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THE FORMAL DEFINITION OF REFERENCE PRIORS

UNDER A GENERAL CLASS OF DIVERGENCE

Tri Minh Le

Dongchu Sun, Dissertation Supervisor

ABSTRACT

Bayesian analysis is widely used recently in both theory and application of

statistics. The choice of priors plays a key role in any Bayesian analysis. There are

two types of priors: subjective priors and objective priors. In practice, however,

the difficulties of subjective elicitation and time restrictions frequently limit us to

use the objective priors constructed by some formal rules. In this dissertation, our

methodology is using reference analysis to derive objective priors.

Objective Bayesian inference makes inference depending only on the assumed

model and the available data. The prior distribution used to make an inference

is least informative in a certain information-theoretic sense. Recently, Berger,

Bernardo and Sun (2009) derived reference priors rigorously in the contexts under

Kullback-Leibler divergence. In special cases with common support and other reg-

ularity conditions, Ghosh, Mergel and Liu (2011) derived a general f-divergence

criterion for prior selection. We generalize Ghosh, Mergel and Liu’s (2011) results

to the case without common support and show how an explicit expression for the

reference prior can be obtained under posterior consistency. The explicit expres-

sion can be used to derive new reference priors both analytically and numerically.



Chapter 1

Introduction

1.1 Background

Bayesian analysis is widely used recently in both theory and application of statis-

tics. Given the data x, a Bayesian analysis first assigns a prior distribution π(θ)

to the unknown parameter θ, and then uses the well-known Bayes theorem to get

the corresponding posterior,

π(θ | x) =
π(θ)p(x | θ)

m(x)
,

where p(x | θ) is the likelihood of x given θ and m(x) =
∫
π(θ)p(x | θ)dθ is the

marginal distribution of x. Then, one can use this posterior to make inferential

statements about the parameter θ. So, the meaning of the Bayes theorem is that

beginning with a prior guess about the parameter θ (this guess may be good or

1



Introduction 2

bad), combining with the information about the parameter θ contained in the data,

one could update the prior to have a better guess for describing the parameter θ.

Obviously, the selection of priors plays an important role in any Bayesian analysis.

It has always been a controversial and much debated issue in the Bayesian context.

Ideally, if there were enough information about θ, one could use this knowl-

edge to elicit an appropriate subjective prior. In practice, however, the difficulties

of subjective elicitation and time restrictions frequently limit us to use the so-called

”objective” priors which are also known as ”non-informative priors” or ”default

priors”. Objective priors are those priors constructed by some formal rules, de-

pending only on the model or equivalently the likelihood function and the available

data. There is a lot of conceptual and theoretical literature devoted to find ap-

propriate procedures for the expression of objective priors. Consequently, some

methods for selecting objective priors have been proposed and we will introduce

three main approaches to determine objective priors as below.

1.1.1 Invariant priors

1.1.1.1 Jeffreys’ prior

Laplace (1812), one of the earliest proponents of objective priors, used a uniform

or a flat prior on the entire parameter space based on the principle that if one

knows nothing about θ, then there is no reason to put more weight on one point

than the others. Uniform prior is simple and convenient, but it was criticized

due to its lack of invariance under one-to-one transformation. This makes people
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confused when they are not sure which parameter is preferred, the original one or

the reparameterized one.

Due to the above reason, Jeffreys (1946) proposed a prior proportional to

the square root of the determinant of the Fisher information matrix I(θ), which

is known as Jeffreys’ prior. It could be shown that this prior is invariant under

one-to-one transformation. Therefore, one does not need to choose any specific

parameterization.

1.1.1.2 Left and Right invariant prior

One has another type of objective priors based on a different invariance principle.

Instead of being invariant under one-to-one transformation, the so-called left and

right invariant priors are invariant under a certain group of transformations.

According to the general theory of locally compact groups, there exist two

measures µL and µR on Ḡ, the group of transformations on the parameter space

Θ, such that, for any ḡ ∈ Ḡ and B ⊂ Ḡ,

µL(ḡ ◦B) = µL(B),

µR(B ◦ ḡ) = µR(B).

µL and µR are called the left invariant Haar and the right invariant Haar measures,

respectively. Then, based on these measures, one can get the corresponding left

and right invariant priors for θ.
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1.1.2 Probability matching prior

Welch and Peers (1963) and Peers (1965) proposed another method to find ob-

jective prior. The early literature on matching priors centered around those

which ensure approximate frequentist validity of the posterior quantiles of a one-

dimensional interest parameter. Consider priors π(·) for which the relation

Pθ[θ1 ≤ θ
(1−α)
1 (π,x)] = 1− α + o(n−r/2)

holds for r = 1 or 2 and for each α ∈ (0, 1). Here n is the sample size, θ =

(θ1, · · · , θp)′ is an unknown parameter vector, θ1 is the one-dimensional interest

parameter, Pθ(·) is the frequentist probability measure under θ, and θ
(1−α)
1 (π,x)

is the (1 − α)th posterior quantile of θ1 under π(·). Priors satisfying the above

equation for r = 1 or 2 are called first or second order matching priors, respectively.

As shown by Peers (1965), writing I−1 = (Ijk), a prior π(·) is first order

probability matching if and only if it satisfies

p∑
j=1

∂

∂θj

{
π(θ)Ij1(I11)−1/2

}
= 0.

In addition, proved by Mukerjee and Ghosh (1997), if it satisfies

1

3

p∑
j,r,s,u=1

∂

∂θu

{
π(θ)τ jrLjrs(3σ

su + τ su)
}
−

p∑
j,r=1

∂2

∂θj∂θr

{
π(θ)τ jr

}
= 0,

then π(·) is second order probability matching, where
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Ljrs = E

{
∂3

∂θj∂θr∂θs
log p(x | θ)

}
,

τ jr = Ij1Ir1/I11, σsu = Isu − τ su.

1.1.3 Reference prior

Reference analysis, originally introduced by Bernardo (1979) and further developed

by Berger and Bernardo (1989, 1992), Clarke and Barron (1990, 1994), Clarke and

Sun (1997, 1999), Berger, Bernardo and Sun (2009), and Ghosh (2011), among

others, is another approach to derive objective priors.

Reference analysis uses information-theoretical concepts to make precise the

idea of an objective prior which should be maximally dominated by the data,

in the sense of maximizing a suitable divergence measure between the prior and

the posterior. Intuitively, the posterior contains extra information coming from

the data. Therefore, the divergence between the prior and the posterior could be

viewed as a measure of the amount of the information contained in the data. In

other words, the divergence between the prior and the posterior is the measure

of the missing information about θ. Another way to justify for maximizing a

divergence between the prior and the posterior may be given as follows. If the

prior is a point mass, the most informative case, then the posterior will be also a

point mass no matter what the data are, and the divergence is zero. So we could
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say the bigger the divergence, the lower the information in the prior or smaller its

influence on the posterior.

There are two interesting results for the continuous one-parameter problems.

First, Berger, Bernardo and Sun (2009) produced a rigorous general definition

for the reference prior π(θ) based on the use of the expected Kullback-Leibler

divergence between the prior and the corresponding posterior as follows,

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
,

fk(θ) = exp

{∫
p(x(k) | θ) log[π∗(θ | x(k))]dx(k)

}
,

where θ0 is an interior point of the parameter space Θ, x(k) = {x1, · · · ,xk} stands

for k replications of x, and π∗(θ | x(k)) is the posterior distribution corresponding

to some fixed arbitrary prior π∗(θ).

Second, for the regular one-parameter family of distributions, where there

exists the Fisher information, Ghosh, Mergel and Liu (2011) found that, under

a general divergence measures which include not only the Kullback-Leibler diver-

gence, but also the Hellinger divergence as well as the Chi-squared divergence, in

most of the case, with the exception of the Chi-squared divergence, reference prior

is identical with Jeffreys’ prior. For the Chi-squared divergence, the reference prior

is the fourth root of the Fisher information number.
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1.2 Goals

In this dissertation, we revisit the problem of using reference analysis to derive

objective priors, generalize the result from Berger, Bernardo and Sun (2009), and

make some new contributions based on the use of a very general class of divergence

measures, known as β−divergence measures (Amari 1982, Cressie and Read 1984).

This class of β−divergence measures includes the Kullback-Leibler divergence in

a limiting sense (β → 0), the Hellinger divergence (β = 1/2), and the Chi-squared

divergence (β = −1).

In Chapter 2, we make precise the definition of the reference prior. Roughly

speaking, a reference prior needs to have two properties, permissible and maxi-

mizing missing information properties.

In Chapter 3, we show how an explicit expression for the reference prior can be

obtained under very weak regularity conditions in the case 0 < |β| < 1 and it can

be used to derive new reference prior both analytically and numerically. Indeed,

for a model described by density p(x(k) | θ) as mentioned before, the formula for

the reference prior in this case, π(θ), will be shown to be

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
,

fk(θ) =

{∫
p(x(k) | θ)[π∗(θ | x(k))]−βdx(k)

}−1/β

,

where θ0 is an interior point of the parameter space Θ, and π∗(θ | x(k)) is the

posterior distribution corresponding to some fixed arbitrary prior π∗(θ). A major
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interesting property is that this formula holds for any type of continuous parameter

models, regardless of the asymptotic nature of the posterior. Various examples to

illustrate this formula are also given.

In Chapter 4, we study the reference prior under the Chi-squared divergence,

the boundary case, when β = −1. For regular models, as mentioned above, Ghosh,

Mergel and Liu (2011) found that the reference prior is the fourth root of the Fisher

information number. For non-regular models where there do not exist the Fisher

information number, it turns out that there is no general formula for the reference

priors in this case. For some models there exist reference priors, for some other

models there do not. This will be illustrated through a couple examples.

Some final comments are made in Chapter 5.



Chapter 2

Reference prior

2.1 A general class of divergence measures

In this present section, we will introduce a general class of divergence measures,

known as β−divergence measures including the Kullback-Leibler divergence, the

Hellinger divergence, and the Chi-squared divergence. This general class of diver-

gence measures will be used to derive the reference prior later in this dissertation.

Consider a statistical model described by the likelihood p(x | θ) as follows,

M = {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR}, (2.1)

where x is the complete data vector and θ is a continuous unknown parameter.

Note that x can have any dependency structure (say, it could consist of n normal

random variables with mean 0, variance 1 and correlation ρ ). For any prior density

9
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of θ, π(θ), denote the corresponding posterior of θ given x by π(θ | x),

π(θ | x) =
p(x | θ)π(θ)

m(x)
, (2.2)

where m(x) is the marginal density of x, given by

m(x) =

∫
Θ

π(θ)p(x | θ)dθ. (2.3)

Throughout this dissertation, we will consider the general expected divergence

measures between the prior π(θ) and the corresponding posterior π(θ | x) given in

Ghosh et al. (2009) as follows

Rβ(π) =
1

β(1− β)

{
1−

∫
X

[ ∫
Θ

πβ(θ)π1−β(θ | x)dθ
]
m(x)dx

}
. (2.4)

Here the value of β is fixed, and the range of β is (−∞, 1) \ {0}. The most

popular choice for β is in the interval (0, 1), and the value when β → 0 needs to

be defined by the l’hopital rule. Define

R0(π) = lim
β→0

Rβ(π). (2.5)

This general divergence was also considered by Amari (1982) and Cressie and

Read (1984) in other contexts. The expected Kullback-Leibler, Hellinger and Chi-

squared divergences are special cases of the general expected divergence in (2.4)
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as we consider the following three different particular values of β : 0, 1/2, and −1,

respectively.

1. For β = 0, we have

R0(π) = lim
β→0

1−
∫
X
[∫

Θ
πβ(θ)π1−β(θ | x)dθ

]
m(x)dx

β(1− β)
.

By the l’hopital rule, we get

R0(π)

= lim
β→0

−
∫ ∫ {

πβ(θ)π1−β(θ | x) log[π(θ)]− πβ(θ)π1−β(θ | x) log[π(θ | x)]
}
dθm(x)dx

1− 2β

= −
∫
X

∫
Θ

{π(θ | x) log[π(θ)]− π(θ | x) log[π(θ | x)]} dθm(x)dx

=

∫
X

∫
Θ

π(θ | x) log

[
π(θ | x)

π(θ)

]
dθm(x)dx,

which is the expected Kullback-Leibler divergence between the prior π(θ)

and the corresponding posterior π(θ | x).

2. For β = 1/2. Assume the prior π is proper, then we have

R
1
2 (π) = 4

{
1−

∫
X

[∫
Θ

π
1
2 (θ)π

1
2 (θ | x)dθ

]
m(x)dx

}
= 2

∫
X

{
2−

[∫
Θ

2π
1
2 (θ)π

1
2 (θ | x)dθ

]}
m(x)dx

= 2

∫
X

∫
Θ

[
π(θ) + π(θ | x)− 2π

1
2 (θ)π

1
2 (θ | x)

]
dθm(x)dx

= 2

∫
X
m(x)

{∫
Θ

[√
π(θ | x)−

√
π (θ)

]2

dθ

}
dx,
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which is twice of the expected Hellinger divergence between the prior π(θ)

and the corresponding posterior π(θ | x).

3. For β = −1. Assume the prior π is proper, then we have

R−1(π) = −1

2

{
1−

∫
X

[∫
Θ

π−1(θ)π2(θ | x)dθ

]
m(x)dx

}
=

1

2

∫
X

[∫
Θ

π2(θ | x)

π(θ)
dθ − 1

]
m(x)dx

=
1

2

∫
X

∫
Θ

[
π2(θ | x)

π(θ)
− 2π(θ | x) + π(θ)

]
dθm(x)dx

=
1

2

∫
X

{∫
Θ

[π(θ | x)− π(θ)]2

π(θ)
dθ

}
m(x)dx,

which is one-half of the expected Chi-square divergence between the prior

π(θ) and the corresponding posterior π(θ | x).

In fact, the general expected divergence (2.4) between a proper prior and its

corresponding posterior is always non-negative because of the following theorem.

