ) [μS s n] 

n (C
PE

W
2 ) 

σ (C
PE

cdl2 ) [μS s n] 

n (C
PE

cdl2 ) 

0.33 0.375 5.0 21.3 58.1 0.36 0.598 0.78 1310.0 1.26 20.3 0.838 0.34 0.131 1.00 

2 0.347 4.9 33.7 65.3 0.41 0.494 0.80 1137.8 1.28 29.4 0.342 0.57 0.118 1.00 

7.5 0.484 5.1 10.6 137 0.36 0.295 0.83 1589.7 1.18 34.4 0.281 0.62 0.107 0.99 

12 0.463 5.7 13.0 332 0.29 0.492 0.80 1706.9 1.21 16.4 0.344 0.63 0.118 1.00 

20 0.434 6.9 19.8 255 0.31 0.910 0.77 1677.5 1.33 24.8 0.364 0.57 0.132 1.00 
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(B) EIS modelling results for Au NPs 

Tim
e (hr) 

Lead Ion Circuit Bulk Counterion Circuit 

L
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R
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W
2 ) [μS s n] 

n (C
PE

W
2 ) 

σ (C
PE

cdl2 ) [μS s n] 

n (C
PE

cdl2 ) 
0.33 0.100 5.6 8.3 126 0.38 0.757 0.78 309.8 2.11 20.4 0.836 0.56 0.179 1.00 

2 0.293 5.3 26.5 55.6 0.42 0.539 0.80 858.2 1.39 38.8 0.411 0.56 0.126 1.00 

7.5 0.465 6.5 34.5 57.4 0.42 0.299 0.83 1662.2 1.22 47.7 0.331 0.61 0.102 1.00 

12 0.468 5.5 23.3 145 0.34 0.449 0.80 1840.9 1.22 20.5 0.472 0.57 0.107 1.00 

20 0.429 10.0 21.5 238 0.31 0.737 0.77 1871.8 1.27 51.5 0.396 0.57 0.135 1.00 
 
(C) EIS modelling element ratios (AuNP/Control) 

Tim
e (hr) 

Lead Ion Circuit Bulk Counterion Circuit 

L
lead 

R
lead 

R
ct1 

σ (C
PE

W
1 ) 

n (C
PE

W
1 ) 
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PE
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C
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R
 ct2  
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PE

W
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W
2 ) 
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cdl2 ) 

n (C
PE

cdl2 ) 

0.33 0.27 1.11 0.39 2.17 1.06 1.27 1.00 0.24 1.68 1.00 1.00 1.64 1.36 1.00 

2 0.84 1.09 0.79 0.85 1.02 1.09 1.00 0.75 1.09 1.32 1.20 0.98 1.07 1.00 

7.5 0.96 1.27 3.25 0.42 1.18 1.01 0.99 1.05 1.04 1.39 1.18 0.98 0.96 1.01 

12 1.01 0.97 1.79 0.44 1.19 0.91 0.99 1.08 1.01 1.26 1.37 0.91 0.91 1.00 

20 0.99 1.45 1.09 0.93 1.01 0.81 1.01 1.12 0.96 2.08 1.09 1.01 1.02 1.00 
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