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BACTERIOPHAGE DISPLAY SELECTIONS OF OVARIAN 

CANCER AVID PEPTIDES 

By Mette Soendergaard 

Dr. Susan L. Deutscher, Dissertation Supervisor 

ABSTRACT 

Ovarian cancer is among the leading causes of cancer deaths in women, and is the 

most fatal gynecological malignancy. The disease has been termed the silent killer due to 

asymptomatic disease progression and quick dissemination of aggressive metastatic cells. 

The poor outcomes of ovarian cancer are a direct result of inadequate detection methods 

and development of drug resistant disease. Currently, standard detection methods include 

measurement of the ovarian cancer biomarker CA-125 and ultrasonography; however, 

both methods are mostly limited to late-stage disease and are associated with false 

positive results. As a consequence, approximately 80% of ovarian cancer patients are 

diagnosed at regional or distant stages, at which point five-year survival rates are merely 

44%. Comparatively, five-year survival rates for women diagnosed at local disease are 

above 90%, which emphasizes the significance of diagnosis at early onset, and the need 

for development of novel detection methods. This may be achieved by discovery of new 

ovarian cancer targeting agents that can be labeled with radionuclides and utilized to 

detect and image tumors. Whereas, antibodies are by far the most used targeting agents of 
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cancer biomarkers due to superior specificity and affinity, peptides offer advantages in 

respect to low immunogenicity and rapid biodistribution. Cancer targeting peptides may 

be developed by bacteriophage (phage) display technology, which is a high-throughput 

method that allows identification of ligands by screening of large peptide libraries against 

cellular antigens. Most cancer targeting peptides that have been identified by this method 

have been selected against in vitro antigens; however, these ligands frequently display 

poor biodistribution and stability, and fail to bind tumors in vivo. To the contrary, phage 

display selections against in vivo tumor targets have identified peptides with superior 

properties. Nonetheless, the majority of these ligands bind tumor vasculature instead of 

cancer cells. This problem may be overcome by employing a two-tier selection strategy 

that combines in vivo and in vitro selections. 

Phage display technology may additionally be used to identify phage clones that 

can be utilized as detection and imaging agents. These clones can display multiple copies 

of peptides, which afford an avidity effect, and their large size allows labeling with up to 

hundreds of tags, providing significant signal amplification compared to peptides and 

antibodies. However, the large size of phage leads to long biodistribution times, which 

may complicate use of radionuclides due to increased toxicity to surrounding tissues. 

Instead, near-infrared fluorophores are minimally toxic, can easily be conjugated to 

phage and may be utilized in optical imaging. Further, the development of phage particles 

as imaging agents is time efficient and cost effective compared to peptides, in that many 

of the challenges involved in translating targeting agents from in vitro to in vivo use may 

be eliminated. 
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Standard treatment of ovarian cancer involves chemotherapy, which the majority 

of patients initially respond to; nevertheless, most succumb to the disease after presenting 

with recurrent and drug resistant malignancy. Such dire prognosis is associated with a 

subpopulation of cancer cells, known as cancer stem cells (CSC). Traditional 

chemotherapy fails to kill CSC, due to the ability of these cells to efflux drugs, undergo 

senescence and repopulate tumors. While most chemotherapeutic drugs work by altering 

cell signaling, radionuclides offer cytotoxicity that is independent of cellular pathways, 

which may overcome drug resistance. Radionuclide labeled peptides may be used to 

specifically target and kill the CSC subpopulation, potentially leading to better prognosis 

and overall survival rates for ovarian cancer patients. 

Taking the lack of adequate ovarian cancer detection and therapeutic strategies 

together, it is evident that there is a great need to discover and develop novel methods of 

both. Here it is hypothesized that phage display technology may be utilized to identify 

new ovarian cancer targeting agents, in the form of peptides and phage particles, for use 

in radionuclide mediated imaging and therapy. This thesis reports the discovery and 

development of a novel ovarian cancer targeting peptide (J18; RSLWSDFYASASRGP) 

that was selected by a two-tier phage display selection strategy from a fUSE5 15-mer 

peptide library. The first tier of selection was carried out against xenografted human 

ovarian carcinoma (SKOV-3) tumors in nude female mice, which was followed by a 

second tier against enriched SKOV-3 tumor cells, which indentified 31 individual phage 

clones. In order to evaluate their ovarian cancer specificity, the phage were employed in 

micropanning experiments, by incubating the clones with either SKOV-3 or normal 

ovarian (HS-832) cells. The results revealed that phage clone pJl 8 exhibited the highest 
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SKOV-3 to HS-832 ratio and was, therefore, selected for further studies, for which the 

phage displayed peptide was synthesized with a gly-ser-gly (GSG)-spacer and a biotin 

group (biotin-GSG-Jl 8). Fluorescent microscopy studies showed that biotin-GSG-Jl 8 

bound specifically to ovarian carcinoma cells; while a modified ELISA revealed a half 

maximal effective concentration (EC5o) value of 22.2 ± 10.6 µM (mean ± SE). To 

evaluate the biodistribution and imaging properties, the peptide was synthesized with a 

GSG-spacer and a 1,4, 7, 10-tetraazacyclodecane-l ,4, 7, 10-tetraacetic acid (DOTA) 

chelator and radiolabeled with 1111n (111In-DOTA-GSG-Jl8). The radiolabeled peptide 

was stable under physiological conditions and displayed half-lives of 14.0 hand 5.2 h in 

2-[ 4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES) buffer and mouse 

serum, respectively. Additional cell studies confirmed specificity of the peptide for 

ovarian carcinoma cells, and competitive binding experiments revealed a half maximal 

inhibitory concentration (IC5o) value of 10.5 ± 1.1 µM. In vivo biodistribution studies in 

SKOV-3 xenografted mice showed good tumor uptake and retention of the radiolabeled 

peptide, as well as rapid clearance and renal excretion. Finally, SPECT/CT imaging 

demonstrated good tumor uptake and minimal background binding, and tumor specificity 

was further validated by blocking of radiolabeled peptide uptake using the non­

radioactive peptide counterpart. This study demonstrated successful identification and 

development of a novel peptide with excellent stability and biodistribution properties as 

well as SPECT /CT imaging capabilities; rendering peptide Jl 8 a possible ovarian cancer 

imaging agent that may be utilized in detection and diagnosis of the disease. 

Utilization of phage display technology to identify ovarian cancer avid phage 

clones can lead to the discovery of peptide ligands with excellent tumor targeting 
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properties. However, the validation process that is involved in translating a phage clone 

to use as a peptide imaging agent is often long and costly. Instead, phage clones may be 

selected in a rapid manner against cultured cells and employed as imaging agents by 

labeling with near-infrared fluorophores, which is both cost effective and time efficient. 

This thesis also describes the selection of two such ovarian cancer avid phage clones, 

pM6 and pM9, that were successfully employed in optical imaging of SKOV-3 tumors in 

xenografted mice. The phage clones were identified by a rapid and cost effective phage 

display selection strategy against cultured SKOV-3 cells from a fUSE5 15-amino acid 

peptide library. This method is more time efficient compared to the in vivo selections 

employed in the previous study, in that cultured cells can easily be propagated, and there 

is no need to establish tumors in mice. Micropanning, cell binding and fluorescent 

microscopy studies revealed that pM6 and pM9 exhibited specific binding to ovarian 

cancer cells, as well as increased affinity to these cells compared to WT phage. To 

validate that the binding was mediated by the phage-displayed peptides, M6 and M9, 

these were synthesized with a GSG-spacer and a biotin group and employed in cell 

studies. Results showed that M6 and M9 bound to SKOV-3 cells in a dose-response 

manner and exhibited EC50 values of 22.9 ± 2.0 µMand 12.2 ± 2.lµM (mean± STD), 

respectively. To analyze the pharmacokinetic properties and tumor imaging capabilities 

of pM6 and pM9, the selected the phage clones were labeled with the near-infrared 

fluorophore AF680, and examined in SKOV-3 xenografted mice. Both pM6 and pM9 

successfully targeted and imaged SKOV-3 tumors, which demonstrated the potential us 

of these phage clones as ovarian carcinoma detection and imaging agents. 
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Further, this thesis discusses how phage display technology can be utilized to 

discover peptides with high binding affinity for ovarian CSC. Such peptides may be 

radiolabeled and employed in therapeutic settings to directly target and eliminate CSC 

subpopulations. Previous research groups have reported isolation of CSC spheroids from 

ovarian tumors and cell lines by growing these under stem-like conditions. Here we 

describe the establishment of CSC-like spheroids from the ovarian carcinoma SKOV-3 

cell line. The spheroid cells were maintained under stem cell conditions, and were found 

to express the ovarian CSC biomarkers CD44 and CDll 7. In comparison, SKOV-3 cells 

grown under differentiating conditions expressed only miniscule levels of these markers, 

indicating that the spheroids had been enriched or undergone a transformation. The 

ability of the spheroids to give rise to differentiated cells was investigated over a period 

of 70 days by growing the aggregates under normal culture conditions. Unfortunately, it 

was not possible to detect the formation of differentiated cells using light microscopy; 

although, single cells in suspension were observed after a period of 21 days. The absence 

of differentiated cells may be due to a change in morphology and growth characteristics 

that have occurred over time in the SKOV-3 cell line. The spheroids were employed in a 

phage display selection using the f88-cys5 library to identify peptides with binding 

affinity for ovarian CSC. The selection revealed that the library contained a large 

percentage of phage peptide sequences with stop codons, indicating that these clones 

were morphologically similar to WT phage and as a result may have exhibited growth 

advantages. In future studies, the selections will be repeated using the fUSE5 library 

against spheroid cells established from excised human tumors obtained from the 

University of Missouri Hospital. 
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Overall the studies in this thesis identified the ovarian cancer SPECT imaging 

peptide, Jl8, optical imaging phage clones pM6 and pM9, and demonstrated the 

possibility of selecting CSC avid peptides using phage display technology. In conclusion, 

these results show the great potential of phage display derived peptides in radionuclide 

mediated detection and therapy of ovarian cancer. 
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CHAPTER1 

INTRODUCTION 
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When the war on cancer was launched by President Richard Nixon in 1971, the 

goal was to cure cancer by the bicentennial year 1976. More than 40 years later, the death 

rate and overall prognosis for patients with adult cancers have improved less than 5% [1]. 

While the five-year survival rates of a few cancers such as childhood, prostate and testis 

have improved significantly over the past 60 years, primarily due to patient enrollment in 

clinical treatment protocols and development of successful detection methods, the 

prognosis for patients with ovarian cancer has barely improved [2]. Currently, ovarian 

cancer is the fifth leading cause of cancer deaths in women, and is the most lethal class of 

gynecological malignancies with an average five-year survival rate of only 44% [3-5]. In 

the United States, ovarian cancer resulted in over 14,000 deaths in 2013 and 

approximately 22,000 women are estimated to be diagnosed with the malignancy in 2014 

[6]. Ovarian cancer has been termed the silent killer due to a largely symptom-free 

disease development, which often results in diagnosis at late stage. In fact, 85% of 

patients are diagnosed with regional or distant metastatic disease, at which point five-year 

survival rates are merely 72% and 27% for stage III and IV, respectively. In contrast, the 

prognosis is more optimistic for the minority of patients diagnosed with local ovarian 

cancer, for which five-year survival rates are above 90% [5, 6]. The difference in 

prognosis for women diagnosed at local and distant stages of ovarian cancer emphasizes 

the importance of detection and diagnosis at the earliest possible point in disease 

progression. Unfortunately, current standard detection methods, which include evaluation 

of serum levels of the ovarian cancer tumor marker carbohydrate antigen (CA-125) [7], is 

detectable in only 80% of advanced stage ovarian carcinomas, and is not discernible in 

early stage disease [7, 8]. Additionally, conditions such as endometriosis and 
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inflammatory disease may result in elevated levels of CA-125, leading to false positive 

diagnosis. Pelvic ultrasonography is often combined with evaluation of CA-125 levels to 

aid in diagnosis; nevertheless, false positive results frequently occur due to benign cysts 

of the ovaries [7, 9, 10]. Once ovarian cancer is diagnosed, standard treatment of the 

malignancy includes cytoreductive surgery followed by a chemotherapeutic regimen [11]. 

While most patients initially respond to this form of treatment, the majority relapses with 

aggressive and drug resistant tumors within 18 months, with median survival times as 

low as 24 months post-diagnosis [11, 12]. The development of resistant tumors is 

believed to be caused by a small subset of cells, known as cancer initiating cells (CIC) or 

cancer stem cells (CSC). These cells comprise a small subpopulation of the tumor, but are 

aggressively potent in that they are capable of self-renewal, tumor-initiation and efflux of 

chemotherapeutic drugs [13-21]. 

In order to increase the survival rate of ovarian cancer patients, there is an evident 

need to develop novel and efficacious methods of both detection and therapy. Such new 

technologies may result from targeting of cell surface antigens specific to ovarian cancer 

cells and ovarian CSC. Peptide-based molecules as imaging and therapeutic agents are 

receiving increasing attention due to high-throughput methods such as bacteriophage 

(phage) display. This well-established technique allows selection of peptide ligands from 

large phage libraries, and has been used to develop phage particles and peptides for pre­

clinical imaging and therapy of various mouse models of cancer [22-44]. While peptide 

ligands generally display lower binding affinities compared to antibodies, they offer 

longer shelf life and advantages in regard to tumor targeting by exhibiting low 

immunogenicity, rapid blood-clearance and renal excretion [45-50]. In contrast, the large 
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size of phage particles results in long biodistribution times and may elicit mild 

immunological responses [ 51, 52]. Nevertheless, individual phage clones can be 

genetically engineered to display multiple copies of peptide ligands, which provides an 

avidity effect, and may further be labeled with hundreds of tags for detection and imaging 

[31, 53-55]. 
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Ovarian Cancer 

The majority (90%) of diagnosed ovarian cancers is epithelial of origin, and has 

for decades been believed to be caused by ovulation-related wound repair and 

inflammation [56]. Following ovulation, the ovarian surface is repaired by the release of 

epithelial cells from the follicular rupture; however, these cells can become trapped in the 

ovarian parenchyma, resulting in formation of inclusion cysts. The microenvironment in 

these cysts can cause overexposure of the trapped cells to growth factors, thereby 

increasing the risk of malignant transformation. In correlation to this model, nulliparity, 

which leads to more ovulations over a lifetime in comparison to women that bear 

children, has been associated with an increased risk of ovarian cancer, whereas oral 

contraceptives, pregnancy and lactation have been linked to a reduced risk [56-59]. 

Recently, a new hypothesis of the origin of ovarian cancer has emerged, which 

suggests that certain ovarian tumors originate from spilled cancer cells of the fallopian 

tubes. In fact, early dysplastic tubal regions were identified in the majority of women 

with ovarian cancer, indicating that these early malignancies may be the site of origin 

[60, 61]. Additionally, indistinguishable tumor suppressor p53 mutations were found in 

both ovarian and fallopian tumors of individual patients, which demonstrated that the 

cancers originated from the same neoplastic event [ 61]. Taking this together with the fact 

that early malignant tubal regions were found in several ovarian cancer patients, these 

studies indicate that the original neoplasm may occur in the fallopian tubes and quickly 

disseminate to the surface of the ovaries [60, 61]. Further, epidemiological studies have 
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shown that infrequent ovulation events are not associated with a decreased risk of ovarian 

cancer in women with poly-cystic ovarian syndrome and that the protective effect of oral 

contraceptives may in fact be a result of elevated progesterone levels rather than 

repressed ovulations [62]. 

While most ovarian carcinomas develop spontaneously, approximately 5% are 

related to a germ-line mutation in one of the two genes, breast cancer antigen-I (BRCAl) 

and breast cancer antigen-2 (BRCA2) [63]. Women that carry either of these mutations 

have a life-time risk of developing ovarian cancer of 44% and 10%, respectively. The 

role of normal BRCA proteins expressed in ovaries is to repair DNA breaks incurred 

during ovulation; however, cells that carry either mutation fail to do so, which leads to an 

increased risk of malignant transformation [64-66]. In parallel, spontaneous high-grade 

ovarian cancers are characterized by p53 mutations. This protein responds to DNA 

damage and, in combination with other proteins, induces cell cycle arrest. These types of 

tumors progress rapidly, metastasize early and are, therefore, characterized as highly 

aggressive [67-69]. In contrast, p53 mutations rarely occur in low-grade ovarian cancers. 

Instead, mutations in proteins involved in cell growth, motility and adhesion, namely the 

proto-oncogene B-RAF, GTPase KRas, PI3-kinase, P-catenin and phosphate tensin 

homolog (PTEN) are the most common causes oftumorigenesis [70, 71]. 

Once malignant cells have been established, further exposure to growth factors, 

including fibroblast growth factor (FGF), transforming growth factor p (TGFP) and 

platelet derived growth factor (PDGF), may trigger epithelial to mesenchymal transition 

[72-7 4]. This process leads to loss of differentiation, which is manifested by decreased 

cell-cell adhesion and apical-basal polarity, as well as enhanced cell motility, 
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invasiveness and resistance to apoptosis [75, 76]. These characteristics contribute to the 

aggressive behavior of most ovarian carcinomas, which is demonstrated by rapid invasion 

of surrounding tissues and metastatic seeding. The seeding of ovarian metastases differs 

from most other cancers in that spreading occurs via the peritoneal fluid instead of the 

circulatory system. For these reasons, metastases are often found in the peritoneal cavity 

and predominantly as fluid containing ascites [77, 78]. 

The aggressive behavior of ovarian cancer metastases has also been attributed to a 

group of cells, known as cancer stem cells (CSC). The CSC hypothesis proposes that a 

heterogeneous tumor contains a small subpopulation of cells that exhibit increased 

tumorigenicity and that are resistant to traditional radiation and chemotherapy [79]. These 

cells give rise to differentiated progeny, which comprise the vast majority of the tumor 

mass and that is sensitive to standard therapeutics [80, 81]. This idea correlates well with 

what is often observed for advanced ovarian cancer in that most tumors initially respond 

to treatment, but almost all patients relapse with resistant disease [82]. Initially, CSC 

were reported in acute myeloid leukemia [83] and have since been found in several solid 

tumors including melanoma as well as cancers of the breast, prostate, and ovary [14, 84-

86]. Ovarian CSC were first isolated by Bapat and co-workers from a patient presented 

with advanced disease [14]. The cells were shown to display stem cell surface markers 

including the hyaluronic acid receptor (CD44) and tyrosine-protein kinase Kit (CDll 7), 

as well as the intracellular stem cell markers Nanog, Nestin and Oct-4 [14, 20]. Later, 

ovarian CSC were shown to be capable of tumor initiation, drug efflux, self-renewal and 

formation of floating ascites-like spheroids in culture [17, 19, 21]. 
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Overall, the CSC hypothesis is exciting due to the potential of elucidating the 

mechanisms behind drug resistance. Further, the possibility to target and kill these cells 

may lead to improved therapy and perhaps complete remission. Such efforts would 

significantly improve the quality of life for ovarian cancer patients as well as overall 

survival rates. 
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Ovarian Cancer Diagnosis and Imaging 

Currently, the standard clinical detection method of ovarian cancer involves 

measurement of CA-125 serum levels. CA-125 is a large glycoprotein that is expressed 

by most forms of ovarian carcinomas [87]. However, detectable levels of the antigen are 

present in only 80% of advanced ovarian cancers and in as little as 50% of stage I tumors 

[7, 88, 89]. Moreover, the glycoprotein is linked to other conditions including 

endometriosis, inflammatory disease and benign ovarian cysts, and is found in several 

normal tissues [87]. For these reasons, detection of CA-125 suffers from low specificity 

and sensitivity, and its use as a diagnostic ovarian cancer biomarker is therefore limited 

[90]. 

In recent years, the small glycoprotein human epididymis protein 4 (HE4) has 

emerged as a promising biomarker of ovarian cancer. The antigen is expressed at low 

levels in normal female genital tissues [91, 92], but is greatly elevated in certain types of 

ovarian cancer. HE4 has been shown to be a more specific marker of the disease 

compared to CA-125 [91-95], and its association with endometriosis is negligible [96]. 

However, overexpression of HE4 in patients with benign masses and in some healthy 

women has been reported [97], which challenges the otherwise high specificity of this 

biomarker. 

Several novel biomarkers of ovarian cancer are under investigation. Among the 

most successful is mesothelin, a cell surface protein expressed in mesothelial cells that 

may be detected in the urine of patients with mesothelioma, pancreatic and ovarian 
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cancers. Detection of mesothelin has shown high specificity of 95% for early-stage 

ovarian cancer, which greatly surpasses that of both CA-125 and HE4. Nevertheless, only 

42% of localized tumors were found to express detectable levels [98, 99]. Other ovarian 

cancer biomarkers of interest include vascular cell adhesion protein 1 (VCAM-1) [100], 

serum amyloid A [101] as well as interleukin (IL) 6 and IL-8 [102]. Although, levels of 

these antigens in early-stage disease are miniscule, combinations with CA-125 have 

proven to increase both the sensitivity and specificity compared to CA-125 alone [103-

105]. 

In the clinic, ultrasonography of the pelvic region 1s often employed in 

combination with detection of CA-125 to obtain a more accurate diagnosis. The large 

majority of ovarian tumors are detectable in this manner. Nevertheless, as many as 9% of 

post-menopausal women present with benign adnexal masses, which are difficult to 

differentiate from malignant tissue [106]. In cases when CA-125 and ultrasound are 

insufficient in characterizing adnexal lesions, magnetic resonance imaging (MRI) may be 

used to determine morphological features and in obtaining a final diagnosis [107]. 

Another widely used imaging technique of ovarian cancer is computed tomography (CT). 

However, CT offers lower soft tissue contrast compared to MRI. Consequently, it is used 

in tumor staging rather than in distinguishing between benign and malignant lesions 

[108]. 

