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ABSTRACT 

Flue gas desulfurization (FGD) sludge (calcium sulfite, CaSO3) is a byproduct 

produced during cleanup of the flue gas from the burning of coal for electricity 

generation.  About four percent of the total 24 million tons of FGD produced each year 

is used in beneficial applications, mainly agricultural amendments or manufacture of 

gypsum wall board.  The remainder is typically disposed in embankment landfills.  Shear 

strength of the compacted FGD sludge must be adequately characterized for the safe 

design of the embankments and analyses of other geotechnical applications.  A 

material’s shear strength is a function of the deformation rate used to measure the 

strength.  The effect of deformation rate on the drained shear strength of compacted 

FGD by-product is considered in this thesis.   

 Compacted FGD specimens were prepared using standard Proctor method and 

drained direct shear tests were performed at four different effective normal stresses 

(500, 1000, 2000, and 3000 psf) using three different deformation rates (0.002, 0.0002 

and 0.00002 inches per minute).  Effective stress cohesion intercepts were assumed to 

be zero.  Failure envelopes were developed for each deformation rate as follows:  ɸ’ of 

37° (0.002 in/min), ɸ’ of 46° (0.0002 in/min), and ɸ’ of 57° (0.00002 in/min).  The 



xx 

 

results indicate shear strength dependence on the deformation rate with slower rates 

yielding higher strength.  If the specimens were fully drained during shear testing, one 

would not expect a dependence on the deformation rate. Analyses were performed 

using two different approaches for calculating the time to failure of the shearing 

specimen.  Deformation rates from measured hydraulic conductivity exceeded the rates 

used in the present study from consolidation data.  Based on the shear rates from 

calculated hydraulic conductivity, the deformation rates used in this study, should yield 

similar effective stress failure envelopes (φ’) for all shearing rates.   Other possible 

mechanisms for deformation rate-dependence of the shear strength were considered 

including: pozzolanic behavior and creep (deformation under constant load). Based on 

the results of hydraulic conductivity and consolidation testing, these mechanisms are 

not impacting the shear strength of the compacted FGD. 

Re-examination of the time-settlement curves for each consolidation load on the 

direct shear specimens indicate that the times to reach end of primary consolidation 

may be much longer than originally assumed.  Four specimens out of the 17 show a 

substantial flattening of the time-settlement curve after more than 900 to 2500 minutes 

under a given consolidation stress.  Using only these four test results yield deformation 

rates of 4E-5 to 2E-6 inches/minute for fully drained behavior, which further suggests 

that only the slowest deformation rate (2E-5 inches/minute) used in this thesis yielded 

fully drained behavior of the compacted FGD sludge.  For now, it is recommended that 

designers use the lowest shear strength parameters (obtained from the direct shear 
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tests with the highest deformation rates), for design of FGD disposal embankments; i.e., 

internal friction angle of 37 degrees with zero cohesion. 

Additional investigation is recommended including an ‘aging-effect’ on strength 

study, measurements of excess pore water pressure dissipation under constant load, 

parallel shear strength studies on compacted FGD using drained triaxial tests (CD), 

undrained triaxial tests with pore water pressure measurements (������) and direct simple 

shear tests using the constant volume procedure (DSS-CV) and an extensive constituent 

analysis of the FGD material. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

According to a United States Geological Survey (USGS) report published in 2001, 

more than one-half of the nation’s electricity is generated by burning coal. In the 

process of generating electricity, these facilities generate flue gasses containing oxides 

of sulphur (SOx) and nitrogen (NOx), and particulate trace elements, such as mercury, 

which in turn lead to air pollution, acid rain, soil acidification, forest degradation and in 

addition leave behind tons of industrial solid waste. Environmental control technologies 

have been adopted by power plants to reduce SOx emissions. Scrubber units, which can 

absorb 90-95% of SOx prior to discharge into the atmosphere, have been employed to 

reduce SOx emissions. While scrubber units reduce atmospheric emissions, they produce 

a large quantity of byproducts known as coal combustion products (CCPs). The 

byproducts include fly ash, boiler slag, bottom ash and flue gas desulfurization (FGD) 

sludge.  The latter creates solid sulfur compounds which can be used for beneficial 

purposes or stockpiled. FGD sludge is primarily used in Gypsum panel products (wall 

board), waste stabilization and agricultural amendments. However, most (about 95 

percent of the 24 million tons produced annually) FGD sludge is disposed of in 

embankment fills and impoundments.  

The effective stress (drained) shear strength behavior (rapid dissipation of excess 

pore water pressures generated due to shearing) represents the long-term effective 

stress strength performance of FGD sludge. As an engineered material, FGD sludge can 
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be applied in beneficial uses while helping to conserve natural resources provided the 

engineering properties, in the present case, effective stress shear strength, are 

adequately known and understood.  

1.2. Research Objectives  

Effective stress (drained) shear strength parameters can be obtained when the 

rate at which failure loads are applied are slow compared to the rate at which pore 

fluids in the material being sheared can drain, and therefore, no excess pore pressure is 

built up during the shearing process. A 2013 report (Bowders and Day, 2013) on drained 

direct shear testing of compacted FGD specimens reported that a deformation rate of 

0.0002 inches per minute was sufficient to result in measurement of the effective stress 

(drained) shear strength parameters (c’, φ’) based on Gibson and Henkel (1954) 

approach.   

 The primary objective of the research presented herein is to quantify the shear 

strength behavior (c’, φ’) of compacted FGD when sheared at different deformation 

rates in drained direct shear tests.  More specifically, determine if a deformation rate of 

0.0002 inches per minute results in fully drained behavior of the FGD during shear and if 

not, suggest a deformation rate that will yield effective stress (drained) shear strength 

parameters (c’,φ’). 

1.3 Scope of the research program 

                Sixteen drained direct shear tests were conducted on specimens of compacted 

FGD sludge at four different effective normal stresses (500, 1000, 2000, and 3000 psf) 

using three different deformation rates (0.002, 0.0002 and 0.00002 inches per minute). 
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The standard rate was 0.0002 inches per minute, referred to as the nominal 

deformation rate, ‘NDR’.  The nominal rate of shear deformation (0.0002 inches per 

minute) was calculated using consolidation data (Gibson and Henkel, 1954) from the 

final load increment of the consolidation stage of the direct shear test. The rate was 

increased (NDRI) and decreased (NDRD) by one order of magnitude to examine shearing 

deformation rate effects on the effective stress (drained) shear strength parameters of 

the compacted FGD.  A failure envelope (c’, φ’) for each deformation rate was obtained 

using the results from the direct shear testing. The Kaniraj and Gayathri (2004) approach 

was used to estimate the drained deformation rate. Based on the findings from Kaniraj 

and Gayathri (2004) it was confirmed that pore pressures were not affecting the shear 

strength and this lead to further study of aging effects and creep. 

1.4 Organization of the Thesis 

The thesis is organized into six chapters in which the experimental work, the 

results and analyses are described in detail.  The chapters are organized as follows:  The 

literature review which provides the reader with a background on FGD and shear 

strength testing is presented in Chapter 2.  The information regarding the FGD material 

and the testing methods used in the laboratory testing program are presented in 

Chapter 3.  Chapter 4 contains the results of the laboratory investigation and Chapter 5 

presents discussion of the results. Chapter 6 includes a summary of the findings of this 

study, conclusions and recommendations for future work.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter contains background information on flue gas desulfurization (FGD) 

sludge and its applications. Different methods to calculate rate of deformation are 

presented followed by mineral composition and a brief description of coefficient of 

consolidation in FGD sludge. When looking at strain rate effects on shear strength of 

soil, one can consider total stress (undrained) or effective stress (drained) shear 

strength tests. For undrained tests, effects appear to be significant; therefore, much 

research has been performed on the shearing rate effects on soils in the undrained 

condition. However, effects of deformation rates on drained shear strength have not 

been studied extensively. This study is focused on the shear rate effects on the drained 

strength (c’, φ’) of compacted FGD. 

2.2 FGD sludge background 

The U.S. Congress passed strict rules (Clean Air Act, 1970) to place constraints on the 

emissions from coal burning facilities. In 1977 and 1979, the United States 

Environmental Protection Agency (US EPA) set up national ambient emission control 

standards for six criteria pollutants: carbon monoxide (CO), particulate matter (PM), 

lead (Pb), nitrogen oxide (NOx), ozone (O3), and sulfur dioxide (SO2).  The Clean Air Act 

Amendments (CAAA) of 1990 addressed issues like acid rain, ozone depletion and toxic 

air pollution and mandated reduction of nationwide SO2 emissions. As a result of the 

tightened emission controls, SO2 emissions have declined in the past two decades. This 
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improvement in air quality occurred simultaneously even though coal consumption by 

electric utilities was still increasing. In the last few decades, the problem of air pollution 

has been addressed more seriously throughout the world; hence, environmental 

regulations have become more and more restrictive towards the emissions of 

atmospheric pollution produced by combustion systems. Flue-gas desulfurization (FGD) 

is a set of technologies used to remove sulfur dioxide (SO2) from exhaust flue gases of 

fossil-fuel power plants.  FGD processes absorb gaseous SO2 from flue gas to produce 

solid sulfur compounds, which are collected for safe disposal or beneficial use 

(Kalyoncu, 2000). 

2.2.1 Production of FGD Sludge    

The inorganic residues that remain after coal is burned are called Coal 

Combustion Products (CCPs). CCPs consist (by mass) of  roughly 58% fly ash, 24% flue 

gas desulfurization (FGD) sludge, 16% boiler slag and 3% bottom ash. Generally, heavier 

and larger particles that fall to the bottom of the boiler are referred to as bottom ash, 

and the lighter particles that are carried upward through the flue gas are considered fly 

ash. Boiler slag is molten ash collected at the base of the combustor while FGD sludge is 

typically the product of an FGD flue gas scrubbing process in which sulfur is removed 

from the flue gas emission.  

The general FGD process is shown in Figure 2.1.  Desulfurization of flue gases can 

be achieved by a variety of methods including: wet scrubbing, dry scrubbing, dry 

sorbent injection systems, wet sulfuric acid process, and SNOX Flue gas desulfurization. 
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Figure 2.1 Typical diagram of FGD sludge production process using Lime (CaO) or Limestone 

(CaCO3) (FGDProducts.org, a website sponsored by the American Coal Ash Association 

Educational Foundation (AAAC 2007). 

 

While the wet and dry processes are the same in their methods, they differ 

based on the type of sorbents used and the products produced. For a typical coal-fired 

power station, flue-gas desulfurization (FGD) will remove 90 to 95 percent or more of 

the SO2 in the flue gases. Wet scrubbing systems are commercially available in many 

variations and designs and are the most widely used scrubbing systems employed 

throughout the world. Depending on the sorbent slurry being introduced, the currently 

available technologies are classified as: lime/limestone/sludge wet scrubbers, wet lime, 

fly ash scrubbers, or other wet scrubbers (including seawater, ammonia, caustic soda, 
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sodium carbonate, potassium and magnesium hydroxide). The preferred sorbent in 

operating wet scrubbers are limestone followed by lime because of their availability and 

relatively low cost (Kalyoncu, 2000). Approximately 90 percent of the FGD systems in 

U.S use limestone/lime as the sorbent (Kalyoncu, 2000).  

Sulfur dioxide (SO2) is an acid gas, and, so, usually the sorbent slurries used to 

remove the SO2 from the flue gases are alkaline in nature. The detailed chemistry of 

absorbing SO2 from the flue gas using different sorbents is shown below:  

a) The reaction taking place in wet scrubbing using a CaCO3 (limestone) slurry 

produces CaSO3 (calcium sulfite) and can be expressed as: 

CaCO3 (solid) + SO2 (gas) → CaSO3 (solid) + CO2 (gas)                                            (2.1) 

b) Using a Ca(OH)2 (lime) slurry as a wet scrubbing sorbent, the reaction produces 

CaSO3 (calcium sulfite) and can be expressed as: 

Ca(OH)2 (solid) + SO2 (gas) → CaSO3 (solid) + H2O (liquid)                                    (2.2) 

c) The forced oxidation technique is used to reduce the cost of the FGD unit 

installation in some industries, and it is obtained by using CaSO3 (calcium sulfite) 

and further oxidizing to produce marketable CaSO4 · 2H2O (Gypsum). 

CaSO3 (solid) + H2O (liquid) + ½O2 (gas) → CaSO4 (solid) + H2O                           (2.3) 

d) Seawater is used as a natural alkaline to absorb SO2.  

SO2 (gas) + H2O (sea water) + ½O2 (added gas) → SO4
2- (solid) + 2H+                 (2.4) 

e) Using a Mg(OH)2 (magnesium hydroxide) slurry as a wet scrubbing sorbent , the 

reaction produces MgSO3 (magnesium sulfite) and can be expressed as: 

Mg(OH)2 (solid) + SO2 (gas) → MgSO3 (solid) + H2O (liquid)                                  (2.5) 
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Flue gas at the absorber outlet is monitored for SO2 content, which can be 

regulated by the quantity of limestone added. The physical nature of FGD sludge varies 

from a wet, thixotropic sludge to a dry, powdered material, depending on the process.  

2.2.2 Applications of FGD sludge 

Examples of FGD sludge used for surface reclamation of coal refuse piles (gob 

piles) are presented in Figures 2.2, 2.3 and 2.4 (Wolfe W., Butalia T., Daniels J. and Baker 

R. (2010)).  The alkaline nature of the FGD helps to ameliorate the acidic nature of 

seepage through the coal refuse.  The lower hydraulic conductivity of the FGD layer also 

restricts the amount of precipitation that infiltrates into the coal refuse and thus 

reduces the volume of acidic drainage that may develop. 

 

Figure 2.2 Cross-section of Freeport coal refuse (gob) surface reclamation plan (located in 

Lafayette Township, Coshocton County, Ohio).  
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Figure 2.3 Rehoboth FGD application for surface reclamation of coal refuse (gob) (Clayton 

Township, Perry County, Ohio). 

 

 

 
Figure 2.4 Central Ohio Coal Company cross section of surface reclamation of coal refuse 

embankment by application of layer of FGD (Meigsville Township, Morgan County, Ohio). 

 

2.3 Gibson and Henkel (1954), Rate of deformation 

Shear strength of soil is defined as the magnitude of the shear stress (measure of 

soil’s resistance) that a soil can sustain against failure and sliding along any plane 

(deformation) inside the soil mass. It is important to study the nature of shearing 

resistance in order to analyze soil stability problems such as bearing capacity, slope 

stability and lateral pressures on earth retaining structures.  When considering the shear 
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strength of soil, two main types of tests are used to determine deformation and 

strength characteristics of saturated soils: fully drained and undrained shear strength 

tests. While no volume change occurs in an undrained test, drained shear strength of 

soil is the strength obtained from the test in which pore water pressures, generated 

during the course of shearing the soil, are allowed to dissipate during shearing, i.e., 

excess pore water pressures remain nearly zero and result in considerable amount of 

volume change. 

The shear strength of a soils, in terms of effective stress is given by the equation 

                                                    � = �� + 
� tan ��                                           (2.6)                                                       

where: 

 σ’ = Effective normal stress on plane of shearing = σ – u 

σ = Total stress 

u = Pore water pressure 

c’ = Effective cohesion 

φ’ = Effective internal angle of friction 

Effective stress governs soil behavior. It is important to understand the two terms, static 

pore water pressure and excess pore water pressure, which combine to produce the 

change in the effective stress within the soil. Hydrostatic pore water pressure (u) also 

called neutral stress (as it does not produce any compression of the soil nor increase the 

shear strength of soil) is the pressure that exists in the water present in the pores of the 

soil. It is measured by inserting a tube or a stand pipe at a particular point where pore 



11 

 

pressure must be determined and by recording the increase in water level as it rises in 

the stand pipe (piezometer) (Equation 2.7). 