Theorem 2.1. Let π(·) be any proper prior, so that
∫

Θ
π(θ)dθ = 1. Then,

Rβ(π) ≥ 0 for every β ∈ (−∞, 1).

Proof. When β = 0, as mentioned above, this is the case of the expected Kullback-

Leibler divergence. So it is well known that R0(π) ≥ 0.

For β 6= 0, we write

Rβ(π) =
1

β(1− β)

[
1− Sβ(π)

]
, (2.6)
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where

Sβ(π) =

∫
X

[ ∫
Θ

πβ(θ)π1−β(θ | x)dθ
]
m(x)dx

=

∫
X

∫
Θ

[ π(θ)

π(θ | x)

]β
π(θ | x)dθm(x)dx. (2.7)

Case I. 0 < β < 1. In this case, uβ is a concave function for u > 0. It follows

from the Jensen’s inequality that,

∫
Θ

[ π(θ)

π(θ | x)

]β
π(θ | x)dθ ≤

[∫
Θ

π(θ)

π(θ | x)
π(θ | x)dθ

]β
≤

[∫
Θ

π(θ)dθ

]β
≤ 1. (2.8)

So, (2.7) and (2.8) imply that

0 ≤ Sβ(π) ≤ 1. (2.9)

From (2.6) and (2.9) we have

0 ≤ Rβ(π) ≤ 1

β(1− β)
. (2.10)

This completes the proof of the theorem for Case I.

Case II. β < 0. In this case, uβ is a convex function for u > 0.
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Again, using the Jensen’s inequality, we have

∫
Θ

[ π(θ)

π(θ | x)

]β
π(θ | x)dθ ≥

[∫
Θ

π(θ)

π(θ | x)
π(θ | x)dθ

]β
≥

[∫
Θ

π(θ)dθ

]β
≥ 1. (2.11)

So, (2.7) and (2.11) imply that

Sβ(π) ≥ 1. (2.12)

Since β(1− β) < 0, (2.6) and (2.12) imply that

Rβ(π) ≥ 0. (2.13)

This completes the proof of the theorem for Case II.

2.2 Reference prior definition

The selection of priors has always been a controversial and much debated problem

in the Bayesian context. Once we do not have any information about priors,

we need to use ”objective” priors. Berger, Bernardo and Sun (2009) produced a

rigorous general definition for the reference prior based on the use of the expected

Kullback-Leibler divergence between the prior and the corresponding posterior.
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In the case there exists the Fisher information, Ghosh, Mergel and Liu (2011)

found an interesting result that, under the general expected divergence (2.4), with

one exception (namely the expected Chi-squared divergence), reference prior is

identical with Jeffreys’ prior.

The goal of this dissertation is to extend the previous results to give a rigor-

ous general definition of the reference prior for a given likelihood in the sense of

maximizing the missing information (to be defined later in the definition 2.4) un-

der the general expected divergence (2.4) between the prior and the corresponding

posterior.

Consider the model M = {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR} with a strictly

positive continuous prior π(θ) (this strictly positive restriction will eliminate many

technical details). Then, if π(θ) is improper the Bayes theorem no longer applies

and the use of the formal posterior π(θ | x) should be justified. The posterior

π(θ | x) should be a suitable limit of a sequence of posteriors obtained from

proper priors. If we restrict the prior to an increasing sequence of compact sets,

we will have this design. Moreover, reference priors are often viewed as priors that

yield a good approximation to the analyses on the unbounded parameter space.

Definition 2.2. (Approximating Compact Sequence) Consider the modelM with

a strictly positive continuous prior π(θ) as above. An approximating compact

sequence of the parameter space Θ is an increasing sequence of compact subsets

of Θ, {Θi}∞i=1, converging to Θ. The corresponding sequence of posteriors with

support on Θi, defined as {πi(θ | x)}∞i=1, is called the approximating sequence of
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posteriors to the posterior π(θ | x), where

πi(θ) =
π(θ)∫

Θi
π(θ)dθ

1Θi(θ), (2.14)

mi(x) =

∫
Θi

πi(θ)p(x | θ)dθ, (2.15)

πi(θ | x) =
p(x | θ)πi(θ)

mi(x)
. (2.16)

Then, for some approximating compact sequence {Θi}∞i=1 of the parameter

space Θ, the general expected divergence between the formal posterior π(θ | x)

and the posterior πi(θ | x) is

Rβ[π(· | x), πi(· | x)] =
1−

∫
X
[∫

Θi
πβ(θ | x)π1−β

i (θ | x)dθ
]
mi(x)dx

β(1− β)
.

(2.17)

We restrict our possibly reference priors to those that satisfy the following

condition,

lim
i→∞

Rβ[π(· | x), πi(· | x)] = 0. (2.18)

This condition means that a prior which satisfies this condition will yield

a posterior that, on the average over x, is a good approximation to the proper

posterior resulting from restriction to a large compact subset Θi of the parameter

space Θ. We define these candidate priors as follows.
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Definition 2.3. (Permissible Prior). A strictly positive continuous function π(θ)

is called a permissible prior for the model M = {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR} if

1. π(θ | x) is proper i.e.
∫

Θ
p(x | θ)π(θ)dθ <∞ for all x ∈ X ;

2. for some approximating compact sequence {Θi}∞i=1 of the parameter space

Θ, the corresponding posterior sequence is convergent to the formal posterior

π(θ | x), i.e. the limit in (2.18) is satisfied.

Notice that a prior could not be permissible for a small sample size, but it

could turn to be permissible for a larger sample size.

In the following, we assume that for a simple random sample of size k, x(k) =

(x1, · · · ,xk) (or the k-replicate of the modelM), there exists a sufficient statistic

tk = tk(x1, · · · , xk) ∈ T k. While tk could be just x(k) itself, it is computationally

convenient to do with sufficient statistics if they are available. We denote

P =

{
p(θ) > 0 :

∫
Θ

p(tk | θ)p(θ)dθ <∞
}
.

For any compact subset Θ0 ⊂ Θ and any p ∈ P , we write the renormalized

restrictions of p(θ) to Θ0, the corresponding marginal likelihood and posterior as

follows
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p0(θ) =
p(θ)∫

Θ0
p(θ)dθ

1Θ0(θ), (2.19)

m0(tk) =

∫
Θ0

p0(θ)p(tk | θ)dθ, (2.20)

p0(θ | tk) =
p(tk | θ)p0(θ)

m0(tk)
. (2.21)

The corresponding general expected divergence between prior p0 and its pos-

terior p0(θ | tk) is

Rβ
0k(p0) =

1

β(1− β)

{
1−

∫
T k

[ ∫
Θ0

pβ0 (θ)p1−β
0 (θ | tk)dθ

]
m0(tk)dtk

}
. (2.22)

Here the value of β is fixed, and again the range of β is (−∞, 1).

We could view the general expected divergence between the prior p(θ) and

its posterior p(θ | x), Rβ(p), as being the information to be expected over the

data x(k) from the model M = {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR}. As the sample

size k → ∞, the sequence of realizations (x1, · · · ,xk) would eventually provide

any missing information about the value of the parameter θ. In other words, as

k → ∞, Rβ(p) would provide a measure of the missing information about the

parameter θ associated to the prior p(θ). Intuitively, a reference prior would be a

permissible prior which maximizes the missing information about the parameter

θ. Furthermore, with a continuous parameter space, since an infinite amount of

information would be required to learn about the parameter θ, the missing infor-

mation Rβ(p) will typically diverge as k →∞. Similarly, the missing information
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Rβ(p) is also typically not defined on an unbounded parameter space. Thus, we

restrict ourselves to the compact subsets Θ0 of the parameter space Θ and have

the following definition.

Definition 2.4. (Maximizing Missing Information (MMI) Property). A prior

π ∈ P is said to have the MMI property for the model M given P if, for any

compact set Θ0 ⊂ Θ and any p ∈ P , we have:

lim
k→∞

{
Rβ

0k(π0)−Rβ
0k(p0)

}
≥ 0. (2.23)

Now, from the previous considerations we have the definition of the reference

prior as follows.

Definition 2.5. (Reference Prior). A function π(θ) ∈ P is called a reference

prior for the model M given P if it is permissible and has the MMI property.

The condition (2.23) means that, as k →∞, the missing information for the

reference prior π(θ) is larger than the missing information for any other candidate

priors p(θ). Although we feel that a reference prior needs to have both permissible

and MMI properties, the MMI property is considerably more important. Thus,

others have defined reference priors only in relation to this property.

We see that the definition 2.5 of a reference prior is useful if Rβ
0k(π0) and

Rβ
0k(p0) are finite. Therefore, we consider the conditions under which this will be

so.
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Definition 2.6. (Standard Prior). Let Ps be the class of strictly positive and

continuous prior functions on Θ which have proper posteriors. We call these the

standard prior functions.

From now on, Ps will be the class of candidate priors we use to define the

reference priors. Any prior not satisfying the conditions in the previous definition

would not be accepted as being a reasonable candidate for a reference prior.

Definition 2.7. (Standard Model). The model M is said to be standard if, for

any prior p ∈ Ps and any compact subset Θ0 of Θ we have

Rβ
0k(p0) <∞. (2.24)

Notice that in the case 0 < β < 1, from (2.10), satisfaction of (2.24) is

always true. When β = 0, the case of Kullback-Leibler divergence, there are

some conditions under which (2.24) is satisfied given in Lemma 1 and Lemma 2

of Berger, Bernardo and Sun (2009). When β < 0, we also have the following

condition to check (2.24).

Theorem 2.8. When β < 0, for p(θ) ∈ Ps and any compact subset Θ0 of Θ,

(2.24) is satisfied if, for any θ ∈ Θ0 and θ′ ∈ Θ0,

∫
T k

pβ(tk | θ′)p1−β(tk | θ)dtk <∞. (2.25)
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Proof. We have

Rβ
0k(p0) =

1

β(1− β)

[
1− Sβk (p0)

]
, (2.26)

where

Sβk (p0) =

∫
T k

[ ∫
Θ0

pβ0 (θ)p1−β
0 (θ | tk)dθ

]
m0(tk)dtk (2.27)

=

∫
T k

∫
Θ0

[ p0(θ)

p0(θ | tk)

]β
p0(θ | tk)dθm0(tk)dtk. (2.28)

From the Fubini Theorem,

Sβk (p0) =

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

p0(θ | tk)

]β
p(tk | θ)dtkdθ (2.29)

=

∫
Θ0

p0(θ)

∫
T k

[
m0(θ)

p(tk | θ)

]β
p(tk | θ)dtkdθ. (2.30)

Since m0(tk) =
∫

Θ0
p0(θ′)p(tk | θ′)dθ′ and uβ is a convex function when β < 0

for u > 0, using the Jensen’s inequality, we have

∫
T k

[
m0(θ)

p(tk | θ)

]β
p(tk | θ)dtk

=

∫
T k

[∫
Θ0

p(tk | θ′)
p(tk | θ)

p0(θ′)dθ′
]β
p(tk | θ)dtk

≤
∫
T k

∫
Θ0

[
p(tk | θ′)
p(tk | θ)

]β
p0(θ′)dθ′p(tk | θ)dtk

≤
∫

Θ0

∫
T k

pβ(tk | θ′)p1−β(tk | θ)dtkp0(θ′)dθ′. (2.31)
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From the assumption (2.25), if

∫
T k

pβ(tk | θ′)p1−β(tk | θ)dtk ≤M,

then, from (2.31), we have

∫
T k

[
m0(θ)

p(tk | θ)

]β
p(tk | θ)dtk ≤ M

∫
Θ0

p0(θ′)dθ′ = M. (2.32)

This and (2.30), (2.12) imply

1 ≤ Sβk (p0) ≤M

∫
Θ0

p0(θ)dθ = M. (2.33)

So, by β < 0, (2.26) and (2.33) imply

0 ≤ Rβ
0k(p0) ≤ 1−M

β(1− β)
. (2.34)

This means Rβ
0k(p0) <∞.

The following theorem will show that the general expected divergence between

p0 and the posterior p0(θ | tk) is monotonically nondecreasing in sample size.

Theorem 2.9. Rβ
0,k+1(p0) ≥ Rβ

0k(p0) for every β ∈ (−∞, 1).
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Proof. Case I. β = 0. This is the case of Kullback-Leibler divergence. We need

to show

∫
X 1×X 2

∫
Θ0

p0(θ | x1,x2) log

[
p0(θ | x1,x2)

p0(θ)

]
dθm0(x1,x2)dx1dx2

≥
∫
X 1

∫
Θ0

p0(θ | x1) log

[
p0(θ | x1)

p0(θ)

]
dθm0(x1)dx1. (2.35)

First, since the relations

p0(θ | x1,x2)m0(x1,x2) = p(x1,x2 | θ)p0(θ), (2.36)

p0(θ | x1)m0(x1) = p(x1 | θ)p0(θ), (2.37)

p(x1,x2 | θ) = p(x1 | θ)p(x2 | x1, θ), (2.38)

m0(x1,x2) = m0(x1)m0(x2 | x1), (2.39)

we have

∫
X 1×X 2

∫
Θ0

p0(θ | x1,x2) log

[
p0(θ | x1,x2)

p0(θ)

]
dθm0(x1,x2)dx1dx2

=

∫
X 1×X 2

∫
Θ0

p(x1,x2 | θ)p0(θ) log

[
p(x1,x2 | θ)
m0(x1,x2)

]
dθdx1dx2

=

∫
X 1×X 2

∫
Θ0

p(x1 | θ)p(x2 | x1, θ)p0(θ) log

[
p(x1 | θ)p(x2 | x1, θ)

m0(x1)m0(x2 | x1)

]
dθdx1dx2

=

∫
X 1×X 2

∫
Θ0

p0(θ | x1)m0(x1)p(x2 | x1, θ) log

[
p0(θ | x1)

p0(θ)

p(x2 | x1, θ)

m0(x2 | x1)

]
dθdx1dx2

= J1 − J2, (2.40)

where
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J1 =

∫
X 1×X 2

∫
Θ0

p0(θ | x1)m0(x1)p(x2 | x1, θ) log

[
p0(θ | x1)

p0(θ)

]
dθdx1dx2,

J2 =

∫
X 1×X 2

∫
Θ0

p(x1 | θ)p0(θ)p(x2 | x1, θ) log

[
m0(x2 | x1)

p(x2 | x1, θ)

]
dθdx1dx2.