Within the past decade, 18F-fluoro-deoxyglucose (18F-FDG) positron emission 

tomography (PET) has played a large role in imaging of gynecological malignancies 

[109]. PET imaging was developed to image biochemical processes using molecular 

probes radiolabeled with positron emitters such as 18F, 64Cu and 68Ga [109, 110]. As the 
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positron is emitted from the radionuclide and travels through the body, the particle looses 

energy until it collides and combines with an electron, after which the couple annihilates 

and emits two 511 keV photons [109]. The two photons are subsequently emitted in 

opposite directions at 180° apart and detected by a PET scanner, which converts the 

signal into an image [111]. PET imaging using the molecular probe 18F-FDG exploits the 

typically elevated glucose metabolism of cancer cells, which causes increased 

accumulation of the 18F-FDG radiotracer [109]. Nonetheless, 18F-FDG is not specific for 

malignancies, and increased uptake is also observed in inflammatory diseases and in 

rapidly proliferating tissues. Further, uptake in the uterus and ovaries is elevated during 

certain periods of the menstrual cycle, which complicates accurate detection of potential 

tumors [109, 112-114]. 

Single photon emission computed tomography (SPECT) was one of the first 

imaging techniques to be employed clinically and is still widely used today. This method 

detects the emission of 100-250 keV photons from a y-ray source, which is converted into 

an image. Indium-111 (1111n) is commonly used in SPECT due to its ideal y-emissions of 

173 and 247 keV and a 2.8 day half-life [111, 115]. Additionally, 1111n is produced 

commercially by proton bombardment of 111Cd or 112Cd and is readily available [110, 

116]. Currently, SPECT imaging is not among the standard clinical detection methods of 

ovarian cancer; however, the method is extensively employed in research and pre-clinical 

studies. Examples include an 111In-labeled human epidermal growth factor 2 (HER2) 

binding affibody, which successfully, although with high kidney uptake, imaged ovarian 

tumors in xenografted mice [117]. Additionally, a VCAM-1 targeting tetrameric peptide 

was effectively employed in SPECT/CT imaging of ovarian metastases [118-121]. 
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Optical imaging using near-infrared fluorophores is of great interest due to the 

relatively low toxicity compared to radionuclides and the ease of synthesis. While the use 

of fluorophores with emission wavelengths in the visible spectrum ( <700 nm) is 

complicated by poor tissue depth and absorption by biological chromophores [122], near­

infrared fluorophores (700-900 nm) emit light that is capable of penetrating human tissue 

at a depth of approximately 1-3 cm [123, 124]. Although tissue penetration of this depth 

hinders imaging of certain tumors, ovarian cancer metastases, which are typically located 

along the peritoneal lining, may be imaged using this technique [123]. Nevertheless, 

while the need for novel detection methods is great, near-infrared optical imaging agents 

of ovarian cancer are still at the pre-clinical phase. Among these are a fluorescent folic 

acid-coated nanoparticle, which imaged ovarian metastases in tumor-bearing mice [125], 

and three alpha-3 integrin binding peptides that successfully imaged xenografted ovarian 

tumors [123]. 

Alternatively, fluorescently labeled ovanan cancer targeting agents may be 

applied during surgery as intraoperative image-guiding agents to aid surgeons m 

discriminating between normal and malignant tissues [125, 126]. Discrimination of 

tissues is often difficult and can lead to incomplete removal of cancer cells and 

unnecessary resection of healthy tissue. Clinical trials have been performed using 

fluorescently labeled folate to localize and identify ovarian tumors during surgery [127]. 

This study showed that the cancer specific image-guiding agent significantly improved 

the ability of the surgeons to identify tumor tissue, suggesting that this new technology 

may lead to a great improvement in the prognosis for ovarian cancer patients [126, 127]. 
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Ovarian Cancer Therapy 

Standard treatment of early and late stage ovarian cancer includes cytoreductive 

surgery followed by platinum- or taxane-based chemotherapeutics such as cisplatin, 

carboplatin, paclitaxel or docetaxel [128]. Ovarian cancer is initially highly sensitive to a 

combination of these drugs; however, the majority of patients quickly revert with 

incurable resistant disease and median survival times as low as 24 months post-diagnosis 

[4, 82, 129]. The poor prognosis is believed to be caused by CSC that lead to the re­

occurrence of more aggressive tumors, which are capable of drug-efflux and senescence 

as previously described [13, 14, 20]. To overcome development of resistant disease and 

to increase average survival rates for ovarian cancer patients, the combination of 

traditional and newer chemotherapeutics, such as liposomal doxorubicin, gemcitabine 

and topotecan, has been studied in clinical trials [130]. However, the addition of these 

drugs to the standard chemotherapeutic regimen has failed to improve both the overall 

survival and the progression-free survival rates [130, 131]. 

To improve the overall prognosis for ovarian cancer patients, researchers and 

clinicians are looking to targeted therapy. So far, bevacizumab (Avastin) is the only U.S. 

Food and Drug Administration (FDA) approved targeted drug that has shown a 

noticeable response rate in ovarian cancer patients [132]. Bevacizumab is a recombinant 

humanized monoclonal IgG 1 antibody that targets vascular endothelial growth factor 

(VEGF). In combination with standard chemotherapy, this anti-angiogenic drug showed 
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response in almost 31 % of platinum-resistant patients whereas all other targeted drugs 

that are currently in clinical use have resulted in response rates of less than 10% [132, 

133]. Fortunately, a few promising drugs have made it to clinical trials, including a poly­

ADP-ribose polymerase (P ARP) inhibitor (Olaparib ), which resulted in a better prognosis 

compared to standard treatments in patients with BRCAl/2 mutations [134]. Another 

example is the folate-receptor targeting drug vintafolide, which in combination with 

liposomal doxorubicin almost doubled the progression-free survival time in patients with 

resistant disease [135]. Although these drugs have improved the treatment response rates 

and progression-free survival times in certain groups of patients with advanced resistant 

ovarian cancer, the overall prognosis has not changed. This may be overcome by 

delivering cytotoxic radionuclides directly to the cells that are responsible for 

development of resistance. 

Radionuclides can be more cytotoxic than chemotherapeutic drugs, and may 

therefore be used to kill cells in a more efficient manner. For example, a-emitters are 

extremely cytotoxic due to their high impact energy transfer and efficient termination of 

cells independently of dose rate [136, 137]. Further, the combination of short path length 

and high impact render a-particles excellent for elimination of small tumors, such as 

metastasis, without exposing surrounding healthy cells to radioactivity [138]. 

Additionally, the high energy of a-emitters minimizes the risk of resistance by killing 

cells more efficiently and independently of cellular pathways [139]. 

Beta-emitters also offer favorable characteristics in regard to radionuclide-based 

cancer therapies, such as availability and long range emission [140]. These particles 

deliver long distance cross-fire in the range of a few millimeters, rendering these particles 
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appropriate for targeting of larger tumors and negate the necessity for the molecular 

probe to bind every cell. However, the concentration of the radiotherapeutic agent must 

be sufficient to produce a cross-fire that can reach surrounding cells [ 140]. While the 

energy of ~-particles is considerable lower compared to a-particles, they are still 

cytotoxic due to both the direct impact of the particles as well as generation of reactive 

oxygen species [141]. For this reason, and in order to exploit the cytotoxic effects of 

radionuclides to eliminate cancer cells, it is important to avoid damage to healthy tissues 

[140, 141]. 

Auger electron emitters may also be used for therapeutic purposes; however, these 

particles are low in energy ( <500 e V) and exhibit extremely low emission ranges of a few 

nanometers [142]. For these reasons Auger electron emitters must be delivered to the 

nucleus to be cytotoxic, which greatly limits the use of these particles with most cancer 

targeting agents. Nevertheless, Auger electrons open up the possibility of combining 

highly effective and localized cytotoxicity, while maintaining very minimal exposure to 

healthy tissues [143]. 

A few pre-clinical and clinical studies of radionuclide therapy of ovarian cancer 

have been performed. For example, Heyerdahl et al. investigated the therapeutic efficacy 

in tumor-bearing mice of an ErbB2/HER2/neu targeting antibody labeled with the a­

emitter 227Th and showed that the treatment increased the average survival time compared 

to the non-radiolabeled antibody [144]. Another example is a clinical trial of a tumor­

associated glycoprotein 72 antibody labeled with the ~-emitter 177Lu, which resulted in 

tumor free progression for up to one year in 45% of patients with ovarian cancer [145]. 

Finally, Mamede et al. successfully increased the survival times in tumor-bearing mice 
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after injection of an Auger electron emitter 111In-labeled dendrimer [146]. These studies 

demonstrate the great potential of using radionuclides in the treatment of ovarian cancer, 

which may lead to a significant increase in the overall survival rates. 
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Phage Display 

Phage display is a high-throughput technology that is used to discover novel 

peptide based ligands by genetically incorporating random peptide sequences onto the 

coat proteins of phage. The technology was developed by Dr. George P. Smith, who 

showed that foreign peptides displayed by filamentous phage were capable of binding 

peptide specific antibodies with high affinity [53]. The best characterized of the 

filamentous phage is the Ff class that includes the Ml3, fd and fl viruses, all of which are 

structurally similar and 98% identical at the DNA level. Structurally, these phage 

resemble a flexible rod that measures -0.9 µmin length and -65 A in diameter. The Ff 

genome is approximately 6.4 kb (ssDNA) and encodes 11 proteins, of which five serve 

structural functions. Two of these are coat protein III ( cpIII) and coat protein VIII 

( cp VIII). Coat protein VIII is predominant on the phage surface and is usually found in 

more than 2300 copies along the virion, whereas only five copies of cpIII are present at 

the tip of the phage particle [55]. Both are well exposed and are for this reason often used 

in phage display to present foreign peptides, which is done by creating a fusion gene of a 

coat protein and a foreign insert [53, 54]. Typically, random phage display libraries 

contain linear or cysteine constrained peptide inserts of up to 45 amino acids long. 

Among the most common phage display vector systems are the fUSE5 vector, which 

displays up to five peptide copies on cpIII, and the £88-5 vector system that typically 

presents several hundred peptide copies on cpVIII [53, 147]. Most phage display libraries 

contain up to 109 different phage clones, each displaying a random peptide. 

Experimentally, the phage display library is screened against an antigen of interest using 
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several rounds of affinity selection, elution and amplification in bacteria. The Ff class of 

phage infects gram-negative bacteria, including E. coli, by binding cplll to the pilus of 

the bacterium. To produce new virions the phage employs the bacterial machinery, after 

which progeny is released through the plasma membrane without lysis of the bacterium 

[55, 148-150]. Since propagation leaves the bacteria intact, amplification is quick and can 

result in high concentrations of virions that can easily be retrieved and purified for use in 

analysis or in additional phage display selection rounds [53, 54, 147]. 

Phage display technology has been employed to discover new peptides that bind 

varying types of cancer cells. Our laboratory has developed a number of peptides that 

target cancer cells and their antigens including KCCYSL, IAGLATPGWSHWLAL and 

NTPCGPYTHDCPVKP, which respectively bind the ErbB-2 receptor, PC-3 prostate 

carcinoma cells and galectin-3 [29-32, 151]. Other groups have successfully developed 

peptides that target the tumor vasculature. For example, ROD-containing peptides that 

bind Clv~3-integrin [152, 153] and the SGRSA peptide that targets urokinase plasminogen 

activator (uPA) [154]. Most tumor targeting peptides that were identified by phage 

display technology were developed as imaging and/or therapeutic agents of human 

cancers. Radiolabeling of tumor binding peptides provide effective ways of both in vivo 

imaging, using technologies such as SPECT and PET, and of targeting for therapeutic 

purposes. While some peptide based therapeutic agents function by binding and 

inhibiting receptors or other molecules involved in the progression of cancer, 

radiolabeling of peptides provides a method to target and kill cancer cells independent of 

intracellular signaling pathways [139]. 
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Peptide Based Cancer Targeting 

Antibodies and their fragments are by far the most used targeted cancer imaging 

and therapeutic agents [50]. Among the most well known examples is the humanized 

monoclonal antibody trastuzumab (Herceptin) [155], which was developed by phage 

display technology and binds the cell surface receptor ErbB2/HER2/neu. The antibody is 

used in the treatment of certain types of both metastatic breast and ovarian cancers and 

has been proven effective compared to standard chemotherapy alone [155, 156]. 

Trastuzumab has also been labeled with different radionuclides, including 227Th and 111In, 

and used in pre-clinical a-therapy and SPECT imaging studies of ovarian and metastatic 

breast cancer [144, 157]. 

In comparison to peptide ligands, antibodies exhibit superior affinity; however, 

they often cause immunogenic related drug resistance, have long biodistribution times 

and clear through the hepatobiliary system. These characteristics complicate the use of 

radiolabeled antibodies as imaging and therapeutic agents due to prolonged radioactive 

exposure to healthy tissues [47, 158]. In contrast, radiolabeled peptides offer low 

immunogenicity, rapid blood-clearance and are excreted through the kidneys. As a result, 

peptides provide advantages in regard to SPECT and PET imaging as well as 

radiotherapy [46, 48]. Additionally, peptides can be developed to be highly target-

specific and are, for these reasons, of great interest as in vivo tumor imaging and 

therapeutic agents [50]. 

An eight amino acid cyclized peptide, octreotide, is currently successfully used in 

clinical imaging of somatostatin receptor positive tumors in humans [159]. Other peptides 
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show great promise, such as the peptide analog, CCMSH, of melanoma targeting a­

melanocyte stimulating hormone (a-MSH). The CCMSH peptide was labeled with 111In, 

99mTc and 188Re, for SPECT imaging and therapy studies [28, 160]. In additional 

experiments, the analog was conjugated with the chelator 1,4, 7, 1 0-tetraazacyclodecane-

1,4, 7, 10-tetraacetic acid (DOTA) and labeled with 64Cu, 86Y and 68Ga for PET imaging 

[161, 162] or with 212Pb for melanoma therapy studies in mice. The treatment showed 

significantly increased survival rates in which 45% of the mice receiving the highest dose 

of radiation survived the study disease-free [27]. Another example of a tumor targeting 

peptide is the phage display selected peptide KCCYSL. KCCYSL binds the receptor 

ErbB2/HER2/neu, which is overexpressed on certain types of malignancies including 

breast, prostate and ovarian cancers [50, 151]. KCCYSL was labeled with 1111n for 

SPECT imaging of ErbB2/HER2/neu positive tumors in xenografted mice. The study 

showed rapid tumor uptake and low background in most normal organs except the 

kidneys, which was indicative of renal clearance [32]. Phage display technology was also 

employed to select a galectin-3-targeting peptide, which was shown to inhibit the 

interaction between galectin-3 and the correlating natural carbohydrate ligand, the 

Thomsen-Friedenreich antigen (TF antigen) [29]. The galectin-3-targeting peptide was 

further labeled with 111 In and shown to successfully image breast cancer xenografted 

mice while exhibiting low background and rapid renal clearance [36, 163]. 

To date, very few in vivo ovarian cancer targeting imaging agents have been 

reported; however, many of these targeting moieties involve peptides [121, 123, 164-

166]. For example, Aina et al. screened libraries of random cyclic peptides and identified 

an a3 integrin subunit binding peptide that was found to target ovarian cancer cell lines. 
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The ligand was labeled with a near-infrared fluorophore and injected intraperitonealy into 

mice carrying xenografted ovarian tumors and was shown to effectively image and 

localize tumors [123]. Another research group investigated the tumor targeting capability 

of an av~3 integrin binding cyclic RGD peptide, which was labeled with 1111n and 177Lu 

for biodistribution and ~-emission therapy studies. The radiolabeled peptide successfully 

localized to the tumor and resulted in significantly decreased growth of peritoneal 

masses, demonstrating that peptides may be used as dual purpose theranostic agents 

[166]. 

These results demonstrate that radiolabeled peptides offer great promise as both 

imaging and therapeutic agents of cancer tumors. Further, phage display derived peptides 

may provide improved detection of early-stage ovarian cancer as well as radionuclide 

mediated therapy of ovarian CSC. 
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CHAPTER2 

IN VIVO PHAGE DISPLAY FOR SELECTION OF AN OVARIAN 

CANCER TARGETING PEPTIDE FOR SPECT/CT IMAGING 
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Introduction 

Ovarian cancer is the fifth leading cause of cancer deaths in women and is the 

most lethal of gynecological malignancies [5]. In the U.S., ovarian cancer was 

responsible for 14,000 deaths in 2013, and approximately 22,000 women are estimated to 

be diagnosed with the malignancy in 2014 [167]. Ovarian cancer has been termed the 

silent killer due to a predominantly asymptomatic disease development and a quick 

dissemination of aggressive metastatic cells into the peritoneal cavity. Here, metastases 

form as fluid filled ascites causing bloating and discomfort, which are often the first 

symptoms to arise. The late manifestations of ovarian cancer cause -80% of patients to 

be diagnosed at late stage disease, at which point five-year survival rates are merely 44% 

[3, 4, 8]. To the contrary, the minority of women diagnosed at the early stages of ovarian 

cancer exhibit good five-year survival rates of >90%, which emphasizes the importance 

of detection and diagnosis at early onset [8]. Currently, standard detection methods 

involve evaluation of CA-125 serum levels and ultrasonography, which are both mostly 

successful for late-stage ovarian cancer and often lead to false positive results and may 

require surgery to obtain final diagnosis [7, 9, 10, 88]. In fact, only 50% of patients with 

stage I disease test positive for elevated CA-125 serum levels [168], which highlight the 

need for identification and development of novel detection and diagnostic methods of 

ovanan cancer. 

Various cancers have been successfully imaged for diagnoses and evaluation of 

disease progression using radionuclide-coupled peptides [25, 159, 163], and while these 
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ligands generally display lower binding affinities compared to antibodies, they offer 

advantages in regard to tumor targeting by exhibiting low immunogenicity, rapid blood­

clearance and excretion through the urine [ 46, 48]. High-throughput strategies such as 

phage display are utilized in the discovery of new peptide ligands that recognize cancer 

antigens and cancer cell surfaces [22, 50, 151, 169-172]. Phage display is a well­

established technique that allows selection of ligands from large phage libraries, in which 

random peptide sequences are displayed on coat proteins [53]. Cancer targeting peptide 

ligands are often identified using in vitro phage display selections against purified cancer 

antigens or cultured tumor cells. Although such selections frequently yield peptides that 

exhibit good binding to cancer cells in vitro, these ligands often fail to target tumors in 

vivo due to inadequate pharmacokinetics [50, 173, 174]. In contrast, in vivo phage display 

selections against tumor targets in live animals have resulted in identification of peptides 

with superior stability and biodistribution. However, most of these peptides have been 

found to bind the tumor vasculature rather than the actual cancer cells [175-177]. 

To select peptides with high stability, optimal pharmacokinetic properties and 

specific binding for ovarian cancer cells, our laboratory has developed a phage display 

technique that involves initial in vivo selection rounds in tumor-bearing mice followed by 

screening against cultured tumor cells in vitro. In the current study, we hypothesized that 

this rigid selection process against xenografted human ovarian carcinoma (SKOV-3) 

tumors in mice and enriched cultured SKOV-3 cells would identify peptide ligands that 

could be utilized in SPECT imaging. This study resulted in identification of an ovarian 

carcinoma targeting peptide RSL WSDFY ASASRGP (Jl 8), which was synthesized with a 

Gly-Ser-Gly (GSG) spacer and conjugated to a DOTA chelator. The conjugated peptide 
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(DOTA-GSG-J18) was radiolabeled with 1111n and evaluated in regard to its stability 

under physiological conditions and binding affinity for SKOV-3 cells. The 

pharmacokinetic properties and SPECT imaging capabilities of 1111n -DOTA-GSG-J18 

were determined in xenografted mice bearing SKOV-3 tumors, and the results showed 

that the peptide exhibited good tumor targeting and retention and was able to successfully 

localize ovarian tumors using SPECT imaging. 
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Materials and Methods 

Chemicals and Reagents 

111InCh was purchased from Mallinckrodt Chemicals (St. Louis, MO). Unless 

otherwise stated, chemicals were obtained from Thermo Fisher Scientific (Waltham, 

MA). 

Cell Lines and Cell Culture 

The human ovarian adenocarcinoma (SKOV-3), human ovarian adenocarcinoma 

(OVCAR-3), human melanoma (MDA-MB-435), human embryonic kidney (HEK293) 

and human normal ovarian (HS-832) cell lines were purchased from American Type 

Tissue Culture. All cell lines were cultivated in RPMI 1640 ( custom) with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 1. 7 µM insulin and 48 mg/ml, and maintained 

at 3 7°C in 5% CO2. 

Animals and Handling 

Solid tumors (1 cm) were established in 4--6-week-old female nude (nu/nu) mice 

(Harlan, Indianapolis, IN) over a period of 8 weeks. The animals were inoculated 

subcutaneously in the shoulder under gas anesthesia (3.5% isoflurane, Baxter Healthcare 

Corp. Deerfield, IL) with lxl07 SKOV-3 cells. All animal studies were conducted 

according to NIH Guidelines for the Care and Use of Laboratory Animals and the Policy 
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and Procedures for Animal Research of the Harry S. Truman Veterans Memorial 

Hospital. 

In vivo and In Vitro Phage Display Selections of Tumor Binding Phage Clones 

For in vivo selection of tumor targeting phage clones, a linear 15-mer fUSE5 

phage display library (a kind gift from Dr. George P. Smith, [53]) was used. The phage 

library was pre-cleared against binding to the vasculature and non-tumor targets in nude 

mice without tumors. For this, the phage library (1012 virions) was intravenously injected 

into the tail-vein of a non-tumor-bearing mouse, after which the blood was collected 15 

min post-injection, and phage was purified and amplified as previously described [178]. 