                                                                �� =  �� � ℎ                                                               (2.7)                                                                                  

where h = height of water rise in piezometer above the point 

Excess pore pressure (Δu) is pore water pressure generated by shearing 

soil.  Considering the loading of a sponge soaked with water.  As the sponge is loaded, 

water drains out; a similar process happens when saturated soil is loaded. Clay is not 

very permeable and does not release water quickly, so the pore water pressure initially 

increases, but then gradually decreases as water drains from the soil pores. Sands and 

gravels are more permeable; hence, they rarely generate significant excess pore 

pressures during shear. The excess pore water pressure generated by loading highly 

permeable soils dissipates almost immediately. Thus, pore water pressure at any point is 

given by Equation 2.8: 

                                                                � =  �� +  ��                                                             (2.8)                                      

In drained tests on sand, free drainage of water is allowed out of, or into, the specimen 

because no excess pore pressure is desired anywhere in the specimen. The excess pore 

water pressure is a result of loose sands compressing during shearing, whereupon the 

pore water is squeezed out of sand. However, dense sands dilate (expand) as they are 

sheared creating a negative pressure in the pore water which results in water flowing 

into the sand. Significant volume change (expansion) can occur in the sand. For fully 

drained conditions the soil either compresses or dilates (expands) during shear and the 
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excess pore water pressure remains zero, Δu = 0.  Thus, the pore water pressure in the 

sand remains constant at the neutral stress value, u = u0.  

The conditions of a fully drained test are satisfied only if the rate of loading is 

slow enough to allow any excess pore water pressures to fully dissipate during the 

shearing stage; otherwise,  an excess pore water pressure (Δu) remains undissipated as 

illustrated in Figures 2.5(a) and (b). Therefore, finding an appropriate deformation rate 

for shear testing of a specific type of soil, which will yield the effective stress (fully 

drained) behavior of that particular soil, is always a challenge for engineers. Gibson and 

Henkel (1954) assumed that for a drained test, any increment of deformation produces 

the same increase in pore water pressure as does the same increment in an undrained 

test, but that the pore water pressures now dissipate in accordance with Terzaghi's 

theory of one-dimensional consolidation as shown in Figure 2.5(b) (Teraghi, 1942). 

 

 

 

 

 

 

 

 
Figure 2.5(a) Idealized excess pore water pressure and stress difference versus axial strain 

during shear in undrained triaxial tests (after Gibson and Henkel, 1954). 
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Figure 2.5(b) Idealized excess pore water pressure in soil specimens (A and B) at two 

successively slower axial strain (deformation) rates in “drained” triaxial tests (after Gibson 

and Henkel, 1954). 

 

Stresses applied to the soil specimen are prevented from becoming fully effective by 

an amount dependent upon the magnitude of the undissipated pore-water pressure at 

the time of failure.  Thus, the measured strength differs from the fully drained strength.  

The dissipation of the pore water pressure in a drained test depends on the hydraulic 

conductivity and compressibility of the soil as well as the location of the drainage 

surfaces around the specimen, and the rate of loading. Because of this dependent set of 

pore water pressure processes, Gibson and Henkel (1954) recommended that before 

carrying out drained tests on a particular soil, a suitable rate of shearing (testing) must 

be estimated to ensure that the effect of any undissipated porewater pressure on the 

strength is negligible. To estimate a satisfactory strain rate for shearing a soil specimen, 

a series of trials are necessary to measure the strength of specimens which are free to 

drain in the same way but are tested at different strain rates (Gibson and Henkel, 1954). 

This allows a theoretical estimate of the shear rate required to achieve full dissipation of 
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excess pore water pressures.  Gibson and Henkel (1954) developed a theory to estimate 

duration of the test needed to ensure a shearing rate close to fully drained conditions.   

Gibson and Henkel (1954) performed a series of drained triaxial and direct shear 

tests with different rates of strain. They used three clays: 1) silty Weald clay with a liquid 

limit (LL) of 43 and a plastic limit (PL) of 18, and 2) remolded London clay with an LL of 

72 to 74 and a PL of 25 to 28 3) Kaolinite with LL 64 and PL 42 to determine a suitable 

rate of loading for drained tests. Along with these tests, triaxial tests with different rates 

of loading on kaolinite (LL = 64; PL = 42) were also performed. The test results are 

shown in Figures 2.6 to 2.9 as curves of percentage of the fully drained strength 

mobilized in a particular test against the time to reach failure (peak shear resistance). 

The purpose of their study was to develop a theory and to derive expressions 

connecting time of shearing or loading with degree of dissipation of excess pore water 

pressure at failure for typical laboratory shear tests. This would result in some degree of 

reliability regarding the comparisons made between results of drained tests and the 

predictions of the theory. 
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Figure 2.6 Percentage of the fully drained strength versus duration of deformation for direct 

shear tests on Kaolinite clay (after Gibson and Henkel, 1954). 

 

Figure 2.7 Percentage of the fully drained strength versus duration of deformation for direct 

shear tests on Haslemere clay (after Gibson and Henkel, 1954). 

20

30

40

50

60

70

80

90

100

110

100 1000 10000

U
n

d
ra

in
e

d
 S

tr
e

n
g

th
 (

%
 o

f 
fu

ll
y

 d
ra

in
e

d
 

st
re

n
g

th
)

Time to failure (minutes)

Kaolinite, LL = 64, PL = 42

Test results Calculated

20

30

40

50

60

70

80

90

100

110

100 1000 10000

U
n

d
ra

in
e

d
 S

tr
e

n
g

th
 (

%
 o

f 
fu

ll
y

 d
ra

in
e

d
 

st
re

n
g

th
)

Time to failure (minutes)

Haslemere (Weald) clay, LL = 43, PL = 18

Test results Calculated



16 

 

 

Figure 2.8 Percentage of the fully drained strength versus duration of deformation for direct 

shear tests on London clay after (Gibson and Henkel, 1954). 

 

Figure 2.9 Percentage of the fully drained strength versus duration of deformation for direct 

shear tests on London clay (after Gibson and Henkel, 1954). 

 

Based on their results (Figs 2.6 to 2.9), the measured strength increased with 

increasing duration of shearing up to a peak strength, but for still slower rates of shear 

the strength again decreased. An average degree of consolidation at failure was about 

95 percent (nearly completion of primary consolidation) at peak drained strength. 
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 For a "drained" test, (Gibson and Henkel, 1954) assumed that the excess pore 

water pressures dissipated in accordance with Terzaghi's theory (1942) of one-

dimensional consolidation. Figure 2.5(a) shows curves to represent the excess pore 

water pressure and related deviator stress with axial strain as obtained from a 

consolidated, undrained triaxial test carried out at a constant rate of axial strain. The 

excess pore water pressure curve has been idealized in Figure 2.5(b) to consist of two 

straight lines representing the drained triaxial test. From the start of the test up to the 

time of failure, tf, the rate of increase of pore pressure is linear; thereafter, the pore 

water pressure remains constant. With the assumptions mentioned previously, it was 

found that in a drained test the undissipated excess pore water pressure can be given by 

Equation 2.9:        

                                                                   ��  ∗ Δ�� ∗ u = ��
��

− �� 

��
                         For 0≤ t ≤ tf                                                                                                        

�� ∗ Δ�� ∗ u =  ��
��

                                        For t ≥ tf    (2.9)                                

where: 

 u is the excess pore water pressure, t is time, cv is the coefficient of consolidation, and 

∆v is volume change per unit volume. The solution of Equation 2.9 is an infinite Fourier 

series. The degree of consolidation at failure, Uf, in terms of test failure time is given by 

Equation 2.10.                          

                                                                  U" =  1 −
�$

�0
                                                         (2.10)                                                 
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where: 

 uf is the excess pore water pressure at failure and u0 is the excess pore water pressure 

that would have existed in the absence of any drainage.  In a fully drained test, excess 

pore water pressure, uf, would be zero and the average degree of consolidation, Uf, 

would then be 1.0.  The infinite series solution for Uf can be truncated after the first 

term for large values of Uf (say over 0.8) to yield a simple solution: 

                           U" =  1 −  &'
(

�)*�+
                                                 (2.11)                                                                    

where: 

 HS is the average drainage distance during shear; subscript “s” denotes the shearing 

stage, and for the case of top and bottom drainage, HS is half of the thickness of the 

specimen; cv is the coefficient of consolidation, and tf is the time to failure.  Equation 

2.11 can be rearranged to yield: 

                                                                  t" =  &'
(

�)*,-./+0
                                                    (2.12)                              

 

The time to failure is infinite if Uf is set equal to one.  In principle, the coefficient of 

consolidation, cv, can be evaluated for the last consolidation loading increment 

following the methods based on Terzaghi's theory.  If the curve fitting is performed at 50 

percent average degree of consolidation the the calculated coefficient of consolidation, 

cv, becomes: 

                                                                c2 =  �.-45×&7
(

�8 
                                                      (2.13)                               
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where: 

 HC is the average drainage distance (half the thickness of the soil specimen in the direct 

shear test) during the consolidation stage, and t50 is the time to achieve 50 percent 

average degree of consolidation.  Substitution of Equation 2.13 into Equation 2.12 leads 

to: 

                                                          t" =  &'
(×�8 

�×�.-45×&7
(,-./+0

                                             (2.14)                             

 

In order to estimate a reasonable value of average degree of consolidation, Uf, Gibson 

and Henkel (1954) performed a number of direct shear tests using various strain rates. 

They used three different types of soft remolded clays. As the shearing time increased 

the strength also increased until it reached a peak strength after which any further 

increase in the time of failure caused a gradual reduction in strength (Figures 2.6 to 2.9). 

The peak strength corresponded to a calculated average degree of consolidation at 

failure of about 0.95.  So, Uf has been assigned a value of 0.95 in most of the examples 

discussed in this thesis. 

Equation 2.14 can be simplified by assuming that the drainage distances during 

consolidation and shear are essentially identical, and that satisfactory results can be 

achieved using Uf = 0.95. Thus, with time of failure given as Equation 2.15, the rate of 

deformation can be then calculated by Equation 2.16:  

                                                              9: = 50 × 9<�                                                             (2.15)                              

  The above formula makes estimating the rate of deformation possible with the 

following equation: 
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=> =  ?@ABCD
�+

                                                                                      (2.16)                                                     

where: 

δhpeak = Horizontal deformation at peak shear resistance,  

tf = time to reach peak shear resistance (time of failure) = 50 x t50 (Equation 2.15)  

2.4  Head (1981), Rate of deformation 

Head (1981) suggests using a version of the square root of time method (Taylor 

1948) to plot the vertical deformations during the final consolidation loading prior to 

beginning the shearing stage in order to calculate the time to failure and subsequently 

the appropriate deformation rate to yield effective stress (drained) shear strength 

parameters in the direct shear test. 

In this version of Taylor’s method, a plot of settlement (in mm) versus square root 

time (minutes) (Figure 2.10) is obtained from the last consolidation loading on the 

specimen (the effective stress under which the specimen will be sheared).  A tangent is 

drawn in the early straight line portion of the consolidation curve. This line is extended 

to intersect the horizontal line representing 100 percent consolidation.  The point of 

intersection gives the value of √t100, which when multiplied by itself gives the time 

intercept as t100 (min).  

The time required to reach peak shear resistance (failure), tf , in a shear test is given by 

the empirical Equation 2.17: 

                                                                 9: = 12.7 � 9-��(HIJ��BK)                                       (2.17)                             
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Figure 2.10 Derivation of time to failure from consolidation curve using square root time 

plotting method. 

 

The coefficient of consolidation, cv, can be calculated using Equation 2.18 (Gibson and 

Henkel, 1954). 

                                

c2 =  �.-�M×&( 
�N  

                                                    (2.18)                             

where: 

 H is the specimen height (mm) and t100 is in minutes. 

The estimation of rate of deformation is then found by using Equation 2.16 as 

was used for Gibson and Henkel’s work.   

Regardless of the method of calculating time to reach peak shear resistance (tf) 

(peak shear strength) for fully drained conditions, one needs to first estimate the 

displacement at which the peak strength is likely to be mobilized. This is usually based 

on experience, although general guidance for horizontal deformation at peak strength is 

given in Table 2.1 (Head 1981). 
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Table 2.1 Typical displacements to reach peak shear strength in 60 mm shear box (after Head, 

1981)  

Type of soil Shear box displacement for peak strength  

(mm) (inches) 

Loose sand 5 to 8  0.2 to 0.3 

Dense sand 2 to 5 0.08 to 0.2 

Plastic clay 8 (typical limit of travel)  0.3 

Stiff clay 2 to 5 0.08 to 0.2 

Hard clay 1 to 2 0.04 to 0.08 

    

2.5 Mineral composition of FGD sludge 

In order to understand the behavior of FGD sludge, it is important to know the 

mineral composition.  Bigham et al. in 2005 collected 59 coal combustion products from 

six coal fired plants throughout United States, all of which used different types of flue 

gas scrubbing technologies to remove SO2. The FGD scrubbing technologies included 

duct injection, lime injection multistage burner (LIMB), fluidized bed combustion and 

spray dryer. Detailed descriptions of these technologies are in Kost et al. (2005). 

Bigham et al. (2005) conducted X-ray diffraction tests, swelling tests, long term 

equilibrium studies and equilibrium geochemical modeling. X-ray diffraction revealed 

that the primary contents of FGD sludge were Ca(OH)2 (Portlandite), CaSO3•0.5H2O 

(Hannebachite),  CaO (Lime), CaSO4 (Anhydrite), CaCO3 (Calcite) and  MgO (Periclase). 

Two distinct swelling episodes were observed. One episode occurred immediately after 

water was applied due to a hydration reaction, especially the conversion of CaO to 

Ca(OH)2 and CaSO4 to CaSO4•2H2O (Gypsum). The second began between 10 and 50 

days later and involved formation of the mineral Ettringite (Ca6(Al(OH)6)(SO4)3•26H2O). 
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Bigham et al. (2005) found that if FGD byproducts were under ‘closed’ and alkaline 

weathering conditions such as found in  road embankments or mine reclamation, 

Gypsum and Portlandite are initially formed followed by the conversion of the Gypsum 

to Ettringite (highly swelling in nature). In the present study the specimen was confined 

for testing for as long as 7 to 8 days wherein formations of some of the above 

mentioned compounds were possible.    

2.6 Coefficient of consolidation 

There are several methods to determine cv from the settlement-time data which 

are obtained during the consolidation phase of the direct shear test. In this thesis, the 

log-time method (Casagrande and Fadum, 1940) and square-root-time method (Taylor, 

1948) were both used. However these methods were originally developed for plastic 

clays where it potentially takes a long time to complete primary consolidation under a 

given loading. For non-plastic fines such as fly ashes, FGD sludge and non-cohesive soils, 

settlement (and full dissipation of excess porewater pressures) occurs very quickly and 

often within 30 minutes upon application of load (Moghal and Sivapullaiah, 2011).  

Krizek et al. (1987) reported the time to reach end of primary consolidation, t100, as less 

than one minute for FGD sludge. The cv values for the compacted FGD sludge calculated 

by Casgrande and Taylor’s methods in the present study were reconsidered. Pandian 

and Balasubramonian (1999) determined the value of cv’s for two Indian fly ashes using 

the Casagrande method, Taylor’s method, and the rectangular hyperbola method. They 

observed that there was a significant variation in the cv determined by the three 

methods, and Taylor’s method gave a value 21 times higher than the rectangular 
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method. Taylor’s method gave a faster rate of consolidation than the other methods. 