Clearly,

J1 =

∫
X 1

∫
Θ0

p0(θ | x1) log

[
p0(θ | x1)

p0(θ)

]
dθm0(x1)dx1. (2.41)

Because log(u) is a concave function for u > 0, using the Jensen’s inequality,

we have

J2 =

∫
Θ0

p0(θ)

∫
X 1

p(x1 | θ)
∫
X 2

p(x2 | x1, θ) log

[
m0(x2 | x1)

p(x2 | x1, θ)

]
dx2dx1dθ

≤
∫

Θ0

p0(θ)

∫
X 1

p(x1 | θ) log

[∫
X 2

p(x2 | x1, θ)
m0(x2 | x1)

p(x2 | x1, θ)
dx2

]
dx1dθ

≤
∫

Θ0

p0(θ)

∫
X 1

p(x1 | θ) log(1)dx1dθ

≤ 0. (2.42)

So (2.40), (2.41) and (2.42) imply (2.35).

For β 6= 0, we need to show the following inequality
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1

β(1− β)

[
1−

∫
X 1×X 2

∫
Θ0

pβ0 (θ)p1−β
0 (θ | x1,x2)dθm0(x1,x2)dx1dx2

]

≥ 1

β(1− β)

[
1−

∫
X 1

∫
Θ0

pβ0 (θ)p1−β
0 (θ | x1)dθm0(x1)dx1

]
. (2.43)

Similarly as in Case I,

∫
X 1×X 2

∫
Θ0

pβ0 (θ)p1−β
0 (θ | x1,x2)dθm0(x1,x2)dx1dx2

=

∫
X 1×X 2

∫
Θ0

pβ0 (θ)

[
p(x1,x2 | θ)p0(θ)

m0(x1,x2)

]1−β

dθm0(x1,x2)dx1dx2

=

∫
X 1×X 2

∫
Θ0

pβ0 (θ)

[
p(x1 | θ)p(x2 | x1, θ)p0(θ)

m0(x1,x2)

]1−β

dθm0(x1,x2)dx1dx2

=

∫
X 1×X 2

∫
Θ0

pβ0 (θ)

[
p(x1 | θ)p(x2 | x1, θ)p0(θ)

m0(x1)m0(x2 | x1)

]1−β

dθm0(x1)m0(x2 | x1)dx1dx2

=

∫
X 1×X 2

∫
Θ0

pβ0 (θ)

[
p(x2 | x1, θ)p0(θ | x1)

m0(x2 | x1)

]1−β

dθm0(x1)m0(x2 | x1)dx1dx2

=

∫
X 1

∫
Θ0

pβ0 (θ)p1−β
0 (θ | x1)dθm0(x1)dx1

∫
X 2

[
m0(x2 | x1)

p(x2 | x1, θ)

]β
p(x2 | x1, θ)dx2.

(2.44)

Case II. 0 < β < 1. In this case, uβ is a concave function for u > 0. It follows

from the Jensen’s inequality that,

∫
X 2

[
m0(x2 | x1)

p(x2 | x1, θ)

]β
p(x2 | x1, θ)dx2 ≤

[∫
X 2

m0(x2 | x1)

p(x2 | x1, θ)
p(x2 | x1, θ)dx2

]β
≤

[∫
X 2

m0(x2 | x1)dx2

]β
≤ 1. (2.45)
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So (2.44) and (2.45) imply (2.43).

Case III. β < 0. In this case, uβ is a convex function for u > 0. Again, using

the Jensen’s inequality, we have

∫
X 2

[
m0(x2 | x1)

p(x2 | x1, θ)

]β
p(x2 | x1, θ)dx2 ≥

[∫
X 2

m0(x2 | x1)

p(x2 | x1, θ)
p(x2 | x1, θ)dx2

]β
≥

[∫
X 2

m0(x2 | x1)dx2

]β
≥ 1. (2.46)

Since β(1− β) < 0, (2.44) and (2.46) imply (2.43). This completes the proof

of the theorem.



Chapter 3

Construction of reference prior

3.1 Reference prior for β = 0

We know that when β = 0 this is the case of the expected Kullback-Leibler

divergence. Under the expected Kullback-Leibler divergence Berger, Bernardo,

and Sun (2009) have derived a simple constructive formula for a reference prior as

follows. For a model described by density p(x | θ), where x is the complete data

vector and θ is a continuous unknown parameter, the formula for the reference

prior, π(θ), is

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
,

fk(θ) = exp

{∫
p(x(k) | θ) log[π∗(θ | x(k))]dx(k)

}
,

27
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where θ0 is an interior point of the parameter space Θ, x(k) = {x1, · · · ,xk} stands

for k replications of x, and π∗(θ | x(k)) is the posterior distribution corresponding

to some fixed arbitrary prior π∗(θ).

3.2 Reference prior for β < −1

In the case of β < −1 and if there exists the Fisher information, Ghosh, Mergel

and Liu (2009) proved that there is no reference prior in this case. Therefore, we

do not have reference prior when β < −1.

3.3 Reference prior for 0 < |β| < 1

We have some new contributions for this case. The reference prior definition

2.5 does not give an explicit expression to derive a reference prior. Under some

mild conditions, the following theorem will give us an explicit expression for the

reference prior. Recall that x refers to the entire vector of observations from the

model, while x(k) = (x1, · · · ,xk) refers to a vector of independent replicates of

these vector observations from the model. Finally, let tk = tk(x1, · · · , xk) ∈ T k

be any sufficient statistic for the replicated observations. While tk could be just

x(k) itself, it is computationally convenient to do with sufficient statistics if they

are available.
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3.3.1 The explicit form of the reference Prior

Theorem 3.1. (The Explicit Form of the Reference Prior.) Consider a standard

model M = {p(x | θ),x ∈ X , θ ∈ Θ ⊂ IR}, and the standard class Ps of candidate

priors. Let π∗(θ) be a function in Ps such that the corresponding posterior

π∗(θ | tk) is consistent. Define,

fk(θ) =

{∫
T k

p(tk | θ)[π∗(θ | tk)]−βdtk
}−1/β

. (3.1)

For any interior point θ0 ∈ Θ, define

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
. (3.2)

Assume that

(i) each fk(θ) is continuous and, for any fixed θ and sufficiently large k, {fk(θ)/fk(θ0)}

is either monotonic increasing in k or is bounded above by some function h(θ)

which is integrable on any compact set.

(ii) π(θ) is a permissible prior function.

Then π(θ) is a reference prior for the model M given the class Ps.

Proof. For any fixed compact subset Θ0 of Θ, and any p(θ) ∈ Ps, denote the

posterior corresponding to p0 (the restriction of p to the compact set Θ0) by

p0(θ | tk).
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Due to the Theorem 2.9, Rβ
0k(p0) is a non-decreasing sequence in k, and by

the assumption that the model M is standard we have Rβ
0k(p0) < ∞. Therefore,

the limit of the sequence Rβ
0k(p0) is finite as k → ∞. So, by the relation (2.26),

the limit of the sequence Sβk (p0) is also finite as k →∞.

Step 1. From (2.29), we show that

lim
k→∞

Sβk (p0) ≡ lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

p0(θ | tk)

]β
p(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗0(θ | tk)
π∗0(θ | tk)
p0(θ | tk)

]β
p(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗0(θ | tk)

]β
p(tk | θ)dtkdθ. (3.3)

Let

Xk =

[
p0(θ)

π∗0(θ | tk)

]β
,

Yk =

[
π∗0(θ | tk)
p0(θ | tk)

]β
.

Then, to show (3.3) is equivalent to show

lim
k→∞

Sβk (p0) ≡ lim
k→∞

∫
Θ0

p0(θ)

∫
T k

XkYkp(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

Xkp(tk | θ)dtkdθ. (3.4)

It follows from Formula (F.13) of Berger, Bernardo and Sun (2009),
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π∗0(θ | tk)
p0(θ | tk)

P−→ 1 in probability p(tk | θ) as k →∞. (3.5)

Since p and π∗ belong to the standard class Ps, p0(θ)/π∗0(θ) is bounded above

and below on the compact set Θ0,

0 < L ≤ p0(θ)

π∗0(θ)
≤ N for every θ ∈ Θ0. (3.6)

Then, we have

0 <
π∗0(θ | tk)
p0(θ | tk)

=
p(tk | θ)π∗0(θ)

∫
Θ0
p(tk | θ)p0(θ)dθ

p(tk | θ)p0(θ)
∫

Θ0
p(tk | θ)π∗0(θ)dθ

=
π∗0(θ)

p0(θ)

∫
Θ0

[p0(θ)/π∗0(θ)]p(tk | θ)π∗0(θ)dθ∫
Θ0
p(tk | θ)π∗0(θ)dθ

≤ N

L
. (3.7)

From (3.5), we know that

Yk
P−→ 1 in probability p(tk | θ) as k →∞.

This means that

∀ε > 0, lim
k→∞

P (|Yk − 1| < ε) = 1

⇔ ∀ε > 0,∀δ > 0, as k →∞ : |P (|Yk − 1| < ε)− 1| < δ (3.8)
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⇔ 1− δ < P (|Yk − 1| < ε) < 1 + δ as k →∞

⇔ P (|Yk − 1| < ε) > 1− δ, ∀ε > 0,∀δ > 0, as k →∞. (3.9)

Therefore, we have 1− ε < Yk < 1 + ε with probability greater than 1− δ and

Yk /∈ (1− ε, 1 + ε) with probability less than δ as k →∞.

From (3.7), we also proved that Yk is bounded,

0 < Yk < M, where M > 1. (3.10)

So, if 0 < 1− ε < 1 + ε < M , we denote

T k,0,1−ε = {tk : 0 < Yk ≤ 1− ε},

T k,1−ε,1+ε = {tk : 1− ε < Yk < 1 + ε},

T k,1+ε,M = {tk : 1 + ε ≤ Yk < M}.

Then,

T k = T k,0,1−ε ∪ T k,1−ε,1+ε ∪ T k,1+ε,M .

From this we have the decomposition for Sβk (p0) as follows

Sβk (p0) =

∫
Θ0

p0(θ)

∫
T k

XkYkp(tk | θ)dtkdθ

= Sk1 + Sk2 + Sk3, (3.11)
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where

Sk1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

XkYkp(tk | θ)dtkdθ,

Sk2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

XkYkp(tk | θ)dtkdθ,

Sk3 =

∫
Θ0

p0(θ)

∫
T k,1+ε,M

XkYkp(tk | θ)dtkdθ.

For Sk1:

From (3.9), as k →∞, we have

∫
T k,0,1−ε

p(tk | θ)dtk < δ. (3.12)

We now want to show [p0(θ | tk)/p0(θ)]β is bounded almost everywhere. In-

deed, we have two cases:

Case I: If p(tk | θ) is bounded, then m0(tk) =
∫

Θ0
p0(θ)p(tk | θ)dθ is

also bounded. Therefore, the relation p0(θ | tk)/p0(θ) = p(tk | θ)/m0(tk) yields

[p0(θ | tk)/p0(θ)]β is bounded.

Case II: If p(tk | θ) is not bounded. As mentioned before, the limit of the

sequence Sβk (p0) is finite as k →∞. So Sβk (p0) is bounded, that means

Sβk (p0) =

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

p0(θ | tk)

]β
p(tk | θ)dtkdθ < A,

where A is some constant.
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Therefore,

p0(θ)

∫
T k

[
p0(θ)

p0(θ | tk)

]β
p(tk | θ)dtk < B almost everywhere, where B is some constant.

Since p0(θ) is bounded, we then have

[
p0(θ)

p0(θ | tk)

]β
p(tk | θ) < C almost everywhere, where C is some constant.

So, if p(tk | θ) is not bounded, then

[
p0(θ)

p0(θ | tk)

]β
< D almost everywhere, where D is some constant.

Therefore, both of these cases give [p0(θ | tk)/p0(θ)]β is bounded almost every-

where. This and (3.10) imply that XkYk and Xk are bounded almost everywhere,

XkYk =

[
p0(θ)

p0(θ | tk)

]β
< D, (3.13)

Xk =

[
p0(θ)

π∗0(θ | tk)

]β
< E. (3.14)

Then, by (3.12), as k →∞, we have

Sk1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

XkYkp(tk | θ)dtkdθ

< D

∫
Θ0

p0(θ)

∫
T k,0,1−ε

p(tk | θ)dtkdθ
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< Dδ

∫
Θ0

p0(θ)dθ

< Dδ.

Let δ → 0, we get

lim
k→∞

Sk1 = 0. (3.15)

For Sk3: similarly as for Sk1, we also have

lim
k→∞

Sk3 = 0. (3.16)

For Sk2: we have

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

(1− ε)Xkp(tk | θ)dtkdθ

< Sk2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

XkYkp(tk | θ)dtkdθ

<

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

(1 + ε)Xkp(tk | θ)dtkdθ.

Let ε→ 0, then

lim
k→∞

Sk2 = lim
k→∞

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

Xkp(tk | θ)dtkdθ. (3.17)

So, (3.11), (3.15), (3.16), and (3.17) give
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lim
k→∞

Sβk (p0) = lim
k→∞

Sk1 + lim
k→∞

Sk2 + lim
k→∞

Sk3

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

Xkp(tk | θ)dtkdθ. (3.18)

Now we also have the decomposition

∫
Θ0

p0(θ)

∫
T k

Xkp(tk | θ)dtkdθ = Gk1 +Gk2 +Gk3,

where

Gk1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

Xkp(tk | θ)dtkdθ,

Gk2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

Xkp(tk | θ)dtkdθ,

Gk3 =

∫
Θ0

p0(θ)

∫
T k,1+ε,M

Xkp(tk | θ)dtkdθ.

