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ABSTRACT

In this work, we address the problem of person re-identification for intelligent

analysis and search of surveillance videos. During person re-identification, we need to

match observations of individuals across different camera views with large variations

of appearance, such as pose, illumination, and view angle. We develop a system that

combines traditional color histograms and proposed semantic color descriptors with

our local features encoded by Fisher vectors, to provide discriminative appearance-

based representation of persons. We also develop an adaptive training sample selec-

tion schemes to optimize the training performance over a large scale training dataset.

A two-layer linear ranking SVM with pruning method is introduced to handle such a

large training set. At last, the result is represented by a ranking score over all gallery

images given a probe image. We evaluated our system performance on VIPeR dataset

and compared to previous results, demonstrating the effectiveness and the robustness

of our methods against significant environmental changes.
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Chapter 1

Introduction and Background

1.1 Introduction

Person Re-identification, which is also known as inter-camera human association or

multi-camera tracking, as one of the most important applications in computer vision,

has been an active research field for decades [54]. Recently, especially during the past

few years, person re-identification system has received more attention as a result of its

increasing importance in a wide range of practical applications in both commercial

and law enforcement areas [57]. Human Re-identification techniques have been or

potentially will be adopted by many applications such as surveillance, identification

systems, video retrieval and search, etc [27].

Person Re-identification mainly involves the following two steps: descriptor ex-

traction based on appearance and distance matching between the candidates. In the

first step, two assumptions are applied [1]: 1) The fine cues (e.g. face, or iris, which
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are commonly used for identification problems) are not available due to the relatively

low resolution of the captured images; 2) The individuals across different cameras do

not change their clothes. For the distance matching step, given an query image and

a set of candidates, the target image (i.e. query person in a different scene) should

have the closet distance in terms of descriptors when paired with query image. The

pairwise distance metric can be achieved by unsupervised or supervised learning(if

ground-truth provided). In this work, we will concentrate on the latter.

Though many re-identification systems have demonstrated promising results un-

der well-controlled settings [32, 58], such as small scale CCTV networks, person re-

identification itself remains a complicated problem that is far from being completely

solved in wild conditions. There are two major difficulties that make human re-

identification in uncontrolled environments a very challenging problem. The first is

due to the relatively large intra-personal variation under different combinations of

backgrounds, human poses, illumination and view angles. All these facts are quite

obvious in real world scenario. Moreover, different cameras with uncalibrated sensor

parameters will introduce unpredictable errors. Second, distinct people may present

similar appearances as long as they wear clothes with the same color. Figure 1.1

shows some examples of the images captured by camera A and B in VIPeR dataset

[2].

1.2 Related Works

In order to tackle this problem, many existing works concentrate on two major ap-

proaches: descriptor/feature extraction and distance measurements.
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Figure 1.1: VIPeR dataset sample images. Top row from cama, bottom row from
camb. Each column: same subject from different viewpoints.

1.2.1 Feature Representation

In the first approach, the visual features applied in person re-identification are com-

plicated, which involve tons of works and analysis, however, they can still be roughly

categorized into global and local descriptors. The holistic representation of body

parts and detailed traits are both significant, plus there are so many existing and

new methods to handle with, thus no doubt the way to select and combine various

global and local features plays the most important role in this part. Some typical

and widely adopted features for this problem include colors [3, 4, 1], Histogram of

Oriented Gradients (HoG) [5, 6, 7], Haar-like descriptors [8], points of interest [9],

e.g. SIFT and SURF [10, 11], Maximally Stable Color Regions (MSCR) [12, 13, 14],

texture filters [2, 15, 16, 17], differential local information [2], co-occurrence matrices

[6]. Gray et al. [2] introduced their feature combination including RGB, YCbCr,

HSV, Schmid and Gabor filters. They also evaluated the percent of descriptors their
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model selected among all those features, providing interesting results that every chan-

nel is supporting the final feature space, while hue and saturation channels are most

informative without surprise given the illumination changes between two cameras. As

we can conclude, at least two to three lower-level features are combined in each of

these works. For example, Prosser et al. [17] merged colors and textures and Kuo [1]

concatenated multi-channel color histograms with MSCR and Covariance Matrices.

Despite the low level features that are directly extracted from the images, some

approaches like Bag of Words (BoW) [18] are commonly used to further utilize the

statistical informations. In BoW, the visual word occurrences are recorded and used

to present the target image. The histogram features based on trained visual words

code-book are very robust to spatial changes, thus be widely adopted in computer

vision problems. The BoW model has been introduced for person re-identification in

[10], where contextual information enriched visual words are embedded and grouped

as descriptors. In recent years, the introduction of the Fisher vector [19] provides a

better model to encode the local features. Many works [20, 21, 22] have shown the

outstanding performance of Fisher vectors over other coding mechanisms.

1.2.2 Distance Measure

Typical general distance measures include histogram based Euclidean distance, Bhat-

tacharyya distance [17], K-Nearest Neighbor classifiers [23]. To be more discrimina-

tion oriented, Gray and Tao [2] proposed to use Adaptive boosting algorithm (Ad-

aboost) [24] to search for the most relevant features through the entire set of descrip-

tors based on the assumption that certain features often appear to be more suitable

for matching then others. Re-identifications by these approaches both encounter dif-
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ficulties. The rationales are complex. For the former one, note that not every piece

of descriptors are equally important,and there are always highly overlapped feature

distributions of different objects. For example, in Figure 3.3, given a probe image,

an incorrect gallery image can appear to be more similar to the probe than a correct

image in the gallery. The challenge is hard to be solved by any of these low-level

distance matching methods. In contrast, the adaptive boosted weak classifiers keep

a small portion of features that are considered the most discriminative. However,

this method become less effective when similar negative samples have severely over-

lapped feature distributions, which leads to a confusion of the weak classifiers and

the ignorance of informative descriptors.