Next, the pre-cleared phage library (1012 virions) was injected into the tail-vein of 

xenografted SKOV-3 tumor-bearing nude mice and allowed to circulate for 1 h. The 

animals were sacrificed and tumors were collected and minced, and bound phage were 

eluted from the tumor tissue using 2.5% 3-[3-(cholamidopropyl) dimethylammonio]-1-

proanesulfonate (CHAPS) in TBS. Eluted phage were amplified and employed in two 

additional rounds of in vivo selection as already described. In order to select phage clones 

with binding to ovarian cancer cells only, the collected phage from the third and final 

round of in vivo selection were used to screen against tumor derived SKOV-3 cells in an 

in vitro assay. For this, tumors were excised from sacrificed nude mice and minced, and 

the SKOV-3 cells were separated from the remaining tumor tissue cells by incubation 

with biotinylated antibodies specific for well-known ovarian cancer markers [179-181]. 

Cells were captured on streptavidin coated magnetic MACS® MicroBeads (Milteniy 

Biotech, Auburn, CA) and loaded on a magnetic column. Phage (1012 virions) from the in 
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vivo selection were incubated with cells for 30 min at 4°C, eluted with 2.5% CHAPS in 

tris-buffered saline (TBS) and amplified. Between selection rounds, the DNA sequence 

of the foreign phage display insert was sequenced for detection of potential 

contamination and identification of selected peptide sequences. Single-stranded DNA 

isolation from phage was performed using QIAprep Spin Miniprep Kit (Qiagen, Hilden, 

Germany) and DNA was sequenced at the University of Missouri DNA Core and 

analyzed with DNA sequence chromatogram viewer software (Chromas 2.23, 

Technelysium, South Brisbane, Austalia). 

Micropanning Assay 

Individual phage clones that were identified in the in vitro selection were used for 

micropanning experiments to identify clones with specific affinity for human ovarian 

adenocarcinoma SKOV-3 cells and low binding to normal ovarian HS-832 cells. 

Individual phage clones (109 virions) were incubated with 105 cells (SKOV-3 or HS-832) 

in serum free Dulbeccos' modified Eagle's medium (DMEM) for 1 hat 37°C. Cells were 

centrifuged (1,000 g, 1 min) and unbound phage were removed by aspiration. Cells were 

then washed three times with TBS, and bound phage were eluted with 2.5% CHAPS and 

collected from the supernatant after centrifugation (1,000 g, 1 min) as described [178]. 

The collected phage were titered in Escherichia coli (E. coli) K91 BluKan and titers were 

calculated. 
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Peptides 

Solid-phase Fmoc chemistry was used to synthesize peptides in a 396 multiple 

peptide synthesizer (Advanced Chem Tech, Louisville, KY). Peptides were synthesized 

with a DOTA-chelator or a biotin group linked to a GSG-amino acid spacer at the NH2-

terminus (biotin-GSG-peptide or DOTA-GSG-peptide). Purification of peptides was 

performed using reverse-phase high-pressure liquid chromatography (RP-HPLC; 

Beckmann Coulter System Gold HPLC, Beckmann Coulter, Fullerton, CA) on a C18 

column (Novapack Reverse Phase, Waters, Milford, MA), lyophilized and stored at -

20°C. The peptides were identified by electrospray ionization mass spectrometry (Mass 

Consortium Corp, San Diego, CA). 

Peptide Radiolabeling and Stability 

The peptide was radiolabeled with 1111n (111In-DOTA-GSG-J18) by incubating 

100 µg peptide with 18.5 MBq 111In-Ch (Mallinckrodt, St. Louis, MO) in 0.5 M 

ammonium acetate buffer, pH 5.0, at 85°C for 1 h. For blocking experiments, 1 mg 

peptide was incubated with 104 M non-radioactive indium under similar conditions. The 

non-radioactive and radiolabeled peptides were purified using RP-HPLC (LC-20A 

Prominence, Shimadzu, Columbia, MD) on a C18 column (Higgins Analytical Inc., 

Mountain View, CA; 25-35% acetonitrile/0.1 % trifuoroacetic acid) over 20 min. 

Acetonitrile was removed by further purifying the labeled peptides on an Empore® 

Extraction Disk C18 cartridge (Phenomenex, Torrance, CA). After removal of 

acetonitrile, the peptide was eluted with 70% ethanol and the pH adjusted to neutral by 

adding 0.5 M 2-[4-(2-hydroxyethyl)piperazin-1- ethanesulfonic acid (HEPES; final 
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concentration) buffer. For animal experiments, the ethanol was evaporated under N2 and 

the peptide resuspended in 0.1 M HEPES buffer, pH 7. The peptide stability was 

analyzed in 0.5 M HEPES buffer, pH 7, and in mouse serum over time (0 h, 1 h, 2 h, 4h, 

6 hand 24 h) at 37°C. The peptide degradation was monitored by RP-HPLC on a C18 

column. 

Fluorescent Microscopy 

Peptide binding to cells (SKOV-3, OVCAR-3, MDA-MB-435 and HEK293) was 

investigated by fluorescent microscopy. Cells were grown to 80% confluency on chamber 

slides (Lab-Tek, Rochester, NY). Growth medium was aspirated from the slides, and 10 

µM J18, J24 or 130 in phosphate buffered saline (PBS) was added for 1 hat 37°C. Next, 

the slides were washed thrice (PBS), fixed with 10% formalin and then washed (PBS) 

repeatedly. The cells were blocked (10% FBS, 0.3M glycine, 0.01 % Tween-20, PBS) for 

1 h at room temperature, and bound peptides were probed with a mouse monoclonal anti­

biotin antibody labeled with the fluorophore Cy3 (Sigma Aldrich, St. Louis, MO) for 1 h 

at room temperature. The slides were then washed three times (PBS, 0.05% Tween-20), 

and bound peptides was detected using an epifluorescent Nikon Tl-SM inverted 

microscope (Nikon, Melville, NY). 

Cell Binding Studies 

The binding ability of biotinylated peptides bio-GSG-J18, bio-GSG-J24, bio­

GSG-130 and a non-relevant peptide bio-GSG-N35 (negative control) to SKOV-3 cells 

were analyzed in an in vitro assay. Cells were grown in 96-well tissue culture plates 
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(TPP, Trasadingen, Switzerland) to 80% confluency. Varying concentrations (10 nM to 

300 µM) of peptide in PBS was incubated with the cells for 1 hat 37°C, after which the 

plates were washed repeatedly (PBS, 1 % bovine serum albumin) and fixed with 10% 

formalin. After extensive washing, the cells were blocked (10% FBS, 0.3 M glycine, 

0.05% Tween-20 in PBS), and the bound peptides were then probed by incubation with 

horseradish peroxidase (HRP) conjugated streptavidin with for 1 h at room temperature. 

Next, the plate was washed thrice (PBS, 0.05% Tween-20) and HRP substrate 2,2-azino­

bis(3-ethylbenzothiazoline )-6-sulfonic acid (ABTS) was added and allowed to develop 

for 20 min at room temperature. Bound peptides were detected by measuring the 

absorbance at 405 nm using a µ Quant Universal Microplate Spectrophotometer (Bio-Tek 

Instruments, Winooski, VT), and the half maximal effective concentration (EC50) was 

calculated using GraphPad Prism software. 

Ovarian carcinoma specificity of radiolabeled peptide (111In-DOTA-GSG-J18) 

was evaluated in an in vitro cell binding assay. Cells, SKOV-3 or HS-832, were released 

with Gibco Cell Dissociation Buffer, centrifuged (200 g, 5 min) and resuspended in cell 

binding medium (DMEM, 1 % bovine serum albumin). Cells (lx106) were then incubated 

with 2x105 cpm of 111In-DOTA-GSG-J18 at 37°C for different periods of time (0 min, 

0.5, 1, 2 and 4 h). Next, the cells were pelleted by centrifugation (1,000 g, 1 min), the 

supernatant was aspirated and the cells were washed thrice with ice-cold 0.1 M HEPES 

buffer, pH 7. The buffer was removed and the radioactivity bound to the remaining cells 

was measured using a Genesys™ Genii™ Multi-Well Gamma Counter (Laboratory 

Technologies, Inc, Maple Park, IL). 
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In order to determine the half maximal inhibitory concentration (IC50) of the 

peptide ligand to the ovarian carcinoma cells (SKOV-3), competition experiments were 

performed with the radiolabeled (111In-DOTA-GSG-J18) and the non-radioactive 

counterpart (In-DOTA-GSG-118). Cells (lxl06) were incubated in cell binding medium 

with 2xl05 cpm of 111In-DOTA-GSG-J18 and varying concentrations ofln-DOTA-GSG-

118 (10-13 to 10-4 M) for 1 hat 37°C. Cells were then centrifuged (1000 g, 1 min), the 

supernatant was removed and the cells were washed extensively with ice-cold 0.1 M 

HEPES buffer, pH 7. The cell-bound radioactivity was measured by a gamma-counter as 

previously described, and the ICso value was calculated. 

Alanine Scanning Experiments 

To further confirm the specific binding of peptide J18 to SKOV-3 cells and to 

identify the amino acid residues responsible for the interaction, biotinylated alanine 

scanning versions of the peptide (biotin-GSG-Jl 8-1 to biotin-GSG-Jl 8-15) were 

synthesized and employed in a modified enzyme-linked immunosorbent assay (ELISA). 

Cells were grown to 80% confluency on 96-well plates and incubated with various 

concentrations (10 nM to 100 µM) ofbiotin-GSG-118 or alanine scanning versions of the 

peptide for 1 hat 37°C. Cells were then washed three times with PBS and fixed with 10% 

formalin. Next, the cells were washed (PBS) extensively and the plate was blocked using 

10% FBS, 0.3 M glycine, 0.05% Tween-20 in PBS. Bound biotinylated peptides were 

then probed by HRP-conjugated streptavidin (Sigma Aldrich, St. Louis, MO) for 1 hat 

room temperature, after which the plate was washed thrice (PBS, 0.05% Tween-20). 

Horseradish peroxidase substrate, ABTS, was then added and allowed to develop for 20 
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min at room temperature followed by detection of peptide binding by measurement of the 

absorbance at 405 nm using an endpoint assay on a µ Quant Universal Microplate 

Spectrophotometer (Bio-Tek Instruments, Winooski, VT). 

Biodistribution and Near-Infrared Optical Imaging of Phage 

The near-infrared fluorophore AF680 (carboxylic acid, succinimidyl ester 5-

isomer; Invitrogen, Carlsbad, CA) was dissolved in 2% dimethyl sulfoxide (DMSO) and 

incubated with phage (0.29 mM coat protein VIII) in 0.5M Na3citrate, 0.1 M NaHCO3, 

pH 8.5 for 4 hat room temperature in the dark. The reaction was terminated over night at 

4°C by addition of270 mM ethanolamine, pH 9. Excess hydrolyzed AF680 was removed 

by dialyzing labeled phage against TBS, pH 7.5 (Slide-A-Lyzer cassette, 10 kDa 

molecular weight cutoff, Thermo Scientific, Rockford, IL). 

AF680-labeled WT, pM6 or pM9 phage (1012 virions) were injected into the tail­

vem of SKOV-3 xenografted mice and allowed to circulate. For biodistribution 

experiments, the mice were sacrificed after 4 h, perfused with PBS, and tumors, organs 

and tissues were excised. For optical imaging experiments, the mice were under gas 

anesthesia (3.5% isoflurane, Baxter Healthcare Corp. Deerfield, IL), and fluorescence 

reflectance images were obtained before injection (0 h) and 2 hand 4 h after injection. 

Images were attained and the fluorescent intensity was measured using a Xenogen IVIS 

200 System and analyzed by ImageJ software [182]. 
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Biodistribution of 111In-DOTA-GSG-J18 in SKOV-3 Tumor-Bearing Nude Mice 

Female nude mice were injected subcutaneously with lx107 SKOV-3 human 

ovarian carcinoma cells in the shoulder and tumors were allowed to form over a period of 

6-8 weeks. Mice (n=4) received tail vein injections of approximately 0.17 Mbq of 111 In­

DOTA-GSG-Jl 8 peptide and were housed separately after administration of 

radioactivity. The mice were sacrificed by cervical dislocation after 30 min, 1 h, 2 h and 

4 h post-injection, and tissues and organs were removed, weighed and counts were 

determined. Radioactive uptake in the tumor as well as in normal tissues and organs was 

calculated and expressed as a percentage of injected dose per gram of tissue (¾ID/g). For 

blocking experiments, tumor-bearing mice (n=4) were pre-injected with 100 µg 

nonradioactive In-labeled DOTA-GSG-J18 peptide. After 5 min, the mice were injected 

with 0.17 MBq of the corresponding radiolabeled peptide (111In-DOTA-GSG-J18), and 

the animals were sacrificed after 1 h and the blocking efficiency was evaluated as 

described previously. 

Small Animal SPECT /CT Studies 

Nude female mice bearing xenografted SKOV-3 tumors (shoulder) were injected 

through the tail vein with 13.0 MBq of 111In-DOTA-GSG-J18 and imaged 1 h post 

injection using a small-animal MicroCAT II SPECT/CT scanner (Siemens Medical 

Solutions, Malvern, PA) with a high-resolution 2 mm pinhole collimator at the Harry S. 

Truman Veterans Memorial Hospital Biomolecular Imaging Center. For blocking 

experiments, mice were pre-injected with 170 µg of nonradioactive In-labeled DOTA-
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GSG-118 peptide. After 5 min, mice were injected with 13.0 MBq of 111In-DOTA-GSG­

Jl 8 and imaged after a total of 1 h using a SPECT /CT scanner as described above. 

Statistical Analysis 

For statistical analysis a Student's t-test was performed to determine significance 

using Prism Graphpad Software. A P-value of 0.05 or less was considered significant. 
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Results 

Phage Display Selection 

In order to select peptides with good in vivo phannacokinetic and tumor targeting 

properties, phage display selections were initially performed against xenografted SKOV-

3 tumors in live nude mice. In the first round of selection, the naive phage display library 

(15mer, fUSE5) was pre-cleared of vasculature and non-tumor binding phage in nude 

mice without tumors. The pre-cleared and amplified phage library was then subjected to 

three rounds of selection in xenografted SKOV-3 tumor-bearing mice. In short, the phage 

were injected into the tail-vein and allowed to circulate for 1 h, after which the animals 

were sacrificed and the tumors collected. After each round of selection, the phage were 

eluted from the tumors, amplified and used in subsequent rounds of selection. Following 

the third and last round of in vivo selection, the phage library was subjected to a final 

round of selection against tumor derived SKOV-3 cells in vitro. Between each round of 

selection, randomly picked phage clones were collected and the foreign phage display 

insert was determined for detection of potential contamination and identification of 

selected peptide sequences by DNA sequencing. 

Thirty-one individual phage clones, that were identified in the last round of 

selection against tumor derived SKOV-3 cells, were used for micropanning experiments 

to identify clones with specific affinity for human ovarian carcinoma cells. These phage 

clones were incubated with SKOV-3 (cancer) or HS-832 (normal) cells, after which 

bound phage were collected and titered in E. coli (K91 BluKan). Results showed that 
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Table 2.1. Micropanning assay to determine binding of selected phage clones to SKOV-3 and 

HS-832 cells. 

Phage No. 
pJl 
pJ2 
pJ3 
pJ4 
pJ5 
pJ6 
pJ7 
pJ8 
pJ9 
pJlO 
pJll 
pJ12 
pJ13 
pJ14 
pJ15 
pJ16 
pJ17 
pJ18 
pJ19 
pJ20 
pJ21 
pJ22 
pJ23 
pJ24 
pJ25 
pJ26 
pJ27 
pJ28 
pJ29 
pJ30 
pJ31 

Peptide sequence 
RTEVPVLSFTSPLTG 
GDVWLFKTSTSHFAR 
AREYGTRFSLIGGYR 
HAAFEPRGDVRHTLL 
LGRAGQSYPSFARGL 
PIFPVVSSSGSSSSP 
PLSHGSVVYPRSSLG 
RRDTVPRSLSAPLSW 
PAV ASTSSLIIDGPF 
HPPLASVWHVSVPL 
LHDFRSPIY ASLLGF 
AGDGGLGRVAAGARV 
RVFHL WPHPTSTLSA 
APLSYNFASMPFMSG 
HPGWFDSA WFRA VSR 
ARDSRCGGFLGCGVT 
AMVRGFSFGMSRGSD 
RSLWSDFY ASASRGP 
SYSVVNSPWCDGTCD 
SRDGLHSFCYVGCPP 
GVGDADGFIPVISAV 
PVFFRLSPVTEGGGV 
FPSYPFIA YSLQTPV 
RRLPHLMPFEGSVFL 
GPHFDYRTGLGWRFG 
LGKGLTGSALSLSAL 
YGVTPSPRSPWATAH 
VFVDGARYSTASDSL 
GAGIFGPWGVF AA VP 
GYRSAFVPFV ARGGH 
RYRVGFTPGTIAA VL 

SKOV-3 to HS-832 ratio 
1.76 
1.91 
0.21 
2.00 
0.52 
1.58 
1.36 
0.59 
2.29 
0.83 
1.53 
1.15 
0.25 
0.73 
1.24 
1.36 
1.94 
6.57 
1.25 
0.40 
0.59 
1.40 
1.23 
3.55 
1.35 
2.29 
3.43 
2.83 
1.21 
3.65 
1.13 

Collected phage from the in vitro phage display selection against cultured and purified SKOV-3 

tumor cells were evaluated for their binding to ovarian carcinoma SKOV-3 and normal ovarian 

HS-832 cells. SKOV-3 or HS-832 cells were incubated with individual phage clones and eluted 

using 2.5% CHAPS. Phage binding was determined by titer and the SKOV-3 to HS-832 ratio was 

calculated. 
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three phage clones (pJ18, pJ24 and pJ30) showed the highest SKOV-3 to HS832 binding 

ratios, indicating preferable binding to the human ovarian carcinoma cell line (Table 2.1 ). 

Based on this data, the correlating peptides RSLWSDFYASASRGP (J18), 

RRLPHLMPFEGSVFL (J24) and GYRSAFVPFVARGGH (BO) were chosen to be 

synthesized and biotinylated to compare cell binding characteristics using fluorescent 

microscopy, as well as EC50 values, and to determine if the binding was mediated by the 

displayed peptides or by inherent phage proteins. 

Cell Binding of Biotinylated Jl8, J24 and J30 

Biotinylated peptides, bio-GSG-Jl 8, bio-GSG-J24, bio-GSG-130 and non­

relevant peptide bio-GSG-N35 (negative control), were synthesized using solid-phase 

Fmoc chemistry. In order to further evaluate if the observed binding in the micropanning 

study was mediated by the displayed peptides or by non-specific phage interactions, the 

peptides were incubated with SKOV-3 cells. Binding was measured by a colorimetric 

assay; in which varying concentrations of peptides (10 nM to 300 µM) was incubated 

with SKOV-3 cells (Figure 2.1 ). The selected peptides were found to show increased 

binding compared to bio-GSG-N35 and exhibited EC50 values of22.2 ± 10.6 µM, 29.0 ± 

6.9 µMand 33.7 ± 11.5 µM (mean± SE), demonstrating that the binding was facilitated 

by the peptide sequences and not by inherent phage proteins. 

Fluorescent Microscopy 

The binding characteristics of the biotinylated peptides were further evaluated 

using fluorescent microscopy (Figure 2.2). These studies revealed that peptide 
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Figure 2.1. Binding properties of biotinylated peptides J18, J24 and J30 to ovarian carcinoma 

(SKOV-3) cells. Cells were grown to 80% confluency on 96-well plates, and then incubated with 

varying concentrations (10 nM to 300 µM) ofbiotin-GSG-J18 (•), biotin-GSG-J24 (T) or biotin­

GSG-J30 (+) for 1 h at 37°C. Plates were washed with PBS and fixed with 10% formalin. 

Biotinylated peptides were detected by HRP-conjugated streptavidin, and measurement of 

absorbance at 405 nM after addition of HRP-substrate ABTS. EC50 values for biotin-GSG-Jl 8, 

biotin-GSG-J24 and biotin-GSG-J30 were calculated to be 22.2 ± 10.6 µM, 29.0 ± 6.9 µM and 

33.7 ± 11.5 µM (mean ± SE), respectively. Measurements were performed on a µ Quant 

Universal Microplate Spectrophotometer (Bio-Tek Instruments,Winooski, VT). 
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Figure 2.2. Fluorescent microscopy of peptide binding to SKOV-3, OVCAR-3, MDA-MB-435 

and HEK293 cells. Cells were incubated with 10 µM bio-GSG-Jl 8, bio-GSG-J24 or bio-GSG­

J30 peptides for 1 h at 37°C. Bound peptides were probed by a mouse monoclonal anti-biotin 

antibody and detected using an epifluorescent Nikon Tl-SM inverted microscope (Nikon, 

Melville, NY). 
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Figure 2.3. Biodistribution of AF680-labeled pJl 8, pJ24 and WT phage in SKOV-3 xenografted 

nude female mice. Mice were injected with 1012 virions of phage. After 4 h the animals were 

sacrificed and the organs, tissues, and the tumor were excised, weighed, and the fluorescent 

intensity was measured using a Xenogen IVIS 200 System. Fluorescent uptake was normalized to 

the weight of each organ, and reported as fluorescent intensity per gram. 
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bio-GSG-J18 displayed increased binding for the SKOV-3 and human ovarian carcinoma 

OVCAR-3 cell lines, while exhibiting minimal affinity for MDA-MB-435 and HEK293 

cells. Peptide bio-GSG-J24 showed the highest binding to SKOV-3 cells and little to no 

binding to other cell lines. Similarly, bio-GSG-J30 exhibited the highest affinity for 

SKOV-3 cells; however, this binding was minimal. For this reason, in addition to 

displaying the highest EC50 value of the three peptides, bio-GSG-J30 was eliminated 

from further studies. 