From (3.12) and (3.14), similarly as for Sk1 and Sk3, we have

lim
k→∞

Gk1 = lim
k→∞

Gk3 = 0.

So,

lim
k→∞

∫
Θ0

p0(θ)

∫
T k

Xkp(tk | θ)dtkdθ = lim
k→∞

Gk2. (3.19)
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Therefore, (3.18) and (3.19) give the equation (3.3)

lim
k→∞

Sβk (p0) = lim
k→∞

∫
Θ0

p0(θ)

∫
T k

Xkp(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗0(θ | tk)

]β
p(tk | θ)dtkdθ.

Step 2. From (3.3), we show that

lim
k→∞

Sβk (p0) = lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗(θ | tk)
π∗(θ | tk)
π∗0(θ | tk)

]β
p(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗(θ | tk)

]β
p(tk | θ)dtkdθ. (3.20)

In fact, for any measurable set A ⊂ IR, we define

P ∗(A | tk) =

∫
A

π∗(θ | tk)dθ. (3.21)

It follows from Berger, Bernardo and Sun (2009) that, for θ ∈ Θ0,

π∗(θ | tk)
π∗0(θ | tk)

= P ∗(Θ0 | tk). (3.22)

Then

lim
k→∞

Sβk (p0) = lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗(θ | tk)

]β
[P ∗(Θ0 | tk)]βp(tk | θ)dtkdθ.

(3.23)
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From the posterior consistency of π∗,

P ∗(Θ0 | tk)
P−→ 1 in probability p(tk | θ) as k →∞. (3.24)

When 0 < β < 1, [P ∗(Θ0 | tk)]β is bounded above and below on Θ0,

0 < [P ∗(Θ0 | tk)]β ≤ 1.

So (3.20) holds from (3.24) and the dominated convergence theorem.

When −1 < β < 0, our goal here is to make the reference prior on the

unbounded parameter space Θ by using analyses on any very large compact subset

Θ0 of Θ. The analyses on the subspace Θ0 would yield the same answer as the

analyses on the space Θ. Therefore, we just need to do the proof for any very

large compact subset Θ0 of Θ.

Let a be any fixed constant in the open interval (0, 1). We show that there

exists a compact subset Θ0 in {Θi}∞i=1, the approximating compact sequence of

the parameter space Θ, such that for all positive integer k and for all tk ∈ T k,

P ∗(Θ0 | tk) =

∫
Θ0

π∗(θ | tk)dθ ≥ a. (3.25)

We prove this statement by contradiction. Suppose we do not have the asser-

tion in (3.25), i.e. for all compact subsets Θi ⊆ Θ, there exists tki such that
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∫
Θi

π∗(θ | tki)dθ < a.

This implies

lim
i→∞

∫
Θi

π∗(θ | tki)dθ < a < 1. (3.26)

On the other hand, by the dominated convergence theorem, we have

lim
i→∞

∫
Θi

π∗(θ | tki)dθ = lim
i→∞

∫
Θ

π∗(θ | tki)1Θi(θ)dθ

= lim
i→∞

∫
Θ

π∗(θ | tki)dθ = 1

: a contradiction to (3.26). Therefore, we have the statement (3.25).

So, P ∗(Θ0 | tk) is bounded above and below on the large compact subsets

Θ0 ⊆ Θ,

0 < a ≤ P ∗(Θ0 | tk) ≤ 1.

Therefore, when −1 < β < 0, [P ∗(Θ0 | tk)]β is also bounded above and below

on Θ0,

1 ≤ [P ∗(Θ0 | tk)]β ≤ aβ, a ∈ (0, 1).
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Let

X ′k =

[
p0(θ)

π∗(θ | tk)

]β
,

Y ′k = [P ∗(Θ0 | tk)]β.

From now on we will do the proof as we did in the Step 2 as follows.

From (3.24), we know that

Y ′k
P−→ 1 in probability p(tk | θ) as k →∞.

This means that

∀ε > 0, lim
k→∞

P (|Y ′k − 1| < ε) = 1

⇔ ∀ε > 0,∀δ > 0, as k →∞ : |P (|Y ′k − 1| < ε)− 1| < δ

⇔ 1− δ < P (|Y ′k − 1| < ε) < 1 + δ as k →∞

⇔ P (|Y ′k − 1| < ε) > 1− δ, ∀ε > 0,∀δ > 0, as k →∞. (3.27)

Therefore, we have 1− ε < Y ′k < 1 + ε with probability greater than 1− δ and

Y ′k /∈ (1− ε, 1 + ε) with probability less than δ as k →∞.

We also proved that Y ′k is bounded,

0 < Y ′k < M ′, where M ′ > 1. (3.28)
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So, if 0 < 1− ε < 1 + ε < M ′, we denote

T k,0,1−ε = {tk : 0 < Y ′k ≤ 1− ε},

T k,1−ε,1+ε = {tk : 1− ε < Y ′k < 1 + ε},

T k,1+ε,M ′ = {tk : 1 + ε ≤ Y ′k < M ′}.

Then,

T k = T k,0,1−ε ∪ T k,1−ε,1+ε ∪ T k,1+ε,M ′ .

From this we have the decomposition for S ′βk (p0) as follows

S ′βk (p0) ≡
∫

Θ0

p0(θ)

∫
T k

X ′kY
′
kp(tk | θ)dtkdθ

= S ′k1 + S ′k2 + S ′k3, (3.29)

where

S ′k1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

X ′kY
′
kp(tk | θ)dtkdθ,

S ′k2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

X ′kY
′
kp(tk | θ)dtkdθ,

S ′k3 =

∫
Θ0

p0(θ)

∫
T k,1+ε,M′

X ′kY
′
kp(tk | θ)dtkdθ.

For S ′k1:
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From (3.27), as k →∞, we have

∫
T k,0,1−ε

p(tk | θ)dtk < δ. (3.30)

We now want to show [π∗0(θ | tk)/p0(θ)]β is bounded almost everywhere.

Indeed, we have two cases:

Case I: If p(tk | θ) is bounded, then m0(tk) =
∫

Θ0
p0(θ)p(tk | θ)dθ is

also bounded. Therefore, the relation p0(θ | tk)/p0(θ) = p(tk | θ)/m0(tk) yields

p0(θ | tk)/p0(θ) is bounded.

So, by (3.7), we have

[
π∗0(θ | tk)
p0(θ)

]β
=

[
p0(θ | tk)
p0(θ)

]β [
π∗0(θ | tk)
p0(θ | tk)

]β
is bounded.

Case II: If p(tk | θ) is not bounded. Since the limit of the sequence S ′βk (p0) is

finite as k →∞, S ′βk (p0) is bounded, that means

S ′βk (p0) =

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗0(θ | tk)

]β
p(tk | θ)dtkdθ < A′,

where A′ is some constant. Therefore,

p0(θ)

∫
T k

[
p0(θ)

π∗0(θ | tk)

]β
p(tk | θ)dtk < B′ almost everywhere, where B′ is some constant.

Since p0(θ) is bounded, we then have
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[
p0(θ)

π∗0(θ | tk)

]β
p(tk | θ) < C ′ almost everywhere, where C ′ is some constant.

So, if p(tk | θ) is not bounded, then

[
p0(θ)

π∗0(θ | tk)

]β
< D′ almost everywhere, where D′ is some constant.

Therefore, both of these cases give [π∗0(θ | tk)/p0(θ)]β is bounded almost every-

where. This and (3.28) imply that X ′kY
′
k and X ′k are bounded almost everywhere,

X ′kY
′
k =

[
p0(θ)

π∗0(θ | tk)

]β
< D′, (3.31)

X ′k =

[
p0(θ)

π∗(θ | tk)

]β
< E ′. (3.32)

Then, by (3.30), as k →∞, we have

S ′k1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

X ′kY
′
kp(tk | θ)dtkdθ

< D′
∫

Θ0

p0(θ)

∫
T k,0,1−ε

p(tk | θ)dtkdθ

< D′δ

∫
Θ0

p0(θ)dθ

< D′δ.

Let δ → 0, we get
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lim
k→∞

S ′k1 = 0. (3.33)

For S ′k3: similarly as for S ′k1, we also have

lim
k→∞

S ′k3 = 0. (3.34)

For S ′k2: we have

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

(1− ε)X ′kp(tk | θ)dtkdθ

< S ′k2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

X ′kY
′
kp(tk | θ)dtkdθ

<

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

(1 + ε)X ′kp(tk | θ)dtkdθ.

Let ε→ 0, then

lim
k→∞

S ′k2 = lim
k→∞

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

X ′kp(tk | θ)dtkdθ. (3.35)

So, (3.29), (3.33), (3.34), and (3.35) give

lim
k→∞

S ′βk (p0) = lim
k→∞

S ′k1 + lim
k→∞

S ′k2 + lim
k→∞

S ′k3

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

X ′kp(tk | θ)dtkdθ. (3.36)
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Now we also have the decomposition

∫
Θ0

p0(θ)

∫
T k

X ′kp(tk | θ)dtkdθ = G′k1 +G′k2 +G′k3,

where

G′k1 =

∫
Θ0

p0(θ)

∫
T k,0,1−ε

X ′kp(tk | θ)dtkdθ,

G′k2 =

∫
Θ0

p0(θ)

∫
T k,1−ε,1+ε

X ′kp(tk | θ)dtkdθ,

G′k3 =

∫
Θ0

p0(θ)

∫
T k,1+ε,M′

X ′kp(tk | θ)dtkdθ.

From (3.30) and (3.32), similarly as for S ′k1 and S ′k3, we have

lim
k→∞

G′k1 = lim
k→∞

G′k3 = 0.

So,

lim
k→∞

∫
Θ0

p0(θ)

∫
T k

X ′kp(tk | θ)dtkdθ = lim
k→∞

G′k2. (3.37)

Therefore, (3.36) and (3.37) give the equation (3.20)

lim
k→∞

Sβk (p0) = lim
k→∞

S ′βk (p0) = lim
k→∞

∫
Θ0

p0(θ)

∫
T k

X ′kp(tk | θ)dtkdθ

= lim
k→∞

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗(θ | tk)

]β
p(tk | θ)dtkdθ.
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Step 3. Define

c0(fk) =

∫
Θ0

fk(θ)dθ, (3.38)

π∗0k(θ) =
fk(θ)

c0(fk)
1Θ0(θ), (3.39)

S̃βk (p0) =

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

π∗(θ | tk)

]β
p(tk | θ)dtkdθ. (3.40)

We show that

S̃βk (p0) =
1

[c0(fk)]β

∫
Θ0

[
p0(θ)

π∗0k(θ)

]β
p0(θ)dθ. (3.41)

In fact,

S̃βk (p0) =

∫
Θ0

p0(θ)

∫
T k

p(tk | θ)
[
p0(θ)

π∗0k(θ)

π∗0k(θ)

π∗(θ | tk)

]β
dtkdθ

=

∫
Θ0

[
p0(θ)

π∗0k(θ)

]β
[π∗0k(θ)]

β

{∫
T k

p(tk | θ)[π∗(θ | tk)]−βdtk
}
p0(θ)dθ.

From the definition of fk in (3.1),

S̃βk (p0) =

∫
Θ0

[
p0(θ)

π∗0k(θ)

]β [
π∗0k(θ)

]β[
fk(θ)

]−β
p0(θ)dθ

=

∫
Θ0

[
p0(θ)

π∗0k(θ)

]β [
π∗0k(θ)

fk(θ)

]β
p0(θ)dθ

=

∫
Θ0

[
p0(θ)

π∗0k(θ)

]β [
1

c0(fk)

]β
p0(θ)dθ.

The last line implies (3.41).
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Step 4. It follows from Steps 2 and 3 that for the prior π defined in (3.2), and

any prior p in the standard class Ps,

lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
=

1

β(1− β)
lim
k→∞

1

[c0(fk)]β

× lim
k→∞

{∫
Θ0

p0(θ)

[
p0(θ)

π∗0k(θ)

]β
dθ −

∫
Θ0

π0(θ)

[
π0(θ)

π∗0k(θ)

]β
dθ

}
. (3.42)

By the condition (i) of the theorem 3.1, it follows from the monotone or the

dominated convergence theorem that

lim
k→∞

π∗0k(θ) = lim
k→∞

fk(θ)∫
Θ0
fk(θ)dθ

1Θ0(θ)

= lim
k→∞

fk(θ)/fk(θ0)∫
Θ0
fk(θ)/fk(θ0)dθ

1Θ0(θ)

=
limk→∞[fk(θ)/fk(θ0)]∫

Θ0
limk→∞[fk(θ)/fk(θ0)]dθ

1Θ0(θ)

=
π(θ)

c0(π)
1Θ0(θ) = π0(θ). (3.43)

This implies that π∗0k(θ) is bounded above and below on Θ0. Therefore,

p0(θ)/π∗0k(θ) and π0(θ)/π∗0k(θ) are also bounded above and below on Θ0.

So, from (3.42), (3.43) and the dominated convergence theorem, we have
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lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
=

1

β(1− β)
lim
k→∞

1

[c0(fk)]β

{∫
Θ0

p0(θ)

[
p0(θ)

π0(θ)

]β
dθ −

∫
Θ0

π0(θ)dθ

}
=

1

β(1− β)
lim
k→∞

1

[c0(fk)]β

{∫
Θ0

p0(θ)

[
p0(θ)

π0(θ)

]β
dθ − 1

}
=

1

β(1− β)
lim
k→∞

1

[c0(fk)]β

{∫
Θ0

p0(θ)

[
π0(θ)

p0(θ)

]−β
dθ − 1

}
. (3.44)

Case I. 0 < β < 1. In this case, u−β is a convex function for u > 0. It follows

from the Jensen’s inequality that,

∫
Θ0

p0(θ)

[
π0(θ)

p0(θ)

]−β
dθ ≥

[∫
Θ0

p0(θ)
π0(θ)

p0(θ)
dθ

]−β
≥

[∫
Θ0

π0(θ)dθ

]−β
≥ 1. (3.45)

So, (3.44) and (3.45) imply that

lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
≥ 0. (3.46)

This completes the proof of the theorem for Case I , 0 < β < 1.