Reformulation to ranking problem of re-identification have been introduced by

many works. In RankBoost [25], Freund et al. uses a set of weak rankers boosted to

form a strong ranker. This method was also adopted by Kuo [1]. Unlike RankBoost,

Joachims et al. seek to learn a ranking function based on SVM kernels in a much

higher dimensional space where features are more separable. However, the main issue

with the kernel based RankSVM learning is the comparative expensive computation

due to the huge amount of inequality constraints introduced by its super high dimen-

sionality. As a consequence, it is limited to a few iterations, resulting in sub-optimal

solution. A primal-based RankSVM (PRSVM) [26] was propsed by Chapelle and

Keerthi to address the speed issue of RankSVM. However, the PRSVM still suffers

another scalability limitation problem. More specifically, as the number of training

samples grows, the number of negative samples increases non-linearly.1

Distance learning and matching methods are receiving increasing concentration.

1Negative samples grows exponentially in most cases according to positive samples.
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Pairwise metric learning (RPLM) [27] is proposed based on Mahalanobis distance

[28] which takes advantages of the structure of the data with reduced computational

cost. Kostinger et al. [29] proposed a simple method to learn the distance metric

based on a statistical inference perspective. Zheng et al. formulate re-identification

problem as a relative distance comparison (PDRC) problem which aims to maximize

the likelihood that the distance between a pair of images of the same pedestrian is

smaller than a incorrect pair.

To summarize, there is no optimal distance measurement learning solution for

every possible application, in other words, all learning methods are task oriented.

Either they assume the training data to be fully annotated, or they are too domain

specific [30, 31, 32], or they suffer from significant loss in performance when the

dimensionality of the input space is high or amount of available training data is low

[33, 34].

1.3 Overview of This Work

In this work, our framework is organized into two fold: training and testing. They

share the same feature extraction module to ensure the consistency of descriptors

extracted from every image. Besides, training is served as a prerequisite for testing

since distance learning weight vector is required for pairwise ranking. Figure 1.2

illustrate the flowchart of our proposed method.

We aim to seek for the most discriminative features while preserve the global

information collaboratively; Also, to provide a similarity score rather than correct

vs. incorrect classification and utilize the massive pairwise information. Thus, in
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Figure 1.2: The overview flowchart of our work.

Section 2.1, we discuss the color histograms and introduce our semantic color name

descriptor as well as its statistical extension SSCD. A higher level encoding method

Fisher vector is adopted in Section 2.2, followed by the proposed texture descriptor

uniform Local Binary Patterns and our combination mechanism in Section 2.3 and 2.4

respectively. We also propose our distance learning method including Self Inflation

by Shifting Window Duplicates (SISWD), Linear Ranking Support Vector Machine

(LRSVM) and Pruning for data discrimination refine in Chapter 3.

To evaluate the effectiveness of our partial and compete method, we conducted

7



experiments on the feature channels and compared our performance with some state-

of-art results in Chapter 4. It demonstrates that our framework in pedestrian re-

identification is effective and could achieve state-of-art performance.
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Chapter 2

Viewpoint Invariant Image
Representation

Extracting the representation of image appearance is fundamental yet important part

of most computer vision problems. To begin with extraction, note that a pedestrian

image is bounded in a rectangle. Corresponding to human body shape, the height

is larger than the width of a given image. Each image will be divided into 6 non-

overlapping strips, all the feature extraction steps presented below are performed on

each strip. The justification is provided in Section 2.4.

2.1 Color Descriptors

As discussed before, the significance of color appearance in this problem is no doubt

obvious. To fully utilize this information, we propose three separate formulations:

color histograms, semantic color names and statistical descriptor based on color
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names.

2.1.1 Color Histograms

A color histogram is a representation of the distribution of colors on a specific color

channel. The original RGB channels are prone to illumination changes, as a result, we

include HSV and Lab channels to maintain the smooth color transitions in complex

lighting conditions and disjoint camera views. Without loss of generality, we assume

in a given color space c containing K color bins, the color histogram of image strip I

containing N pixels is represented as H(I) = [h1, h2, ..., hn], where hi = ni/N is the

number of a pixel in the image strip belonging to the i-th color bin, and ni is the

total number of pixels in the i-th color bin. hi can be defined as follows:

hi =
N∑
j=1

Pi|j (2.1)

where Pi|j is the quantization and selection function:

Pi|j =


1 if i = 0 & Imin ≤ Ii ≤ Wi

1 if 0 < i ≤ K & W (i− 1) < Ii ≤ Wi

0 otherwise

(2.2)

where W = Imax/K is the span of color bins.

To compute the histograms H(I) in a given image strip, we first convert each pixel

from RGB to HSV and Lab, then quantized to 16 bins separately in each channel,

result in 16× 3× 3 = 144 dimensional features.
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2.1.2 Semantic Color Descriptors

Instead of using histograms only as in many previous works, we added semantic color

names feature to address the issue that inter-camera pixel values of the same person

may have small offsets. We have noticed that when comparing a pair of images, people

use color names to classify a certain range of colors and ignore the slight difference in

values. For instance, two pixels A (255,0,0) and B (220,0,0) are both ’red’ in terms

of human visual acknowledgment. However, their RGB values have a large gap. The

semantic color names are considered to be more robust and less sensitive to noise. To

obtain the names, we need a mapping function from the HSV color space values to

color names in our dictionary. We choose HSV instead of RGB values because HSV

channels are much more likely to stay contiguous when lighting condition changes.

Figure 2.1 shows the well defined bright color distribution in HSV color-space based

on hue angles, which are listed in Table 2.1.

Figure 2.1: The semantically labeled bright color wheel in HSV space based on hue
angles.
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Angle Color
0◦ Red
30◦ Orange
60◦ Yellow
90◦ Chartreuse green
120◦ Green
150◦ Sprint green
180◦ Cyan
210◦ Azure
240◦ Blue
270◦ Violet
300◦ Magenta
330◦ Rose

Table 2.1: The hue angles of the 12 major bright colors of the HSV color wheel.

We use 15 color names in English [35, 36]: black, gray, white, red, orange, yellow,

chartreuse green, green, sprint green, cyan, azure, blue, violet, magenta, rose. The

first three are pale colors, while the rest are vivid and can well represent the bright

color of the clothes.