Porbaha et al. (2000) back-calculated the hydraulic conductivity, k, using Equation 2.19 

and found that there were large variations between the measured and back-calculated 

values of k: 

                                            U =  �� ∗  Q� ∗  ��                                                        (2.19)                              

where: 

mv = coefficient of volume compressibility, and 

γw= unit weight of water 

The discrepancies among cv’s by the conventional methods (Casagarnde and 

Fadam, 1940 and Taylor, 1948), can be evaluated by direct measurement of hydraulic 

conductivity (k) and the coefficient of volume compressibility (mv).  Kaniraj and Gayathri 

(2004) recommended using the theory of Gibson and Henkel (1954). The first step is to 

measure the hydraulic conductivity, k and the coefficient of volume compressibility mv 

for the final consolidation load increment before shearing and use them to calculate cv 

using Equation 2.19. Kaniraj and Gayathri (2004) studied the compressibility parameters 

coefficient of compressibility (av) and mv in a Casagrande-type consolidometer. The 

values of cv were calculated by substituting the measured value of mv and the measured 

value of k into Equation 2.19.       

2.7 Summary 

Clean coal technology requires cleanup of flue gases for removal of sulfur 

compounds.  Calcium carbonate (CaCO3, limestone) injected into the flue gases absorbs 

the sulfur and results in a byproduct of calcium sulfite (CaSO4) which is known as FGD 
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sludge. The FGD sludge is underutilized and most often disposed in embankment 

landfills.   Analysis of the stability of the embankments and other beneficial reuses of 

the FGD sludge requires knowledge of the shear strength parameters (c’ and Φ’).   

Gibson and Henkel have shown that to obtain effective stress strength 

parameters (drained strength), shearing rates must be slow enough to allow time for 

dissipation of any excess pore water pressures generated due to shearing.  They 

provided a procedure to calculate the time necessary to reach peak drained shear 

strength based on knowledge of the consolidation properties of a soil.  Head (1981) 

suggested using Taylor’s square root of time method for calculating time to reach peak 

drained shear strength.  He also provided typical deformations to reach peak strength 

for several general soil types. 

In the present thesis, the methods of Gibson and Henkel (1954) is used to 

determine appropriate deformation rates for specimens of compacted FGD to ensure 

that effective stress strength parameters are measured; i.e., ensure the specimens are 

sheared under fully drained conditions. Mineral composition of the FGD sludge is also 

presented in this chapter. The coefficient of consolidation in FGD sludge is also 

discussed in the chapter.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Introduction 

The materials and methods used in the testing program to gain a better 

understanding of the deformation rate effects on the drained shear strength of 

compacted FGD sludge are described in this chapter. The laboratory methods used for 

measuring the shear strength, coefficient of consolidation, hydraulic conductivity and 

particle size distribution are described.  

3. 2 Material  

Flue gas desulfurization (FGD) sludge was the primary material used in the 

research presented herein. The FGD sludge was received in air-tight buckets in two 

different batches on 09 April 2013 and 19 July 2013. The as-received moisture content 

of FGD sludge for both batches is given in Appendix Table A.1. The samples were always 

completely air-tight sealed to reduce the potential for change in as-received moisture.  

3.3 Direct shear test 

Direct shear testing is used to evaluate the drained shear strength of soils. For 

both loading stages (consolidation and shearing), complete drainage is allowed and 

leads to fully drained conditions where excess pore water pressure is negligible when 

sheared slow enough relative to the hydraulic conductivity of the material being 

sheared. Normal stress and shear stress on a horizontal plane are calculated where 

vertical displacement and relative horizontal displacement are between two halves of 

the specimen. It should be noted that the complete state of stresses and strains are 
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non-uniform and cannot be known throughout the specimen except on the horizontal 

plane of failure.  Also, the plane of failure is forced to be horizontal, which may or may 

not be the weakest plane in the specimen. Though there are some disadvantages with 

this test, it is still useful because it is relatively quick, inexpensive, and conceptually 

simple, requires a small specimen and can shear to large displacements.   

The direct shear test actually consists of two different ways of loading the 

specimen: stress controlled or strain controlled.   In the present research, the direct 

shear test is used where the deformation rate is controlled in order to study the effects 

of deformation rate on the drained shearing strength of compacted FGD sludge. In a 

strain-controlled test a constant rate of deformation is applied and forces/stresses are 

measured. Figure 3.1 shows a schematic of the direct shear test device. Figures 3.2(a) 

and (b) show a photograph of the experimental setup used for the testing reported 

herein.  
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Figure 3.1 Elevation view of direct shear device with test components and forces (Direct shear 

manual, Geotechnical Engineering Program, University of Missouri, Columbia, 2012). 

 

As seen in Figure 3.1, the test was arranged by first placing the following components: a 

saturated porous stone in the direct shear mold overlain with a filter paper to ensure 

freely draining surfaces, followed by a gripper plate. The 2.5-inch diameter compacted 

FGD sludge specimen is placed on top of the filter paper, and then the above mentioned 

components are placed in reverse order on the specimen to fill the mold. As shown in 

Figure 3.1 yellow pins hold the two halves of the shear box together, while black pins 

are used to create a shearing gap that minimizes friction between the two halves of the 

shear box. The mold is then placed in a holding box, and a load distribution cap and ball 

bearing are placed over the top porous stone.   
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Figure 3.2 (a) Direct shear test setup in the Geotechnical laboratory of the University 

of Missouri. 

 

As seen in Figure 3.2 (b) from the lab setup, a yoke connects to the top half of 

the shear box through the external bolt to lock it in position, while the bottom half is 

free to slide when a shear force is applied to the shear box. 

A S2220 DigiShear™ automated Direct Shear System was used for shear tests on 

the compacted FGD. The system uses a computer software program to drive the test, 

display results during the test and simultaneously record the data in an electronic file to 

see the current position of loading at any time during the test. Also, the three different 

sensors, namely, the vertical load cell, horizontal load cell, and the lateral displacement 

gauge, can each be viewed on the Digishear software interface to monitor current 

loadings on the specimen and allow the operator to see the results as the deformation is 

in process.  
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Figure 3.2 (b) Direct shear test setup in the Geotechnical laboratory of the University of 

Missouri. 

 

The first phase of the direct shear test is the consolidation stage.  The 

consolidation loading schedule can be entered into the computer program before the 

start of the test, and then, the constant rate of displacement (shearing speed range of 

0.000002 to 0.2 inches per minute) is entered for the second stage of the direct shear 

Yoke 

Horizontal Load cell 

Vertical load cell 

Data acquisition box 

Vertical Displacement 
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test, which is the shearing stage. The computer program automatically consolidates the 

soil specimen as per the loading schedule entered. The load applied to the specimen 

was measured using a GEOTAC load cell with a maximum capacity of 500 lbs. (vertical 

and horizontal cell). The vertical deformation during the consolidation stage as well as 

shear stage was measured using a DCDT (an electronic displacement measuring device). 

The maximum horizontal travel of the machine is +/- 0.5 inches. The machine 

deflections during the consolidation stage were not taken into consideration. 

3.3.1 Test procedure for direct shear test 

The shear tests were performed in accordance with the American Society for 

Testing and Materials (2011), ASTM standard D-3080, "Standard Method for Direct 

Shear Test on Soils under Consolidated Drained Conditions".  A detailed procedure of 

the test is also included in the UMC CEE Geotechnical Engineering Program (2012) 

device manual, “Automated Direct Shear System.” The testing program is summarized 

as follows. 

The FGD material was first compacted using standard Proctor energy at the as-

received moisture content (38 to 48 percent, dry mass basis).  After compaction, 2.5-

inch diameter direct shear specimens were trimmed from the center of the 4-inch 

diameter Proctor specimens for placement in the direct shear device.  All the specimens 

were free to drain in a similar way. The specimens were consolidated under vertical load 

increments shown in Table 3.1.  
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Table 3.1 Effective normal stresses and constant rate of deformations 

employed in the research presented herein. 

 

Consolidation 

(effective 

normal stress) 

Pressure at the 

start of the 

Shearing Stage 

 

Consolidation Load Steps 

  

 

t50  

=> 
Constant Rate of 

Deformation (NDR) 

 

Load 

Step 1 

Final 

Pressure   

Load 

Step 2 

Final 

Pressure   

Load 

Step 3 

Final 

Pressure   

(psf) (psf) (psf) (psf) (min) (in/min) (mm/min) 

500 125 250 500 9 0.000240 0.006 

1000 250 500 1000 12 0.000190 0.005 

2000 500 1000 2000 11 0.000208 0.005 

3000 500 1500 3000 12 0.000190 0.005 

 

After the consolidation stage was completed, the shear stage was started. The 

constant rate of deformation was calculated using the following formula.  

                                                              => =  ?@ABCD C�BVCWB
�+

                                                (3.1)                              

 

where: 

δh = horizontal deformation at peak shear was assumed to be 0.11 inch which 

was the average deformation at peak shear stress from previous drained 

shear tests on compacted FGD sludge Table 3.2 (Bowders and Day, 2013). 

tf = time of to failure = 50 x t50 in minutes (Gibson and Henkel, 1954) 
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Table 3.2 - Results of previous drained direct shear tests on compacted Flue Gas 

Desulfurization (FGD) Sludge. Specimens 1 through 7 were tested in 2007/2008.  Specimens 8 

through 11 were tested in 2013 on FGD (Bowders and Day 2013). 

 

Speci-

men 

No. 

 

Molding 

water 

content 

(%) 

 

Dry 

Unit 

Weight 

(pcf) 

 

Water 

Content 

at start 

of DS    

(%) 

=> 
Horizontal 

Deformation 

Rate 

(in/min) 

 

Peak 

Shear 

Stress     

(psf) 

 

Effective 

Normal 

Stress at 

peak 

shear 

stress 

(psf) 

 

δpeak 

Horizontal 

Deformation 

at Peak 

Shear    

(inch) 

1 41.7 69.4 25.2 0.000018 4584 4762 0.17 

2 41.0 68.5 25.2 0.000018 1362 1562 0.09 

3 32.3 65.1 25.4 0.004370 3882 5224 0.27 

4 30.0 66.9 25.3 0.000531 1264 1515 0.07 

5 41.0 68.6 25.3 na na na na 

6 32.3 66.2 25.3 0.004370 914 9410 0.11 

7 30.0 60.9 25.3 0.004370 786 4156 0.23 

8 41.0 69.0 41.0 0.0000472 1654 1971 0.12 

9 46.0 70.0 46.0 0.0000472 2068 1953 0.10 

10 40.0 73.0 40.0 0.0000472 1407 981 0.09 

11 47.0 70.0 47.0 0.0000472 854 498 0.07 

 

The shaded area in Table 3.2 includes direct shear tests on compacted FGD 

sludge in which deformation rates were considered to be high and possibly resulting in 

undrained conditions during shearing.  Only the non-shaded results shown in Table 3.2 

were used to calculate an average horizontal deformation at peak shear resistance 

(δpeak). The average peak horizontal deformation was calculated to be 0.11 inch and 

was used to calculate the drained shearing deformation rate for the direct shear tests in 

the research reported herein.   

The deformation rate obtained from Equation 3.1 is referred as the nominal 

deformation rate (NDR).  The deformation rate was calculated such that complete 
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drainage of any excess pore water pressure generated by shearing should be dissipated.  

The deformation rates during shear are given in Table 3.1 for each effective normal 

stress and are about 0.0002 inches per minute (0.005 mm per minute). Drained direct 

shear tests were conducted on compacted FGD sludge specimens at four different 

effective normal stresses (500, 1000, 2000, and 3000 psf) using three different 

deformation rates: 0.002 inches per minute (NDRI), 0.0002 inches per minute (NDR) and 

0.00002 inches per minute (NDRD).  Where NDRI is the nominal deformation rate 

increased by one order of magnitude, NDR is the nominal deformation rate and NDRD is 

the nominal deformation rate decreased by one order of magnitude.  

The reproducibility of direct shear tests was evaluated by performing six (6) tests 

at the effective normal stress of 2000 psf using the deformation rate of 0.0002 inches 

per minute (NDR). A total of 16 direct shear tests were performed on specimens of 

compacted FGD sludge.    

3.3.2 Data Interpretation  

During the consolidation phase of the direct shear tests, time rate of settlement 

curves were produced for each load step using the square root of time plotting method 

(Taylor, 1948). The vertical deformation versus square root of time procedure for 

determining deflections at 90 percent and 50 percent consolidation and time to 50 

percent average degree of consolidation, t50 (Taylor, 1948) were used for determining 

the rate of deformation for the shearing phase of the direct shear test for each effective 

normal stress. The data collected using the computer software program for a S2220 

DigiShear™ Automated Direct Shear System was transferred to an Excel® spreadsheet 
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for further reduction. The raw data from the Digishear machine were in volts. The 

detailed equations for calculating the engineering parameters including: shear stress, 

normal stress, deformation rate, horizontal and vertical stress, and normalized 

displacement, are included in the Appendix. The calculated parameters were then used 

to determine the shear strength parameters for the compacted FGD; i.e., effective 

friction angle, Φ’ and effective cohesion, c’.  

3.4 Consolidation tests 

Two additional consolidation tests were conducted on compacted FGD 

specimens, one in the incremental load test (ILT) (ASTM D2435/D2435M, 2011) 

apparatus (Figure A.36) and the other in the Direct Shear System at an effective normal 

stress of 3000 psf. The load was applied in three steps: Δσ = 500 psf, Δσ = 1000 psf and 

Δσ = 1500 psf to reach a final effective normal stress of 3000 psf in both tests. These 

consolidation tests were conducted to observe the consolidation curves to further 

evaluate the creep behavior of the compacted FGD sludge under constant load.  The 

consolidation curves for these tests are in the Appendix (Figure A.10 to A.15) 

3.5 Permeability tests  

To study the influence of confining stress and time on hydraulic conductivity, 

flexible wall permeability tests were conducted in accordance with ASTM-D5084 (2010) 

on compacted FGD specimens. Two different permeability tests were performed on the 

compacted FGD specimens of the same size as used in the direct shear tests (2.5-inch 

diameter and 1-inch height). Permeability test specimens A and B were trimmed from 

the same compacted FGD specimen to ensure both were at same dry density. During 
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the permeability test, specimen A was maintained at a constant effective confining 

stress of 500 psf (3.5 psi) and the hydraulic conductivity was measured at 0, 7, 14 and 28 

days after compaction to determine if there were any aging effects on hydraulic 

conductivity. During the test, an average pore pressure of 2 psi was applied on the 

specimen with three psi headwater pressure and one psi tail water pressure in both 

specimens A and B, while maintaining the desired cell pressure. During the waiting 

period (7 days between k measurements for specimen A), the effective stress at the 

center of the sample was maintained at 3.5 psi by keeping the headwater and tail water 

at 2 psi pressures while still maintaining the cell pressure as 5.5 psi.  Additional details of 

the permeability test are given in Tables A.7 and A.8.  The hydraulic conductivity of 

specimen B was measured at six different effective confining stresses. All six 

measurements were performed on the same day. The test was conducted by changing 

the cell pressure after each permeability measurement was completed and hydraulic 

conductivity was determined.  