Case II. −1 < β < 0. In this case, u−β is a concave function for u > 0.
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Again, using the Jensen’s inequality, we have

∫
Θ0

p0(θ)

[
π0(θ)

p0(θ)

]−β
dθ ≤

[∫
Θ0

p0(θ)
π0(θ)

p0(θ)
dθ

]−β
≤

[∫
Θ0

π0(θ)dθ

]−β
≤ 1. (3.47)

Since β(1− β) < 0, (3.44) and (3.47) imply that

lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
≥ 0. (3.48)

This completes the proof of the theorem for Case II, −1 < β < 0.

Case III. β = −1. In this case, we have

∫
Θ0

p0(θ)

[
π0(θ)

p0(θ)

]−β
dθ =

∫
Θ0

p0(θ)
π0(θ)

p0(θ)
dθ

=

∫
Θ0

π0(θ)dθ

= 1. (3.49)

So, from (3.44),

lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
= 0, (3.50)

this means that, as k → ∞, Rβ
0k(p0) does not depend on the prior p(θ) when

β = −1.



Construction of reference prior 50

Notice that the choice of the prior π∗(θ) is arbitrary and can be chosen for

computational convenience. Also, the choice of θ0 is not important.

3.3.2 Numerical computation of the reference prior

In the situations where analytical derivation of reference priors is not feasible, we

can use the Theorem 3.1 in the previous section to obtain an approximation to

the reference prior through numerical evaluation of the equation (3.1). Moderate

values of k will often yield a good approximation to the reference prior. We have

the following algorithm to find the reference prior numerically as follows.

Algorithm.

Step 1. Choose a moderate value for k;

Choose an arbitrary positive function π∗(θ), say π∗(θ) = 1;

Choose the number of m of samples to be simulated.

Step 2. For any given θ value, repeat, for j = 1, · · · ,m:

Simulate a random sample {x1j, · · · , xkj} of size k from p(x | θ);

Compute numerically the integral cj =
∫

Θ

∏k
i=1 p(xij | θ)π∗(θ)dθ;

Evaluate rj(θ) =
[∏k

i=1 p(xij | θ)π∗(θ)/cj
]−β

.

Step 3. Compute π(θ) =
[
m−1

∑m
j=1 rj(θ)

]−1/β

and store the pair {θ, π(θ)}.

Step 4. Repeat Step 2 and Step 3 for all θ values for which the pair {θ, π(θ)} is

required.
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If desired, a continuous approximation to the reference prior π(θ) could be

obtained from the computed points by using the interpolation techniques. We will

see how to use this algorithm in the next section.

3.4 Examples

In the present section, we will give some examples, including regular and non-

regular models, to see how our formula for the reference prior works in the case

0 < |β| < 1.

Example 3.1. The normal N(θ, 1) model.

This is a regular model.

Let x = (x1, · · · , xk) be a random sample from the distribution N(θ, 1). We

know that the sufficient statistic of θ is tk = x̄, where x̄ = (x1 + · · · + xk)/k, and

x̄ | θ ∼ p(tk | θ) = N(θ, 1/k).

Now, choosing the prior π∗ being the constant prior, π∗(θ) = 1, we have

π∗(θ | tk) ∼ N(tk, 1/k).

Then,

∫ ∞
−∞

p(tk | θ)[π∗(θ | tk)]−βdtk

=

∫ ∞
−∞

√
k√
2π

exp

[
−k

2
(tk − θ)2

]{ √
k√
2π

exp

[
−k

2
(θ − tk)2

]}−β
dtk
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=

( √
k√
2π

)1−β ∫ ∞
−∞

exp

[
−k

2
(1− β)(tk − θ)2

]
dtk

=

( √
k√
2π

)1−β √
2π√

k(1− β)
=

( √
k√
2π

)−β
1√

1− β
.

This implies

fk(θ) =

{∫ ∞
−∞

p(tk | θ)[π∗(θ | tk)]−βdtk
}−1/β

=

√
k√
2π

(1− β)1/(2β). (3.51)

Note that fk(θ) is a constant of θ. Therefore,

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
= 1. (3.52)

Next we need to check whether the conditions in the Theorem 3.1 are satisfied

or not. As mentioned before, since 0 < β < 1, the model here is standard. It is

also easy to see that π∗(θ) = 1 belongs to Ps, the class of standard priors.

For the consistency of the posterior π∗(θ | tk), for any θ ∈ IR, we have

E(τ − θ | tk)2 = V ar(τ | tk) + [E(τ − θ | tk)]2

=
1

k
+ (tk − θ)2. (3.53)

Using the fact that tk = x̄
P−→ θ in probability p(tk | θ) as k →∞, from (3.53)

and the Slutsky’s theorem, we have
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E(τ − θ | tk)2 P−→ 0 (3.54)

in probability p(tk | θ) as k →∞.

By the Chebyshev’s inequality, for any ε > 0,

P ∗(|τ − θ| > ε | tk) ≤
E(τ − θ | tk)2

ε2
.

From (3.54) it follows that

P ∗(|τ − θ| > ε | tk)
P−→ 0

in probability p(tk | θ) as k → ∞. In other words, the posterior π∗(θ | tk) is

consistent.

It is easy to verify the function fk(θ) in (3.51) satisfies the condition (i) in

the Theorem 3.1.

Finally, we verify the condition (ii) in the Theorem 3.1, whether the prior

π(θ) = 1 is permissible or not.

We first notice that the corresponding posterior π(θ | tk) ∼ N(tk, 1/k) is

proper and by choosing Θi = [−i, i], i = 1, 2, · · · , the approximating compact

sequence Θi will converge to Θ = IR.
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We then consider the following limit

lim
i→∞

Rβ[π(θ | tk), πi(θ | tk)] ≡ lim
i→∞

1−
∫∞
−∞

[∫
Θi
πβ(θ | tk)π1−β

i (θ | tk)dθ
]
mi(tk)dtk

β(1− β)
,

(3.55)

where

πi(θ) =
π(θ)∫

Θi
π(θ)dθ

1Θi(θ) =
1

2i
1Θi(θ),

mi(tk) =

∫
Θi

πi(θ)p(tk | θ)dθ =
1

2i

{
Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]}

,

(Φ is the CDF of the distribution N(0, 1))

πi(θ | tk) =
p(tk | θ)πi(θ)

mi(tk)
=

√
k√

2π
exp

[
−k

2
(tk − θ)2

]{
Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]}1Θi(θ),

π(θ | tk) =

√
k√
2π

exp

[
−k

2
(θ − tk)2

]
.

We show the limit in (3.55) is 0. In fact,

lim
i→∞

∫ ∞
−∞

[∫
Θi

πβ(θ | tk)π1−β
i (θ | tk)dθ

]
mi(tk)dtk

= lim
i→∞

∫ ∞
−∞

∫
Θi

[
π(θ | tk)
πi(θ | tk)

]β
πi(θ | tk)mi(tk)dθdtk

= lim
i→∞

∫
Θi

πi(θ)

∫ ∞
−∞

[
π(θ | tk)
πi(θ | tk)

]β
p(tk | θ)dtkdθ

= lim
i→∞

∫
Θi

πi(θ)

∫ ∞
−∞

{
Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]}β

p(tk | θ)dtkdθ.

(3.56)

It is clear that,
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0 < a < Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]

< 1, for some a > 0,

and

lim
i→∞

{
Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]}β

= 1.

So, as 0 < |β| < 1,
{

Φ
[
(i− tk)

√
k
]
− Φ

[
(−i− tk)

√
k
]}β

is bounded.

Hence, by the dominated convergence theorem, from (3.56),

lim
i→∞

∫ ∞
−∞

[∫
Θi

πβ(θ | tk)π1−β
i (θ | tk)dθ

]
mi(tk)dtk

= lim
i→∞

∫
Θi

πi(θ)

∫ ∞
−∞

p(tk | θ)dtkdθ = 1. (3.57)

(3.55) and (3.57) imply

lim
i→∞

Rβ[π(θ | tk), πi(θ | tk)] = 0.

This means that the prior π(θ) = 1 is permissible.

We have already verified all the conditions in the Theorem 3.1. Therefore,

the reference prior for the normal N(θ, 1) model is π(θ) = 1, which is consistent

with well-known results for reference priors.
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Example 3.2. Uniform(0, θ) model, θ > 0.

This is a non-regular model where there does not exist the Fisher information

and it belongs to the Ghosal-Samanta non-regular class.

Let x = (x1, · · · , xk) be a random sample from unif(0, θ), θ > 0, k ≥ 2.

The sufficient statistic of θ is tk = x(k) = max{x1, · · · , xk}, and

tk | θ ∼ p(tk | θ) =
k

θk
tk−1
k , 0 < tk < θ.

We also choose π∗(θ) = 1, then π∗(θ | tk) =
(k−1)tk−1

k

θk
, θ > tk.

So,

∫ θ

0

p(tk | θ)[π∗(θ | tk)]−βdtk =

∫ θ

0

k

θk
tk−1
k

[
(k − 1)tk−1

k

θk

]−β
dtk

=
k(k − 1)−β

θk(1−β)

∫ θ

0

t
(k−1)(1−β)
k dtk

=
k(k − 1)−β

θk(1−β)

[
t
(k−1)(1−β)+1
k

(k − 1)(1− β) + 1

]θ
0

=
k(k − 1)−β

(k − 1)(1− β) + 1
θβ.

This implies

fk(θ) =

{∫ ∞
−∞

p(tk | θ)[π∗(θ | tk)]−βdtk
}−1/β

=
k−1/β(k − 1)

[(k − 1)(1− β) + 1]−1/β

1

θ
. (3.58)
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Therefore,

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
= lim

k→∞

θ0

θ
=
θ0

θ
∝ 1

θ
. (3.59)

Now we need to check whether the conditions in the Theorem 3.1 are satisfied

or not. As mentioned before, since 0 < β < 1, the model here is standard. It is

also easy to see that π∗(θ) = 1 belongs to Ps, the class of standard priors.

We will check the consistency of the posterior π∗(θ | tk) directly by definition.

For any θ > 0, for any ε > 0, we have

∫
{τ :|τ−θ|≤ε}

π∗(τ | tk)dτ =

∫ θ+ε

max{θ−ε,tk}

(k − 1)tk−1
k

τ k
dτ

= (k − 1)tk−1
k

[
τ−k+1

−k + 1

]θ+ε
max{θ−ε,tk}

=

(
tk

max{θ − ε, tk}

)k−1

−
(

tk
θ + ε

)k−1

. (3.60)

Since tk < θ + ε,

(
tk

θ + ε

)k−1
P−→ 0 (3.61)

in probability p(tk | θ) as k →∞.

On the other hand, we notice that

P (|tk − θ| > ε) = P (θ − tk > ε) = P (tk < θ − ε)
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=

∫ θ−ε

0

k

θk
tk−1
k dtk

=
(θ − ε)k

θk

=
(

1− ε

θ

)k
. (3.62)

So limk→∞ P (|tk − θ| > ε) = 0, or

tk
P−→ θ (3.63)

in probability p(tk | θ) as k →∞.

Furthermore, since

P (|max{θ − ε, tk} − θ| > ε) = P (θ −max{θ − ε, tk} > ε)

= P (max{θ − ε, tk} < θ − ε)

= 0, (3.64)

we also have

max{θ − ε, tk}
P−→ θ (3.65)

in probability p(tk | θ) as k →∞.

From (3.63), (3.65) and the Slutsky’s theorem we have tk/max{θ−ε, tk}
P−→ 1,

or
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lim
k→∞

P

(
1− tk

max{θ − ε, tk}
< ε

)
= 1. (3.66)

Consider the following probability,

P

[
1−

(
tk

max{θ − ε, tk}

)k
< ε

]
= P

(
tk

max{θ − ε, tk}
> k
√

1− ε
)

= P

(
1− tk

max{θ − ε, tk}
< 1− k

√
1− ε

)
(3.67)

Since k
√

1− ε < 1 and limk→∞
k
√

1− ε = 1, from (3.66) and (3.67),

lim
k→∞

P

[
1−

(
tk

max{θ − ε, tk}

)k
< ε

]
= lim

k→∞
P

(
1− tk

max{θ − ε, tk}
< 1− k

√
1− ε

)
= 1.

This implies that

(
tk

max{θ − ε, tk}

)k
P−→ 1 (3.68)

in probability p(tk | θ) as k →∞.

So (3.60), (3.61) and (3.68) give

∫
{τ :|τ−θ|≤ε}

π∗(τ | tk)dτ
P−→ 1 (3.69)
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in probability p(tk | θ) as k → ∞. In other words, the posterior π∗(θ | tk) is

consistent.

It is easy to verify the function fk(θ) in (3.58) satisfies the condition (i) in

the Theorem 3.1.

Finally, we will verify the condition (ii) in the Theorem 3.1, whether the prior

π(θ) = 1/θ is permissible or not.

The corresponding posterior,

π(θ | tk) =
ktkk
θk+1

(3.70)

is proper. If we choose Θi = [1/i, i], i = 1, 2, · · · , then Θi converges to Θ = (0,∞).