Kuo et al. [1] use a training method assuming the prior probabilities are equal

among all color names to get a mapping function from every RGB value to 11 color

names. We did not follow their methodology and the rationale is quite simple: color

names are human defined semantic feature, we need the labels based on ground-truth.

We first normalize hue, saturation and value to range [0, 1], and the pseudo-code

for this is shown in Algorithm 1. Figure 2.2 shows the output of semantic color names.

Note that the colors in these images are painted only for viewing, the actual name

labels are exclusive to any value. The semantic color names labeling is more stable

than the original color values even though there are some artifacts due to the complex

mixture of cloth textures and shadow.
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Algorithm 1 Semantic Color Name

Require: h, s, v ∈ [0, 1]
if v < 0.3 then
name← BLACK

else
if s < 0.2 then

if v ∈ [0.3, 0.8) then
name← GRAY

end if
if v ≥ 0.8 then
name← WHITE

end if
else
SWITCH(h)
name← BRIGHT COLOR NAME BASED ON HUE ANGLE

end if
end if
return name

2.1.3 Statistical Semantic Color Descriptor

To suppress the error introduced by large pose variation, we also include pose invariant

features. Statistical Semantic Color Descriptor (SSCD) is thresholded percentage

based on semantic color names descriptor. For each color name we introduced in the

last section, such as blue, we will have M binary bins. The SSCD for this specific

color is a simple thresholding function:

SSCDblue(m) =

 1 if sumblue/sumtotal ≥ m
M

0 otherwise
,m = 0, 1, 2, ...M. (2.3)

where sumblue is the summation of pixel numbers that were defined as ”blue”, and

sumtotal is the summation of pixels in current strip. M is the quantization parameter

which also controls the number of bins.
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Figure 2.2 shows the results of images before and after SSCD, some shadows are

removed. We can observe that the bulk flat color areas become even more smooth.

Figure 2.2: Some examples of pixel-wise assignments by SSCD on VIPeR dataset.
(a) Original samples. (b) Result images. Note that the painted colors are used only
for demonstration, the descriptors are index numbers only in practice.

In practice, we set M = 10, which results in 15 × 10 = 150 bins SSCD in each

strip, where 15 is the number of semantic color names.

2.2 Fisher Vectors

To further exploit the local low-level details and their combination patterns, we use

Fisher vectors to encode the properties of images. First, we need a very simple

descriptor, then a generative model such as Gaussian Mixture Model (GMM), and

finally an encoder that will generate a frequency based representation whose idea is

similar to the BoW model. Overall, the Fisher vector characterizes a signal with a

14



gradient vector derived from a probability density function (PDF), models not only

the generative but also discriminative patterns at the same time.

2.2.1 Local Descriptor

We use intensity, first and second order derivatives to represent the local traits. For

each channel in HSV space, the local descriptor consists of 5 elements:

f(x, y) = (I(x, y), Ix(x, y), Iy(x, y), Ixx(x, y), Iyy(x, y)) (2.4)

where x and y are coordinates, I(x, y) is the intensity at (x, y) of corresponding

channel, Ix and Iy are the first-order derivatives with respect to x and y, while

Ixx and Iyy are the second-order derivatives. Given a color image consists of three

channels, this result in 5× 3 = 15 dimensional point-wise descriptor. We can see this

local descriptor captures the absolute value as well as the gradient change, contains

the majority of information restricted within a local region.

2.2.2 Gaussian Mixture Models

A Gaussian Mixture Model is introduced to approximate the distribution of low-level

features in images, i.e. a visual word or vocabulary. Let us denote D = {dn, n =

1, 2, ...N} be the set of the N local descriptors extracted from images. We model D

with a Gaussian Mixture Model using Maximum Likelihood(ML) estimation. Let µ̂λ

be the GMM model:

µ̂λ =
K∑
k=1

wkµk(µk, σk) (2.5)
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where K is a controllable parameter of the number of Gaussian components, wk

denotes the weight of the k−th Gaussian component, while µk and σk are its mean and

standard deviations. The Gaussian Mixture Models can be obtained by maximizing

the log-likelihood of the extracted local features:

`(Θ;X) = Ex∼p̂[log p(x|Θ)] =
1

n

n∑
i=1

log
K∑
k=1

wkp(Xi|µk,Σk) (2.6)

where p̂ is the empirical distribution of the data. We can use Expectation Maxi-

mization (EM) [37] to solve (2.6) since the direct maximization of the log-likelihood

function of a GMM is difficult due to the fact that the assignments of points to

Gaussian mode is not observable and, as such, must be treated as a latent variable.

By introducing an auxiliary distribution q(h|x) on the latent variable, we can use

Jensen’s inequality to obtain the lower bound on the log-likelihood:

`(Θ;X) = Ex∼p̂ log p(x|Θ) = Ex∼p̂ log

∫
p(x, h|Θ)dh

= Ex∼p̂ log

∫
p(x, h|Θ)

q(h|x)
q(h|x)dh

≥ Ex∼p̂

∫
q(h) log

p(x, h|Θ)

q(h|x)
dh

= E(x,q)∼q(h|x)p̂(x) log p(x, h|Θ)− E(x,q)∼q(h|x)p̂(x) log q(h|x)

(2.7)

where the first term of the last expression is the log-likelihood of the model, the

second term is the average entropy of the latent variable, which does not depend on

Θ. Then iterative expectation step:

qik =
wkp(xi|µk,Σk)∑K
l=1wlp(Xi|µl,Σl)

(2.8)
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and maximization step:

µk =

∑n
i=1 qikXi∑n
i=1 qik

(2.9)

Σk =

∑n
i=1 qik(Xi − µk)(Xi − µk)T∑n

i=1 qik
(2.10)

wk =

∑n
i=1 qik∑n

i=1

∑K
l=1 qil

(2.11)

are performed to estimate the GMM.

