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ABSTRACT 

Over the last few decades there has been tremendous progress in organic 

photovoltaics (OPVs), with efficiencies reaching over 10%. Still, many factors including 

the origin and the dynamics of charge carrier involved are debatable. New and sensitive 

techniques are constantly being devised to identify the origin of free charges. At the same 

time, lot of research has also been devoted to synthesize low bandgap material such that 

its absorption spectra overlap with that of the solar spectrum. 

The most important hindrance in organic semiconductors is the formation of bound 

electron-hole (exciton) charge pair upon photoexcitation. Additional energy is required to 

dissociate the bound pair to generate free charges for photovoltaic application. The most 

popular and efficient way to dissociate excitons is to fabricate a bulk heterojunction solar 

cell, which comprises of a blend of at least two polymers: one donor and the other 

acceptor. It is very well established that the presence of fullerene (acceptor) helps in 

transfer of the negative charges from the donor polymer to fullerene, making the exciton 

slightly less bound. The nanometer scale islands further help in migration of charges.  

A crucial aspect of our studies has been evaluating the role of various excitonic states 

such as charge-transfer and triplet excitonic states in device efficiencies. The focus of this 

work was on diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A) type conjugated 

copolymers which have low bandgap energies and have been known to show high 

efficiency in organic photovoltaics. These copolymers have D-A unit present in the same 

chain, which lowers the optical bandgap of the material.  Variation of either the donor or 

the acceptor fraction offers an option to tune the optical bandgap by using the same D-A 
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chromophores. The D-A configuration also results in the separation of positive and 

negative charges within the same polymeric chain, which is the intramolecular charge- 

transfer excitonic state. We analyze the intramolecular charge-transfer state using bias 

dependent absorption studies, which allowed us to estimate the binding energy of 

intramolecular exciton. Later, we performed density functional theory (DFT) and time 

dependent DFT calculations to identify the origin of the intramolecular exciton 

absorption.  

Taking the copolymers as donor (and fullerene as acceptor) in an organic photovoltaic 

device, we probe the (intermolecular) charge-transfer states formed at the 

copolymer/fullerene interface. We utilize monochromatic photocurrent method and a 

highly sensitive (and fast) Fourier transform photocurrent spectroscopy technique to 

probe the intermolecular charge-transfer states in the device. Our analyses show that the 

optical bandgap difference between the copolymers and fullerene plays a pivotal role in 

stabilization/destabilization of charge-transfer states in copolymer-fullerene systems.  

The triplet excitons are also known to play an important role in OPV efficiency. We 

probe the diffusion length of triplet exciton in ladder-type polymers by devising a simple, 

yet efficient method using optical modulation spectroscopy (photoinduced absorption 

spectroscopy). The diffusion length of triplet excitons is estimated to be almost three 

orders of magnitude more than the singlet excitons. Further, by implementing a 1D 

random-walk model to the photoinduced absorption data, we estimate diffusivities of the 

triplet exciton in our sample.  
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1.                                                                                                           

INTRODUCTION 

 

1.1 Conducting Polymers 

With the discovery of organic semiconductors there have been tremendous advances 

in the synthesis and electronic application of conducting organic materials. The initial 

conductivities of organic crystal were almost four orders of magnitude less than doped 

inorganic semiconductors such as silicon. Around 1862, Henry Letheby prepared 

polyaniline which had shown conductive properties.[1] Though it’s exact electronic 

properties were unknown at that time, its derivatives were used in textile printing and 

dyeing. Later melanin, a biological pigment and another derivative of aniline, showed 

properties of tunable conductivity. Due to the dark color of many organic polymers their 

application was limited to non-electronic application such as antistatic coating, additives 

to corrosive primers, and energy storage. In 1960’s polyaniline-iodine complex were 

synthesized that showed conductivities of around 1 Scm-1. By 1974, polyacetylene and 

polypyrrole were found to exhibit conductivities in the range of 5-30 Scm-1. A major 

breakthrough was in 1977 with the results published on polyacetylene doped with 

halogen film with metallic luster showed conductivities close to several hundred Scm-

1.[2] Along with the electrical conductivities, several groups were involved in the 

application of  the conducting polymers in photoconductivity.  

Anthracene was the first organic crystal which showed photoconductivity.[3,4] In the 

late 1950s and 1960s the organic materials were also used as photoreceptors in imaging 
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systems. Photoconductivity was observed in many dyes, important biological molecules 

such as carotenes, chlorophylls and other porphyrins. Since the early 1990’s conducting 

polymers were used in a variety of electronic devices such as in organic light emitting 

diodes (OLEDs), organic field-effect transistors (OFETs), solar cell etc.  The initial 

polymers showed low solubility and stability, and hence, poor processing. Many of the 

current polymers are easily soluble in organic solvents such as dichlorobenzene and 

toluene. Hence, it is possible to create composites or blend polymers for thin film 

application.     

This thesis describes the systematic optical and electrical studies performed on 

organic semiconductor in the solid state (thin films~100-200 nm) for application in 

organic photovoltaics. The chapters/sections have been arranged as follows: the next few 

sections in Chapter 1 introduce the type of polymers chosen and the nature of optical 

transitions in organic semiconductors. Chapter 2 describes the optical and optical-

electrical assemblies for the present studies and the methods utilized to identify excitonic 

states in the organic semiconductors. It also gives an introduction of the working of an 

organic photovoltaic device, elaborates on the device structure and the device fabrication 

techniques. Chapters 3, 4, 5, and 6 discuss the experimental results and theoretical 

calculations-involving charge-transfer and triplet excitons in neat and blended polymer 

films. Finally, the summary and suggestions for future work are presented in Chapter 7.    
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1.2 Pi-Conjugated Polymers 

There are four types of bonding found in solids. The ionic bond results from columbic 

attraction between ions and counter charges. The metallic bonds are also ionic in nature, 

but the negative charges are free mobile electrons which account for high conductivities 

in metals. The covalent bond formed due to sharing of electrons between neighboring 

atoms. Most commonly known covalent solids are diamond, silicon and germanium. The 

weakest of all is the van der Waals bonds. Because of the weak nature of van der Waals 

bonds the electronic properties of individual atom is mostly retained. Since organic 

semiconductor imply compounds consist of carbon, it is important to elaborate on the 

properties of atomic carbon. 

The electronic configuration of a carbon atom is given by 1s22s22p2. It is possible to 

combine the one 2s and three 2p orbital in two ways. In one way, the 2s combines with 

three 2p to give four sp3 hybridizations as shown in fig. 1.1(a). Another way is to 

combine 2s with px and py to give three sp2, while leaving the pz unaltered. The three sp2 

have a planar arrangement while the pz orbital is perpendicular to the plane (fig. 1.1(b)). 

When the sp2 orbital combines with 1s orbital of H atom a σ-bond is formed. When two 

pz from each C atom combine as in shown in fig. 1.1(c), a highly localized electron 

density cloud results in the plane containing C and H atoms. It is termed as the double 

bonds or π bonds. In the case of aromatic compounds such as benzene the overlap of pz 

orbital of each carbon is such that it generates high electron density above and below the 

plane, but not in the plane. The π-bonds in benzene are delocalized.  An alternate single 

and double bond formed by out of plane overlap of pz orbital is termed conjugation. The 
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conductivity in a conjugated polymer (CP) is the result of the delocalized π-electrons and 

the transitions from filled to unfilled π-orbital, are the π- π* transitions. The molecular 

orbitals i.e., π- π* are also the bonding-antibonding orbitals. Analogous to the valence-

conduction band, the molecular orbitals are denoted by highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). In this work we 

analyze different classes of π-conjugated polymers which have potential application in 

photovoltaics. 

 

Figure 1.1(a) sp3 orbital (b) pz orbital and (c) π-orbital formed due to the overlap of pz 

orbitals. 

 

1.3 Excited States and Excitons 

Compared to inorganic semiconductors (εr ~10), the dielectric constant of organic 

semiconductor polymers is small (εr ~2-4). Hence, excitations in the molecular crystal 

result in a bound electron-hole pair (exciton). The exciton can be categorized as (a) 

Frenkel (b) Wannier-Mott or (c) intermediate or charge-transfer (CT) exciton and is 

shown in fig. 1.2(b).[5] Frenkel exciton can be described as an electron-hole pair located 

on the same molecular site. It also diffuses as a pair. In simple terms, if the lattice 

constant of molecular crystal is La , the radius of Frenkel exciton would be less than La . 

(a)                                (b)                                (c)
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Typically, for organic crystals the radius of Frenkel exciton is < 5 Å. Here, the radius of 

exciton is defined as the average separation of the electron from its correlated hole. A 

Wannier-Mott (WM) exciton is shown in fig 1.2. The WM excitons are mostly detected 

in inorganic systems due to the high dielectric constant of the medium. Since the 

Coulomb force is inversely proportional to the dielectric constant, a high dielectric 

constant lowers the force of attraction between the electron and hole, increasing the 

separation between electron and the hole. The radius of the WM exciton is ~40-100 Å. 

The charge-transfer (CT) exciton, as shown in fig. 1.2 as (c), is encountered in organic 

systems, where the exciton radius is only few times the nearest-neighbor distance. The 

CT exciton is also characterized by the fact that the electron and hole are situated on two 

different molecular sites. As an example, the CT state (dashed circle) in anthracene is 

shown in fig. 1.2(b). Note that the positive and negative charges reside on two different 

chromophore sites.  

               

                                     (a)                                                                 (b) 

Figure 1.2 Schematics of exciton in organic semiconductors. (a) (i) Frenkel (ii) Wannier-

Mott (iii) Charge-transfer (CT) exciton. (b) A CT state in an anthracene crystal.[Ref. 5]   

 

(i) (ii) (iii)
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Excitons with total spin S=0 (anti-parallel) are the singlet exciton ( 0S ), where as 

those with S=1 (parallel spins) are the triplet excitons ( 1T ). The different types of 

excitation process are shown in fig. 1.3.[6] The ground state, first singlet excited state, 

triplet ground state and higher triplet excited states, is represented by 0S , 
1S , 1T , 

NT , 

respectively. The incident light will generate 
1S  or higher singlet excitonic states. It is 

possible for the 
1S  state to decay back to the 0S  state by either radiative or non-radiative 

(NR) emission. The radiative emission is the photoluminescence (PL) emission. If the 

triplet state is accessible via an intersystem crossing (ISC), then the lowest singlet state 

can depopulate to the 1T  state, leading to the formation of triplet excitons. In this thesis, 

the 
NTT 1

 or T-T absorption has been probed in ladder-type polymers using 

photomodulation spectroscopy. It is also possible for the 
1S  state to depopulate to a low 

lying CT state. A central role in the photovoltaic process in the organic solar cells is 

played by CT complex states, which are intermediate steps between exciton dissociation 

at the heterointerface and free charge generation. In the work presented here, the CT 

states have been identified using photocurrent spectroscopy in a bulk heterojunction 

organic solar cell. The dissociation of the CT state results in formation of one negative 

and one positive charge. Since there is “mass” due to the coupling of the lattice vibrations 

associated with the charge, such charges are termed polarons. In fig. 1.3, the intra polaron 

absorption is represented by P.  
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Figure 1.3 The possible transitions in an organic semiconductor upon optical excitations. 

[Ref. 6] 

 

1.4 Materials 

1.4.1 Poly (3-hexylthiophene) or P3HT 

The chemical structure of P3HT monomer is shown in fig. 1.4(a). The hexyl group is 

attached to the thiophene group at position “3”. The regio-regular (RR) P3HT with 

molecular weight 20,000-70,000 was purchased from American Dye Society (ADS). 

P3HT is an electron rich polymer with a planar structure leading to a close packed π-

stacked backbone.  It is found to have the ability to crystallize when annealed, that helps 

in the charge transport along the polymer chain. 

 

1.4.2 Ladder-type polymers 

The optical and electronic properties of conjugated polymers are highly dependent on 

the backbone geometry of polymer. The various rings (such as phenyl) in most of the 

conjugated polymers are linked by single C-C bonds which are prone to rotation or 
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twists. They have small conjugation length leading to structural defects which severely 

affect their optical and electronic properties. It is possible to introduce a double stranded 

molecule which introduces rigidity and a planar backbone to the polymer. Ladder-type 

poly para-phenylenes (LPPP) belong to such class of polymers. The rigidity is also 

reflected in their ability to show high degree of purity and lowering of the optical band 

gap due to delocalized π electrons along the polymer backbone. [7,8] 

 The ladder-type polymers studied in this work are methyl substituted LPPP 

(MeLPPP) and adiaryl (diphenyl)-substituted LPPP derivative (PhLPPP) as shown in fig. 

1.4(b).  It was found that a trace amount of Pd in the PhLPPP backbone results in a higher 

fraction of triplet excitons compared to MeLPPP at room temperature.  The Pd 

concentration as estimated by inductively coupled plasma optical emission spectroscopy 

is less than 5 ppm for MeLPPP and less than 120–200 ppm for PhLPPP.  

 

1.4.3 Diketopyrrolopyrrole (DPP) based copolymers and statistical copolymers 

A very strong emphasis is being placed on achieving stable, low bandgap and 

enhanced molecular packing of conjugated polymeric semiconductors for an improved 

performance of organic optoelectronics. The requirement of low band gap material arises 

from the fact that photon flux from the sun varies with the wavelength (data from 

NREL).[9] Since most of the photon flux lies above 600nm, for a better performance of 

OPV, the solar spectrum emission must overlap with the absorption spectrum of the  

material in the infra-red region.[10,11]  The low band gap materials or copolymers can be 

synthesized by introducing alternative electron rich and electron deficient units in the 
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polymer backbone. In general, copolymers can be broadly classified as alternating 

copolymers, periodic copolymers, block polymers, and statistical copolymer. The design 

of systems incorporating both donor and acceptor chromophore in the same chain are of 

particular interest for applications in field-effect transistors and OPVs since they have a 

high degree of tunability of their electronic and optical properties. Several works 

incorporating D-A and donor-acceptor-donor (D-A-D) units in oligomers/polymers have 

reported improved efficiencies in OPVs.[12-16] 

Diketopyrrolopyrrole (DPP) containing copolymers have been used as high 

performance industrial pigment due to their thermal and photo-stability are now being 

considered for photovoltaic application.[17-22] Organic PVs based on DPP polymer 

show an overall PCE of 6.9%.[23] Copolymers of DPP that we have used in this work 

show p-type FET mobilities ~10-3 cm2Vs-1 from spin coated film [20] and yield ~3% PCE 

when utilized in unoptimized solar cell.[21]  DPP-based low bandgap materials are not 

just useful for device applications, but are designed to achieve environmentally stable 

organic semiconductors.[24]  In the present work, the DPP based polymers used are 

poly{2,6’-4,8-dihexyloxybenzo[1,2-b;3,4-b]dithiophene-alt-2,5-dihexyl-3,6-bis-(4-

phenyl-1-yl) pyrrolo [3,4c] pyrrole-1, 4-dione} (PDPP-BBT) and poly{2,60-4,8-

dihexyloxybenzo[1,2-b;3,4-b]dithiophene-alt-2,5-dihexyl-3,6-bis(5-thiophen-2-yl) 

pyrrolo [3,4-c] pyrrole-1,4-dione} (TDPP-BBT), along with a set of DPP-based statistical 

polymers.  The statistical copolymers have also shown applicability in OPVs. In the 

synthesis of copolymers, the same monomer or a set of comonomers can be combined to 

obtain molecular weight and copolymer sequence with different properties. Combining 
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different comonomers in random fashion, results in statistical copolymers.[25] The 

statistical copolymers have been designed to alter their band-gap and tune the 

morphology for controlling phase segregation.[26,27]  

The synthesis of the DPP copolymers is discussed in references.[20,21,28] The 

chemical structure for PDPP-BBT, TDPP-BBT and statistical copolymers is shown in fig. 

1.4(d), (e) and (f), respectively. Note the factor x in fig. 1.4(f). A higher value of x 

represents a higher value of DPP. Thus, Poly B has a higher DPP fraction than Poly A. 

 

1.4.4 Phenyl-C61-butyric acid methyl ester or PCBM 

The modified fullerenes or C60 was first synthesized by Jan C. Hummelen et al. [29] 

with the aim of application in biological and photophysical studies. The chemical 

structure of one of the modified fullerene, PCBM, is shown in fig. 1.4(c). The electron 

mobility of PCBM is around 0.002 cm2 V-1 s-1 which is almost an order of magnitude 

more than its hole mobility.[30] PCBM is soluble in most of the organic solvents 

(dichlorobenzene, toluene etc.). When blended with P3HT and annealed, it also forms an 

interpenetrating network with P3HT [31,32] and appropriate phase segregation with 

DPP-based polymer, which is desirable for photovoltaic applications.[33,34] The high 

electron mobility, relatively low-cost, and easy processing from solution, make it a 

suitable and the most widely used acceptor in the bulk heterojunction organic solar cells.  
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Figure 1.4 Chemical structure of (a) P3HT (b) X- methyl for MeLPPP and X- phenyl for 

PhLPPP (c) PCBM (d) PDPP-BBT (e) TDPP-BBT (f) Statistical copolymers where x= 

0.25 (Poly A) and x=0.50 (Poly B).  
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2.                                                                                                                   

EXPERIMENTAL TECHNIQUES 

 

For the work presented here, we have utilized optical: ultraviolet-visible (UV-Vis) 

and near-infrared (NIR) absorption spectroscopy along with electrical measurements. The 

UV-Vis provides an estimate of the S1 band gap, while NIR has been utilized to provide 

information about low energy (such as T-T absorption). The optical modulation 

techniques: photomodulation and photocurrent spectroscopy, have also been used to gain 

access to weak transitions. Photocurrent spectroscopy was utilized to calculate the 

responsivity of OPV devices. Further, electrical characterization of solar cells was also 

performed. In the next few sections, we discuss each method in detail.  

 

2.1 Absorption 

The absorption is the simplest optical technique which is often utilized to get an 

estimate of the optical bandgap and absorption coefficient of a material. In amorphous 

organic polymers, the bandgap of material can be calculated from the onset of absorption 

from a solution or in a solid state (such as a thin film of few hundred nm). We utilized the 

absorption spectra of thin films of polymer to countercheck the stated bandgap of the 

materials provided.  

The absorption coefficient can be calculated using the Beer-Lambert law. Consider 

light of intensity )(0 I incident on a medium. The intensity transmitted through a uniform 

thickness t of medium, )(I   can be written as, 
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                                                   ))(exp()( 0 tII   ,                                        (2.1) 

where, )( is the spectral absorption coefficient. Simplifying Eq.2.1, for a uniform 

thickness of material, 

                                                             )
)(

ln(
1

)( 0




I

I

t
 ,                                           (2.2) 

The absorption was measured using Shimadzu UV-2401 PC with the absorption setting 

with glass as a reference sample. The light source is a halogen lamp for the visible region 

and deuterium lamp for the ultra-violet region while the detector is photomultiplier R-

928. When the absorption from the device structures was measured, the reference sample 

had exactly the same thickness of glass, ITO, PEDOT-PSS, and Ca/Al layers. To 

calculate the absorption curve, the instrument measures )(0 I and )(I  through a 

reference sample and the actual sample simultaneously, and gives the final absorption 

coefficient spectrum time t. Since t is considered a constant, the obtained spectrum has 

same features as a true absorption spectrum.  

