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ABSTRACT 

This research presents the culmination of statistical, landscape, and geospatial analyses 

that examine the geographic dynamics of aboveground forest biomass (AFB) within the 

Missouri River corridor, Missouri USA. The Missouri River corridor is a region 

specifically within Missouri that encompasses 106,000 km
2
, and is regarded as a 

processing region for improving the viability of Missouri’s biomass/biofuel industry. 

Current and historic forest inventory data coupled with remote sensing, edaphic, 

physiographic, and climate variables were integrated into an ensemble regression tree 

method, Random Forest (RF), to estimate AFB, determine external driving forces of 

AFB, and visualize geographic locations where the greatest deviations exist between 

current and historic AFB values. The applicability of constructing a hybrid modeling 

framework using RF was initially tested in Chapter 2 by estimating current (observed 

data derived from Forest Inventory and Analysis) and theoretical (based on 20% of AFB 

found within Missouri) AFB, and calculating the percent change to determine percent 

changes in AFB across the landscape. The third chapter extended the RF modeling 

procedure to include historical information derived from General Land Office (GLO) 

data to estimate a baseline measure of AFB. Current AFB was again estimated and then 

compared to historic values where an additional synthesis was performed to investigate 

the top predictors of AFB. The fourth chapter examined a fuzzy logic approach for 

developing a suitability index based on available AFB. Available AFB was determined 

by applying physical constraints onto estimated AFB from the RF model, which included 

forest transitions and distance to rivers. The model results failed to reject our null 

hypothesis that there were no differences between observed and predicted AFB, and 



x 
 

model accuracy was very low for all AFB estimate. Results from these investigations 

indicated that 1) the greatest potential for increasing AFB may be along the floodplains of 

the Missouri and Mississippi Rivers, 2) areas that have the greatest potential to reach 

historic baseline levels of AFB also occur along the Missouri and Mississippi Rivers 

alluvial plains, 3) climate variables were the most important factors for estimating AFB, 

and 4) a coarse-scale decision process using multi-criteria, fuzzy logic exemplified the 

Mississippi and Missouri River floodplains, and associated Missouri River Alluvial 

Plains, as the most suitable locations for AFB production. 
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CHAPTER 1: INTRODUCTION 

 

A small grove massacred to the last ash, 

An oak with heart-rot, give away the show: 

This great society is going smash…. 

… A culture is no better than its woods. 

 

– W.H. Auden 

 

1.1 IMPETUS 

The use of renewable energy resources is becoming increasingly necessary to achieve the 

ambitious bioenergy targets set by the United States Energy Independence and Security 

Act (EISA), which mandated an increase in biofuel production from the current 45 billion 

liters to 136 billion liters per year by 2022 (EISA 2007). Rapidly increasing energy 

demands, however, are becoming a serious challenge for achieving a more sustainable 

and secure energy future. World-wide energy consumption is expected to rise 40% by 

2030 with a paralleled demand for fossil fuels estimated to rise approximately 77% 

(Bardhan and Jose 2012). The growth of different renewable energy sources such as 

wind, solar, and geothermal have varied in recent years; however, the development and 

advancement of wood-based bioenergy remains one of the most promising solutions for 

confronting the challenges of future energy demands (Zhuang et al. 2011). Total 

renewable energy production reached a new historic level of domestic energy supply in 

2013 where, according to the U.S. Energy Information Administration’s  Monthly Energy 

Review (DOE/EIA 2014), approximately 2.1 quadrillion British thermal units (QBtu) of 

renewable energy was derived from wood.  
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Aboveground forest biomass (AFB), specifically of primary residues from trees or 

tree parts, is the most common form of feedstock available for use as bioenergy (Thiffault 

et al. 2014). Wood has historically been used as a source for energy, accounting for 

approximately 91% of domestic consumption in the mid 1800’s (Aguilar et al. 2011), and 

remains a major source of energy for millions of people around the world. More than 200 

million people, primarily living in poverty, rely directly on forests for energy, shelter, and 

maintaining their livelihoods (Berndes et al. 2003; Pan et al. 2013). In richer parts of the 

world, there is an increase of interest in using AFB as a major source for abating fossil 

fuel reliance and subsequently, meeting regional and global goals set by governmental 

policies (e.g. EISA). Increasing the use AFB as a renewable source of energy is attractive 

because it is a resource that can be locally or regionally exploited, which is especially 

important for regions with highly productive landscapes, such as along major river 

corridors.  

River floodplains have the capacity to generate large-scale quantities of biomass 

to sustain regional biofuel production systems (Bardhan and Jose 2012). Specifically, the 

Missouri River corridor has large acreages of both marginal (less productive areas not 

traditionally used for foodgrain or fiber production) and productive lands, and is 

considered to have the greatest production potential in the U.S. (USDOE 2011). Previous 

studies have found that marginal lands along major river systems would be suitable to 

produce a substantial amount of AFB feedstock (Stanturf et al. 1998; Bardhan and Jose 

2012; Gopalakrishnan et al. 2011).  Bardhan and Jose (2012) suggest that the Missouri 

river has approximately 40 million ha suitable for AFB production.  
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In addition to being a source of energy, AFB provides many ecosystem services 

that include food, fiber, timber, medicine, clean water, aesthetics, spiritual values, and 

promotes carbon sequestration (Pan et al. 2013; Zheng et al. 2010). The increasing 

demand for producing energy from AFB has consequently triggered concerns about the 

sustainability of production and potential perturbations on ecosystems from over-

exploitation (Thiffault et al. 2014). A great deal of attention in now being placed on 

understanding where AFB is located and what potential it has to support future energy 

demands. Large landscape-scale assessments are needed for identifying suitable areas 

where AFB may be the best source of biomass feedstock, which could ultimately help 

abate conventional fossil fuel energy demands without depredating ecosystem services.  

1.2 REVIEW 

The U.S. is pursuing several options to generate renewable energy sources from biomass 

in an effort to reduce dependency on imported fossil fuels and mitigate greenhouse gas 

emissions (Zhang et al. 2011). AFB is an attractive energy source because it is abundant, 

cheap, and has additional environmental qualities such as nutrient cycling and 

biodiversity. Additionally, previous research has identified AFB as a key indicator for 

promoting diversity of carbon stocks and is considered an important factor in assessing 

consequences of global changes in tree species’ distributions (Zimmermann et al. 2007; 

Potter et al. 2008; Keith et al. 2009). Pan et al. (2013) provide an in-depth review of the 

structure, distribution, and biomass characteristics of the world’s forests; concluding, 

simply, that biomass densities have increased over time, becoming more dynamic, and 

future, technologically advanced research is needed to monitor and manage forested 

ecosystems of the world. Rapidly changing forest systems require advanced means of 

investigating and monitoring changes in biomass through time. Improved monitoring of 
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biomass dynamics can help managers, researchers, and industry leaders to understand the 

causes of such changes, which will also be critical for designing effective programs and 

policies that structure sustainable AFB management and enhance important ecosystem 

services of forests.  

Different approaches to estimate AFB have been developed and primarily focus 

on three main utilities: 1) field measurements, 2) remote sensing, and 3) methods for 

statistical analysis (Gallaun et al. 2010; Anaya et al. 2009; Baccini et al. 2004; Blackard 

et al. 2008). Remote sensing techniques have become prevalent in estimating AFB in 

recent years at various scales (Gasparri et al. 2010; Powell et al. 2010; Zheng et al. 2004; 

Anaya et al. 2009; Gallaun et al. 2010; Gleason and Im 2011). For example, strong 

correlations were found between spectral band information and biomass indices 

calculated from multi-temporal remote sensors (Gasparri et al. 2010). Powell et al. (2010) 

demonstrated the utility of an empirical modeling process that used satellite imagery in 

combination with forest inventory data to estimate and quantify trends in biomass 

dynamics. An early review of the potential and challenges of remote sensing in producing 

biomass estimations was provided by Lu (2005), which discussed how complex forest 

stand structures and environmental conditions cause great difficulty in estimating 

performance and additional analyses should be used in conjunction with remote sensing. 

Previous research has also shown that there is a lack of applicability in estimating AFB 

from each utility alone. For example, Lu et al. (2012) highlight four critical issues that are 

most often associated with remote sensing-based biomass estimation methods that 

included, an insufficient number of available sample plots, myriad metrics for biomass 

modeling, differences in allometric equations, and the use of suitable methods to conduct 
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uncertainty analysis of the estimates (Lu et al. 2012). Hybrid models that use 

combinations of data sources have been shown to improve model predictions (Baccini et 

al. 2004). Constructing hybrid modeling approaches for estimating AFB have also been 

shown to improve accuracy and promote greater ability to understand geographic 

dynamics of AFB at various spatio-temporal scales (Wulder et al. 2008; Blackard et al. 

2008; Zheng et al. 2008; Powell et al. 2010).  

Predicting biomass by relating field observations to environmental variables can 

significantly increase the predictive power of models (Guisan and Thuiller 2005); 

however, identification of suitable environmental variables for estimating AFB is 

difficult because there are myriad potential options.  Guisan and Thuiller (2005) suggest 

that optimal characterization of environmental variables should reflect three main types 

of influences: 1) limiting factors, 2) disturbances, and 3) resources. Zimmermann et al. 

(2007) used distributional gradients to characterize and predict future distributions on the 

basis of ecological niches characterized based on limiting, environmental factors and 

available resources. Additionally, distribution models were developed by Kearney and 

Porter (2009) by characterizing biophysical interactions between species’ functional traits 

and the physical environment in order to delineate species fundamental niches. A key 

factor specific to this dissertation research is the development of indicators for estimating 

AFB. There are many challenges in defining which variables may best represent potential 

suitability of AFB and determining how the membership of such variables to AFB 

potential may also be used to understand geographic availability within the Missouri 

River corridor.  
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1.3 VIEWPOINTS 

Increasing wood-based energy production is a contentious topic because of the duality 

between offsetting fossil fuels and threatening food security or increasing carbon 

footprints. For instance, alternative fuel mandates established through federal policies can 

have local implications where producing biofuels domestically may take land away from 

food production. Additionally, over the last 300 years the world economy has 

experienced an increasing separation between the locations of biomass production and 

actual consumption of biomass energy (Lambin and Meyfroidt 2010). The U.S., for 

example, has been a net importer of wood for approximately the last 90 years (Shifley 

2006). Consequently, importing large quantities of AFB over long distances could have a 

large impact on CO2 emissions into the atmosphere (Liu et al. 2013); therefore, it is 

becoming a critical issue to find a balance between growth, harvest, and consumption of 

AFB to maintain sustainability for future generations (Shifley 2006). Bardham and Jose 

(2012) suggest that second-generation feedstock production, specifically within river 

floodplains and marginal lands, have the greatest potential for increasing large landscape 

use of AFB feedstocks, especially along the Missouri and Mississippi River corridors.  

1.4 JUSTIFICATION 

In developing a strategy for managing AFB, it is necessary to acknowledge that forest 

ecosystems have limits for exploitation. Designing effective programs and policies that 

structure biomass extraction requires extensive evaluation and prioritization of suitable 

areas, especially at large landscape scales. Research on AFB has often been centered on 

modeling the physiologic characteristics of species and their ability to sequester carbon, 

thus offsetting fossil fuel carbon emissions (Cannell 2003). Additional research is needed 

to help support sequestration research, especially at broad, geographic scales. For 
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instance, evaluating the suitability of the landscape to maintain or increase existing AFB 

is important for supporting and guiding decision-making processes and to help prepare 

for technological advancement of lignocellulosic biofuel production. Digital maps that 

portray dynamics of AFB characteristics are emerging as critical tools for addressing the 

increasing need for carbon sequestration management, land-use monitoring, and general 

forestry applications (Liang and Zhou 2014). Several studies have used biomass density 

as a valuable baseline for predicting productivity or understanding changing distributions 

of species (Jose and Gillespie 1997, 1998; Zheng et al. 2004), especially after major 

deforestation from EuroAmerican settlement; albeit, standard, geographical methods are 

still needed to develop detailed spatial and environmental information for use in large 

landscape, ecosystem management decisions (He et al. 1998). Historical inventories and 

field-based studies, conducted prior to major land-use changes, may be used as a baseline 

measure to provide important information on AFB recovery and give insight into how 

much potential there is to reach or surpass historic conditions. 

1.5 OBJECTIVE 

The objective of this research was to determine geographic discrepancies in aboveground 

forest biomass (AFB) with respect to historic and current conditions, and identify suitable 

areas where increased AFB production could be possible within the Missouri River 

corridor. The following chapters of this dissertation involve a comprehensive assessment 

of the geographic dynamics of AFB using statistical and geospatial functions.  

The applicability of constructing a hybrid modeling framework using an ensemble 

regression tree method, Random Forest (RF), was tested in Chapter 2 for estimating 

current AFB quantities where observed information was obtained from the United States 

Forest Service Forest Inventory and Analysis (FIA) program. Aboveground forest 
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biomass was estimated using a series of remote sensing, edaphic, climatic, and 

physiographic predictor variables in the RF model. An additional analysis was performed 

based on the upper bounds of observed AFB for purposes of comparison, to illustrate 

theoretical potential of AFB, and better understand the geographic arrangement of areas 

with greatest differences in AFB across the landscape.  

The third chapter extended the RF modeling procedure to include historical 

information derived from General Land Office (GLO) survey data (a type of tree 

inventory originally established as a cadastral survey in the nineteenth century), to 

estimate historical AFB. Percent changes between historical and current AFB estimates 

were calculated to understand the where the greatest departures have occurred. An 

additional synthesis was performed to investigate the primary variables for estimating 

AFB. Finally, in the fourth chapter, geographic distributions of discrepancies and 

available quantities of AFB were refined by building physical constraints within a 

geographic information system (GIS). The resulting maps illustrated AFB availability 

based on physical constraints that prohibit AFB extraction under the premise of 

conservative exploitation for bioenergy purposes. A suitability map was then created that 

identified regional areas illustrating the greatest capacity for AFB production and 

likelihood for conservative exploitation to support bioenergy industry. 
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CHAPTER 2: Estimating aboveground forest biomass 

potential along the Missouri River corridor, Missouri USA 
 

Existing scientific concepts cover always only a very limited part of reality, and the other 

part that has not yet been understood is infinite. 

 

– Werner Heinsenberg 

 

2.1 ABSTRACT 

This study used a Random Forest (RF) approach to estimate aboveground forest biomass 

(AFB) at 30-meter resolution within the Missouri River corridor, Missouri USA.  Initial 

estimates were made for current conditions using data collected by the U.S. Forest 

Service Forest Inventory and Analysis (FIA) program. An additional modeling scenario 

was employed based on an upper threshold of FIA-derived AFB values to generate new 

estimates that reflected high AFB values potentially representative of theoretically 

optimal growing conditions. Percent changes between current and theoretical estimates of 

AFB were calculated and then summarized by ecological subsection (specific areas 

within Missouri that are delineated by similar ecological characteristics) to understand 

where current AFB had changed the most across the landscape. The RF procedure 

introduced forest inventory, remote sensing, and geospatial landscape datasets into an 

ensemble regression tree algorithm to estimate AFB and determine variable importance. 

Model validation was based on a comparison between RF estimates of AFB and 

estimates derived from FIA. The RF estimates for both current and theoretical models 

had very low coefficients of determination (R
2
=0.07 and 0.19, respectively) and the 

predictor variables exhibited a poor statistical relationship with AFB; however, when the 

current AFB estimates were summarized by ecological subsection, there was no 

significant difference from total averages of FIA-derived estimates (FIA = 94 Mg ha
-1
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and RF = 97 Mg ha
-1

, p = 0.06). Total average AFB for theoretical AFB estimates was 

122 Mg ha
-1

. Remote sensing variables were determined by RF to be the best predictors 

of current AFB, while elevation, pH, and slope were the top 3 estimators in the 

Theoretical AFB model. The percent change between the theoretical and current AFB 

estimates was derived and summarized again by ecological subsection where the greatest 

changes in AFB were found along the floodplains of the Missouri and Mississippi Rivers. 

This was a first attempt to estimate AFB within the Missouri River corridor using a RF 

procedure, which performed poorly and resulted in inaccurate estimates. The average 

AFB estimates in the current model summarized by ecological subsection were not 

statistically different from FIA estimate, which suggests that the 30-meter resolution 

scale was not appropriate from estimating AFB with the given predictor variables. The 

data used better reflects conditions at much broader scales, such as the ecological 

subsection scale, and could provide more insight into the broader implications of 

understanding where there may be the greatest potential to increase current AFB in 

Missouri forests. 
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2.2 INTRODUCTION 

The United States Energy Independence and Security Act (EISA 2007) has mandated the 

transition of the country towards a more sustainable energy future, and biomass-based 

alternative energy sources are being investigated as major contributors to meeting the 

mandated increases in bioenergy production (Bardhan and Jose 2012). Aboveground 

forest biomass (AFB) in particular is recognized as one of the largest sources of feedstock 

to use for renewable energy because there is a reliable baseload available within the 

continental U.S. (O'Laughlin 2009).  