2.2.3 Fisher Vector Encoding

After the GMMs are obtained, we can encode the image using Fisher vector. Chat-

field et al. [22] have demonstrated that Fisher vector outperforms the BoW model by

a large margin, indicating the fact that information is lost when a local descriptor is

replaced with (assigned to) the nearest codeword. In contrary, Fisher vector success-

fully retains extra information by soft assignment to the Gaussian components. Let

γt(k) be the soft assignment of the descriptor dt to the Gaussian component k:

γt(k) =
wkµk(dt)∑K
j=1wjµj(dt)

(2.12)

GM
µ,k and GM

σ,k are the 15-dimensional descriptor gradients with respect to µk and σk

of the component k. GM
µ,k and GM

σ,k can be computed via the following derivations:

GM
µ,k =

1

T
√
wk

T∑
t=1

γt(k)(
mt − µk
σk

) (2.13)
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GM
σ,k =

1

T
√

2wk

T∑
t=1

γt(k)[
(mt − µk)2

σ2
k

− 1] (2.14)

where the divisions between vectors are term-by-term operations.

We concatenate GM
µ,k and GM

σ,k vectors for k = 1, 2, ...K, resulting in a 2× 15×K

dimensional feature, where 15 is the dimensionality of our local descriptor.

2.3 Local Binary Patterns

So far, we have included local and statistical color features, as well as color gradients

information. In terms of gray-scale texture descriptors, we choose Local Binary Pat-

terns (LBP) [38] because it is proved to be very effective in capturing local patterns

such as edges, spots and flat areas.

Figure 2.3: A typical Local Binary Pattern operator.

Regardless of scale invariant setting, a typical LBP value is calculated within a 3

x 3 block. In Figure 2.3, a center pixel value 5 from the left box is compared to its 8

neighbors to generate binary codes denoted as F in the right box:

F ≈ t(s(g0 − gc), s(g1 − gc), ..., s(gP−1 − gc)) (2.15)
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where P = 8 in this case and

s(x) =

 1 x ≥ T

0 x < T
(2.16)

where T is the threshold parameter. If not specifically required, we normally set

T = 0.

The next step is to concatenate the binary codes in clockwise order, the highest

bit starting from top or top-left corner. Note that points P = 8 and radius R = 1

for the rest parts if not specified and as long as the order is fixed and consistent, the

starting position does not affect the performance:

LBPP,R(x, y) =
P−1∑
p=0

s(gp − gc)2P (2.17)

For example, in Figure 2.3, for the center pixel in the 3 x 3 block, its LBP value

LBP8(2, 2) = 0 ∗ 27 + 0 ∗ 26 + 0 ∗ 25 + 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 = 19.

The basic LBP operator could generate 8− bit = 256 unique identifiers.

The basic LBP is very sensitive to a rotation or a tilt of the source image because

in which case, the relative positions have changed between gc and gp. To remove the

potential effect of rotation, i.e., to assign a unique pattern to each rotational invariant

LBP [39], we can define:

LBP ri
P,R = min[ROR(LBPP,R, i)|i = 0, 1, ...P − 1] (2.18)

where function ROR(x, i) performs a circular bit-wise right shift on the P−bit number

x for i times. In terms of the neighboring pixels, (2.18) simply do the iteratively
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clockwise rotation until a maximal number of the most significant bits1, starting

from gP−1, is 0.

Figure 2.4: The 36 unique rotation invariant local binary patterns. Black and white
circles correspond to 0 and 1 in the 8-bit operator output respectively.

Observations [38] have shown the basic and rotation invariant version do not pro-

vide good discrimination with two rationales: The occurrence frequencies of the 36

unique patterns vary greatly and the rough quantization of the angular intervals of

45◦. Experimental results indicate a certain set of local binary patterns are funda-

mental elements of texture, account for the vast majority, sometimes more than 90

percent of the 3 x 3 patterns in the observed textures set. Mäenpää et al. [40] call

the fundamental set ”uniform” patterns as they have one thing in common, namely,

uniform circular structure that contain very few spatial transitions. Uniform patterns

can effectively present bright spot(0), flat area or dark spot (8), edge or corner (1-7)

as illustrated on the first row of Figure 2.4.

To formally define whether a specific pattern x is uniform, a uniformity measure,

U(x) in (2.20) is defined as the number of spatial transitions in x. Only patterns with

1Here significant means larger weight 2P , not the importance of this bit.
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equal to or less than two bitwise transitions are uniform patterns. Thus, the uniform

LBP operator, LBP u2
P is defined as:

LBP u2
P,R =

 I(LBPP,R(x, y)) if U(LBPP,R) ≤ 2

(P − 1)P + 2 x < T
(2.19)

where

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (2.20)

and I(z) ∈ [0, (P − 1)P + 2), (P − 1)P + 2 is the total number of uniform patterns

that satisfy the constraint. The superscript u2 in (2.19) indicates that the U(x)

is restricted to be smaller than 2. And the index function I(z) is used to assign a

particular index to each of the uniform patterns. For those patterns whose U is larger

than 2, they are all mapped to the same index (P − 1)P + 2 which is a trivial and

complementary bin.

Figure 2.5: The illustration of binary transitions in LBP, indicated by intersect lines.

For instance, patterns 000000002 and 111111112 have U equals to 0, while in

Figure 2.5, the left pattern 000001002 has U = 2 because it has transition (0 → 1)

and (1→ 0) each for once, and the middle and right patterns have U values of 6 and 8
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respectively. In this case, the left LBP is considered a uniform pattern while the rest

two are not. The non-uniform patterns will be mapped to the same bin 58, where 58

correspond to the last index of (8−1)×8+2 patterns in terms of eight neighborhoods

LBP operator. We categorize and plot the 58 patterns in 2.6 motivated by [41].

Figure 2.6: The categorized 58 uniform local binary patterns.

In Figure 2.6, each uniform pattern has different properties, such as flat, spot,

corner and line tip. Thus we can explain LBP in a more intuitive way, that is, local

texture patterns.
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The local binary patterns must be voted to bins (histogram) to take effect, since

strict pixel-wise assignment of LBP does not make any sense here in this problem

because a tiny movement of the pedestrian in an image will change the LBP value

greatly. Only statistical histogram can correctly reflect the real appearance in a

specific region, or a strip, as will be discussed later.