The falling-head, rising-tail equation was used for determining the hydraulic 

conductivity: 

                                             U =  CXY∗CZ[\∗]
(CXY^CZ[\)∗_∗`�

aS (`bN

`b(
)                                  (3.2)          

where: 

k = hydraulic conductivity, cm/s, 
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ain = cross sectional area of the reservoir containing the influent/inflow liquid, 

cm2,  

aout = cross sectional area of the reservoir containing the effluent/outflow liquid, 

cm2, 

L = length of specimen, cm, 

A = cross sectional area of specimen, cm2, 

∆t = interval of time (seconds) over which the flow ∆Q occurs (t2 – t1), 

 t1 = time at the start of permeation trial, date: hr:min:sec, 

t2 = time at the end of permeation trial, date: hr:min:sec, 

∆h1 = head loss across the specimen at t1, cm of water 

∆h2 = head loss across the specimen at t2, cm of water 

The permeability test was conducted with inflow and outflow reservoirs of equal area, 

ain = aout and thus Equation 3.2 reduces to  

                                                     U =  C∗]
�∗_∗ `� 

aS (`bN

`b(
)                                        (3.3) 

where: 

 a = cross sectional area of the reservoirs containing either influent/inflow or 

effluent/outflow liquid, cm2 
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Figure 3.3 Falling head-Rising tail system Method C (ASTM-D5084-10). 

 

Figure 3.4 Permeability apparatus in MU geotechnical engineering laboratory. 

 

 



39 

 

3.6 Particle size distribution of the FGD sludge 

The particle size distribution (D 422-63, 2007) of soil fraction passing a 75-micron 

sieve was determined by sedimentation analysis.  The pipette method was used in this 

research, which consists of drawing off samples of soil suspension (10 ml in volume) by 

means of a pipette from a specified depth (10 cm) at known time intervals after the 

commencement of sedimentation. Each sample was dried to get the weight of solids per 

ml (Wd). 

The percent finer N can be found using Equation 3.4: 

                                                                    N = de.�/g
de/g

� 100                                                (3.4)                              

where: 

w is the weight of dispersing agent present in total suspension of volume V. 

3.7 Summary 

 A 

description of the flue gas desulfurization material, testing equipment and procedures 

used to analyze the FGD sludge were presented in this chapter. Data interpretation used 

for direct shear testing was also discussed here. Permeability tests, additional 

consolidation tests and particle size distribution measurement procedures were 

described in detail in this chapter.   
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CHAPTER 4: RESULTS  

4.1 Introduction 

Flue gas desulfurization sludge is a byproduct resulting from clean coal energy 

technology in which flue gasses are cleaned by removing sulfur and nitrogen 

compounds. The primary objective of the research presented herein is to quantify the 

strength behavior of compacted FGD sludge when sheared at different deformation 

rates in ‘drained’ direct shear tests. More specifically, determine if a deformation rate of 

0.0002 inches per minute results in fully drained behavior of the compacted FGD sludge.  

Secondly, if necessary estimate a deformation rate that will yield fully drained shear 

strength parameters. The results of the laboratory testing are presented in this chapter. 

4.2 Index properties and dry densities  

The FGD sludge used in this research was received in two different batches; both 

batches were tested individually for their properties and compared with each other for 

their behavior. Both batches had similar Atterberg limits and as-received moisture 

contents (first batch LL = 57, w % = 43 and second batch LL = 57, w % = 40). The specific 

gravity was measured and found to be 2.31. 

The dry unit weight of compacted FGD sludge specimens in the present study 

ranged 69 pcf to 70 pcf(Table 4.1, Column 10) and as-received moisture contents ranged 

from 38 to 48 percent (Table 4.1, Column 6).   
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Table 4.1 Shear data for compacted FGD sludge specimens tested in this study. 

 

Specimen  

No. 

Batch 

No. 

Test 

ENS  

(psf) 

Deformation 

rate 

Deformation 

rate(in/min) 

Water 

content 

from 

trimming 

(%) 

Water 

content 

pre-

test 

(%) 

Water 

content 

post-

test 

(%) 

Dry density 

from ring 

(pcf) 

Dry Density  

compaction 

mold (pcf) 

δh 

@peak 

shear 

stress 

(inches) 

Peak 

shear 

stress 

(psf) 

Peak 

ENS  

(psf) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1 1 3000 NDR 0.000190 41.1 41.0 60.0 na 69.8 0.091 3495 3016 

2 2 2000 NDR 0.000208 41.0 Na 52.6 na 72.5 0.082 2512 2024 

3 1 1000 NDR 0.000190 48.4 48.6 52.6 75.1 na 0.064 1313 1010 

4 1 500 NDR 0.000244 48.0 42.0 53.5 74.4 na 0.063 841 504 

5 1 3000 NDRD 0.000019 39.1 39.1 51.9 na 70.7 0.140 4384 3028 

6 1 1000 NDRD 0.000019 45.8 38.7 59.7 74.5 na 0.155 2125 1012 

7 1 500 NDRD 0.000024 43.7 45.9 60.0 74.3 na 0.110 1070 513 

8 1 3000 NDRI 0.001903 41.1 43.8 56.6 na 70.7 0.099 1912 3021 

9 1 2000 NDRI 0.002148 42.1 43.3 57.4 75.9 na 0.067 1841 2012 

10 1 1000 NDRI 0.001903 42.1 43.8 51.4 75.3 na 0.089 1193 1005 

11 1 500 NDRI 0.002444 47.6 45.3 54.6 73.6 na 0.054 575 517 

12 1 2000 NDR 0.000208 41.0 42.4 52.9 76.7 na 0.070 1238 2024 

13 2 2000 NDR 0.000208 38.3 41.7 47.7 77.8 73.7 0.097 2581 2041 

14 2 2000 NDR 0.000208 na na na na na 0.070 2977 2146 

15 2 2000 NDR 0.000208 na 40.9 na na na 0.067 1416 2028 

16 2 2000 NDR 0.000208 na 46.9 na na na 0.064 2124 2005 

ENS-Effective normal stress, NDRI-Nominal deformation rate increase 0.002 in/min, NDR-Nominal deformation rate 0.0002 in/min and NDRD- 

Nominal deformation rate decrease 0.00002 in/min. 

4
1
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4.3 Classification of FGD sludge  

4.3.1 Unified Soil Classification system (USCS)  

Both batches of FGD sludge had a LL = 57 but were non-plastic (PL = 0) and 

classified as low-plasticity inorganic silt (ML) in the standard practice for classification of 

soils for engineering purposes, Unified Soil Classification System (ASTM D2487, 2011). In 

the plasticity chart, the “A-Line” separates silts from clays. Soils identified as “non-

plastic” (NP) are classified as ML. It should be noted here that although the point 

representing the FGD sludge plots as if an inorganic clay of high plasticity, because the 

plastic limit is zero, the FGD is identified as ML. The key to distinguishing silts (and FGD 

sludge) from clays is its response to changes in water content. Clays are relatively strong 

when dry and can absorb a significant amount of water and remain in a moldable, 

plastic state. Silts have a lower dry strength than clays and absorb less water. If one 

attempts to break a dried clump of the soil about the size of a small marble with fingers, 

clays will be difficult to break, whereas silts will break or crumble easily (Coduto, 2010). 

Compacted FGD sludge responds similar to silts when dried then compressed, it 

crumbles like silt.  

4.3.2 USDA soil classification system (USDA) 

The grain size distribution of the FGD sludge is given in Table 4.2. FGD is 

classified as Silt Loam (Figure 4.1) in the textural classification chart adapted from the 

US Department of Agriculture (USDA).  
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Table 4.2 Grain size distribution of FGD sludge 

 

% Total 

% of Silt size 

particles 

 

% of Sand size particles 

<0.002 

mm 

0.002-

0.05 

mm 

0.05-

2.00 

mm 

0.002-

0.02 

mm 

0.02-

0.05 

mm 

0.05-

0.10 

mm 

0.10-

0.25 

mm 

0.25-0.50 

mm 

0.50-

1.00 

mm 

1.00-

2.00 

mm 

Clay size Silt size Sand 

size 

Fine Coarse V fine Fine Medium Coarse V 

Coarse 

4.7 59.4 35.9 10.3 49.1 24.3 10.7 0.8 0.1 0.0 

 

 

Figure 4.1 USDA soil classification triangle. Point A in the chart represents the data in Table 4.1 

for FGD sludge (www.soilsensor.com). 
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4.4 Consolidation and Shear behavior of FGD sludge 

The results of the drained direct shear tests on compacted FGD sludge are 

presented in this section. The consolidation curves (Figure 4.2(a)-(c)) for each specimen 

are shown first followed by the shear stress versus horizontal displacement plots 

(Figures 4.3(a) - 4.5(a)). Vertical deformation (from vertical actuator) during the shearing stage 

of direct shear test at different effective normal stresses (psf) and horizontal displacement for 

three deformation rates are shown in Figures 4.3 (b) – 4.5(b). The moisture contents of the 

specimen pre-and post-test (Table 4.1, Column 6 and 8 respectively), deformation rates 

(Table 4.1, Column 5) along with dry densities (Table 4.1, Column 9 and 10), peak 

horizontal deformation (Table 4.1, Column 11) and peak shear stresses (Table 4.1, 

Column 12) are listed in Table 4.1. It should be noted here that the DCDT vertical 

displacement gauge was not always trustworthy, so the vertical displacement of the 

actuator is used to plot Figures 4.3 (b) – 4.5(b). 
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Figure 4.2 (a) Consolidation curves (arithmetic time) for compacted FGD sludge. The first row consist of specimens sheared at NDR, the 

second row consist of specimens sheared at NDRD and the third row consist of specimens sheared at NDRI. 

 

4
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Figure 4.2 (b) Consolidation curves (Log time) for compacted FGD sludge. The first row consist of specimens sheared at NDR, the second row 

consist of specimens sheared at NDRD and the third row consist of specimens sheared at NDRI. 

 

4
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Figure 4.2 (c) Consolidation curves (arithmetic time) for compacted FGD sludge. All the specimens sheared at NDR. 

4
7
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Figure 4.3 (a) Stress versus horizontal displacement for compacted FGD sludge and peak 

points for different effective normal stresses (psf) at a horizontal displacement rate of 0.002 

inches per minute (0.05 mm/min) (NDRI). 

 

Figure 4.3 (b) Vertical deformation (from vertical actuator) during the shearing stage of direct 

shear test for different effective normal stresses (psf) at a horizontal displacement rate of 

0.002 inches per minute (0.05 mm/min) (NDRI). 
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Figure 4.4 (a) Stress versus horizontal displacement for compacted FGD sludge and peak 

points for different effective normal stresses (psf) at a horizontal displacement rate of 0.0002 

inches per minute (0.005 mm/min) (NDR). 

 

 

 

Figure 4.4 (b) Vertical deformation (from vertical actuator) during the shearing stage of direct 

shear test for different effective normal stresses (psf) at a horizontal displacement rate of 

0.0002 inches per minute (0.005 mm/min) (NDR). 
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Figure 4.5 (a) Stress versus horizontal displacement for compacted FGD sludge and peak 

points for different effective normal stresses (psf) at a horizontal displacement rate of 0.00002 

inches per minute (0.0005 mm/min) (NDRD). 

 

Figure 4.5 (b) Vertical deformation (from vertical actuator) during the shearing stage of direct 

shear test for different effective normal stresses (psf) at a horizontal displacement rate of 

0.00002 inches per minute (0.0005 mm/min) (NDRD). 
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4.5 Permeability  
 

The permeability test on specimen A was done to study aging effects on 

hydraulic conductivity of compacted FGD sludge and specimen B was to investigate 

impact of different effective normal stresses on hydraulic conductivity of compacted 

FGD sludge. The hydraulic conductivity, of specimen B varied from 2.01E-05 to 8.51E-06 

cm/s (Figure 4.6), as the effective confining stress was increased from 500 psf to 6000 

psf. Detailed results of the permeability test on specimen A and B are provided in Table 

A.7 and A.8 (Appendix).  

 

Figure 4.6 Hydraulic conductivity (k) versus confining effective stress for compacted FGD 

specimen, B. 

 

4.6 Summary 

Results of index properties, dry densities and particle size analysis of compacted 

FGD sludge were presented in this chapter followed by consolidation and shear 

behavior. There was a gain in strength with decreasing deformation rates.  
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CHAPTER 5: DISCUSSION 

5.1 Introduction 

The results presented in Chapter 4 are discussed in this chapter. Analyses of the 

data were performed using two different approaches for calculating the time to failure 

of the shearing specimen.  The first approach consisted of Gibson and Henkel (1954). 

The second approach consisted of measuring hydraulic conductivity in the flexible wall 

permeability test, taking the coefficient of volume compressibility from last load 

increment of consolidation and then calculating a new coefficient of consolidation of 

compacted FGD sludge (Kaniraj and Gayathri,2004). The coefficient of consolidation is 

used to estimate the time to failure during shear for a compacted FGD specimen. 

Several possible factors resulting in strength increase with decreasing deformation rates 

are also discussed. 

5.2 Index properties and dry densities  

Krizek et al. (1987) Atterberg limit tests indicated a liquid limit ranging from 44 

percent to 65 percent along with a plasticity index as low as 8 to 17. In the FGD tested 

for the presented thesis LL = 57 and PL = 0. The results are in agreement with the 

findings of Krizek et al (1987). Bowders and Day (2013) reported dry unit weights from 

66 pcf to 71 pcf and as-received moisture contents from 41 to 57 percent.  
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Figure 5.1 presents comparison of dry unit weight versus molding moisture 

content for compacted FGD sludge from the present investigation to various 

investigators working on FGD (Freeman 2013). The dry unit weights and as-received 

moisture contents of compacted FGD sludge in the present study (Table 4.1 Column 10 

and 6 respectively, Figure 5.1, Khan 2013) are comparable to those by past 

investigators. 

 

Figure 5.1 Comparison of dry unit weight versus molding moisture content for compacted FGD 

sludge from this investigation and by various investigators (Freeman 2013). 
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5.3 Classification of FGD sludge  

Krizek et al. 1987 observed that the particle sizes of FGD sludge are rather 

uniform and lie primarily in the range of silt and fine sand. The FGD sludge used for the 

present research did not include fly ash or other coal combustion products and the 

particle sizes are in the range of (0.002 mm to 2 mm) silt and fine sand (Table 4.2). 

Therefore it can be expected that the FGD sludge specimen behaves like a silt or sand 

when considering the permeability. 

5.4 Shear behavior of FGD sludge 

The FGD sludge is classified as low plasticity inorganic silt (ML) in the Unified Soil 

Classification System thus shear strength is expected to be a result of inter-particle 

friction rather than from cohesion. The peak shear stress (Figures 4.3(a) - 4.5(a)) occurs 

at about 0.1 inches of horizontal displacement regardless of the displacement rate. It is 

also evident that as the displacement rate decreases, the peak shear strength increases 

(Figure 5.2). 
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Figure 5.2 Failure envelopes for direct shear results using three different deformation rates: 

NDRI = 0.002 in/min (Specimens 8 to 11), NDR = 0.0002 in/min (Specimens 1 to 4) and NDRD = 

0.00002 in/min (Specimens 5 to 7) and forcing envelope through the origin, i.e. zero cohesion 

intercept. Specimen numbers are from Table 4.1 for shear data. 

 

The resulting internal friction angles of the compacted FGD (assuming no 

cohesion, c’ = 0) are as follows: NDRI (ɸ’ = 37°), NDR (ɸ’ = 46°) and NDRD (ɸ’ = 57°) 

(Figure 5.2). It was expected that the deformation shear rate calculated from the 

consolidation data would be slow enough for excess pore pressures to remain zero 

during shear. If such is the case, then the peak shear stresses for specimens at a given 

effective normal stress should yield the same magnitude of peak shear stress regardless 

of the rate of deformation; however, this behavior is not seen here (Figure 5.2). Rather, 

at each effective normal stress, the peak shear stress was greatest for the slowest rate 

of deformation, and smallest for the fastest rate. Such behavior can indicate that 

deformation rates may not have been slow enough to allow complete drainage of 

excess pore pressures resulting in shear parameters that are not fully drained.   
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The peak shear strength and percentage changes in peak shear stress for each 

effective normal stress at different deformation rates is calculated with respect to peak 

shear stress measured for a deformation rate of 0.002 in/min (NDRI) (Table 5.1). 