Forest biomass makes up approximately 90% of all terrestrial vegetative biomass 

(Jenkins et al. 2001) and is continually growing (Shifley 2006; Stasko et al. 2011). The 

use of AFB as a feedstock for energy had reached 38 million dry tons per year (MDT yr
-

1
) in 2011 and is projected to rise over 50%, nearing 72 MDT yr

-1
 by 2017 (U.S. 

Department of Energy 2011). Advancing bioenergy system technologies coupled with 

pressure from increasing energy demands and consumption rates all suggest that AFB has 

potential to be a major contributor to the bioenergy industry and may help reach a 

sustainable energy future (Berndes et al. 2003). Total renewable energy production 

reached a new historic level for domestic supply in 2013 where, according to the U.S. 

Energy Information Administration Monthly Energy Review (April 2014), approximately 

2.1 quadrillion British thermal units (QBtu) of renewable energy was derived from wood; 

which is approximately 4.1% of the total primary energy consumption in the U.S. 

(USDOE 2011).  

Many investigations focus on estimating AFB for refining measures of carbon 

stocks or evaluating the sequestration potential of forested systems (Mani and 
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Parthasarathy 2007; Soratana et al. 2013; Zimmermann et al. 2007; Potter et al. 2008); 

however determining the potential of forested areas to meet increasing energy demands 

depends on the size and suitability of land dedicated to increasing AFB. Large acreages 

of land are necessary to make significant impacts on woody-fuel production and CO2 

sequestration (Righelato and Spracklen 2007), and estimating the potential to increase 

AFB is the first step to understanding where the best locations are to fully take advantage 

of existing AFB stocks (Shifley 2006). 

Concerns are continually rising about how large-scale land conversions for 

bioenergy development may impact food production or lead to adverse environmental 

externalities (Lovett et al. 2009; Havlík et al. 2011). The identification of suitable land 

area to potentially support a substantial feedstock among multiple competing land-use 

interests is an important avenue of research that employs a multitude of modeling 

schemes. A large portion of recent research efforts have focused on the estimation of 

biomass quantities specifically from energy crop plantations or monocultures (Hall et al. 

2011; Puhr and Donoghue 2000; Graham and Walsh 1999), and have often neglected 

estimations of standing biomass from heterogeneous, forested ecosystems. Evaluating 

biomass production at large geographic scales, as well as, determining important 

variables that drive biomass potential at larges scales will help develop a critical 

understanding of current biomass supply characteristics. This is especially important 

within floodplains or marginal lands along major river corridors where conditions are 

conducive for high biomass production but subject to frequent disturbances, such as 

along the Missouri River (Bardhan and Jose 2012).  
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In addition to a renewable energy source, AFB is a major component to the global 

carbon cycle and has been used as a proxy for determining the health and productivity of 

forested ecosystems (Brown et al. 1997; Cannell 2003; Stasko et al. 2011; Zheng et al. 

2010). An additional objective within the U.S biofuel policy is to increase the use of AFB 

to offset greenhouse gas emissions (EISA 2007; Bardhan and Jose 2012) and research 

that focuses on the geographic dynamics of AFB is a critical step towards understanding 

the potential for particular regions to lead the country towards meeting the mandated 

increases. The Missouri River corridor (MRC) and associated central hardwood forests 

within Missouri are exemplary ecosystems for investigating AFB dynamics because this 

region is uniquely positioned within the U.S. to support a thriving biofuel industry due to 

availability to large acreages of both marginal and productive lands that have a variety of 

soil types, favorable climate, and growing seasons, as well as, a wide range of competing 

land-use interests (agriculture, recreation, industry). In addition to favorable landscape 

characteristics, this region is considered to have a high biomass production potential 

because the forested systems along the MRC are still slowly recovering from widespread 

clearing after European settlement in the 19
th

 century. Variations in forest recovery rates 

from land-use changes have created regional disparities in the potential supplies of AFB 

(Nigh and Schroeder 2002; Becker et al. 2009) and evaluation of current geographic 

distributions may benefit management decisions that rely on landscape-level analyses. 

Estimating and spatially determining where AFB exists at a large landscape begins with 

developing a model that is capable of estimating AFB at larger scales (Righelato and 

Spracklen 2007).  
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Approaches for estimating AFB primarily focus on three main utilities: 1) field 

measurements, 2) remote sensing, and 3) landscape modeling; however, there is a lack in 

accuracy when estimating AFB from each utility alone (Powell et al. 2010; Potter et al. 

2008; Lu 2006; Zimmermann et al. 2007). For instance, forest inventory typically lacks 

the spatial resolution necessary to produce reliable, fine-grained information and remains 

insufficient as a single estimate of AFB over large landscapes (Zimmermann et al. 2007). 

Estimates of AFB from remotely sensed data contain fine resolution information but 

often fail to match estimates statistically derived from ground inventory (Zheng et al. 

2008); whereas hybrid models that use combinations of data sources have been shown to 

improve AFB estimates (Baccini et al. 2004; Wulder et al. 2008). Guisan and Thuiller 

(2005) suggested that optimal characterization of environmental variables should reflect 

three main types of influences: limiting factors, disturbances, and resources (Guisan and 

Thuiller 2005). The statistical models used to create AFB estimates at landscape scales 

also vary in type, performance, and ease of use. Specifically, Random Forest (RF), an 

ensemble regression tree method from the family of categorical and regression tree 

(CART) analyses, has gained much attention as a robust method for data mining and is 

capable of producing accurate predictions through its randomizing process. Prasad et al. 

(2004) examined the predictive performance of RF against three other statistical models, 

Regression Tree Analysis (RTA), Bagging Trees (BT), and Multivariate Adaptive 

Regression Splines (MARS) based on the differences between model performances when 

variables are randomly permuted throughout the modeling process. The results of the 

study reported RF to have superior predictive capability and interpretability of variable 

importance(Prasad et al. 2004).  
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Anthropogenic disturbances, such as those from European settlement, have had 

large impacts on forested ecosystems, leaving legacy effects that continue to influence 

current AFB conditions (Liu et al. 2007). Estimations of AFB potential using historical 

information can be used as a baseline to compare current AFB estimates and generate a 

chronological perspective on the dynamics of AFB between two periods of time 

(Rhemtulla et al. 2008). The basis for understanding the geographic distributions of the 

availability of biomass for energy production relies on two very important types of 

potential: 1) what would exist without major anthropogenic activities (theoretical), and 2) 

what is actually obtainable (available).   

The objective of this study was to test the applicability of RF for estimating AFB 

within the Missouri River corridor in Missouri, USA and to determine geographical 

distributions of biomass potential at regional scales. The first specific objective was to 

devise a hybrid modeling approach that introduced forest inventory, remote sensing, and 

geospatial landscape datasets into a RF model to estimate current AFB, determine 

variable importance, and map the available potential AFB. The second specific objective 

was to devise an approach that would best represent theoretical AFB characteristics that 

reflect no major anthropogenic disturbances, such as those from European settlement, and 

represent optimal growing conditions. The final objective was to compare the theoretical 

and available AFB estimates and assess the geographic locations of potential to increase 

AFB production. 

2.3 MATERIALS AND METHODS 

2.3.1 Study Area 

The Missouri River corridor (MRC) is approximately 106,000 km
2
, located within 

Missouri, USA, and includes the main channel of the Missouri River, associated 
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floodplain, alluvial terraces, and includes all rolling uplands (Figure 2-1). The MRC 

represents a shifting mosaic of portions of the hardwood forest that can be attributed to 

changes in land use over time (Nigh and Schroeder 2002). The associated geography 

consists of transitional ecotones comprised of two major landforms, Central Dissected 

Till Plain and Ozark Highland. The two major landforms are separated into 21 

subsections that represent similar ecological characteristics and landforms (Figure 2-2; 

Table 2-1).  

Land cover consists of a mosaic of cropland, pasture, and secondary growth 

woodlands with extensive past grazing influences (Nigh and Schroeder 2002). Mixed 

bottomland hardwood forests with oak (Quercus spp.), hickory (Carya spp.), and maple 

(Acer spp.) are limited to areas less subject to flooding, whereas near the riverfront, 

fluctuating water levels have created aggregations of vegetative communities that range 

from sandbars to stands of cottonwood (Populus spp.), willow (Salix spp.), maple (Acer 

spp.), and elm (Ulmus spp.). Upslope from the river valley are bluff forests dominated by 

mesophytic species such as maple and basswood (Tilia americana) (Kucera and 

McDermott 1955; Pallardy et al. 1988) while other land-cover types in the region include 

oak savannas and woodlands, mixed-hardwood forests, and occasional prairie and glade 

openings (Nigh and Schroeder 2002).  

The premise of the MRC is to define a potential processing region that can be 

used to guide the biofuel industry. Biomass feedstock collection and transportation are 

integral aspects of biomass use (Kumar et al. 2006), and understanding the viability of 

resources and potential transportation avenues are crucial components in achieving 

sustainable AFB exploitation. For instance, the per-ton transport costs of biomass are 
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primarily calculated on the basis of travel distances and fuel prices where the 

transportation costs are directly proportional to the distances that biomass sources are 

hauled from towards potential processing facilities (J. Leboreiro, A.K. Hilaly 2011). To 

maintain sustainable bioenergy production and delivery systems, it is advantageous to 

minimize distances between source and facility. For example Hacatoglu et al. (2011) 

conducted a feasibility study in the Great Lakes regions and estimated that approximately 

100 km
2
  of forested land area may harbor a sufficient amount of material in the upper 

Great Lakes region to help displace fossil material for energy production and capable of 

producing lignocellulosic biomass with minimal adverse impacts on food and fiber 

production (Hacatoglu et al. 2011). We defined a processing region specific to Missouri 

based on a 120 km buffer centered from each side of the Missouri River. This buffer 

potentially represents a feasible distance to create a positive effect on biomass financial 

competitiveness and signifies the most economic transportation distance that necessary to 

make the use of standing biomass for bioenergy purposes economically viable. 

2.3.2 Aboveground Forest Biomass 

We define aboveground forest biomass (AFB) as the total amount of living organic 

matter in trees present above the soil surface with a diameter at breast height (DBH) 

greater than 2.5 cm (1 inch). This definition is adopted by the United States Forest 

Service (USFS) and includes the minimum DBH observed by the Forest Inventory and 

Analysis (FIA) program. The FIA program of the USFS produces comprehensive data on 

the status, changes, and trends in the conditions of all forest ecosystems within the U.S. 

(Woudenberg et al. 2010). The FIA program provides plot-level information on 5-year 

cycles that includes, but is not limited to, species, size, growth, mortality, site index, 
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carbon, and biomass.  FIA information is designed for use in regional monitoring of 

forest lands and is suitable for landscape level studies (Moser et al. 2010).  

The spatial locations of FIA plots are confidential and data acquisition was 

required to be coordinated with personnel from FIA Spatial Data Services, and a 

confidential agreement form signed. The latest cycle of FIA inventory information (2006-

2011) was requested from FIA personnel. To further maintain FIA plot spatial 

discrepancy, FIA personnel also requested that no more than 20 variables could be used 

to construct a model for estimating AFB. We gathered all geospatial layers (explanatory 

variables used in the RF model to estimate AFB) and transferred them to multiple digital 

versatile discs (DVD) to send via U.S. postal service to the FIA main headquarters 

(Northern Research Station, Newtown Square, PA). An overlay analysis was performed 

by FIA where all plots and associated AFB values were attached to the explanatory 

variable values and a tabulated document with all AFB values was sent back via email.  

We used the total number of AFB values calculated by FIA personnel as the 

observed dataset to train and validate the actual RF model. We used a Student’s T-test for 

means (α = 0.05) to validate the actual RF model with FIA. In addition to extracting AFB 

values for all plots, we requested that FIA also summarize the top 20% of the greatest 

AFB values form each ecological subsection. We used the top 20% of the greatest AFB 

as a theoretical baseline to simulate elevated biomass conditions representative of historic 

AFB levels prior to European settlement (circa 1800s). We made the assumption that 

AFB levels were historically greater than currently based on previous literature that 

suggested activities from European settlers severely modified bottomland and floodplain 

vegetation where up to 95% of forests were eliminated along the Missouri River basin 
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(He et al. 2007) from river channelization, forest clearing, and urban sprawl (Moser et al. 

2006; Rhemtulla et al. 2008; Hanberry, Kabrick, et al. 2012). Thus, the top 20% of the 

greatest AFB values was deemed a reasonable threshold to use as the theoretical potential 

to reflect higher biomass values than are observed currently. We also only investigated 

total AFB (not focusing on specific species or functional groups) and treated all AFB 

plots as static in time; not including any possible influences from disturbance, age 

structure, or diameter distributions of trees. This information was not available and could 

not be implemented into this modeling scheme. 

2.3.3 Landscape Variables 

Twenty variables that reflected 4 categories: 1) remote sensing (vegetation), 2) soil, 3) 

terrain, and 4) climate, were used to estimate AFB within the MRC (Table 2-2). Five 

remote sensing variables (Normalized Difference Vegetative Index, Normalized 

Difference Water Index, Tasseled-Cap Brightness, Tasseled-cap Greenness, and 

Tasseled-cap Wetness) were derived from a composite of 11 30-meter resolution Landsat 

Thematic Mapper (TM) satellite images (Table 2-3). We acquired the images from the 

Multi-Resolution Land Characteristics Consortium (http://www.mrlc.gov/, accessed May 

2011), which provided at-sensor reflectance data. Normalized Difference Vegetation 

Index (NDVI) is a popular band ratio often used for determining biomass distributions 

because it has been shown to have a good relationship with vegetation characteristics 

indicative of biomass, such as leaf area and chlorophyll content (Gasparri et al. 2010). 

NDVI was calculated based on the combination of red and near-infrared bands according 

to the following equation:  
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 eq. 1 

where NDVI is the ratio between the difference (numerator) and summation 

(denominator) of near-infrared (NIR) and red (R) spectral bands. The Normalized 

Difference Water Index (NDWI) was also used because it is a good indicator of healthy 

vegetation and is based on the following equation:  

      
        

        
           

 eq. 2 

where NDWI is the ratio between the difference (numerator) and summation 

(denominator) of near-infrared (NIR) and Green (G) spectral bands, which are within the 

water absorption band centered at 1200 nm (Gao 1996). A tasseled-cap transformation of 

the Landsat reflectance values was performed to extract 3 additional variables: 

brightness, greenness, and wetness (TCB, TCG, and TCW, respectively), where recently 

disturbed forest land exhibit high values of TCB, low TCG, and low TCW in relation to 

an undisturbed forested area (Healey et al. 2005). All remote sensing transformations and 

index calculations were performed in ERDAS IMAGINE
®
 2011.  

We used annual mean temperature and precipitation seasonality (i.e. seasonality 

as measured by the coefficient of variation in precipitation) (BIO_01 and BIO_15, 

respectively) as climate variables to estimate AFB, which were acquired from the 

WorldClim database. The Worldclim database provides freely available global climate 

data for spatial modeling (www.worldclim.com, accessed May 2011). We derived 6 

topographic variables from a 30-meter resolution Digital Elevation Model (DEM), which 
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is a cartographic dataset of elevation values. The DEM was obtained from Missouri 

Spatial Data Information Services where, in addition to elevation, the following metrics 

were derived in a Geographic Information System (GIS): aspect, slope, topographic 

wetness, ruggedness, and topographic position. We also extracted 7 soil variables that 

were representative of the top 20 cm of the soil surface (sand, silt, clay, coarse fragment, 

pH, hydraulic conductivity, and organic matter). These variables were obtained from the 

United States Department of Agriculture Natural Resource Conservation Service’s Soil 

Data Viewer v6.0 (NRCS 2011). The Soil Survey Geographic Database (SSURGO) is 

part of the National Cooperative Soil Survey of Missouri where all soil information 

collected for the state ranges in scales from 1:12,000 to 1:63,360.  

We resampled the soil information to fit a 30m resolution, and stratified by 

ecological subsections (Table 2-2). Ecological subsections are natural divisions within 

Missouri that are categorized based on similar environmental characteristics (soil, 

climate, topography, human-alteration) and integrate numerous physical and biological 

components that are used to establish boundaries for landscape-scale ecosystem studies 

(Nigh and Schroeder 2002).  

2.3.4 Biomass Estimation 

We used Random Forest (RF) (Breiman 2001) in R statistical software (Liaw and Wiener 

2002; R Development Core Team 2011) as the modeling platform to predict AFB and 

determine variable importance. Parameterization of the model included the number of 

bootstrap samples to initiate (ntree = 1500), and the number of randomly chosen predictors 

to split along each regression tree (mtry = 4). The coefficient of determination (R
2
) was 

used as the statistical measure for model fit and the mean absolute error (MAE) was used 
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to assess the size of the prediction error per model (Miehle et al. 2006). Ecological 

subsection boundaries were used to summarize, compare, and validate AFB estimates 

with observed FIA AFB data (Figure 2-2).  

2.3.5 Random Forest 

Random Forest is a non-parametric, ensemble regression tree method that grows branches 

and nodes based on random subset sampling from a pool of variables (Boulanger et al. 