Technically, uniform LBP operators are very computational efficient to achieve by

using a 256-D look-up table.

2.4 Ensemble of Features

As we have mentioned, an image was divided into 6 non-overlapping strips. The

motivation is the uncertainty of horizontal axis result from the flexible view angles,

while the vertical structure of body, for example, the relationship between head and

torso, keeps intact. Figure 2.7 shows a pair of images from the same person. We

can see dramatically changed horizontal contents. By cutting along X coordinate, we

preserve the vertical information while eliminate the horizontal variant introduced by

pose and view angle shift.

In each strip, we concatenate the all the existing descriptors into one feature.

More specifically, for color histograms, RGB, HSV each counts for 48 dimension and

Lab color space takes the rest 41-D; For Fisher vector, we set K = 30 which is the

number of Gaussian components, result in 30× 15× 2 = 900−D FV, where 15 is the

dimensionality of our local descriptor. The dimensionality of color name histogram

seems to be relatively small, but it is the prerequisite of SSCD descriptor, and we will

prove that it is very discriminative and effective despite its dimensionality.
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Descriptor Dimension
Color histograms 144
Color Name histogram 15
SSCD 150
Fisher vector 900
Uniform LBP histogram 58
Overall 1267

Table 2.2: This dimensionalities of different descriptors selected by us.

Figure 2.7: An example of 6 non-overlapping strips in a pair of images from the same
person.

Due to the fact that LBP are not available at the borders and in order to utilize the

benefit of background extraction in the future, we apply strip-wise L-1 normalizations.

In this scheme, we can depress the effect of different sizes of extraction regions to the

minimum. Finally, a 1267 × 6 = 7602 dimensional feature will be extracted from

each query image and plugged into our training machine for further discrimination

analysis.

An overview our feature extracted in each image is illustrated in Figure 2.8.
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Figure 2.8: The overview of combined feature extraction on a given image.

25



Chapter 3

Pairwise Ranking

In the last chapter, we achieved discriminative image representations on every image

in the training set. In this chapter, we will use the pairwise information to perform

analysis and selection in the entire feature space.

3.1 Data Organizing

Since we have extracted features from every image in the training dataset, we need

to pair each two images in order to generate a inquiry.
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3.1.1 Feature Pairing

Let us denote Fm(i) and Fn(i) to be the i-th feature from imagem and imagen re-

spectively. The pairwise feature Fm,n(i) is given by:

Fm,n(i) =
|Fm(i)− Fn(i)|

|Fm(i)|+ |Fn(i)|+ 1
(3.1)

where i is the feature space index. In the last chapter, we have mentioned that

i = 1, ..., N , where N = 7560 is the dimensionality of our image descriptor. Thus, an

inquiry pair is then given by:

P (m,n) = {L(m,n), Fm,n(i)}, i = 1, 2, ..., N (3.2)

where L(m,n) is the labeling function:

L(m,n) =

 1 if imagem and imagen indicate the same person

−1 otherwise
(3.3)

Let X be the number of individuals in a dataset. Assume a dataset contains 2

images for each individual, by computing (3.2) on every unique image pairs, we can

get X intra-personal pairs, labeled by 1, whilst the number of inter-personal pairs

is (C2
X − X). If we take VIPeR dataset as an example, which has 632 pedestrian,

the number of overall inter-personal image pairs is 198764; In contrast, we can only

extract 632 intra-personal pairs. It is obvious that the data is severely imbalanced,

which may lead to defect training result. This is also mentioned in [26].
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3.1.2 Training Data Balancing

In order to balance the number of positive and negative samples, most works [42, 43,

1, 44] have chosen to use partial inter-personal samples and thus a large portion of

information was wasted. Here we propose an approach called Self Inflation by Shifting

Window Duplicates (SISWD) that is to inflate the intra-personal pairs rather than

throwing out negative pairs. SISWD is based on the assumption that the general

properties of an image will not change in case the image shifts with a small offset.

Figure 3.1: Illustration of SISWD process. The shifting window starting from red box,
scanning with step size until orange box. The blue box is regarded as the original
sample used for inter-personal pairs.

To use SISWD, a padding method or Region of Interest (ROI) should be applied

to maintain the boundary of shifting windows. We use ROI and set the shift range

from {−2,−1, 0,+1,+2} for horizontal and {−1, 0,+1} for vertical direction. See

Figure 3.1 , a shifting window W starting from (−2,−1) to (2, 1) with step size 1 for

both x and y directions, resulting 5 ∗ 3 − 1 = 14 duplicates and 1 original sample.
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Therefore the number of intra-personal pairs within two images which belong to the

same person is C15
2 = 105. The illustration of SISWD is shown in Figure 3.1.

Note that the inflated duplicates are only used for intra pairs, the inter pairs

are generated using the original ROI, i.e. shifting window (0, 0), thus the number

of inter-personal pairs will not be affected. Table 3.1 provides the comparison of

number of samples before/after SISWD, as well as which from other works given 316

training images. Obviously, the imbalance problem is alleviated, however, the number

of samples is even more large as the cost to contain as much pairwise information as

we can.

Samples Before LDFV[42],LF[43] Ours
Intra-personal 316 316 33180
Inter-personal 198764 632 198764
Total 199396 948 231944

Table 3.1: This Table shows the comparison of number of pairs used for training.

3.2 Linear SVM Ranking

Kernel based Ranking Support Vector Machine (KRSVM) [15] is a great tool for

solving the re-identification ranking problem. However, with the large data chal-

lenge, some sacrifices such as lower precision, divided dataset and less iterations have

to be made to achieve applicable results. We have studied a lot supervised learning

techniques in recent years, according to Chapelle et al. [45] and others, the state of

art learning methods that train ranking models can be categorized into three types.