 

2.2 Photomodulation Spectroscopy  

Modulation spectroscopy is a very sensitive technique used to identify weak signal 

from a strong background. The optical response of a semiconductor, which includes 

absorption, reflection, and transmittance, may be monitored by modulation spectroscopic 

techniques. The modulation is a small repetitive perturbation which can be internal or 

external. The internal perturbation includes photomodulation of incident light obtained by 

modulating frequency, wavelength or amplitude modulation (AM) of incident light.  
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External perturbation includes electric field (such as electroabsorption or EA), 

temperature or strain. Modulation spectroscopy makes it possible to identify spectral 

features from a feature less spectra with high accuracy, even at room temperature.  

 

Figure  2.1 The pump-probe set up. 

 

Photomodulation spectroscopy, also known as pump-probe technique has been used 

to identify charged and neutral excited states in a wide variety of material.[35] The 

assembly of the pump -probe technique generally involves a lock-in amplifier. The lock-

in amplifier uses a phase-sensitive technique i.e. require a reference frequency to separate 

the perturbed (ac) from the steady state (dc) components. The SR810 amplifier can detect 

ac signal of even few nanovolts.  

In our setup, a mechanical chopper chops the incident beam of light with reference 

frequency ( r ). Since the lock-in is “referenced” at r , the lock-in detects signal at r . 
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To simplify, consider the reference signal as a sine wave at frequency
r . If Vsig is the 

amplitude of the signal,  at time t 

                                               )sin()( sigrsigS tVtV   .                                          (2.3) 

The phase-sensitive detector in the lock-in generates its own signal given by, 

                                                    )sin()( lockLlockL tVtV                                            (2.4) 

The SR810 amplifies VS(t) and then multiplies it with VL(t) using a multiplier. The 

resultant is, 

                                  )sin()sin()( sigrsiglockLlockresult tVtVtV   .                 (2.5) 

Simplifying the above equation, we get, 

])[cos(
2

1
])cos[(

2

1
)( locksigLrlocksiglocksigrLlocksigresult tVVtVVtV   . 

                                                                                                                                 (2.6)                                        

)(tVresult consists of two ac signals: one at 
rL   , and the other at 

rL   . If now

rL   , we have, 

            ])2[cos(
2

1
]cos[

2

1
)( locksigrlocksiglocksiglocksigresult tVVVVtV   .           (2.7) 

The first (second) term is the dc (ac) signal. By suitable filters, the lock-in separates ac 

(front port e.g. “A”) and dc (rear port e.g. AUX Port 1). In fig 2.1 the front/rear 

correspond to the front/rear interface of lock-in. Note: For mathematical simplicity, 

equation have been written in terms of sec)/(rad  and )(rad . The lock-in will report 

frequency in as Hz and phase angle in degrees. 
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The setup for pump-probe technique is shown in fig. 2.1. A quasi pump-probe 

technique was used to measure the photoinduced absorption (PIA) spectrum from thin 

films in our work. PIA was measured using the 325 nm line of a He-Cd laser as the pump 

beam, modulated by a mechanical chopper. A 100 W quartz tungsten halogen lamp 

focused using a lens, was used as a probe beam. The sample is placed in the evacuated 

chamber (cryostat) and the transmitted light is dispersed through a Spectral Product 

CM110 monochromator. A silicon detector, Thorlabs DET110, was used to detect the 

transmitted light. The small changes (∆T) in transmission were obtained by passing the 

signal from the detector to a preamplifier and then to a lock-in amplifier (SR810) 

referenced to the chopper frequency. The signal from the detector is fed to port A (front) 

which filters the ac signal (∆T). The same detector signal is fed to rear port (AUX port 1) 

gives the dc component (T). All photomodulation spectra are given by −∆T divided by 

the transmission (T). The SR810 lock-in amplifier can measure sine component of signal 

(X) and the vector magnitude (R) of the signal. The sine component of the amplitude 

depends on the reference frequency as well as on the phase difference between the signal 

and the lock-in reference oscillator. The R signal does not depend on the phase, but 

depends only on the reference frequency. Since, we are interested only in the amplitude 

of the periodic signal and not its phase, the lifetime and the photocurrent data was 

acquired by selecting R display of the lock-in amplifier.  
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2.3 Photocurrent Spectroscopy 

2.3.1 Monochromatic photocurrent spectroscopy 

The setup for monochromatic photocurrent (PC) is shown in fig. 2.2. In 

monochromatic PC, the photocurrent is measured as a function of the incident photon 

energy. The PC spectra were collected by illuminating the device (sample) with a 100W 

quartz tungsten halogen lamp focused using a lens (L) where the incident beam is 

modulated using a mechanical chopper and dispersed through a monochromator. The 

photocurrent was measured using a lock-in amplifier referenced to the chopper frequency 

and calibrated by a Si photodetector. 

 

Figure  2.2 The monochromatic PC setup. 

 

2.3.2 Fourier transform photocurrent spectroscopy  

Fourier transform photocurrent spectroscopy (FTPS) has been shown to be a sensitive 

tool for the measurement of sub-band gap features in amorphous silicon [36] and organic 
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solar cell.[37-39]  FTPS is a fast and a high resolution technique compared to the 

conventional photocurrent measurements using a monochromatic light.  

The FTPS signal is measured using Fourier transform infrared spectrometer (FTIR). 

The most important component of the FTIR is the Michelson interferometer which is the 

main source of high resolution and accuracy of this technique. The Michelson 

interferometer is a two beam interferometer. It divides a single beam originating from the 

source using a beam splitter and then combines them back after introducing a path 

difference to generate an interference pattern. The intensity of the interference pattern can 

be measured with respect to the path difference created by a detector. A simplified set-up 

for the Michelson interferometer is shown in fig 2.3. The interferometer consists of a 

source (S) that generates a single beam. This beam is partially transmitted and refracted 

by the beamsplitter to the mirror M1 and to mirror M2, respectively. The mirrors M1 and 

M2 are mutually perpendicular and also perpendicular to the beam. The mirror M1 is 

fixed, while mirror M2 is movable along the beam but perpendicular to the beam. The 

beams are reflected off the mirrors, return to the beamsplitter, interfere, and are again 

partially transmitted and refracted. Thus there is a difference in the intensity of signal 

reaching back to the source (almost negligible) and to the detector (significant) D. 

Usually, the difference in the intensity reaching the detector is considered and the 

intensity difference as a function of the path difference yields the spectral signal in an 

FTIR.  
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Figure 2.3 A simple Michelson interferometer setup. 

 

To understand the process of an interferogram generation, consider an ideal 

monochromatic source of wavelength )(0 cm  with wavenumber is
0

1 1
)(


 


cm  and 

intensity )( 00 I . Let the beamsplitter refract and transmit exactly 50% of the intensity. 

The intensity at the detector when the M2 is fixed at a certain position as a function of the 

path difference can be calculated as follows. The path difference between the beams 

travelling to M1 and M2 is, 

                                   Path difference =  = 21 OMOM   ,                                     (2.8) 

When the two mirrors are at the same distance from the beam splitter, i.e, 0 , the 

beams are in phase and interfere constructively at the detector. All the light reaches the 

detector. Now, if M2 moves by a distance 0
4

1
 , the path difference would be 0

2

1
  .  At 
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the detector, this results in destructive interference. If M2 is displaced further by 0
4

1
 , it 

would again result in a constructive interference.  

If M2 is moved with a constant velocity, the signal at the detector will vary 

sinusoidally. The signal will be a maximum when the path difference is an integral 

multiple of 0 . The intensity at the detector can be given by, 

                                      )}2cos(1{)(
2

1
)(

0


 



II                                             (2.9) 

                                              )}2cos(1{)(
2

1




 I .                            (2.10) 

It can be seen that )(I is composed of a constant (dc) component and a modulated (ac) 

component. The modulated component 

                                          )2cos()(
2

1
)(' 



 II                                             (2.11) 

is the interferogram. )(' I is the cosine Fourier transform of  


)(I . The term 


)(I  can be 

calculated using the inverse Fourier transformation. 

 In most of the commercial interferometers, the movable mirror moves with a 

constant velocity )(v . It is customary to express the resultant intensity at the detector as a 

function of time t . The path difference between the two beams from mirror M1 and M2, 

after time t seconds is given by,  

                                                       02   vt ,                                                   (2.12) 

where 0 is the initial path difference and can be taken as zero. Using equation the 

intensity as a function of time can be written as 
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                                       )2cos()4cos()(
2

1
)(' 000 ftAvtItI  



,                    (2.13) 

where the frequency of the interferogram is,
0

0 22



v

vf 


.  

The setup of the interferometer of the ATI Mattison Infinity 60AR FTIR is shown in 

fig 2.4. Here the source is the lamp L1 (tungsten halogen) for visible or NIR, and L2 for 

mid-infrared source. “Q” is the quartz beam splitter for scanning the visible or NIR range. 

Mirrors M1 and M2 are not shown in the figure. M3, M4 and M5 are the mirrors that 

deflect the beam externally. A He-Ne laser is also included in the FTIR. The 

monochromatic wavelength of the He-Ne laser is used as a reference to calibrate the path 

difference. 

 

Figure 2.4 The setup of FTIR in the external mode. 

 

The setup for FTPS is shown in the fig. 2.5. The FTIR is used in the external mode 

wherein the light beam from a tungsten halogen lamp inside the FTIR is focused on the 

device using a suitable mirror. The interferogram generated by the beam incident on the 
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device, is the photocurrent as function of time.  An interferogram from a Si photodetector 

is shown in fig. 2.6(a). The Fourier transform of the signal (fig 2.6(b)) is the photocurrent 

as a function of the incident photon energy.  The interferometer was scanned at a mirror 

speed of 0.16 cm/s which corresponds to modulation frequency of few kilohertz. Since 

the FTIR spectrometer does not allow the spectrum above and below the He-Ne laser 

frequency to be collected in one scan, the scans were limited to 2 eV only. 

 

Figure 2.5 The FTPS setup. 

 

Figure 2.6(a) An interferogram from a Si photodiode (b) The Fourier transformed signal 

of the interferogram. 
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2.4 Organic Photovoltaics  

Over the past two decades, extensive research has focused on optimizing the 

performance of organic bulk heterojunction (BHJ) solar cells.  In the past few years, the 

efficiencies of OPVs have reached over 10%.[40] Several factors such as the bulk 

transport properties, morphology, band gap, band offsets and intermediate states such as 

CT states play a significant role in deciding the efficiency of a BHJ device. The organic 

PV process constitutes (i) absorption of photons, (ii) conversion of solar photons into 

excitons (singlet excitons), (iii) exciton diffusion, (iv) formation of intermediate states, 

and (v) dissociation of exciton into free charge carriers.[40,41] Most BHJs use a 

polymer-fullerene blend as an active layer where the absorption mainly takes place either 

within the donor polymer or the acceptor. The conversion of solar photons into excitons 

is usually an ultrafast process. The process (iii)-(v) depend strongly on the constituent 

materials, the fabrication techniques as well as the morphology of the thin film. The 

active layer films are often annealed to improve the morphology of the active layer. The 

annealing results in a phase segregation between the donor and the acceptor within the 

bulk, which may vary from few hundred nm to few micrometers.[42] The formation of 

nanoscale morphology due to phase segregation leads to an efficient charge generation at 

interface.[43] Finally, an interpenetrating network is formed within the bulk. Since the 

diffusion length of singlet excitons is close to few nanometers, the network is known to 

enhance the diffusivity of the charges within the device.[44] It is very well established 

that the presence of a fullerene helps in an efficient and an ultrafast CT from the donor to 

the fullerene, which is an acceptor. The CT may result in the formation of intermediate 
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electronic states at the interface called the charge transfer complex or the CT states. The 

CT states may dissociate into free charges. Since the goal of the work presented here is to 

elucidate role of the CT excitonic states, BHJ solar cells were fabricated. To quantify the 

results on the basis of donor polymer or copolymers only, PC61BM has been used as an 

acceptor in all the devices.   

A BHJ solar cell is most commonly characterized by its power conversion efficiency 

(PCE). The PCE is calculated from the current-voltage (J-V) characteristic of the device 

and Eq. 2.14. The J-V curve of P3HT:PCBM (1:1) device is shown in fig. 2.7. In the 

figure, J (current density) is calculated by normalizing the current with the device area. 

For Ossila ITOs, the device area is 0.046cm2.  

                                                               
IN

OCSC

P

VI
FF

.
 ,                                            (2.14) 

where ISC is the short circuit voltage, VOC is the open circuit voltage and PIN is the input 

power from AM 1.5 source and FF is the fill factor given by, 

                                                           
MAXOC

MAXMAX

IV

VI
FF  .                                         (2.15) 

In Eq. 2.15, 
MAXI and 

MAXV is the current density and voltage at maximum power output. 

For the J-V characteristics shown in fig. 2.7, the fill factor and efficiency )( is 0.68 and 

1.7%, respectively. 
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Figure 2.7 The J-V characteristics of a P3HT:PCBM (1:1) device.  

 

Another way to evaluate the device performance is by measuring the external 

quantum efficiency (EQE) or responsivity as function of incident photon energy. The 

responsivity is calculated using, 

                                                  ).(
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)( 




 Si

Si

Device R
I

I
R                                       (2.16) 

IDevice (λ) and ISi(λ)  are the spectral photocurrent of device and calibrated silicon 

photodiode respectively. RSi (λ) is the calibrated responsivity of the Si photodiode. The 

EQE can then be calculated by, 

                                                          )()()(  EREQE  ,                                        (2.17) 

where )(E is the incident photon energy. 
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2.5 Sample Preparation and Device Fabrication 

2.5.1 Sample preparation for PIA studies 

We have used PIA to probe the triplet states in PhLPPP. The goal of this experiment 

was to measure the triplet diffusion length. In Chapter 6 we illustrate our method by the 

quenching of T-T absorption in two different PhLPPP polymer samples,[7] a high 

molecular weight (Mn=14,700 g/m) (PhLPPP-H) with polydispersity of 1.3 and a low 

molecular weight (Mn=3800 g/m) (PhLPPP-L) with polydispersity of 1.6, by an electron 

acceptor, PCBM, which was purchased from Sigma-Aldrich Co. The main advantage of 

using PhLPPP is that the experiments could be performed at room temperature (RT) since 

a trace amount of Pd in the PhLPPP backbone results in a high fraction of triplet excitons 

at RT.[45] PhLPPP:PCBM blends were prepared in various molecular ratios, from 50:1 

to 10000:1 by dissolving the components in dichlorobenzene. Equal volumes of various 

blends were carefully drop cast onto glass substrates so that the final dried sample areas 

are same for all blends as determined by visual inspection. No phase separation in the 

mixture was observed for low concentrations of PCBM as verified by an atomic force 

microscope. 

 

2.5.2 Device fabrication  

A BHJ solar cell and a schematic are shown in fig. 2.8(a) and fig. 2.8(b), respectively. 

For preparation of the solar cell, an indium tin oxide (ITO) coated glass substrate was 

first cleaned with soap solution and rinsed in deionized water. The cleaned substrates 

were submerged in diluted aqua regia for 10-15 mins, rinsed in deionized water and then 
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ultra-sonicated in acetone and isopropyl alcohol. For devices prepared using the Ossila 

ITO, the ITOs were first ultra-sonicated in warm water for 5 mins in 10% NaOH solution 

(deionized water). The substrates were then ultra-sonicated in deionized water for another 

5-10 mins. Later, the substrates were ultra-sonicated in organic solvents. A filtered 

(polyvinyl difluoride 0.45µm) layer of poly (3,4-ethylene dioxy-2, 4-thiophene) poly 

sulphonate (PEDOT:PSS) is spin coated on ITO at 5000 rpm and baked at C100  for 25-

30 min. For the active layer, separate donor and acceptor solutions were prepared, 

individually filtered and then blended in desired ratio. The polymer blend layer is then 

spin coated at 700 rpm and baked at 1000C for 5 min after which the device is 

encapsulated. In order to obtain a better crystalline film, they may also be solvent 

annealed immediately after spin coating.  All the solar cell fabrication steps were carried 

out in a N2 glove-box.  

 

Figure 2.8 (a) A P3HT: PCBM solar cell device fabricated using Ossila components (ITO 

and connecting legs). (b) The structure of a BHJ device.  
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3.                                                                                                                             

CHARGE TRANSFER EXCITONIC STATES IN POLYTHIOPHENE BASED 

SOLAR CELL 

 

Poly(3-hexylthiophene) (P3HT) is one of the most extensively analyzed 

homopolymer.[46] Thanks to its easy availability and ability to form a suitable 

morphology, the efficiency of the solar cell can reach up to 5%.[46] Its combination with 

fullerene offers researchers, a platform to probe various excitonic states in a BHJ-type 

system. In this chapter, we introduce the concept of CT states in the polymer:fullerene 

bulk systems and discuss their relevance to device function.  We probe the CT excitonic 

states using PC spectroscopy in P3HT:PCBM devices fabricated in our lab. These studies 

also provide a preliminary basis of cross checking the validation of our experimental set-

ups and its results.  

 

3.1 Introduction 

In a BHJ solar cell the active layer comprises of two or more blended materials. The 

photoexcitation process of the blend in a BHJ solar cell, results in generation of singlet as 

well as other excitonic states, diffusion and finally charge separation.  Recent reports 

indicate that the process of photoinduced charge separation in polymer BHJs involve 

charge transfer complex (CTC) states or intermolecular CT (inter CT) that are formed at 

the interface of the polymer and fullerene phases in the blend.  
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Figure 3.1 (a) Schematics of the donor excitation. The ground-state (S0), first singlet (S1) 

and first triplet state (T1) are shown. (b) The HOMO and LUMO levels of the donor is 

denoted by HOMO(D) and  LUMO(D), respectively. The HOMO and LUMO levels of 

the acceptor is denoted by HOMO(A) and  LUMO(A), respectively. The energy of the 

inter-CT state is denoted by ECT [Ref. 47]. 

 

To visualize the concept of the inter-CT state, consider a combination of two organic 

polymers; one donor and the other acceptor.[47]  In molecular picture, the electron-hole 

pair is considered as a single particle and the relevant energy levels are depicted in fig. 

3.1(a). Excitation of the donor results in a transition from the 0S
 to 1S the of the donor. 

This singlet exciton then diffuses to the donor-acceptor interface and may dissociate if 

the conditions are favorable. The same picture can also be visualized by considering the 

HOMO-LUMO levels of the donor and the acceptor. In this picture the excitation of 

donor results in electron transfer from HOMO of donor (HOMO(D)) to LUMO of donor 

(LUMO(D)). The electron in LUMO(D) can be transferred to LUMO of the acceptor 
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(LUMO(A)). The separated, yet weakly bound electron-hole pair is the CT exciton. The 

CT states are electronic states (with energy ECT) formed at the donor-acceptor interface as 

shown in fig. 3.1 (b). If there are other energy levels present, such as a triplet energy level 

(T1) with energy ET lower than the ECT, it is possible for the CT state to recombine as a 

triplet state. The unstable CT state may also recombine to a lower energy state by photon 

emission which is one of the major loss mechanisms in BHJ.[47] Throughout this thesis, 

inter CT and CTC states are used with similar meaning. 