Observing failure envelopes in Figure 5.2 and values shown in Table 5.1, it can be seen 

that decreasing the deformation rate by an order of magnitude (0.002 to 0.0002 in/min) 

resulted in an increase in peak shear stress by 10 to 80 percent. A further order of 

magnitude decrease in the deformation rate to 0.00002 in/min resulted in an 80 to 130 

percent increase in the peak shear stress, relative to the fastest deformation rate (0.002 

in/min). The differences in the peak stresses were less at smaller effective normal 

stresses of 500 and 1000 psf; however, the difference became greater at higher 

effective normal stresses 2000 and 3000 psf.  

Table 5.1 Peak shear strength and percentage increase in peak shear strength with respect to 

shear strength at 0.002 in/min deformation rate (NDRI). 

ENS (psf) 3000 2000 1000 500 

NDRI               

(0.002 in/min) 

1912 psf                

(0 %) 

1841 psf                

(0 %) 

1193 psf                 

(0 %) 

575 psf                  

(0 %) 

NDR              

(0.0002 in/min) 

3495 psf           

(+83 %) 

2512 psf              

(+31 %) 

1313 psf                 

(+10 %) 

841 psf                  

(+46 %) 

NDRD            

(0.00002 in/min) 

4384 psf             

(+129%) 
NA 

2125 psf                 

(+78 %) 

1070 psf                 

(+86 %) 

ENS-Effective normal stress, NDR-Nominal deformation rate, NDRI-Nominal deformation rate 

increase, and NDRD-Nominal deformation rate decrease. 

 

The question now arises as to whether the deformation rates were slow enough 

to allow complete dissipation of all excess pore water pressure generated during shear, 

or, are there other mechanisms resulting in higher strength (in these drained shear 

tests) as deformation rate is decreased.   
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Other possible mechanisms could be aging effects, creep or structural water in 

FGD sludge. The possible factors contributing to increase of strength in compacted FGD 

sludge with decreasing deformation rate are discussed in the following section. 

5.5 Factors contributing to gain of strength in FGD sludge with slow deformation rate 

5.5.1 Pore Pressures 

The first item to note is that all of the specimens in the direct shear tests dilated 

(expanded vertically) during shearing (Figure 4.3 (b), 4.4 (b) and 4.5(b)). The specimens 

were submerged in a water bath and open to drainage at the top and bottom of the 

shear box during shearing. If the specimens are fully drained (porewater pressures 

generated due to shearing dissipate as soon as they are generated and do not build up), 

then there should be no excess porewater pressures in the specimen. If the specimen is 

undrained, or partially drained, then in the case of dilation one would expect the excess 

porewater pressures to be less or even negative, thus resulting in a higher strength with 

increasing shear rate. The opposite behavior was seen in the data in Figure 5.2. The 

faster the shear rate the lower the strength - a case for positive pore water pressures, 

which are not likely given the specimens dilated. 

 The FGD sludge is a non-plastic silt with a hydraulic conductivity of 1.5 x   10-4 to 

2.5 x 10-4 cm/s (Bowders and Coffman, 2007), whereas the hydraulic conductivity of soft 

clay is 10-6 to 10-8 cm/s. Thus, the compacted FGD sludge specimens would be expected 

to drain faster than soft clays such as those shown by Gibson and Henkel (1954) Figures 

2.6 to 2.9.  
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The shearing time to reach failure, tf, in the present study was based on the 

coefficient of consolidation, cv, which was calculated from the last loading increment 

during the consolidation stage of direct shear test using the 50*t50 approach of Gibson 

and Henkel (1954). For faster draining (higher hydraulic conductivity) soils, time to 

failure, tf was expected to be less than that for soils with lower hydraulic conductivities. 

Using the same value of average degree for consolidation, Uf from Gibson and Henkel’s 

(1954) theory  to calculate times to failure for the FGD sludge should have assured that 

the FGD material reached complete drainage (Uf > 95 %, no excess porewater pressures) 

at the time of failure (peak shear stress). However, even though Gibson and Henkel’s 

(1954) procedure for calculating tf was used there was still an apparent deformation rate 

effect on the strength of the compacted FGD sludge indicating either the specimens 

were not draining or other mechanisms are at play. 

Another procedure to check on the time to failure (tf) for fully drained conditions 

was suggested by Kaniraj and Gayathri (2004). The procedure consists of measuring the 

hydraulic conductivity, k, and the coefficient of volume compressibility, mv for the final 

consolidation load increment before shearing and using them to calculate cv (Equation 

2.19).   

                                            U =  �� ∗  Q� ∗  ��                                                        (2.19)                              

where: 

           k  = hydraulic conductivity  

mv = slope  of Є vs σ’ curve till the end of primary consolidation = coefficient of 

volume compressibility = av/(1+ei) 
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ei = initial void ratio over the effective stress change dσ’ 

av = de/dσ’ 

de = change in void ratio over change in effective stress dσ’ 

γw= unit weight of water 

cv = coefficient of consolidation 

In the present study, consolidation tests for load increments of 250, 500, 1000, 

and 2000 psf were performed to obtain mv. The resulting mv’s are given in Table 5.2. 

Hydraulic conductivity was measured at different effective normal stresses (Figure 4.6, 

specimen B) and are used in the calculation of cv. 

Table 5.2 Calculated coefficient of consolidation, cv, using measured hydraulic conductivity, k, 

and measured coefficient of volume compressibility, mv. 

Final 

Consol 

Stress 

σ’ 

(psf) 

Load 

increment 

Δσ’ 

(psf) 

Initial 

void 

ratio 

e0 

Void ratio at 

end of 

primary 

consolidation 

ef 

Change 

in void 

ratio 

Δe 

Coeff of vol. 

Compress 

mv = 

 Δe/ Δσ’ 

(psf-1) 

Hydraulic 

conductivity 

(specimen 

B) k (cm/s) 

Coeff 

of 

consol, 

cv 

(cm2/s) 

500 250 1.000 0.964 0.036 7.309E-05 2.01E-05 0.13 

1000 500 0.897 0.869 0.027 2.936E-05 2.10E-05 0.35 

2000 1000 0.829 0.815 0.014 7.677E-06 1.73E-05 1.10 

3000 1500 0.831 0.819 0.011 4.355E-06 1.70E-05 1.90 

 

The calculated coefficients of consolidation cv varied from 0.13 to 1.9 cm2/s. The 

results shown in Table 5.2 indicate that both the hydraulic conductivity and coefficient 

of consolidation of the compacted FGD sludge are comparable to those of non-plastic 

silts   (Kaniraj and Gayathri, 2004).  

 The calculated cv’s were then used in Equation 2.12 (Gibson and Henkel, 1954) to 

calculate time to reach peak shear. 
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                                                       t" =  &'
(

�)*,-./+0
                                                            (2.12)                                 

 

                                                                                                                                                                                                                         

where: 

 HS = the average drainage distance during shear; sub-s denotes the shearing stage, 

and for the case of top and bottom drainage, HS is half of the thickness of the 

specimen 

cv = the coefficient of consolidation  

tf = the time to reach peak shear 

Uf = average degree of consolidation   

The tf was calculated for an average degree of consolidation (U) of 99 percent. 

From Equation 2.12, time to Uf = 99 % is about tf = 43 seconds ≈ 1 minute to reach peak 

drained strength. Given that the horizontal deformation at peak shear stress is taken to 

be 0.1 inch, the resulting deformation rate, = > , is 0.11 in/min (Equation 3.1) for an 

effective normal stress of 3000 psf. The variation in hydraulic conductivity, with 

variation in effective normal stress will result in different cv’s and times to failure tf; 

however, the times to failure remain small (Table 5.3).  Any rate slower than 0.11 in/min 

for 3000 psf effective normal stress should yield drained shear strength parameters for 

the compacted FGD sludge. Table 5.3 shows the times to failure and resulting 

deformation rates for all direct shear tests used in the present study. The measured 

hydraulic conductivity used to calculate cv, was at 99 percent average degree of 

consolidation for that particular effective stress. Calculated deformation rates are based 

on measured hydraulic conductivity, k (specimen B), coefficient of volume 
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compressibility, mv, used in Equation 2.12 to get time to shear failure, tf and for an 

assumed δh peak = 0.11 inch.  

The nominal deformation rate NDR was calculated using the tf from Gibson and 

Henkel (1954) (50*t50) and the assumed δh peak = 0.11 inch. The t50 was calculated from 

the final loading in the consolidation stage for each specimen in the direct shear test. 

Table 5.3 Comparison of the shear rate used in the present study with the shear rate from 

measured k (Specimen B) and mv (Table 5.2). 

Specimen 

no.(Table 

4.2) 

Effective 

normal 

stress 

(psf) 

Time to 

reach 

failure 

( sec ≈ 

min) 

Calculated 

Drained 

deformation rate 

(in/min)(Kaniraj 

and Gayathri, 

2004) 

Deformation rates actually used in the present 

study (Gibson and Henkel method, 1954) 

NDRI 

(in/min) 

fastest 

NDR 

(in/min) 

nominal 

NDRD 

(in/min) 

slowest 

1 3000 43  ≈ 1 0.1100 0.0019 0.00019 0.000019 

13 2000 293 ≈ 5 0.0220 0.0021 0.00020 na 

3 1000 923  ≈ 16 0.0068 0.0019 0.00019 0.000019 

4 500 1216  ≈ 21 0.0052 0.0024 0.00024 0.000024 

 

The peak deformation of compacted FGD sludge (0.11 inches) is in the range of 

that for dense sands (Table 2.1). It is observed from Table 5.3 that the slowest required 

deformation rate 0.00523 in/min to measure drained shear behavior is three times 

faster than the fastest deformation rate 0.0019 in/min used in the present research. It is 

concluded that all the deformation rates used in the present research should result in 

fully drained behavior. The increase in strength (friction angle, Figure 5.2) with decrease 

in deformation rate is not due to drainage of excess porewater pressure.  

5.5.2 Creep behavior of FGD sludge 

Since excess pore pressure dissipation was not the reason for the gain in strength as 

shear rate decreased in the drained direct shear tests then there must be some other 

reasons for the observed behavior. It is possible that the increase in strength with 
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decreasing deformation rate is due to mechanisms which result in strength gain with 

time (aging) (Mitchell, 1986). One possible mechanism is strain hardening, or 

densification, due to vertical compression (creep) densification under constant vertical 

stress. Creep is defined here as deformation after the end of primary consolidation (teop) 

under a constant load.  Although the consolidation curves from the incremental load 

test (ILT) (Appendix, Figures A.10 to A.12) were not used for calculations (there was 

extrusion of the specimen from the consolidation ring), the time-settlement curves 

(Figures A.10 to A.12) were similar, with respect to creep behavior, to the curves 

obtained during the consolidation stage of the direct shear tests (Appendix, Figures A.13 

to A..15). The time-settlement curve in Figure 5.3 (Appendix, Figure A.1 to A.17) shows 

the typical shape of the curves. Secondary consolidation behavior as typically seen for 

clays (slope of time-settlement curve dramatically decreases after the end of primary 

consolidation) is not seen in the compacted FGD sludge.  In fact, the primary 

consolidation occurred in less than 20 minutes and in many specimens in less than one 

or two minutes in the present study.  Moghal and Sivapullaiah (2011) noted that the 

primary consolidation of the compacted FGD occurs within 30 minutes.  Krizek et al. 

(1987) observed the completion of primary consolidation for FGD sludge usually 

occurred within the first minute after application of a load increment (Table 5.3). Most 

of the vertical deformation observed during the consolidation tests performed in the 

present study may be attributed to creep or plastic deformations of the skeleton rather 

than primary consolidation as a result of dissipation of excess pore water pressure. 
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There is a volume decrease in inundated FGD specimens under a constant stress with 

time. This behavior is quantified in Table 5.4.  

 

 

Figure 5.3 Typical FGD sludge consolidation curve for a compacted specimen under load 

increment from 1500 psf to 3000 psf (End of primary consolidation, teop = 20 min, after this 

time, specimen is considered to be undergoing creep). 

 

Creep refers to vertical deformation under a constant stress. The creep rate is a 

function of the magnitude of stress.  As shown in Table 5.4, at higher stresses, the creep 

deformation rate is slightly greater compared to that at lower stresses. Specimens on 

which the constant stress was held for less than about 100 minutes showed a constant 

creep rate (Appendix, Figures A.1 through A.17).  While specimens on which the 

constant stress was held for more than about 1600 minutes exhibited a decreased creep 

rate with time (Appendix Figures A.10, A.13 and A.14).  One would expect the creep rate 

to decrease over time, so it is possible that the specimens exhibiting constant creep 

rates were simply not monitored for a sufficient length of time.      
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Observing the failure envelopes in Figure 5.2, it can be seen that the difference 

in the peak stresses is less at smaller effective normal stresses (500 psf and 1000 psf) 

compared to the higher effective normal stresses (2000 psf and 3000 psf). A possible 

reason for this behavior may be that at higher normal stresses, creep deformation is 

making the specimen more dense resulting in higher strength (strain hardening). Slower 

shear rates lead to longer duration of testing and thus a greater amount of creep, which 

could lead to more strain-hardening for the direct shear tests performed at slower 

shearing rates. However, all the specimens exhibited either dilation or no vertical 

displacement during shear, thus the creep (strain hardening) factor is not likely to be a 

cause of increase in strength with decreasing shear rate. 



  

65 

  

Table 5.4 Creep rates based on compressibility data for compacted FGD sludge 

 

Shear Data Consolidation Data 

Specimen 

no. 

Nominal 

Vertical 

Effective 

Stress  

(psf) 

Deformation 

Rate Type 

Deform. 

Rate 

(in/min) 

Load 

Increment 

Δσ 

(psf) 

 

Vertical 

Reading at 

End of 

Primary 

Consolidation, 

teop (inches) 

Vertical 

Reading at 

End of Creep 

Period  

(inches) 

Vertical 

Creep 

Deformation 

for Final 

Load 

Increment 

Δσ (inches) 

(7)-(6) 

Time to 

Reach End 

of Primary 

Consol, 

teop 

  (min) 

Time   

from teop 

Consol 

to tcreep  

(min) 

Vertical 

Creep 

Deformation 

Rate 

(in/min) 

(8)/(10) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

1 3000 NDR 0.000190 1500 0.0577 0.0613 3.6x10-3 21 40 9.0x10-5 

2 2000 NDR 0.000208 1000 0.4961 0.4986 2.5x10-3 21 40 6.2x10-5 

3 1000 NDR 0.000190 500 0.0285 0.0305 2.0x10-3 21 40 5.0x10-5 

4 500 NDR 0.000244 250 0.0087 0.0111 2.4x10-3 18 42 5.7x10-5 

5 3000 NDRD 0.000019 1500 0.0402 0.0437 3.5x10-3 21 40 8.7x10-5 

6 1000 NDRD 0.000019 500 0.0491 0.0518 2.7x10-3 21 40 6.7x10-5 

7 500 NDRD 0.000024 250 0.0219 0.0242 2.3x10-3 21 40 5.7x10-5 

8 3000 NDRI 0.001903 1500 0.2029 0.2061 3.2x10-3 21 40 8.0x10-5 

9 2000 NDRI 0.002148 1000 0.0523 0.0555 3.2x10-3 21 40 8.0x10-5 

10 1000 NDRI 0.001903 500 0.0356 0.0390 3.4x10-3 21 40 8.5x10-5 

11 500 NDRI 0.002444 250 0.0266 0.0288 2.2x10-3 21 40 5.5x10-5 

12 2000 NDR 0.000208 1000 0.0224 0.0254 3.0x10-3 21 40 7.5x10-5 

13 2000 NDR 0.000208 1000 0.0180 0.0208 2.8x10-3 21 40 7.0x10-5 

14 2000 NDR 0.000208 1000 0.0770 0.0797 2.7x10-3 21 40 6.7x10-5 

15 2000 NDR 0.000208 1000 0.0245 0.0269 2.4x10-3 21 40 6.0x10-5 

- 4000 na na 2000 0.0060 0.0136 7.6 x10-3 20 341 2.2x10-5 

- 6000 na na 3000 0.0025 0.0225 2.0 x10-2 20 3116 6.4x10-6 

- 6000 na na 3000 0.0020 0.0160 1.4 x10-2 20 1205 1.1x10-5 

- 6000 na na 3000 0.0010 0.0090 8.0 x10-3 20 1580 5.1x10-6 

 

 The 4000 and 6000 psf ENS data are from Zhang (2013) 

6
5
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5.5.3 Effect of pozzolanic reactions on consolidation and shear strength characteristics    

of FGD sludge. 