Point-wise methods, such as decision tree and linear regression, will directly learn the

relevance score from each instance independently; Pairwise methods like RankSVM
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[46] learn based on preference pairs; List-wise methods, for example, LambdaMART

[47], are trying to optimize for the whole list. Of course, these types are not highly

restricted, some methods lie between two categories, like GBRank [48], which com-

bines point-wise decision tree models and pairwise loss. Motivated by Lee et al. [49],

finally we focus on the Linear Ranking Support Vector Machine (LRSVM) which is

efficient and thus suitable for training large-scale data.

3.2.1 Mathematical Formulation

Notation Explanation
w The weight vector obtained by solving (3.5)
xi The feature vector of the i-th training instance
yi Label for the i-th training instance
qi Query of the i-th training instance
K The set of relevance levels
Q The set of queries
P The set of preference pairs; see (3.4)
l Number of training instances
k Number of relevance levels
p Number of preference pairs
n Number of features
n̄ Average number of non-zero features per instance
lq Number of training instance in a given query q
kq Number of relevance levels in a given query q
T An order-statistic tree

Table 3.2: Notation of LRSVM.

We list the notations in Table 3.2, assume we are given a set of training tuples

(yi, qi, xi), yi ∈ K = {−1,+1} is obtained by labeling function (3.3), qi ∈ Q, xi ∈ Rn,

i = 1, ..., l, where Q is the set of queries. By defining the set of preference pairs as:

P ≡ {(i, j)|qi = qj, yi > yj} with p ≡ |P | (3.4)
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L2 loss function is used to optimize the problem by minimizing the objective training

losses:

min
w

1

2
wTw + C

∑
(i,j)∈P

max(0, 1− wT (xi − xj))2 (3.5)

The summation of training losses can be written in the following separable form:

∑
q∈Q

∑
(i,j):qi=qj=q,yi>yj

max(0, 1− wT (xi − xj))2 (3.6)

As mentioned in the previous section, the large number of pairs in the loss term is

the major difficulty to handle this problem. In this section, we consider the truncated

Newton method to see what kind of information it requires.

A Newton method obtains a direction at the t-th iteration by solving

min
s

gt(s) (3.7)

where

gt(s) ≡ ∇f(wt)T s+
1

2
sT∇2f(wt)s (3.8)

and updates wt by

wt+1 = wt + s (3.9)

Note that gt(s) is the second-order Taylor approximation of f(wt + s) − f(wt). If

∇2f(wt) is invertible, the step s is obtained by solving the following linear system:

∇2f(wt)s = −∇f(wt) (3.10)

To ensure the convergence, usually line search or trust region techniques is applied
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to obtain a truncated Newton step.

We consider a trust region Newton method (TRON) [50, 51, 52] that finds the

direction s by minimizing gt(s) in (3.8) over a region we trust:

min
s

gt(s) subject to ||s|| ≤ ∆t (3.11)

where ∆t is the size of the trust region. After solving (3.11), it decides whether to

apply the obtained direction st according to the approximate function reduction gt(s)

and the real function decrease. Which means:

wt+1 =

 wt if ρk < η0

wt + s if ρk ≥ η0

(3.12)

where η0 ≥ 0 is a pre-specified parameter and

ρk ≡
f(wt + st)− f(wt)

gt(st)
(3.13)

TRON adjusts the trust region ∆t according to ρk. When ρk is too small, ∆t will

decrease, and vice versa. More specifically, the following rule is considered during

TRON:

∆t+1 ∈


[σ1 min(||st||,∆t), σ2∆t] if ρk ≤ η1

[σ1∆t, σ3∆t] if ρk ∈ (η1, η2)

[∆t, σ3∆t] if ρk ≥ η2

(3.14)

where the parameters are provided in Table 3.3 according to [49].

Regarding the stopping criteria, we follow that of [53] to check if the gradient is
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Parameter Value
η0 10−4

η1 0.25
η2 0.75
σ1 0.25
σ2 0.5
σ3 4.0

Table 3.3: The configuration of TRON parameters.

relatively smaller than the initial value:

||∇f(wk)||2 ≤ ε||∇f(w0)||2 (3.15)

where w0 is the initial iterate and εs is the stopping tolerance that is a tunable

parameter.

3.2.2 Distance Ranking

For a given pair of images, the pairwise distance is given by:

Dm,n =
N∑
i=1

Fm,n(i)wi (3.16)

where wi is the i-th value of the weight vector obtained by solving (3.5). For a given

testing query image m, the rank r = 1 image in the gallery set is defined as:

rank1 = arg min
i∈gallery

Dm,i (3.17)

Similarly, we can obtain rank r = n image given a probe image. CMCs are the

statistics of the probability that given a probe image, the corresponding self image is
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ranked in top n.

3.3 Pruning Training Data

LRSVM can outperform naive distance matching method by a large margin with-

out doubt. However, to further eliminate the error introduced by bad samples, for

example, dissimilar positive pairs (see Figure 3.2) and similar negative samples (see

Figure 3.3, the image appearances in the middle are so close to the query image, some-

times even looks more similar than the target image itself), we propose a method to

prune our existing training data.

Figure 3.2: The sample pairs of dissimilar images from the same person: Two images
in each column correspond to the same individual. Top: images from camera a;
Bottom: images from camera b.

For illustration, let us assume the distributions of real similarity (according to human)

in training dataset are overlapping normal distributions, see Figure 3.4. Regions A-D

have their unique effects on distance learning which will be reflected by final weights

vector: For region A, negative pairs that come from different persons have smaller
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similarity score, which is good and contribute to the correct negative samples. It

is the set we want to keep; Region B is derived from those pairs we illustrated in

Figure 3.2. These pairs are the target set we want to prune because they introduce

the confusion to LRSVM that positive pairs are not necessarily to be visually sim-

ilar. Similarly, region D corresponds to the informative positive samples with large

similarity score, and region C denotes the bad samples to be removed.

Here we propose a two-layer LRSVM coupled with pruning to refine the training

dataset and provide better result, which is illustrated in Figure 3.5.