2013). Regression trees are constructed using different bootstrap samples of the data, 

which changes how the regression trees are constructed per iteration. In standard 

classification and regression tree analyses, after a single regression has been completed, a 

node is created where a split is determined based on the best predictor. When trees are 

grown in RF, randomly selected subsets of variables are used to split at each node and the 

process is repeated using new bootstrap samples to create a large number of trees. The 

number of variables and iterations used in the model is decided by the user (mtry and 

ntree parameters in the RF code) and the final prediction is an average across all 

regression trees (Breiman 2001; Cutler et al. 2007; Prasad et al. 2004). 

Variable importance is determined by the model using a permutation process of 

the original (training) and out-of-bag (OOB) data. OOB data are defined as those 

variables that were left out of the random selection process during the construction of 

each tree. When regression trees are generated, the prediction error for both the training 

and the OOB variables are recorded and the difference, normalized by the standard 

deviation of the differences, is averaged over all trees. The variables that create large 

changes in model predictions result in an increase in mean square error (MSE) and are 

considered to contribute more to the model (Prasad et al. 2004). The importance value 

indicates how much a variable increases the MSE when randomly permuted, which 
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means when a variable is less important, it will have limited contribution to the prediction 

and results in very small changes in MSE. On the other hand, variables that are important 

cause larger changes in predictions when that variable is removed; this results in larger 

MSE values. Variable importance output from RF can be used to determine which 

variables best represent the response variable and may be used to narrow down the 

number of variables sufficient to make parsimonious predictions.  

RF has many advantages over other statistical models because it provides well-

supported predictions and classifications (Prasad et al. 2004; Cutler et al. 2007; 

Boulanger et al. 2013), and enables the user to generate rapid, straightforward output. 

Additionally, RF is capable of handling large non-linear data sets or variables that suffer 

from collinearity (Prasad et al. 2004; Cutler et al. 2007; Boulanger et al. 2013).  

2.4 RESULTS 

 

2.4.1 AFB Estimation 

The initial AFB estimates from the RF model was processed for every pixel across the 

study area. To acquire total quantities of AFB, we used the 2011 National Landcover 

Database (NLCD 2011) to select only forested pixels used for summarizing AFB. Total 

AFB estimated by FIA inventory data was 3.0 x 10
8
 Mg. There was a poor statistical 

relationship between observed FIA and estimated current AFB (R
2
= 0.07). (Figure 2-3). 

There was also no statistical relationship between observed FIA AFB and theoretical 

AFB estimates (R
2
= 0.19) (Figure 2-4). For the current RF model, a total of 1300 FIA 

plots was used for training where AFB was estimated at 3.4 x 10
8
 Mg (RMSE = 14.4 Mg 

ha
-1

, MAE = 11 Mg ha
-1

) (Table 2-5). The theoretical RF model used 168 FIA plots to 

train the model which estimated AFB at 4.2 x 10
8 
Mg (RMSE = 13 Mg ha

-1
, MAE = 10 
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Mg ha
-1

), respectively. We then quantified average AFB per ecological subsection where 

the total averages of AFB for the current, theoretical, and FIA models was 93 Mg ha
-1

, 

121 Mg ha
-1

, and 94 Mg ha
-1

, respectively (Figures 2-5, 2-6, 2-7 and Table 2-5). There 

was no statistical difference between average AFB estimated by RF and that originally 

observed by FIA (p = 0.06) (Table 2-6). There was a good statistical relationship between 

the summarized averages of FIA and RF AFB per ecological subsection (R
2
 = 0.6, N=21) 

(Figure 2-8). 

2.4.2 AFB Differences 

To illustrate the geographic distribution of potential to increase AFB production, the 

percent change between theoretical and current AFB estimates were calculated and then 

summarized by ecological subsection where AFB differences ranged between 16 to 53 

Mg ha
-1

 (Figure 2-9). The greatest differences between model estimates were found along 

the Missouri River Alluvial Plains subsection and associated tributaries surrounding the 

Missouri River. The lowest differences between the current and theoretical model 

estimates of AFB were found within the Missouri Ozark region.  

2.4.3 Variable Importance 

The variable importance plot generated from the RF procedure revealed interesting 

patterns with regards to the contribution of specific variables in estimating AFB (Figure 

2-10). For instance, the five remote sensing indices included in the model represented the 

most important variables for current model estimates of AFB where the tasseled-cap 

brightness (TCB) index was the best predictor followed by normalized difference water 

index (NDWI), tasseled-cap greenness (TCG), normalized difference vegetation index 

(NDVI), and tasseled-cap wetness (TCW). This was completely opposite to the 
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theoretical model estimates where the top predictors were elevation, pH, slope, and then 

temperature. All remote sensing indices contributed minimally to the model estimates of 

theoretical AFB and were placed near the bottom of the variable importance plot. 

Additionally, the second climate variable (precipitation) did not contribute to the 

theoretical model as much as was seen in the current AFB estimates. An additional 8 soil 

and physiographic variables separated the two climate variables in the theoretical model. 

The least important variable for both estimates was topographic wetness index (TWI).  

2.5 DISCUSSION 

2.5.1 Aboveground Forest Biomass Estimates 

Missouri ecological subsections are landmasses that were delineated based on similar 

ecological characteristics and are used primarily for landscape-scale assessments. 

Landscape scale analyses are important for informing forest planning decisions because 

they provide big-picture information about ecosystem characteristics and landscape-scale 

patterns. Defining geographic areas that may be more important than others is a critical 

element in landscape planning processes, especially when multiple management 

objectives exist, such as along the Missouri River corridor. In the context of this study, 

Random Forest did not perform well in estimating current AFB at the pixel scale; 

however, a more informative relationship was observed when average AFB estimates 

were compared at the ecological subsection scales, where the total AFB averages 

between current RF and FIA were not statistically different. This may suggest that the 

predictor information may not be appropriate for such small-scale estimating; rather it 

may be more appropriate for estimating AFB at the subsection scale.  
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There were approximately 1400 FIA plots placed throughout the 106,000 km
2
 

study area, which were used to train both RF models (Current and Theoretical). FIA 

information is most often used for coarse-scale assessment and certainly was not 

sufficient for creating a relationship between AFB and associated predictor variables at 

the 30-meter resolution pixel scale. By calculating the averages of AFB estimates for a 

larger area, we were able to capture enough information from all AFB estimates found 

within a single subsection to produce a statistically relevant relationship between average 

AFB values. As a result, average AFB estimates at the subsection-scale has potential to 

be used to inform only ecosystem-management decisions that focus on landscape-scale 

activities within Missouri.  

Theoretical AFB estimates from the RF model resulted in subjectively reasonable 

averages per ecological subsection. We constructed the theoretical model using training 

data that consisted of the top 20% of the greatest AFB values from FIA information but 

we were unable to know the geographic locations of the top 20% due to FIA 

confidentiality restrictions. We chose the top 20% of the greatest biomass values to 

simulate historic conditions to construct a baseline to compare current estimates with. 

This decision was based on the assumptions that historic biomass quantities were once 

much greater than what is observed today, which could only be validated using published 

information on ranges of old-growth biomass estimates. The averages calculated for 

theoretical AFB estimates per ecological subsection fell below published averages from 

more notably high biomass regions of the U.S. For instance, Johnson and Bell (1976) 

documented that old growth forest in Illinois reached quantities between 150-300 Mg ha
-1 

(Johnson and Bell 1976) while the lower biomass fraction of old growth forests found in 
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the Pacific Northwest have been estimated to reach 400 Mg ha
-1

 (Smithwick et al. 2002). 

The values reported from previous studies provided a range of values to fit our model to 

and compare our current AFB estimates with, thus providing information on how much 

and where AFB had changed.  

We calculated the percent differences between current and theoretical AFB 

estimates for all forested pixels in order to ascertain information regarding how much and 

possibly where the greatest changes in AFB have occurred. Our calculations indicated 

that the greatest differences in AFB were within alluvial plains of the Missouri and 

Mississippi Rivers. These types of systems exhibit highly fertile and well-drained soil 

that is favorable for growing biomass, and this is where the majority of agriculture exists 

for Missouri (Nigh and Schroeder 2002). These areas quickly transitioned from forests to 

agricultural systems during European settlement and have persisted since, and can be 

attributed to the greatest calculated differences between current and theoretical AFB.  

In addition, alluvial systems are prone to disturbances from flooding, which may 

have also contributed to the large differences calculated between AFB estimates. The 

geographic locations of the calculated percent changes suggests that additional 

investigations should focus on using measures of disturbance as additional predictors for 

estimating current AFB. Disturbances are critical components of alluvial landscape and 

may have aided in constructing a better-fit model.  

2.5.2 Variable Importance 

The variable importance plots for the current AFB RF model revealed that all 5 remote 

sensing indices were top variables for estimating AFB. These specific remote sensing 

indices are often used in biomass estimation studies because they are indicative of 
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healthy, productive forest vegetation. In particular, NDVI and NDWI are known to be 

good descriptors of biomass because their reflectance values saturate from high water 

content found in healthy vegetation. In contrast, the remote sensing indices ended up 

being negligible for estimating theoretical AFB.  This may be a result of saturation in 

remote sensing values from within higher biomass areas. 

For the theoretical model, elevation was the top variable for estimating AFB 

followed by a mixture of soil and topographic variables then a climate variable (annual 

mean temperature). For the current model, Precipitation Seasonality (Coefficient of 

Variation) and Annual Mean Temperature immediately followed the remote sensing 

variables in importance for estimating AFB. Missouri is regarded as having an inland 

(continental) type of climate with strong seasonality due to having a relatively flat 

topography (http://www.crh.noaa.gov/); therefore, elevation may be a factor affecting 

temperature; however, given the low accuracy of the model, we suggest that elevation 

only plays a small role in explaining the variation in AFB and that additional factors such 

as disturbance should be used in future research methods for estimating AFB. 

Precipitation, which has a distinct northwest to southeast gradient, was ranked just under 

the remote sensing variables, which may suggest that precipitation has a small role in 

driving AFB distributions within Missouri (Figure 2-11); albeit minimal due to the poor 

model estimation.  

Overall, climate can be a major stressor for forested ecosystems due to increased 

variability in extreme weather events (IPCC 2007), which could explain the relative 

importance of both variables for estimating current AFB. The importance of both climate 

variables could also be due in part to interactions between regional-scale distributions of 
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AFB and potential local-scale responses of AFB to multiple additional environmental 

drivers that we could not add into the model (Brzostek et al. 2014). 

The hybrid RF procedure did not perform well, and the results were shown to be 

inconclusive for identifying major environmental mechanisms (soil, topography, or 

climate) driving AFB estimations. Top predictors may be discussed; however, they were 

top predictors for a model that was not able to explain very much variation. Estimating 

AFB at 30-m resolution had shown to be an ineffective strategy for identifying 

concentrated areas where major differences in AFB occurred. A relationship between 

observed and predicted AFB estimates was formulated after summarizing AFB 

estimations at the ecological subsection scale. An improved relationship was formulated 

most likely because the scales of FIA data and predictor variables were only adequate at 

this larger landscape-scale. Additionally, the theoretical AFB estimates were within other 

published ranges of high biomass values; however, this information does not provide 

enough information to fully realize this as an accurate baseline measure of AFB within 

Missouri. Rather, the top 20% of AFB used for estimating should be considered 

experimental.  Future research needs to include true historical data, such as GLO tree 

information, as well as, additional factors like disturbance to establish a quality baseline 

measure and understand true differences between potential and available AFB. 

2.6 CONCLUSION 

This study provided a first, regional assessment of AFB along the Missouri River corridor 

using a RF, hybrid modeling approach. Random Forest did not perform well at the 30m 

pixel resolution but a small statistical relationship could be formed after summarization 

of estimated AFB values at ecological subsection scales. The RF approach was capable of 

identifying primary drivers of AFB estimation; albeit with a very low relationship to 
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observed data. This type of modeling procedure may only be used for large landscape 

scale assessments and should be used with caution if applied to help guide ecosystem 

management objectives.   
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Figure 2 - 1: The Missouri River Corridor by a 120 km (75 mile) buffer centered 

from the Missouri River.  

 



32 
 

 
 

Figure 2 - 2: Ecological subsections within the Missouri River Corridor.  
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Figure 2 - 3: Model fit (red line) between observed FIA and Random Forest AFB 

estimates. The blue dashed line indicates the 1:1 relationship.  
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Figure 2 - 4: Model fit (red line) between the observed upper-bound ranges of FIA 

data and Random Forest AFB estimates. The blue dashed line indicates the 1:1 

relationship.  
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Figure 2 – 5: Average aboveground forest biomass estimates from FIA summarized 

by ecological subsection.  
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Figure 2 - 6: Average aboveground forest biomass estimates for the current Random 

Forest model summarized by ecological subsection. The theoretical estimates were 

derived from upper bounds of the original FIA data, defined as the top 20% AFB 

for each ecological subsection. 
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Figure 2 - 7: Average aboveground forest biomass estimates for the Theoretical 

Random Forest model summarized by ecological subsection. The theoretical 

estimates were derived from upper bounds of the original FIA data, defined as the 

top 20% AFB for each ecological subsection. 
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Figure 2-8: Model fit (red line) between observed (FIA) and predicted (RF) average 

estimates of AFB summarized by ecological subsection (N=21). The blue dashed line 

indicates the 1:1 relationship.    
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Figure 2 - 9: Percent change between upper-bound (theoretical) and actual (FIA) 

aboveground forest biomass estimates from a Random Forest procedure.   
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Figure 2 - 10: Variable importance plot of all variables used to estimate 

aboveground forest biomass in a Random Forest model procedure.  
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Figure 2-11: maps illustrating (A) The extent of variability in Precipitation seasonality 

(Coefficient of variation) and (B) distributional gradients of annual mean temperature. 
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Table 2 - 1: Ecological subsection descriptive information.  

 

Subsection 

Name 

Total Area 

(ha) 

Forested Area 

(ha) 

Proportion 

Forested 

Black River Ozark Border 7.6x10
4
 6.0x10

4
 78.4 

Central Plateau 7.7x10
5
 3.6x10

5
 47.5 

Chariton River Hills 7.0x10
5
 2.0x10

5
 27.9 

Cherokee Plains 1.7x10
5
 3.9x10

4
 22.5 

Claypan Till Plains 9.2x10
5
 1.3x10

5
 14.7 

Current River Hills 6.7x10
4
 5.9x10

4
 88.1 

Deep Loess Hills 1.6x10
5
 1.0x10

4
 6.7 

Dissected Till and Loess Plains 1.7x10
6
 3.3x10

5
 18.0 

Gasconade River Hills 3.6x10
5
 2.2x10

5
 66.3 

Inner Ozark Border 5.0x10
5
 2.3x10

5
 53.4 

Loess Hills 99.8x10
5
 1.6x10

5
 16.3 

Meramec River Hills 4.6x10
5
 3.6x10

5
 78.3 

Mississippi River Alluvial Plain 8.1x10
4
 1.3x10

4
 15.6 

Mississippi River Hills 5.0x10
5
 1.8x10

5
 36.8 

Missouri River Alluvial Plain 4.3x10
5
 4.0x10

4
 9.3 

Osage River Hills 5.3x10
5
 3.4x10

5
 64.0 

Outer Ozark Border 8.7x10
5
 4.0x10

5
 45.8 

Prairie Ozark Border 2.3x10
5
 5.6x10

4
 24.6 

Scarped Osage Plains 9.4x10
5
 1.7x10

5
 18.4 

Springfield Plain 2.0x10
3
 9.9x10

2
 52.4 

St. Francois Knobs and Basins 22.2x10
5
 1.5x10

5
 68.2 
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Table 2 - 2: Description of environmental variables used to estimate aboveground 

forest biomass in a Random Forest modeling procedure.  

 

Environmental 

Group 

Variable 

Code Description 

Climate 
BIO_01 Mean annual temperature (Celsius) 

BIO_15 Covariation annual precipitation (inches) 

Soil 

SAND Sand content (%) 

SILT Silt content (%) 

CLAY Clay content (%) 

OM Organic matter content (%) 

CF Coarse fragments (%) 

PH The sum of NH4OAc extractable bases (pH 7.0) 

KSAT Hydraulic Conductivity 

Topography 

ELEV Elevation (ft) 

ASP Aspect (Degree) 

SLOPE Slope (%) 

TPI Topographic Position Index 

TWI Topographic Wetness Index 

VRM Vector Ruggedness Index 

Remote Sensing 

NDVI Normalize Difference Vegetation Index 

NDWI Normalized Difference Wetness Index 

B* Brightness 

G* Greenness 

W* Wetness 

*Derived from tasseled-cap transformation.   
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Table 2 - 3: Remote sensing image descriptions.   

Spacecraft ID: Landsat 5 

Sensor ID: TM 

 Product Type: L1T 

Path 

Number 

Row 

Number 

Acquisition 

Date 

23 34 Aug-10 

24 33 Jul-11 

24 34 Jul-11 

25 32 Jun-10 

25 33 Jul-11 

25 34 Aug-11 

26 32 Aug-10 

26 33 Jul-11 

26 34 Jul-11 

27 32 Jul-11 

27 33 Jun-11 
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Table 2 - 4: Average aboveground forest biomass (AFB) estimates for the observed 

data from Forest Inventory and Analysis (FIA), Random Forest (RF) estimates of 

actual AFB (Actual), and RF estimates of theoretical AFB (Theoretical) summarized 

by ecological subsection.  