The CTC states are energetically deep inside the optical gap of the polymer and 

fullerene constituents.[48] Drori and coworkers have recently shown the existence of 

below-gap (midgap) CTC states by photomodulation techniques.[49] Subsequently, they 

have shown that interfacial polarons generated with below-gap excitation do not 

effectively contribute to the photocurrent density for typical thicknesses of polymer films 

used in current BHJ architecture.[50] Since the CTC states play a pivotal role in 

generation of free charge carriers and photocurrent density, understanding the origin of 

CTC states is vital for improving device performance.  

The energy of the CTC state is given by  

                                     ECT  =  LUMO(A)-HOMO(D)-Peh(r)-C(r),                          (3.1) 

where Peh(r) is the polarization energy and C(r) is the Coulomb energy.[51] The C(r) is 

given by, 

                                                     
CTr

e
rC

0

2

4
)(


 ,                                                (3.2) 
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where e is the electron charge,  is the dielectric constant of the blend and CTr  is the 

separation between the positive and negative charge in the CTC state. The Peh(r) results 

from separation of charges. For organic crystals, Peh(r) is estimated to vary from 0.2-

0.4eV due to charge transfer between the same chromophore.[51] Theoretical 

calculations for a single crystal DPP show that the polarization energy varies from -0.65 

eV to 0.14 eV, depending on the nature of the chromophore and the orientation of the 

chromophore.[52] Thus, the Peh(r)  is specific to the chromophore and varies over a large 

range. The C(r) term is the result of the attraction between the spatially separated positive 

and negative charges of the CTC state. In general, the CTr
 
for a CTC state may be close to 

few nm; then, C(r) varies from 0.1-0.5eV.  If some theoretical or experimental estimates 

of Peh(r) and C(r) for the polymer:fullerene system were available, then ECT can be 

calculated using Eq. (3.2). The HOMO/LUMO energy levels of the polymers are 

typically known from cyclic voltammetry measurements. In the following sections, we 

elaborate on identifying the inter CT states using two PC techniques; monochromatic PC 

and FTPS, in the P3HT based devices. 

 

3.2 Photocurrent Spectroscopy- Probing Intermolecular Charge-Transfer States 

 The normalized absorption spectrum of a spin coated thin film of pristine P3HT is 

shown in the fig. 3.2(a) (black). In its solid state form, the lowest absorption feature at 

approximately 2 eV is attributed to the interchain interaction between P3HT 

chromophore.[53] In general, both the intra and the interchain interactions are involved in 

the absorption feature of P3HT. From fig. 3.2(a), it is seen that the absorption onset is 
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approximately at 1.9 eV (optical bandgap of P3HT).[54] We note that the HOMO and 

LUMO level of P3HT is -5.08 eV and -3.17 eV, respectively.[55] The difference between 

the HOMO and the LUMO level gives the electronic bandgap, which is greater than the 

optical bandgap.  The normalized absorption of P3HT:PCBM (1:1) (blue) is shown in fig, 

3.2(a) along with P3HT:PCBM (1:2) (green). Notice that inclusion of the fullerene does 

not significantly shift the onset of the absorption. Shrotriya et al. have observed 

significant changes in the overall features in P3HT-PCBM blends at higher concentration 

(>65%) of PCBM.[56] They also observed that the addition of PCBM decreases the 

absorption in the 2 - 3 eV region. The spectral changes in the blended samples are the 

result of lowering of the inter-chain interaction between the neighboring P3HT 

chromophores. By replacing PCBM with C60, Shrotriya et al. observed a significant 

difference between the absorption in P3HT:PCBM (1:1) and P3HT:C60 (1:1) films. Since 

P3HT is oxidized by PCBM and C60, the difference in absorption indicates that the 

transfer of charges between P3HT-PCBM is different than in P3HT-C60.  
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Figure 3.2 (a) Normalized absorption of pristine P3HT, P3HT:PCBM (1:1) and 

P3HT:PCBM (1:2) spin coated films. (b) Normalized EQE using monochromatic PC 

(red) and the absorption spectrum (blue) from a P3HT:PCBM (1:1) photovoltaic device. 

 

The normalized absorption in P3HT:PCBM (1:1) sample and the responsivity  (1:1 

device) measured using monochromatic PC is shown in fig. 3.2(b). The responsivity is 

measured by first normalizing the measured PC with the device area, which gives current 

density. Next, we need to divide the current density with the lamp profile. To obtain the 

lamp profile, the current density is measured using a Si detector (preferably ON) and then 

normalized by the responsivity of Si. Since the current density from the device (say 

P3HT:PCBM) and lamp profile depend on the experimental setup, the division results in 

nullifying the effect of setup.   

The FTPS spectra of P3HT:PCBM (1:1) device is plotted as the normalized EQE and 

is shown in fig. 3.3. To calculate the normalized EQE, the Fourier transform (FT) signal 

from the P3HT:PCBM device is first normalized by the area of the device. The FT signal 

2.0 2.5 3.0 3.5
0.0

0.4

0.8

1.2

 

 

N
o
rm

a
liz

e
d
 a

b
s
o
rp

ti
o
n

Energy (eV)

 Pristine P3HT

 P3HT:PCBM 1:1

 P3HT:PCBM 1:2

1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

 

 

N
o

rm
a
liz

e
d
 E

Q
E

Energy (eV)

P3HT:PCBM 1:1

 Absorption

 EQE (Monochromatic PC) 

(a)                                                                 (b)



 

34 

 

is the required PC, but with arbitrary units. The FTPS PC has been normalized with the 

lamp profile obtained from the monochromatic PC set up. Ideally, one would normalize 

the FTPS PC by the lamp profile of the tungsten lamp in the FTIR. Note that the PC from 

the Si detector is a narrow signal and is centered at ~1.1 eV (bandgap of Si). This 

suggests that the FTPS method detects the onset of any state with a finite width. Hence, 

FTPS PC of Si photodiode should not be used to calibrate the FTPS PC of other samples. 

To overcome the difficulty of calibration, we use the lamp profile of monochromatic PC 

set up. Also note that both PC methods utilize tungsten halogen as source, so the lamp 

profile is expected to be identical except for the difference in the exact intensity of the 

lamp profile. The responsivity calculated by the FTPS PC will have arbitrary units but 

correct spectral features, especially the onset of the CT state. The responsivity curve is 

normalized and represented as the normalized EQE. The FTPS and the monochromatic 

PC spectra are identical and both the PC methods show a feature lower than the onset of 

absorption in the blend. The low energy onset is the signature of a weak sub bandgap 

inter CT band, as observed in other polymer BHJ solar cells.[37,38]  Vandewal et al.., in 

a recent work show that a functional fit given by Eq. (3.3) to the FTPS EQE using 

Marcus’s theory, yields accurate values of the ECT.[57] Using a similar approach, we fit 

the FTPS and PC spectra by  

                                    )
4

)(
exp()(

2

kT

EE

E

b
aER CT



 
 ,                                (3.3) 

where a and b are fitting constants, ECT is the onset of the charge transfer state, λ is the 

reorganization energy whose value was fixed at 0.25eV, E is the incident photon energy, 

kB is the Boltzmann constant, and T is the temperature. Since the inter CT states observed 
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from the EQE spectra extend below the absorption edge, the fit was applied from low 

energies to 1.6 eV, depending on the best fit parameters. The ECT from the 

monochromatic PC is 1.21 eV and 1.24 eV from the FTPS measurement. The ECT values 

in our P3HT:PCBM device corroborates with other works using (1:1) weight ratio of 

P3HT and PCBM solar cells.  
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Figure 3.3 Marcus fit (dashed) to the normalized FTPS photocurrent (solid line) in 

P3HT:PCBM. 

 

From fig. 3.2(a), the onsets of absorption in pristine P3HT and P3HT:PCBM (1:1) are 

not significant different indicating that the ground state charge transfer has a very weak 

oscillator strength. On the other hand, the onset of CT emission is known to shift as a 

function of the acceptor due to the changes in the average dielectric constant.[58] The 

shift in the onset of the emission indicates the involvement of CT excitons in the 

emission. To confirm the CT nature of the low energy feature in our PC measurements in 

the P3HT:PCBM devices, the monochromatic PC was measured in a P3HT:PCBM (1:2) 

sample. Figure 3.4 shows the normalized absorption from a P3HT:PCBM 1:1 sample 
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(blue), and the normalized EQE by monochromatic PC from P3HT:PCBM 1:1 (red) and 

1:2 (green) devices. Even though the steady state absorption onsets (fig. 3.2(a)) don’t 

shift significantly, the PC onset for the 1:2 sample shifts considerable. Thus, the addition 

of PCBM shifts the onset of PC, which proves the “polar” nature of the inter CT excitons. 

Note that the 1:1 blend shows the lowest onset of PC. In general for P3HT based devices, 

the blend formed close to 50% of each polymer is found to give a better overall PCE. 

 

Figure 3.4 Normalized EQE of pristine P3HT, P3HT:PCBM (1:1) and P3HT:PCBM (1:2) 

by  monochromatic PC . 

 

Although the recent studies show clear evidence of CT states governing the voltage 

dependent and independent photocurrent [30,59] as well as the open circuit voltage 

(Voc),[39] the exact role of inter CT states in controlling PCE is still debated.[60] Lee et 

al. have shown that the low energy stabilized CT state may not contribute significantly to 

the photocurrent.[61]   
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A large discrepancy is observed between the experimental lifetimes (~100 ns)[62,63] 

and theoretical predictions of CT lifetimes (~µs to ms).[30,64,65] A recent study by 

Bakulin et al.. shows that the driving energy for the charge separation in organic PVs 

occurs through the formation of excited, delocalized band states, which are typically 

extremely short lived (< 1ps).[66] Apart from the estimation of the lifetime of CT states, 

emphasis has also been placed on the dissociation efficiency of the CT states. Yamamoto 

et al. have shown almost instantaneous formation of CT states from the singlet states, and 

have calculated the dissociation efficiency as 70%.[67,68] We revisit the issue of the CT 

states in other polymer:fullerene systems in the next chapter.  

 

3.3 Temperature Dependence of Photocurrent 

In a blended sample, excitation of the donor polymer results in the formation of 

singlet exciton. After diffusing to the donor-acceptor interface, the exciton can transfer its 

negative charge to the acceptor, leaving positive charge behind on the donor polymer. 

The separated, yet, weakly-bound positive-negative charge pair may recombine again or 

simply dissociate. Since the weakly-bound positive-negative charge pair can be one of 

the source of free charges, it is worthwhile to understand the dynamics of a weakly-

bound charge pairs. In the literature, temperature dependent studies have been performed 

to distinguish between the localized and the delocalized nature of charges.[69-71] 

Other studies in the literature have probed the dynamics of the singlet and CT states. 

Using transient and temperature dependent photoluminescence (PL) studies on 

PCPDTBT and its blend Jarzab et al. have separated the dynamics of singlet and CT 
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exciton.[72] Even though the peak intensity of the steady state CT exciton emission 

changed over the range of temperature (5 K- 294 K), the lifetime of the CT exciton state 

probed did not change with temperature and bias. The localized nature of the state 

suggested that this state does not contribute to the diffusion.  

The population dynamics can also be probed using PC yield, 
yeildI . The resultant PC 

yield 
yeildI has often been expressed as a product of charge generation n and summation of 

the mobility  ,  

                                                                                 nI yeild
,                                                   (3.4) 

Hence, understanding the population requires separate understanding of the change of (i) 

mobility and (ii) initial carrier generation, as function of temperature (T).  

Transient photoconductivity studies on poly (phenylenevinylene) (PPV) by Lee et al. 

have shown n to be temperature independent. On the other hand steady state 

photoconductivity studies have shown strong T dependence of PC yield. This apparent 

conflict was resolved by Moses et al. by taking the thickness of the film as an important 

factor.[70] In the steady state PC technique, the peak PC (
peakphI ,

) is characterized by 

Arrhenius-type temperature- dependence. The 
peakphI ,

 is related to the temperature T, and 

the activation energy Ea by 

                                                  






 


kT

E
I a

peakph exp,
.                                            (3.5) 

The activation energy can be estimated by an exponential fit to the plot of peak PC as a 

function of temperature. For thicker samples (>4000 nm) of MEH-PPV, the steady state 

PC was found to be strongly temperature dependent on T. For thin sample, the activation 
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energy for hopping (Ea) was around 30meV. The small Ea implied that for thin films, the 

PC yield has a weak dependence on temperature in agreement with the previous results 

from transient photoconductivity measurements. Since the thickness encountered in BHJ 

is < 120 nm, for BHJ too, one can expect the current yield to be weakly dependent on 

temperature.  

The steady state temperature dependent PC studies on PCPDTBT:PCBM have also 

shown changes in the intensity of short circuit current with temperature.[54]  Similarly, 

PC studies on MDMO-PPV:PCBM have also shown temperature dependent 

behavior.[71] In both the cases, the intensity of the PC increases with the temperature and 

the positive coefficient has been assigned to increase of mobility and increased thermal 

activation. The temperature dependence has also been associated with the presence of 

trap states for recombination of CT exciton.[54,72] Such trap states are considered as 

major loss mechanism affecting the overall photo-conversion efficiency of a solar cell. In 

cases of a weak temperature dependence of PC, it indicates absence of trap states.  

We performed preliminary temperature dependent studies on PC from P3HT:PCBM 

1:1 devices to understand the dynamics of charge carriers in the solar cell. The 

normalized absorption and the temperature dependent monochromatic PC of 

P3HT:PCBM (1:1) sample is shown in fig. 3.5(a). The spectral PC has been measured 

from 50 K-360 K, but for clarity all the spectra are not shown. The PC shown has been 

measured in the visible region only. The plots of monochromatic PC show an increase in 

the overall PC with increasing temperature. The spectral PC in fig. 3.5(a) can be analyzed 

in three region (i) intensity in ~2 eV (ii) intensity in the infrared region ~1.5 eV or 1.2 eV 
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and (iii) the onset in 1.2 eV region. In order to check for any changes in the onset (point 

(iii)) of the PC in the region, the normalized PC (UV-Vis and NIR region) at the two 

extreme temperatures; 50 K and 360 K, is shown in fig 3.5(b).  The normalized PC’s at 

the two temperatures completely overlap. In contrast, Harrison et al. had observed a 

redshift (and a sharper vibronics) in the singlet absorption in MEH-PPV samples. The 

redshift was attributed to increase in the rigidity, less twisting of chains, a higher 

conjugation length and lowering of the optical bandgap.[73] From the onset of PC in the 

P3HT:PCBM samples, it seems that bandgap of the CT state is not affected by the 

temperature.  

 

 

Figure 3.5(a) Normalized absorption and monochromatic PC as a function of temperature 

in the UV-Vis region. (b) Normalized PC at the two extreme temperature data points. 

 

Next, consider the intensity of the peak PC at ~2 eV (fig. 3.5(a)). The peak PC 

increases with increasing temperature. The peak PC as a function of temperature is 
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plotted in fig. 3.6(a). A strong dependence of PC on temperature is observed in the 220K- 

360K region, while an almost constant value of peak PC is observed in 50 K-140 K (all 

points not shown). Since the change in PC is observed in the high temperature regime 

(220 K- 360 K), the activation energy can be estimated by a fitting Eq. 3.5 to the high 

temperature regime. From the exponential fit to the peak PC (red) in fig. 3.6(b), the 

activation energy is calculated to be approximately 40 meV. This value is consistent with 

the range of activation energy in organic material.[69,71,74,75] The small activation 

energy corresponds to an almost temperature-independent spectral PC in P3HT:PCBM 

devices and agrees well with the temperature independence of short circuit current 

observed (T>300 K) in Ref. 71. Note however that the activation energy and the 

temperature mentioned here are calculated from the peak PC: a position which 

corresponds to the absorption in P3HT. In this case, it cannot be considered as activation 

energy of CT states.   

 

Figure 3.6(a) The peak photocurrent as a function of inverse of temperature. (b) The 

exponential fit (red) to the peak photocurrent vs inverse of temperature curve. 
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 To evaluate the effect of temperature on the CT states, one should consider the PC in 

the CT state region only, i.e. the intensity of PC in the infrared region ~1.5 eV or 1.2 eV. 

[76] From fig. 3.5(a), it seems that the PC intensity in CT state region is far less affected 

by the temperature. It is possible that the diffusion of the CT state may not be thermally 

activat and hence the CT state detected may not be delocalized. For a further clarification, 

one may have biased dependent studies of the P3HT:PCBM blend. Another option is to 

utilize pristine donor-acceptor polymers for temperature/bias dependent studies as they 

have an “inbuilt” intramolecular CT state. The preliminary data of temperature dependent 

PC in donor-acceptor copolymers is presented in Chapter 7 under “Future Work”. 
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4.                                                                                                                 

DIKETOPYRROLE-BASED COPOLYMERS AND STATISTICAL 

COPOLYMERS 

 

In an effort to understand the role of inter CT states, a set of low bandgap 

diketopyrrolopyrrole (DPP)-based copolymers were chosen. The optical bandgap ranges 

from 1.4 eV to 1.7 eV and is tabulated in Table 4.1. The HOMO-LUMO level of the 

DPP-based copolymers is also shown in fig. 4.1. Note that the electronic bandgap is more 

than optical bandgap for each polymer. The DPP-based copolymers are further separated 

into copolymers and statistical copolymers. The copolymers involved in the present 

studies were two phenyl-based DPP copolymer; PDPP-BBT (sample1) and PDPP-BBT 

(sample2), and a thiophene based DPP copolymer (TDPP-BBT). The PDPP-BBT 

(sample2) is similar to PDPP-BBT (sample1) except for a slightly different side chain 

conformation. In comparing the two DPP materials, our discussion will mainly relate to 

PDPP-BBT (sample1) and TDPP-BBT (fig. 1.2(d) and (e)). The two statistical 

copolymers (Poly A and Poly B) are thiophene based, but vary in their DPP fraction. Poly 

A has lower DPP fraction compared to Poly B (fig. 1.2(f)).   
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Table 4.1 The optical bandgap of various DPP-based copolymers.  

 

 

 

Figure 4.1 The HOMO/LUMO values of the DPP-based copolymers (PDPP-BBT and 

TDPP-BBT), DPP- based statistical copolymers (Poly A and Poly B) and PCBM, utilized 

in the present work. 

 

4.1 Absorption  

The normalized absorption spectra of the DPP based copolymers are shown in fig. 