 

The term pozzolan refers to a siliceous or siliceous and aluminous material 

which, in itself, possesses little or no cementitious value but which will, in finely divided 

form and in the presence of water, react chemically with calcium hydroxide at ordinary 

temperature to form compounds possessing cementitious properties (ASTM C125). 

Pozzolan basically refers to a material’s capability of reacting with calcium hydroxide 

and water. The rate of the pozzolanic reaction is dependent on the intrinsic 

characteristics of the pozzolan such as the specific surface area, the chemical 

composition and the active phase content.  

It is possible that the FGD in the present study FGD may be pozzolanic thus 

resulting in an increase in strength with time as the pozzolans react.  Slower shearing 

rates would allow longer times for a pozzolanic reaction to occur and could result in 

higher shear strengths.  FGD sludge develops strength (Moghal and Sivapullaiah, 2011) 

due to pozzolanic behavior when mixed with siliceous/aluminous material; e.g., fly ash. 

Although primary consolidation is completed very quickly, maybe even within a minute 

(Krizek et al. 1987, Pandian and Balasubramonian, 1999) to 20 minutes (Kaniraj and 

Gayathri, 2004) with pozzolanic behavior, the duration of the load increment may not 

reflect the true nature of consolidation behavior when tested with the conventional 

approach of 24-hour load in the consolidation test as the pozzolan develops sufficient 

strength even during this period (Moghal and Sivapullaiah, 2011).  In the present work, 

for most of the direct shear specimens, the final consolidation stage lasted for 60 

minutes to ensure reaching the end of primary consolidation.  According to Moghal and 
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Sivapullaiah (2011) one hour can be assumed to be insufficient for development of 

strength due to pozzolanic reactions.  However, shear durations ranged from a day to 

several days during which pozzolanic reactions could possibly contribute to strength 

increase. 

It should be noted from Figures 4.3 (a), 4.4 (a) and 4.5 (a) that the stress versus 

horizontal deformation curves for NDRI (fast shear rate), NDR (moderate shear rate) and 

NDRD (slow shear rate) are different in shape as the duration of the test increases. The 

initial slopes of the stress versus horizontal displacement curves becomes steeper and 

horizontal deformation at peak shear stress increases as the rate of deformation 

decreases and the length of the test increases. This may indicate that the pozzolanic 

reactions are occurring at different rates at various times during the test. The duration 

and dates of all the direct shear tests are given in Table 5.5. 

A change in hydraulic conductivity with time might indicate a pozzolanic reaction 

occurring in the compacted FGD. A permeability test was performed on a compacted 

specimen of FGD sludge to obtain hydraulic conductivity (k) versus time behavior. The 

hydraulic conductivities varied from 2.3E-05 to 9.4E-06 cm/s over 28 days under an 

effective confining stress of 500 psf (Figure 5.4). The range of measured hydraulic 

conductivities is in the typical range of the hydraulic conductivity of non-plastic silts 

(Kaniraj and Gayathri, 2004).  The general trend is a reduction in hydraulic conductivity 

over time with a maximum reduction of about 50 percent (factor of two) (Figure 5.5).   

Based on the single permeability test (specimen A), there was no appreciable change in 
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hydraulic conductivity over time and thus no evidence of a pozzolanic or other time-rate 

(aging) reaction in the compacted FGD sludge. 

 

Figure 5.4 Variation of hydraulic conductivity (k) with time since compaction for FGD specimen 

A to look for changes as possible evidence of pozzolanic reactions occurring in the specimen. 

 

   

 

Figure 5.5 Reduction in hydraulic conductivity (k) of compacted FGD sludge with time since 

compaction, specimen A. 

 

1.E-06

1.E-05

1.E-04

0 5 10 15 20 25 30

K
 (

cm
/s

)

Time since compaction (days)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

R
e

d
u

ct
io

n
 k

, 
(%

)

Time since compaction (days)



  

69 

  

Table 5.5 Consolidation and shear data for compacted FGD sludge 

Batch 

/Speci

men 

No. 

Test 

ENS 

(psf) 

Deform-

ation rate 

(in/min) 

Pre-

test 

water 

(%) 

Dry 

mass,

Md, 

ring (g) 

Vol. 

of 

solid

VS 

Height 

of 

solid 

Hs 

eo Sr ef 1 

Post 

shear 

water 

content 

(%)/Srf 

ef2 

Duration of Consolidation Duration of Shear Shear 

time 

(days) Step 1 Step 2 Step 3 Start End 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

1/1 3000 
NDR 

0.000190 
41.1 96.6 2.54 0.52 0.93 1.02 0.81 60.0/1.59 0.87 

5/23/13 

11:58 

5/23/13 

12:58 

5/23/13 

13:58 

5/24/13 

10:43 

5/25/13 

8:38 
1 

2/3 1000 
NDR 

0.000208 
48.4 96.8 2.55 0.52 0.92 1.21 0.87 52.6/1.37 0.89 

6/7/13 

10:33 

6/7/13 

11:33 

6/7/13 

12:33 

6/7/13 

17:52 

6/8/13 

15:47 
1 

1/4 500 
NDR 

0.000190 
48.0 93.9 2.47 0.50 0.98 1.13 0.51 53.5/2.28 0.54 

6/11/13 

10:25 

6/11/13 

11:25 

6/11/13 

12:25 

6/11/13 

14:17 

6/12/13 

7:19 
1 

1/5 3000 
NDRD 

0.000019 
39.1 96.7 2.54 0.52 0.92 0.98 0.84 51.9/1.58 0.76 

5/25/13 

14:09 

5/25/13 

15:09 

5/25/13 

16:09 

5/26/13 

13:25 

6/3/13 

9:33 
7 

1/6 1000 
NDRD 

0.000019 
45.8 91.3 2.40 0.50 0.99 1.07 0.89 59.8/1.39 0.99 

6/24/13 

15:15 

6/24/13 

16:15 

6/24/13 

17:16 

6/25/13 

9:36 

7/4/13 

12:12 
8 

2/7 500 
NDRD 

0.000024 
43.7 96.5 2.54 0.52 0.93 1.09 0.88 60.0/1.5 0.93 

6/16/13 

13:47 

6/16/13 

14:48 

6/16/13 

15:48 

6/17/13 

9:12 

6/24/13 

11:14 
8 

1/8 3000 
NDRI 

0.0019 
41.1 97.1 2.56 0.52 0.92 1.04 0.52 56.6/1.64 0.80 

6/4/13 

12:40 

6/4/13 

13:40 

6/4/13 

14:40 

6/4/13 

18:16 

6/4/13 

20:27 
2 hr 

1/9 2000 
NDRI 

0.0021 
42.0 97.9 2.57 0.52 0.90 1.08 0.80 57.4/1.61 0.83 

6/6/13 

14:02 

6/6/13 

15:02 

6/6/13 

16:02 

6/6/13 

18:36 

6/6/13 

20:32 

2 hr < 

1 day 

1/10 1000 
NDRI 

0.0019 
42.1 98.1 2.58 0.52 0.90 1.09 0.82 51.4/1.42 0.84 

6/10/13 

10:24 

6/10/13 

11:24 

6/10/13 

12:24 

6/10/13 

13:34 

6/10/13 

15:46 

2 hr < 

1 day 

1/11 500 
NDRI 

0.0024 
47.6 93.6 2.46 0.50 0.99 1.11 0.93 54.7/2.26 0.56 

6/14/13 

14:51 

6/14/13 

15:51 

6/14/13 

16:51 

6/14/13 

23:04 

6/15/13 

0:47 
< 1day 

1/13 2000 
NDR 

0.000208 
38.3 100.3 2.64 0.53 0.86 1.04 0.81 47.7/1.47 0.75 

7/26/13 

14:35 

7/26/13 

15:35 

7/26/13 

16:35 

7/27/13 

9:55 

7/28/13 

5:55 
1 day 

1/16 2000 
NDR 

0.000208 
39.0 102.9 2.71 0.55 0.81 1.14 0.76 54.0/1.8 0.69 

8/1/13 

10:07 

8/1/13 

11:08 

8/1/13 

12:08 

8/1/13 

18:18 

8/2/13 

13:52 
1 day 

ENS is effective normal stress, H initial = 1 inch, eo = initial void ratio in the ring, ef 1 = end of consolidation stage (60 minutes), ef2 = at peak shear 

stress, Sr = Degree of saturation more than 100 % in case of both the pre and posttest sample.

6
9
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5.5.4 Structural water in FGD sludge 

FGD sludge is calcium sulfite (CaSO3). Over time, the CaSO3 will oxidize in the 

presence of water (H2O) to form gypsum (CaSO4·2H2O). The “2H2O” is now structural 

water; however, the structural water can be removed by over drying at temperatures of 

around 110o C. Three 100 grams specimens of moist FGD sludge were dried using three 

different procedure. The first sample was placed in a desiccator, the second in the open 

air, and the third in a forced-air oven at 110o C to observe the moisture loss (Figure 5.6). 

 

Figure 5.6 Mass of initial 100-gm specimens of FGD versus time for different methods of 

drying. 

The amount of moisture  lost at equilibrium was 15 percent for the desiccator 

sample, 20 percent for the air dry sample, and 41 percent in the case of the oven dry 

sample possibly indicating that the Gypsum (CaSO4 · 2H2O)  sludge loses some structural 

water at high drying temperatures (110o C). The water in the structure of the FGD sludge 
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is capable of being released at high temperature (Kirzek et al., 1987). In the present 

study, all moisture content determinations shown in Table 5.5 were by the oven-drying 

method (@ 110° C). Thus, the moisture content calculations may include some structural 

water which is likely reflected by the degree of saturation being calculated to be more 

than 100 percent. Since all of the specimens were oven dried it is assumed that about 

the same relative amount of structural water was lost from each specimen. 

 It was also observed that the FGD sludge’s as-received moisture content 

decreased with time even though the FGD was stored in a closed, airtight plastic drum. 

This might indicate that the as-received water content present in the FGD sample has 

started being absorbed in the structure of FGD sludge. The FGD sludge keeps on 

absorbing the water in its structure at room temperature and the CaSO3 (calcium sulfite) 

is further oxidized to produce CaSO4·2H2O (gypsum) (Freeman, 2013). This phenomenon 

is known as oxidation: 

CaSO3 (solid) + 2H2O (liquid) + ½O2 (gas) → (CaSO4 · 2H2O)                               (5.1) 

Absorption of water in the FGD sludge can result in free calcium being converted to 

calcium hydroxide (CaOH) which, in the presence of siliceous and aluminous material, 

accelerates pozzolanic reactions and results in a gain in strength with time. There is no 

evidence of pozzolanic material in the FGD used in this thesis as demonstrated by the 

absence of change in hydraulic conductivity during the long-term test on Specimen A.  

5.6 Reproducibility of the direct shear test 

 Philipp (1991) stated that the shear strength parameters include uncertainties 

due to specimen preparation even when performed by the same laboratory and the 
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same person). Lumb (1974) noted that scatter in direct shear test results may be due to 

the apparatus used, heterogeneity of the soil material tested and specimen preparation.  

In the present work, a study was performed to qualify the reproducibility of the direct 

shear tests on the compacted FGD.   

Six compacted FGD specimens were compacted and sheared using a 

deformation rate of 0.00019 in/min (NDR) at 2000 psf effective normal stress.  All tests 

were conducted by the same person using the same procedure and apparatus for 

specimen preparation as well as testing.  Specimen preparation included: FGD sludge 

homogenization, Proctor compaction, cutting cylindrical direct shear specimens from 

the Proctor specimens, installation in the direct shear apparatus and consolidating the 

specimens prior to initiating shear.  

Peak shear stress versus effective normal stress for all six specimens are shown 

in Figure 5.7.   Specimens 12 and 15 show a peak shear stress, τp lower than the 

effective normal stress, σ’.  Such behavior was attributed to fine cracks (not visible from 

the outside of the specimen) in the compacted specimens generated as the specimens 

were trimmed or during the placement in the direct shear box. Therefore, the results 

from specimens 12 and 15 are not considered further in the discussion.  Specimen 14 

was a good test; however, at peak shear stress, the normal effective stress was 2,150 

psf or about 8 percent greater than the other specimens.  One would expect the 

strength to be higher for specimen 14 simply because of the increased effective normal 

stress.  Thus, specimen 14 should not be used in the analysis of reproducibility.    
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Figure 5.7 Peak shear stress at 2000 psf effective normal stress for six different specimens. 

Considering specimens 2, 13 and 16, the average value of peak shear stress was 2406 

psf.  Specimen 2 (peak shear stress = 2512 psf) was used to define the failure envelope 

for the nominal deformation rate (0.0002 in/min). The shear stress versus horizontal 

displacement behavior for specimens 2, 13, 14 and 16 are similar as shown in Figure 5.8.  

The standard deviation from the peak shear stress for specimens 2, 13 and 16 was 246 

psf and the cov was 0.102 (10 %). The friction angles for each test (assuming a cohesion 

intercept of zero) are shown in Table 5.6. The mean friction angle was 48°.  The 

standard deviation of tan(ϕ) is 0.072 and the cov is seven percent.  Lumb (1974) noted 

that the coefficient of variation (cov) of tan(ϕ) for a cohesive soil is six percent in direct 

shear tests which is surprisingly close to the findings of the present study.  The results of 

the direct shear tests are considered to be reproducible with a high degree of precision 

(cov ≤ 10%). 
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Figure 5.8 Shear stress path at 2000 psf effective normal stress for six different specimens. 

Table 5.6 Friction angle of compacted FGD sludge with the different specimens at 

deformation rate 0.0002 in/min (NDR). 

 

Specimen No. 
Friction Angle      

(°) 
Tan(ϕ) 

2 46 1.035 

13 50 1.191 

16 49 1.150 

Mean 48.3 1.1 

Stdev 2.08 0.08 

cov 0.043 0.072 

 

5.7 Interpreting direct shear test results 

 

It was decided to interpret shear test results, assuming the compacted FGD was 

cohesionless (c=0), so that the shear strength is purely friction based. This prcedure 

yielded the failure envelopes shown in Figure 5.2 and friction angles given in Table 5.7. 