 

SUBSECTION 

FIA 

(Mg ha
-1

) 

Actual 

(Mg ha
-1

) 

Theoretical 

(Mg ha
-1

) 

Black River Ozark Border 105.33 96.65 107.79 

Central Plateau 83.27 91.44 107.99 

Chariton River Hills 82.62 88.08 130.82 

Cherokee Plains 90.79 91.28 130.82 

Claypan Till Plains 104.03 91.07 130.01 

Current River Hills 93.64 95.04 117.57 

Deep Loess Hills 100.44 97.45 124.97 

Dissected Till and Loess Plains 86.01 88.39 133.70 

Gasconade River Hills 86.04 92.75 111.40 

Inner Ozark Border 104.84 95.48 120.25 

Loess Hills 96.42 94.16 122.06 

Meramec River Hills 93.39 95.00 121.19 

Mississippi River Alluvial Plain 93.66 88.22 145.61 

Mississippi River Hills 106.18 93.40 126.38 

Missouri River Alluvial Plain 93.30 90.25 135.59 

Osage River Hills 89.34 93.56 114.06 

Outer Ozark Border 103.37 96.40 126.48 

Prairie Ozark Border 104.93 94.75 114.59 

Scarped Osage Plains 96.64 93.48 123.72 

Springfield Plain 78.30 90.84 100.07 

St. Francois Knobs and Basins 85.81 93.05 115.68 

AVERAGE 94.21 92.89 121.94 
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Table 2 - 5: Random Forest model statistical summaries between current (FIA) and 

theoretical (Upper-bound FIA) aboveground forest biomass estimates.  

MODEL METRIC  CURRENT THEORETICAL 

Total AFB Estimates 3.4 x10
8
 Mg 4.2 x10

8
 Mg 

Total Average AFB Estimates 97 Mg ha
-1

 121 Mg ha
-1

 

Mean Absolute Error (MAE) 11.38 Mg ha
-1

 9.94 Mg ha
-1

 

Root Mean Square Error (RMSE) 14.39 Mg 12.86 Mg 

Coefficient of Determination (R
2
) 0.07 0.19 
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Table 2 - 6: Paired two sample t-Test for means of average estimates of AFB 

summarized by ecological subsection between FIA and the Current RF Model.  

 

  RF Current FIA 

Mean (Mg ha
-1

) 97.13  94.13  

Standard Deviation (Mg ha
-1

) 24.63 8.58 

Observations (n) 21 21 

Pearson Correlation 0.78 

 df 20 

 t Stat 2.00 

 P(T<=t) two-tail 0.06 

 t Critical two-tail 2.09   
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CHAPTER 3: Determining environmental controls driving 

discrepancies between historic and current aboveground forest 

biomass along the Missouri River corridor, Missouri, USA 

 

[T]he way to deal with large-scale complexity is to search for overriding simplicity. 

Sometimes, this turns out to be old-fashioned common sense. 

– Eugene Odum 

 

3.1 ABSTRACT 

Aboveground forest biomass (AFB) is an integral component in assessing the status of 

forested ecosystems, and changes in distributions are considered a critical proxy for 

determining effects of global climate change. Additional information on how the abiotic 

environment may influence variations in biomass remains a critical point of research, 

especially at large landscape scales. Landscape models are important tools for ecologists 

to geographically visualize feedbacks between AFB and abiotic controlling factors. This 

investigation used a series of abiotic factors consisting of soil, topography, and climate 

characteristics to estimate current and historic AFB, and spatially determine percent 

changes between the two estimates of AFB at large landscape scales along the Missouri 

River corridor, located in Missouri, USA. Random Forest (RF), an ensemble regression 

tree method, was used as the main procedure to estimate AFB across the landscape and 

determine variable importance. All estimates were conducted at a 30-meter spatial 

resolution and then summarized by ecological subsections, which are natural divisions 

within Missouri categorized by similar environmental characteristics. The RF model 

produced very poor estimates of AFB for both the historic (R
2
= 0.1) and current (R

2
= 

0.02). Despite inaccurate model estimates, the best predictors of AFB determined by the 

RF model were climate variables (Annual Mean Temperature (Bio_01) and Precipitation 
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Seasonality (Coefficient of Variation) (Bio_15)) for both historic and current estimates of 

AFB. We also calculated the percent changes between historic and current models, which 

were an average of - 63% decline in AFB from historical values along the Mississippi, 

Missouri River alluvial plains, and St. Francois Knobs and Basin subsections. The 

smallest percent changes that were summarized by ecological subsection (< 50%) 

occurred within the Central Plateau subsection, along the southern portion of the study 

area and the Deep Loess Hills subsection, found in the upper northeast corner of 

Missouri. This investigation could not account for recent harvests within FIA plots, 

which may have led to poor estimates of current AFB. Although the model did not 

perform well, what we can ascertain from the given results illustrate was that major there 

was a major decline in AFB, which may due to large-scale variations in recovery rates 

from major landscape clearing for agriculture during European settlement. The two 

climate variables (BIO_01 and BIO_15) were the top predictors of AFB for both models; 

however, because of the poor model performance for both models, the variable 

importance results cannot be used as sufficient evidence for determining specific drivers 

of AFB; albeit it has been noted that changes in both precipitation and temperature are 

increasing the vulnerability of forests to changes in AFB disturbances. 
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3.2 INTRODUCTION 

The burning of fossil fuels is the primary source of atmospheric CO2, which makes up 

approximately 60 percent of total greenhouse gas emissions in the U.S. (IPCC 2007). 

Concentrations are expected to continue rising unless major social and environmental 

changes are made to help limit dependency on fossil fuels. To lessen this dependency and 

strengthen energy independence, the U.S. Energy Independence and Security Act of 2007 

(EISA) mandated an increase in production of renewable fuels from 9 billion gallons in 

2008 to 36 billion gallons by 2022 (EISA 2007). The demand to meet alternative fuel 

needs, however, remains a contentious topic because of potential environmental, political, 

and cultural implications associated with competing land-use interests. An avenue that is 

currently under investigation to help meet alternative energy needs and abate conflicting 

interests is using existing stands of biomass, as well as forest stands on marginal lands, 

for wood production and investment in the wood-based bioenergy industry.  

 Aboveground forest biomass (AFB) is receiving a great deal of attention as an 

alternative source for energy within the United States (Bardhan and Jose 2012; Smeets 

and Faaij 2007; Houghton et al. 2009). One reason for the attention is that AFB has 

several environmental advantages compared to fossil fuels. First of all, carbon is released 

into the atmosphere from both fossil fuels and AFB; however, fossil fuels release carbon 

into the atmosphere that was buried for millennia, whereas burning AFB releases carbon 

that was sequestered in plants for hundreds of years (Goerndt et al. 2012). Additionally, 

reforestation or planting dedicated crops to replace harvested wood will be able to 

sequester an amount of carbon equivalent to that released by burning woody biomass 

(Hoogwikj et al. 2003). In fact, under current conditions, AFB is capable of capturing and 
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storing more than 270 million tons of carbon per year (USDOE 2011).  

 Forest biomass has steadily been recovering from major disturbances from 

European settlement during the late 18
th

 century (Hanberry, Palik, et al. 2012). 

Approximately 33 percent (304 million hectares) of U.S. land area is now forested (Smith 

et al. 2007) and is projected to continually increase leading to potential abundance of 

biomass feedstock available to use within the biofuel industry. The sources of wood are 

likely to come from two sources, residues left over from logging activities and individual 

trees from overstocked forest stands (Goerndt et al. 2012). The need for alternative 

sources of energy rising and Missouri harbors a considerable base load of AFB that could 

possible used to some capacity for energy production but the question of how much and 

where remains open. Research is now focusing on assessing the spatial locations and 

changes in AFB over large landscapes to understand where and in what quantities 

exploiting AFB for bioenergy may be possible (Berndes et al. 2003; Shifley 2006; 

O'Laughlin 2009). 

Considerable efforts have focused on remote sensing technology to estimate AFB 

at various scales using passive (Lu 2006; Anaya et al. 2009) and active (Zolkos et al. 

2013; Kellndorfer et al. 2010) sensory information. Models generated from remotely 

sensed data contain fine resolution information to define structural attributes of forest 

stands, but lack the ability to accurately match robust estimates statistically derived from 

ground-based forest inventory (Zheng et al. 2008). Remote sensing information is also 

unable to address historical factors that are considered to be a prominent causality in 

current AFB patterns (Hanberry et al. 2012). Hybrid models, an additional method for 

estimating AFB, rely on a combination of remote sensing and inventory data. This hybrid 
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approach has illustrated an improvement in predictions compared to inventory or remote 

sensing alone (Baccini et al. 2004; Wulder et al. 2008; Yeo and Huang 2013; Gallaun et 

al. 2010); however, hybrid modeling approaches still lack a historical context, which 

neglects legacy effects (Liu et al. 2007) from previous anthropogenic impacts on forest 

ecosystems (Zheng et al. 2008; Powell et al. 2010). 

Modeling forest biomass over large areas is a complex process with high 

variability because of inherent differences in environmental controls underlying biomass 

distributions (Yeo and Huang 2013). Subsequently, there are various techniques to model 

biomass and critically examine the potential factors controlling distributions across the 

landscape. Historical data are an effective avenue for determining baseline measures of 

change in forest landscapes (Grumbine 1994; Heinimann 2010). Historical inventory 

records, such as those from the General Land Office (GLO), can be used to model AFB 

conditions prior to major anthropogenic disturbances (Hanberry, Kabrick, et al. 2012; 

Rhemtulla et al. 2008; Hanberry, Palik, et al. 2012). Landscapes indicative of pre-

European settlement are a source of reference to which current forested landscapes can be 

compared and changes spatially identified (Moser et al. 2006). Combining two snap-shots 

in time that cover approximately 150 years can provide an efficient baseline to use for 

spatially identifying where and how much change in AFB has occurred. The controlling 

features that dictate AFB distributions can be characterized based on limiting factors 

known to drive AFB distribution and success (Zimmermann et al. 2007). Combining all 

these elements into one model may provide the information necessary to identify major 

changes in AFB and suggest where there is potential to improve AFB at the ecosystem 

scale (Cannell 2003).  
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Forestry-based energy programs are focusing on river corridors, such as the 

Missouri and Mississippi Rivers, as viable options for woody biomass energy production. 

River corridors are central areas with unique functional characteristics that include 

accessibility to biomass, existing transportation networks, and industrial infrastructure. 

Additionally, marginal lands (areas unsuitable for traditional agriculture due to frequent 

flooding, erosion, or poor soil quality) are often found along river corridors and are 

considered to be important areas to implement afforestation, thereby avoiding 

competition or degradation of agriculture lands. Furthermore, transportation costs are 

considered a limiting economic factor in transitioning to wood-based bioenergy. The 

expense of transporting biomass is considerably greater than fossil fuels on a per unit 

energy basis due to low bulk density (Shabani and Sowlati 2013). The procurement of 

biomass on dedicated lands nearer the source may allow for easier transportation using 

existing barge traffic that is already carrying various industrial and agricultural products. 

The Missouri River corridor is a particularly important area for advancing 

biomass feedstock for alternative energy production. About one-third of the state is 

forested, which ranks Missouri one of the top states for forest land area (MDC 2009). The 

Missouri River corridor also has an existing industrial infrastructure comprised of a dense 

network of roadways, railroads, and barge traffic that enables this area to provide 

affordable ways to transport biomass. Various studies have focused on the life cycle 

analysis of biomass (Cherubini and Strømman 2011), but the issue of how to sustainably 

manage standing AFB for future procurement remains a contentious topic and needs 

considerably more research, especially with respect to the potential utility of river 

corridors as transportation routes in the biofuel industry. This investigation attempts to 
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use a statistical modeling approach to estimate biomass along the Missouri River corridor 

and identify what environmental factors may be driving particular patterns of AFB at 

landscape scales. 

The overall objective of this investigation is to estimate historic and current AFB, 

and examine what primary abiotic controls may be driving AFB along the Missouri River 

corridor. Additionally, we determine discrepancies between historic and current model 

estimates to understand where differences between historic conditions may exist. This 

study uses historical and contemporary tree survey data in combination with climate and 

geologic variables to examine the distributions of AFB, and assess the main factors that 

may control AFB patterns. This modeling procedure is static in time, focusing on two 

critical periods, historic (1800’s) and current (2011), and uses fundamental controls on 

characteristics of plant growth (climate, topography, and soil conditions) as the modeling 

variables. This study investigates the underlying properties of abiotic covariates in order 

to offer resolution to primary management questions for Missouri, such as: (i) how much 

AFB is there on a regional scale in the Missouri River corridor, (ii) how AFB varies 

across the landscape, and (iii) what external factors control AFB patterns? 

3.3 METHODS 

3.3.1 Study Area 

This investigation was conducted within the Missouri River corridor (MRC), located 

within Missouri, USA. The MRC is 106,000 km
2 
area defined by a 120 km (75 mi) buffer 

that encompasses 69 counties along the lower Missouri River (Figure 3-1). This area is 

described as a central processing region that has the capacity to guide the biofuel industry 

by promoting energy crop competitiveness using existing infrastructure (rail, roads, and 



55 
 

river) and utilizing economically viable transportation distances (i.e. 120 km buffer).  The 

region offers large acreages of both marginal and productive agricultural land with a 

variety of soil types, water sources, and biomass options (residues from forest and 

agricultural harvesting, as well as, standing biomass). The geography of the MRC 

consists of a mosaic of floodplains, crop, pasture, and secondary-growth forestlands with 

extensive past grazing influences (Nigh and Schroeder 2002). Elevations along the MRC 

range between 102-540 m (334-1771 ft.). Land cover is diverse and includes large swaths 

of productive farmland adjacent to the main channel and regions of oak savannas, 

woodlands, mixed deciduous forests, and occasional prairie and glade openings at higher 

elevations. Upslope from the river valley are bluff forests dominated by comparatively 

mesophytic red oak (Quercus ruba), sugar maple (Acer saccharum), basswood (Tilia 

americana) and black walnut (Juglans nigra). Bottomland hardwood forests stands exist 

in areas less subject to flooding and are dominated with cohorts of oak (Quercus spp.), 

hickory (Carya spp.), and maple (Acer spp.). The riverfront has fluctuating water levels 

that create aggregations of sandbars and forest stands dominated by cottonwood (Populus 

spp.), willow (Salix spp.), maple (Acer spp.), and elm (Ulmus spp.).   

The MRC harbors varying degrees of soil and landscape quality that ranges from 

flat floodplains with deep, fertile alluvium and loess soils to moderately rolling and 

steeply dissected hills with shallow, unconsolidated soils, which is mostly characteristic 

of the southern Ozark region. Regional and Landscape scale ecological classifications 

were generated by Nigh and Schroeder (2003) as a framework to categorize ecosystem 

diversity and generate spatial datasets for broad-scale ecosystem management. At 

intermediate spatial scales, the MRC is divided into sections and subsections defined by 
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changes in topography, geomorphology, soil characteristics, and vegetation type (Nigh 

and Schroeder 2002). The MRC lies within two major landform sections, Central 

Dissected Till Plain and Ozark Highland. This area is further divided into an additional 

21 smaller subsections with areas ranging from 1.0x10
3
- 4.0x10

5
 ha with an average of 

2.0x10
5
 ha. All AFB descriptive statistics were stratified by ecological subsection and 

reported based on summarizations of each subsection (Table 3-1).  

3.3.2 Modeling Framework 

Random Forest (RF) (Breiman 2001), accessed using R statistical software (Liaw and 

Wiener 2002; R Development Core Team 2011), was the modeling platform used to 

predict AFB quantities and determine variable importance. The modeling procedure was 

conducted at the 30 meter pixel resolution. Parameterization of the model used 1500 

iterations randomly sampling 4 parameters from the total pool of 15 variables. 

RF is a non-parametric, ensemble regression tree method that grows branches and 

nodes based on random subset sampling from a pool of explanatory variables (Boulanger 

et al. 2013). A split is determined at each node and the process is repeated based on new 

bootstrap samples. The final prediction is a weighted average across all regression trees 

(Breiman 2001; Cutler et al. 2007; Prasad et al. 2004). Variable importance is determined 

by permuting the covariate values, where an out-of-bag (OOB) error is generated. The 

permutated OOB error is then compared to the original (or training data). OOB error and 

the variables with larger differences (i.e. increases in mean square error) contribute more 

to the model prediction and are weighted accordingly (Prasad et al. 2004). Variable 

importance is used to find critical parameters related to the response variable and used for 

interpretation of why the parameter is chosen. Also, variable importance may be used to 
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narrow down the number of parameters that are sufficient to make a parsimonious 

prediction.  