4.2(a). The absorption in TDPP-BBT is redshifted with respect to the PDPP-BBT 

samples indicating a smaller optical bandgap for TDPP-BBT compared to PDPP-BBT 

(sample1). The DPP copolymers show two peaks in the absorption spectrum: a higher 

energy peak in the 3 eV - 4 eV which corresponds to the π-π* transition and the lower 

Sample Optical bandgap (eV)

DPP- based copolymers

PDPP-BBT (sample1) 1.73

PDPP-BBT (sample2) 1.5

TDPP-BBT (sample1) 1.43

DPP-based statistical 

copolymers

Poly A (lower DPP fraction) 1.6

Poly B (higher DPP fraction) 1.5

PDPP-BBT(1) PolyA PolyB PCBM

-5.47eV

-3.74eV

-3.46eV

-5.24eV
-5.19eV

-3.43eV

-4.3eV

-6.1eV

HOMO

LUMO

TDPP-BBT

-5.15eV

-3.69eV
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energy peak (1.5 eV-2.5 eV) which has been attributed to an intramolecular CT (intra 

CT) state from the thiophene or phenyl donor to the core acceptor units. It is well 

established that the low energy absorption band in a donor-acceptor copolymer is the 

intra CT state.[77] The intra CT state is a state where the negative and the positive 

charges (such as the electrons and holes) are separated but located on the same donor 

polymer chain. The formation of intra CT states stabilizes the donor-acceptor complexes 

covalently bound along the polymer backbone. 

 

 

Figure 4.2 Normalized absorption spectra of (a) DPP based copolymers (b) DPP based 

statistical copolymers. 

 

The normalized absorption from spin coated thin films of the statistical copolymers: 

Poly A and Poly B, is shown in fig. 4.2(b). The region 1.5 eV- 2.5 eV corresponds to the 

intra CT state and the region 2.5 eV – 4.0 eV corresponds to the π-π* transition. The 

absorption in Poly B (higher DPP fraction) is slightly redshifted than the Poly A (lower 
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DPP fraction) indicating a lower optical bandgap in Poly B. A slightly lower optical 

bandgap of Poly B can be attributed to the narrow polydispersity, despite its lower 

molecular weight.[78] Also, note that in Poly B, the intensity of the intra CT state 

absorption is more than the absorption in the π-π* transition region. 

It is very well known that the presence of an external acceptor results in charge 

transfer from the donor polymer to the acceptor, usually PCBM.[79] An already 

separated state such as an intra CT may have a direct impact on the charge transfer. 

Hence, it is worthwhile to probe the intramolecular states is the copolymers. Here we 

present the studies performed on the intra CT state on a set of thiophene based DPP 

copolymer; TDPP-BBT, Poly A and Poly B. We also estimate the binding energy 

(BE) of the intra CT state. 

  

4.2 Electric Field Dependence - Probing Intramolecular Charge-Transfer States  

The electric field dependence of the optical absorption was observed by Haarer et al. 

in anthracene-PMDA crystals.[80] The external electric field splits the CT state formed 

between the donor-acceptor crystal by about 10 cm-1. Here, the CT refers to electronic 

states formed between two different monomers/polymers, which do not belong to the 

same crystal/chain. The CT state observed in the donor-acceptor crystal is the inter CT 

state, wherein the negative charge has been transferred to the acceptor while the positive 

charge stays on the donor. Such splitting may be difficult to observe in amorphous 

organic polymer semiconductors due to their broad absorption spectra. Nevertheless, it is 

possible to track the variation in the absorption as a function of the electric field by 
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application of an external bias. Various articles in the literature have shown that the bias 

dependent absorption spectrum may result in an exciton confinement at the interface. The 

variation in the absorption has been observed in inorganic semiconductor based quantum 

well and has been assigned due to quantum confined Stark effect.[81] A similar exciton 

confinement was also observed by tracking the changes in the peak position of absorption 

in multiple quantum well (MQW) structures of alternate layers of PTCDA (3,4,9,10 

perylenetetracarboxylic dianhydride) and NTCDSA (3,4,7,8 naphthalenetetracarboxylic 

dianhydride) organic crystals.[82] The PTCDA/NTCDSA interface forms a type I 

heterojunction. As the layer thickness is reduced the PTCDA forms a two dimensional 

potential well confined between NTCDSA on either side.  In the MQW structures the 

optical absorption was found to shift as the layer thickness was changed. The shifts were 

attributed to the changes in the exciton binding energy due to exciton confinement in the 

PTCDA crystal.  

McGinnis et al. have probed porous Si using steady state absorption.[83] When the 

field was applied perpendicular to the growth direction, the absorption spectrum 

redshifted and  broadened. The absorption coefficient was also found to increase with the 

bias. The application of bias in the direction perpendicular to the porous Si growth also 

showed changes in photoluminescence intensity. The observed results were explained on 

the basis of confinement of exciton within the nanostructured Si. In our case, the band 

offset at the copolymer-copolymer interface and copolymer-fullerene interface could 

confine the intra CT exciton. Since OPVs are essentially type II heterojunction, the DPP 
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copolymers provide a nice platform for observing changes to the absorption edge (of the 

intra CT peak), similar to quantum wells.  

We extend the bias dependent study to estimate the binding energy of the intra CT 

exciton from changes in the absorption spectrum as a function of the electric field. In 

order to estimate the BE, if one assume that the potential energy to separate the bound 

charge-transfer pair is same as the coulomb energy, the binding energy (BE) is given by 

[84] 

                                          BE
r

e
reE

GP

GP 
0

2

max
4

,                                          (4.1) 

where, Emax is the saturation field given by 

                                                      
L

V
E

max

max  ,                                                      (4.2) 

maxV  is the saturation potential, L is the film thickness, rGP (Eq. 4.1) is the separation 

between point like charges in the geminate pair, ε0  is the permittivity of free space, e is 

the electron charge, and  ε is the dielectric of the medium which is ~ 3.5 for most 

conjugated polymers. The rGP may be simplified in Eq. 4.1 as,  

                                              2/1

max0

2

)
4

(
eE

e
rGP


 ,                                                (4.3) 

The BE can be calculated by using the value of rGP and Emax in Eq. 4.1. For all the 

following electric field dependent studies, a BHJ device was fabricated using the method 

discussed in the section 2.5.2.  The absorption was measured through the 

ITO/PEDOT:PSS/ Polymer/Ca/Al with ITO/PEDOT:PSS/Ca/Al as a reference.  
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4.2.1 Thiophene based DPP copolymer 

 

Figure 4.3(a) The absorption of the pristine TDPP-BBT from a spin-cast film 

(black), from a device region ITO/PEDOT:PSS/TDPP-BBT/glass without Al (red) 

and from a device region ITO/PEDOT:PSS/TDPP-BBT/Ca/Al (green). (b) The bias 

dependent absorption in a pristine TDPP-BBT device in the region 

ITO/PEDOT:PSS/TDPP-BBT/Ca/Al. 

 

We first checked the effect of the electrodes on the absorption of the TDPP-

BBT sample. The absorption in pristine TDPP-BBT samples in the absence of any 

bias is shown in fig. 4.3(a). The absorption spectrum of a spin cast film on glass 

(black) and that of the spin cast film in a device with (green) and without Al (red) is 

identical. A weak broadening is observed and splitting or the vibronic of the intra CT is 

observed in the absorption from the device. The splitting of the intra CT may be due to 

the interaction of intra CT with the electrode at the polymer-electrode interface.  
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The electric field dependent absorption from a pristine TDPP-BBT as a function of 

the reverse bias is shown in the fig. 4.3(b). The application of the reverse bias did not 

show any changes in the pristine TDPP-BBT sample. We have also checked the changes 

in the absorption by application of a forward bias but no changes were observed. In 

current-voltage characteristics, the current saturates in the third quadrant. This 

corresponds to the saturation region where there is a depletion of mobile charge carriers. 

Hence, only the negative biased absorption data are of interest and have been presented 

here.    

   

Figure  4.4 The absorption of the TDPP-BBT:PCBM from a spin-cast film (black), from 

a device region ITO/PEDOT:PSS/TDPP-BBT/glass without Al (red) and from a device 

region ITO/PEDOT:PSS/TDPP-BBT/Ca/Al (green). (b) The reverse bias dependent 

absorption in a TDPP-BBT:PCBM device in the region ITO/PEDOT:PSS/TDPP-

BBT/Ca/Al. 
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Figure 4.4(a) shows the normalized absorption in a TDPP-BBT:PCBM (1:1) sample. 

The onset of absorption is not significantly affected by the presence of the ITO and the 

Ca-Al electrodes. Figure 4.4(b) shows the effect of reverse biasing on the absorption in 

the same sample. There are no changes observed in the onset of the absorption as a 

function of bias indicating that no low energy states lower than the donor copolymer 

absorption edge were detected in the absorption studies. Also, the intensity of absorption 

does not change significantly with the bias. A weak increase in the shoulder at ~1.75 eV 

is observed which was not seen in bias dependent absorption in pristine TDPP-BBT (fig. 

4.3(a)) sample. The changes at 1.75 eV may be bias induced effects due to the presence 

of PCBM in the blend.  

 

4.2.2 Thiophene based DPP statistical copolymers 

To understand the role of intra CT states in DPP-based copolymers, we have extended 

bias dependent absorption studies to DPP-based statistical copolymer, Poly A and Poly B. 

In Poly A and Poly B, the thiophene acts as bridge between the carbazole-

benzothiadiazole (carbazole-BT) units. Poly A and Poly B vary in the DPP concentration, 

with Poly B having the higher DPP fraction. Figure 4.5 shows the absorption spectra 

from a pristine Poly A device with a back electrode. The absorption shows no changes as 

a function of the bias.  
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Figure 4.5 The absorption spectra from pristine Poly A device in the presence of an 

external bias 0 to - 9V. 

 

The absorption spectra from a Poly A:PCBM device is shown in fig. 4.6(a). Unlike 

the pristine sample, where there is no change in the absorption spectrum even in the 

presence of a high reverse bias, the onset of the absorption in the blended sample 

redshifts with the application of a negative bias. Comparing figs. 4.5 and 4.6(a), it is clear 

that the presence of PCBM in the Poly A:PCBM blended film results in the observable 

changes with the application of an external bias. For Poly A:PCBM sample, the external 

bias affects the low lying energy states in the blend but not in the pristine sample.  

The intensity of the 1.9 eV peak in the absorption spectrum increases as the reverse 

bias is increased and saturates at ~ -5V. Along with the changes in the intensity, the onset 

of the intra CT state (circled), redshifts with an increase in bias (reverse) voltage (fig. 

4.6(a)). The “onset” is found by extending a straight line in the low energy region where 

the absorption curve is linear. Since the low energy shoulder (~ 1.6 eV) is attributed to 
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PCBM, to obtain the onset of the intra CT, we fit the linear region from ~ 20%-50% 

(which is roughly between 1.65 -1.77 eV) of the absorption maximum.  

 

 

Figure 4.6 (a) The absorption spectra from a Poly A:PCBM device in the presence of 

negative bias (0 to -2V). (b) The absorption spectra at higher bias voltages from -5 V to -

10 V. 

 

Extending this line to intercept the x-axis gives the onset. The onset as a function of 

absolute value of applied bias is plotted in fig. 4.7. For biased spectra (-0.4V to -2V), 

although the curves are close in the region 1.5 to 1.6 eV (fig. 4.6(a)), the x-axis intercept 

spans over approximately 200 meV. We point out that the onset of donor absorption (1.65 

– 1.55 eV) is what changes as a function of the electric field. The low energy peak at 1.6 

eV (which most likely arises due to the presence of PCBM) does not change as a function 

of the applied bias. Since it is well established that a suitable acceptor is helpful in 

dissociating a bound charge pair, presence of PCBM results in a redshift of the absorption 
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edge due to biasing. Figure 4.6(b) shows the absorption spectra for bias beyond -5 V. No 

changes in the intensity or the onset are observed beyond – 5V. We attribute the 

saturation of the absorption spectra to trapping of the exciton at the Poly A/PCBM 

interface. Our observations are similar to bias dependent changes in organic multiple 

quantum well (MQW) structures and porous Si. Since the changes are observed in the 

donor absorption region, the changes would correspond to the intra CT exciton of the 

donor copolymer. Hence, the saturation effect beyond -5 V allows an estimation of the 

intra CT exciton binding energy.  
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Figure 4.7 The absorption onset of the intra CT state as a function of the bias voltage.  

 

Using maxV = 5 V, L 100 nm, GPr ~ 2.86 nm, the BE is estimated to be ~0.143 eV. 

The BE of the intra CT exciton lies within the 0.050–0.5 eV range found for other CT 

excitons.[84,85]  

The biased dependent absorption in Poly B:PCBM is shown in fig. 4.8. In the Poly 

B:PCBM blended film, the absorption onset showed no change with an external bias. In 
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other words, it implies that the quantum confined Stark effect is not strong enough in this 

heterojunction. In Poly B:PCBM samples it is possible that an unstable CT state is 

formed, not detected in the steady state optical absorption spectroscopy.   
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Figure 4.8 The absorption spectra from a Poly B:PCBM device in the presence of 

negative bias (0 to -10V). 

 

To summarize, the external bias modified and eventually saturated the steady state 

absorption in the Poly A:PCBM samples, but not the TDPP-BBT:PCBM and Poly 

B:PCBM samples.  The variation in absorption was detectable in Poly A:PCBM due the 

exciton confinement at the Poly A/PCBM interface. In the TDPP-BBT blend and Poly B 

blend it implies that (i) the exciton is strongly bound at the polymer:PCBM interface or 

(ii) the exciton is weakly bound (inter CT exciton) and already transferred to PCBM, 

rendering the CT exciton undetectable by steady state absorption spectroscopy.  

In order to verify if (i) or (ii) is a plausible explanation, we utilize photocurrent 

modulation spectroscopy to identify the inter CT states in polymer-fullerene blends and 
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to understand the relevance of the intra CT state in the formation of inter CT state. 

Previously, the inter CT states were probed in a P3HT:PCBM BHJ using two 

photocurrent spectroscopic techniques (Section 3.2, fig. 3.2(b) and 3.3). In the two 

figures the responsivity (calculated from PC) of the P3HT:PCBM 1:1 device was plotted 

along with the normalized absorption from the P3HT:PCBM 1:1 blend. The responsivity 

from the P3HT:PCBM device showed a lower energy onset than the absorption onset. 

The low energy feature in the responsivity corresponds to the onset of the inter CT state 

in the P3HT:PCBM device. In DPP-based copolymers too, the inter CT states were 

probed in the copolymer:PCBM blends using two PC techniques. The spectral PC from 

the devices was also used to characterize the device responsivity and the EQE. 

 

4.3 Photocurrent Spectroscopy - Probing Intermolecular Charge-Transfer States  

4.3.1 PDPP-BBT: PCBM devices 

 

Figure 4.9 The normalized absorption (green) and the monochromatic PC responsivity of 

a pristine PDPP-BBT device. 

 

1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

0.000

0.005

0.010

0.015

0.020

0.025

 

N
o
rm

a
lis

e
d
 a

b
s
o
rp

ti
o
n

Energy (eV)

PDPP-BBT(hexyl)

 Absorption

 Responsivity

 R
e
s
p
o
n
s
iv

it
y
 (

A
/W

)



 

57 

 

The normalized absorption (green) of the pristine PDPP-BBT film is shown in fig. 

4.9. The normalized absorption spectrum was calculated by normalizing the spectrum to 

the maximum intensity of the donor absorption. The responsivity (black) calculated from 

monochromatic PC of pristine PDPP-BBT (sample1) is shown in the same figure. The 

responsivity closely follows the absorption and the onsets are not vastly different. The 

maximum responsivity is 0.0172 A/W at ~2.3eV, which gives EQE to be ~ 4% at 2.3eV. 

The normalized absorption (grey) and the responsivity (black) of PDPP-BBT (sample 

1):PCBM 1:1 blend is shown in fig. 4.10(a). As seen in the figure, the onset of 

responsivity is lower than the onset of absorption i.e. the responsivity of the blended 

device showed an energy feature lower than the absorption.  The low energy feature is the 

indication of a stable inter CT state in the blend. From the onset of inter CT, CTE  is 

calculated by a Marcus fit (Eq. 3.3) to the responsivity curve in the region well below the 

onset of absorption (< 1.6 eV). The reorganization was fixed at 0.25 eV as in for 

P3HT:PCBM device. For PDPP-BBT(sample 1): PCBM, the onset of ECT from the 

monochromatic PC method is ~1.42 eV.  
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Figure 4.10 Normalized absorption and responsivity (by monochromatic PC method) of 

PDPP-BBT(sample1):PCBM. (b) Normalized EQE (black) by FTPS method and the 

Marcus fit (dashed) to the normalized FTPS EQE in PDPP-BBT (sample1):PCBM is 

shown.  

 

The FTPS spectrum from the PDPP-BBT (sample1):PCBM is normalized as 

discussed in Section 3.2 and is plotted as normalized EQE in fig. 4.10(b).  The FTPS and 

the PC spectra are similar for the PDPP-BBT (sample1):PCBM device. Again, using 

Marcus’s theory (Eq. 3.3), we deduce the onset of ECT. Since the inter CT states observed 

from the EQE spectra extend below the absorption edge, the fit was applied from low 

energies to ~1.5 eV, depending on the best fit parameters. The dashed line in fig. 4.10(b) 

shows a fit to the FTPS spectrum for obtaining the energy of the inter CT state. The CTE  

calculated from the fit to the FTPS PC is ~ 1.42eV. 
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Figure 4.11 Normalized absorption and responsivity (by monochromatic PC method) of 

PDPP-BBT(sample1):PCBM (b) PDPP-BBT(sample2):PCBM. 

 

The absorption spectrum and responsivity (monochromatic PC) of PDPP-BBT 

(sample2):PCBM is shown in fig. 4.11. Note that the PDPP-BBT (sample2) shows an 

absorption edge which is red-shifted compared to the absorption edge of PDPP-BBT 

(sample1) (see fig. 4.1). From fig. 4.11, the onset of the responsivity and the absorption is 

seen to overlap, indicating absence of any low energy feature in the blend.  The PDPP-

BBT (sample2):PCBM device shows no evidence of inter CT absorption. Comparing the 

responsivity of the blended samples in fig 4.10(a) and 4.11, we also observe an overall 

higher EQE in PDPP-BBT (sample2) compared to PDPP-BBT (sample1). 
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4.3.2  TDPP-BBT: PCBM devices 

  

Figure 4.12 (a) The monochromatic PC responsivity and the absorption spectra from the 

1:1 sample. (b) Normalized EQE measured by FTPS for TDPP-BBT:PCBM (1:1) and 

(1:2) devices; absorption spectrum of the 1:1 sample is plotted by the black line.  