Biodistribution and Near-Infrared Optical Imaging of AF680-Labeled Phage 

In order to evaluate the tumor targeting capabilities of the selected peptides J18 

and J24, the corresponding phage clones, pJ18, pJ24 as well as WT, were labeled with 

the near-infrared fluorophore AF680, and employed in biodistribution and optical 

imaging studies. The biodistribution of the AF680-labeled phage clones was investigated 

in female nude mice bearing xenografted human SKOV-3 tumors. Phage were injected 

into the tail-vein of the animals; after 4 h the mice were sacrificed by cervical dislocation 

and the fluorescent intensity in the tumors and in normal tissues was measured (Figure 

2.3). Phage clone pJ18 exhibited fluorescent tumor uptake after 4 h; however, the levels 

were not significantly higher compared to WT. To the contrary, tumor uptake of pJ24 

was significantly higher compared to WT phage, but also showed increased levels in 

most other organs (lung, spleen, kidney, bladder, skin and liver). For all phage, the liver 

exhibited increased fluorescent uptake compared to other organs, indicating that the 

phage were excreted through the reticuloendothelial system. This observation was further 

confirmed by elevated uptake by the spleen and lungs; however, the kidneys also 
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Figure 2.4. In vivo optical imaging of SKOV-3 xenografted tumors in female nude mice using 

AF680-labeled pJ18, pJ24 and WT phage. The mice were injected with 1012 virions of phage and 

imaged under anesthesia at 2 h and 4 h post-injection. A) Fluorescence reflectance images of 

SKOV-3 xenografted mice. Tumor location is indicated by a white arrow. B) Quantification of 

fluorescent signal intensity of region of interest (ROI). Fluorescence reflectance images were 

obtained using a Xenogen IVIS 200 System, and the fluorescent signal intensity was quantified 

using ImageJ software. * p=0.03. 
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displayed increased fluorescent intensity, especially for J24. These results suggest that 

the kidneys may be a minor excretion route for both J18 and J24, but not for WT phage, 

which showed only minimal uptake in these organs. Phage uptake in other organs (heart, 

muscle and brain) was comparatively lower and did not differ between the clones. 

Near-infrared optical imaging of nude mice carrying xenografted SKOV-3 tumors 

was performed to investigate the imaging properties of phage clones pJl 8 and pJ24 

(Figure 2.4a). AF680-labeled phage (pJ18, pJ24 or WT) were tail-vein injected into the 

animals and circulated for up to 4 h. The mice were imaged before the injection (0 h) to 

determine autofluorescence, as well as 2 hand 4 h post-injection. The obtained images 

revealed that the SKOV-3 tumors were easily localized and exhibited sufficient tumor-to­

background contrast. Additionally, the tumor signal intensity of phage clone pJl 8 and 

was significantly higher in comparison to WT at 2 h post-injection (Figure 2.4b). The 

tumor uptake was lower after 4 h for all three phage clones. 

The higher tumor uptake and more rapid biodistribution of pJl 8 compared to pJ24 

are great advantages in regard to radionuclide imaging [183], and for these reasons, 

peptide J18 was chosen for further analysis. 
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Figure 2.5: Stability of 111In-DOTA-GSG-Jl8 under physiological conditions. A) Time course of 

intact radiolabeled peptide in mouse serum (•) and HEPES buffer (-.) at 37°C. B-E) HPLC 

chromatograms of collected radiolabeled peptide in mouse serum after 1 h (B) and 4 h (C) and in 

HEPES buffer after 1 h (D) and 4 h (E). Half-lives of 111ln-DOTA-GSG-Jl 8 in mouse serum and 

HEPES buffer were calculated to be 5.2 hand 14.0 h, respectively. 
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Peptide Synthesis, Radiolabeling and Stability 

Solid-phase Fmoc chemistry was used to synthesize the DOTA-labeled peptide 

DOTA-GSG-J18. The GSG spacer was introduced between the DOTA group and the 

NH2-terminus of the peptide to avoid potential steric hindrance. The peptide DOTA­

GSG-Jl 8 was successfully labeled with 1111n or non-radioactive indium in 0.5 M 

ammonium acetate buffer, pH 5.0, at 85°C for 1 h and purified by RP-HPLC. The 

radiolabeled peptide and its non-radioactive counterpart eluted with retention times of 

24.6 min and 24.5 min, respectively. High labeling efficiency of 98% and radiochemical 

purity of 98.6 ± 1.6 % (mean± SD), for 111In-DOTA-GSG-Jl8 were observed. The yield 

of radio labeled peptide was 20% after HPLC and C-18 cartridge purification. 

The stability of radiolabeled peptide 111In-DOTA-GSG-Jl8 was evaluated in 

0.5M HEPES buffer, pH 7, and in mouse serum at 37°C for different time intervals and 

analyzed by RP-HPLC. The radiolabeled peptide exhibited a half-life of 14.0 hand 5.2 h 

in HEPES buffer and mouse serum, respectively (Figure 2.5). 

Cell Binding of 111In-DOTA-GSG-Jl8 

The specificity of the radiolabeled peptide for ovarian cancer was determined in 

an in vitro cell-binding assay using SKOV-3 and HS-832 cells. For this, 111In-DOTA­

GSG-Jl8 was incubated with lxl06 cells for different periods of time, and the bound 

radioactivity was measured and calculated as percentage of the total counts per minute 

(% total cpm). Binding of the radiolabeled peptide to both cell lines increased from O min 

47 



1.75 

"C 1.50 
= * = = 1.25 .c 
~ .... 
;> 
~ 1.00 CJ 
~ = .... 

"C 0.75 ~ .. -~ .... = 0.50 
~ ,, t ........ 
~ ........ 

0.25 
........ ........ ........ ........ 

------------0.00 ------
0 1 2 3 4 

Time rhl 

Figure 2.6. Binding properties of 111In-DOTA-GSG-J18 to ovarian carcinoma (SKOV-3) (•) and 

normal ovarian (HS-832) (.A) cells. Cells (lx106) were incubated with 2x105 cpm ofradiolabeled 

peptide for 30 min, 1 h, 2h or 4 h. Although, binding of 111In-DOTA-GSG-J18 to SKOV-3 cells 

was significantly higher at 2 h, binding to HS-832 cells was also observed. * p < 0.05. 
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Figure 2.7. Cell binding competition study of 111In-DOTA-GSG-J18 and its non-radioactive 

counterpart. SKOV-3 cells (lx106) were incubated with 2x105 cpm of mln-DOTA-GSG-J18 and 

various concentrations (10-14 to 10-4 M) of the correlating non-radiolabeled peptide In-DOTA­

GSG-J18 for 1 h at 37°C. Bound radioactive peptide was measured in cpm by a Genesys™ 

Genii™ Multi-Well Gamma Counter (Laboratory Technologies, Inc, Maple Park, IL). The IC50 

value was 10.5 ± 1. 1 µM (mean± SE). 
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to 1 h, after which the binding gradually decreased. Nevertheless, in comparison to 

normal ovarian (HS-832) cells, 111In-DOTA-GSG-J18 exhibited significantly higher 

binding to ovarian carcinoma (SKOV-3) cells after 2 h, demonstrating specificity for this 

cell line (Figure 2.6). 

Further validation of the specific binding of radiolabeled peptide (111In-DOTA­

GSG-Jl 8) to SKOV-3 cells was determined by an in vitro competition assay in the 

presence of different concentrations of the correlating non-radioactive peptide (In­

DOTA-GSG-Jl 8). The results showed that the amount of bound radioactivity decreased 

in a dose-dependent manner with increasing concentrations of non-radiolabeled peptide, 

indicating that binding of 111In-DOTA-GSG-J18 was out-competed by In-DOTA-GSG­

J18 (Figure 2.7). Based on these data, an IC50 value of 111In-DOTA-GSG-J18 for human 

ovarian carcinoma SKOV-3 cells was calculated to be 10.5 ± 1.1 µM (mean± SE). 

Alanine Scanning Experiments 

A sequential alanine scanning experiment of peptide J18 was performed to 

identify the amino acid residues responsible for the binding to ovarian carcinoma cells. 

For this purpose, biotinylated peptides, each with a single alanine substitution (inherent 

alanine residues were substituted with serine), were synthesized and employed in a 

modified ELISA (Table 2.2). Various concentrations (10 nM to 100 µM) of peptides 

were incubated with SKOV-3 cells for 1 hat 37°C, after which the binding was measured 

colorimetrically at 405 nm, and the half maximal effective concentration (EC5o) for each 

peptide was calculated (Figure 2.8). These results showed that alanine substitutions of 
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Table 2.2. Alanine scanning peptides. 

Peptide No. Peptide Sequence 

J18 RSLWSDFY ASASRGP 

J18-l ASLWSDFY ASASRGP 

J18-2 RAL WSDFY ASASRGP 

J18-3 RSA WSDFYASASRGP 

J18-4 RSLASDFYASASRGP 

J18-5 RSLW ADFY ASASRGP 

J18-6 RSLWSAFY ASASRGP 

J18-7 RSLWSDA Y ASASRGP 

J18-8 RSLWSDF AASASRGP 

J18-9 RSLWSDFYSSASRGP 
J18-10 RSLWSDFY AAASRGP 
J18-ll RSLWSDFY ASSSRGP 
J18-12 RSLWSDFY ASAARGP 
J18-13 RSLWSDFYASASAGP 
J18-14 RSLWSDFY ASASRAP 
J18-15 RSLWSDFYASASRGA 

A sequential alanine scanning experiment of peptide J18 was done to elucidate the mechanism of 

peptide binding to SKOV-3 cells. Each biotinylated peptide was synthesized with a single alanine 

substitution. Inherent alanine residues were substituted with serine. 
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Figure 2.8. Sequential alanine scanning experiment of peptide biotin-GSG-J18. The SKOV-3 

binding of various concentrations (10 nM to 100 µM) of biotinylated peptides (Jl 8-1 to J18-15) 

with single sequential alanine substitutions (inherent alanine residues were substituted with 

serine) was analyzed by a modified ELISA. EC50 values were calculated for each peptide. 

* p < 0.05, ** p < 0.01. 
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tryptophan (J18-4), tyrosine (J18-8) and arginine (J18-13) significantly increased the 

EC50 values compared to J18, indicating that these residues are important in the binding 

to SKOV-3 cells. Although not significant, the alanine substitution of phenylalanine (J18-

7) showed similar results, suggesting that this amino acid is likewise involved in the 

binding interaction. In contrast, substitutions of serine (J18-5) and aspartic acid (J18-6) 

resulted in significantly lower EC50 values of approximately 10-fold, demonstrating that 

the affinity of the peptide may be improved upon. 

Pharmacokinetics of 111In-DOTA-GSG-Jl8 in SKOV-3 Tumor-Bearing Mice 

Indium-111 labeled DOTA-GSG-J18 peptide was evaluated in regard to its 

pharmacokinetic properties in female nude mice bearing xenografted SKOV-3 tumors. 

The mice were tail-vein injected with 0.17 Mbq of the radioligand and sacrificed after 30 

min, 1 h, 2 h and 4 h, and the tumor and organ uptakes were determined (Table 2.3). 

Radioactive uptake in the tumor was calculated to be 1.63 ± 0.68, 0.60 ± 0.32, 0.31 ± 

0.12 and 0.10 ± 0.02 % ID/g at 30 min, 1 h, 2 h and 4h, respectively. Blood clearance of 

the radioligand was apparent exhibiting levels of 2.37 ± 0.94, 0.40 ± 0.24, 0.03 ± 0.03 

and 0.19 ± 0.02 % ID/g at 30 min, 1 h, 2 hand 4h, respectively. The tumor-to-blood ratio 

increased from 0.69 at 30 min to 1.50 and 6.00 at 1 hand 2 h, respectively, indicating 

rapid blood clearance and kinetically favorable tumor uptake and retention. Equally high 

tumor-to-muscle ratios were shown as early as 1 h post-injection. Radioactive uptake in 

the normal organs was, as expected, the highest in the kidneys due to renal clearance 
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Table 2.3: Biodistribution of 111In-DOTA-GSG-J18 in SKOV-3 tumor-bearing nude mice. 

%ID/g 
Tissues 
Tumor 
Blood 
Heart 
Lung 
Liver 
Spleen 
Stomach 
Large intestine 
Small intestine 
Intestines 
Kidneys 
Brain 
Muscle 
Pancreas 
Bone 
Skin 

Uptake ratio 

Pharmacokinetics oflllln-DOTA-GSG-J18 

30min 1 ht 1 h- block 2 htt 4h 
1.63 ± 0.68 0.60 ± 0.32 0.31 ± 0.12* 0.18 ± 0.03 0.10 ± 0.02 
2.37 ±0.94 0.40 ± 0.24 0.23 ± 0.11 0.03±0.03 0.19 ± 0.02 
0.67 ± 0.27 0.13 ± 0.08 0.07 ± 0.03 0.02 ± 0.01 0.05 ± 0.01 
2.42 ± 0.48 1.06 ± 0.82 0.83 ± 0.19 0.49 ± 0.36 0.62±0.32 
1.42 ± 0.37 0.51 ± 0.48 0.37 ± 0.02 0.23 ± 0.11 0.84 ± 0.13 
1.77 ± 0.46 0.68 ± 1.01 0.16 ± 0.03 0.19 ± 0.24 1.58 ± 0.36 
0.36 ± 0.14 0.11 ± 0.04 0.08 ± 0.03 0.04± 0.02 0.04 ± 0.00 
0.34 ± 0.17 0.15 ± 0.05 0.07 ± 0.02 0.27 ±0.06 0.28 ± 0.19 
0.63 ± 0.29 0.32 ± 0.11 0.15 ± 0.04 0.15 ± 0.08 0.06 ± 0.01 
0.49 ± 0.22 0.25 ± 0.08 0.12 ± 0.03 0.20 ± 0.07 0.15 ± 0.08 
6.71 ± 3.08 2.70 ± 0.95 1.98 ± 0.29 1.67 ± 0.43 1.75±0.17 
0.09 ± 0.03 0.03 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 
0.32 ± 0.17 0.06 ± 0.03 0.04 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 
0.65 ± 0.18 0.11 ± 0.05 0.08 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 
0.31 ± 0.13 0.06± 0.05 0.05 ± 0.03 0.02 ± 0.01 0.08 ± 0.02 
1.28 ± 0.68 0.22 ± 0.11 0.22 ± 0.08 0.09± 0.03 0.10 ± 0.01 

Tumor to blood 0.69 1.50 1.35 6.00 0.53 
Tumor to muscle 5.10 10.00 7.75 18.00 10.00 

Data are represented as %ID/g (mean ± SD), or as uptake ratio of tumor to normal tissue 
(blood and muscle) for female nude mice (n=4) bearing human ovarian SKOV-3 xenografted 
tumors. Mice were sacrificed at different times post-injection of 111In-DOTA-GSG-J18. 
fn=7 
tt n=5 
* p=0.03, significant difference between tumor uptake of radiolabeled peptide 1 h post­
injection with and without the presence of its non-radioactive counterpart. 
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being the major route of excretion for most peptide ligands [183]. The kidney uptake was 

highest after 30 min at 6.71 ± 3.08 and decreased to 2.70 ± 0.95, 1.67 ± 0.43 and 1.75 ± 

0.17 % ID/g at 1 h, 2h and 4 h, respectively. Of all other organs, only the lungs, liver and 

spleen demonstrated noticeable radioligand uptake, which decreased rapidly after 1 h. 

Very little radioactivity was detected in the remaining organs and bone. In order to 

determine the specificity of tumor uptake, the radiolabeled peptide was subjected to in 

vivo competition studies with its non-radioactive counterpart. SKOV-3 tumor-bearing 

mice (n=4) were injected with 100 µg of peptide labeled with non-radioactive In, 

followed by an injection of 0.17 Mbq of 111In-labeled peptide, and the tumor and organ 

uptakes were evaluated after 1 h. The results indicate that the non-radioactive peptide 

ligand successfully blocked uptake of the radioactive counterpart by approximately 48% 

(P=0.03). The non-radioactive ligand did not significantly (P>0.05) affect the uptake of 

the 111In-labeled peptide in normal organs including the kidneys, lung, liver and spleen. 

SPECT/CT Tumor Imaging 

In order to evaluate the tumor imaging ability of 111In-DOTA-GSG-J18, female 

nude mice carrying xenografted SKOV-3 tumors (shoulder) were injected into the tail­

vein with 13.0 MBq of the radiolabeled peptide, and a whole-body SPECT/CT scan was 

performed of the live animals after 1 h (Figure 2.9a). The xenografted human ovarian 

tumor was clearly visualized with high tumor-to background contrast, and the kidney 

uptake was concurrent with the pharmacokinetic data. Excretion of the radioligand was 

visible in the bladder, while little to no radioligand uptake was detected in other normal 

organs and bone. For determination of peptide tumor specificity, mice were tail-vein 
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Figure 2.9. SPECT/CT study with nude mice carrying xenografted SKOV-3 tumors. A) 111ln­

DOTA-GSG-J18 (13.0 MBq) or B) In-DOTA-GSG-J18 followed by '"In-DOTA-GSG-J18 (13.0 

MBq) were injected into the tail vein of SKOV-3 tumor-bearing nude mice. The live image was 

acquired 1 h post-injection under isoflurane anesthesia in a Siemens small-animal SPECT/CT 

scanner. The pictures show left lateral fused SPECT/CT images. T=tumor, K=kidneys and 

B=bladder. 
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injected with 170 µg of peptide labeled with non-radioactive indium, followed by an 

injection of 13.0 MBq of 111In-DOTA-GSG-J18 and a whole-body SPECT/CT scan of 

the live animal 1 h post-injection. The image showed that the tumor uptake of 111In­

DOTA-GSG-J18 was successfully blocked by its non-radioactive counterpart (Figure 

2.9b), while radioactive uptake in the kidneys as well as other organs and the bone was 

unchanged, indicating that the radioligand exhibits specificity for the SKOV-3 tumor. 
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Discussion 

Ovarian cancer is among the leading causes of cancer deaths in women. The poor 

prognosis is a direct result of asymptomatic disease development and a lack of adequate 

diagnostic methods, causing the majority of patients to be diagnosed at regional or distant 

stages [1, 3, 4, 6, 8]. Currently, CA-125 is the only biomarker significantly associated 

with ovarian cancer, and measurement of its serum levels is a standard diagnostic method 

in the clinic. However only 50% of stage I patients show elevated levels of this tumor 

marker [168]. In addition, elevated CA-125 levels may be caused by other conditions 

such as endometriosis and inflammatory diseases, and may therefore lead to false­

positive results that require surgery to obtain final diagnosis [9, 184, 185]. As a 

consequence, the low levels and/or absence of CA-125 during early stages of ovarian 

cancer and its elevated presence in non-malignancies render its detection more useful as a 

follow-up tool to monitor progressed disease rather than as a diagnostic method [168]. In 

recent years another ovarian cancer biomarker, HE-4, has been intensely studied. HE4 is 

overexpressed in some forms of ovarian cancer and has been shown to be a more specific 

marker of the disease than CA-125 [91-95]. Many other biomarkers of ovarian cancer are 

under investigation, including epidermal growth factor (EGF) [186], IL-6 [186], IL-8 

[186, 187] and monocyte chemoattractant protein-I (MCP-1) [186]; however, the 

majority shows high specificity while exhibiting low sensitivity or vice versa [188]. 

Taking the lack of adequate diagnostic tools together with the low survival rate of ovarian 

cancer, it emphasizes the great need for discovery and development of novel detection 
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methods. Better diagnostics will not only allow for detection of less progressed disease, 

but will also greatly improve mortality rates. 

While peptides often exhibit lower binding affinities to their target compared to 

antibodies, the former offer advantages in regard to low immunogenicity, rapid blood­

clearance as well as renal excretion [46, 48]. Peptide-based radionuclide imaging agents 

are rapidly evolving due to the implementation of combinatorial strategies such as phage 

display technology, which allows high-throughput selection and identification of cancer 

targeting peptide ligands [32, 151, 152, 169, 171, 189-194]. Several peptides have been 

identified by phage display selections against known cancer antigens and have 

demonstrated excellent binding properties in in vitro assays. Examples of such targeting 

agents include peptides that bind to the cysteine rich protein 1 (CRIP-1) [171], prostate 

specific antigen (PSA) [170, 172], and ephrin type-A receptor 2 (ephA2) [195]. 

Unfortunately, while the majority of peptides selected by such methods are excellent 

"binders" in vitro, they lack stability, suffer from low solubility and exhibit poor 

pharmacokinetic properties in vivo. To overcome these problems, researchers have 

argued that in vivo phage display selections offer advantages over in vitro screenings, in 

that the harsh environment of a live animal allows only stable peptides with optimal 

pharmacokinetic properties to reach and bind the target [196-198]. A limited group of 

peptides have been identified in this manner, of which one of the most well-known 

examples is the identification of a RGD-containing peptide that binds vasculature 

expressed av~3-integrin, and has been employed in both positron emission tomography 

(PET) and SPECT imaging of the human tumor vasculature in xenografted mice [152, 

199, 200]. Other examples of peptides selected via in vivo phage display include the 
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rhabdomyosarcoma targeting sequence CQQSNRGDRKRC [194], as well as several 

peptides that bind tumor vasculature receptors such as interleukin 11 receptor [175], 

aminopeptidase P [176] and the ePHa4 receptor [177]. 

While many of these peptides show great promise, the majority of peptides that 

have been identified using in vivo phage display target the tumor vasculature rather than 

tumor cells. Instead, our laboratory has developed an in vivo/in vitro phage display 

screening method designed to select tumor cell targeting peptides with high in vivo 

stability and good pharmacokinetic properties. Initially, non-target binding phage was 

depleted from the library in a negative selection round in non-tumor bearing mice, which 

was followed by selection of tumor targeting phage against human ovarian carcinoma 

SKOV-3 xenografted animals. In order to select specifically for peptides binding to 

ovarian cancer cells, an additional in vitro selection was carried out against cultured 

enriched tumor SKOV-3 cells. This rigid screening process was followed by 

micropanning experiments, which resulted in the identification of three phage clones 

(pJ18, pJ24 and pJ30) that exhibited high ovarian cancer (SKOV-3) to normal ovarian 

(HS-832) binding ratios of 6.57, 3.55 and 3.65, respectively. 