Consider the following limit

lim
i→∞

Rβ[π(θ | tk), πi(θ | tk)] ≡ lim
i→∞

1−
∫ θ

0

[∫
Θi
πβ(θ | tk)π1−β

i (θ | tk)dθ
]
mi(tk)dtk

β(1− β)
,

(3.71)

where

πi(θ) =
π(θ)∫

Θi
π(θ)dθ

1Θi(θ) =
1

2 log(i)θ
1Θi(θ),

mi(tk) =

∫ i

tk

πi(θ)p(tk | θ)dθ =
tk−1
k

2 log(i)

(
1

tkk
− 1

ik

)
( as i is sufficiently large ),

πi(θ | tk) =
p(tk | θ)πi(θ)

mi(tk)
=
k(itk)

k

ik − tkk
1

θk+1
1(tk,i)(θ).
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We show the limit in (3.71) is 0. In fact,

lim
i→∞

∫ θ

0

[∫
Θi

πβ(θ | tk)π1−β
i (θ | tk)dθ

]
mi(tk)dtk

= lim
i→∞

∫
Θi

πi(θ)

∫ θ

0

[
π(θ | tk)
πi(θ | tk)

]β
p(tk | θ)dtkdθ

= lim
i→∞

∫
Θi

πi(θ)

∫ θ

0

[
1−

(
tk
i

)k]β
p(tk | θ)dtkdθ. (3.72)

It is clear that, as tk < i,

0 < a < 1−
(
tk
i

)k
< 1, for some a > 0,

and

lim
i→∞

[
1−

(
tk
i

)k]β
= 1.

So, as 0 < |β| < 1,
[
1−

(
tk
i

)k]β
is bounded.

Hence, by the dominated convergence theorem, from (3.72),

lim
i→∞

∫ θ

0

[∫
Θi

πβ(θ | tk)π1−β
i (θ | tk)dθ

]
mi(tk)dtk

= lim
i→∞

∫
Θi

πi(θ)

∫ θ

0

p(tk | θ)dtkdθ = 1. (3.73)

(3.71) and (3.73) imply

lim
i→∞

Rβ[π(θ | tk), πi(θ | tk)] = 0.
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This means that the prior π(θ) = 1/θ is permissible.

We have already verified all the conditions in the Theorem 3.1. Therefore,

the reference prior for the uniform unif(0, θ) model is π(θ) = 1/θ, which is also

consistent with well-known results for reference priors.

Example 3.3. Uniform(a1(θ), a2(θ)) model, where Θ = (θ0,∞) and 0 < a1(θ) <

a2(θ) are both strictly monotonic increasing functions on Θ with derivatives satis-

fying 0 < a′1(θ) < a′2(θ) .

This is a non-regular model. It has no group invariance structure and is

outside of the Ghosal-Samanta non-regular class.

Let x = (x1, · · · , xk) be a random sample from the original uniform distribu-

tion on the interval (a1(θ), a2(θ)). Obviously, the sufficient statistic of θ is

tk ≡ (t1, t2) = (x(1), x(k)) = (min{x1, · · · , xk},max{x1, · · · , xk}),

with the density

p(t1, t2 | θ) =
k(k − 1)(t2 − t1)k−2

[a2(θ)− a1(θ)]k
, a1(θ) < t1 < t2 < a2(θ).

If we choose π∗(θ) = 1, the corresponding posterior density of θ is

π∗(θ | t1, t2) =
1

[a2(θ)− a1(θ)]kmk(t1, t2)
, a−1

2 (t2) < θ < a−1
1 (t1),

where
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mk(t1, t2) =

∫ a−1
1 (t1)

a−1
2 (t2)

1

[a2(s)− a1(s)]k
ds.

Change variables

y1 = k[a−1
1 (t1)− θ],

y2 = k[θ − a−1
2 (t2)].

It follows from Berger, Bernardo and Sun (2009) that, for fixed θ > θ0, y1 >

0, y2 > 0, as k →∞,

p(y1, y2 | θ) → p∗(y1, y2 | θ) =
a′1(θ)a′2(θ)

[a2(θ)− a1(θ)]2
exp

[
−a
′
1(θ)y1 + a′2(θ)y2

a2(θ)− a1(θ)

]
.

Therefore, as k →∞, the variables yi’s have independent exponential distri-

butions with means λi = [a2(θ)− a1(θ)]/a′i(θ), i = 1, 2.

It also follows from Berger, Bernardo and Sun (2009) that, for fixed y1 >

0, y2 > 0, as k →∞,

k[a2(θ)− a1(θ)]kmk(t1, t2) → a2(θ)− a1(θ)

a′2(θ)− a′1(θ)
exp

[
a′2(θ)− a′1(θ)

a2(θ)− a1(θ)
y2

]
×
{

1− exp

[
−a
′
2(θ)− a′1(θ)

a2(θ)− a1(θ)
(y1 + y2)

]}
.

Then, for fixed θ > θ0, as k →∞,
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kβ
∫ ∞

0

∫ ∞
0

p(y1, y2 | θ)[π∗(θ | y1, y2)]−βdy1dy2

=

∫ ∞
0

∫ ∞
0

p(y1, y2 | θ){k[a2(θ)− a1(θ)]kmk(t1, t2)}βdy1dy2

→
∫ ∞

0

∫ ∞
0

p∗(y1, y2 | θ)
[
a2(θ)− a1(θ)

a′2(θ)− a′1(θ)

]β (
exp

[
a′2(θ)− a′1(θ)

a2(θ)− a1(θ)
y2

]

×
{

1− exp

[
−a
′
2(θ)− a′1(θ)

a2(θ)− a1(θ)
(y1 + y2)

]})β

dy1dy2. (3.74)

Let vi = yi/λi, i = 1, 2, then vi’s are i.i.d. with the standard exponential

distribution.

Define

bi ≡ bi(θ) =
a′2(θ)− a′1(θ)

a′i(θ)
, i = 1, 2,

(3.74) becomes

kβf−βk (θ) ≡ kβ
∫ ∞

0

∫ ∞
0

p(y1, y2 | θ)[π∗(θ | y1, y2)]−βdy1dy2

→
[
a2(θ)− a1(θ)

a′2(θ)− a′1(θ)

]β
E
[
eβb2v2

(
1− e−b1v1−b2v2

)β]
as k →∞.

(3.75)

We have
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E
[
eβb2v2

(
1− e−b1v1−b2v2

)β]
= E

[
eβb2v2

(
1 +

∞∑
j=1

(
β

j

)
(−1)je−jb1v1−jb2v2

)]

= E(eβb2v2) +
∞∑
j=1

(
β

j

)
(−1)jE(e−jb1v1)E(e−(j−β)b2v2)

=
1

1− βb2

+
∞∑
j=1

(
β

j

)
(−1)j

1

1 + jb1

1

1 + (j − β)b2

. (3.76)

On the other hand, using the Euler-Gauss infinite product definition of the

gamma function Γ(·), we have

(
β

j

)
=

β(β − 1)(β − 2) · · · (β − j + 1)

j!

= (−1)j
1

j

(−β + j − 1)(−β + j − 2) · · · (−β + 1)(−β)

(j − 1)!

≈ (−1)j
1

j

(j − 1)−β

Γ(−β)

≈ (−1)j

jβ+1Γ(−β)
, (3.77)

where the function Γ(·) could be extended to negative values by the following

equation,

Γ(x) =
Γ(x+ 1)

x
, − 1 < x < 0,

for example Γ(−1/2) = −2Γ(1/2).
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So,

∞∑
j=1

(
β

j

)
(−1)j

1

1 + jb1

1

1 + (j − β)b2

≈ lim
n→∞

n∑
j=1

1

Γ(−β)

1

jβ+1

1

1 + jb1

1

1 + (j − β)b2

≈ 1

Γ(−β)
lim
n→∞

1

nβ+2

n∑
j=1

1

n

1

( j
n
)β+1

1
1
n

+ ( j
n
)b1

1
1−βb2
n

+ ( j
n
)b2

≈ 1

Γ(−β)
lim
n→∞

1

nβ+2

∫ 1

1
n

1

xβ+1

1

b1x

1

b2x
dx

≈ 1

b1b2Γ(−β)
lim
n→∞

1

nβ+2

∫ 1

1
n

1

xβ+3
dx

≈ 1

b1b2Γ(−β)
lim
n→∞

1

nβ+2

[
− 1

β + 2

(
1− nβ+2

)]
≈ 1

b1b2(β + 2)Γ(−β)
. (3.78)

(3.75), (3.76) and (3.78) imply that the reference prior of θ is

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
= lim

k→∞

[
kβf−βk (θ)

]−1/β

[
kβf−βk (θ0)

]−1/β

∝ a′2(θ)− a′1(θ)

a2(θ)− a1(θ)

[
1

1− βb2

+
1

(β + 2)Γ(−β)b1b2

]− 1
β

. (3.79)

Example 3.4. Uniform model with support on (θ, θ2), θ > 1, in the case of

Hellinger divergence, β = 1/2.

This is a special case of the previous example where θ0 = 1, a1(θ) = θ, a2(θ) =

θ2. Then,
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a′1(θ) = 1, a′2(θ) = 2θ,

b1 =
a′2(θ)− a′1(θ)

a′1(θ)
= 2θ − 1,

b2 =
a′2(θ)− a′1(θ)

a′2(θ)
=

2θ − 1

2θ
.

Therefore, the reference prior (3.79) becomes

π(θ) ∝ (2θ + 1)2(2θ − 1)5

θ3(θ − 1)[20
√
π(2θ − 1)2 − 2(2θ + 1)]2

. (3.80)

The figure 3.1 presents the exact reference prior for this problem.

Figure 3.1: Exact reference prior for the uniform model on (θ, θ2)

Now we want to compare this exact reference prior to the numerical reference

prior calculated by the algorithm given in the previous section. It is worth to say



Construction of reference prior 68

a little bit about how we can generate a random variable from the distribution

p(x | θ) in Step 2 . We know that if u ∼ uniform(0, 1), then x = F−1(u) ∼ p(x | θ)

as desired, where

F−1(u) = θ + (θ2 − θ)u.

The numerical computation was done for the problem by the following R code

and the figure 3.2 presents the numerical reference prior which is rescaled to have

π(2) = 0.163 (since π(2) = 0.163 for the exact reference prior); m = 1000 samples

of k = 500 observations were used to compute each point {θ, π(θ)}.

################################

### R code for the figure 3.2###

################################

prior = function(t){

(2*t+1)^2*(2*t-1)^5/(t^3*(t-1)*(20*sqrt(pi)*(2*t-1)^2-2*(2*t+1))^2)

}

theta = seq(1.05,10,0.05)

true.prior = prior(theta)

true.prior = true.prior/(sum(true.prior*0.05))

plot(theta,true.prior,type="l",xlab=expression(theta),

ylab=expression(pi(theta)))

k = 500

m = 1000
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theta = seq(1.05,10,length=180)

c = rep(NA,m)

r = rep(NA,m)

for (l in 1:length(theta))

{

G = function(y){

theta[l]+(theta[l]^2-theta[l])*y

}

for (j in 1:m){

x = rep(NA,k)

for (i in 1:k){

u = runif(1)

x[i] = G(u)

}

c[j] = integrate(function(t) 1/(t^2-t)^k, sqrt(max(x)),min(x))$value

r[j] = (1/(theta[l]^2-theta[l])^k/c[j])^(-.5)

}

ref[l] = (sum(r)/m)^(-2)

}

ref = ref/ref[theta==2]*0.163

plot(theta,ref,type="l",xlab=expression(theta),ylab=expression(pi(theta)))

lines(theta,true.prior,lty=2,lwd=4)
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Figure 3.2: Numerical reference prior for the uniform model on (θ, θ2)

When comparing these two plots, exact reference prior and numerical ref-

erence prior, we could see that they are obviously almost perfectly the same as

shown in the figure 3.3.

Figure 3.3: Numerical reference prior vs. exact reference prior for the uniform
model on (θ, θ2)
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Example 3.5. Consider the following model,

f(x | θ) =


g(x)

c(θ)
, if a1(θ) < x < a2(θ)

0, else

,

where Θ = (θ0,∞), c(θ) =
∫ a2(θ)

a1(θ)
g(x)dx, g(x) > 0 is a non-decreasing function,

and 0 < a1(θ) < a2(θ) are both strictly monotonic increasing functions on Θ with

derivatives satisfying 0 < a′1(θ) < a′2(θ) .

This is the general case of the example 3.3.

Let x = (x1, · · · , xk) be a random sample from the given distribution on the

interval (a1(θ), a2(θ)). We also have the sufficient statistic of θ is

tk ≡ (t1, t2) = (x(1), x(k)) = (min{x1, · · · , xk},max{x1, · · · , xk}).

Let F (x | θ) =
∫ x
a1(θ)

f(t | θ)dt is the c.d.f. corresponding the p.d.f. f(x | θ).

Then,

p(t1, t2 | θ) = k(k − 1)f(t1 | θ)f(t2 | θ)[F (t2 | θ)− F (t1 | θ)]k−2

= k(k − 1)g(t1)g(t2)

[∫ t2
t1
g(t)dt

]k−2

[∫ a2(θ)

a1(θ)
g(t)dt

]k , a1(θ) < t1 < t2 < a2(θ).

(3.81)

Choosing π∗(θ) = 1, the corresponding posterior density of θ is
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π∗(θ | t1, t2) =
1[∫ a2(θ)

a1(θ)
g(t)dt

]k
mk(t1, t2)

, a−1
2 (t2) < θ < a−1

1 (t1),

where

mk(t1, t2) =

∫ a−1
1 (t1)

a−1
2 (t2)

1[∫ a2(s)

a1(s)
g(t)dt

]k ds. (3.82)

Similarly as in the example 3, we change variables as follows

y1 = k[a−1
1 (t1)− θ],

y2 = k[θ − a−1
2 (t2)].