The first layer LRSVM is used to train a initial weight vector w0 as mentioned in

the previous section. With w0, we can compute the similarity score of every training

sample using (3.16). Two parameters p+ and p− controls the percentage of positive

and negative training samples to be kept after pruning respectively. To implement

this, we sort positive and negative samples independently. Let us denote Np to be

the number of positive training samples, and Nn is the number of negative samples.

Given the sorted result sortp(x) from large to small similarity score, and sortn(x) from

small to large, we can define the selection function Fp(x) for the positive samples:

Fp(x) =

 1 if sortp(x) < Np ∗ p+

0 otherwise
, x ∈ Qpositive (3.18)

and similarly, the selection function for the negative samples:

Fn(x) =

 1 if sortn(x) < Nn ∗ p−

0 otherwise
, x ∈ Qnegative (3.19)

The parameters p+ and p− can be achieved using 10-fold cross-validation. After
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pruning, the new dataset will replace the original, and the second layer LRSVM is

applied to obtain our final weight vector.
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Figure 3.3: The sample pairs of similar images from different pedestrians. Left and
right: query image and its target. Middle: similar images from different pedestrians.
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Figure 3.4: The similarity score distributions according to human definition. The blue
curve to the left: similarity distribution of negative pairs; The red curve to the right:
similarity distribution of positive pairs. For simple illustration, normal distribution
is used, however, the real distributions are much more complex in practice.

Figure 3.5: The Two-Layer LRSVM coupled with Pruning method.
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Chapter 4

Experimental Results

To evaluate the performance of our proposed system, we conducted experiments on

the highly challenging VIPeR dataset [2]. We provide the performance comparison

between our system and several state-of-art methods based on the Cumulative Match

Characteristic (CMC, see [54] for details), which can be seen as the recall at rank

r. Additionally, some evaluations of the effectiveness of different feature channels are

also provided.

4.1 Dataset and Settings

Although many existing datasets are available for pedestrian re-identification prob-

lem, there is really limited number of dataset designed for viewpoint invariant pedes-

trian retrieval. For example, in [55, 9], authors present results on pedestrian datasets

which contain primarily frontal pedestrian images only. While this is reasonable in

some scenarios such as a confined indoor camera network, many surveillance scenar-
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ios require the ability to track pedestrians in large, open and uncontrolled weather

conditional environments such as public plazas, campuses, communities and airport

terminals. In these scenarios, a pedestrian may be seen from any angle from various

cameras. This is the motivation for us to use VIPeR dataset to test our viewpoint

and illumination invariant approach.

Viewpoint angle 0 45 90 135
45 16
90 241 47
135 43 72 4
180 103 53 50 3

Table 4.1: The distribution of viewpoint angles in VIPeR dataset.

Viewpoint angle disparity Examples
45 70
90 363
135 96
180 103

Table 4.2: The distribution of viewpoint angle changes in VIPeR dataset.

Table 4.1 lists the viewpoint statistic of images in VIPeR dataset, and we can see

the large angle changes within the same individual image pairs in Table 4.2, where

nearly 90% pairs have angle disparity of at least 90◦. For details, all images are

normalized to 128×48 pixels.

In our experiments, we run two protocols. In the first protocol, which is widely

adopted by other work, we randomly select half (316) of the data for training and

the rest (316) of the data for testing. While the latter use less (158) for training

and more (474) for testing. We fully utilize the images in training set, group every

possible unique pairs in this set, resulting one original positive pair, 104 inflated
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positive pairs from duplicate samples and 315 negative pairs (take the first protocol

as an example) for each probe image. While for testing, we generate each test set

with a gallery set and a probe set. The probe set consists of one image for each

person, and the remaining images are used as gallery set for ranking. Ideally rank 1

should be assigned only to the correct pair matches. However, the VIPeR dataset is

the most challenging dataset thus made comparisons at ranks such as top 10 or top

20 more reasonable.

4.2 Evaluation of Effectiveness

To evaluate the effectiveness of the methods proposed in the previous sections, we

conducted a series of experiments on various combinations of feature and distance

learning methods. The details of configurations and explanations are listed in Ta-

ble 4.3. We use the first protocol mentioned and run each test 10 times. In each

Configuration Explanation
Baseline Color Histograms Feature + Euclidean Distance
SSCD+ Baseline + SSCD

FV+ Baseline + FV
LBP+ Baseline + LBP
Feat+ Baseline + SSCD + FV + LBP

LRSVM Proposed feature combination + Linear Ranking SVM
SISWD+ Proposed feature + LRSVM + SISWD
Proposed Complete version

Table 4.3: The evaluation settings and explanation.

run, we randomly split the dataset into training and testing sets. The comparison of

results is shown in Table 4.4. The cumulative matching characteristic (CMC) curves

are presented in Figure 4.1.
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Method(p = 316) r = 1 r = 5 r = 10 r = 20 r = 50

Baseline 0.3±0.3 4.7±0.4 9.3±0.6 15.4±0.6 22.9 ±0.7
SSCD+ 2.1±0.3 11.4±0.5 19.4±0.6 25.8±0.6 32.1 ±0.6

FV+ 5.4±0.3 18.6±0.4 27.9±0.6 34.3±0.7 43.6 ±0.8
Feat+ 7.2±0.3 21.7±0.4 30.5±0.8 39.1±0.6 49.3 ±0.7

LRSVM 12.0±0.9 34.5±0.7 52.8±1.0 64.5±1.1 77.6 ±0.7
SISWD+ 15.3±0.4 40.1±0.6 57.4±0.7 68.9±0.9 84.5 ±0.7
Proposed 16.1±0.6 43.2±0.8 60.4±0.6 73.5±0.8 88.3 ±0.9

Table 4.4: The evaluation results of different settings on VIPeR dataset with p = 316.

Figure 4.1: The effectiveness evaluation of our proposed methods. It is shown that
our methods are all very effective in terms of performance.

We use a 10-fold cross-validation to search for the best pruning parameters p+ and

p− given training dataset, as is plotted in Figure 4.2. We achieve the best performance

when p+ = 0.9 and p− = 0.85, and they are used in the pruning process in two-layer

LRSVM training.
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Figure 4.2: The pruning parameters p+ and p− cross-validation result.