In order to further evaluate and compare the ovarian cancer binding properties, 

the phage displayed peptides (JI 8, J24 and J30) were synthesized with a biotin group and 

employed in cell binding and fluorescent microscopy studies. The cell binding studies 

revealed that all three peptides bound to SKOV-3 cells in a sigmoidal dose-response 

manner, indicating that the interaction was caused by specific binding. Further, these 

results confirmed that the phage binding observed in the micropanning experiments was 

facilitated by the displayed peptides and not by inherent phage proteins. The EC5o values 
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were calculated for bio-GSG-Jl 8, bio-GSG-J24 and bio-GSG-J30 to be 22.2 ± 10.6 µM, 

29.0 ± 6.9 µMand 33.7 ± 11.5 µM (mean± SE), respectively, demonstrating that peptide 

J18 exhibited higher binding affinity. Additionally, these EC50 values are consistent with 

what has previously been found for peptides identified by in vivo phage display selections 

[201]. 

Fluorescent microscopy studies were done to further evaluate the peptide binding 

characteristics. These results showed that peptide bio-GSG-Jl 8 exhibited increased 

binding to the SKOV-3 and OVCAR-3 cell lines, while bio-GSG-J24 showed affinity for 

SKOV-3 cells and minimal binding to other cells. Peptide bio-GSG-J30 displayed the 

highest affinity for SKOV-3 of all cell lines; nevertheless, this binding was negligible. 

Taken together these results suggested that the biotinylated peptides bio-GSG-Jl 8 and 

bio-GSG-J24 bound ovarian cancer specific antigens, and may as a result be utilized as 

ovarian carcinoma imaging agents. Further, the different binding characteristics of J18 

and J24 for SKOV-3 and OVCAR-3 cells indicate that the peptides may target different 

antigens. SKOV-3 cells are known to exhibit more invasive potential compared to 

OVCAR-3, and to express higher levels of epidermal growth factor receptor (EGFR) 

[202]. The higher affinity of J18 for SKOV-3 may therefore suggest that the peptide 

binds an antigen with similar expression profiles in the two cell lines, such as EGFR. The 

high SKOV-3-to-OVCAR-3 binding ratio of J24 may indicate that the peptide targets an 

antigen that is involved in invasiveness and is comparatively overexpressed in the more 

aggressive cell line. For these reasons, peptide J18 may be binding to an antigen present 

in a wider array of ovarian cancer types and could, therefore, be useful in more broad 

applications, while J24 may be utilized to provide a more specialized targeting strategy. 
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Unfortunately, BO displayed both low binding to both ovarian carcinoma cells lines and 

exhibited the highest EC50 value of the three peptides, and was for these reasons 

eliminated from further studies. 

In order to evaluate the potential tumor targeting abilities of the selected peptides, 

the corresponding phage were employed in biodistribution and optical imaging studies. 

This type of testing the phage prior to the peptides alone was previously performed with 

the notion that phage virions exhibit high stability under physiological conditions [203], 

and may therefore aid the peptides in tumor targeting. Hence, if phage clones fail to 

adequately target and image the tumors, the correlating single peptides would do so as 

well. Such form of pre-testing enables selection of the fittest peptides and avoids 

unnecessary and costly studies. 

The biodistribution and optical imaging of fluorescently labeled phage, pJl 8, pJ24 

and WT, was explored in SKOV-3 xenografted nude mice. Although fluorescent tumor 

uptake was observed for pJl 8 after 4 h, the levels were not significantly different from 

WT. This observation suggested that the phage clone may have exhibited optimal uptake 

at earlier time points; in fact the optical imaging study revealed that significant tumor 

retention was obtained after 2 h. These results may be caused by increased uptake and 

excretion rates of pJl 8, which are further validated by the likewise low levels in other 

normal tissues. In correlation, the surface charge and displayed functional groups of 

nanoparticles are known to influence both cellular uptake and excretion; consequently, 

the net positive charge at physiological pH of peptide J18 ( displayed on phage) may be 

the reason behind the observed rapid pharmacokinetics. In fact, nanoparticles with an 

overall positive charge are associated with fast cellular uptake and excretion, which 
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moreover may cause an increase in the rate of tumor targeting [204, 205]. In contrast to 

these observations, pJ24 showed significantly increased tumor uptake after 2 h and 4 h, as 

evident from both the biodistribution and imaging studies. However, this phage also 

exhibited increased levels in most other organs, which indicated that the clone displays 

elevated background binding compared to pJ18 and WT. For all phage clones, the liver 

exhibited the highest fluorescent uptake compared to other tissues, suggesting that the 

phage were cleared through the reticuloendothelial system. These results were further 

confirmed by increased retention in the spleen and lungs; nevertheless, the kidneys also 

displayed increased fluorescent intensity, especially for pJ24. This observation suggests 

that the kidneys may be a minor excretion route for both pJl 8 and pJ24. Previous 

biodistribution studies of phage have shown similar results in regard to 

reticuloendothelial excretion [31, 206-208]. While the large size and biochemical 

properties of nanoparticles, including phage, are known to greatly affect biodistribution 

and excretion [205], the display of peptides have shown to partly re-direct the clearance 

[31]. Taking these observations into account, the pharmacokinetic results in this study 

may indicate that peptides J18 and J24 are steering the excretion system towards the 

kidneys. Phage uptake in other organs (heart, muscle and brain) was comparatively lower 

and did not differ between the clones. The low uptakes were possibly caused by the tight 

junctions that connect heart and muscles cells, and challenge extravasation of large 

particles into these tissues. Additionally, the blood-brain barrier excludes the vast 

majority of particles above 400 kDa, which greatly limits the ability of phage to enter the 

brain [209]. Taken together, the biodistribution and optical imaging studies show that the 

peptides, J18 and J24, influence the binding characteristics of the phage particles, and 
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enable specific targeting and imaging of SKOV-3 tumors. Due to the rapid 

pharmacokinetics of pJl 8, which are a great advantage in regard to subsequent 

radionuclide peptide studies owing to decreased toxicity [183], peptide J18 was chosen 

for further studies. 

Peptide J18 was synthesized with an N-terminal DOTA chelator and GSG spacer 

and labeled with 111 In. The radio labeled peptide demonstrated excellent stability under 

physiological conditions with in vitro half-lives of 14 hand 5.2 h in HEPES buffer and 

mouse serum, respectively. These results indicated good potential in vivo stability as well 

as low susceptibility to serum peptidases and proteolysis, which is often of great concern 

for natural amino acid peptides [210]. A comparison of the binding patterns of the 

radiolabeled peptide for ovarian carcinoma and normal ovarian cells were investigated at 

varying time points in an in vitro assay. Although 111In-DOTA-GSG-J18 showed binding 

to HS-832 cells, the peptide exhibited significantly higher binding to SKOV-3 cells after 

2 h. These results may indicate that the radiolabeled peptide binds to an antigen that is 

overexpressed by SKOV-3 cells but is present at low levels on normal ovarian cells. 

Several cell receptors are known to exhibit such expression patterns, including the folate 

receptor a, which is found on most normal cells, but is greatly overexpressed by ovarian 

tumors, among others [211]. Other examples include the epithelial cellular adhesion 

molecule (EpCAM) and the ErbB2/HER2/neu receptor, which are stably expressed in 

most normal tissues, but is found at greatly elevated levels in varying types ovarian 

carcinomas [180, 212]. Based on this data, an IC5o value of 10.5 ± 1.1 µM (mean± SE) 

for the radiolabeled peptide was calculated, which is in correlation with what has 

previously been reported for phage display peptides selected against live cells [201]. 
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To validate the specific sequence-mediated interaction and to identify the amino 

acid residues responsible for binding to SKOV-3 cells, an alanine scanning experiment of 

peptide JI 8 was performed. Alanine substitutions of three amino acids, tryptophan (JI 8-

4 ), tyrosine (118-8) and arginine (118-13), resulted in significantly higher EC50 values 

compared to peptide JI 8, suggesting that these residues are involved in, and important 

for, the interaction with SKOV-3 cells. Additionally, a strong tendency towards 

decreased binding affinity was observed for the alanine substitution of phenylalanine 

(JI 8-7), indicating that this residue may be important for the binding interaction. On the 

other hand, substitutions of serine (JI 8-5) and aspartic acid (JI 8-6) resulted in an 

approximately IO-fold decrease in EC50 values that were significantly different compared 

to 118. Many receptor-ligand interactions, including those of drugs and their 

corresponding cellular targets, involve aromatic amino acids present in both the ligand 

and the hydrophobic binding pocket of the protein [213]. Therefore, the finding that the 

tryptophan, tyrosine and phenylalanine residues are important for the interaction between 

peptide JI 8 and SKOV-3 cells is not surprising and correlate well with the literature. 

Although counterintuitive, arginine has also been shown to greatly contribute to the 

binding of ligands to aromatic amino acids and to greatly improve the stability of the 

interaction. In fact, peptides containing this amino acid have been found to associate with 

aromatic residues in proteins by cation-1t bonding between the guanidinium group of 

arginine and the electron cloud of the ring [213-216]. In contrast, the presence of the 

serine (JI 8-5) and aspartic acid (JI 8-6) residues negate the binding affinity of the peptide, 

perhaps by disturbing hydrophobic interactions between the aromatic amino acids and the 

antigen. By substituting the polar amino acids serine and aspartic acid with alanine the 
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peptide becomes more hydrophobic, which may stabilize both intramolecular and 

potential peptide-protein interactions [217, 218]. 

In vivo characterization of peptide J18 included pharmacokinetic studies and 

SPECT imaging. A competition biodistribution study demonstrated specific binding of 

111In-DOTA-GSG-J18 to the tumor while radioactive uptake in other organs was 

nonspecific. The biodistribution study further showed good tumor uptake and retention as 

well as high target-to-background ratios. Tumor-to-blood and tumor-to-muscle ratios 

both peaked after 2 h, indicating rapid blood clearance and low background uptake, while 

maintaining kinetically favorable tumor retention. Additionally, low levels of 

radioactivity in the blood as well as rapid clearance indicate good stability of the 

radionuclide-chelator complex as free 111 In would bind to metal conjugating serum 

proteins and result in prolonged circulation. The kidneys exhibited the highest radioactive 

uptake of all organs, suggesting renal clearance of the peptide. Both the small molecular 

size and the positive charge of the peptide at physiological pH indicates that the vast 

majority of the peptide should be cleared through the kidneys [219], which is indeed 

evident from the biodistribution results, and correlates with the fact that renal clearance is 

the preferred route of excretion for most radiolabeled peptides [183]. Renal retention of 

radiolabeled compounds may cause prolonged exposure to high radiation doses and 

consequently nephrotoxicity [220]. Nevertheless, the biodistribution results showed that 

kidney uptake of 111In-DOTA-GSG-J18 rapidly decreased after only 1 h, which suggests 

favorable retention kinetics and indicates limited kidney exposure. Studies have shown 

that coinjection of positively charged amino acids decreases nonspecific renal retention 

of radiolabeled peptides, and such a procedure may be pursued in the future in an effort 
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to lower unnecessary kidney uptake [45, 221]. Nonspecific retention of radioactivity was 

low in most other organs, although the liver and spleen showed some uptake, indicating a 

minor excretion route through the hepatobiliary system, which is possibly due to 

relatively hydrophobic parts of the peptide sequence and the fact that increased 

lipophilicity tends to direct a compound towards hepatic excretion rather than through the 

renal route [222-224]. Finally, the lungs showed some retention of radioactivity, which 

may be due to high perfusion and increased exposure to the blood circulation, however, 

the binding was non-peptide specific. 

In vivo SPECT/CT imaging using 111In-DOTA-GSG-Jl8 in SKOV-3 xenografted 

mice revealed high tumor-to-background ratios, and successfully enabled localization of 

the tumor. In correlation with the pharmacokinetic studies, the majority of the 

radioactivity was found in the kidneys and renal excretion of the peptide was clearly 

evident from the high levels visualized in the bladder. Very low radioactivity was 

detected in any other organs including the liver, lungs and spleen emphasizing the 

potential use of this peptide for detection of ovarian cancer. Furthermore, tumor uptake of 

the radioactive peptide was successfully blocked by injection of the non-radioactive 

counterpart showing specificity of the peptide for the SKOV-3 tumor. 

To date, very few in vivo ovarian cancer targeting imaging agents have been 

reported. The majority of these targeting moieties generally involve peptides [121, 123, 

164, 165], ligand coated nanoparticles [125, 225], as well as antibodies and antibody 

fragments [117, 226-230], while the imaging modalities mostly include near-infrared 

fluorescent probes for optical imaging [123, 125, 231-233] and radionuclide labels for 

radioscintigraphy, PET or SPECT [117, 121, 164, 165, 226-229, 234]. Recently, ovarian 
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metastases were imaged and localized after injection of folic acid coated fluorescent 

high-density lipoprotein nanoparticles targeting folate receptor a. in tumor-bearing mice 

[125]. While, these nanoparticles were able to image tumors in a mouse model, the 

biodistribution of these large complexes showed high uptake in the liver and spleen when 

administered intravenously. To the contrary, intraperitoneal injections of the imaging 

agent significantly reduced non-tumor uptake. However, such a strategy requires initial 

knowledge of the approximate tumor location. Aina et al. reported three cyclic peptides 

with high affinity for alpha-3 integrin on ovarian cancer cells that successfully imaged 

xenografted ovarian tumors in mice using near-infrared fluorophores. The excretion route 

of these peptides was mainly through the kidneys and gastrointestinal tract and showed 

no accumulation in the liver or spleen [123]. Even though fluorescent imaging agents of 

ovarian cancer in mice models have been reported, in vivo optical imaging is currently 

applicable only to surface tissues due to limited depth penetration of near-infrared light 

[124]. More promising are radiolabeled imaging probes that offer deep tissue penetration 

and, when combined with PET or SPECT, deliver high resolution images. PET and 

SPECT imaging were both applied to evaluate the imaging capabilities of 

ErbB2/HER2/neu binding affibody. The affibody was labeled with 18F, 68Ga, and 1111n 

and injected into mice carrying SKOV-3 xenografted tumors. Both PET and SPECT 

images revealed excellent tumor uptake of the radiolabeled affibody, but also showed 

very high kidney retention (> 100 %1D/g) and slow whole body clearance [117]. Such 

prolonged radioactive organ exposure carries a risk of toxicity [220] and is unwanted in 

humans. Weissleder and co-workers developed a tetrameric peptide targeting VCAM-1, a 

protein associated with peritoneal metastasis of ovarian cancer, using phage display [118-
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120] and employed it in SPECT/CT imaging of SKOV-3 metastases in a mouse model. 

Peritoneal metastases were successfully imaged and localized after intraperitoneal 

injection of the 111In-labeled peptide. Further, tumor retention was maintained for up to 

two weeks, while radioactive uptake in other organs was minimal [121]. This study 

showed that radiolabeled peptide imaging of xenografted ovarian tumors may be 

achieved while maintaining good pharmacokinetic properties. Although the VCAM-1 

targeting peptide exhibited excellent homing and imaging capabilities of peritoneal 

metastases, its use is limited to advanced stages of ovarian cancer. In the same study by 

Scalici et al., VCAM-1 was found to be expressed on -25% and 75 % of tumors from 

stage II and III patients, respectively, while protein was not detectable on stage I tumors 

[121]. These studies, although successful, emphasize the ongoing need for novel imaging 

agents of ovarian cancer that will aid in the detection and diagnosis of both early and late 

stage disease. 

Here, we demonstrated that 111In-DOTA-GSG-J18 images xenografted SKOV-3 

tumors in live nude mice using SPECT /CT. In addition, the peptide showed rapid 

clearance through the kidneys thereby lowering the risk of toxicity caused by prolonged 

exposure to radioactivity. This peptide may be useful in advancing the diagnosis of 

ovarian cancer and allow detection of early stages of the malignancy and provide an 

opportunity to increase survival rates. 
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Conclusion 

The SKOV-3 specific peptide Jl8 was selected by an in vivo/in vitro phage 

display screening process and evaluated for its binding and pharmacokinetic properties as 

well as SPECT /CT imaging capabilities. The peptide demonstrated good tumor uptake 

and retention in biodistribution studies and successfully imaged SKOV-3 tumors in 

xenografted nude mice. In conclusion, the Jl 8 peptide may be an effective imaging agent 

of ovarian cancer for diagnostic purposes. 
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CHAPTER3 

IN VITRO HIGH-THROUGHPUT PHAGE DISPLAY SELECTION 

OF OVARIAN CANCER AVID PHAGE CLONES FOR IN VIVO 

NEAR-INFRARED OPTICAL IMAGING 
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Introduction 

Ovarian cancer has been termed the "silent killer" due to quick and asymptomatic 

development of aggressive disease that is characterized by rapid invasion of surrounding 

tissues and metastatic seeding in the peritoneal cavity [77, 78]. In 2014, 22,000 women 

are estimated to be diagnosed with ovarian cancer and 14,000 women will succumb to the 

disease in the US [167]; establishing ovarian cancer as the most prevalent and lethal class 

of gynecological malignancies, and as the overall fifth leading cause of cancer deaths in 

women [3, 4]. Standard treatment of early-stage ovarian cancer involves surgical removal 

of the primary tumor followed by a chemotherapeutic regimen that leads to good overall 

five-year survival rates of>90%. Nevertheless, due to symptom free disease development 

and limited detection methods, the vast majority of ovarian cancer patients are diagnosed 

at the regional or distant stages, at which point five-year survival rates drops to 44% [3, 

4]. Current screening for ovarian cancer includes detection of the serum tumor marker 

CA-125 and pelvic ultrasonography [7, 9, 88]. However, these methods often lead to 

false positive diagnosis, require surgery to obtain final diagnosis, and are generally 

limited to detection of advanced stage disease [7, 9, 10, 88, 184]. These limitations and 

the poor prognosis of late-stage ovarian cancer emphasize the need for discovery of 

disease associated biomarkers and the development of novel detection methods. 

Phage display technology was pioneered by Dr. George P. Smith in 1985 [53], 

and is a powerful method to select and identify peptide based cancer targeting agents. 

The technology is based on genetic incorporation of random peptide sequences onto the 
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coat proteins of filamentous phage, creating large peptide libraries capable of containing 

up to 109 individual peptide-displaying phage clones [53, 54]. The large number of 

individually displayed ligands allows high-throughput screening of these against various 

protein and carbohydrate targets [26, 29, 31, 36, 38, 39, 50, 169, 235]. To date, phage 

display has been utilized to develop high affinity peptide-based targeting molecules 

against a number of malignancies such as breast, melanoma, prostate, lung, lymphoma 

and liver cancer [32, 34, 36, 39, 236-238]. Most commonly, such phage-display derived 

peptides have been synthesized and utilized outside of the phage moiety as cancer 

targeting agents for imaging and radiotherapy studies. Even though such peptides can be 

developed to exhibit good target binding affinities and excellent biodistribution, the 

process of selecting peptide ligands and validating binding properties is often time­

consuming, and is especially challenging and costly when translating such targeting 

agents into use in vivo. To the contrary, cancer targeting phage can be developed 

relatively quickly and at low cost by eliminating the challenges that are involved in 

translating targeting agents from in vitro to in vivo use. The high stability and good 

biodistribution, as well as the ability of genetically modified phage to undergo cell 

internalization [239], make phage excellent nanoparticles for molecularly targeted 

imaging and drug delivery. Phage have successfully been employed as cancer targeting 

agents for tumor imaging as well as drug and gene delivery. For example, molecularly 

targeted phage have been used to image Lewis lung carcinoma and prostate cancer in 

mice models using near-infrared fluorophores [31, 193], cancer associated biomarkers 

(secreted protein, acidic and rich in cysteine; SPARC and phosphatidylserine) using iron 

oxide nanoparticle-labeled phage for MRI [43, 240], and tumor vasculature associated 
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integrin av~3 using 64Cu-labeled phage for positron emission tomography (PET) [241]. 

Further, phage have been employed to deliver targeted antibiotics to sites of infection 

[242], doxorubicin to SPARC expressing cancer cells [243], and to deliver and 

subsequently express genes in target cells [191, 244, 245]. 

Here, our laboratory reports a rapid and cost effective method of developing novel 

ovarian carcinoma targeting phage using phage display technology. Specifically, phage 

clones were selected from a fUSE5 15-mer peptide library by screening against human 

ovarian carcinoma (SKOV-3) cells. Identified phage were further subjected to 

micropanning experiments and in vitro cell binding studies to discriminate between 

clones with high specific affinity and inherent nonspecific binding to SKOV-3 cells. 

Based on these results, two phage clones (pM6 and pM9) were labeled with the near­

infrared fluorophore (AF680) and analyzed for their ovarian tumor targeting and optical 

imaging abilities in vivo. Both fluorescently labeled phage successfully bound and 

imaged xenografted SKOV-3 tumors in female nude mice. 
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Materials and Methods 

Materials 

Cell culture reagents were purchased from Invitrogen (Carlsbad, CA). Unless 

otherwise stated, chemicals were purchased from Sigma Chemical Co. (St. Louis, MO). 

Cell Lines 

Human ovarian adenocarcinoma (SKOV-3), human ovarian (HS-832) and human 

embryonic kidney (HEK293) cells were obtained from American Type Tissue Culture. 

SKOV-3 and HEK293 cells were grown in general maintenance medium containing 

RPMI 1640 (custom) with 10% FBS, 2 mM L-glutamine, 1.7 µM insulin, 48 mg/ml 

gentamicin at 37°C in 5% CO2. Human ovarian cells (HS-832) were maintained in 

DMEM high glucose with 20% FBS and 48 mg/ml gentamicin at 37°C in 5% CO2. 

Animals 

All animal studies were conducted according to NIH Guidelines for the Care and 

Use of Laboratory Animals and the Policy and Procedures for Animal Research of the 

Harry S. Truman Veterans Memorial Hospital. Solid tumors were established in female 

4--6-week-old nude nu/nu mice (Harlan, Indianapolis, IN) over a period of 8 weeks, 

resulting in approximately 1 cm-sized tumors. SKOV-3 cells (lx107) were inoculated 

subcutaneously under gas anesthesia (3.5% isoflurane, Baxter Healthcare Corp. 
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Deerfield, IL) in the shoulder of each mouse. Following in vivo biodistribution, the mice 

were sacrificed and tumors and organs were excised and analyzed as described later. 