We then find the asymptotic distribution of (y1, y2) as k → ∞. From the

assumption, as k is large enough, for any fixed y1 > 0 and y2 > 0, we have

t1 = a1(θ+ y1/k) < t2 = a2(θ− y2/k). So, from (3.81), the joint density of (y1, y2)

is

p(y1, y2 | θ) =
k − 1

k

a′1(θ + y1
k

)a′2(θ − y2
k

)g[a1(θ + y1
k

)]g[a2(θ − y2
k

)][∫ a2(θ)

a1(θ)
g(t)dt

]2

×

∫ a2(θ− y2
k

)

a1(θ+
y1
k

)
g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

k−2

. (3.83)

By using the facts that, as k →∞,
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a1(θ + y1/k) ≈ a1(θ) +
y1

k
a′1(θ),

a2(θ − y2/k) ≈ a2(θ)− y2

k
a′2(θ),∫ a1(θ)+

y1
k
a′1(θ)

a1(θ)

g(t)dt ≈ y1

k
a′1(θ)g[a1(θ)],∫ a2(θ)

a2(θ)− y2
k
a′2(θ)

g(t)dt ≈ y2

k
a′2(θ)g[a2(θ)], (3.84)

we have

∫ a2(θ− y2
k

)

a1(θ+
y1
k

)
g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

k−2

≈

∫ a2(θ)− y2
k
a′2(θ)

a1(θ)+
y1
k
a′1(θ)

g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

k−2

≈

∫ a2(θ)

a1(θ)
g(t)dt−

∫ a1(θ)+
y1
k
a′1(θ)

a1(θ) g(t)dt−
∫ a2(θ)

a2(θ)− y2
k
a′2(θ)

g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

k−2

≈

1− y1a
′
1(θ)g[a1(θ)] + y2a

′
2(θ)g[a2(θ)]

k
∫ a2(θ)

a1(θ)
g(t)dt


k−2

→ exp

−y1a
′
1(θ)g[a1(θ)] + y2a

′
2(θ)g[a2(θ)]∫ a2(θ)

a1(θ)
g(t)dt

 .

It follows from (3.83) that, for fixed θ > θ0, y1 > 0, y2 > 0, as k →∞,

p(y1, y2 | θ) → p∗(y1, y2 | θ)

≡ a′1(θ)a′2(θ)g[a1(θ)]g[a2(θ)][∫ a2(θ)

a1(θ)
g(t)dt

]2 exp

−y1a
′
1(θ)g[a1(θ)] + y2a

′
2(θ)g[a2(θ)]∫ a2(θ)

a1(θ)
g(t)dt

 .

Therefore, as k →∞, the variables yi’s have independent exponential distributions

with means
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λi =

∫ a2(θ)

a1(θ)
g(t)dt

a′i(θ)g[ai(θ)]
, i = 1, 2.

Now, from (3.82), let s = θ + v/k, we have

mk(t1, t2) =

∫ θ+
y1
k

θ− y2
k

1[∫ a2(s)

a1(s)
g(t)dt

]k ds
=

∫ y1

−y2

1

k

dv[∫ a2(θ+ v
k

)

a1(θ+ v
k

) g(t)dt
]k .

Then, using the similar approximations as in (3.84), as k → ∞, for fixed

y1 > 0, y2 > 0,

k

[∫ a2(θ)

a1(θ)

g(t)dt

]k
mk(t1, t2)

=

∫ y1

−y2

 ∫ a2(θ)

a1(θ)
g(t)dt∫ a2(θ+ v
k

)

a1(θ+ v
k

) g(t)dt

k dv
≈

∫ y1

−y2

∫ a2(θ)+ v
k
a′2(θ)

a1(θ)+ v
k
a′1(θ) g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

−k dv
≈

∫ y1

−y2

∫ a2(θ)

a1(θ)
g(t)dt−

∫ a1(θ)+ v
k
a′1(θ)

a1(θ) g(t)dt+
∫ a2(θ)+ v

k
a′2(θ)

a2(θ) g(t)dt∫ a2(θ)

a1(θ)
g(t)dt

−k dv
≈

∫ y1

−y2

1− va′1(θ)g[a1(θ)]− va′2(θ)g[a2(θ)]

k
∫ a2(θ)

a1(θ)
g(t)dt


−k

dv

→
∫ y1

−y2
exp

−a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]∫ a2(θ)

a1(θ)
g(t)dt

v

 dv
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=

∫ a2(θ)

a1(θ)
g(t)dt

a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]
exp

a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]∫ a2(θ)

a1(θ)
g(t)dt

y2


×

1− exp

−a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]∫ a2(θ)

a1(θ)
g(t)dt

(y1 + y2)

 .

Then, for fixed θ > θ0, as k →∞,

kβ
∫ ∞

0

∫ ∞
0

p(y1, y2 | θ)[π∗(θ | y1, y2)]−βdy1dy2

=

∫ ∞
0

∫ ∞
0

p(y1, y2 | θ)

k
[∫ a2(θ)

a1(θ)

g(t)dt

]k
mk(t1, t2)


β

dy1dy2

→
∫ ∞

0

∫ ∞
0

p∗(y1, y2 | θ)

 ∫ a2(θ)

a1(θ)
g(t)dt

a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]

β

× exp

a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]∫ a2(θ)

a1(θ)
g(t)dt

βy2


×

1− exp

−a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]∫ a2(θ)

a1(θ)
g(t)dt

(y1 + y2)


β

dy1dy2.

(3.85)

Let vi = yi/λi, i = 1, 2, then vi’s are i.i.d. with the standard exponential

distribution.

Define

bi ≡ bi(θ) =
a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]

a′i(θ)g[ai(θ)]
, i = 1, 2,
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(3.85) becomes

kβf−βk (θ) ≡ kβ
∫ ∞

0

∫ ∞
0

p(y1, y2 | θ)[π∗(θ | y1, y2)]−βdy1dy2

→

 ∫ a2(θ)

a1(θ)
g(t)dt

a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]

β E [eβb2v2 (1− e−b1v1−b2v2)β] .
(3.86)

Using the same arguments as in the example 3.3, we also have the following

results as in (3.76) and (3.78),

E
[
eβb2v2

(
1− e−b1v1−b2v2

)β] ≈ 1

1− βb2

+
1

b1b2(β + 2)Γ(−β)
. (3.87)

Consequently, (3.86) and (3.87) imply that the reference prior of θ is

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
= lim

k→∞

[
kβf−βk (θ)

]−1/β

[
kβf−βk (θ0)

]−1/β

∝ a′2(θ)g[a2(θ)]− a′1(θ)g[a1(θ)]

c(θ)

[
1

1− βb2

+
1

(β + 2)Γ(−β)b1b2

]− 1
β

.

(3.88)

We now consider an example for which the reference prior is not known and

it appears to be extremely difficult to derive the reference prior analytically.
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Example 3.6. Consider the following model,

p(x | θ) =


2x

θ
, if 0 < x ≤ θ

2(1− x)

1− θ
, if θ < x < 1

, 0 < θ < 1.

This model is also known as the non-symmetric standard triangular distri-

bution on (0, 1). It does not possess a useful reduced sufficient statistic and the

Jeffrey prior does not exist too. For this example, the analytical derivation of the

reference prior does not seem to be feasible and we will use our algorithm to find

the numerical reference prior. Again, it is worth to say a little bit about how we

can generate a random variable from the distribution p(x | θ) in Step 2 of the

algorithm. We know that if u ∼ uniform(0, 1), then x = F−1(u) ∼ p(x | θ) as

desired, where, for this example,

F−1(u) =


√
θu, if 0 < u ≤ θ

1−
√

(1− θ)(1− u), if θ < u < 1

, 0 < θ < 1.

The numerical computation was done for this example by the following R

code and the figure 3.4 presents the numerical reference priors for β = 0, 0.2, 0.5,

and −0.5 which are rescaled to have π(1/2) = 2/π; m = 1000 samples of k = 500

observations were used to compute each point {θ, π(θ)}.
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################################

### R code for the figure 3.4###

################################

# beta = 0

k = 500

m = 1000

r = rep(NA,m)

theta = seq(0.05,0.95,length = 201)

ref = rep(NA,length(theta))

for (l in 1:length(theta)){

G = function(y){ if(y<theta[l]) {sqrt(theta[l]*y)}

else {1-sqrt((1-theta[l])*(1-y))}

}

for (s in 1:m){

x = rep(NA,k)

a = 0

A = 1

B = 1

for (i in 1:k){

u = runif(1)

x[i] = G(u)

if(x[i]<theta[l])

{a = a + 1
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A = A*x[i]}

else {B = B*(1-x[i])}

}

t = seq(0.05,0.95,0.05)

n = length(t)

S = 0

for (j in 1:n){

a.new = 0

A.new = 1

B.new = 1

for (i in 1:k){

if(x[i]<t[j])

{a.new = a.new + 1

A.new = A.new*x[i]}

else {B.new = B.new*(1-x[i])}

}

S = S + A.new*B.new/(t[j]^a.new*(1-t[j])^(k-a.new))

}

S = S*0.05

r[s] = log(A*B/((theta[l]^a)*((1-theta[l])^(k-a)))/S)

}

ref[l] = exp(sum(r)/m)

}
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ref00 = ref

ref00 = ref00/ref00[101]*2/pi

plot(theta,ref00,type="p",pch=21,col="blue",xlab=expression(theta),

ylab=expression(pi(theta)))

the = seq(0.01,0.99,0.01)

lines(the,dbeta(the,0.5,0.5),lty=1,lwd=2)

legend(0.4,1.8,c(expression(beta==0),expression(beta==0.9),

"Beta(0.5,0.5)"),col=c("blue","black","black"),pch=21:22,lty=1)

#beta = 0.5

k = 500

m = 1000

r = rep(NA,m)

beta = 0.5

theta = seq(0.05,0.95,length = 201)

ref = rep(NA,length(theta))

for (l in 1:length(theta)){

G = function(y){ if(y<theta[l]) {sqrt(theta[l]*y)}

else {1-sqrt((1-theta[l])*(1-y))}

}

for (s in 1:m){

x = rep(NA,k)

a = 0



Construction of reference prior 81

A = 1

B = 1

for (i in 1:k){

u = runif(1)

x[i] = G(u)

if(x[i]<theta[l])

{a = a + 1

A = A*x[i]}

else {B = B*(1-x[i])}

}

t = seq(0.05,0.95,0.05)

n = length(t)

S = 0

for (j in 1:n){

a.new = 0

A.new = 1

B.new = 1

for (i in 1:k){

if(x[i]<t[j])

{a.new = a.new + 1

A.new = A.new*x[i]}

else {B.new = B.new*(1-x[i])}

}
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S = S + A.new*B.new/(t[j]^a.new*(1-t[j])^(k-a.new))

}

S = S*0.05

r[s] = (A*B/((theta[l]^a)*((1-theta[l])^(k-a)))/S)^(-beta)

}

ref[l] = (sum(r)/m)^(-1/beta)

}

ref0.5 = ref

ref0.5 = ref0.5/ref0.5[101]*2/pi

lines(theta,ref0.5,type="p",pch=22,col="red")

#beta = 0.2

k = 500

m = 1000

r = rep(NA,m)

beta = 0.2

theta = seq(0.05,0.95,length = 201)

ref = rep(NA,length(theta))

for (l in 1:length(theta)){

G = function(y){ if(y<theta[l]) {sqrt(theta[l]*y)}

else {1-sqrt((1-theta[l])*(1-y))}

}

for (s in 1:m){
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x = rep(NA,k)

a = 0

A = 1

B = 1

for (i in 1:k){

u = runif(1)

x[i] = G(u)

if(x[i]<theta[l])

{a = a + 1

A = A*x[i]}

else {B = B*(1-x[i])}

}

t = seq(0.05,0.95,0.05)

n = length(t)

S = 0

for (j in 1:n){

a.new = 0

A.new = 1

B.new = 1

for (i in 1:k){

if(x[i]<t[j])

{a.new = a.new + 1

A.new = A.new*x[i]}
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else {B.new = B.new*(1-x[i])}

}

S = S + A.new*B.new/(t[j]^a.new*(1-t[j])^(k-a.new))

}

S = S*0.05

r[s] = (A*B/((theta[l]^a)*((1-theta[l])^(k-a)))/S)^(-beta)

}

ref[l] = (sum(r)/m)^(-1/beta)

}

ref0.2 = ref

ref0.2 = ref0.2/ref0.2[101]*2/pi

lines(theta,ref0.2,type="p",pch=23,col="green")

#beta = -0.5

k = 500

m = 1000

r = rep(NA,m)

beta = -0.5

theta = seq(0.05,0.95,length = 201)

ref = rep(NA,length(theta))

for (l in 1:length(theta)){

G = function(y){ if(y<theta[l]) {sqrt(theta[l]*y)}

else {1-sqrt((1-theta[l])*(1-y))}
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}

for (s in 1:m){

x = rep(NA,k)

a = 0

A = 1

B = 1

for (i in 1:k){

u = runif(1)

x[i] = G(u)

if(x[i]<theta[l])

{a = a + 1

A = A*x[i]}

else {B = B*(1-x[i])}

}

t = seq(0.05,0.95,0.05)

n = length(t)

S = 0

for (j in 1:n){

a.new = 0

A.new = 1

B.new = 1

for (i in 1:k){

if(x[i]<t[j])
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{a.new = a.new + 1

A.new = A.new*x[i]}

else {B.new = B.new*(1-x[i])}

}

S = S + A.new*B.new/(t[j]^a.new*(1-t[j])^(k-a.new))

}

S = S*0.05

r[s] = (A*B/((theta[l]^a)*((1-theta[l])^(k-a)))/S)^(-beta)

}

ref[l] = (sum(r)/m)^(-1/beta)