Some good example results are shown in Figure 4.3, we sorted the top 10 images

from left to right given the probe image on the left. The images marked with red

boxes are the correct matches. We also collected some of the bad results with ranks

more than 20, shown in Figure 4.4. It is worth noting that pedestrian with consistent

bright color clothes can always achieve good ranks, while for pale colors such as white,

black and gray, even human can hardly tell the difference, let alone the selected weight

in feature space. Besides, we can observe some vital appearance change between two

images of the same pedestrian, which made the dataset even more challenging.
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4.3 Performance Comparison

There are several state-of-art results available on VIPeR dataset, however, some pa-

pers only provide CMC curves as figures, and many are using different ranking obser-

vations. Leave alone these massive inconsistent results, we stick to (r = 1, r = 5, r =

10, r = 20, and r = 50), and compare to [56, 42, 2, 57, 15, 58, 1, 44, 13] by using

the results as best as we could achieve. The fairly comparative results under protocol

1 and 2 are shown in Table 4.5 and Table 4.6 respectively, note that only best run

results are provided. Additionally, we marked the top 3 best results in Table 4.5 and

top 1 result in Table 4.6. Compared to others, our proposed system can achieve good

results especially at rank r = 10 and r = 20. At rank r = 100, we can obtain 98%

retrieval rate which means given a probe image, the target image will appear in the

candidate list of 100 with great confidence. Through analysis, we observe that some

methods tend to achieve high absolute recognition rate such as SDALF, PS, Rank-

Boost, and the miss rates are accordingly high. While other methods including ours,

are better at higher ranks at 10 or 20. Although it is hard to conclude, one possible

explanation is the penalty term to trade-off between recognition and retrieval rate

are different. We could treat them as two approaches for different applications. For

example, if we could keep track of a candidate list of 10, a higher retrieval rate is

prior to high recognition rate. In contrast, when absolute target result is required,

the higher recognition rate is better. The comparison indicates the power of kernel

based learning techniques, we did not follow this scheme for now because the training

time is a serious problem. According to [44], a training dataset that is much smaller

than ours (see Section 3.1) took several days to run while our linear version only need

less than half an hour, however, kernel based model is absolutely one of the directions
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we will work on in the future.

The cumulative matching characteristic curves are plotted in Figure 4.5 and Fig-

ure 4.6 , respectively. Follow [54], we also evaluated the performance as a traditional

Method (p = 316) r = 1 r = 5 r = 10 r = 20

ELF[2] 12.3 30.9 44.2 61.1
ITM[34] 11.6 31.4 45.8 63.9
MCC[59] 15.2 41.8 57.6 73.4

PRSVM[15] 14.7 36.4 50.8 66.8
PRDC[36] 15.7 38.4 53.9 70.1
SDALF[60] 19.9 38.9 49.4 65.7

PS[14] 21.8 44.6 57.2 71.2
RankBoost[1] 23.9 45.6 56.2 68.7
LMNN-R[56] 18.2 42.5 55.5 69.8

PCCA−sqrt[44] 17.3 42.4 56.7 74.5
PCCA−rbf [44] 19.3 48.9 64.9 80.3

Our method 16.8 44.0 61.1 74.5

Table 4.5: The comparison results of different methods with p = 316 testing images
in the gallery.

Method (p = 474) r = 1 r = 5 r = 10 r = 20

ELF 7.6 18.5 29.2 41.6
Bhat 5.3 14.1 21.6 31.7

L1-Norm 7.7 18.4 22.6 32.1
Ensemble-RankSVM 8.3 25.8 37.2 50.4

RankBoost 5.1 14.2 21.8 32.9
PRSVM 9.1 25.9 39.4 51.2
Proposed 8.9 28.3 42.6 54.4

Table 4.6: The comparison results of different methods given p = 474 testing images
in the gallery.

recognition problem. Assume that a set of M pedestrian that enter a camera network

are i.i.d. Samples from some large testing dataset of size N . If these M pedestrians

cross from one camera to another at the same time we have a reacquisition problem
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where we must find the correct matching configuration. If the CMC curve for the

matching function is given, we can calculate the probability that any of the M best

matches is correct as follows:

SDR(M) = CMC(N/M) (4.1)

where CMC(k) is the rank k recognition rate.

We again compared the recognition performance with available results, shown in

Figure 4.7. Our system is able to outperform other work except the kernel based

PCCA method.
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Figure 4.3: Some good results achieved.Left: Probe image. Middle: Top 10 results
sorted from left to right. The images with red boxes represent the correct matches.
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Figure 4.4: The example set of results that are not ideal with ranks r > 20.
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Figure 4.5: Performance comparison using CMC curves as the function or r, given
p = 316 test samples.

Figure 4.6: Performance comparison using CMC curves as the function or r, given
p = 474 test samples.
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Figure 4.7: The comparison of Re-identification Rate vs. Possible Targets.
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Chapter 5

Summary and Concluding Remarks

We have proposed a method for person re-identification that can be generally divided

into two parts: feature and learning. In the first part, the proposed framework take

advantage of low-level details such as multiple color channels, semantic color names,

LBP and gradients, as well as global information including histograms of low-level

features, statistics of color names and Fisher vectors encoded local descriptors, to

provide discriminative image appearance representation. In terms of distance learn-

ing, unlike existing methods, we utilize as much information from pairs of images as

possible, and provide a two-layer linear ranking SVM to handle the large-scale train-

ing data. A SISWD method is applied in this process to deal with the imbalanced

data. We also developed a pruning method for better discrimination analysis.

Quantitative evaluation results have shown the effectiveness of our system which

provides encouraging performance on the most challenging pedestrian re-identification

dataset as some state-of-art work. And it is even satisfying if we take our training

module execution time into account which is way less than the kernel based learning
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methods.

However, we still focus on certain aspects of our work to improve the current per-

formance, such as a better combination of feature representation, multi-layer weight

control rather than fixed two-layer scheme and speedup for kernel based learning.
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