Selection of Tumor-Targeting Phage 

A coat protein III displaying 15-mer peptide library (fUSE5) was a kind gift from 

Dr. George P. Smith [53]. Phage particle concentration in virions per mL (V/mL) was 

determined spectrophotometrically by measuring absorbance at 260 nm and 280 nm. The 

number oftransducing units (TU) was determined by tittering in E.coli K91 Blue Kan. In 

order to exclude phage that bind to non-cancerous cells, the phage display library was 

initially negatively selected (pre-cleared) against normal human ovarian HS-832 cells. 

Approximately 4x1013 V/mL were incubated with lx106 HS-832 cells and allowed to 

bind for 30 min at 4 °C. Unbound phage were collected from the supernatant after 

centrifugation (1,000 x g, 1 min) and amplified in E. coli K91 Blue Kan as previously 

described [178]. For selection of ovarian carcinoma binding phage, the purified 

preparation (1013 V/mL) was incubated with approximately 2x106 SKOV-3 cells for 30 

min at 4°C. Cells were washed extensively with TBS and bound phage were eluted with 

2.5% CHAPS. Collected phage were amplified as previously described and used in 

subsequent selection rounds. In whole, four rounds of selection against SKOV-3 cells 

were performed. All phage were stored at 4 °C for further use. Between selection rounds, 

random phage clones were chosen for DNA sequencing of the foreign phage display 

insert for detection of potential contamination and continuous evaluation of the selection 

process. 
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Micropanning Assay 

Selected phage were subjected to a micropanning assay to identify clones with 

specific binding to SKOV-3 compared to HS-832 cells. Individual phage clones (109 

virions) were incubated with lx105 cells in DMEM for 1 h at 37°C. Cells were 

centrifuged (1,000 x g, 1 min) and unbound phage were removed by aspiration. Next, 

cells were washed three times with TBS and bound phage were eluted with 2.5% 

CHAPS. Collected phage were used to infect E. coli K91 Blue Kan, and the ratio of 

phage titer in SKOV-3 cells to HS-832 cells was calculated. 

Fluorescent Microscopy 

Binding of phage to SKOV-3, HS-832 and HEK293 cells was evaluated using 

fluorescent microscopy. Cells were grown on microscope chamber slides (Lab-Tek, 

Rochester, NY) and incubated with WT, pM6 or pM9 phage (1010 V/mL in TBS, 1% 

BSA) for 1 hat 37°C. The cells were then washed three times with TBS and fixed with 

10% formalin. Next, fixed cells were washed (TBS, 1 % BSA) extensively and blocked 

with 6% BSA in TBS, and then incubated with a rabbit polyclonal anti-phage antibody 

(courtesy of Dr. George P. Smith) for 1 h at room temperature. A fluorescein 

isothiocyanate (FITC)-labeled a-rabbit antibody was then added, incubated for 1 h at 

room temperature in the dark and washed three times (TBS, 0.05% Tween-20). The 

binding of phage was detected with an epifluorescent Nikon Tl-SM inverted microscope 

(Nikon, Melville, NY). 
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Phage and Peptide Binding to SKOV-3 Cells by Modified Enzyme-Linked 

Immunosorbent Assay (ELISA) 

Human ovarian carcinoma cells (SKOV-3) were grown to 80% confluency in a 

96-well tissue culture plate (TPP, Trasadingen, Switzerland). The growth medium was 

aspirated and replaced with different concentrations of WT, pM6 or pM9 phage (109-1011 

V/mL in TBS, 1 % BSA). Cells were incubated for 1 hat 37°C, washed three times with 

TBS and fixed with 10% formalin. The cells were washed (TBS, 1 % BSA) extensively 

and then blocked with 6% BSA in TBS. Next, a rabbit polyclonal anti-phage antibody 

(courtesy of Dr. George P. Smith) was added and the plate was incubated for 1 hat room 

temperature. After extensive washing (TBS, 1 % BSA), a secondary HRP-conjugated 

anti-rabbit antibody (Santa Cruz Biotechnology, Santa Cruz, CA) was added and the plate 

was incubated for 1 h at room temperature in the dark. The plate was washed (TBS, 

0.05% Tween-20) three times and HRP substrate ABTS was added and allowed to 

develop for 20 min at room temperature. The binding of phage was detected by 

measuring the absorbance at 405 nm using an endpoint assay on a µ Quant Universal 

Microplate Spectrophotometer (Bio-Tek Instruments, Winooski, VT). 

To compare the binding of phage and their correlating free peptides, biotinylated 

peptides M6 and M9 were synthesized with a GSG-spacer between the biotin group and 

the NH2-terminus using solid-phase Fmoc chemistry in a 396 multiple peptide 

synthesizer (Advanced Chem Tech, Louisville, KY). To determine cell binding and the 

EC5o values, varying concentrations (100 nM to 300 µM) of peptides M6, M9 or a non­

relevant N35 peptide (negative control) were incubated with SKOV-3 cells grown to 80% 

confluency on 96-well plates for 1 h at 37°C. Next, cells were washed (PBS, 1 % BSA) 
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extensively and fixed with 10% formalin. After repeated washing, cells were blocked 

with 10% FBS, 0.3 M glycine, 0.05% Tween-20 in PBS. Bound biotinylated peptide was 

then probed by incubation with HRP-conjugated streptavidin for 1 h at room temperature. 

The plate was washed (PBS, 0.05% Tween-20) three times and ABTS was added and 

developed for 20 min at room temperature. The peptide binding was detected by 

measuring the absorbance at 405 nm as previously described. 

Fluorescent Labeling of Phage 

Alexa Fluor-680 (AF680) carboxylic acid, succinimidyl ester 5-isomer 

(Invitrogen, Carlsbad, CA) was dissolved in dimethyl sulfoxide (DMSO; 2% final 

concentration) and added to phage (0.29 mM final concentration of coat protein VIII) in 

0.5M Na3citrate, 0.1 M NaHCO3 pH 8.5. The solution was incubated for 4 hat room 

temperature in the dark, after which the labeling reaction was stopped by addition of 270 

mM ethanolamine, pH 9 over night at 4°C. To remove excess hydrolyzed AF680, labeled 

phage were dialyzed against TBS, pH 7.5, over two days changing the buffer four times 

(Slide-A-Lyzer cassette, 10 kDa molecular weight cutoff, Thermo Scientific, Rockford, 

IL). 

Biodistribution of AF680-Labeled Phage 

Nude (nu/nu) mice carrying xenografted SKOV-3 tumors (-1 cm) were 

intravenously injected with AF680-labeled WT, pM6 or pM9 phage (1012 virions). The 

animals were sacrificed after 4 h and perfused with PBS. For comparison of tumor 
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uptake, tumors and organs were excised and the fluorescent intensity was measured using 

a Xenogen IVIS 200 System and analyzed by ImageJ software [182]. 

In Vivo Near-Infrared Optical Imaging of SKOV-3 Tumors 

Wild type, pM6 or pM9 phage labeled with AF680 (1012 virions) were injected 

intravenously into the tail vein of female SKOV-3 tumor-bearing nude (nu/nu) mice. 

Fluorescence reflectance images of the mice were obtained while the animals were under 

gas anesthesia (3.5% isoflurane, Baxter Healthcare Corp. Deerfield, IL) before injection 

(0 h) as well as 2 hand 4 h post-injection. The mice were sacrificed after the last imaging 

time point ( 4 h) and the tumors and organs were excised. The imaging was performed 

using a using a Xenogen IVIS 200 System system and analyzed by ImageJ software. 

Statistical Analysis 

Statistical analysis was performed to determine significance using an unpaired 

Student's t-test and Prism Graphpad Software. A P-value of 0.05 or less was considered 

significant. 
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Results 

Phage Display Selections 

A 15-mer phage display library (fUSE5) was pre-cleared in a selection round 

against human ovarian cells (HS-832), and the resulting phage were amplified in E. coli 

K91 Blue Kan. The selected phage were used in four subsequent screening rounds against 

human ovarian carcinoma cells (SKOV-3). After the last round of selection, the DNA of 

96 random phage clones were sequenced to identify the foreign peptide inserts and to 

determine if these phage had been previously reported (PepBank, PSI-BLAST) [246, 

247]. Based on these results, nine unique phage clones (pMl to pM9) were identified and 

analyzed for their binding specificity to SKOV-3 and HS-832 cells in a micropanning 

assay. Two phage clones (pM6 and pM9) showed elevated SKOV-3 to HS-832 and 

peptide-displaying phage to WT-phage binding ratios and were chosen for evaluation in 

further studies (Table 3.1). 

Fluorescent Microscopy 

Fluorescent microscopy was used to further evaluate the binding characteristics of 

selected phage and to compare to the binding of WT phage (Figure 3.1). Both phage 

clones pM6 and pM9 showed increased affinity for human ovarian carcinoma SKOV-3 

cells while exhibiting very limited binding to human ovarian HS-832 cells, thereby 

demonstrating specificity for SKOV-3 cells. To the contrary, WT phage exhibited limited 

binding to both cell lines, suggesting that binding is facilitated by the displayed peptides 
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Table 3.1. Micropanning assay to determine specificity of selected phage clones. 

Clone No. 
pMl 
pM2 
pM3 
pM4 
pM5 
pM6 
pM7 
pM8 
pM9 

Sequence 
YHGGLSLGWISDWHA 
YKSLGTFVMDHFWDS 
GEVFFSFVPDWKVQS 
GWFFPPLATDAWRLT 
LWSPIFSMTAQRGSR 
MQSVSGWFPWESVAY 
THVELGRSNAVFW AL 
VRMAPILIHDAARDR 
CAFCEFLPRA YGVSW 

SKOV-3 to HS-832 ratio 
1.6 
1.0 
1.5 
1.6 
1.3 

11.1 
0.5 
2.3 
3.5 

Peptide-phage to WT ratio 
5.4 
2.4 
5.1 

210.2 
6.1 

19.0 
48.3 
20.6 
31.9 

Phage collected from the fourth round of selection were evaluated for specificity to SKOV-3 and 

HS-832 cells. The phage clones were incubated with either SKOV-3 or HS-832 cells and eluted 

using 2.5% CHAPS. Binding of phage was determined by titer and the SKOV-3 to HS-832 ratio 

and peptide-displaying phage to WT ratio were calculated. 

83 



SKOV-3 HS-832 HEK293 

No phage 

pM6 

pM9 

WT 

Figure 3.1. Fluorescent microscopy of phage binding to human ovarian carcinoma SKOV-3, 

ovarian HS-832 and embryonic kidney HEK293 cells. Cells were grown on microscope chamber 

slides to 80% confluency and incubated with 1010 V/mL of pM6, pM9 or WT phage for 1 hat 

37°C. Next, the slides were washed with (TBS, 1 % BSA) and fixed with 10% formalin. The 

binding of phage was detected by a rabbit polyclonal anti-phage antibody and a secondary FITC­

labeled anti-rabbit antibody. Fluorescence was detected by an epifluorescent Nikon Tl-SM 

inverted microscope (Nikon, Melville, NY). 
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Figure 3.2. Binding properties of selected phage to human ovarian carcinoma SKOV-3 cells. A) 

Cells were grown to 80% confluency in 96-well plates and incubated with different 

concentrations (109, 3x1010 and 1011 V/mL) of WT, pM6 or pM9 phage for 1 hat 37°C. Next, 

phage and cells were washed with TBS and fixed with 10% formalin. Bound phage were detected 

by a rabbit polyclonal anti-phage antibody followed by a secondary HRP-conjugated anti-rabbit 

antibody. Horseradish peroxidase substrate, ABTS, was added and the absorbance at 405 nm was 

measured after 20 min. B) Cells were incubated with varying concentrations (100 nM to 300 µM) 

of biotinylated peptide M6 (•), M9 (_.) or negative control N35 (+) for 1 hat 37°C. Plates were 

washed with PBS and fixed with 10% formalin. Biotinylated peptides were probed with HRP­

conjugated streptavidin, and binding was detected by measurement of absorbance at 405 nM after 

addition of ABTS. EC50 values for M6 and M9 were determined to be 22.9 ± 2.0 µM and 12.2 ± 

2.1 µM (mean ± STD). Measurements were performed on a µ Quant Universal Microplate 

Spectrophotometer. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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and not by intrinsic phage proteins. Additionally, the specificity of the selected phage for 

a non-relevant normal human embryonic kidney HEK293 cells was investigated. These 

results showed that both phage clones pM6 and pM9 exhibited very little affinity for this 

cell line, indicating specificity for ovarian carcinoma cells. Taken together, these data 

demonstrate that pM6 and pM9 phage exhibit specific binding to SKOV-3 cells, and that 

this binding is facilitated by the displayed peptides. 

Modified Enzyme-Linked Immunosorbent Assay (ELISA) 

In order to further explore the binding of phage clones pM6 and pM9 to ovarian 

cancer cells, a modified enzyme-linked immunosorbent assay (ELISA) was developed. 

The binding properties of the selected phage and WT phage were compared to ensure that 

the binding was facilitated by the displayed foreign peptide, rather than by natural phage 

coat proteins. Results showed that, at concentrations of 109, 3x1010 and 1011 V/mL, phage 

clone pM6 exhibited significantly higher binding to SKOV-3 cells compared to WT 

phage, whereas pM9 showed significantly higher binding at 3x1010 and 1011 V/mL 

(Figure 3.2a). These results confirm the microscopy data and additionally demonstrate 

that the binding of pM6 and pM9 to SKOV-3 cells is mediated by the displayed peptides, 

and is not caused by inherent non-specific binding of the phage particle. To further 

validate this observation, the binding characteristics of phage pM6 and pM9 were 

compared to that of the correlating free peptides M6 and M9 (Figure 3.2b). Peptide 

binding to SKOV-3 cells was found to correlate well with that of phage, and showed that 

both M6 and M9 exhibited increased binding to this cell line compared to a non-relevant 
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control peptide (N35). EC50 values for M6 and M9 were determined to be 22.9 ± 2.0 µM 

and 12.2 ± 2.1 µM (mean± STD). 

Biodistribution Studies 

The pharmacokinetic properties and in vivo optical imaging capabilities were 

investigated by labeling phage clones pM6, pM9 and WT with the near-infrared 

fluorophore AF680. Each phage particle was labeled with approximately 270 molecules 

of AF680. For the biodistribution study, AF680-labeled phage was injected into the tail­

vein of SKOV-3 xenografted nude female mice and allowed to circulate for 4 h, after 

which the animals were sacrificed and the fluorescent uptake in normal organs and 

tissues, and in the tumor was measured (Figure 3.3). The reticuloendothelial system was 

found to be the major route of excretion for all three phage, which was evident from 

elevated uptake in the liver, lungs and spleen. However, the kidneys also showed 

increased fluorescent uptake, indicating that renal clearance may provide a minor 

excretion route. Phage clone pM6 showed increased uptake in the kidneys, liver and 

spleen, and exhibited significantly higher fluorescent levels in the tumor compared to 

pM9 and WT. In contrast, tumor uptake of pM9 after 4 h showed no difference compared 

to WT phage, and additionally showed the lowest fluorescent levels in the lungs and 

pancreas of all three phage. Phage accumulation in other organs including the heart, 

muscle and brain was very low and was similar for all phage clones. In all, these data 

demonstrate that phage clone pM6 exhibit good tumor uptake 4 h post-injection and may, 

therefore, be used as an in vivo imaging agent. To the contrary, pM9 failed to show 

elevated tumor binding after 4 h, suggesting that excretion of this phage clone occur more 
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Figure 3.3. Biodistribution of AF680-labeled pM6, pM9 and WT phage in SKOV-3 xenografted 

nude female mice. Mice were injected with 1012 virions of AF880-labeled phage and were 

allowed to circulate for 4 h, after which the animals were sacrificed. Normal organs, tissues, and 

the tumor were excised and weighed, and the fluorescent intensity was measured using a 

Xenogen IVIS 200 System. Fluorescent uptake was normalized to the weight of each organ, and 

reported as fluorescent intensity per gram. 
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rapidly and that uptake may be more optimal at earlier time points. For these reasons, 

subsequent in vivo optical imaging was performed at 2 hand 4 h post-injection. 

In Vivo Near-Infrared Optical Imaging 

To explore the in vivo imaging capabilities of phage clones pM6 and pM9, near­

infrared optical imaging of female nude mice carrying xenografted SKOV-3 tumors was 

performed (Figure 3.4a). Prior to injection of AF680-labeled phage, the animals were 

imaged to determine levels of autofluorescence (0 h). In short, AF680-labeled phage 

(pM6, pM9 or WT) were injected into the mice and allowed to circulate, after which 

fluorescence reflectance images of the live animals were obtained after 2 h and 4 h. The 

acquired images showed that the ovarian carcinoma tumors were easily visualized with 

adequate tumor-to-background contrast at both 2 hand 4 h post-injection. Further, results 

showed that the tumor signal intensity of phage clone pM6 peaked at 2 h and was 

significantly higher compared to that of WT phage at both time points (Figure 3 .4b ). In 

correlation, phage clone pM9 exhibited peak tumor signal intensity after 2 h, which was 

significantly higher compared to WT phage. Concurrently with the biodistribution data, 

tumor uptake of pM9 was lower compared to pM6 after 4h and was no longer 

significantly different from the WT. Taken together, these results indicate that the 

peptides displayed on phage clones pM6 and pM9 are capable of influencing the binding 

properties of the phage particles to specifically target and image ovarian tumors. 
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Figure 3.4. In vivo optical imaging of SKOV-3 xenografted tumors in female nude mice using 

AF680-labeled pM6, pM9 and WT phage. The mice were injected with 1012 virions of AF680-

labeled phage and imaged under anesthesia after 2 h and 4 h. A) Fluorescence reflectance images 

of SKOV-3 tumor bearing mice. Tumor location is indicated by the white arrow. B) 

Quantification of fluorescent signal intensity of ROI. Fluorescence reflectance images were 

obtained using a Xenogen IVIS 200 System, and the fluorescent signal intensity of ROI was 

quantified using ImageJ software. ** p < 0.01, *** p < 0.001. 
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Discussion 

Peptide phage display technology has mostly been employed as a method of 

identifying and developing free peptides that target tumors and may be used as imaging 

agents. However, phage particles as tumor targeting agents offer several advantages 

compared to free peptides including increased stability and prolonged biodistribution 

[239]. Further, due to the large size of phage, labeling with fluorophores or radiotracers 

has minimal influence on the overall binding and pharmacokinetics, whereas the function 

of peptides may easily be disrupted by additional tags [31, 48]. The large size of phage 

also allows attachment of numerous labels, which results in signal amplification and 

provides increased sensitivity during imaging. Finally, development of phage imaging 

agents is cost effective and more time efficient in comparison to peptides, in that 

synthesis, labeling and validation of the latter is often lengthy and challenging. In 

contrast, filamentous phage do not require synthesis, as they are biological non­

pathogenic particles that replicate in E. coli [55, 248]. 

Phage display technology often results in selection of a number of clones that 

appear to exhibit excellent binding affinities. However, biological amplification in E. coli 

can establish a selective pressure for phage that exhibit advantageous growth properties, 

such as high infectivity and proliferation rates, and these phage may be incorrectly 

identified as clones with high target binding affinity [249]. For this reason, the nine phage 

clones that were identified in this study the last round of phage display selection were 

subjected to a micropanning assay, in which they were evaluated for their specificity for 
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human ovarian carcinoma SKOV-3 and human ovarian HS-832 cells. This "weeding out" 

of potentially unwanted phage, revealed that two clones, with the displayed peptide 

sequences MQSVSGWFPWESV A Y (M6) and CAFCEFLPRA YGVSW (M9), exhibited 

specificity for ovarian carcinoma SKOV3 cells and showed increased binding compared 

to WT phage. 

Further characterization of the in vitro binding properties of these phage clones 

involved fluorescent microscopy and a modified ELISA. The fluorescent microscopy 

studies provided evidence of pM6 and pM9 phage binding and specificity for cultured 

SKOV-3 cells, and further showed that these clones exhibited minimal binding to normal 

ovarian cells (HS-832) and human embryonic kidney (HEK293) cells. These results 

indicate that the selected phage clones may target (an) ovarian cancer specific antigen(s), 

and may therefore be potential ovarian carcinoma imaging candidates. Additionally, the 

affinity of pM6 and pM9 for SKOV-3 cells was elevated compared to WT phage, 

suggesting that the interaction was facilitated by the displayed peptides and not by non­

specific binding of the phage particle. 

To further validate this claim, a modified ELISA was developed, which showed 

that pM6 and pM9 phage displayed significantly increased binding at concentrations of 

109 to 1011 V/mL and 3x1010 to 1011 V/mL, respectively, compared to WT. Although low, 

the WT phage also showed binding, which is not unexpected since these particles are 

known to bind to various materials including plastic [250]. In parallel to these results, 

varying concentrations (100 nM to 300 µM) of correlating free peptides M6 and M9 

showed increased binding to SKOV-3 cells compared to a negative control peptide 

(N35), confirming that binding is in fact mediated by the peptide ligands and is not 
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facilitated by inherent phage proteins. Additionally, both peptides were shown to bind to 

ovarian carcinoma cells in a sigmoidal dose-response manner. Based on this data, EC50 

values of 22.9 ± 2.0 µMand 12.2 ± 2.lµM (mean± STD) for M6 and M9, respectively, 

were calculated, demonstrating that the latter peptide displays higher affinity for SKOV-3 

cells compared to M6. These values are in correlation with what has been previously 

reported for peptides selected by phage display technology [201]. Taken together, these 

in vitro investigations demonstrated that selected phage pM6 and pM9 displayed 

preferential binding for ovarian carcinoma cells and exhibited minimal affinity for 

normal ovarian and human embryonic kidney cells. Further, it was shown that binding to 

SKOV-3 cells was facilitated by the displayed peptides, M6 and M9 and was not a result 

of non-specific binding of the phage particle. 