RF has many advantages over other statistical models. It provides well-supported 

predictions and classifications (Prasad et al. 2004; Cutler et al. 2007; Boulanger et al. 

2013) and enables the user to generate rapid, straightforward output. Additionally, RF is 

capable of handling large non-linear data sets or variables that suffer from collinearity 

(Prasad et al. 2004; Cutler et al. 2007; Boulanger et al. 2013). 

3.3.3 Explanatory Variables 

We used a set of 15 variables to predict AFB. These variables were classified into three 

main categories: 1) climate, 2) topography, and 3) soil. We used ArcMap™ v10.2 (ESRI 

2013) as the main platform for visualization and summarization of AFB estimates. 

Climate data included annual mean temperature (Bio_01) and precipitation seasonality 

(Coefficient of Variation) (Bio_15). The data were acquired from WorldClim database 

(Hijmans 2005) (www.worldclim.com). We used 6 variables to represent physiographic 

characteristics of the landscape, which included: 1) elevation, 2) aspect, 3) slope, 4) 

topographic position, 5) topographic ruggedness, and 6) topographic wetness. All 

features were extracted from a single digital elevation model (DEM) using ArcGIS 

embedded spatial analyst tools for creating surface components. The DEM was obtained 

from Missouri Spatial Data Information Services. Seven soil variables were extracted 

using the United States Department of Agriculture Natural Resource Conservation 

Service’s Soil Data Viewer v6.0 (NRCS 2011), which is a graphical user interface that 

extracts soil information from the United States Department of Agriculture’s Natural 

Resource Conservation Service (NRCS) Soil Survey Geographic (SSURGO) database. 
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We used 7 soil variables as predictors in the RF model: 1) Sand, 2) Silt, 3) Clay, 4) 

Coarse Fragments, 5) Hydraulic conductivity (Ksat), 6) Alkalinity (pH), and 7) Organic 

matter. All soil variables were extracted from the most detailed map unit level defined 

and projected as polygonal boundaries with scales ranging from 1:12,000 to 1:63,360. 

The data were transformed to a raster dataset using the same 30m
2
 resolution. 

3.3.4 Historic Aboveground Biomass 

Historic biomass values were quantified from General Land Office (GLO) data. GLO 

data collection occurred between 1815 and 1900 and was sampled based on a rectangular 

survey grid that generated a system of townships, composed of 36.1 km
2
 sections (White 

1983).  Inventory measurements (species, DBH, distance, and bearing from surveying 

boundaries) from 2-4 trees were taken at each corner and center of section lines. 

The average DBH from the group of trees was calculated and assigned to each point 

location. Historical forest density estimates were quantified at the subsection level 

(Hanberry et al. in preparation) and assigned ubiquitously to all points residing in the 

respective subsection boundaries. Aboveground forest biomass was calculated using 

Jenkins et al. 2003 DBH-based equation for mixed deciduous hardwood species: 

          +                    

 eq. 3  

where the total weight of aboveground biomass (bm) in kg of dry weight for trees ≥ 2.5 

cm is the exponential function of the addition of regression coefficients (β0 + β0), which 

are -2.4800 and 2.4835, respectively, multiplied by the natural log (2.718282) of 

diameters at breast height (dbh) (Jenkins et al. 2003). This equation is representative of 

many species, locations, and the equation should be expected to have a larger range in 



59 
 

predicted component biomass as compared to other equations from studies with a smaller 

scope. Thus, the biomass equation should be used for large-scale application.  

3.3.5 Current Aboveground Biomass 

We used the total number of AFB values calculated by FIA personnel as the observed 

dataset to train and validate the actual RF model. We used a Student’s T-test for means (α 

= 0.05) to validate the actual RF model with estimates derived from FIA only at the 

ecological subsection scale. There was no opportunity to validate at 30m-resolution.  

The FIA program of the USFS produces comprehensive data on the status, 

changes, and trends in the conditions of all forest ecosystems within the U.S. 

(Woudenberg et al. 2010). The FIA program provides plot-level information on 5-year 

cycles and is designed for landscape-scale studies and regional monitoring of forest lands 

(Moser et al. 2010). We were only allowed up to 20 variables (please see the previous 

chapter) and the spatial locations of FIA plots were kept confidential. Thus, data 

acquisition (FIA cycle 2006-2011) was required to be coordinated with personnel from 

FIA Spatial Data Services where a confidential agreement form was signed. Of the 20 

variables obtained from with AFB values from FIA, we had to eliminate 5 remote sensing 

variables in order to use the same variable structure with both the current and historic 

models. Consequently, we used only 15 explanatory variables in the RF model to 

estimate AFB. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Aboveground Forest Biomass Estimates 

The historic and current RF models performed very poorly with respect to estimating 

AFB. Historic AFB was derived using a total of 10,857 inventory points where each 
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location had ≥ 2 trees sampled and the coefficient of determination was R
2
 = 0.09 (Figure 

3-2). Current AFB was derived using a total of 1,100 inventory plots and also had a very 

low coefficient of determination (R
2
=0.02) (Figure 3-3).  

The RF model estimated AFB for all pixels across the landscape where we then 

selected pixels that were categorized as forest based on the 2006 National Land Cover 

Dataset (Figure 3-4). Based on only forested pixels, the total historic AFB within the 

MRC was estimated at 8.1 × 10
8 

Mg and the current model estimated total AFB at 3.4 × 

10
8
 Mg (Table 3-2). We then summarized both historic and current AFB estimates by 

ecological subsection where the average historic and current AFB was 234 Mg ha
-1 

with 

standard deviation of 26 Mg ha
-1

 and 99 Mg ha
-1

 and standard deviation of 25 Mg ha
-1

, 

respectively (Table 3-3). For the current model only, average AFB summarized by 

ecological subsection was not statistically different from FIA estimates per ecological 

subsection (p=0.34, α = 0.05) (Table 3-4).  The historic baseline estimates of AFB 

resulted in a reasonable range of AFB values that are similar to previous studies reporting 

historical or old growth biomass estimates around 300 Mg ha
-1

 (Saatchi et al. 2007; 

Johnson and Bell 1976). The current model of AFB also had a reasonable biomass 

average as compared to the most recent FIA estimates (2011). The extent of variability 

with respect to the mean values of AFB estimates at the subsection scale exhibited a low 

coefficient of variation for both historic and current model (0.09 and 0.02, respectively). 

3.4.2 Variable Importance 

Variable importance was derived from the RF model for the historic and current 

estimates of AFB, and illustrated as a graph of importance in descending order (Figure 3-

5). The mean square error (MSE) values for the historic model ranged between 0 – 90% 
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while the current model exhibited a much tighter, MSE range, between 0 – 35%. Both 

climate variables, Annual Mean Temperature (Bio_01) and Precipitation Seasonality 

(Coefficient of Variation) (Bio_15), were the top 2 variables for estimating AFB for 

historic and current RF models; albeit the position of the these two variables with respect 

to the remaining variables yields minimal information because of the poor estimating 

power of the RF model. Thus, the two climate variables are considered to be the top 

estimators of AFB under a very inaccurate model foundation that explains minimal 

variation.  

Elevation was ranked as the third best variable for both the historic and current 

RF models but, again, due to the poor model performance, this explains very little 

information and climate and elevation variables must be regarded as top predictors within 

a very inaccurate model. It should also be noted that the variables that contributed the 

least to estimating AFB were also the same for both models and consisted of topographic 

roughness, topographic wetness, and aspect. 

3.4.3 Percent Changes 

We calculated the percent change between historic and current estimates of AFB (Figure 

3-6) and then summarized them by ecological subsection (Figure 3-7). The largest 

percent changes (i.e. ≥ 65%) occurred within three different subsections: St. Francois 

Knobs and Basin (67%), Missouri River Alluvial Plain (66%), and Mississippi River 

Hills (65%) (Table 3-2). In all cases, the summarized mean historic AFB levels were 

greater than current AFB levels, which resulted in negative percent changes. The smallest 

percent changes between historic and current AFB estimates (< 45 Mg ha
-1

) occurred in 

the Central Plateau subsection, which is located along the southern portion of the study 
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area and is part of the Ozark region. An additional subsection that had small percent 

changes was along the Deep Loess Hills subsection, which is found in the upper northeast 

corner of Missouri (Figure 3-8).   

3.4.4 Abiotic controls 

Climate variability can be a major stressor on forested ecosystems and it is noted that 

extreme weather events may become more frequent, severe, and isolated in the near 

future (IPCC 2007). In addition, the frequency and intensity of severe weather events 

within the last decade has been raising concerns about how to adapt to future climate 

conditions (Spittlehouse and Steward 2003; IPCC 2007). This modeling approach 

illustrated the 2 climate variables as being the best predictors of AFB; however, an 

inaccurate RF model undermines the validity of climate driving AFB within the MRC. 

Despite the inaccuracy of the model, we suggest that future research still look closer into 

large landscape variations in weather events, gradients, and possible micro-climate 

interactions with physiographic factors such as elevation, and associated effects on 

forested systems. 

The methods used for this investigation quantified AFB on a large landscape 

scale; however, the results represent the best estimates of AFB from a model with very 

poor predictive power. The introduction of errors is likely due to many reasons such as 

estimating biomass from stem diameter, and region-specific allometric equations (i.e. 

AFB equation from Jenkins et al. (2003)). Errors associated with ground inventory will 

remain uncertain until more accurate coefficients (from destructive sampling) or more 

regionally accepted allometric equations are developed (Saatchi et al. 2011). There was 

also great uncertainty in AFB estimates at the pixel level as described by the extremely 
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low coefficient of determination for both the historic and current models. This is likely 

due to the scale and types of variables used to estimate AFB.  We recommend that future 

research using the RF methodology with FIA inventory data should conduct multiple 

analyses using a greater variety of data that are more generalized (i.e. averages at the 

ecological subsection scale) because the 30m resolution datasets used here were not 

sufficient in capturing any variation in estimating AFB.  

The best estimates of AFB were achieved when we summarized AFB estimates 

based on ecological subsections, which resulted in statistically relevant estimates that 

were validated based on FIA summaries of AFB at the same scale. Thus, using ecological 

subsections as the focus for future investigations to understand abiotic controls may be 

most appropriate, especially for ecosystem management activities. 

3.4.5 The Role of Disturbances 

Even though climate variables were selected as the top estimators of AFB in the RF 

model, we cannot ascertain any relevant information from the rankings in the variable 

importance plots due to the very poor performance of the RF model. The poor 

performance may be due to the types of variables used. We were constrained by the total 

number of variables extracted by FIA personnel and consequently, could not attempt to 

run different models with different sets of variables. We believe that changing the types 

and numbers of variables within the RF model would have produced more accurate 

estimates of AFB and new we must consider what types of different variables may be 

used to produce better RF estimates, such as disturbances.  

The areas of estimated AFB that were considered the least changed (i.e. small 

percent changes between historic and current AFB) occurred in the southern portion of 
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the study area (Ozark region), which indicates that this area was the least disturbed as 

compared to the alluvial floodplains of the Mississippi and Missouri Rivers; where the 

largest percent changes between historic and current AFB occurred. Small amounts of 

disturbance occur within all regions each year, but we were not able to account directly 

for such mortality, whether due to flooding, harvesting, disease, insects, drought, or fires. 

 Moreover, some of the FIA plots could have been used even though recent 

harvesting may have taken place. Monitoring forest disturbances is challenging for 

inventory programs like the FIA because of temporal issues in collecting forest 

information. FIA data is collected in 5-year increments, which likely results in missed 

disturbance events. Our investigation only considered 2 time periods where the percent 

changes were calculated between historical (1800s) and current (approximately 2011, 

which was the last year for cycle 6 in the FIA database). Not accounting for disturbances 

(i.e. adding an additional predictor variable to the RF model) within this FIA timeframe 

likely caused low coefficient of determination in estimating AFB. 

3.5 CONCLUSION 

 

This study attempted to quantify and spatially identify where and how much aboveground 

forest biomass has changed using a RF approach based on historical and current forest 

inventories. The AFB estimation results were inconclusive due to poor model accuracy. 

Variable importance ranking is an important component of the RF procedure, but due to 

the very low coefficient of variation for both historic and current models, the variables 

ranked best for estimating AFB should be considered with great caution. Nonetheless, 

estimating AFB at a 30m resolution using RF was a critical step towards understanding 

what an appropriate scale should be for determining the dynamics of AFB along major 
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river corridors and determining the type of variables necessary to develop a successful 

model. Disturbance and age-structure are suggested to be critical parameters to include in 

future estimates of AFB within the MRC.  

 There were several constraints administrated by FIA personnel due to 

confidentiality agreements, and extremely limited the scope of this investigation by 

control the number variables used in the RF model and restricting any spatial information 

about FIA plot locations. Overall, the modeling procedure was simple, produced easily 

interpretable output, but was ineffective in finding any relationships between AFB and 

the chosen predictor variables.  

Although biases have been identified in GLO records (Hanberry et al. 2011), they 

represent some of the best data available for investigating historic patterns of AFB 

(Delcourt and Delcourt 1996) and are noted to be good baseline measures for comparing 

current AFB values. The variable importance output is a critical factor in the RF model 

that provides essential information in identifying contributing factors that best explain 

patterns of discrepancies in AFB. The final model illustrates where discrepancies exist 

across the landscape and suggests the primary controlling factors for these discrepancies; 

however, there is still an incomplete understanding of all the mechanisms and processes 

that drive distributions of AFB (Boisvenue and Running 2006; Levy et al. 2004), 

especially due to the poor performance of the RF model. Improving model performance 

is a critical issue and any information derived from these AFB estimates should be used 

with great caution.   
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Figure 3 - 1: The Missouri River corridor located in Missouri, USA. The corridor 

was constructed based on a 75 mile buffer centered on the Missouri River. The 

entire study region is approximately 106,000 km
2
 and contains 69 counties dissected 

by the Missouri River. 
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Figure 3 - 2: Observed and predicted aboveground forest biomass model estimates 

from the Historic RF model where the red line indicates model fit while the blue line 

indicates the 1:1 slope.  
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Figure 3 - 3: Observed and predicted aboveground forest biomass model estimates 

from the Current RF model where the red line indicates model fit while the blue line 

indicates the 1:1 slope. 
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Figure 3 - 4: Estimated total aboveground forest biomass (Mg) for each forested 

pixel (30m) for (A) Historic and (B) Current.    
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Figure 3 - 5: Variable importance plots for current and historic aboveground forest 

biomass estimates generated from Random a Forest regression procedure. 

  



71 
 

 

Figure 3 - 6: Pixel-level percent change values between historic and current 

aboveground forest biomass in the MRC.  

 
  



72 
 

 
Figure 3 - 7: Average percent change between historic and current AFB estimates 

summarized by ecological subsection.  
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Figure 3 - 8: Summarized percent changes with standard errors between historic 

and current aboveground forest biomass estimates generated from a Random Forest 

procedure.  
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Table 3 - 1: Summarization of GLO and RF AFB estimates. 

  
HISTORIC CURRENT 

 
SUBSECTION 

AREA 

(ha) 
TOTAL  

(Mg) 
AVG   

(Mg ha
-1

) 
TOTAL 

(Mg) 
AVG  

(Mg ha
-1

) 
Percent 
Change 

Black River Ozark Border 5.9.E+03 1.5.E+06 251.8 5.8.E+05 96.6 -61.62 

Central Plateau 3.6.E+05 6.5.E+07 179.1 3.3.E+07 91.4 -48.93 

Chariton River Hills 2.0.E+05 4.7.E+07 240.8 1.7.E+07 88.2 -63.35 

Cherokee Plains 3.9.E+04 9.0.E+06 228.3 3.6.E+06 91.4 -59.96 

Claypan Till Plains 1.3.E+05 3.0.E+07 225.0 1.2.E+07 91.2 -59.49 

Current River Hills 5.9.E+04 1.3.E+07 213.4 5.6.E+06 95.4 -55.29 

Deep Loess Hills 1.0.E+04 2.0.E+06 195.1 1.0.E+06 97.4 -50.06 

Dissected Till and Loess Plains 3.0.E+05 7.3.E+07 240.4 2.7.E+07 88.5 -63.17 

Gasconade River Hills 2.4.E+05 4.7.E+07 198.3 2.2.E+07 92.8 -53.23 

Inner Ozark Border 2.6.E+05 6.1.E+07 230.2 2.5.E+07 95.5 -58.52 

Loess Hills 1.6.E+05 3.8.E+07 240.2 1.5.E+07 94.2 -60.76 

Meramec River Hills 3.6.E+05 8.3.E+07 233.6 3.4.E+07 95.0 -59.33 

Mississippi River Alluvial Plain 1.3.E+04 3.0.E+06 238.7 1.1.E+06 89.1 -62.67 

Mississippi River Hills 1.8.E+05 5.1.E+07 279.5 1.7.E+07 93.5 -66.54 

Missouri River Alluvial Plain 4.0.E+04 1.0.E+07 260.6 3.6.E+06 90.6 -65.24 

Osage River Hills 3.4.E+05 8.0.E+07 235.4 3.2.E+07 93.6 -60.25 

Outer Ozark Border 4.0.E+05 1.0.E+08 263.0 3.8.E+07 96.4 -63.34 

Prairie Ozark Border 5.6.E+04 1.4.E+07 241.8 5.3.E+06 94.7 -60.82 

Scarped Osage Plains 1.7.E+05 3.8.E+07 221.6 1.6.E+07 93.5 -57.82 

Springfield Plain 9.9.E+02 2.2.E+05 220.4 9.0.E+04 90.8 -58.78 

St. Francois Knobs and Basins 1.5.E+05 4.2.E+07 282.7 1.4.E+07 93.1 -67.08 

 
  



75 
 

Table 3 - 2: Missouri River Corridor ecological subsection descriptions. 
 