However, it is also possible to interpret the data as cohesion and friction based (c and φ) 

resulting in the failure envelopes shown in Figure 5.9 and given in Table 5.7. Both 
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methods yield the same shear strength (τ) at same effective normal stress (σ’)(Equation 

5.2). 

                                           τ = c’ + σ’tan(ϕ’)                                                             (5.2) 

where: 

τ = shear strength 

c’= effective cohesion 

σ’= effective normal stress 

ϕ’ = effective friction angle 

 

 

Figure 5.9 Failure envelopes from the direct shear test with cohesion (failure envelope not 

forced through origin) (NDR-Nominal deformation rate (specimens 1 to 4), NDRI-Nominal 

deformation rate increase (specimens 8 to 11) and NDRD- Nominal deformation rate decrease 

(specimens 5 to 7) All Specimen numbers are from Table 4.1 for shear data). 
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Table 5.7 Shear strength parameters for compacted FGD sludge. 

Deformation Rate 
Cohesion Considered 

 (Figure 5.9) 

Cohesion Ignored, 

c’ = 0, (Figure 5.2) 

(inches/minute) 
Effective friction 

Angle (ϕ ͦ) 

Effective 

Cohesion, c’ (psf) 

Effective friction 

Angle (ϕ ͦ) 

NDRI  0.002 27 528 37 

NDR  0.0002 47 280 46 

NDRD  0.00002 52 613 57 

 

5.8 Summary 

Peak shear strength increased as the deformation rate during shear was 

decreased for a series of drained direct shear tests on compacted flue gas 

desulfurization (FGD) sludge.  Shearing rates were calculated for each test such that fully 

drained behavior; i.e., no excess pore water pressures, should have resulted during 

shearing of the specimens (Table 8, column 2).  The initial assumption was that excess 

(positive) pore water pressures were being generated during shear resulting in the 

strength dependence on shear rate.  Results of independent tests (consolidation and 

hydraulic conductivity, Table 5.8, column 5) on the compacted FGD were used to re-

calculate shearing rates to yield drained behavior.  The independently calculated rates 

further confirmed that the shearing rates used should have produced fully drained 

behavior (Table 5.8, column 3). The specimen volume change during shearing was 

examined and found to show a slight dilation to no volume change during shearing 

(Table 8, column 1) further supporting the theme that no excess pore water pressures 

(positive or negative) were being generated during shear.    

Several other mechanisms that could possibly lead to strength changes with time 

(time being the time during shearing of the compacted FGD specimen) were 



  

77 

 

hypothesized including: creep or specimen compaction under a constant normal stress, 

mineralogical reaction (calcium sulfite changing to gypsum) and a pozzolanic reaction.  

The consolidation portion of the direct shear tests, supported the possibility of vertical 

creep under constant load (specimen densification) (Table 5.8, column 6).  However, 

volume change (specimen height) during the shearing phase of the tests did not support 

the creep hypothesis (Table 5.8, column 1).  Both, reaction of calcium sulfite to gypsum 

and pozzolanic reactions will make the FGD stronger.  Both processes require time (a 

day to a few weeks) to yield an appreciable change in shear strength of the FGD.  

Neither consolidation tests (Table 5.8, column 6) nor a long-term hydraulic conductivity 

tests (Table 5.8, column 4) supported the hypotheses of strength gain under these two 

mechanisms.   

Re-examination of the time-settlement curves for each consolidation load on the 

direct shear specimens (Appendix Figures A.1 through A.17) indicate that the times to 

reach end of primary consolidation may be much longer than calculated in this thesis.  

Four specimens (Figures A.10, A.11, A.13 and A.14) show a substantial flattening of the 

time-settlement curve after more than 900 to 2500 minutes under a given consolidation 

stress.  Based Figures A.10, A.11, A.13 and A.14, time to failure for fully drained behavior 

could be 25,000 to 65,000 minutes resulting in deformation rates of 4E-5 to 2E-6 

inches/minute, which further suggests that only the slowest deformation rates used in 

this thesis (0.00002 inches/minute) should yield fully drained behavior of the compacted 

FGD sludge.   
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Table 5.8 Possible mechanisms leading to different shear strengths measured at different shearing deformation rates, methods used to 

evaluate the mechanisms and . 

Mechanism 

Method used to evaluate possible mechanism affecting shear strength of compacted FGD sludge 

(1) (2) (3) (4) (5) (6) 

Volume change 

during shear 

of the specimen 

(Vol increased or 

no change during 

shearing) 

Fully 

drained 

Deform. 

Rate Gibson 

and Henkel 

(1954) 

Fully drained 

Deform. 

Rate 

Kaniraj and 

Gayathri 

(2004) 

Long term k test 

k ≈ 10-5 cm/s 

(No change with 

time) 

k @ different effective 

normal stress (ENS) 

K ≈ 10-5 cm/s (No change 

with increase in ENS) 

Consol tests 

(Vertical 

deformation 

gradually 

increases under 

constant load) 

Positive pore water 

pressure 

(strength decrease) 

Not supported Not supported 

=>actual < =>fully drained 

therefore should not be any  

excess pore water pressures 

Not supported no 

change in k with 

time specimen 

free to drain 

No pore pressure 

Not supported no change in k 

with increase in effective 

stress specimen free to drain 

No pore pressure 

NA 

Negative pore 

water pressure 

(strength increase) 

Supported by  

dilation in some 

specimens 

NA 

Creep (specimen 

compresses/ 

densifies) 

(strength increase) 

Not supported 

dilation or no vol 

change during 

shear 

NA NA 

Not supported 

no change in k 

with time 

NA 

Supported 

(Steady volume 

decrease under 

constant load) 

Reaction 

(Oxidation) to 

Gypsum 

(strength increase) 

NA NA NA 

Not supported no 

change in k with 

time 

NA 

Not supported 

(expect defm to 

stop if gypsum 

forming) 

Aging-Pozzolanic 

(strength increase) 
NA NA NA 

Not supported no 

change in k with 

time 

NA 

Not supported 

(expect defm to 

stop if possolan 

rxn) 

7
8
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary  

Flue gas desulfurization (FGD) sludge is produced during the clean-up of the gas 

stream from the combustion of coal. The FGD is calcium oxide, injected into the hot off 

gases to remove sulfur (SOx) compounds. The resulting FGD is primarily calcium sulfite 

CaSO3 and gypsum CaSO4·2H2O. Although FGD has several beneficial reuses (agricultural 

lime, gypsum wallboard), most is disposed of in embankment landfills. To expand the 

potential reuses and to ensure stability and safety of the disposal embankments, shear 

strength parameters of the compacted FGD are required. The main objectives of this 

research were to: (1) quantify the shear strength behavior of compacted FGD when 

sheared at different deformation rates in ‘drained’ direct shear tests. More specifically, 

determine if a deformation rate of 0.0002 inches per minute results in fully drained 

behavior of the compacted FGD and (2), if necessary estimate a deformation rate that 

will yield fully drained shear strength parameters.  

The FGD used in this study classified as low plasticity silt (ML) with a plastic limit 

of zero. Specimens were compacted using standard Proctor energy and drained direct 

shear tests were performed at three different deformation rates. The nominal 

deformation rate was calculated from the consolidation data (NDR = 0.0002 inches per 

minute). A deformation rate one order of magnitude slower (NDRD = 0.00002 inches per 

minute) and another rate one order of magnitude faster (NDRI = 0.002 inches per 

minute) were also used. Plots of shear stress versus horizontal deformation were 
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prepared for analysis.  One-dimensional consolidation tests were performed to 

determine the coefficient of volumetric compressibility (mv) and flexible-wall 

permeability tests were performed to measure hydraulic conductivity (k) as a function 

of time and as a function of effective stress. 

6.2 Conclusions  

There was a noticeable change in shear strength for specimens sheared at the 

same effective normal stress but at different deformations rates.  Lower shear strengths 

were recorded for faster deformation rates.   Assuming zero cohesion and calculating 

the slope of the best linear-fit failure envelopes yielded internal frictions angles of 57°, 

46°, and 37° for deformation rates of 0.00002, 0.0002 and 0.002 inches per minute, 

respectively.   The decrease in shear strength (friction angle) with increasing 

deformation rate seemed to indicate that excess pore water pressures generated during 

shear may not be dissipating thereby leading to a decrease in the shear strength.  

However, the compacted FGD specimens tended dilate slightly (volume expansion) or 

have no volume change during shear which leads to reduced or even negative pore 

water pressures which should result in an apparent increase in the drained shear 

strength.  (Reduced or negative pore water pressures lead to increased effective stress 

and therewith increased shear strength.) 

An independent check on the shearing rate; i.e., time to reach peak shear 

resistance, was performed by measuring the hydraulic conductivity, k, of the compacted 

FGD and the coefficient of volume compressibility, mv, and using them to calculate a 

coefficient of consolidation, cv.  The coefficient of consolidation was then used to 
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calculate a deformation rate that yielded peak shear strength for the compacted FGD 

with a 99 percent average degree of consolidation, meaning 99 percent of any excess 

pore water pressures generated due to shear should be dissipated by the time the 

specimens reach peak shear strength.  The slowest deformation rate required for “fully 

drained” shear behavior was calculated to be 0.0052 inches per minute which is more 

than two times faster than the fastest deformation rate used in the present study (0.002 

inches per minute).  Thus, it was concluded that excess pore water pressures were not 

generated by the deformation rates used in the present study.  Other mechanisms for 

the shear strength dependence on deformation rate were considered including strain-

hardening by creep, mineralogical change of the FGD sludge from calcium sulfite (CaSO3) 

to gypsum (CaSO4·2H2O) and pozzolanic reactions. 

Initial analysis of the consolidation curves for the compacted FGD indicated that 

the excess pore water pressure dissipated within minutes after loading (very rapid) but 

vertical deformation under the constant load (creep) continued for hours to days.  Such 

creep (in this case compression) behavior can lead to strain-hardening of the material 

being sheared such that as the horizontal shearing deformation rate is slowed, the 

specimen remains under a constant vertical stress and creep continues, even during 

shear, resulting in a stiffer specimen which is more resistant to shear.   

Mineral change from calcium sulfite to gypsum and pozzolanic reaction in the 

compacted FGD would also tend to lead to greater resistance to shear.  It was 

hypothesized that these changes, if occurring, would lead to decreasing hydraulic 

conductivity during long term hydraulic conductivity tests. The maximum shearing 
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duration was eight days. The mechanisms were evaluated by measuring the hydraulic 

conductivity of a compacted FGD specimen over a period of 30 days.  There was a slight 

change (less than a factor of two) in the hydraulic conductivity over the measurement 

period.  The small change is indicative of no major mineral alteration or pozzolanic 

reactions in the FGD over that period of time and thus one would not expect these 

mechanisms to be impacting the shear strength measured over a period of one to eight 

days. 

Re-examination of the time-settlement curves for each consolidation load on the 

direct shear specimens indicate that the times to reach end of primary consolidation 

may be much longer than originally assumed.  Four specimens of the 17 show a 

substantial flattening of the time-settlement curve after more than 900 to 2500 minutes 

under a given consolidation stress.  However, these four test results yield deformation 

rates of 4E-5 to 2E-6 inches/minute for fully drained behavior, which further suggests 

that only the slowest deformation rate (2E-5 inches/minute) used in this thesis should 

yield fully drained behavior of the compacted FGD sludge.  For now, it is recommended 

that designers use the lowest shear strength parameters (obtained from the direct shear 

tests with the highest deformation rates), for design of FGD disposal embankments; i.e., 

internal friction angle of 37 degrees with zero cohesion. 

6.3     Recommendations  

Several recommendations are presented to gain a better understanding of the 

time/shear rate dependence of shear strength for compacted FGD. 
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1. Perform a strength versus aging-time study.  Compact a series of cylindrical 

FGD specimens at the same molding water content and dry density.  Store the 

specimens in a sealed chamber with a high relative humidity at room temperature 

(20°C). Select two specimens periodically (0, 7, 14, 28, 56 days) and measure their 

compressive strength (UU test).  Analyze the strength versus time.  An increase in 

strength with time would indicate some aging phenomenon such as a pozzolanic 

reaction or mineralogical change from calcium sulfite to gypsum.  Repeat the 

experiment but, keep the specimens at 4°C.  Low temperatures slow the rate of 

mineralogical and pozzolanic reactions.   

2. Perform an investigation of the excess pore water pressure dissipation with 

time.  Compact an FGD sludge specimen.  Use a one-dimensional consolidometer with a 

pore water pressure measurement system in the base of the consolidometer.  Trim the 

specimen into the consolidometer.  Perform an incremental load test on the FGD 

specimens and measure the excess pore water pressure versus time for each 

incremental load.  Analyze the time required for the excess pore water pressure to 

dissipate under each loading.  Back-calculate coefficients of consolidation for each load 

increment and use them to calculate time to failure tf, (Equation 2.12) and analyze the tf 

with regard to times to failure for fully drained shear tests presented in this thesis. 

3. Perform parallel shear strength studies on compacted FGD using drained 

triaxial tests (CD), undrained triaxial tests with porewater pressure measurements (������) 

and direct simple shear tests using the constant volume procedure (DSS-CV). Compare 
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the shear strength deformation behaviors, the pore water pressures during shear, the 

shear strength, and the effective shear strength parameters c’ and ϕ’. 

4. Investigate the mineralogy, composition, and skeletal structure of the 

compacted FGD as a function of time at the microscopic scale. Special emphasis should 

be placed on determining the rate at which calcium sulfite converts to gypsum. 

5.  Investigators of any future study of FGD sludge must be very cognizant of the 

time duration during sampling, transport, storage, and in all aspects of testing since it is 

likely that the FGD undergoes some type of ‘aging’ effects that appear to have bearing 

on the index and strength properties of compacted FGD sludge. 

6. It is recommended that air drying or a desiccator should be used when 

determining the moisture content of the FGD sludge in order to eliminate the issue of 

removing structural water during oven drying,  
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APPENDIX 

 

A. AS RECEIVED MOISTURE CONTENT IN PERCENT OF THE SAMPLES  
Table A.1 As-received moisture content in percent of the samples in the buckets 

 Bucket 1 Bucket 2 Bucket 3 Bucket 4 

Top 36.40 43.88 34.84 40.53 

Middle 38.56 43.12 34.40 39.90 

Bottom 37.08 43.97 35.68 39.55 

 

Buckets 1 and 2 are from batch 1 and buckets 3 and 4 are from batch 2. Bucket 3 was 

not used as it had low moisture content compared to that of the other buckets. Batch 1 

was received on 9 April 2013 and batch 2 on 19 July 2013. 

 

B. DIRECT SHEAR TEST CALCULATIONS AND PERMEABILITY TEST 

1. DETERMINATION OF THE SHEAR DEFORMATION RATE FROM CONSOLIDATION 

DATA 

 
 

Figure A.1 Consolidation curve for 500 psf ENS on square root time scale (deformation rate 

NDR, specimen 4, Table 4.1) at last load increment from 250 to 500 psf. 
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Table A.2 Calculation of deformation rate for 500 psf effective normal stress. 

x intercept * 1.15 = 6.9*1.15 = 8 Vertical actuator (inches) 

 d90 1.0080 

 d0 1.0025 

 d0-d90 0.0054 

d50 5/9 * (d0-d90) 0.0030 

 d0+d50 1.0067 

t50 (mins) = 2.9*2.9 = 9  

50*t50 450  

Shear rate (in/min) NDR 0.000244  

NDRD 0.0000244  

NDRI 0.002444  

 

 
Figure A.2 Consolidation curve for 1000 psf ENS on square root time scale (deformation rate 

NDR, specimen 3, Table 4.1) at last load increment from 500 to 1000 psf. 