In vivo characterization of phage clones pM6 and pM9 included pharmacokinetic 

evaluation (biodistribution) and optical imaging. The near-infrared fluorophore AF680 

was used to label pM6, pM9 and WT phage for these studies, which were carried out in 

human ovarian carcinoma SKOV-3 xenografted nude mice. At 4 h post-injection, the 

biodistribution study revealed that the reticuloendothelial system was the major route of 

excretion for pM6, pM9 and WT phage. This observation was evident from increased 

fluorescent uptake in liver, lungs and spleen, and is in correlation with what has been 

previously found in our laboratory [31, 52] and by others [206, 208]. Additionally, the 

kidneys and bladder showed elevated uptake of pM6, indicating that renal clearance may 

be a minor route of excretion for this phage clone. In fact, Newton et al. have previously 

found that peptide-displaying phage can exhibit increased kidney uptake compared to 

WT [31 ], suggesting that the peptide may re-direct part of the excretion system towards 
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renal clearance. Uptake of pM9 in organs involved in the reticuloendothelial and renal 

excretion systems was lower overall compared to pM6, suggesting that clearance of pM9 

is more rapid in comparison. Uptake of pM9 was similar to that of WT phage in spleen, 

kidneys and liver, indicating that the excretion patterns of these two phage clones are 

comparable. However, fluorescent levels in lungs, bladder and pancreas were lower for 

pM9 than WT, suggesting that the peptide displayed on this phage clone may be 

responsible for decreased binding in these organs. In accordance, the size and 

biochemical properties of phage and other nanoparticles have been shown to influence 

the uptake in different organs and tissues as well as the rate of excretion [205]. Tumor 

uptake of pM6 was significantly higher in comparison to pM9 and WT phage, which may 

be indicative of prolonged tumor retention of the former. In contrast, there was no 

significant difference in tumor uptake between pM9 and WT, again suggesting that the 

pharmacokinetics and clearance rate of pM9 is more rapid compared to pM6, and that 

tumor uptake and retention may occur at earlier time points. Finally, muscle, brain and 

heart showed minimal uptake of all fluorescently labeled phage, which was most likely 

due to limited ability of large phage particles to enter these organs and tissue. In fact, 

muscle and heart cells are connected by tight junctions that challenge extravasation of 

phage into the tissue, whereas the blood-brain barrier excludes the vast majority of 

particles above 400 kDa [209]. 

The in vivo imaging capabilities of selected phage clones were likewise explored 

in nude mice carrying xenografted SKOV-3 tumors. Peak tumor signal intensity was 

observed after 2 h for pM6, pM9 and WT phage, suggesting that this time point is the 

most optimal for in vivo imaging. Although low levels of WT phage were found to locate 
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to the tumor, the signal intensities of pM6- and pM9-phage were significantly higher, 

indicating that tumor targeting was mediated by the displayed peptides. Importantly, high 

tumor-to-background contrast allowed easy visualization and localization of the ovarian 

carcinoma tumors, which was consistent for pM6 at both 2 h and 4h post-injection. In 

correlation with the biodistribution data, pM9 showed low tumor signal intensity after 4 

h. This may be caused by higher uptake and excretion rates of this phage, which is also 

evident from the low uptake in normal organs at this time point. Physiochemical 

properties, such as surface charge and functional groups, are widely accepted factors that 

influence cellular uptake and excretion of nanoparticles. Thus, the positive charge at 

physiological pH of peptide M9 may be the cause of the rapid clearance observed in both 

the biodistribution and in vivo imaging studies. In fact, positively charged nanoparticles 

are known to exhibit rapid cellular uptake and clearance, which additionally may lead to 

faster tumor targeting [204, 205]. Taken together, these results demonstrate that both 

phage clones pM6 and pM9 are capable of targeting and imaging human ovarian 

carcinoma tumors in xenografted mice, and that the binding of the phage to the cancer 

cells is mediated by the displayed peptides. 
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Conclusion 

In conclusion, this study demonstrated the ability of phage selected for binding to 

cultured SKOV-3 cells to target and image ovarian tumors in vivo. This proves that it is 

possible to select and develop successful targeting agents in a time efficient and cost 

effective manner. 
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CHAPTER4 

PEPTIDE PHAGE DISPLAY FOR DISCOVERY OF NOVEL 

BIOMARKERS FOR IMAGING AND THERAPY OF CELL 

SUBPOPULATIONS OF OVARIAN CANCER 
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Introduction 

Ovarian cancer is an aggressive disease that is characterized by a symptom free 

onset and early metastasis. Neoplastic cells rapidly invade surrounding tissues through 

the peritoneal fluid and metastasize predominantly as ascites in the peritoneal cavity [77, 

78]. Approximately 80% of patients are diagnosed at late-stage disease, which leads to 

significantly decreased five-year survival rates of merely 30-45% [3, 4]. Furthermore, 

ovarian cancer often develops resistance to therapy after initial platinum-based treatment, 

and even though most patients respond to chemotherapy, the majority relapses within 18 

months and succumbs to disease [4, 12, 59, 129]. Ovarian cancer is a very heterogeneous 

disease that comprises three major types: epithelial, stromal and germ cell, of which the 

former represents about 95% of diagnosed cases. Epithelial ovarian cancer can be further 

divided into eight subtypes: endometrioid, mucinous, serous, clear cell, transitional, 

squamous, undifferentiated and mixed epithelial that each exhibit different molecular and 

morphological characteristics [56, 57, 59, 251]. In addition to the large diversity among 

ovarian cancer subtypes, the largely asymptomatic early stages of the disease complicate 

diagnosis and treatment. At present, standard detection methods include measurement of 

the serum tumor-marker CA-125 as well as pelvic ultrasonography [7, 9, 88]. However, 

CA- 125 levels are often negligible in early-stage disease and elevated in only 80% of 

advanced stage ovarian cancer. In addition, false positive CA-125 levels are common for 

a range of other conditions such as endometriosis, inflammatory disease and other 

cancers, and the method is, therefore, often not sufficient to be diagnostic. Several 
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attempts have been made to find novel serum tumor markers of early-stage ovarian 

cancer, including measurements of soluble epidermal growth factor receptor (sEGFR) 

[252, 253], soluble cytokeratin 19 fragments [254], serum human kallikreins [255-258] 

and VEGF [259, 260]. However, most of these biomarkers are limited to advanced stage 

or metastatic disease and are, therefore, not sufficiently sensitive for early-stage ovarian 

cancer screening and diagnosis. For these reasons, it is necessary to develop new 

detection methods for both early- and advanced stage ovarian cancer. 

Treatment of ovarian cancer most often includes cytoreductive surgery followed 

by a range of chemotherapies dependent on disease stage [12]. Combinations of the drugs 

paclitaxel, carboplatin and cisplatin are often used to treat both early and late-stage 

disease following surgery and most patients respond to this treatment. Nonetheless, the 

majority of patients relapsed within 18 months with therapy resistant disease, which 

cause median survival times as low as 24 months post diagnosis [12, 59, 129,261]. Such 

poor prognosis seems to result from chemotherapy treatment that targets only the bulk of 

the tumor cells and fails to target the more aggressive cancer stem cells (CSC). This 

process most likely causes the occurrence of more aggressive tumors that are resistant to 

therapy (Figure 4.1) [13, 17,262]. 

Ovarian Cancer Stem Cells 

Cancer stem cells were first observed in acute myeloid leukemia [83] and have 

since been discovered in several solid tumors including breast, prostate, melanoma and 

ovarian cancer [14, 84-86]. Ovarian CSC were first isolated by Bapat and co-workers 

(2005) from ascites in a patient with advanced disease. The cells were shown to display 
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Figure 4.1. Traditional and CSC targeted therapies in ovanan cancer. A) Traditional 

chemotherapy fails to target CSC, which allows successive regrowth of the tumor. B) CSC 

targeted therapy in combination with traditional chemotherapy eradicates both tumor populations 

and hinder tumor recurrence. 
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the stem cell surface markers CD44 (hyaluronic acid receptor) and CDI 17 (ckit) as well 

as the intracellular stem cell markers Nestin, Oct-4 and Nanog [14, 20, 84-86]. Later, 

ovarian CSC were found to express aldehyde dehydrogenase (ALDH) and the cell surface 

marker CD133 (prominin-1), [263, 264]. The expression of these CSC biomarkers has 

been correlated with increased resistance to chemotherapeutic drugs. In fact, CD44 

positive cells have been associated with resistance to the chemotherapeutic drugs 

carboplatin and paclitaxel [20], and CD133 expression has been correlated with 

resistance to cisplatin [263]. A subpopulation of cells expressing the biomarkers CD44 

and CD 117 from primary human ovarian tumors were shown to form floating spheroids 

in culture when grown under stem cell conditions (serum free, EGF, bFGF and insulin). 

The spheroids visually resembled spheroids found in ovarian cancer ascites [14, 17] as 

well as cultured spheroids from breast and neural tissue stem cells [265, 266]. Later 

CD 133 and ALDH positive cells from ovarian epithelial carcinomas were also shown to 

form spheroids in culture and in addition cause formation of larger and more rapid tumors 

compared to CD133 and ALDH negative cells [264]. The aggressiveness of CSC is also 

evident from their ability to initiate tumor formation. In fact, as few as 100 dissociated 

spheroid cells have been found to establishment full tumors in mice, whereas up to lx105 

of unselected cells were unable to initiate malignant growth [19]. In addition, these cells 

were capable of serial propagation and establishment of heterogeneous tumors with 

original phenotype after several rounds of propagation. The chemoresistance of CSC is 

associated with expression of the membrane efflux transporter ABCG2 [13, 267, 268], 

which has been found to be upregulated in CSC from primary ovarian tumors and in both 

murine and human ovarian cancer cell lines [13, 19, 21]. Increased drug-efflux in CSC 
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has been based on their ability to efflux the lipophillic dye Hoechst 33342 [13, 15, 17]. 

Side populations of mouse ovarian cancer cells exhibiting reduced Hoechst 33342 

staining have been shown to increase tumorigenesis in nude mice [ 17]. A side population 

has also been observed in the human ovarian cancer cell line SKOV-3, where 

approximately 10% of the cells showed reduced Hoechst 33342 staining [13]. 

Talcing these results together it seems likely that the development of molecules 

that target CSC may hold the key to increase the therapeutic efficiency for ovarian 

cancer. So far most studies have focused on drug candidates that inhibit cellular signaling 

pathways [269], however, it may be necessary to target CSC cell surface biomarkers that 

are independent of the ABCG2 drug-efflux system. Cancer stem cell targeting 

radiolabeled peptides may provide an efficient method to eradicate the CSC 

subpopulation. 

Bacteriophage Display 

Bacteriophage (phage) display technology was first developed by Dr. George P. 

Smith in 1985 [53]. The high-throughput technology involves the expression of 

combinatorial peptide libraries on filamentous phage coat proteins, and is often utilized to 

select high affinity ligands [53-55]. The best characterized of the filamentous phage is the 

Ff class, which structurally resemble a flexible rod. The Ff genome encodes 11 proteins; 

two of these are cplll and cp VIII, which are surface exposed and are, for this reason, used 

to display the foreign peptides on the phage surface [53-55]. One of the most common 

phage display vector systems is the fUSE5 vector, which displays up to five copies of the 

peptides on cplll. Another commonly used phage display vector is the f88 vector system, 
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which displays several hundred copies of the peptide on cpVIII. Experimentally, the 

phage display library is most often screened against an antigen of interest using several 

rounds of affinity selection, elution and amplification. The amplification step is relatively 

straight forward in that the Ff class of phage infects gram-negative bacteria, such as E. 

coli, and uses the bacterial machinery to produce progeny phage, which are released 

without lysis through the bacterial plasma membrane [3, 53-55, 147-150, 270]. Phage 

display technology has been employed to discover novel peptides that bind cancer cells. 

For example, RGD-peptides have been developed that target the tumor vasculature by 

binding to av~3-integrin (vitronectin receptor) [152, 153]. The SGRSA peptide has been 

found to have high binding affinity to uP A [ 154] and the peptide CGNSNPKSC to bind 

to gastric cancer endothelium [271]. Our laboratory has developed a number of peptides 

that target cancer cells. Among these are the peptide KCCYSL that binds to the 

ErbB2/HER2/neu receptor [32, 151], which is a member of the epidermal growth factor 

(EGF) receptor family and is upregulated in both ovarian and breast carcinoma. The 

ErbB2/HER2/neu oncogene is overexpressed in approximately 15-30% of ovarian 

carcinomas and is associated with an increased risk of progression and death, especially 

among women diagnosed with stage I and II ovarian carcinoma [272, 273]. In addition, 

the peptides IAGLATPGWSHWLAL and ANTPCGPYTHDCPVKR were selected for 

binding to the prostate carcinoma cell line PC-3 [31, 39] and galectin-3, respectively [29, 

36, 38, 235]. Furthermore, a number of peptides have been developed that bind to the TF 

carbohydrate antigen, which is present on approximately 90% of human carcinoma cells 

and is involved in cell adhesion and migration [26, 169, 274, 275]. Most of these tumor 

targeting peptides have been developed to function as imaging and/or therapeutic agents 
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of human cancers. Radiolabeling of tumor targeting peptides provides an effective 

method of eradicating cancer cells as well as imaging tumors in vivo using technologies 

such as SPECT and PET. 

New Ovarian Cancer Cell Targeting Peptides 

In order to efficiently select ovarian targeting peptides with high affinity for a 

tumor and desirable pharmacokinetics, it is important to initially pre-clear the phage 

display library from peptide motifs that bind to normal vasculature. This may be 

accomplished by intravenously injecting non-tumor bearing mice with an appropriate 

volume of> 1014 virions/mL of phage display library followed by a 15 minute incubation 

time. Mice will then be sacrificed, the blood harvested and unbound phage amplified and 

purified for further rounds of selection. For in vivo selections against ovarian carcinoma, 

our laboratory has used SCIO mice carrying SKOV-3 human carcinoma cell xenografted 

tumors. After injection of pre-cleared phage library tumor bound phage may be eluted 

after excision by using detergents. Amplified and purified phage may then be used for 

further rounds of in vivo/ ex vivo selections [31, 41, 14 7]. Selected phage clones may 

additionally be analyzed for their binding affinity by micropanning experiments, in which 

phage are incubated with different carcinoma and normal cell lines. Phage binding 

affinity can then be evaluated by comparing the number of infectious units (TU/mL) 

between the cancerous and normal cell lines. In order to analyze the binding affinities of 

peptides outside of the phage environment, biotinylated or radiolabeled peptides may be 

synthesized and used in in vitro/in vivo binding studies [31, 40]. In vivo selection of 

ovarian carcinoma specific peptides can be an inefficient procedure. One potential barrier 
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is the presence of many tissue types within the tumor such as endothelial cells and 

connective tissue. Determination/selection of the targeted tissue for each selected peptide 

can be difficult when the in vivo milieu is so complex. Thus, an additional round of ex 

vivo selection may be added to try and select peptides that bind directly to ovarian 

carcinoma tumor cells. For this purpose MACS® technology may be utilized to separate 

ovarian carcinoma tumor cells from undesired tissue types. In order to avoid non-specific 

binding of phage, the phage may first be selected negatively against the MACS column 

and streptavidin labeled magnetic beads. Cells from excised human ovarian carcinoma 

tumors from xenografted mice may then be labeled with a mixture of biotinylated 

antibodies against known ovarian cancer biomarkers and then bound to streptavidin 

magnetic beads. Cells can then be loaded onto a MACS separation column and incubated 

with phage from previous selection rounds, and bound phage may then be eluted from 

cells using detergents and subsequently amplified and purified. A good candidate for a 

known ovarian cancer biomarker includes EpCAM, which is overexpressed in a variety 

of carcinomas, as well as normal epithelial tissues. Overexpression of EpCAM is present 

in - 70% of ovarian carcinomas and is significantly related to overall decreased survival 

[276]. ErbB2/HER2/neu is a member of the EGF receptor family and is also 

overexpressed in both ovarian and breast carcinoma. The ErbB2/HER2/neu oncogene is 

overexpressed in approximately 15-30% of ovarian carcinomas and is associated with an 

increased risk of progression and death, especially among women diagnosed with stage I 

and II ovarian carcinoma, which makes it an interesting cell surface biomarker for 

ovarian cancer [272, 273]. 
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New Ovarian Cancer Stem Cell (CSC) Targeting Peptides 

Selection of phage display derived peptides with high binding affinity for ovarian 

CSC is complicated by the fact that CSC only represents a small percentage of the entire 

tumor mass [17, 83]. Thus, CSC must initially be enriched from the remaining regular 

cancer cells. This may be done, as described above, utilizing MACS® technology using 

antibodies against known ovarian CSC biomarkers such as CD44, CDI 17 and CD133 

[14, 20,263, 264]. Alternatively, CSC can be selected by growing ovarian cancer cells in 

stem cell appropriate medium [20, 21]. Successful separation of CSC may be visualized 

by formation of spheroids in culture and staining with antibodies against ovarian CSC 

biomarkers. It may be advisable to further select CSC using flow cytometry cell sorting 

using antibodies against the known ovarian CSC biomarkers [17, 21]. Further, normal 

cancer cells may be separated during this process and used for negative selections. Even 

though the nature of CSC prevents selection of phage display derived peptides in vivo, 

pre-clearing of the phage display library may still be performed in non-tumor bearing 

mice as described above. In the early stages of selections, it is also important to consider 

the tumor microenvironment, in that CSC comprise only a small part of the tumor bulk 

[14, 17]. Thus in order to ensure specific binding, the library may be further pre-cleared 

against normal ovarian cancer cells before selecting for binding to CSC. Such a selection 

should be done ex vivo using cultured normal tumor tissue, and may be performed by 

utilizing MACS®technology as previously described. However, if the normal cancer cells 

have already been separated from CSC using flow cytometry, it will be sufficient to use 

non-labeled cells in suspension. Experimentally, it may be difficult to obtain large 

numbers of ovarian CSC, and it can be essential to cultivate CSC in appropriate stem cell 
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medium [14, 17, 20, 21] after separation from the tumor bulk. Cultured ovarian CSC 

form three dimensional spheroids in stem cell medium and it may be necessary to 

dissociate the cells to a single cell suspension for the phage display selection. For the 

selection, the MACS® technology may be employed by labeling ovarian CSC with 

antibodies against the known biomarkers CD44, CDl 17 and CD133 [14, 20, 263, 264]. 

Alternatively, CSC in suspension or grown on plates can be used instead. It is important 

to note that cells grown under such conditions must be tested for the presence of ovarian 

CSC biomarkers before selection in order to ensure that cells have not differentiated. 

Furthermore, it is imperative to use a large number (> 1013 virions) of phage in the first 

selection rounds in order to guarantee high diversity of phage clones [277]. After initial 

rounds the number of phage may be lowered to increase selection stringency. As 

previously described, selected phage clones may be further analyzed for their binding 

affinity by micropanning experiments, in which phage are incubated with normal ovarian 

cancer cells and ovarian CSC. The corresponding peptides of identified high binding 

clones may then be synthesized and biotinylated or radiolabeled, and analyzed for their 

tumor targeting abilities [31, 40]. Peptides with high binding affinity for CSC will most 

likely not be applicable as imaging agents due to the low percentage of CSC in a tumor. 

However, the chemotherapeutic abilities of such radiolabeled peptides can be evaluated 

in in vivo therapy studies using xenografted mice [27, 28, 33, 278]. Most likely, 

radiolabeled peptides for CSC tumor therapy must be combined with other forms of 

chemotherapy, such as more traditional platinum based drugs, in order to eradicate all 

cells in a tumor [279]. Thus, in a mouse therapy study it may be necessary to compare the 

therapeutic effects of drugs such as carboplatin and paclitaxel, which are standard in 
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current ovarian cancer treatment, to the effects of the radio labeled peptide, as well as to a 

combined approach. 

Radiolabeled Peptides for Tumor Imaging and Therapy 

While antibodies and their fragments are by far the most used cancer targeting 

imaging and therapeutic agents [50], peptides exhibit better biodistribution properties 

[45-49]. High kidney uptake has, however, been observed with peptides, which poses a 

problem in regard to tumor imaging near the kidney and with toxicity caused by 

accumulation of radiolabeled peptides [45, 49, 50, 280]. Thus, lowering renal uptake is 

important and may be done by changing parts of the peptide sequence, trying different 

radionuclides and chelators or by co-administration oflysine or arginine [45, 49,281]. 

Radiolabeling of tumor targeting peptides affords a proficient way of in vivo 

imaging using technologies such as SPECT and PET. SPECT was one of the first 

imaging modalities used clinically, and is widely employed in cancer imaging today; 

frequently utilizing both 99m.rc (6 h half-life) and 1111n (2.8 day half-life). PET is an 

emerging imaging technique that offers certain advantages compared to SPECT in regard 

to sensitivity as well as quantitation [282]. The positron-emitting tracer 18F-FDG is a 

commonly used PET tracer for imaging of cells with elevated glucose metabolism [283]. 

However, the uptake of 18F-FDG is not increased in all cells, and has not shown great 

promise in early stage ovarian cancer diagnosis [284]. Therefore, alternative PET tracers 

are being developed that instead target antigens on cancer cells [110,282]. A well-known 

example is octreotide, an eight amino acid cyclized peptide, that has been successfully 

utilized in imaging of somatostatin receptor positive tumors in humans when labeled with 
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111In-diethylenetriaminepentaacetic acid (DTPA) [159]. Other examples include the a.­

MSH analog, which has been conjugated with the chelator DOTA and labeled with 64Cu, 

86Y and 68Ga for PET imaging of melanoma [161, 285], as well as peptides identified by 

our laboratory that bind ovarian, breast, and prostate tumors [32, 38-40, 163, 286]. The 

phage display selected peptide KCCYSL that bind ErbB2/HER2/neu has been 

radiolabeled with 1111n and used for SPECT/CT imaging of human MDA-MB-435 breast, 

and OVCAR-3 and SKOV- 3 ovarian xenografted tumors (Figure 4.2) [32, 40, 151, 163]. 