Subsection  

Name 

Total Area 

(ha) 

Forested Area 

(ha) 

Proportion 

Forested 

Black River Ozark Border 7.6x10
4
 6.0x10

4
 78.4 

Central Plateau 7.7x10
5
 3.6x10

5
 47.5 

Chariton River Hills 7.0x10
5
 2.0x10

5
 27.9 

Cherokee Plains 1.7x10
5
 3.9x10

4
 22.5 

Claypan Till Plains 9.2x10
5
 1.3x10

5
 14.7 

Current River Hills 6.7x10
4
 5.9x10

4
 88.1 

Deep Loess Hills 1.6x10
5
 1.0x10

4
 6.7 

Dissected Till and Loess Plains 1.7x10
6
 3.3x10

5
 18.0 

Gasconade River Hills 3.6x10
5
 2.2x10

5
 66.3 

Inner Ozark Border 5.0x10
5
 2.3x10

5
 53.4 

Loess Hills 99.8x10
5
 1.6x10

5
 16.3 

Meramec River Hills 4.6x10
5
 3.6x10

5
 78.3 

Mississippi River Alluvial Plain 8.1x10
4
 1.3x10

4
 15.6 

Mississippi River Hills 5.0x10
5
 1.8x10

5
 36.8 

Missouri River Alluvial Plain 4.3x10
5
 4.0x10

4
 9.3 

Osage River Hills 5.3x10
5
 3.4x10

5
 64.0 

Outer Ozark Border 8.7x10
5
 4.0x10

5
 45.8 

Prairie Ozark Border 2.3x10
5
 5.6x10

4
 24.6 

Scarped Osage Plains 9.4x10
5
 1.7x10

5
 18.4 

Springfield Plain 2.0x10
3
 9.9x10

2
 52.4 

St. Francois Knobs and Basins 22.2x10
5
 1.5x10

5
 68.2 

 
 

  



76 
 

Table 3 - 3: Statistical summaries for RF Current and RF Historic estimates of 

AFB.  

 

MODEL METRIC  CURRENT HISTORIC 

Total AFB Estimates 3.4x10
8
 Mg 8.1x10

8
 Mg 

Total Average AFB Estimates 99 Mg ha
-1

 253 Mg ha
-1

 

Mean Absolute Error (MAE) 12.48 Mg ha
-1

 42.38 Mg ha
-1

 

Root Mean Square Error (RMSE) 15.21 Mg 53.21 Mg 

Coefficient of Determination (R
2
) 0.02  0.10  
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Table 3 - 4: Paired two sample t-Test for means of average estimates of AFB 

summarized by ecological subsection between FIA and RF.  

 

  RF Current FIA 

Mean (Mg ha
-1

) 99.26 94.13 

Standard Deviation (Mg ha
-1

) 24.64 8.58 

Observations (n) 21 21 

Pearson Correlation 0.24 

 df 20 

 t Stat 0.98 

 P(T<=t) one-tail 0.17 

 t Critical one-tail 1.72 

 P(T<=t) two-tail 0.34 

 t Critical two-tail 2.09   
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CHAPTER 4: Geographic analysis of production suitability for 

available aboveground forest biomass within the Missouri 

River Corridor, Missouri, USA 

 

Curiosity makes me nervous because I am compelled to do something about it. 

- Bruno Frohlich 

 

4.1 ABSTRACT 

Increasing demand for aboveground forest biomass (AFB) as an alternative energy source 

has triggered innovative research directions investigating the spatial dynamics of AFB 

across large landscapes. New geographical methods are needed for assessing landscape-

scale distributions of AFB that help to assess the potential of forested ecosystems to 

provide resources that can support rising bioenergy industries. Additionally, all AFB 

cannot realistically be used for bioenergy and models must be used to determine how 

much AFB is actually available and where. Therefore, the objective of this study was to 

estimate AFB using inventory data from the Forest Inventory and Analysis (FIA) and 

determine areas where AFB may be most suitable for use in the biofuel industry within 

the Missouri River corridor, located within Missouri, USA. Total AFB was estimated 

using a Random Forest (RF) statistical approach where two landscape-scale constraints 

(forest transition and distances from the Mississippi and Missouri Rivers), were used to 

theoretically limit total AFB and estimate available AFB. A suitability index was then 

constructed with a fuzzy logic procedure using total AFB and the constraining factors as 

input variables to derive a map illustrating areas of AFB potentially most suitable for use 

in the biofuel industry. The RF model performed very poorly with respect to estimating 

AFB where total AFB was estimated at 3.4 × 10
8
 Mg (N=1100, R

2
=0.01). Available AFB 
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was calculated after the two technical constraints were applied to the total AFB estimates. 

Available AFB was estimated at 7.2x10
6
 Mg. Aboveground forest biomass suitability 

was then calculated from the fuzzy logic overlay analysis, which indicated areas along 

the Missouri and Mississippi River Alluvial Floodplains as the most suitable areas for 

AFB production. Areas indicated to be most suitability were also compared to soil 

productivity maps derived from the Soil Survey Geographic information, which also 

illustrated the river corridors as being most productive, with respect to soil 

characteristics.   
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4.2 INTRODUCTION 

Society depends on forests to provide renewable natural resources that help support 

human well-being by maintaining vital ecosystem services such as clean water, clean air, 

biodiversity, and prolonged carbon sequestration. Forest biomass as an energy source can 

also play an important role in diversifying energy sources for many regions and is an 

important component for socioeconomic development.  Bioenergy derived from 

aboveground forest biomass (AFB) also has a great potential for increasing the proportion 

of clean, renewable energy produced nationally to help reach the 36 billion gallon per 

year mandate set by the United States Energy Independence and Security Act (EISA 

2007). In addition to a being a renewable energy source, a reliable baseload of AFB 

exists at local and regions scales, which can create a positive effect on the local energy 

industries by increasing employment opportunities for the forestry, shipping, or industrial 

processing sectors (O'Laughlin 2009).  

The increasing demand for forest biomass has consequently triggered concerns 

about the sustainability of AFB production and associated pressures on forest ecosystems 

from over-exploitation (Thiffault et al. 2014). For instance, soil productivity could 

decrease due to increases in physical disturbances on the landscape, which may limit the 

capacity for some areas to sustain a growing forest (Thiffault et al. 2014). Biomass 

exploitation is inevitable if diversification in energy sources remains a constituent of 

sustainability; therefore, assessing the potential in available resources will continue to 

play an important role in sustainable production of regionally-renewable energy sources 

(Freppaz et al. 2004; Hoogwijk et al. 2003). Current trends in research are now heading 
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in the direction of regional, ecosystem-scale assessments of geographic potentials of AFB 

in an effort to better manage existing and future resources.  

A significant part of recent research efforts has focused on the estimation of 

biomass quantities in conjunction with identifying spatial arrangements of biomass. In 

many regions, AFB has a dispersed geographical distribution and there are gaining 

interests in identifying biomass supply, landscape characteristics, and where the greatest 

potential may be for sustainably extracting AFB. Aboveground forest biomass is 

geographically dependent on many physiographic and human-induced characteristics, 

and defining different levels of availability is a critical step to finding suitable locations 

to focus time and monetary investment into sustainable extraction. Legislation and 

policies at both the federal and state levels are actively engaged in assessments of the 

potential role of forest biomass in renewable energy standards and portfolios, but 

generally have not accounted for fully understanding the capacity of the natural resource 

required to meet energy demands. Increased production of biomass for energy has the 

potential to offset substantial use of fossil fuels, but it also has the potential to threaten 

ecosystem integrity. In addition, the combined effects of federal, state, and local 

decisions about forest use, management, or product consumption may have unforeseen 

impacts when accumulated across landscapes. Thus, understanding forest dynamics 

requires the ability to see forests at multiple spatial scales.  

To evaluate resource potential of biomass, systematic approaches are needed to 

define production potential (i.e. what may be theoretically available versus what is 

actually available), especially for regions where other kinds of energy are either difficult 

to extract or biomass is readily available. Previous AFB studies have found that the 
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magnitude of AFB supply available for use in power generation may be far smaller than 

previously suggested because regional-scale availability is not often considered (Goerndt 

et al. 2012). Thus, understanding the geographic distributions of AFB coupled with 

identifying constraints on AFB is becoming even more important given the mandated 

increases in alternative energy use. Defining a systematic approach to evaluating regional 

availability of forest biomass is a critical step for beginning the assessment process. 

Several studies have used AFB as a proxy for estimating productivity or 

predicting shifts in distributions of species due to climate change (Jose and Gillespie 

1997, 1998; Zheng et al. 2004); albeit, methods are quite diverse and continually change 

with the development of new detailed spatio-temporal information. Understanding the 

geographical distribution of AFB over large landscapes is a necessary process for 

understanding the dynamic role of biomass in supporting regional energy demands while 

maintaining and protecting ecological processes. Further developing ways to identify 

geographic dynamics of AFB is needed to obtain detailed spatial and environmental 

information for use in local or regional forest management decisions (He et al. 1998). For 

instance, the Ozark forests and associated bottomland hardwoods found within the 

Missouri River corridor have dispersed geographical distributions, which has raised the 

interest of researchers in using Geographical Information Systems (GIS) for the 

evaluation of the biomass potential and modeling the associated characteristics of 

biomass availability (Voivontas et al. 2001).  

The majority of problems associated with landscape evaluation require 

methodologies that use powerful tools designed for managing, transforming, and 

illustrating georeferenced data, such as in a GIS (Nyeko 2012). Spatially conceptualizing 
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patterns and processes enables better understanding of important characteristics of the 

phenomenon of interest and provides a framework to evaluate how the natural and human 

environment is organized and interacts (Vizzari 2011). Spatial suitability modeling with 

GIS is increasingly used as a technique to identify potential locations where AFB 

extraction may be best suited given a range of constraints. A GIS is a computer-based 

system that offers a convenient and powerful platform for performing land suitability 

analyses (Hieisig et al. 2005) and allocation using an integration of multi-criteria 

methods, such as fuzzy logic (Lewis et al. 2014).  

GIS-based multi-criteria decision analysis can be defined as a process that 

transforms and combines geographical data and value judgments to obtain appropriate 

and useful information for decision-making (Perpiña et al. 2013). The most common 

GIS-based suitability models include multi-criteria evaluation such as Boolean overlay, 

weighted linear combination (WLC), or fuzzy logic. Boolean analyses draw from 

classified criterion that use logical connectives (i.e. AND, OR) to create discrete (TRUE 

or FALSE) boundaries that delineate suitable areas (Perpiña et al. 2013; Lewis et al. 

2014; Freppaz et al. 2004; Nyeko 2012).  Weighted linear combinations use a binning 

process to categorize input data where an importance weight can be attributed to each 

factor, based on statistical relationships or expert opinions. A rigid delineation 

representing suitable areas is created once all weighted factors are combined. Suitability 

models based on the fuzzy set theory assigns a continuous membership value to each 

variable that ranges between 0 and 1, where 0 indicates low membership and values 

approaching 1 are considered more suitable.  
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The purpose of this investigation was to generate a regional assessment of the 

capacity for AFB production along the Missouri River corridor. The first objective of this 

study was to use historic and current forest inventory information to estimate AFB across 

the landscape and quantify percent changes, which were then used as input criteria for the 

second objective, developing a suitability map for AFB production. Theoretical and 

absolute geographic locations of AFB were quantified using a multi-criteria process 

focusing on theoretical and available biomass potential. Theoretical biomass potential is 

defined as the total amount of AFB in a region that represents an unconstrained system 

that shows only the upper bounds of existing AFB, disregarding ownership status or 

position on the landscape. The available biomass potential represents a constrained 

scenario and is defined as the residual amount of standing biomass after accounting for 

technical constraints, such as distances to major rivers and probable expansion from 

existing urban centers. 

4.3 METHODS 

4.3.1 Study Area 

The Missouri River corridor (MRC) is a 106,000 km
2
 region that represents an area 

specific within Missouri that has the resource and infrastructural potential to lead woody 

biomass-based, alternative energy development (Figure 4-1). The study region ranges in 

elevations between 540 to 102 meters above sea level where the highest peaks are found 

in the southern-most region and the lowest are generally along the Missouri and 

Mississippi River floodplains. The central component of this region is the Missouri River 

where growing, harvesting, shipping, and processing of woody material for energy are all 

within a feasible distance to create a positive effect on biomass financial competitiveness. 
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The surrounding landscape consists of a shifting mosaic of land uses and land 

types ranging from upland hardwood forests, mixed bottomland hardwood, cropland, 

pasture, and secondary growth woodlands with extensive past grazing influences (Nigh 

and Schroeder 2002). Forest cover in the region had been dramatically altered from 

European settlement in the late nineteenth century and is still slowly recovering. Large 

diameter oak (Quercus spp.) and hickory (Carya spp.) species remain along with an 

increasing understory of maple (Acer spp.).  

4.3.2 Suitability Criteria 

4.3.2.1 Aboveground Forest Biomass 

This investigation defined aboveground forest biomass (AFB) as the total amount of 

living organic matter in trees present above the soil surface with a diameter at breast 

height (DBH) greater than 2.5 cm. AFB data were obtained from the United States Forest 

Service Forest Inventory and Analysis (USFS FIA) (USDA FIA 2013). USFS FIA is the 

only program that collects, publishes, and analyzes data on the extent, condition, volume, 

growth, and depletions of timber from all ownerships on the Nation's forest land 

(Woudenberg et al. 2010; USDA FIA 2013).  The FIA program provides plot-level 

information of AFB on 5-year cycles, which allows for regional monitoring of forest 

lands and is suitable for landscape level studies (Moser et al. 2010). The latest cycle of 

FIA inventory (2006-2011) was extracted by FIA personnel to maintain FIA plot spatial 

discrepancy. 

A total of 20 variables were used in a Random Forest (RF) algorithm to estimate 

AFB and determine variable importance within the MRC (Table 4-1). Random Forest is a 

non-parametric, ensemble regression tree method that is an extension of the family of 

Classification and Regression Techniques (CART) that grows based on random subset 
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sampling from a pool of variables (Boulanger et al. 2013). Numerous nodes and trees are 

constructed using boot-strapped samples of the subset data where the final prediction is a 

weighted average across all regression trees (Breiman 2001; Cutler et al. 2007; Prasad et 

al. 2004). The number of variables and iterations used in the model is decided by the user 

(mtry and ntree parameters in the RF code). Four (mtry) variables from the pool of 20 

were used for random selection at each node to grow a total of 1,500 (ntree) regression 

trees. The coefficient of determination (R
2
) was used as the statistical measure for model 

fit and the mean absolute error (MAE) was used to assess the size of the prediction error 

per model (Miehle et al. 2006). Ecological subsection boundaries were used to 

summarize, compare, and validate AFB estimates with observed FIA AFB data (Table 4-

2). 

Random Forest has the capability of listing variable importance that is based on a 

permutation process between the original (training: variables used for estimating) and 

out-of-bag (OOB: variables left out of the random selection) data. When regression trees 

are generated, a prediction error is generated for both training and OOB data. The 

differences between prediction errors are calculated, normalized by standard deviation of 

the differences, and then averaged across all trees to generate a mean square error value 

for each variable. The importance value indicates how much a variable increases the 

MSE when randomly permuted, which means that when a variable is less important, it 

will contribute less to the model resulting in very small changes in MSE (Prasad et al. 

2004). Variable importance output from RF can be used to determine which variables 

best represent the response variable and may be used to narrow down the number of 

variables sufficient to make parsimonious predictions.  
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4.3.2.2 Landscape Variables 

The 20 variables were chosen based on representative characteristics of the 

region. Five remote sensing variables were derived from a 30-meter resolution Landsat 

Thematic Mapper (TM) satellite image captured on June 3, 2003 (prior to failure of the 

scan line corrector, which creates gaps in reflectance information) and cloud cover was 

0% (Table 2-1). The image was acquired from the United States Geological Survey’s 

(USGS) Earth Resources Observation and Science Center (EROS). Normalized 

Difference Vegetation Index (NDVI) was calculated based on the combination of red and 

near-infrared bands according to the following equation:  

      
        

        
           

 eq. 1 

where NDVI is the ratio between the difference (numerator) and summation 

(denominator) of near-infrared (NIR) and red (R) spectral bands. The Normalized 

Difference Water Index (NDWI) was also used because it is a good indicator of healthy 

vegetation and is based on the following equation:  

      
     

     
           

 eq. 2 

where NDWI is the ratio between the difference (numerator) and summation 

(denominator) of near-infrared (NIR) and Green (G) spectral bands, which are within the 

water absorption band centered at 1200 nm (Gao 1996). A tasseled-cap transformation of 

the Landsat reflectance values was performed to extract 3 additional variables: 
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brightness, greenness, and wetness (TCB, TCG, and TCW, respectively), where recently 

disturbed forestland exhibit high values of TCB, low TCG, and low TCW in relation to 

an undisturbed forested area (Healey et al. 2005). All remote sensing transformations and 

index calculations were performed in ERDAS IMAGINE
®
 2011.  