 

Table A.3 Calculation of deformation rate for 1000 psf ENS 

x intercept * 1.15 = 9.2*1.15 = 10.58 Vertical actuator (inches) 

 d90 0.0285 

 d0 0.0253 

 d0-d90 0.0050 

d50 5/9 * (d0-d90) 0.0028 

 d0+d50 0.0282 

t50 (mins) = 3.4*3.4 = 11.56  

50*t50 578  

Shear rate (in/min) NDR 0.00019  

NDRD 0.000019  

NDRI 0.0019  
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Figure A.3 Consolidation curve for 2000 psf ENS on square root time scale (deformation rate 

NDR, specimen 14, Table 4.1) at last load increment from 1000 to 2000 psf. 

 

Table A.4 Calculation of deformation rate for 2000 psf ENS 

x intercept * 1.15 = 8.4*1.15=9.66 Vertical actuator (inches) 

 d90 0.0224 

 d0 0.0167 

 d0-d90 0.0076 

d50 5/9 * (d0-d90) 0.0042 

 d0+d50 0.0209 

t50 (mins) = 3.25*3.25= 10.56  

50*t50 528.12  

Shear rate(in/min)NDR 0.000208  

NDRD 0.0000208  

NDRI 0.00208  
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Figure A.4 Consolidation curve for 2000 psf ENS on square root time scale (deformation rate 

NDRI, specimen 9, Table 4.1) at last load increment from 1000 to 2000 psf. 

 

Table A.5 Calculation of deformation rate for 2000 psf ENS 

x intercept * 1.15 = 8.5*1.15=9.7 Vertical actuator (inches) 

 d90 0.0523 

 d0 0.0461 

 d0-d90 0.0083 

d50 5/9 * (d0-d90) 0.0046 

 d0+d50 0.0508 

t50 (mins) = 3.2*3.2= 10.24  

50*t50 512  

Shear rate (in/min) NDR 0.0002148  

NDRD 0.00002148  

NDRI 0.002148  
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Figure A.5 Consolidation curve for 3000 psf ENS on square root time scale (deformation rate 

NDR, specimen 1, Table 4.1) at last load increment from 1500 to 3000 psf. 

 

Table A.6 Calculation of deformation rate for 3000 psf ENS 

 

x intercept * 1.15 = 8.8*1.15 = 10.12 Vertical actuator (inches) 

 d90 0.0578 

 d0 0.05203 

 d0-d90 0.00786 

d50 5/9 * (d0-d90) 0.00437 

 d0+d50 0.0564 

t50 (mins) = 3.4*3.4 = 11.56  

50*t50 578  

Shear rate(in/min)NDR 0.00019  

NDRD 0.000019  

NDRI 0.0019  
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2. CONSOLIDATION CURVES AT DIFFERENT EFFECTIVE NORMAL STRESS, ENS.  

 
 

Figure A.6 Consolidation curve for 500 psf ENS on square root time scale (deformation rate 

NDRD, specimen 7, Table 4.1) at last load increment from 250 to 500 psf. 

 

Figure A.7 Consolidation curve for 500 psf ENS on square root time scale (deformation rate 

NDRI, specimen 11, Table 4.1) at last load increment from 250 to 500 psf. 
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Figure A.8 Consolidation curve for 1000 psf ENS on square root time scale (deformation rate 

NDRD, specimen 6, Table 4.1) at last load increment from 500 to 1000 psf. 

 

 

 
 

Figure A.9 Consolidation curve for 3000 psf ENS on square root time scale (deformation rate 

NDRD, specimen 5, Table 4.1) at last load increment from 1500 to 3000 psf. 
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Figure A.10 Consolidation curve (ILT) for 3000 psf ENS on square root time scale at first load 

increment from 0 to 500 psf. 

 
Figure A.11 Consolidation curve (ILT) for 3000 psf ENS on square root time scale at second load 

increment from 500 psf to 1500 psf. 
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Figure A.12 Consolidation curve (ILT) for 3000 psf ENS on square root time scale at last load 

increment from 1500 psf to 3000 psf. 

 
 

Figure A.13 Consolidation curve (Automated direct shear machine) for 3000 psf ENS on square 

root time scale at first load increment from 0 to 500 psf. 
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Figure A.14 Consolidation curve (Automated direct shear machine) for 3000 psf ENS on square 

root time scale at second load increment from 500 psf to 1500 psf. 

 
 

Figure A.15 Consolidation curve (Automated direct shear machine) for 3000 psf ENS on square 

root time scale at last load increment from 1500 psf to 3000 psf. 
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Figure A.16 Consolidation curve for 4000 psf ENS on square root time scale (Zhang, 2013) 

 
 

Figure A.17 Consolidation curve for 6000 psf ENS on log time scale (Zhang, 2013) 
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3. STRESS-DISPLACEMENT GRAPH WITH PEAK POINT AND VOLUME CHANGE 

CURVES FOR FGD SLUDGE WITH DIFFERENT EFFECTIVE NORMAL STRESSES AT 

NDR, NDRI AND NDRD. 

Figure A.18 (a) Stress-displacement for FGD sludge and peak point with 500 psf effective 

normal stress at NDR. 

 

 
Figure A.18 (b) Volume change curves for NDR on FGD sludge at 500 psf effective normal 

stress. 
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Figure A.19 (a) Stress versus displacement for FGD sludge and peak point with 1000 psf 

effective normal stress at NDR. 

 
Figure A.19 (b) Volume change curves for NDR on FGD sludge at 1000 psf effective normal 

stress. 
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Figure A.20 (a) Stress-displacement for FGD sludge and peak point with 2000 psf effective 

normal stress at NDR. 

 
Figure A.20 (b) Volume change curves for NDR on FGD sludge at 2000 psf effective normal 

stress. 
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Figure A.21 (a) Stress-displacement for FGD sludge and peak points with 3000 psf effective 

normal stress at NDR. 

 

 
Figure A.21 (b) Volume change curves for NDR on FGD sludge at 3000 psf effective normal 

stress. 
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Figure A.22 (a) Stress-displacement for FGD sludge and peak points with 500 psf effective 

normal stress at NDRI. 

 

 
Figure A.22 (b) Volume change curves for NDRI on FGD sludge at 500 psf effective normal 

stress. 
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Figure A.23 (a) Stress-displacement for FGD sludge and peak points with 1000 psf effective 

normal stress at NDRI. 

 

 
Figure A.23 (b) Volume change curves for NDRI on FGD sludge at 1000 psf effective normal 

stress. 
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Figure A.24 (a) Stress-displacement for FGD sludge and peak points with 2000 psf effective 

normal stress at NDRI. 

 

 
Figure A.24 (b) Volume change curves for NDRI on FGD sludge at 2000 psf effective normal 

stress. 
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Figure A.25 (a) Stress-displacement for FGD sludge and peak points with 3000 psf effective 

normal stress at NDRI. 

 

 
Figure A.25 (b) Volume change curves for NDRI on FGD sludge at 3000 psf effective normal 

stress. 
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Figure A.26 (a) Stress-displacement for FGD sludge and peak points with 500 psf effective 

normal stress at NDRD. 

 

 
Figure A.26 (b) Volume change curves for NDRD on FGD sludge at 500 psf effective normal 

stress. 
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Figure A.27 (a) Stress-displacement for FGD sludge and peak points with 1000 psf effective 

normal stress at NDRD. 

 

 
Figure A.27 (b) Volume change curves for NDRD on FGD sludge at 1000 psf effective normal 

stress. 
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Figure A.28 (a) Stress-displacement for FGD sludge and peak points with 3000 psf effective 

normal stress at NDRD. 

 
Figure A.28 (b) Volume change curves for NDRD on FGD sludge at 3000 psf effective normal 

stress. 
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4. PERMEABILITY TESTS 

 

Table A.7 Hydraulic conductivity of FGD sludge from 0 to 28 days under constant effective confining stress (500 psf), Specimen A. 

 

Average 

effective 

confining 

stress σ’ 

in 

specimen 

(psf)/(psi) 

Cell 

press

ure 

σ(psi) 

a 

(cm2) 

L 

(cm) 

Δt (s) Head Water 

(cm) 

h 

bottom 

of 

sample 

(cm) 

Tail Water   

(cm) 

h top of 

sample 

(cm) 

Δh1 

(cm) 

Δh2 

(cm) 

Δh1/Δh2 ln(Δh1/Δh2) K (cm/s) 

500/3.5 5.5 5.5 2.54 480 ht1 21.3 231.3 ht1 5.8 75.8 155.5 

 

1.05 0.049 2.27E-05 

    

 

ht2 17.5 227.5 ht2 9.5 79.5 

 

148 

   500/3.5 5.5 1 2.54 480 ht1 21.5 231.5 ht1 3 73 158.5 

 

1.08 0.081 6.81E-06 

    

 

ht2 15.3 225.3 ht2 9.2 79.2 

 

146.1 

   500/3.5 5.5 1 2.54 960 ht1 16.9 226.9 ht1 6.5 76.5 150.4 

 

1.06 0.064 2.7E-06 

    

 

ht2 12.2 222.2 ht2 11.2 81.2 

 

141 

   500/3.5 5.5 1 2.54 960 ht1 22 232 ht1 2 72 160 

 

1.26 0.232 9.72E-06 

    

 

ht2 5.5 215.5 ht2 18.7 88.7 

 

126.8 

   500/3.5 5.5 1 2.54 480 ht1 24 234 ht1 2 72 162 

 

1.11 0.112 9.38E-06 

     ht2 15.4 225.4 ht2 10.6 80.6 

 

144.8 

   a = area of the reservoirs containing either influent/inflow or effluent/outflow liquid (in the specimen B pipette and annulus have been used, 

area of pipette = 1 cm2 and area of annulus is 4.5 cm2), L = length of specimen, cm 

∆t = interval of time, s, over which the flow ∆Q occurs (t2 – t1), t1 = time at the start of permeation trial, date: hr: min: sec, t2 = time at the end of 

permeation trial, date: hr:min:sec, 

ht1 = head loss across the specimen at t1, cm of water, ht2 = head loss across the specimen at t2, cm of water, Head water, pore pressure u = 3 psi 

= 210 cm water, Tail water, pore pressure u = 1 psi = 70 cm water, throughout the test for all average effective confining stresses the pore 

pressures are maintained constant.  

K = hydraulic conductivity, cm/s 

 

 

1
1

0
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Table A.8 Hydraulic conductivity test for different average effective confining stress in Specimen B 

 

Average 

effective 

confining 

stress σ’ in 

specimen 

(psf)/(psi) 

Cell 

press

ure 

σ(psi) 

a 

(cm2) 

L 

(cm) 

Δt (s) Head Water 

(cm) 

h 

bottom 

of 

sample 

(cm) 

Tail Water   

(cm) 

h top 

of 

sample 

(cm) 

Δh1 

(cm) 

Δh2 

(cm) 

Δh1/Δh2 ln(Δh1/Δh2) K (cm/s) 

500/3.5 5.5 5.5 2.54 480 ht1 21.5 231.5 ht1 2.8 72.8 158.7  1.044 0.0437 2.01E-05 

     ht2 17.8 227.8 ht2 5.9 75.9  151.9    

1000/7 9 5.5 2.54 240 ht1 23.5 233.5 ht1 3.9 73.9 159.6  1.023 0.0228 2.1E-05 

     ht2 21.7 231.7 ht2 5.7 75.7  156    

2000/14 16 5.5 2.54 960 ht1 21.7 231.7 ht1 5.8 75.8 155.9  1.078 0.0752 1.73E-05 

     ht2 16 226 ht2 11.4 81.4  144.6    

3000/21 23 5.5 2.54 240 ht1 24.7 234.7 ht1 6 76 158.7  1.018 0.0184 1.7E-05 

     ht2 23.2 233.2 ht2 7.4 77.4  155.8    

4000/28 30 5.5 2.54 480 ht1 23 233 ht1 7.8 77.8 155.2  1.023 0.0234 1.08E-05 

     ht2 21.2 231.2 ht2 9.6 79.6  151.6    

6000/42 44 5.5 2.54 960 ht1 21 231 ht1 9.7 79.7 151.3  1.037 0.0370 8.51E-06 

     ht2 18.4 228.4 ht2 12.6 82.6  145.8    

a = area of the reservoirs containing either influent/inflow or effluent/outflow liquid (in the specimen B pipette and annulus have been used, 

area of pipette = 1 cm2 and area of annulus is 4.5 cm2), L = length of specimen, cm 

∆t = interval of time, s, over which the flow ∆Q occurs (t2 – t1), t1 = time at the start of permeation trial, date: hr: min: sec, t2 = time at the end of 

permeation trial, date: hr:min:sec, 

ht1 = head loss across the specimen at t1, cm of water, ht2 = head loss across the specimen at t2, cm of water, Head water, pore pressure u = 3 psi 

= 210 cm water, Tail water, pore pressure u = 1 psi = 70 cm water, throughout the test for all average effective confining stresses the pore 

pressures are maintained constant.  

K = hydraulic conductivity, cm/s 

1
1

1
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5. EQUATIONS USED FOR DATA REDUCTION FOR THE DIRECT SHEAR TEST 

A. Horizontal Load (lbs) = (Value – Zero Value) * Cal.Factor / Excitation……………(A.1) 

B. Vertical Load (lbs) = (Value – Zero Value) * Cal.Factor / Excitation………………..(A.2) 

C. Vertical Displacement (inch) = (DCDT Value – Initial DCDT Value) * Cal.Factor / 

Excitation………………………………………………………………………………………………………(A.3) 

D. Horizontal Displacement (inch) = (Horizontal Actuator Value – Initial Horizontal 

Actuator Value) / Cal.Factor………………………………………………………………………….(A.4) 

E. Normalized Displacement (%) = (Horizontal Displacement Value – Initial 

Horizontal Displacement Value) / Diameter………………………………………………….(A.5) 

F. Corrected Area (in2) = (Diameter2 / 4 *π) * (1 – Original Horizontal Displacement 

* SIN {.ACOS [(Horizontal Displacement / (2* Diameter)]} / (2π* Diameter)..(A.6)  

G. Horizontal Stress (psf) = Horizontal Load Value / Corrected Area *144……….(A.7) 

H. Vertical Stress (psf) = Vertical Load Value / Corrected Area *144……………....(A.8) 

I. Strain (%) = Normalized Displacement Value - Initial Normalized Displacement 

Value. (Begin with the value in which the Horizontal Load has positive 

value)..............................................................................................................(A.9) 

J. Shear Stress (psf) = Original Horizontal Stress Value - Initial Horizontal Stress 

Value. (Begin with the value in which the Horizontal Load has positive 

value)………………………………………………………………………………………………………....(A.10)                                      

K. Normal stress (Begin with the value in which the Horizontal Load has positive 

value)…………................................................................................................... (A.11) 
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6. FIGURES  

This part of appendix provides photographs of the testing methods.  

 

 

Figure A.29 The direct shear testing mold with interior components. 

 

 

Figure A.30 Gripper plates are oriented such that the groves are perpendicular to the shearing 

motion. 
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Figure A.31 The direct shear testing mold in the shearing device box. 

 

 
 

Figure A.32 The S2220 DigiShear TM Automated Direct Shear System computer ready to begin 

the shearing stage after the completion of consolidation stage. 
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Figure A.33 Elevation view of failed compacted FGD specimen after test. 

 

 
 

Figure A.34 Plan view of failed compacted FGD specimen after test. 
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Figure A.35 Extractor device used for extracting specimen from Proctor mold. 

 

 
Figure A.36 Incremental load test apparatus. 
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Figure A.37 Trimming tools used for preparing FGD sludge specimen. 

 

 

 

 

 

 

 

 

  