 

The absorption spectrum and the responsivity from the TDPP-BBT:PCBM (1:1) 

sample are shown in fig. 4.12(a). Similar to PDPP-BBT (sample2):PCBM, the FTPS and 

the PC spectra in TDPP-BBT:PCBM coincide with the absorption edge in TDPP-

BBT:PCBM, signaling the absence of any inter CT states. We also increased the amount 

of PCBM concentration in TDPP-BBT:PCBM in order to detect the inter CT states in 

TDPP-BBT:PCBM devices. Figure 4.12(b) shows the FTPS EQE spectra in TDPP-

BBT:PCBM (1:1) and TDPP-BBT:PCBM (1:2). For comparison, the normalized 

absorption spectrum from TDPP-BBT:PCBM (1:1) is also plotted in the fig. 4.12(b).  No 

lower energy onset was detected i.e., no inter CT states were detected for a higher 

concentration of PCBM in TDPP-BBT:PCBM sample. All the results obtained above 
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have been summarized in Table 4.2. The table lists the CTE values of PDPP-

BBT(sample1):PCBM (1:1), PDPP-BBT(sample2):PCBM (1:1),  and TDPP-BBT:PCBM 

(1:1) devices obtained by fits to both the FTPS and PC. The two photocurrent techniques 

give slightly different values, which may be attributed to the spectral resolution, with 

FTPS being a more sensitive technique. From column three and four in Table 4.2, we 

observe that the CT state is detected in the PDPP-BBT:PCBM sample where PDPP-BBT 

has the largest optical bandgap. For the PDPP-BBT(sample2) (which has a lower 

bandgap) blended device,  no CT state was detected . Similarly, no CT states were 

detected for the lowest bandgap material (TDPP-BBT) blend either. Also, column five 

indicates a higher responsivity (and PCE) for blends where no CT states were detected. 

 

Table 4.2 Energy of the inter CT states (ECT) obtained by fits to the FTPS and PC spectra 

using the Marcus theory 

 

a Ref. 86. 

b Sample 1. 

 

Sample
ECT(eV)

FTPS

ECT(eV)

PC

Absorption

onset (eV)

Responsivity

at peak (A/W)
PCE (%)a

PDPP-BBT(sample1) 

:PCBM (1:1)b 1.42 1.49 1.70 ~0.075 1.5

PDPP-BBT(sample2) 

:PCBM (1:1)
- - 1.50 ~0.13 -

TDPP-BBT:PCBM 

(1:1)
- - 1.43 ~0.4 2.8
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4.3.3 Poly A: PCBM devices 

In order to evaluate the relationship between the presence/absence of inter CT states 

to the optical bandgap of the polymers, we have extended our studies to statistical 

copolymers where the bandgap can be tuned more easily. As with the P3HT and DPP-

based copolymers discussed so far, we probe the inter CT states in two DPP based 

statistical copolymer:PCBM blends. The chemical structure of the DPP-based statistical 

copolymers is shown in fig. 1.2(f). Note that the statistical copolymers have thiophene as 

a bridge unit connecting the DPP core to the carbazole-benzothiadiazole (carbazole-BT) 

unit, but Poly B has more DPP fraction compared to Poly A. The normalized absorption 

spectrum (fig. 4.2(b)) indicates that Poly B has a slightly smaller bandgap than Poly A.  

The normalized absorption spectra of Poly A:PCBM along with the monochromatic 

PC responsivity are plotted in fig. 4.13(a). The PC spectrum shows a low energy onset 

compared to the absorption spectrum in Poly A:PCBM which is an indication of the 

presence of inter CT states in this sample. For comparison, the responsivities of pristine 

Poly A and its blend with PCBM (1:1) are plotted in fig. 4.13(c). The graph indicates (i) a 

redshift in the onset of PC by addition of PCBM compared to the pristine, and (ii) a 

significant increase in the responsivity with the addition of an acceptor. The redshift in 

the PC clearly points towards the formation of a stable inter CT state. From the 

responsivity curve, the EQE for Poly A:PCBM is approximately 1.5% at  1.8 eV.  For 

further confirmation of the CT states, we measured the FTPS PC from Poly A:PCBM. 

The FTPS PC is normalized using the method discussed in Section 3.2 and is plotted as 

normalized EQE on a semi-logarithmic scale as shown in fig. 4.13(b). The FTPS 
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spectrum of Poly A:PCBM clearly shows a weak absorption feature lower in energy 

compared to the regular absorption spectrum. This low energy feature signals the 

presence of a inter CT state, similar to the PC spectrum (fig. 4.13(a)), in the Poly 

A:PCBM blended sample. The low energy contribution to both the PCs was fitted using 

Eq. 3.3. The onset of the CT state from a fit to monochromatic PC is ~1.45 eV and from a 

fit to the FTPS PC is ~1.36 eV.  
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Figure 4.13 Normalized absorption and responsivity of Poly A:PCBM by (a) 

monochromatic PC (blue), and (b) FTPS (blue dashed). (c) The responsivity of pristine 

Poly A (solid blue) and Poly A: PCBM (dashed blue).  

 

4.3.4 Poly B:PCBM devices 

The normalized absorption and responsivity in Poly B:PCBM (1:1) is shown in fig. 

4.14. The onsets of the absorption and responsivity almost overlap, from which we 

conclude the absence of any low energy CT state in Poly B:PCBM (using photocurrent 
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spectroscopy). The responsivities of pristine Poly B and its blend with PCBM (1:1) are 

plotted in fig. 4.14(b). To compare their onsets, the responsivity of the pristine Poly B 

sample is multiplied by a factor of 22. In contrast to the Poly A, the onset of the 

responsivity of Poly B: PCBM overlaps with that of the pristine Poly B, signaling the 

absence of inter CT states. Additionally, the responsivity of Poly B: PCBM is almost an 

order of magnitude more than pristine Poly B. In terms of the EQE, Poly B:PCBM shows 

~ 31% at 1.8 eV. Compared to Poly A:PCBM (~ 1.5% at 1.8 eV), the EQE of Poly 

B:PCBM is an order of magnitude more. Note that Poly B:PCBM sample had showed no 

change in the absorption in the presence of an external bias (fig. 4.8), pointing in the 

direction of weakly-bound charge pairs. It is highly likely that the electric field does not 

introduce significant changes in the onset or the intensity of the absorption because of the 

weakly-bound exciton. The unstable CT state at the interface may actually result in a 

complete transfer of charge from Poly B to PCBM, which can further explain the higher 

responsivity in this sample compared to Poly A:PCBM.  
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Figure 4.14 Normalized absorption and responsivity of (a) Poly B:PCBM (b) The 

responsivity of  Poly B and Poly B :PCBM. The responsivity of the pristine is multiplied 

by a factor of 22. 

 

We explain the stabilization of the inter CT states in our experiment on the basis of 

the difference in the bandgap energies of the donor polymer and the PCBM acceptor. In a 

prior work by Hall et al., it was observed that a smaller difference in the band gap 

energies (or the singlet state energies) between MEH-PPV and CN-PPV results in 

stabilizing the inter CT state.[51] This work consisted of PL studies and theoretical 

calculations were done on three PPV-related materials. The HOMO and the LUMO 

levels of all three polymers calculated theoretically in Ref. 51 is shown in fig. 4.15(a). 

Note that a cyno-substituted PPV (CN-PPV) is the acceptor polymer, while MEH-PPV 

and DMOS-PPV act as donor polymers.  The difference between the HOMO (H) and 

LUMO (L) level of DMOS-PPV and CN-PPV (0.55 -0.17 eV) is 0.38 eV. The difference 
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is specified in fig. 4.15(a) as intra. In DMOS-PPV/CN-PPV, the energy of the inter CT 

state would be, 

                                         ECT = E(Intra state of DMOS-PPV)-0.55.   

But the excess energy to convert an intra chain exciton to inter chain exciton is close to 

the exciton binding energy in PPV  0.35 eV.[52] Hence,   

                        ECT = E(Intra state of DMOS-PPV) - 0.55 + 0.35 

                                            = E(Intra state of DMOS-PPV) - 0.20.                        (4.4) 

In fig. 4.15(b), the ECT is denoted by “inter” and is 0.2 eV below the intra state of DMOS-

PPV.  Note that the energy of inter CT state was calculated theoretically. DMOS-

PPV/CN-PPV had not shown any inter CT states experimentally. In MEH-PPV/CN-PPV, 

the difference between the intra state of MEH-PPV and CN-PPV (0.63 - 0.44 eV) is 0.19 

eV. The ECT  can be calculated as,  

                  ECT = E(Intra state of MEH-PPV) - 0.63 + 0.35 

                                           = E(Intra state of MEH-PPV) - 0.28.                            (4.5) 

In fig. 4.15(b), the ECT for MEH-PPV/CN-PPV denoted by “inter” is 0.28 eV below the 

intra state of MEH-PPV.  The inter state in MEH-PPV/CN-PPV is stabilized below the 

lowest intra state (intra CN-PPV). This stabilization has been attributed to the small 

bandgap difference in MEH-PPV and CN-PPV. 
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Figure 4.15 (a) The HOMO and the LUMO levels of various PPV-related chains. (b) The 

position of the lowest interchain and the intrachain excited state in CN-PPV/DMOS-PPV 

and CN-PPV/MEH-PPV.[Ref. 51] 
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On the basis of bandgap dependent charge transfer in the PPV-related chains, we 

evaluate the relation between the bandgap of DPP-based copolymers and the inter CT 

state detected by PC techniques. It is then instructive to consider the singlet state energy 

(S1) difference between the donor polymer and the acceptor, as shown in fig. 4.16. 

Although a different batch, the DPP copolymers used in this work were similar to the 

ones used in Ref. 86 where the HOMO/LUMO values of the copolymers were reported. 

The relevant HOMO/LUMO values for PCBM are 6.1 eV and 4.3 eV, respectively. The 

S1 energies are determined from the onset of the absorption spectra for the pristine 

systems. The inter CT states detected in two DPP-based copolymer-PCBM blends 

(PDPP-BBT (sample1) and Poly A) is shown schematically in fig. 4.15. No inter CT state 

is detected in PDPP-BBT(sample2), Poly B and TDPP-BBT -fullerene blends. The 

difference between the S1 energies of DPP copolymer and PCBM is denoted by double 

headed arrows. Compared to PDPP-BBT(sample 1)-PCBM (0.07eV) and Poly A-PCBM 

(0.2eV), the S1 energy difference between Poly B-PCBM (0.3 eV), and TDPP-BBT – 

PCBM (0.37 eV) is higher. Similar to the MEH-PPV/CN-PPV (Ref. 50), inter CT state is 

observed (stabilized) when S1 energy (intra state) difference is small (< 0.2 eV, here). For 

S1 energy ≥ 0.3 eV, no inter CT state is detected. We point out that the inter CT states are 

not observed even in PDPP-BBT (sample 2), which has a similar band gap to TDPP-

BBT.  
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Figure 4.16 The singlet state (S1) energies of the DPP based polymer and PCBM are 

shown. The difference between the S1 (solid lines) energies of the donor polymers with 

respect to PCBM, and the relative position of the inter CT state (dashed line) are 

schematically shown. 

 

For comparison, let us reconsider the results of inter CT state from the 

monochromatic PC method from the P3HT:PCBM 1:1 device (Section 3.2). Recall that 

the optical band gap of P3HT is ~1.9 eV. The difference between the bandgap of P3HT 

and PCBM is 0.1 eV. The ECT state by the monochromatic PC was found to be ~ 1.21 eV.  

Similar to some of the DPP-based copolymer systems, a small bandgap difference 

between P3HT-PCBM, results in a stable detectable inter CT states. 

In the DPP based polymer:fullerene blends, a larger difference in the S1 energies 

between the donor polymer and PCBM acceptor may result in the formation of an (i) 

inter CT state that coincides with the S1 of the donor polymer or (ii) unstable inter CT 

states. Due to the faster dissociation, the inter CT state would undetectable by FTPS/PC 

techniques. If (i) was true, the inter CT state is formed but coincides with donor 

absorption then there is a possibility of a back transfer of the already separated charge. 
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The back transfer of charges often leads to recombination and should result in a decrease 

of the photocurrent as seen in emission studies.[87] However, for the DPP based 

copolymers we observe that the photocurrent and the responsivity (Table 4.2 and fig. 

4.16) are higher in devices for which no inter CT states are observed. A possible 

explanation then is that the inter CT state is not stabilized or disassociates very fast 

(compared to the time scales of our experiment) in the blends where the low energy state 

is not detected by photocurrent spectroscopy. 

Most likely the differences in the chemical structure of the DPP copolymers do not 

play a role. The PDPP-BBT samples (1 and 2), which have the same backbone structure, 

show differences in the formation of inter CT state. Sample 1 which has a lower S1 

energy difference between PCBM clearly shows the formation of inter CT state at 1.42 

eV. On the other hand PDPP-BBT(sample2):PCBM does not show any inter CT states. 

The PDPP-BBT(sample2):PCBM has a responsivity that is almost twice than PDPP-BBT 

(sample1):PCBM (see Table 4.2). We see the same trend in the DPP statistical 

copolymers – Poly B shows a higher responsivity compared to Poly A. Furthermore, the 

absence of the inter CT state in the DPP:PCBM blends is related to a higher photocurrent 

(responsivity). 

Two factors may play a role here-the difference in the S1 energies and the relative 

positioning of the singlet states of the donor and acceptor. Looking at other donor-

acceptor systems where inter CT states have been observed or calculated in the literature, 

the S1 energy difference between the donor and acceptor is usually small [51] or in some 

cases where the difference is large, the S1 of the donor is higher compared to PCBM.[48-
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50,57] The PC spectroscopy data indicate that for DPP based devices, a larger difference 

in the S1 energies of the donor and the acceptor obliterates formation of a stable inter CT 

states, eventually resulting in a higher responsivity. 

In summary, whether the presence of low-lying midgap CT states results in 

enhanced/diminished photovoltaic efficiency in polymer-based BHJs most likely depends 

on the choice of the donor polymer. Undoubtedly, the morphology of the blended film, 

phase separation, excitonic diffusion lengths, and spectral overlap between donor 

emission and acceptor absorption are major players impacting the overall PCE of organic 

solar cells compared to only the nature of the inter CT states.[88]  
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5.                                                                                                                           

DENSITY FUNCTIONAL THEORY AND TIME DEPENDENT DENSITY 

FUNCTIONAL THEORY 

 

Theoretical insights are often required to understand the basis of experimental 

observation. With reference to the optical data presented here, it is important to 

understand the origin of transitions occurring within the organic monomer or polymer 

unit. The density functional theory (DFT) and time-dependent (TD) DFT have been 

implemented to calculate electronic structure and identify the origin of optical transitions 

within a chromophore of the conjugated systems. Our main focus of this work was on the 

statistical copolymers: Poly A and Poly B. The purpose of DFT calculation is to optimize 

and calculate the electronic ground state of the Poly A and Poly B monomer. After 

optimization, the probability of transition was calculated using TDDFT, which also gives 

the oscillator strength of the various transitions.  

 

5.1 Introduction  

5.1.1 Density functional theory 

The stationary state of any N electron system can be defined in terms of N-electron 

wave functions. The information about any N-electron (interacting) system can be 

obtained by solving the Schrodinger equation given by                                                                        
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where, m is the electron mass, M is the nuclear mass, and 
IZ  the nuclear mass of Ith 

nuclei. The first three terms in the Eq. 5.1 are the kinetic energy operator of electrons, the 

Coulomb potential energy operator between two electrons, and the Coulomb potential 

energy operator between the electron and the nucleus.  The fourth and the fifth term are 

the kinetic energy and the Coulomb potential energy between the nuclei, respectively. 

The above equation can be simplified under Born-Oppenheimer (BO) approximation. 

According to BO approximation the electronic and nuclear dynamics can be separated by 

taking into account the fact that nuclei are massive, and hence, their coordinates do not 

change significantly with time. In which case, the kinetic energy of the nuclei is 

neglected and the fifth term in Eq. 5.1 is just a constant (const.). The Hamiltonian 

^

H  in 

Eq. 5.1 simplifies as 
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i.e.                                            
^^^^

Neee VVTH  .                                                  (5.3) 

The solution of the Hamiltonian is the electron wavefunction e , energy eE . The total 

energy of the N-electron system can then be written as  

                                                 nucetot EEE  ,                                                       (5.4) 

where, Enuc is the nucleus-nucleus repulsion energy constant. For large values of N, it is 

difficult to solve the Hamiltonian exactly given by Eq. 5.2. However, there are methods 

available to solve the issue of calculating ground-state energy of N electron system. 
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One of the methods is a variational method such as the Hartree-Fock (HF) method. It 

expresses the total wavefunction   in terms of Slater determinant of orbitals, )( ji r  
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Each orbital satisfies the Hamiltonian, )()(
^

jiijii rErH   . The total HF energy 

can be written as 


i

iHF EE Coulomb energy due to electrostatic repulsion between electrons 

+exchange energy.                                                                                              (5.6) 

The exchange energy originates due to antisymmetric nature of wavefunction. It can 

be interpreted by saying that the two electrons flip position during interaction. Although, 

the use of Slater determinant greatly simplifies solving Schrodinger equation, it does not 

take into account the correlation energy EC due to non-classical Coulomb interaction 

between the electrons. The correct total energy can be given by  

                                                 Ecorrect = EHF+ EC.                                                   (5.7) 

Another method to calculate the electronic structure is based on DFT. In 1964 

Hohenberg and Kohn proposed, that the electron probability density should be enough to 

deduce the electronic properties of the system. The single-particle density of the ground 

state of N interacting electrons at position r can be written as 

                             
2

2020 ),...,,(...)( NN xxrxdxdNrn 


 .                             (5.8) 
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Here 0  is the ground-state wavefunction of the system at position r, and spin  . 

According to the Hohenberg-Kohn theorem for N interacting electron systems, the 

particle density is enough to derive properties of the system. They also proved that the 

ground state density is unique and corresponds uniquely to an external potential. In other 

words, choosing an appropriate external potential would result in a unique ground state. 

The total energy functional can therefore be written as [89] 

                                             ][][][][ 0 nVnWnTnEtot  ,                               (5.9) 

where, 
^

0V is the external potential (such as from nuclei) associated with the density 

)(rn  and ][n is the ground state wavefunction which produces the density )(rn .  

Kohn-Sham formalism took into account the Hohenberg-Kohn theorem and showed 

that even a noninteracting electron system must be able to produce a unique ground state 

density. Given any N interacting electron system, one starts with a ground state density of 

a N-non interacting system. The density is plugged into the Kohn-Sham equation (Eq. 

5.12) and is solved for estimating the unique effective potential. This potential is plugged 

back into the Kohn-Sham equation to recalculate the density. The iterative process leads 

to a unique density and eventually to the ground state energy. To calculate the ground 

state energy of the actual interacting system the final energy functional must take into 

account the exchange and correlation energy. The total energy of N interacting particles 

can be written as,  

                                        ][][][][][ 0 nVnEnEnTnE xcCnitot  ,                         (5.10) 
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where ][nTni  is the non-interacting kinetic energy-, ][nEC  the Coulomb energy-, and 

][nE xc  the exchange-correlation (xc) energy functional. Finding the ground state of a 

molecular structure always involves choosing an appropriate xc functional. In this thesis 

the ground state of Poly A and Poly B monomers has been calculated using different 

functionals: B3LYP, CAM-B3LYP and M06HF.  