We used annual mean temperature and precipitation seasonality (i.e. seasonality 

as measured by the coefficient of variation in precipitation) (BIO_01 and BIO_15, 

respectively) as climate variables to estimate AFB. These two climate variables were 

acquired from the WorldClim database, which provides freely available global climate 

data specific for spatial modeling (www.worldclim.com, accessed May 2011). The 

topography within the study region is dominated by fluvial activity creating heterogeneity 

in relief and soil characteristics between stream valleys and adjacent major ridges. Six 

topographic variables were derived from a 30-meter resolution Digital Elevation Model 

(DEM), which is a cartographic dataset of elevation values. The DEM was obtained from 

Missouri Spatial Data Information Services where, in addition to elevation, the following 

metrics were derived in a Geographic Information System (GIS): aspect, slope, 

topographic wetness, ruggedness, and topographic position. Seven soil variables 

representative of the top 20 cm of the surface (sand, silt, clay, coarse fragment, pH, 

hydraulic conductivity, and organic matter) were obtained from the United States 

Department of Agriculture Natural Resource Conservation Service’s Soil Data Viewer 

v6.0 (NRCS 2011). 

 A GIS database containing the landscape information of interest, AFB potential 

(BP), forest transition (FT), and Euclidean Distances to major river corridors (ED) was 

prepared for application of a Fuzzy Overlay analysis. Initially, the NLCD 1992/2001 
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Retrofit Land Cover Change Product was used to determine the geographic locations 

where forest cover had changed. This NLCD product provided land cover change 

information at the Anderson Level I classification scale, which is designed for regional 

applications. Euclidean distances were determined for pixel-areas defining percent 

changes between historic and current AFB values and major river corridors (i.e. the 

Mississippi and Missouri Rivers).  

4.3.3 GIS Processing 

4.3.3.1 Fuzzy Membership 

Fuzzy logic models have long been used for multi-criteria decision-making and spatial 

modeling for application in site selections or suitability assessments (Lewis et al. 2014). 

Fuzzy systems are constructed using a set of fuzzy functions based on relationships 

between the inputs and the output of a system (Ocalir et al. 2010). Prior to the overlay 

analysis, a preprocessing step was conducted to transform the input criteria to fit a 0 to 1 

scale based on a specified function that establishes a membership for each value. The 4 

variables used were: 1) Biomass quantity (BQ), 2) Biomass percent change (BP), 3) 

Forest transition (FT), and 4) Euclidean distance (ED) (Figure 4-2). The 0 to 1 scale 

indicates the strength of membership to a specific set where locations that represent low 

membership are assigned 0 whereas locations that have high membership receive a value 

of 1 (i.e. a greater possibility of representing that set). There are 8 functions to choose 

from (FuzzyGaussian, FuzzyLarge, FuzzyLinear, FuzzyMSLarge, FuzzyMSSmall, 

FuzzyNear, and FuzzySmall) that define continuous functions that each captures a 

different type of transformation, which depends on the desired effect.   

For this investigation, a negative relationship was assigned to the variable BP 

because a negative percent change between historic and current biomass was defined as 
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having a greater potential for current AFB to reach historic conditions. Therefore, the 

FuzzyMSSmall function was used to reclassify the values. The FuzzyMSSmall function 

defines the membership of the data using a function that is based on the mean and 

standard deviation, assigning smaller values closer to 1. A negative relationship was also 

assumed for ED because greater distances from the Missouri and Mississippi River 

indicate minimal potential for using AFB at those distances. The FuzzyMSSmall function 

was also used for ED membership transformation. A positive relationship was assumed 

for both FT and BQ because negative values indicated a net loss of forest cover or low 

amounts of AFB, respectively. The FuzzyMSLarge function was used for membership 

transformation. The Fuzzy Large function defines the membership using a function based 

on the mean and standard deviation of the actual input raster values, where larger values 

from the raw data attain a membership closer to 1.  

4.3.3.1 Kernel Density 

A kernel density estimate (KDE) was calculated only for the forest transition parameter. 

This kernel density function was applied after the fuzzy membership (0- 1 scale) was 

processed.  The KDE was applied to produce a smoothed surface that represented a 

gradient of potential forest change. The goal of creating a smoothed surface from forest 

transition was to attempt to account for potential urban sprawl and create a very 

conservative mask to select only forest pixels that would be certainly free (for now) from 

transition to urban pixels. To do this, we selected pixels that had values generated from 

the KDE that were greater than or equal to 0.90. This threshold was chosen to have a 

conservative estimate of forest pixels possibly available for use and resulted in a spatial 

mask that was used for constraining the calculation of total AFB by “leaving out” only 

the pixels regarded as available.  
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A KDE produces smooth surfaces by using a quadratic function where the 

greatest value is attributed to the center of a defined geographic window or area, and 

decreases based on a user-specified search window distance. We set the cell resolution 

for the KDE operation to 1,500 m with a search radius of 10,000 m, which equates to an 

area of approximately 314 km
2
. These thresholds were chosen to account for a very 

conservative estimate of forest transition to urban pixels. Further, the resolution and 

search radius that we used in this study was an attempt to fulfill the goal of finding a 

balance between observing the spatial distributions of forest area throughout the study 

region and achieving a relatively smooth surface that represents conservative 

distributions of forest change. If we choose a smaller cell resolution and search radius, 

the KDE surface would be negligible because only a few pixels would have changed, and 

we thought that this would be an underestimation of the actual potential of urban sprawl. 

As a result, the intention of using a larger radius was to smooth the spatial variation and 

illustrate a general trend over the study area that was tangible and usable, rather than 

highlighting more localized effects of each data point that would occur at singular pixels. 

4.3.3.1 Fuzzy Overlay 

To investigate the relationships between all four factors (BQ, BP, FT, and ED) with 

respect to suitability for increased AFB production, a final suitability map was generated 

using a fuzzy overlay application. Five specific fuzzy logic operators are available in GIS 

and are considered to operate similar to Boolean logic (OR, AND, PRODUCT, SUM, 

and GAMMA) (Boroushaki and Malczewski 2010). For instance, the fuzzy OR function 

is a logical union where maximum values control the output data. The fuzzy AND 

function represents a logical union where minimum values control the output data. The 

PRODUCT is a decreasing function while the SUM is an increasing function. The 
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GAMMA function is product operation between PRODUCT and SUM functions raised 

to the power of gamma. The Gamma overlay function was used for this analysis because 

1) It has the potential to be a good compromise between the increasing effects of SUM 

and the decreasing effects of PRODUCT, and 2) It has the best possibility to fit a forest 

productivity map generated from SSURGO information. The GAMMA function uses the 

following equation:  

                                                    

 eq. 3 

where the GAMMA function multiples the fuzzy sum by the fuzzy product to the power of 

gamma (γ); 0.7 was used as the gamma value in this investigation as a median value to try 

to achieve a compromise between the increasing effects of the SUM function and the 

decreasing effects of PRODUCT function, and fit an existing spatial map of forest 

generated by SSURGO data. Gamma values of 1 are closer to the fuzzy sum whereas 

gamma values approaching 0 are closer to PRODUCT. Values in between allow for a 

combination of evidence between two extremes and possibly different than that from 

other fuzzy functions. The GAMMA function is considered a judicious choice that offers 

a flexible compromise between the increasing tendencies of SUM and decreasing 

tendencies of PRODUCT (Pradhan 2011). 

4.4 RESULTS 

4.4.1 Potential Biomass 

Historic AFB was estimated using 10,857 inventory points where each location had ≥ 2 

trees sampled. Total historic AFB within the MRC was estimated at 8.1 × 10
8 

Mg with an 

average biomass per ecological subsection of 234 Mg ha
-1

 and a standard deviation of 26 
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Mg ha
-1

. The least squares regression between observed and modeled historical AFB had 

an adjusted R
2
= 0.094. Current AFB was estimated using a total of 1,100 inventory plots. 

The total AFB for the current model was estimated at 3.4 × 10
8
 Mg with an average 

biomass value per ecological subsection of 98 Mg ha
-1

 and a standard deviation of 3 Mg 

ha
-1

. The least squares regression between observed and estimated biomass had an 

adjusted R
2
 = 0.022. The average AFB for the current model estimated by RF was not 

statistically different from FIA estimates according to a Student T-test (p=.45, α = 0.05).  

Potential AFB was calculated per ecological subsection as the percent change 

between estimated historic and current data (Figure 4-3). The range in percent changes 

across the entire site was -83 – 31%. In all cases, the summarized mean historic AFB 

levels were greater than current AFB levels which resulted in negative percentages.  The 

top 3 subsections where there was the greatest, negative percent change was found in the 

St. Francois Knobs and Basin (-66%), Mississippi River Hills (-66%), and the Missouri 

River Alluvial Plain (-64%). The smallest average percent change was found in the 

Central Plateau at -46%. The greatest differences in biomass (> 65 Mg/ha) and percent 

changes (> 60%) were illustrated along the Missouri River Alluvial Plain and Mississippi 

River Hills subsections. Minimal differences (< 45 Mg/ha) and percent changes (< 50%) 

occurred within the Central Plateau subsection, along the southern portion of the study 

area that is part of the Ozark region, and also along the Deep Loess Hills subsection, 

found in the upper northeast corner of Missouri. 

Variable importance for both the historic and current model estimates derived by 

RF (Figure 4-4) ranked climate (Annual Mean Temperature and Precipitation 

Seasonality) and elevation as the top 3 predictors, respectively. The mean square error 
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(MSE) values for the historic model ranged between 0 – 90%, whereas the current model 

exhibited a lower range in MSE (0 – 35%).  Subsequent variables in the current model 

primarily consisted of soil factors, whereas in the historic model, the remaining top-

ranked variables consisted of more topographic characteristics as opposed to soil.  

4.4.2 Available Biomass 

We calculated total and average AFB for the available regions specified by the KDE 

mask (Figure 4-5). The total and average available AFB resulting after the constraints 

was quantified at 7.2x10
6
 Mg and 50 Mg ha

-1
, respectively, per ecological subsection 

(Figure 4-7 and Table 4-2). The areas covered by the mask were considered available and 

used as the specific area for the suitability analysis. Total available AFB per ecological 

subsection resulted in an overall decrease in AFB compared to current estimates where 

the greatest departures were found in the Outer Ozark Border (OOB), Osage River 

(ORH), and Meramec River Hills (MRH) subsections. With respect to forest transitions, 

there was an average, negative percent change in forest area (-1.5%), where the 

Mississippi and Missouri River Alluvial Plains had the greatest percent changes in forest 

area (-18 and -5%, respectively) (Figure 4-6).  

4.4.3 Suitability 

Input variables were standardized using a fuzzy membership function that transformed 

the values to fit between 0 and 1: biomass quantity (0-0.8), Euclidean distance (0.3-1), 

forest transition (0.03-1), and percent change (0.09-1) (Figure 4-8). The most suitable 

areas for AFB production were determined to be within the Loess Hills, Missouri and 

Mississippi River Alluvial Plains where the suitability index was greater than 0.9 

(Figures 4-9, 10, and 11). 

4.5 DISCUSSION 
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4.5.1 Aboveground Forest Biomass Potential 

This study illustrated a plausible, methodological approach to determining AFB 

suitability within the Missouri River corridor. The results of AFB suitability were based 

on summarized values that were constrained by spatial restraints that consisted of 

biomass quantities (historic and current estimated by Random Forest), percent changes 

(between historic and current AFB estimates), forest transition, and Euclidean distances 

(from forested pixels to Missouri or Mississippi Rivers).  

The RF procedure for predicting AFB resulted in poor estimates. This may be due 

to the combination of resolutions at which we attempted to acquire AFB predictions (30 

meter resolution) and the scale of the predictor variables. There may be a disjunction 

between the scales where estimating AFB at 30-m resolution was an ineffective strategy 

using FIA data. A relationship between observed and predicted AFB estimates was 

formulated after summarizing AFB estimations at the ecological subsection scale. An 

improved relationship was formulated most likely because the scales of FIA data and 

predictor variables were only adequate at this larger landscape-scale. Therefore, the 

ecological subsection scale may be the most appropriate for estimating AFB using 

observed, FIA information.   

Stratifying the study region by ecological subsection provided additional insight 

into the geographic characteristics of AFB potential as a function of two points in time 

(i.e. 1800s and 2011). This temporal scale is limited because it is only two points in time; 

however, establishing a baseline measure of AFB and compared it with current estimates 

provided information on how the recovery rate of forests across the landscape. 

Additionally, the ecological subsection boundaries delineate critical areas where 

landscape scale analyses are most useful for forest planning decisions, especially when 
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multiple management objectives exist, such as along the Missouri River corridor 

(Galindo-Leal and Bunnell 1995; Lars et al. 2012; Bardhan and Jose 2012)  

Results indicated that the greater percent changes occur along the Missouri and 

Mississippi River Alluvial Plains, as well as in a subsection near the Ozark Region (St. 

Francois Knobs and Basin). The St. Francois region is characterized by igneous knob 

outcrops and sedimentary basins. The two alluvial plains, however, consist of a much 

different morphology where a greater difference between historic and current vegetation 

exists. This may be due to changes in disturbance regimes that have altered AFB 

densities such as harvest, floods, windthrow, or agriculture. Agriculture continues to 

persist in this region and is the dominate land-use type (Hanberry, Kabrick, et al. 2012; 

Nigh and Schroeder 2002).  

4.5.2 Aboveground Forest Biomass Constraints 

The constraints used in this study were a function of limitation in the available number of 

forested pixels used in the analysis. We used the constraints to represent areas most 

probable for use in analysis and quantifying conservative estimates of AFB (i.e. where 

biomass may be used for production, as opposed to simply quantifying total biomass). 

The constraints were considered simple and easily accessible via GIS processing, and we 

believe they effectively captured particular physical aspects of the landscape that could 

potentially limit the use of particular forested areas. For instance, forest transitions from 

urbanization and agricultural expansion were taken into consideration because Missouri 

has many rapidly sprawling urban areas (Sunde et al. 2014). The most prevalent forest 

transitions were found in the Ozark, western (Kansas City), and eastern (St. Louis) 

regions of the study area. 
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The Ozark region, in particular, was found to have the greatest densities of AFB 

and there was still a considerable amount of AFB technically available even with the 

constraints applied. The final constraint, Euclidean (straight-line) distance from the 

Missouri and Mississippi Rivers, was used to identify areas most conducive to 

transporting biomass to processing facilities along the rivers. The ‘straight-line’ measure 

was used simply to gain a broad perspective on the regional variability in AFB locations 

with respect to river boundaries and did not consider structure and type of road networks. 

A separate road network analysis or GIS-based Manhattan process (distance measures 

following only axis-aligned directions, which is more representative of actual road 

networks) was out of the scope of this investigation; albeit would be important for local-

scale cost analyses or bioenergy facility placement.  

4.5.2 Aboveground Forest Biomass Suitability 

Evaluation of AFB production suitability was conducted according to estimates of 

available AFB from a RF model and a series of constraints that exclude particular areas 

of AFB from exploitation. The final map output exemplified the Mississippi and Missouri 

River floodplains and associated Missouri River Alluvial Plains as the most suitable 

locations for AFB production. The modeling procedure was conducted in an effort to fit 

the results to an existing map of forest productivity derived from SSRUGO information 

(Figure 4-12). The forest productivity map shows the floodplains of the Mississippi and 

Missouri Rivers as having good productivity, which is a product of fertile soils that are 

critical for plant growth. The results of the suitability map did not align perfectly with the 

forest productivity map from SSURGO (FIGURE 4-12); however, based on the attributes 

used in the criteria analysis, the Mississippi and the upper portion of the Missouri River 

were considered most suitable. This portion of the results is similar to those from the 
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SSURGO forest productivity map. An increase in forestland area has been observed 

specifically along the Mississippi River where forest expansion has occurred, reverting 

agriculture and barren lands to forest, except in the most productive agricultural zones 

(Yeo and Huang 2013).  

The fuzzy logic process was an important GIS application that was capable of 

facilitating a coarse-scale decision process using multi-criteria. The applicability of this 

process is minimal due to the poor estimates of the AFB with the RF model. This was due 

to the inability of estimating AFB at fine (30 meter) resolution with coarse-scaled, FIA 

information. Thus, the given results should be used with great caution. Future research 

should focus on improving models that estimate AFB. This may be accomplished by 

concentrating on the types and number of variables used for estimating AFB (we were 

only allowed a maximum of 20). Other successful studies have used ≥ 30 variables 

(Prasad et al. 2004; Falkowski et al. 2009).  