Whereas many cancer therapeutic agents function by binding and inhibiting 

receptors or other molecules involved in the progression of cancer, radiolabeling of 

peptides provides a method to target and eradicate cancer cells independent of peptide 

function and intracellular signaling pathways [139]. Labeling peptides with P-particle 

emitting radioisotopes are being used for targeted tumor radiotherapy and offer 

advantages in regard to varying degrees of energy emission. High energy P-emitters such 

as 90Y (2.7 day half-life) are appropriate for the treatment of large tumor burdens, 

whereas medium and lower-energy P-emitters, such as 177Lu (6.7 day half-life) may be 

more suitable for treating smaller tumors, residual tumor or metastatic deposits found in 

ovarian cancer [287, 288]. One example of a radiolabeled peptide being developed for 

tumor therapy is the a.-MSH peptide analog, CCMSH, which targets melanoma cells. The 

a.-MSH analog has been conjugated with DOTA and labeled with 212Pb and used in 

melanoma therapy studies in mice. The treatment showed significantly increased survival 

rates, in which 45% of the mice receiving the highest dose of radiation survived the study 

disease-free [27, 28]. 
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Figure 4.2. SPECT imaging of 111In-DOTA-GSG-KCCYSL ErbB2 targeting peptide in MDA­

MB-435 breast and OVCAR-3 ovarian tumor bearing SCID mice. MDA-MB-435 breast and 

OVCAR-3 ovarian tumor xenografted SCID mice were injected in the tail vein with 11.1 MBq of 

111In-DOTA-GSG-KCCYSL peptide or 111In-DOTA-GSG-KYLCSC scrambled peptide and 

imaged by rnicroSPECT/CT one hour later. 
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These results demonstrate that radiolabeled peptides offer great promise as both 

cancer imaging and therapeutic agents. Peptides that target early stage ovarian cancer 

cells could be developed into diagnostic imaging/therapeutic agents. Furthermore, 

peptides may be developed that target tumor subpopulations such as ovarian CSC. 

Identification of Antigens Targeted by Selected Phage Displayed Peptides 

Both phage and peptides can be used in formats that allow identification of 

targeted antigens. Previous studies have utilized cross-linking of phage or peptides to 

antigens as a means of identifying peptide targets [289, 290]. Kelly et al. have employed 

photolinker and biotin labeled phage to bind and capture target antigens on the cell 

surface. After binding and cross-linking, cell lysates were incubated with streptavidin 

beads. Antigens were eluted by reversing the crosslink and subsequently used in sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SOS-PAGE) followed by tryptic 

digest and mass spectrometry analysis [289]. However, these techniques can suffer from 

lack of specificity due to the use of multiple cross-linkers and the large size of 

filamentous phage. In addition, phage are known to aggregate and exhibit high non­

specific binding to cells, which may result in identification of numerous irrelevant 

proteins via mass spectrometry. Alternatively, uniquely designed immobilized fusion 

proteins may offer a powerful means of isolating specific targets of phage display 

selected peptide sequences. For example a recombinant fusion protein containing a phage 

display selected peptide can be developed to aid the antigen capture process. Such a 

fusion protein may contain an N-terminal protein, such as thioredoxin, which acts as a 

soluble fusion partner linked to a matrix specific binder and a series of protease cleavage 
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sites. Our laboratory has adapted a thioredoxin fusion protein that remains soluble in E. 

coli cytosol and can be purified, during immobilization on S-protein sepharose (Figure 

4.3). Thioredoxin is removed by cleavage with a protease, leaving the phage display 

peptide still bound to the S-protein sepharose. The immobilized peptide complex will 

then be accessible for binding to its target protein. The phage display derived peptide and 

the corresponding antigen may then be released from the S-protein sepharose by cleavage 

with a second protease. Once bound target proteins from cell lysates have been obtained 

they may be analyzed by 2D gel electrophoresis and identified by proteomic 

methodologies. 

Here we hypothesize that spheroids may be established from cultured SKOV-3 

cells, and that these aggregates will morphologically resemble ovarian CSC and express 

relevant biomarkers. Further, these spheroids may be utilized in phage display selections 

to identify peptides with affinity for ovarian CSC, and that such peptides may be 

employed as radionuclide therapy agents. 
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Figure 4.3. Isolation of bacteriophage targets using immobilized heterofunctional thioredoxin 

fusion proteins. Thioredoxin acts as a solubilizer and allows the complex to bind to the column 

matrix in aqueous solution. After cleavage of thioredoxin, cell lysate is added to let the phage 

display derived peptide capture target antigens, which are eluted from the column by protease 

cleavage. 
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Materials and Methods 

Chemicals and Reagents 

Tissue culture reagents were from Invitrogen (Carlsbad, CA). Unless otherwise 

stated, chemicals were purchased from Sigma Chemical Co. (St. Louis, MO). 

Cell Lines and Tissue Culture 

The human ovarian adenocarcinoma (SKOV-3) and human cervical cancer 

(HeLa) cell lines were purchased from American Type Tissue Culture. The cell lines 

were grown under differentiating conditions in RPMI 1640 ( custom) with 10% FBS, 2 

mM L-glutamine, 1.7 µM insulin and 48 mg/ml, at 37°C in 5% CO2• For establishment of 

SKOV-3 spheroids, cells were lifted by 0.2% Trypsin-EDTA and transferred to ultra-low 

attachment cell culture plates and grown under stem cell conditions (DMEM/F12 

supplemented with 20 ng/mL EGF, 10 ng/mL basic fibroblast growth factor, bFGF; and 

10 µg/mL insulin). After 7 days under these conditions, SKOV-3 spheroids were 

transferred to differentiating conditions and monitored for up to 70 days. 

Fluorescent Microscopy 

SKOV-3, SKOV-3 spheroids and HeLa cells were fixed in ice cold methanol for 2 

min at -20°C on microscope slides. Cells were then washed with PBS and blocked with 

10% FBS, 0.3 M glycine, 0.01 % Tween-20 in PBS for 1 h at room temperature. Next, 

chicken anti-human CD44 and goat anti-human CDl 17 antibodies were added and 
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incubated for 30 min at room temperature, and slides were washed with PBS. Secondary 

anti-chicken antibody labeled with FITC and anti-goat antibody labeled with TEXAS 

Red fluorophores, were incubated with the cells for 30 min at room temperature in the 

dark, and then washed extensively (0.01 % Tween-20, PBS). Cells were viewed with an 

epifluorescent Nikon Tl -SM inverted microscope (Nikon, Melville, NY). 

Phage Display Selections 

A coat protein VIII displaying 15-mer peptide library (f88cys5) was a kind gift 

from Dr. George P. Smith (NCBI accession #AF246454). The concentration of phage 

particles (V /mL) and transducing units (TU) were determined by measuring absorbance 

at 260 nm and 280 nm and by tittering in E. coli K91 Blue Kan, respectively. The library 

was initially pre-cleared in a negative selection round against SKOV-3 cells grown under 

differentiating conditions by incubating lxl013 virions with lxl06 cells for 1 h at 4°C. 

Cells were pelleted by centrifugation (1,000 x g, 1 min) and unbound phage were 

collected from the supernatant and used in a subsequent positive selection round. Bound 

phage were eluted with 2.5% CHAPS. Both collections of phage were amplified in E. 

coli K91 Blue Kan as described per previous methods [178] . For positive selection 

against SKOV-3 spheroids, lxl013 virions of purified phage were incubated with lxl06 

cells for 1 h at 4°C. Next, cells were washed thrice with TBS and bound phage were 

eluted with 0.1 M HCI, pH 2, and then 2.5% CHAPS or. Collected phage were amplified 

in E. coli as previously described. After each selection round, the DNA of random phage 

clones were sequenced to identify the foreign phage display inserts and to monitor the 

selection process. 
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Results 

Characterization of SKOV-3 Spheroid Cells 

Spheroids of the human ovarian carcinoma cell line SKOV-3 were established 

under stem cell conditions, which was evident from formation of cell aggregates over a 

period of 1-3 days (Figure 4.4). To determine if the SKOV-3 spheroids were capable of 

giving rise to attached differentiated cells, a well-known characteristic of cancer stem 

cells, the spheroids were transferred to differentiating conditions and monitored for up to 

70 days (Figure 4.5). After 21 days and, until the end of the experiment (70 days), single 

cells in suspension were observed; however the spheroids failed to produce cells that 

morphologically resembled attached differentiated SKOV-3 cells. 

To further determine if the spheroid cells were in fact cancer stem cell-like, 

expression of the ovarian cancer stem cell markers CD44 and CD 117 were evaluated 

using fluorescent microscopy of SKOV-3, SKOV-3 spheroids and in HeLa cells, a cell 

line known to express both markers (Figure 4.6). As expected, the HeLa cells expressed 

both CD44 and CDll 7, which confirmed the functionality of the assay. Further, results 

showed that the SKOV-3 spheroids expressed increased levels of both markers compared 

to SKOV-3 cells grown under differentiating conditions, indicating that the former had 

been enriched or undergone transformation. Based on these results, the SKOV-3 spheroid 

cells were used in phage display selection rounds to identify clones with binding affinity 

for ovarian cancer stem cells. 
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Figure 4.4. Growth of SKOV-3 spheroid cells. SKOV-3 cells were grown in differentiating 

medium, and then transferred to stem cell conditions (Day 0). Spheroids formed over a period of 

three days (Day 1 to Day 3). Cells were detected by light microscopy (Nikon Tl-SM inverted 

microscope; Nikon, Melville, NY). 
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Figure 4.5. Growth of SKOV-3 spheroids under differentiating conditions. SKOV-3 spheroid 

cells were initially established under stem cell conditions, then transferred to differentiating 

medium to induce growth of attached and differentiated cells and monitored over a period of 70 

days. After 21 days, single cells in suspension were detected; however, it was not possible to 

identify attached cells at any time point. Cells were detected by light microscopy (Nikon Tl-SM 

inverted microscope; Nikon, Melville, NY). 
121 



SKOV-3 

SKOV-3 
spheroid~ 

HeLa 

CD44 CD117 light 

Figure 4.6. CD44 and CDI 17 expression in SKOV-3, SKOV-3 spheroid and HeLa cells. SKOV-

3 and HeLa cells were grown under differentiating conditions, whereas SKOV-3 spheroids were 

maintained in medium supplemented with stem cell growth factors. Cells were probed with 

primary chicken anti-human-CD44 and goat anti-human-CDI 17 antibodies, and fluorescently 

labeled secondary anti-chicken-FITC and anti-goat-Texas Red antibodies and detected by an 

epifluorescent Nikon Tl-SM inverted microscope (Nikon, Melville, NY). 
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Phage Display Selections 

An initial phage display selection round was performed against SKOV-3 cells 

grown under differentiating conditions to pre-clear the library from phage clones that 

bound to these cells. The DNA of both bound and unbound phage clones were sequenced, 

and the foreign peptide inserts were determined to follow the process of selection and 

detect potential contamination. In the collections of SKOV-3 bound and unbound phage, 

17 (Pl-Pl 7) and 18 (Nl-Nl8) individual phage clones were identified (Table 4.1). Of the 

SKOV-3 bound clones, 47% (8/17), and 39% (7/18) of the unbound phage, were found to 

contain stop codons in the foreign peptide inserts. As a result these phage clones 

displayed no foreign inserts and could be described as "pseudo-wild type". 

Unbound phage from the first round of selection were used in a subsequent 

screening round against SKOV-3 spheroids. Surface bound phage were initially eluted 

with acid, after which potentially internalized phage were collected by CHAPS elution. 

Again, random clones were sequenced to determine the foreign peptide inserts and to 

evaluate the selection process. In the acid and CHAPS elutions, 22 (Al-A22) and 21 (Cl­

C21) individual phage clones were identified, respectively, of which 55% (12/22) and 

52% (11/21) contained stop codons (Table 4.2). 
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Table 4.1. Negative phage display selection of a f88-cys5 library against SKOV-3 cells. 

Negative selection 

SKOV-3 bound phage Unbound phage 

Phage No. Sequence Phage No. Sequence 

Pl PNP ACTNTPSCSSPP Nl RPDTCGWGPPCRPGN 
P2 TPQICQAIYTCSISV N2 NTARCQTNTRCQPVA 
P3 S*LTCPF*TSCPKYD N3 HVPHCAA VESCWHY* 
P4 EFPHC*RRLHC*PPQ N4 KESPCRSPT*CT API 
P5 PRXSCGTSAPCRPRQ N5 PTRPCPPTPHCNRSG 
P6 HPINCTPRQPCIDPT N6 HNRSCHPIPSCTAP A 
P7 P*PLCAL TPICPPHT N7 PSEGCSTL *VCCTRS 
P8 LVAHCPPILGCPRPT N8 VTLHCHPIMYC*DSC 
P9 PNFNCWHRIQCPDRA N9 NIHACQXPLRCTSPP 
PIO PTQCEQSM*CNSPP NlO HPNKCRISRVCTRTP 
Pll RPSHCTPQKVCAQT* Nll PHSQCVKKFQCPLLM 
P12 RLRICPRQNPCV*CD N12 SPTLCHANKNCPRPS 
P13 IASMCVPNLHC*SPE N13 *TDICPISTFCIDIR 
P14 RPRFCETLPACQTPL N14 TRVDCHPPHNCPKPS 
P15 HQPTCNPRQRCTMAS N15 IDPHC*PRRRGMDTW 
P16 QPNTCPSPLMC*LPQ N16 WRRYCW AAPVCTPSQ 
P17 ATPTCLMRQPCLSNP N17 NTSKCKTTLHCGRSR 

N18 PPAGCV AP AQCPC*C 

The phage display library (1013 virions) was incubated with 106 SKOV-3 cells grown under 

differentiating conditions. Bound phage were eluted with 2.5% CHAPS. Unbound phage were 

collected and used in a subsequent positive selection round. All phage were amplified in E. coli 

and the DNA of random clones were sequenced and the foreign peptide inserts were determined. 

*Stop codon. 
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Table 4.2. Positive phage display selection of a f88-cys5 library against SKOV-3 spheroid cells. 

Positive selection 

Acid elution CHAPS elution 

Phage No. Sequence Phage No. Sequence 

Al IPDCCDPSATC*RVL Cl YPGSCRRSLPC*VQR 
A2 VSPTCTRPSSCTQPP C2 R*PACMRTPGCRSRV 
A3 R *PACMRTPGCRSRV C3 APAGCQVPTPCRQRS 
A4 RRHECPLAAFCDLRR C4 LSRTCLFKTCPGPL 
A5 QNAKCTDARPCPVLR C5 YPGSCRRSLPC*VQR 
A6 TKLNCSP* APCQNPW C6 LSNTCDTPMTCHKTP 
A7 YPGSCRRSLPC*VQR C7 LSRTCHL *DVCPGPL 
A8 YPGSCRRSLPC*VQR C8 QQQRCYDNAQCTNGTP 
A9 PYANCPAKHRCLYLH C9 PPDKCFAAGTCTNDT 
AlO YPGSCRRSLPC*VQR ClO LRRTCHL **RCPGPL 
All PRTHCTYITQCSALA Cll R*PACMRTPGCRSRV 
A12 RWRHCHAQHQCPAHY C12 PSLSCCR*HSCPQWQ 
A13 *R *LCPTPQPCARLF C13 TY ASCM*TPLCPP AE 
A14 X*RLCSLRPGCCSGC C14 LSNTCDTPMTCHKTP 
A15 QQSVCCVTRGCMQEN C15 L TILCDTPMTCLPRP 
A16 YPGSCRRSLPC*VQR C16 LSRTCHL *DACPGPL 
A17 PPASCQTHPTCSPDT C17 IPNCCHPSATC*HVL 
A18 YPGSCRRSLPC*VQR C18 E*IMCDLMACT*KS 
A19 LFPNCCHPSATC*HVL C19 PPASCPQHPRCNTQP 
A20 LSNTCDTPMTCHKTP C20 R*PACMRTPGCRSRV 
A21 R*PACMRTPGCRSRV C21 LSNTCDTPMTCHKTP 
A22 PLESCGATAACDP AH 

The phage display library (1013 virions) was incubated with 106 SKOV-3 spheroid cells grown 

under stem cell conditions. Bound phage were initially eluted with acid (0.1 M HCl, pH 2) 

followed by elution with 2.5% CHAPS. Bound phage were collected, amplified in E. coli and the 

DNA of random clones were sequenced and the foreign peptide inserts were determined. 

*Stop codon. 
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Discussion 

Previous studies by other groups have shown that cancer stem cell spheroids may 

be formed by culturing cells under stem cell conditions [14, 19, 21, 291]. To identify 

peptides with binding affinity for ovarian cancer stem cells, our laboratory established 

such spheroid cells from the human ovarian carcinoma cell line SKOV-3. These 

spheroids formed over a period of three days and resembled CSC aggregates reported by 

others [14, 21]. In order to validate that these cells were in fact cancer stem cell-like, the 

capability of the spheroids to give rise to differentiated cells was investigated. Single 

cells were observed after 21 days under differentiating conditions; however, these were 

floating and morphologically different from attached SKOV-3 cells [292]. The reason for 

the absence of differentiated cells is unclear. Previous studies have reported development 

of mature cells by CSC spheroids under similar conditions [20, 21]. One possible 

explanation may be that the spheroid cells had undergone senescence, and were as a 

result unresponsive to the conditions in the differentiating medium. In fact, CSC have 

been shown to constitute the major fraction of quiescent cells in ovarian tumors [293]. 

Another reason may lie in the fact that FBS contains low levels of FGF as well as other 

growth factors [294], which may cause the cells to stay in a de-differentiated state. In 

future experiments, this may be overcome by using other serums or FBS from which 

growth factors have been removed. Alternatively, the SKOV-3 spheroids may lack some 

of the properties generally observed for CSC, as the cells are derived from a cultured cell 

line and have not recently been propagated from a tumor. A change in morphology, 
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protein expression as well as in growth characteristics are known to change over time in 

cultured cell lines, and may therefore be vastly different from primary tumor cells [295, 

296]. Nevertheless, other research groups have showed that spheroids, that expressed 

CSC biomarkers and that gave rise to differentiated cells, could be formed from cell lines 

[17, 292], suggesting that our cells may have changed over time in culture, or that the 

differentiating medium contained inhibiting factors. 

To further investigate the characteristics of the SKOV-3 spheroids, expression of 

the ovarian CSC markers CD44 and CDl 17 was evaluated using fluorescent microscopy. 

Increased levels of both markers were detected in the SKOV-3 spheroids compared to 

SKOV-3 cells, indicating that the former had undergone transformation to a less mature 

state and/or had been enriched from the original population of cells. Similar results have 

previously been observed by others, in which spheroids were found to express elevated 

levels of several stem cell related proteins including CD44 and CDl 17 [19-21, 297]. 

Based on these results, the SKOV-3 spheroids were used in a phage display 

selection to identify phage clones with binding affinity to ovarian CSC. After two rounds 

of selection of an f88-cys5 phage library several individual clones were identified. Of 

these, almost half contained stop codons in the foreign insert, indicating that these clones 

resembled WT phage and lacked display of non-inherent peptides. Since the foreign 

peptides are presented at the NH2-terminus of cp VIII, and are therefore the first part of 

the protein to be synthesized, a stop codon in this sequence will result in termination of 

translation [248]. As the DNA in f88 libraries contains two cpVIII genes, one for normal 

and one for peptide-displayed coat protein, the virion will morphologically be identical to 

WT [298]. The lack of a foreign displayed peptide may give these 'pseudo' WT phage a 
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growth advantage, and the population of clones with stop codons may therefore become 

more prevalent in selected pools. Additionally, termination codons may occur by 

frameshift mutations [298], or from the mere probability of a stop codon occurring in a 

15-mer amino acid sequence. In contrast to f88 libraries, the fUSE5 library lacks a copy 

of wild type cplll [299], and stop codons in the foreign peptide sequence will as a result 

render the phage incapable of infecting bacteria. This explains why stop codons are 

absent in fUSE5, but are observed in the f88-cys5 library. Further, other research groups 

have reported the presence of termination codons in f88 libraries; although at much lower 

levels than what was observed in this study [300,301]. 

Taking these results together, our laboratory decided that this study should be 

redone in future experiments using cancer cells derived from excised human ovarian 

tumors obtained at the University of Missouri Hospital. By doing so, potential spheroids 

would be more likely to resemble and behave like physiological CSC, and selected 

peptides would be more probable to target these cells in vivo. Further, the phage display 

selection should be done using a different library without a high percentage of stop 

codons, such as fUSE5, which has previously been successfully employed in our 

laboratory. 
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Conclusion 

In conclusion, these experiments demonstrated that it was possible to establish 

CSC-like SKOV-3 spheroid cells by growing these under stem cell conditions, and that 

these cells expressed the ovarian CSC biomarkers CD44 and CDll 7. Nonetheless, the 

spheroid cells failed to give rise to differentiated cells. To select peptides with binding 

affinity for ovarian CSC, a phage display selection using a f88-cys5 library was initiated. 

However, this library was found to contain a high amount of phage clones with 

termination codons in the foreign peptide inserts. 
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Addendum 

The in vivo phage display selections described in Chapter 2 were performed by 

Jessica Newton-Northup prior to the Mette Soendergaard joining the laboratory in 2009. 

The remaining selections, as well as all other experiments, were carried out by Mette 

Soendergaard under initial technical guidance of Jessica Newton-Northup. 

Chapter 2 and Chapter 3 of this dissertation have been submitted to the Journal of 

Nuclear Medicine (JNM) and Combinatorial Chemistry and High-Throughput Screening, 

respectively, as research manuscripts for publication. The Chapter 4 introduction has 

been published in the Journal of Molecular Biomarkers and Diagnosis as a review paper. 
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