 

5.1.2 Time-dependent density functional theory 

Time-dependent density functional theory (TDDFT) is a universal approach for 

dynamical many-body problems, but requires approximations to account for dynamical 

exchange-correlation (xc) effects.[89,90] The vast majority of applications of TDDFT are 

to calculate excitation energies of medium-size and large molecules, with overall 

accuracies comparable to traditional ab initio wave function methods, but much better 

computational efficiencies.[91,92]  

The basic idea behind TDDFT has been formulated as follows. Consider a system of 

N interacting particles. But this time, let the system move in a time-dependent external 

scalar potential ),( trv . The system evolves under time and can be expressed by the time-

dependent Schrödinger equation, 

                                        ),,..(),,..()( 11

^

txx
t

itxxtH NN 



 .                             (5.11) 

The time-dependent Schrodinger equation correlates the external potential to the time 

dependent wavefunction. Once )(t  has been calculated, it is possible to generate ),( trn


. 

The one-to-one correspondence between time-dependent potentials and density was 
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shown by Runge and Gross.[90] This correlation between time dependent potential and 

density is similar to DFT, except for the time factor. They showed that a unique potential 

is associated with the dynamics of the system ( ),( trn


) and vice versa. The TDDFT is 

based on the one-to-one correspondence of time-dependent densities and potentials. To 

begin with, the static Kohn-Sham equations are used to derive N ground state orbitals: 
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         (5.12) 

Self-consistent solutions of ground state Kohn-Sham equations give the N static 

orbitals. These are taken as initial orbitals and are propagated in time: 

                                                    ),,()( 0

0 trr jj      j=1,…N.                          (5.13) 

This gives the initial density ),()( 000 trnrn


 . An initial guess of the time-dependent 

density functional ),( trn


is made. By substituting the density, new set of orbitals and the 

density dependent potential are obtained. Again, self-consistent solution of the orbitals is 

calculated using  
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       (5.14) 

In practice, application of TDDFT requires overcoming challenges such as making 

approximation for the time-dependent xc-functionals and calculating observables (e.g. 

excitation energy) from time-dependent density.[93] 

The Gaussian code does not treat the full time propagation of Eq. 5.14, but instead 

considers the external time-dependent potential as a weak perturbation. By considering a 

linear response regime, the system does not deviate too much from its initial state.  Thus, 
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one does not need to solve Eq. 5.14 and calculate the new wavefunctions. Instead, one 

starts with a frequency-dependent response density equation. This equation also includes 

the Hartree-xc kernel defined as the variation of the xc potential with respect to the 

density. The frequency at which the density response is finite and self-sustained 

corresponds to the eigenmode (excitation energy). The eigenmodes are calculated by 

solving the coupled linear homogenous equations (Casida equations) of the form,[94] 
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Here, the matrix elements of K correspond to the overlap or coupling of the occupied and 

the unoccupied Kohn-Sham orbitals. The matrix elements of A comprises of frequency of 

transition between the occupied and unoccupied Kohn-Sham orbitals and the elements of 

the coupling matrix K. X and Y are the excitation and de-excitation matrix. The 

excitation energies (Ω) are obtained in principle exactly (but depend on the chosen 

approximation for xc-functional). 

Using TDDFT, we calculate first few excitation energies in the monomer units of 

DPP-based statistical copolymers.  

 

5.1.3 Coulomb attenuated modified -B3LYP  

B3LYP is a hybrid exchange-correlation functional which combines the Becke 

exchange with LYP functional (Becke, three-parameter, Lee-Yang-Parr). This functional 

combines the Hartree-Fock exchange with other DFT approximations. The three 

parameters correspond to the coefficient of the linear combination of the functional 

approximations. Currently, B3LYP is by far the most successful hybrid functional 
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utilized for theoretical calculations. Unfortunately, this functional does not give 

satisfactory results when there are long-range interactions involved, such as the CT 

interactions. 

A full Hartree-Fock (HF) asymptotic behavior of the exchange energy is required for 

CT excitations.[95] A particularly attractive new class of xc functional are the so-called 

range-separated hybrid functionals.[96-98] This functional includes the long-range factor 

by taking into account Hartree-Fock exchange and short-range terms by employing local 

density approximations.  The electron-electron interaction can be written as short-range 

DFT and long-range Hartree-Fock by separating the Coulomb interaction as,[95] 
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Here, μ is the range separation parameter. By introducing parameters α and β, 

Yanai et al. rewrote Eq. 5.16 as,[97] 
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where, α (β) defines the contribution of HF to short-range (long-range) and must satisfy 

10,10,10   . At α=0.2, β=0, Eq. 5.17 reduces to B3LYP i.e. a simple 

(
1

120.1 r ). For α=0, β=1, Eq. 5.16 reduces to Eq. 5.16 i.e. a long-range correlation (LC). 

On the other hand, α=0.19, β=0.4, gives the Coulomb Attenuated Modified-B3LYP 

(CAM-B3LYP) functional.[97] The success of this function is found in correctly 

predicting CT state in zincbacteriochlorin (ZnBC)–bacteriochlorin (BC) complex: a 

model system for studying energy transfer in photosynthesis.[99] 
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5.1.4 Minnesota functionals 

The Minnesota functionals (e.g. M06HF) are set of hybrid functionals developed by 

Dr. D. Truhlar and group at the University of Minnesota. In Ref.95 Zhao et al. proposed 

mixing full HF-exchange with DFT to account for the long-range interactions. M06HF 

combines local xc with non-local exchange. The local xc is obtained from the generalized 

gradient approximations (GGA), where the functional ][nEXC  depends on the spin of 

electron and density gradient at the point of calculation. 

 

5.2 Results and Discussion 

The electronic orbitals and excitation energies of all DPP-based copolymers was 

computed using the Gaussian 09 package.[100] Single monomer units of the DPP 

polymer were constructed using Gaussview 5.0, optimised using B3LYP, CAM-B3LYP 

and M06HF functional and 3-21G* or 6-21G* set provided in  Gaussian 09 package. 

CAM-B3LYP hybrid functional and polarized 6-31G* basis set were used to optimize 

and calculate the absorptivity in statistical copolymer units.[28] The basis sets are the 

functions combined linearly: such as atomic orbital-like basis functions combined to give 

MOs. The 6-31G basis set follows the split-valence notation given by X-YZG. Since the 

valence electrons are the most important ones in the formation of MOs, the valence 

orbitals are constructed by combination of multiple basis function. 6-31G(d)  or 6-31G* 

corresponds to 6 core Gaussian orbitals, while the valence orbitals are split into 

combination of 3 primitive and 1 primitive Gaussian function. The “*” represents the 

addition of d- and f-type orbitals.  
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Figure 5.1 The absorptivity of PDPP-BBT and TDPP-BBT calculated using B3LYP/3-

21G* in Ref. 99. 

 

The single monomer units of PDPP-BBT and TDPP-BBT were optimized using 

B3LYP hybrid functional and 3-21G* basis set. Later, TDDFT was utilized to calculate 

the absorptivity of the monomer units. The results from TDDFT are reproduced here. 

Figure 5.1 shows the calculated absorptivity in PDPP-BBT (black) and TDPP-BBT (red) 

monomer unit. The onset of absorption in TDPP-BBT unit is lower than that of PDPP-

BBT, as observed experimentally (fig. 4.2(a)). A stark difference seen between fig. 5.1 

and fig. 4.2(a) is the presence of single broad feature spanning 1- 3.5 eV. Different 

functional with higher Hartree-Fock contribution were also utilized to optimize the 

monomer structure and to get a better correlation between the calculated and 

experimental absorptivity. The results of which are published in Ref. 101. 
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5.2.1 CAM-B3LYP as applied to Poly A and Poly B monomer 

B3LYP/polarized 6-31G* was first applied to single monomer units of statistical Poly 

A and Poly B. Although, the structures could be optimized (not shown), TDDFT of the 

optimized structure resulted in excitation energies with very low oscillator strength. Since 

statistical monomer units were longer than PDPP-BBT and TDPP-BBT monomer units, a 

long-range interaction was considered necessary for better prediction of molecular 

orbitals (MOs).  

Poly A was constructed with one carbazole-DPP unit and three carbazole-BT units, 

while Poly B was constructed with one carbazole-DPP unit and one carbazole-BT unit. 

Note that the molecular weight of Poly A is more than Poly B, so it is appropriate for 

Poly A to be longer than Poly B. To optimize Poly A, the dihedral angles along the chain 

were fixed. The frozen coordinates would also correlate with the fact that the 

experimental data collected in this work is from a solid state film and not from a solution. 

The nitrogen, sulphur, and oxygen are denoted by blue, yellow, and red, respectively. To 

reduce the computational time, the side chains were replaced by a hydrogen atom. Figure 

5.2 shows the optimized Poly A monomer. The carbazole, thiophene, core DPP, and the 

carbazole-BT units have been specified for future reference. Figure 5.3 shows the 

HOMO, LUMO, the next lower (HOMO-1) and the higher (LUMO+1) MOs for an 

optimized Poly A monomer obtained from ground state DFT calculations. Both the 

HOMO and the LUMO are distributed over the thiophene-DPP unit. The HOMO-1 

resides mainly on the carbazole-DPP unit while the LUMO+1 reside on the carbazole-BT 

chain units. 
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Figure 5.2 The optimized structure of Poly A indicating various units. 

 

The DFT calculations of a slightly different monomer: three carbazole-BT units 

attached to the carbazole side of carbazole-DPP unit were also performed. For this 

structure frozen dihedral angles did not optimize the monomer. The structure was 

optimized without fixing dihedral angles. The MOs of the optimized structure are shown 

in fig. 5.4. The HOMO and the LUMO orbitals still reside on the DPP units, resulting in 

the large overlap in the spatial extent of the HOMO and LUMO orbitals. The HOMO-1 

and the LUMO+1 orbital are also similar to HOMO-1 and LUMO+1 of Poly A shown in 

fig. 5.3. Thus, the presence of the carbazole-BT units on the carbazole-BT side does not 

introduce any significant difference in the ground state MO of the monomers.  
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Figure 5.3 The HOMO, LUMO and the next lower, higher MOs of Poly A monomer 

calculated using CAM-B3LYP/6-31G(d). The red and green represent the phase of the 

MO. 
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Figure 5.4 The HOMO, LUMO, next lower and higher MO levels in Poly A monomer 

with three carbazole-BT units attached to the carbazole-BT side calculated using CAM-

B3LYP/polarized 6-31G(d). The red and green represent the phase of the MO. 
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Figure 5.5 The HOMO, LUMO, next lower and next higher MOs of Poly B monomer 

calculated using CAM-B3LYP/polarized 6-31G(d) basis set. The red and green represent 

the phase of the MO. 

 

Poly B was constructed by attaching carbazole-thiophene-DPP-thiophene unit to the 

carbazole-BT unit. The results of DFT calculation on Poly B monomer is shown in fig. 

5.5. The MOs for Poly B are different than Poly A. The HOMO is spread over the DPP 

core and partially over the thiophene-carbazole unit. It is more delocalized than the 

HOMO of Poly A. The LUMO shows hardly any charge density on the DPP core. 

However, the LUMO+1 orbital resides mainly on the DPP core. The HOMO-1 is 
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delocalized over the carbazole similar to the HOMO-1 of Poly A (fig. 5.3). Although the 

MOs may not reflect the optical response of the many-body system that arises from a 

superposition of single-particle excitations, there are clear differences in the spatial 

location of the electron and hole wavefunction in the two molecules.  

To understand the contribution of the orbitals in excitations, we performed TDDFT 

calculations on the optimized monomer structure of Poly A and Poly B. The calculated 

absorptivity of Poly A (black) and Poly B (red) monomer is shown in fig. 5.6. The onset 

of calculated absorptivity in Poly B monomer is lower than in Poly A monomer. The 

calculations correctly predict the bandgap of Poly B to be lower than that of Poly A as 

observed experimentally (see fig. 4.2(b)).  

 

Figure 5.6 The calculated absorptivity of Poly A and Poly B monomer using CAM-

B3LYP and polarized 6-31G(d).  

 

To understand the origin of excitations, we consider the first excitation (lowest 

singlet) in the result of TDDFT calculation. The contribution of each transition is 

calculated by using, 
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                                             %100)2( 2  ConContributi ,                                 (5.18) 

where, C is the coefficient of transition. The factor “2” accounts for the spin. For Poly A, 

the lowest excitation is from the HOMO to LUMO orbital only with a 100% contribution. 

The DFT calculations in fig. 5.3 also show a maximum overlap, indicating absence of 

any charge separation within the monomer and a lower intra CT character. In Poly B, the 

lowest excited state has major transitions from the HOMO to LUMO and HOMO-1 to 

LUMO. It is observed that ~75% of the absorptivity results from a HOMO to LUMO-

type transition whereas 25% is from HOMO-1 to LUMO. The contribution of mixed 

orbitals to the lowest excitation in Poly B is an indication of a stronger intra CT state of 

the pristine monomer. A stronger intra CT implies a larger charge separation within Poly 

A than in Poly B. Thus, the charges dissociate more efficiently at the Poly B/electrode 

interface than at the Poly A/electrode interface. The dissociation of intra CT eventually 

results in a higher PC in pristine Poly B than in pristine Poly A device. The responsivity 

of pristine Poly A and Poly B is almost three times that of Poly B (fig. 5.7).  

 

Figure 5.7 The responsivity in pristine Poly A and Poly B devices using monochromatic 

PC method. 
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Some discrepancies seen in the calculated absorptivity are (i) higher absorptivity in 

Poly A compared to the absorptivity in Poly B, and (ii) a single broad feature spanning ~ 

1.5 – 3.25 eV for Poly A  and ~ 2 - 4 eV for Poly B. The discrepancies between the 

calculated (fig. 5.6) and experimental (fig. 4.1(b)) spectra are mostly due to the usage of 

monomers for the calculations whilst the experimental data are from polymer films.  

Although, TDDFT calculation using CAM-B3LYP provide some insight into primary 

excitations, it seems that there is a need for more appropriate xc-functional. In the next 

section, we present the DFT and TDDFT results from a different hybrid functional: 

M06HF.  

   

5.2.2 M06HF as applied to Poly A and Poly B monomer 

The MOs of optimized structure of Poly A monomer is shown in fig. 5.8. Comparing 

fig 5.3 and 5.8, we observe the spatial extent of orbitals to be same by CAM-B3LYP or 

M06HF functional. The HOMO and LUMO are situated on the DPP-thiophene region. 

The HOMO-1 (LUMO+1) orbitals in Poly A by CAM-B3LYP is identical to HOMO-1 

(LUMO+1) orbitals.   
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Figure 5.8 The HOMO, LUMO and the next higher MOs of Poly A monomer calculated 

using M06HF functional and polarized 6-31G(d) basis set.  

 

The Poly B monomer was also optimized using M06HF functional and 6-31G(d) 

basis set. The computed orbitals are shown in fig. 5.9. The HOMO and HOMO-1 level 

from M06HF is same as those calculated from CAM-B3LYP (fig. 5.5). In contrast, while 

the LUMO (from M06HF) is spread over thiophene-DPP unit, the LUMO (CAM-

B3LYP) was localized on thiophene unit only. Similarly, the spatial extent of LUMO+1 

in Poly B from the two functional is different. 
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Figure 5.9 The HOMO, LUMO, next higher and lower MOs of Poly B monomer 

calculated using M06HF functional and polarized 6-31G(d) basis set. 

  

The absorptivity of the optimized Poly A and Poly B monomer was calculated using 

time-dependent M06HF and polarized 6-31G*. The calculated absorptivity of Poly A 

monomer and the normalized absorption of Poly A thin film are plotted in fig. 5.10(a). 

Although, distinct bands are visible in calculated absorptivity, TDDFT overestimates the 

spectrum. The overestimation (~ 1 eV) is the result of higher HF contribution in the DFT 

calculation.[102]  In Poly A monomer, the low energy peak (~ 3eV) is less intense that 

the peak at ~4 eV. From the coefficients of first excitation, HOMO to LUMO transition 

contributes ~85%. Rest of the transitions occur from levels deeper than HOMO to levels 
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higher than LUMO (e.g. HOMO-8 to LUMO contributes 3%). The calculated 

absorptivity of Poly B monomer and the normalized absorption of Poly B thin film are 

plotted in fig. 5.10(b). Again, the calculated absorptivity overestimates the onset of 

absorption. In Poly B monomer, the low energy peak (~ 3eV) is more intense that the 

peak at ~4.25 eV. From the coefficients of first excitation, HOMO to LUMO transition 

contributes ~87% and HOMO-4 to LUMO transition contributes 4 %. Other transitions, 

from levels lower than HOMO to higher than LUMO have not been discussed here. From 

fig. 5.10(a) and (b), we do observe a stronger low energy signal at 3 eV in Poly B, 

suggesting stronger role to intra CT state in Poly B monomer than in Poly A monomer. 

 

 

Figure 5.10 (a) The calculated absorptivity in Poly A monomer (solid blue) and measured 

normalized absorption (circle blue) (b) The calculated absorptivity in Poly B monomer 

(solid green) and measured normalized absorption (circle green). 
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To summarize, static and dynamical calculation employing CAM-B3LYP and 

M06HF functional, help elucidate the spatial extent of electron orbitals in DPP-based 

statistical copolymer units. The contribution of mixed orbitals to the lowest excitations 

proves the presence of intra CT nature to the lowest excitations. A higher contribution of 

mixed orbital transitions in Poly B (than in Poly A) supports the presence of a stronger 

intra CT nature in Poly B corroborating our experimentally observed absorption spectra 

(fig. 4.2(b)).  
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6.                                                                                                                       

EXCITONIC STATES IN LADDER-TYPE POLYMER    

                                                                                            

The ladder-type polymer is another homopolymer (apart from P3HT) chosen to 

identify the role of other excitonic states in OPVs. Previous work by Arif et al. in our lab 

on triplet vs non-triplet enhanced polymer had shown significant different photovoltaic 

behavior.[103] The methyl(Me)-  and phenyl(Ph)-LPPP polymer (chemical structure in 

fig. 1.2(b)) was the model system for a non-triplet and triplet-enhanced polymer, 

respectively. The two systems allowed a study of the involvement of triplet exciton in 

OPVs. It was further inferred that in PhLPPP, triplet excitonic states play an important 

role in enhancing OPV efficiency.  