This investigation attempted to use a fuzzy logic approach using multiple criteria 

to understand spatial dynamics of AFB.  Because of the poor AFB estimates, the 

suitability model cannot be used to ascertain any information regarding AFB; however, 

the methodology remains appropriate for constructing a multiple criteria framework, but 

will require a more accurate estimate of AFB to improve this model. Multi-criteria 

analyses are widely used to determine the influence of particular variables in group 

decision processes (Boroushaki and Malczewski 2010) such as land 

susceptibility(Pradhan 2011), plant growth (Lewis et al. 2014) facility placements, or 

land-use assessments (Lars et al. 2012). To make this approach feasible and applicable, 

the uncertainties in estimating the focal parameter, AFB, requires further investigation. 
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4.6 CONCLUSION 

A GIS-based analysis was performed to assess both the theoretical and available AFB 

potential at a large landscape scale. The results illustrated that the greatest changes 

between theoretical and available AFB potential exist along the Missouri River 

floodplain, which also corresponds with production suitability generated from the Fuzzy 

Logic Overlay analysis. The AFB suitability maps presented in figures 4 and 5 shows the 

spatial distributions of AFB by ecological subsection and are approximately consistent in 

comparison with forest productivity maps derived from SSURGO. In this study, we 

sought to develop a multi-criteria indicator method to illustrate AFB production 

suitability, which could be used to help support future decisions about sustainable forest 

production at a regional scale.  
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Figure 4 - 1: The Missouri River corridor is approximately 106,000 km
2
 covers 21 

counties and is divided into 21 ecological subsections. 
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Figure 4 - 2: Flow chart illustrating processes to obtain suitability index.  
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Figure 4 - 3: (A) Percent changes between historic and current aboveground forest 

biomass (AFB) estimated using a Random Forest procedure at the pixel scale. (B) 

Average AFB summarized by ecological subsection. 
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Figure 4 - 4: Variable importance plot for estimates of Current and Historic 

aboveground forest biomass (AFB) generated from a Random Forest procedure. 

  



104 
 

 

Figure 4 - 5: The biomass mask is used to constrain total aboveground forest 

biomass (AFB) estimated by the RandomForest model and identify areas of 

available AFB. The mask was generated based on a kernel density estimate of forest 

transition values that were ranked from 0 – 1 (i.e. after fuzzy membership algorithm 

was applied to values of percent forest transition. Locations that were ≥ 0.95 based 

on the fuzzy membership analysis were masked to represent available areas. All 

other areas not covered by the mask were considered not available and left out of 

the suitability analysis.  
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Figure 4 - 6: Percent changes in Forest (top-bar), Agriculture (middle bar), and 

‘Other’ (bottom bar) between 2001 and 2006. 
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Figure 4 - 7: Total current (Unconstrained – Blue) and total available (Constrained 

– Red) aboveground forest biomass summarized by each ecological subsection with 

standard errors.   
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Figure 4 - 8: Fuzzy membership for (A) Euclidean distance, (B) percent change, (C) 

forest transition, and (D) current AFB quantity covering all forested pixels (30m
2
).   



108 
 

 
Figure 4 - 9: Suitability index per ecological subsection where the horizontal bar 

indicates the value used (0.9) to categorized subsections with the greatest suitability 

(Loess Hills, Mississippi, and Missouri River Hills).  
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Figure 4 - 10: Available aboveground forest biomass suitability index based on 

Fuzzy Logic processes in ArcGIS. 
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Figure 4 - 11: Constrained (available) aboveground forest biomass suitability 

categories stratified by ecological subsection.   
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Figure 4-12: Forest productivity derived from SSURGO database. The forest productivity 

map was used to fit the suitability model to identify areas most suitability for increased 

AFB production.  
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Table 4 - 1: Description of environmental variables used to estimate aboveground 

forest biomass in a Random Forest modeling procedure.  

 

Environmental 

Group 

Variable 

Code Description 

Climate 
BIO_01 Mean annual temperature (Celsius) 

BIO_15 Covariation annual precipitation (inches) 

Soil 

SAND Sand content (%) 

SILT Silt content (%) 

CLAY Clay content (%) 

OM Organic matter content (%) 

CF Coarse fragments (%) 

PH 

The sum of NH4OAc extractable bases (pH 

7.0) 

KSAT Hydraulic Conductivity 

Topography 

ELEV Elevation (ft) 

ASP Aspect (Degree) 

SLOPE Slope (%) 

TPI Topographic Position Index 

TWI Topographic Wetness Index 

VRM Vector Ruggedness Index 

Remote Sensing 

NDVI Normalize Difference Vegetation Index 

NDWI Normalized Difference Wetness Index 

B* Brightness 

G* Greenness 

W* Wetness 

*Derived from tasseled-cap transformation.   
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Table 4 - 2: Summary of average aboveground forest biomass estimates per 

ecological subsection between Potential and Available AFB values. 

 
AVAILABLE CURRENT 

 

SUBSECTION NAME 

TOTAL  

(Mg) 

AVERAGE 

(Mg ha
-1

) 

TOTAL 

(Mg) 

AVERAGE 

(Mg ha
-1

) 

PERCENT 

CHANGE 

Black River Ozark Border 2.5E+05 41.5 5.8E+05 96.6 -57.0 

Central Plateau 2.0E+07 54.2 3.3E+07 91.4 -40.7 

Chariton River Hills 1.1E+07 56.6 1.7E+07 88.2 -35.9 

Cherokee Plains 2.8E+06 70.9 3.6E+06 91.4 -22.4 

Claypan Till Plains 1.1E+07 78.8 1.2E+07 91.2 -13.6 

Current River Hills 1.0E+05 1.7 5.6E+06 95.4 -98.2 

Deep Loess Hills 1.0E+06 97.4 1.0E+06 97.4 0.0 
Dissected Till and Loess 

Plains 
2.3E+07 74.7 2.7E+07 88.5 -15.6 

Gasconade River Hills 1.2E+07 52.7 2.2E+07 92.8 -43.2 

Inner Ozark Border 2.8E+06 10.6 2.5E+07 95.5 -88.9 

Loess Hills 1.4E+07 90.0 1.5E+07 94.2 -4.5 

Meramec River Hills 4.0E+06 11.1 3.4E+07 95.0 -88.3 
Mississippi River Alluvial 

Plain 
1.1E+06 86.3 1.1E+06 89.1 -3.1 

Mississippi River Hills 8.8E+06 47.9 1.7E+07 93.5 -48.7 

Missouri River Alluvial Plain 2.8E+06 69.5 3.6E+06 90.6 -23.3 

Osage River Hills 3.6E+06 10.6 3.2E+07 93.6 -88.7 

Outer Ozark Border 7.7E+06 19.4 3.8E+07 96.4 -79.9 

Prairie Ozark Border 2.1E+06 36.9 5.3E+06 94.7 -61.1 

Scarped Osage Plains 1.5E+07 88.1 1.6E+07 93.5 -5.8 
St. Francois Knobs and 

Basins 
2.6E+05 1.7 1.4E+07 93.1 -98.1 
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Table 4 - 3: Area and total aboveground forest biomass summarized by ecological 

subsection.  

Subsection Name 
Area 

(ha) 

Current  

(Mg) 

Available  

(Mg) 

Black River Ozark Border 
7.59 x 10

3
 2.86 x 10

6
 1.27 x 10

6
 

(BROB) 

Central Plateau 
7.69 x 10

5
 1.66 x 10

8
 1.02 x 10

8
 

(CP) 

Chariton River Hills 
7.01 x 10

5
 8.56 x 10

7
 6.05 x 10

7
 

(CRH) 

Cherokee Plains 
1.75 x 10

5
 1.79 x 10

7
 1.46 x 10

7
 

(CP) 

Claypan Till Plains 
9.18 x 10

5
 6.10 x 10

7
 5.73 x 10

7
 

(CTP) 

Current River Hills 
6.73 x 10

4
 2.80 x 10

7
 5.20 x 10

5
 

(CRH) 

Deep Loess Hills 
1.57 x 10

5
 5.07 x 10

6
 5.09 x 10

6
 

(DLH) 

Dissected Till and Loess 

Plains 1.68 x 10
6
 1.33 x 10

8
 1.21 x 10

8
 

(DTLP) 

Gasconade River Hills 
3.57 x 10

5
 1.09 x 10

8
 6.39 x 10

7
 

(GRH) 

Inner Ozark Border 
4.94 x 10

5
 1.25 x 10

8
 1.46 x 10

7
 

(IOB) 

Loess Hills 
9.85 x 10

5
 7.49 x 10

7
 7.28 x 10

7
 

(LH) 

Meramec River Hills 
4.56 x 10

5
 1.68 x 10

8
 2.02 x 10

7
 

(MRH) 

Mississippi River Alluvial 

Plain 8.14 x 10
4
 5.55 x 10

6
 5.85 x 10

6
 

(MsRAP) 

Mississippi River Hills 
5.00 x 10

5
 8.54 x 10

7
 4.65 x 10

7
 

(MsRH) 

Missouri River Alluvial 

Plain 4.32 x 10
5
 1.79 x 10

7
 1.46 x 10

7
 

(MoRAP) 

Osage River Hills 
5.29 x 10

5
 1.57 x 10

8
 1.88 x 10

7
 

(ORH) 

Outer Ozark Border 
8.71 x 10

5
 1.91 x 10

8
 4.14 x 10

7
 

(OOB) 
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Prairie Ozark Border 
2.27 x 10

5
 2.63 x 10

7
 1.06 x 10

7
 

(POB) 

Scarped Osage Plains 
9.36 x 10

5
 7.99 x 10

7
 7.72 x 10

7
 

(SOP) 

St. Francois Knobs and 

Basins 1.89 x 10
3
 6.93 x 10

7
 1.30 x 10

6
 

(SFKB) 
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CHAPTER 5: CONCLUSION 

 

Shove nature around a little bit and find out if anything happens. And if it does, you 

might be on the edge of an important breakthrough, and then you sit down, devise 

experiments, and take notes. 

- E.O. Wilson 

 

5.1 OVERVIEW 

The objectives of this research were to demonstrate a Random Forest (RF) methodology 

that could be used to help guide future research for estimating aboveground forest 

biomass (AFB) and potentially help managers design effective plans by understanding 

how much is available and where it is located.  Moreover, the work aims to identify 

spatially explicit areas that may have the best potential for increasing AFB. The outcome 

of this dissertation research was a coarse-scale, systems approach for estimating AFB 

across the Missouri River corridor. A hybrid modeling structure was created using a RF 

procedure with soil, topographic, climate, and remote sensing variables to estimate AFB. 

We applied the RF model to both current and historic (circa 1850) AFB values at a 30m 

resolution and then summarized all forested pixel values by ecological subsections. We 

then attempted to create a suitability map using our estimated biomass quantities, the 

percent changes in AFB between historic and current, and an additional two variables that 

simulated physical constraints on the landscape (forest transition and distance to rivers 

suitable for biomass transport). Based on these variables, a fuzzy logic, overlay analysis 

was conducted to produce a suitability map that illustrated spatial locations well suited 

for AFB production.  
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 The RF procedure resulted in poor estimates of both current and historic AFB at 

the 30m resolution. A better statistical relationship (greater R
2
 value in the correlation 

between observed and predicted) was observed when all estimated AFB values were 

summarized by ecological subsection. This may suggest that this RF procedure may not 

be able to predict AFB at such a fine scale either due to the type of variables used (i.e. 

they could not explain much of the variation between observed AFB values) or that the 

number of variables used (maximum of 20) for estimating AFB was not appropriate. 

Another possibility is that the observed AFB data from FIA was too coarse to be able to 

estimate at a 30m resolution. Thus, we conclude that the RF model performance created 

inconclusive results at the pixel resolution (30m) and that AFB estimates summarized at 

the ecological subsection scale may be more representative and appropriate for using the 

observed data derived from the USFS FIA. 

The RF procedure for estimating AFB and stratification by ecological subsection 

may be an effective procedure to pursue future AFB estimations using FIA data; 

however, our results suggest that the ecological subsection may be a more appropriate 

scale (compared to the pixel scale) to accomplish a broad-scale analysis of AFB 

dynamics. Additionally, the RF model output provided measures of variable importance 

that may be important to either narrow down prospective variables for future modeling 

attempts or to help understand what primary factors have the greatest influence on AFB. 

For this current modeling attempt, climate was determined to be the primary determinant 

of AFB, but only for a model that explained very little of the total variation in AFB. 

Despite poor statistical estimation in model results, the value of this dissertation 

research lies in expanding our understanding of what it may take to effectively estimate a 
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dynamic resource, such as AFB. A small amount of variability was explained using the 

RF approach with a limited number of variables. Therefore, adding more and different 

variables to the RF procedure may have the potential to produce better estimates of AFB 

and be capable of lending more insight into the spatial availability of AFB. Additionally, 

altering or adding more variables to the RF models that better reflect site-specific 

landscape characteristic (e.g. tree species physiology, different time frames, or spatial 

scales) may result in better estimates. We conclude here that the RF procedure can be an 

effective methodology, but stress that this approach requires better information (observed 

and predictor variables) to train the model. Ultimately, this research can only be used as 

an example of a methodology that was not successful and suggest alternatives to improve 

this methodology.  

A post-hoc test was performed to clarify if the RF forest model was running 

appropriately and gain a better understanding of the role that disturbances and stand age 

may be playing in current AFB estimates. Three cycles of FIA data (Cycles 5, 6, and 7) 

that span 15 years (N = 12498) was used to train a new RF model. The predictor variables 

were taken directly from the FIA dataset in contrast to our models which assigned 

landscape variables to FIA plot locations. The FIA variables were forest disturbance 

(DISTRB), site index (SICOND), stand age (STAGE), slope, and aspect. The new RF 

model also resulted in poor estimates of AFB (R
2
 = 0.14), although superior to our initial 

results (Figure 5-1). The top two variables in the model were stand age and site index 

with the disturbance parameter at the very bottom of the list (Figure 5-2). This post-hoc 

test suggests that the RF model is working appropriately due to an increased R
2
 value 

resulting from more scale-appropriate variables, and that the major limitations to the 
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methodology are the scale, quantity, or quality of input variables. We suggest that remote 

sensing indices, which are known to be good indicators of AFB, be used in future studies 

to improve the RF model for estimating current AFB.  

5.2 LIMITATIONS 

The restrictions on access to spatial locations of FIA plot data were a major constraint in 

this research. Without direct access to FIA plot location data, we were limited to a 

maximum of 20 predictor variables in this study and could not include additional 

variables such as other Bioclim climate variables (e.g. Max Temperature of Warmest 

Month, Temperature Annual Range, Precipitation of wettest Month, etc.). While we 

understand the need for protecting the spatial coordinates and ownership of individual 

FIA plot locations, those restrictions limit the types of analyses that are possible in a 

study such as this one.   

Another limitation was the scale at which the FIA information was collected. We 

attempted to use coarse-scaled information (e.g. one FIA plot per roughly 2500 ha 

(USDA FIA 2013)) to estimate AFB at a fine (30m) resolution, which proved to be 

unsuccessful. This methodology was necessary to test the utility of: 1) the RF model, and 

2) FIA data. A better relationship (increased R
2
 value) was observed after summarizing 

all forested pixel values of estimated AFB by ecological subsection. This suggests that 

the variables represented broad-scale drivers of AFB, such as climate and soil 

characteristics.   Further, interactions among local and broad-scale processes were not 

considered, but could be important in explaining patterns of AFB distributions. 

5.3 FUTURE DIRECTIONS 
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The models represent only a single scale and time period at which to identify the 

nature of AFB dynamics across the Missouri River corridor. It remains important for 

future research to unravel potential phenomena based on the interactions between AFB 

and ecosystem processes at various scales. Models are only extensions of our ability to 

comprehend scale-dependent details of the dynamic nature of AFB and there are certainly 

myriad phenomena occurring at scales that are so radically disparate that they need to be 

considered separately. For instance, intermediate-scale properties associated with spatial 

heterogeneity should be investigated to determine how pattern-process relationships 

interact from fine to broad scales such as competition between species or more human-

oriented factors, such as management objectives between private and public lands. 

Moreover, fine-scale patterns often cannot be understood without knowledge of broader-

scale processes and therefore require a systems approach to understanding the dynamics 

of AFB (Lewis et al. 2014). Landscape ecology deals fundamentally with how, when, and 

why patterns of environmental factors influence the distribution of organisms and 

ecological process, and vise versa. Subsequently, future directions for this research may 

entail modeling how anthropogenic alterations may change AFB distribution, where the 

changes are most likely to occur, the socioeconomic or environmental conditions that 

dictate why changes may occur such as process-facility placement or renewed interests in 

marginal lands for increasing AFB. Further, focus should be placed on which particular 

species may be most suitable, as opposed to an overall, broad-scale analysis.  
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Figure 5 - 1: Observed versus predicted AFB from the post-hoc RF model. Red line 

indicates model fit and blue dashed line illustrates the 1:1 line.  
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Figure 5 - 2: Variable importance chart from the RF model.  
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