We begin this chapter with PC spectroscopic studies of MeLPPP:PCBM and 

PhLPPP:PCBM devices to identify the CT excitons and compare responsivity of the two 

devices. We observe that although CT states are detected in both the blends, the 

responsivity of PhLPPP:PCBM is significantly higher than MeLPPP:PCBM. The higher 

responsivity in PhLPPP:PCBM is attributed to the presence of triplet excitons in PhLPPP 

even at room temperature. To further clarify the role of triplet exciton in OPV, we 

estimate the diffusion length of triplet excitons in PhLPPP polymer at room temperature 

using PIA spectroscopy. Our PIA studies show a significantly larger (three orders of 

magnitude) diffusion length of triplet excitons compared to the singlet excitons. 
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6.1 Ladder-Type Polymer Based Devices  

6.1.1 Photocurrent spectroscopy 

To explore the relationship between the CT states and the photovoltaic response in 

homopolymers, the photocurrent spectroscopic studies were performed on MeLPPP and 

PhLPPP. The LPPP based polymers were chosen as the donor polymers since the S1 

energy of LPPP polymers is higher than the S1 energy of PCBM (acceptor). The chemical 

structure of the two LPPP based polymer is shown in fig. 1.2 (b). Note: the molecular 

weight of MeLPPP and PhLPPP is almost same ~14700g/mol. The absorption of a thin 

spin cast film of MeLPPP and PhLPPP is shown in fig. 6.1(a). The optical band gap of 

both the LPPP polymers is 2.6 eV. In spite of the two absorption spectra being identical, 

the previous studies on BHJ devices fabricated in our lab showed that the PhLPPP:PCBM 

had a higher PCE compared to MeLPPP:PCBM.[103] To identify the source of the higher 

PCE in PhLPPP blends, we performed monochromatic PC spectroscopy on MeLPPP and 

PhLPPP blends. 
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Figure 6.1 (a) The absorption spectra of pristine PhLPPP and pristine MeLPPP. (b)The 

absorption spectrum of PhLPPP:PCBM 1:1 sample and the responsivities of 1:1 devices.  

 

The monochromatic PC response of the PhLPPP:PCBM (filled squares) and 

MeLPPP:PCBM (open squares) devices are shown in fig. 6.1(b). The absorption of 

PhLPPP:PCBM 1:1 sample is also included in the same figure (solid line). The onset of 

PC in both the LPPP-PCBM samples is lower than the onset of absorption in the blended 

film, similar to low energy feature observed in P3HT:PCBM (fig. 3.2). The low energy 

feature in LPPP-PCBM samples indicates the onset of CT states. A Marcus Fit (Eq. 3.3) 

to the onset of PC in LPPP polymers-PCBM can give an estimate of ECT and is shown in 

fig. 6.2(a) and (b). The ECT was estimated to be around 1.57 eV and 1.64 eV for 

MeLPPP:PCBM and PhLPPP:PCBM, respectively. In fig. 6.1 (b), the responsivity of 

PhLPPP:PCBM device in the range 1.6 eV-2.4 eV is found to be higher compared to the 

MeLPPP based device, similar to the higher PCE of PhLPPP based devices (fig. 6.2(c)) 

in Ref. 103. 
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Figure 6.2 Marcus fit to the onset of normalized monochromatic PC in (a) 

MeLPPP:PCBM (1:1), and (b) PhLPPP:PCBM (1:1). (c) The J-V characteristics in 

MeLPPP:PCBM and PhLPPP:PCBM reproduced from Ref. 103.  

 

The results from the PC spectroscopy techniques for the LPPP homopolymers are 

summarized in fig. 6.3. The first singlet excited state for MeLPPP, and PhLPPP is shown 
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by the blue solid line. The S1 state of P3HT has also been shown for comparison. The S1 

state of PCBM is provided on the right. In contrast to the DPP-based polymers, the S1 

states of homopolymers lies above the S1 state of PCBM (acceptor). For each 

polymer:PCBM blend, the onset of the CT states is shown by the dashed black lines. The 

double headed arrows represent the difference between the singlet energy of polymer and 

PCBM. Comparing the MeLPPP and PhLPPP, we see that the CT state is observed in 

both the LPPP polymers and the difference in the singlet energies of polymer-PCBM is 

the same (0.7 eV).  In spite of the similarities in the S1 levels and optical feature, the PCE 

is higher for a PhLPPP sample which was attributed to higher concentration of triplet 

excitons in PhLPPP even at RT. [103] Other articles in the literature also support the 

contribution of triplet exciton in OPVs.[104]  

 

Figure 6.3 The singlet state (S1) energies of the homopolymer (solid blue) and PCBM 

(red solid) are shown. The difference between the S1 (solid lines) energies of the donor 

polymers with respect to PCBM is denoted by double headed arrow. The relative position 

of the CT state (dashed black line) is schematically shown. 
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To elucidate the role of triplet states in the overall efficiency of the device, we have 

analyzed the diffusion length of triplet excitons using optical modulation spectroscopy. 

 

6.2 Photoinduced Absorption (PIA) – Probing Triplet Excitonic States     

Most of the bulk heterojunction OPVs, including those discussed so far in chapter 3 

and 4 depend on generation of singlet excitons, their diffusion and dissociation at a 

polymer/electrode or polymer/acceptor interface. However, the nanometer range 

diffusion length and short lifetime of singlet excitons may limit their migration to 

interfaces resulting in fewer CT states and their dissociation, lowering the overall 

responsivity of device. In order to understand the role of triplet excitons, one of our goal 

was to measure the diffusion length of triplets in a BHJ architecture. In the literature, a 

wide range of values for the diffusivity of triplet excitons is found. The diffusivity of 

triplet excitons in organic semiconductor thin films of PhLPPP was found to be 

-12-6 scm 10 120  ,[105] while for a polycrystalline film of a platinum(II) porphyrine 

complex, PtOEP, the diffusivity was -12-6 scm 10 4  and -12-8 scm 10 6.2  for the 

monomer and dimer triplets, respectively.[106] Furthermore, the diffusivity in organic 

crystals such as anthracene is -12-4 scm 10 2 .[107] Additionally, the reported lifetimes of 

triplet excitons in organic materials span a wide range from a few microseconds to a few 

milliseconds. [106,108] This translates into a large range for exciton diffusion lengths 

from a few nanometers to a few micrometers. A better knowledge of triplet dynamics 

would be helpful in enhancing solar cell device efficiency. However, experiments on the 

dynamics of triplets are lacking primarily due to the difficulties associated with direct 
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optical studies of triplet states, since, singlet-triplet transitions are forbidden. For 

instance, the time-resolved spectroscopic techniques of thickness-dependent quenching of 

excitons [109-113], which have been quite successful in determining exciton diffusion 

length and diffusivity of singlet excitons, are not available for triplet excitons. Only 

recently, the use of organometallic polymers and improvements in spectroscopic 

techniques have made it possible to explore fundamental properties of triplet 

excitons.[114] Nevertheless, the values obtained for some of these properties have been 

inconsistent due to the differences in techniques, sample preparations, and methods of 

analysis.  

Since triplet states are populated due to ISC in Pd-incorporated LPPP based polymer 

even at room temperature, we estimate the diffusion length of the triplets in two PhLPPP 

polymers – a high molecular weight PhLPPP (PhLPPP-H) and low molecular weight 

PhLPPP (PhLPPP-L) utilizing photoinduced absorption (PIA) spectroscopy. The 

molecular weight and the conjugation length of PhLPPP-L and PhLPPP-H are tabulated 

in Table 6.1. 

 

Table 6.1 The molecular weight (Mn ) and conjugation length (lp) of PhLPPP-L and 

PhLPPP-H. 

 Molecular weight (g/mol) Conjugation length lp (nm) 

PhLPPP-L 3800 4 

PhLPPP-H 14700 14 
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Our method is based on the quenching of the triplet-triplet (T-T) absorption by 

acceptor molecules, where the intensity of the T-T absorption depends on the 

concentration of the acceptor molecules. The method is more generally applicable since it 

relies only on ISC and not on the phosphorescence. We further show that a 

phenomenological quasi-one-dimensional (1D) random walk with absorbing wall models 

the diffusion process well and could be used to deduce the diffusion length from the 

random walk model and the triplet exciton lifetime. 

 

6.2.1 Estimating diffusion length from triplet-triplet quenching  

Schematics of the energy levels and one of the mechanisms of triplet state population 

is shown in fig. 6.4(a). The photoexcitation of polymer (say by pump beam) results in a 

transition from S0 to S1 energy. The S1 state can decay to lowest triplet state, T1, via an 

intersystem crossing (ISC). This is facilitated by the presence of Pd atoms in the 

backbone. Eventually, the absorption of probe beam results in the T1-TN absorption 

which is detected using modulation setup as discussed in section 2.2.  The T-T absorption 

spectra collected from PhLPPP-H and PhLPPP-L is shown in fig. 6.4(b). The spectral 

feature of low- and high- molecular weight PhLPPP is different. The absorption in 

PhLPPP-H is narrower than PhLPPP-L due to the delocalization of the triplet states in 

PhLPPP-H polymer compared to PhLPPP-L.[114] Most likely the width of the T-T 

absorption here arises from a distribution of conjugated lengths due to configurational 

degrees of freedom which leads to a distribution of π-electron transfer integrals between 

C-C bonds. Also, the peak position in the two samples is different: the peak appears at 
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~1.29eV and ~1.32eV for PhLPPP-H and PhLPPP-L, respectively. The weak redshift in 

PhLPPP-H can be explained on the basis of chain length in polymer. The T-T absorption 

energy is known to be inversely proportional to the number of monomers in the polymer 

chain.[114]  Thus, higher number of conjugated segments in  PhLPPP-H results in a 

redshift of the T-T absorption peak in PhLPPP-H with respect to the T-T absorption in 

PhLPPP-L. If the concentration of the Pd atoms is assumed to be the same in PhLPPP-H 

and PhLPPP-L, there will be less number of Pd atoms available per conjugated segment 

in PhLPPP-H than in PhLPPP-L. The lower concentration of the Pd atoms will lower the 

ISC rate and the T-T absorption signal in PhLPPP-H compared to PhLPPP-L.  

 

Figure 6.4 (a) The S1 energy, ISC and the T-T absorption in PhLPPP-H at RT. (b) The T-

T absorption in the PhLPPP-H and the PhLPPP-L at RT.   

 

We measure the diffusion length of the triplet excitons in PhLPPP by measuring the 

quenching of the T-T absorption in PhLPPP. The T-T absorption quenching was 
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measured by varying the PhLPPP-H:PCBM concentration. PhLPPP:PCBM blends were 

prepared in various molecular ratios, from 50:1 to 10000:1 by dissolving the components 

in dichlorobenzene. Equal volumes of various blends were carefully drop cast onto glass 

substrates, so that the final dried sample areas were same for all blends as determined by 

visual inspection. No phase segregation was observed for low concentrations of PCBM. 

Figure 6.5(a) shows the quenching of the T-T absorption for PhLPPP-H as the 

PhLPPP:PCBM molar ratio decreases. A similar behavior is seen for PhLPPP-L (fig. 

6.5(b)). 

 

Figure 6.5 (a) Quenching of the PIA signal from PhLPPP-H for selected values of 

PhLPPP-H:PCBM ratio at 300 K. (b)  Quenching of the PIA signal from PhLPPP-H for 

selected values of PhLPPP-H:PCBM ratio at 300 K. 

 

The observed quenching can be explained by considering a model shown in fig. 

6.6(a). In a small volume, PCBM molecules (blue sphere) are scattered along with 

PhLPPP polymer (red). The triplet excitons of PhLPPP migrate along the polymer chain 

and hop from one chain to another until they encounter a PCBM molecule. Since the 
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average distances between PCBM molecules are much larger than singlet exciton 

diffusion lengths,[115] we attribute the quenching of the PIA signal to the loss of triplet 

energy to the PCBM molecules situated along the polymer chain.               

                  

Figure 6.6 (a) Illustration of a quasi-1D model of exciton diffusion through the polymer 

chains in 3D space. Here a is the average distance between PCBM molecules (circles), 

along the path of diffusion (b) Logarithm of the quenching factor Q versus 

PhLPPP:PCBM molar ratio for PhLPPP-L (filled circles) and PhLPPP-H (filled squares) 

at 300 K. The open squares are the quenching data of PhLPPP-H at 100 K. The lines are 

linear fits to the data.  

 

Although PCBM molecules are distributed in a three-dimensional (3D) space, to 

begin with, we assume the migration of exciton from the location of generation to the 

PCBM from chain to chain to be a quasi-one-dimensional path. Later, in “Discussion”, 

we will show that this assumption is appropriate. Moving forward with a 1D model, we 
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develop model/equations to correlate the observed quenching with the average separation 

of the PCBM molecules (a). This separation is calculated along a sequence of polymer 

chains in as the product of the molar ratio (R), and the length of a single polymer chain. 

Assuming that the average length of a one dimensional conjugated π system in PhLPPP is 

lp, and there are NPhLPPP molecules per NPCBM molecules, then the average distance 

between the PCBM molecules that the exciton may diffuse is given by, 

                                                 
PP

PCBM

PhLPPP Rll
N

N
a  .                                            (6.1) 

Further, for a unimolecular quenching we expect the T-T absorption peak, as determined 

by −∆T/T, to depend exponentially on a, or equivalently on R, as follows 

                                              LlR pe
T

T

T

T 






1)( 0  ,                                         (6.2)       

where, 0)(
T

T
 is the PIA signal for the pristine sample as R→∞, and L is the diffusion 

length. We find it more convenient for the discussion to introduce a quenching factor Q 

by the following relation: 

                                                      
0)(

1
TT

TT
Q




 .                                                (6.3) 

We point out even though the chopper frequency (13 Hz) was used to detect the PIA 

signals, the amplitudes of the T-T peak change proportionately for the blended and the 

pristine sample upon changing the chopper frequency. This implies that the amplitude 

change in TT  is proportional to change in 0)( TT . Hence, Q is independent of the 

chopper frequency since it depends on the ratio of the T-T signal of the blend to that of 
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the pristine sample. Equation (6.3) can be reorganized so that a plot of the signal versus R 

is expected to be a linear function, as shown in Fig. 6.5(c), whose slope is related to the 

diffusion length (L) by  

                                                     
LRlQ p)ln( .                                                (6.4) 

By plotting ln(Q) vs. molar ratio we can calculate the diffusion length as, 

                                                        SlopelL p  .                                                 (6.5) 

In fig. 6.6(b), the quenching data for PhLPPP-L:PCBM and PhLPPP-H:PCBM at 

300K as well as PhLPPP-H:PCBM at 100K is plotted as filled circles, filled square, and 

open squares, respectively. The ln(Q) is fitted using Eq. 6.4. The fit to PhLPPP-L:PCBM 

(grey line),  PhLPPP-H:PCBM (solid line) and PhLPPP-H:PCBM (dashed line) is also 

shown. The slope for PhLPPP-L and PhLPPP-H is −0.0024±0.0002 and −0.0036±0.0002, 

respectively. Using the value of lp : 4 nm and 14 nm for PhLPPP-L and PhLPPP-H, 

respectively, and Eq. 6.5, the diffusion length for triplet excitons in PhLPPP-L and 

PhLPPP-H is calculated as 1.7±0.2 μm and 3.9±0.3 μm, respectively. From the quenching 

of the PIA data at 100 K for PhLPPP-H, the slope is calculated to be -0.0023±0.0002. 

Using lp =14 nm and Eq. 6.5, the diffusion length was estimated as 6.0±0.6 μm.  

 

6.2.2 Triplet lifetimes and diffusivity in phenyl based ladder-type polymers  

We further determine the diffusivity of triplet excitons using the following relation, 

                                                          2LD  ,                                                       (6.6) 

where τ is the triplet lifetime. To determine the lifetime of the triplet exciton, we note that 

in our PIA experiments, the excitation of the molecules from the ground state, S0, to the 
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singlet excited state, S1, is achieved by a periodic modulation of the exciting laser beam 

at the chopper frequency. In pristine samples or samples with low concentrations of 

PCBM (such as those involved in present studies), the triplet lifetime is dominated by a 

monomolecular decay of the triplets to the ground state. It can be shown that the triplet 

population (T1) generated by ISC from S1 to T1 with the chopper frequency (f) as [116] 

                                                  
 2

1

21 f

C
T


 ,                                                 (6.7) 

where C is a constant.[117,118] Since the PIA signal is proportional to the triplet 

population, 

                                                  
 221

1

fT

T





.                                              (6.8) 

By tracking the PIA signal as a function of frequency of the chopper, we can calculate 

the lifetime τ of triplet in a particular sample. We fix the monochromator at peak value of 

triplet signal and since we are interested in the amplitude of the periodic signal, we use 

the R channel of the lock-in amplifier and vary chopper frequency. The R channel is used 

because we are interested only in the amplitude of the periodic signal and its phase (see 

section 2.2) The PIA signal from PhLPPP-L (filled circle) and PhLPPP-H (filled square) 

as a function of frequency is shown in fig. 6.7(a). The fit (Eq. (6.8)) to the resulting curve 

is shown with solid line. The triplet lifetime is ~16.5 ms and 10.5ms for PhLPPP-L and 

PhLPPP-H, respectively. In general, the lifetime of the triplet excitons depend both on the 

chain length of PhLPPP and the PCBM concentration.  
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Figure 6.7 (a) The peak PIA signals for T-T transition in PhLPPP-L and PhLPPP-H as a 

function of the chopper frequency at 300 K. The data are fitted to Eq. (6.8) to obtain 

triplet lifetime’s τ. (b) The variation in τ with PhLPPP:PCBM ratio, which reaches 17 ms 

and 11 ms asymptotically, the lifetimes for pristine PhLPPP-L and PhLPPP-H samples, 

respectively.(c) The peak PIA signals for T-T transition in PhLPPP-L and PhLPPP-H as a 

function of the chopper frequency at 100 K. The data are fitted to Eq. (6.8) to obtain 

triplet lifetime’s τ. 
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 Figure 6.7(b) shows the variation in τ as a function of the PCBM concentration. The 

asymptotic values ((NPhLPPP/NPCBM) →∞) correspond to the lifetimes of the pristine 

samples, which are found to be (17.0±0.5) ms and (11.0±0.3) ms for PhLPPP-L and 

PhLPPP-H, respectively. Note that the triplet lifetime in PhLPPP-L (short chain) is longer 

than PhLPPP-H (long chain). This trend is consistent with the observations in oligo 

(phenylene vinylene)s, where shorter oligomers have longer triplet lifetimes compared to 

the  longer oligomers.[119] The standard deviations in the lifetime of triplet exciton are 

obtained by fitting the experimental data in fig. 6.7 to Eq. (6.8). The lifetime, τ, was also 

measured for PhLPPP-H at 100 K (fig. 6.7(c)), and was found to be (12.0±0.2) ms. At 

low temperature, the lifetime increases by a small amount. 

The various parameters calculated for PhLPPP-L and PhLPPP-H using the PIA 

spectroscopy is tabulated in Table 6.2. The diffusion lengths at 300 K calculated by the 

quasi-1D diffusion model and are specified as L (PIA at 300K). The lifetimes calculated 

from PIA data at 300 K are specified as τ (PIA at 300K). Using τ (PIA at 300K), the 

diffusivity calculated by Reufer et al.. in Ref. 105, and Eq. 6.6, the diffusion length is ~ 

4.5 µm. Thus, the diffusion length calculated using quasi-1D diffusion model and that 

calculated using the lifetime is few micrometers. Our diffusion lengths differ from the 

values of Pt(II)  porphyrine complexes in Ref. 106, which may be attributed to the large 

difference in triplet lifetimes in the two systems: while triplets in PhLPPP have lifetimes 

of the order of tens of millisecond, the reported triplet lifetimes in PtOEP have values in 

the microseconds.  
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Table 6.2 Various PhLPPP excitation triplet properties at temperature of 300K, 100 K or 

< 200 K.  The diffusion length, lifetime, and diffusivity are specified by L, τ, and D, 

respectively. 

 

aRef. 105 

 

The triplet diffusivities calculated from the diffusion lengths and lifetimes of the 

pristine samples at 300 K using Eq. (6.6) is specified as D (PIA at 300 K). Using PIA 

spectroscopy, the diffusivities of the triplet excitons in PhLPPP-L and PhLPPP-H are 

found to be (1.7±0.2) 10−6 cm2s-1 and (1.4±0.1) 10−5 cm2s-1, respectively at 300 K, 

which is consistent with the expectation that excitons would be more readily diffusible in 

a longer chain molecule than a shorter one, and hence, would have a larger diffusivity. In 

our experiments, the diffusivity of PhLPPP-H at 100 K (D (PIA at 100 K)) was calculated 

as (3.0±0.2) 10−5 cm2s-1. Reufer et al.. observed a temperature independent diffusion for 

triplet excitons below 200 K in a high molecular weight PhLPPP sample using 

phosphorescence decay experiments, with the average value of diffusivity ~ (2.0±0.1)

10−5cm2s-1.[105] The value of diffusivity obtained for PhLPPP-H by our studies at 100 K, 

D (PIA at 100K), compares well with the values given in Ref. 105 (D a(< 200K)). The 

PhLPPP-L PhLPPP-H

L (PIA at 300K) 1.7±0.2 μm 3.9±0.3 μm

τ (PIA at 300K) 17.0±0.5 ms 11.0±0.3 ms

D (PIA at 300K) (1.7±0.2) × 10-6 cm2s-1 (1.4±0.1) ×10-5 cm2s-1

D (PIA at 100K) -- (3.0±0.2) ×10−5 cm2s-1

D a(< 200K) -- ~2×10-5 cm2s-1
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difference is attributable to the difference in the molecular weights of the sample used in 

the two studies.  The correct order of the diffusivities further supports the quasi-1D 

model used in this work to obtain the diffusion length. 

So far, we have used quasi-1D diffusion model to derive an equation to correlate the 

quenching data Q with the PhLPPP-PCBM molar ratio R. From the model and PIA 

spectroscopy, we calculated the diffusion length, lifetime and diffusivity of PhLPPP 

samples.  

In the next section, we will apply random-walk model to derive equation to correlate 

the quenching data Q with the distance between the PCBM monomer a. We will 

recalculate the diffusivities of the high and low molecular weight PhLPPP using the 

random-walk model.  

 

6.2.3 Random-walk diffusion of excitons   

6.2.3.1 Model 

Our experimental data are further modeled by a one dimensional random walk since 

the average distance that an exciton travels on a polymer chain is typically longer than it 

covers in hopping between chains, unlike in a molecular crystal.[120,121] We consider 

the diffusion of the triplet excitons to occur as random hops of step size d and the 

hopping time 0 , which depend on the overlap of molecular orbitals between the two 

sites involved. Further, we assume that the molecules are sufficiently close together for 

the intermolecular hopping distances and times to be not significantly different from d 

and 0 . In order to capture the exciton dynamics, we require that the exciton hopping 
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time be much less than the exciton lifetime, i.e., 0 << , and monomer-monomer 

distance be less than the distance a between two PCBM molecules, i.e., d<<a. 

 

6.2.3.2 Estimating diffusion length using a random-walk model 

Casting the problem at hand as a random-walk problem with an absorbing wall,[122] 

at the average PCBM distance from the front of the sample as shown in the inset of fig. 

6.8, we arrive at the following for the fraction of the exciton generated at x=0 that arrive 

at x=a during time t and t+dt as, 

                                         dte
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where Dth is the diffusion constant in the theoretical model. Therefore, if the steady-state 

population of triplets in the absence of PCBM is P0, then the population in the presence 

of PCBM is 
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0 ),(1 dttaqPP ,                                       (6.10) 

Since the T-T absorption is proportional to the steady state population of triplets, the 

PIA signal decreases with increasing PCBM concentration according to Eq. (6.9). 

Clearly, the decrease in T-T absorption is not linear in the concentration of PCBM as 

would be expected if there were no exciton migration contribution.[123] 
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Figure 6.8 Quenching of the T-T transition modeled by a random-walk with an absorbing 

wall. The open circles and filled squares are the experimental data for the normalized 

quenching of the T-T transition at 300K in PhLPPP-L and PhLPPP-H, respectively. The 

dashed and solid lines are the Qth (Dth,a). The inset shows the schematic of the random-

walk model. 

 

The PIA signal of a PhLPPP:PCBM mixture normalized with the PIA signal of the 

pristine PhLPPP can be written in terms of the theoretical quenching factor Qth which is a 

function of a and Dth,  

                                          



00

),,(1),( dttDaq
P

P
aDQ ththth ,                       (6.11) 

where the subscript 0 refers to the pristine PhLPPP sample. To deduce the triplet 

diffusivity based on Eqs. (6.9)–(6.11), we fit the quenching of PIA data by the theoretical 

quenching Qth given in Eq. (6.11) as shown in fig. 6.8. The best fit of the data was 

obtained for Dth=8 10−7 cm2s-1 and Dth=8 10−6 cm2s-1 for PhLPPP-L and PhLPPP-H, 
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respectively. The diffusivities calculated using quasi-1D diffusion model i.e. D (PIA at 

300 K) (Table 6.2) and 1D random-walk model is tabulated in Table 6.3. The theoretical 

diffusivities are comparable to the experimental values, which lends support to the 

random-walk diffusion model proposed here for the diffusion of triplet excitons in ladder-

type polymers. Also, the diffusivities obtained here for the two samples of PhLPPP are in 

agreement with the diffusivities of triplet excitons in other systems.[106]  

   

Table 6.3 The diffusivity calculated from quasi-1D diffusion model in section 6.2.2, D 

(PIA at 300K) and theoretical diffusivity calculated using 1D random-walk model ,Dth, . 

 PhLPPP-L PhLPPP-H 

D (PIA at 300K)     (1.7±0.2) 10-6 cm2s-1 (1.4±0.1) 10-5 cm2s-1 

Dth (Random-walk) 8.0 10-7 cm2s-1 8.0 10-6 cm2s-1 

 

 

6.2.3.3 Discussion 

The diffusivity of triplet excitons in PhLPPP, determined by our experiment ranges 

between 10−5–10−6 cm2s-1. This is close to the diffusivity of triplet excitons reported in a 

variety of conjugated systems in the literature.[106,124] The approximate micrometer 

range diffusion length stems from long lifetimes of the triplet excitons in the system 

under investigation. We have determined the diffusion length/diffusivity of triplet 

excitons by two methods: directly from the amount of quenching of the T-T absorption in 

PIA experiment as a function of PCBM concentration, and the other by solving the 
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problem as a random-walk model using some experimental input. In both cases, the 

separation of PCBM molecules (a) is evaluated using a quasi-1D diffusion path. Since the 

experiments are from blended film samples, there is some amount of nonuniformity and 

additionally, there may be variations as to which area of the film was illuminated. Despite 

these variations we point out that our value for D (at 100 K) ~3 10−5 cm2s-1 in PhLPPP-

H is very close to the value (2 10−5 cm2s-1) measured in Ref. 105 by an alternate method 

without the use of any acceptor molecules. The agreement between the values of 

diffusivity of triplet excitons found by two different methods further lends support to the 

method presented here.  

Further, the effective dimension for the diffusion of excitons can be ascertained if we 

assume that the total volume of the sample may be written as either NPCBMan or NPhLPPPbn, 

where a is the separation between PCBM molecules, b the distance between centers of 

the PhLPPP polymer chains, and n the spatial dimension. The spatial dimension, n=1 

corresponds to a strictly 1D motion. The separation b would be proportional to the π-

conjugation length lp of a PhLPPP polymer chain, i.e., b=clp, where the proportionality 

constant c=1 for a tightly packed polymer matrix and c>1 for a sparsely packed system. 

Assuming a tightly packed structure in the present system, we note that the separation 

between PCBM molecules may be given as a=R1/nlp, where R stands for the molar ratio 

NPhLPPP:NPCBM as mentioned above. Using this expression for a in Eq. (6.2) in place of 

a=Rlp, the value of n could be deduced from the quenching data given in fig. 6.5(b). We 

find that n≈1 for PhLPPP-H and n≈1.3 for PhLPPP-L. These values of spatial dimensions 

in which the excitons migrate are very near 1, and show that the one-dimensional model 
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is appropriate for the analysis in the present system. Furthermore, for the low molecular 

weight sample, since n is not strictly 1, our procedure overestimates the diffusion length. 

Clearly, diffusion in molecular samples, where the diffusion is more likely three 

dimensional, one would need a three-dimensional random-walk model to analyze the 

results. Note that, in the formula for a, the factor c multiplies lp, which essentially extends 

the distance an exciton travels between PCBM molecules. Therefore, if the system is not 

tightly packed, i.e., when c>1, then the same level of quenching would result in a larger 

value of the diffusion length, assuming dissipation of energy during hops is unaffected by 

an increase in the hopping distance. Furthermore, although the theoretical one-

dimensional model is strictly applicable to systems with large π-conjugation lengths 

compared to the hopping distance between molecules, the experimental procedure given 

here should be more generally applicable as long as we express the inter-PCBM distance 

a in terms of n and deduce n from experiment as outlined here. Even with an uncertainty 

in the value of c, the determination of the triplet exciton diffusion length could be 

achieved by the PIA quenching method which would be accurate within the margin of 

uncertainty of the factor by which distance between PhLPPP molecules differs from the 

π-conjugation length of the molecule.  

In our studies, we have also assumed that PCBM molecules are very effective in 

quenching the triplet excitons, which is based on the observation that in a 1:1 molar ratio 

of PhLPPP:PCBM the PIA signal is completely quenched. Note that, if the efficiency of 

quenching by PCBM molecules were not 100%, then it would require multiple 

encounters with PCBM molecules for the energy in the exciton to dissipate. Thus, a lower 
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efficiency of quenching would yield even larger value of the diffusion length. Since our 

results from quenching experiments agree well with those of Reufer et al.. [105] using 

phosphorescence, we believe that the assumption of high quenching efficiency by PCBM 

molecules is justified in the final analysis.  

 

6.3 Summary 

In summary, we present a simple experimental technique in conjunction with a 

random-walk model for determining triplet exciton diffusion lengths in organic 

semiconductors. This relies on the quenching of the T-T absorption in the presence of 

acceptor molecules. Since this method is based on the T-T absorption rather than 

phosphorescence, it may be applied to even non triplet enhanced conjugated polymers, 

with a caveat that the experiments may have to be performed at lower temperatures as the 

T-T absorption signal in general may be weak at RT. The use of a Pd-incorporated 

ladder-type polymer in this work facilitated the PIA measurements at RT. The triplet 

diffusion lengths determined in the ladder-type polymer, PhLPPP, depend on the length 

of the π-conjugated system and are in the 1–4 μm range at 300 K. The long diffusion 

lengths of the triplet excitons compared to singlet excitons, which are typically in the 

nanometer range, open up a new realm of application of triplet-enhanced conjugated 

polymers in energy harvesting optoelectronics. 
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7.                                                                                                                                     

SUMMARY AND FUTURE DIRECTION  

 

In this thesis, we presented photocurrent and optical spectroscopic studies on 

amorphous organic semiconductors with a keen focus of their applications in OPVs. The 

cost effective fabrication technique, flexibility of devices and possibility of large-area 

printing, makes organic semiconductors a highly researched topic for commercial 

application.  The research work presented here, adds to further understanding of various 

excitonic states of organic semiconductors for their application in OPVs.     

The work presented here can be split into two parts: first, to the study of CT excitons, 

and second, to the studies of triplet excitons. Both the CT and triplet excitons are known 

to contribute to photocurrent generation and impact the efficiency of an organic solar cell. 

 To probe CT states, we choose low-bandgap DPP-based copolymers, including two 

DPP-based statistical copolymers (PDPP-BBT, TDPP-BBT, Poly A (low DPP fraction) 

and Poly B (high DPP fraction)). The variations of donor-acceptor unit fraction in these 

copolymers offer a means of gradual tuning of the optical bandgap. The solid state 

absorption spectra of all the copolymers showed the presence of two bands. The low 

energy band was attributed to the intra CT exciton. The intra CT states in TDPP-BBT, 

Poly A, Poly B and its fullerene blends were analyzed using bias dependent absorption 

studies. The pristine TDPP-BBT sample, Poly B as well as their blends showed no 

changes in the absorption on applying external bias (0 to -10V). Although the pristine 

Poly A sample did not show any bias-dependent shifts/changes, Poly A:fullerene blend 
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showed a redshift in the absorption spectrum with increasing negative bias. This was 

found to be an indication of quantum confinement at the Poly A/fullerene interface and 

gave an estimate of the BE (~0.143 eV) of the intra CT exciton in Poly A.  

To gain theoretical insights into the origin of the intra CT states, we performed DFT 

and TDDFT on the monomers of DPP-based statistical copolymers. The DFT (and 

TDDFT) calculations were performed using the Gaussian 09 package. The DFT 

calculations provided us with the information of the spatial extent of MOs in a monomer 

unit. Further, we implemented TDDFT to calculate the absorptivity and the origin of intra 

CT state in the absorptivity. The TDDFT calculations correctly predicted the bandgap of 

Poly B monomer than in the Poly A monomer. The strength of the state-to-state 

excitations was correlated with the higher intra CT character of the lowest singlet state. 

 In addition to the intra CT states, the inter CT states formed at the donor 

copolymer/fullerene interface were also probed using photocurrent modulation 

techniques. Two photocurrent techniques: monochromatic PC and the FTPS, were 

assembled to identify the inter CT states in DPP-based copolymer:fullerene blends in 

OPVs. The PC measured from two of the devices: PDPP-BBT:fullerene and Poly 

A:fullerene, showed a low energy PC onset compared to the onset of absorption in the 

corresponding blends. This was the indication of a stabilized inter CT state. No such low-

energy onset (inter CT state) was detected in other copolymer:fullerene blends. It was 

inferred that the inter CT state was stabilized (and observed) when the singlet bandgap 

energy difference between the DPP polymer and fullerene was small (≤ 0.3 eV). When 

the bandgap difference between the DPP copolymer and fullerene was large (≥ 0.3 eV), 
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the PC (monochromatic PC and FTPS PC) from the blended films showed no low energy 

edge. The implication of this result is that (i) the inter CT state coincided with the 

absorption edge or (ii) the inter CT state was not stabilized at all.  If option (i) were true, 

there would be a possibility of back charge transfer and lowering of device performance. 

However, devices in which no inter CT states were stabilized had a higher overall 

responsivity. This suggests that the inter CT state in such devices dissociates faster than 

the time scale of our PC experiments. The absence of the inter CT states therefore helped 

in a higher responsivity/EQE.  An immediate implication of this result is to look for a 

combination of donor (e.g. P3HT) and acceptor material (other than fullerene), such that 

the bandgap difference between the donor and acceptor is less than 0.3 eV. If a small 

bandgap difference between P3HT and some other acceptor leads to an unstabilized inter 

CT states, it is conceivable that higher efficiency P3HT-based solar cell solar cells may 

exits. 

To probe triplet states, we had chosen ladder-type homopolymer (PhLPPP). PhLPPP 

has a trace concentration (~150-200 ppm) of Pd atom which enhances the ISC for decay 

of the singlet excitons to triplet excitons. This allows us to probe T-T absorption even at 

room temperature.  We setup an optical modulation spectroscopy (pump-probe) 

technique and utilize PIA spectroscopy to identify the T-T absorption in PhLPPP. To 

understand the dynamics of the triplet exciton detected, we estimate the diffusion 

length/diffusivities of the triplet exciton by tracking the T-T quenching as a function of 

the PhLPP:PCBM molar ratio (quasi-1D diffusion model) and the distance between 

PCBM chromophore (1D random-walk model). The diffusion lengths and diffusivities of 
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triplet exciton are calculated to be almost three orders of magnitude more than the singlet 

excitons. We also measured the lifetime of triplet exciton by tracking the PIA signal as a 

function of the chopper frequency. The triplet lifetimes are found to be of the order of 

millisecond. Considering the higher diffusivities and diffusion length of triplets, one 

should look for device geometries which would not be limited by the necessity of having 

only nanoscale phase segregation for singlet exciton diffusion. 

The above studies were also extended for PhLPPP under high pressure by K. Paudel 

et al. in our group.[125] The electroluminescence (EL) spectra for the PhLPPP was found 

to span the UV-Vis and the NIR region (1.7-2.7 eV). It also showed a very strong feature 

at ~2.1 eV which coincided with the phosphorescence studies at high pressure. Since 

phosphorescence corresponds to emission from triplet to the singlet ground state, it 

implies that the presence of triplet states enhances the EL (and phosphorescence). The 

enhanced emission at low energy finds its application in low-energy phosphorescent 

light-emitting diode. Note that the broad EL spectrum corresponds to a white-light 

emitting diode. 

The above mentioned PC spectroscopic studies were mostly performed at room 

temperature. In Chapter 5, temperature dependent PC studies on P3HT:PCBM were 

performed to elucidate the dynamics of the inter CT state. Similar studies were done on 

Poly A:PCBM and Poly B:PCBM devices, the result of which are presented in figure 7.1. 

Figure 7.1 (a) (and (b)) show the semi-logarithmic plots of the normalized 

monochromatic PC measured in Poly A:PCBM (and Poly B:PCBM) devices at three 

different temperatures: 200 K, RT, and 390 K. In contrast to the temperature-independent 
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behavior of the onset of PC in P3HT:PCBM graph (fig. 3.5 (b)), a significant change in 

the onset of PC is seen in Poly A:PCBM devices. Note that Poly A:PCBM samples had 

shown a stabilized inter CT state (section 4.3.3). In Poly B:PCBM sample (fig. 7.1(b)), 

the temperature seems to have almost no effect on the onset of the PC. This signature is 

similar to the one observed in P3HT:PCBM (fig. 3.5 (b)). By performing an in-depth 

temperature dependent study of these samples (below 290 K) one should check for an 

Arrhenius type dependence in Poly A:PCBM and Poly B:PCBM devices. The activation 

energy value from the Arrhenius-type plots may give an indication of diffusion properties 

of the excitonic states.  

 

Figure 7.1 The normalized photocurrent as a function of temperature in (a) Poly A:PCBM 

(b) Poly B:PCBM devices. 

 

Similar studies can also be extended to identify the effect of temperature on the intra 

CT in DPP-based copolymer or statistical copolymers. Note that the bias dependent 

studies on Poly A, Poly B and their fullerene blends had shown different behavior 
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(section 4.2). No bias dependent changes were seen in Poly A, Poly B and Poly B:PCBM, 

but an intra exciton confinement was seen at the Poly A/PCBM surface. The temperature 

dependent studies of intra CT nature might shed light on the diffusion properties of intra 

CT states in the DPP-based and other donor-acceptor copolymers. Additionally, time-

resolved spectroscopy could also be used to resolve the decay process of the intra 

excitonic state. The time-dependent studies, in presence PCBM, will further help in 

addressing the issue of how the lifetime of intra CT exciton affects the formation of inter 

CT exciton.    
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