}

ref.neg.0.5 = ref

ref.neg.0.5 = ref.neg.0.5/ref.neg.0.5[101]*2/pi

lines(theta,ref.neg.0.5,type="p",pch=8,col="purple")

arrows(.3,1.4,.08,1.2)

text(.35,1.41,"Beta(0.5,0.5)")

png("triangular.png", width = 800, height = 600)

par(mfrow=c(2,2))

the = seq(0.01,0.99,0.01)

plot(the,dbeta(the,0.5,0.5),main=expression(beta==0),type="l",

lwd=2,ylim=c(0.5,1.5),xlab=expression(theta),ylab=expression(pi(theta)))

lines(theta,ref00,type="p",pch=21,col="blue")

arrows(.3,1.4,.08,1.2,length = 0.15,angle=15)
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text(.35,1.41,"Beta(0.5,0.5)",cex=0.8)

plot(the,dbeta(the,0.5,0.5),main=expression(beta==0.5),type="l",

lwd=2,ylim=c(0.5,1.5),xlab=expression(theta),ylab=expression(pi(theta)))

lines(theta,ref0.5,type="p",pch=22,col="red")

arrows(.3,1.4,.08,1.2,length = 0.15,angle=15)

text(.35,1.41,"Beta(0.5,0.5)",cex=0.8)

plot(the,dbeta(the,0.5,0.5),main=expression(beta==0.2),type="l",

lwd=2,ylim=c(0.5,1.5),xlab=expression(theta),ylab=expression(pi(theta)))

lines(theta,ref0.2,type="p",pch=23,col="green")

arrows(.3,1.4,.08,1.2,length = 0.15,angle=15)

text(.35,1.41,"Beta(0.5,0.5)",cex=0.8)

plot(the,dbeta(the,0.5,0.5),main=expression(beta==-0.5),type="l",

lwd=2,ylim=c(0.5,1.5),xlab=expression(theta),ylab=expression(pi(theta)))

lines(theta,ref.neg.0.5,type="p",pch=8,col="purple")

arrows(.3,1.4,.08,1.2,length = 0.15,angle=15)

text(.35,1.41,"Beta(0.5,0.5)",cex=0.8)

graphics.off()

Interestingly, when compared these numerical reference priors to theBeta(1/2, 1/2)

distribution, shown by the continuous line, we could see that they are somehow

close.
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Figure 3.4: Numerical reference priors for the Triangular model
when β = 0, 0.2, 0.5,−0.5



Chapter 4

Reference prior under the

Chi-squared divergence

In the present Chapter, we consider the reference prior for the remained case

when β = −1, the Chi-squared divergence measure. This could be viewed as the

boundary case. For the regular models where there exist the Fisher information

numbers, Ghosh, Mergel and Liu (2011) shown that the reference prior is no

longer identical to the Jeffreys’ prior but it is proportional to the fourth root

of the Fisher information number. Our main objective here is to deal with the

non-regular models where there do not exist the Fisher information numbers.

Let’s look back to the equation (3.44) in the proof of our main Theorem 3.1,

lim
k→∞

[
Rβ

0k(π0)−Rβ
0k(p0)

]
= 0,

89
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this means that, as k → ∞, Rβ
0k(p0) does not depend on the prior p(θ) when

β = −1. Therefore, our method there does not point out the reference priors in

this case.

Our conjecture is that for this boundary case for the non-regular models we

cannot find the general formula for the reference prior. For some models there exist

reference priors, for some other models there do not. This conjecture is illustrated

through a couple following examples.

4.1 Examples without reference priors when

β = −1

Example 4.1. Consider the following non-regular model,

f(x | θ) =


g(x)

G[a2(θ)]
, if a1(θ) < x < a2(θ)

0, else

,

where G(x) =
∫ x
a1(θ)

g(t)dt and g(x) is a positive function .

Notice that G[a1(θ)] = 0 and G[a2(θ)] =
∫ a2(θ)

a1(θ)
g(t)dt.

The sufficient statistic of θ also is

tk ≡ (t1, t2) = (x(1), x(k)) = (min{x1, · · · , xk},max{x1, · · · , xk}).
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From (3.81), we have

p(t1, t2 | θ) = k(k − 1)g(t1)g(t2)

[∫ t2
t1
g(t)dt

]k−2

[∫ a2(θ)

a1(θ)
g(t)dt

]k
= k(k − 1)g(t1)g(t2)

[G(t2)−G(t1)]k−2

Gk[a2(θ)]
, a1(θ) < t1 < t2 < a2(θ)

(4.1)

When β = −1, from (2.29), the divergence between the prior p0(θ) and the

posterior p0(θ | tk) is

R−1
0k (p0) = −1

2

{
1−

∫
Θ0

p0(θ)

∫
T k

[
p0(θ)

p0(θ | tk)

]−1

p(tk | θ)dtkdθ

}
= −1

2
+

1

2

∫
Θ0

∫
T k

p0(θ | tk)p(tk | θ)dtkdθ

= −1

2
+

1

2

∫
Θ0

∫
T k

p2(tk | θ)p0(θ)∫
Θ0
p(tk | θ)p0(θ)dθ

dtkdθ. (4.2)

We now consider the inner integral, from (4.1),

∫
T k

p2(tk | θ)p0(θ)∫
Θ0
p(tk | θ)p0(θ)dθ

dtk

=

∫
T k

k2(k−1)2

G2k[a2(θ)]
g2(t1)g2(t2)[G(t2)−G(t1)]2(k−2)p0(θ)∫

Θ0

k(k−1)
Gk[a2(θ)]

g(t1)g(t2)[G(t2)−G(t1)]k−2p0(θ)dθ
dtk

=

k(k−1)
G2k[a2(θ)]

p0(θ)∫
Θ0

p0(θ)
Gk[a2(θ)]

dθ

∫
T k

g(t1)g(t2)[G(t2)−G(t1)]k−2dtk. (4.3)

Change variables
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s1 = G(t1),

s2 = G(t2),

then

ds1 = g(t1)dt1,

ds2 = g(t2)dt2.

So,

∫
T k

g(t1)g(t2)[G(t2)−G(t1)]k−2dtk

=

∫ a2(θ)

a1(θ)

∫ a2(θ)

t1

g(t1)g(t2)[G(t2)−G(t1)]k−2dt2dt1

=

∫ G[a2(θ)]

0

∫ G[a2(θ)]

s1

(s2 − s1)k−2ds2ds1

=

∫ G[a2(θ)]

0

(s2 − s1)k−1

k − 1
|G[a2(θ)]
s1

ds1

=

∫ G[a2(θ)]

0

{G[a2(θ)]− s1}k−1

k − 1
ds1

= −{G[a2(θ)]− s1}k

k(k − 1)
|G[a2(θ)]
0

=
Gk[a2(θ)]

k(k − 1)
. (4.4)

The combination of (4.2), (4.3), and (4.4) gives us
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R−1
0k (p0) = −1

2
+

1

2

∫
Θ0

k(k−1)
G2k[a2(θ)]

p0(θ)∫
Θ0

p0(θ)
Gk[a2(θ)]

dθ

Gk[a2(θ)]

k(k − 1)
dθ

= −1

2
+

1

2

∫
Θ0

p0(θ)
Gk[a2(θ)]

dθ∫
Θ0

p0(θ)
Gk[a2(θ)]

dθ

= 0. (4.5)

This means that, when β = −1, the divergence R−1
0k (p0) between the prior

p0 and its corresponding posterior is zero for all sample size k and for all prior p.

Therefore, we do not have the reference prior for the model given in this example.

4.2 Examples with reference priors when β = −1

Example 4.2. Consider the following non-regular model,

p(x | θ) =


θ

1− e−θ2
e−θx, if 0 < x < θ

0, else

,

where θ is unknown parameter in Θ = (0,∞).

This example is not separable like the previous one. So we cannot use the

analogous arguments as in the previous example to handle this case.
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Let p(·) be an any prior of θ on the parameter space Θ. Then an similar

expression to (4.2) yields

R−1
k (p) = −1

2
+

1

2

∫
Θ

∫
X

p2(xk | θ)p(θ)∫
Θ
p(xk | θ)p(θ)dθ

dxkdθ

= −1

2
+

1

2

∫
Θ

Eθ[p(θ | xk)]dθ, (4.6)

where

Eθ[p(θ | xk)] =

∫
X

p2(xk | θ)p(θ)∫
Θ
p(xk | θ)p(θ)dθ

dxk. (4.7)

Therefore, in order to evaluate the divergence R−1
k (p) we first need to evaluate

the posterior p(θ | xk).

Now we have

p(θ | xk) =
p(θ)p(xk | θ)

Ck

= p(θ)
θk

(1− e−θ2)k
e−θ

∑k
i=1 xiI(x(k) < θ)/Ck, (4.8)

where

Ck =

∫ ∞
x(k)

p(θ)
θk

(1− e−θ2)k
e−θ

∑k
i=1 xidθ.

Change variable to

η = k(θ − x(k)).
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Then η > 0, θ = x(k) + η/k, dθ = dη/k, and from (4.8) we have

(η | x(k)) ∼ p(x(k) +
η

k
)

[
x(k) + η

k

1− e−(x(k)+
η
k

)2

]k
e−(x(k)+

η
k

)
∑k
i=1 xiI(η > 0)/Dk,

(4.9)

where

Dk =

∫ ∞
0

p(x(k) +
η

k
)

[
x(k) + η

k

1− e−(x(k)+
η
k

)2

]k
e−(x(k)+

η
k

)
∑k
i=1 xidη. (4.10)

Using the following Taylor expansion

e−x
2

= 1− x2 +
x4

2!
− x6

3!
+ · · · ,

we get

1− e−x2

x
= x

(
1− x2

2!
+
x4

3!
− · · ·

)
.

So,

[
x(k) + η

k

1− e−(x(k)+
η
k

)2

]k
=

[
1− e−(x(k)+

η
k

)2

x(k) + η
k

]−k

=
(
x(k) +

η

k

)−k [
1− 1

2!

(
x(k) +

η

k

)2

+
1

3!

(
x(k) +

η

k

)4

− · · ·
]−k

= x−k(k)

(
1 +

η

x(k)k

)−k [
1− 1

2!

(
x(k) +

η

k

)2

+
1

3!

(
x(k) +

η

k

)4

− · · ·
]−k

.
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As k →∞,

(
1 +

η

x(k)k

)−k
≈ e

− η
x(k) ,[

1− 1

2!

(
x(k) +

η

k

)2

+
1

3!

(
x(k) +

η

k

)4

− · · ·
]−k

≈
(

1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

.

Therefore,

[
x(k) + η

k

1− e−(x(k)+
η
k

)2

]k
≈ x−k(k)e

− η
x(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

. (4.11)

Also,

p
(
x(k) +

η

k

)
≈ p

(
x(k)

)
+
η

k
p′
(
x(k)

)
. (4.12)

(4.9), (4.11), and (4.12) yield

p(x(k) +
η

k
)

[
x(k) + η

k

1− e−(x(k)+
η
k

)2

]k
e−(x(k)+

η
k

)
∑k
i=1 xiI(η > 0)

≈ p(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xie

− η
x(k) I(η > 0)

+p′(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi

η

k
e
− η
x(k) I(η > 0).

(4.13)

From (4.10) and (4.13),
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Dk ≈ p(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi

∫ ∞
0

e
− η
x(k) dη

+p′(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi

1

k

∫ ∞
0

ηe
− η
x(k) dη

≈ p(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi · x(k)

+p′(x(k))x
−k
(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi

1

k
· x2

(k)

≈ x−k(k)

(
1− 1

2!
x2

(k) +
1

3!
x4

(k) − · · ·
)−k

e−x(k)
∑k
i=1 xi

[
p(x(k))x(k) +

1

k
p′(x(k))x

2
(k)

]
.

(4.14)

Therefore, the combination of (4.9), (4.13), and (4.14) gives

(η | xk) ≈
p(x(k))e

− η
x(k) + p′(x(k))

η
k
e
− η
x(k)

p(x(k))x(k) + 1
k
p′(x(k))x2

(k)

I(η > 0)

≈
p(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

(
1

x(k)

e
− η
x(k)

)
+

1
k
x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

(
ηe
− η
x(k)

x2
(k)

)

≈
p(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

· Exp(x(k)) +
1
k
x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

· gamma(2, x(k)).

(4.15)

This means that, as k →∞, the posterior (η | xk) is approximately a mixed

distribution of the two distributions Exp(x(k)) and gamma(2, x(k)).

Transform back to the posterior of θ, (θ | xk), we have
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(θ | xk) ≈
kp(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

1

x(k)

e
− k
x(k)

(θ−x(k))

+
x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

k

x2
(k)

(θ − x(k))e
− k
x(k)

(θ−x(k))
, θ > x(k)

≈
kp(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

1

x(k)

e
− k
x(k)

(θ−x(k))

+
x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

[
k

x2
(k)

θe
− k
x(k)

(θ−x(k)) − k

x(k)

e
− k
x(k)

(θ−x(k))
]
, θ > x(k)

≈
p(x(k))− x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

· k

x(k)

e
− k
x(k)

(θ−x(k))

+
k+1
k
x(k)p

′(x(k))

p(x(k)) + 1
k
p′(x(k))x(k)

· k2

(k + 1)x2
(k)

θe
− k
x(k)

(θ−x(k))
, θ > x(k) (4.16)

We now use the shrinkage argument due to Ghosh (1994) which is described in

details in Datta and Mukerjee (2004) to get Eθ[p(θ | xk)]. The shrinkage argument

consists of three steps as follows.

Step 1. Consider the following prior π̄(θ),

π̄(θ) =


h(θ), if θ ∈ Θ0 =

[
θ0 −

1

m
, θ0 +

1

m

]
1

m
, if θ ∈ Θ \Θ0

,

where h(θ) > 0 is any continuous function and θ0 is a fixed interior point of the

parameter space Θ = (0,∞).

In this step, we want to obtain the following quantity

Eπ̄[p(θ | xk)] =

∫ ∞
x(k)

p(θ | xk)π̄(θ | xk)dθ. (4.17)
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An expression similar to (4.16) gives

(π̄ | xk) ≈
π̄(x(k))− x(k)π̄

′(x(k))

π̄(x(k)) + 1
k
π̄′(x(k))x(k)

· k

x(k)

e
− k
x(k)

(θ−x(k))

+
k+1
k
x(k)π̄

′(x(k))

π̄(x(k)) + 1
k
π̄′(x(k))x(k)

· k2

(k + 1)x2
(k)

θe
− k
x(k)

(θ−x(k))
, θ > x(k).

So if let yk = x(k), then

Eπ̄[p(θ | xk)] =

∫ ∞
yk

[
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· k
yk
e
− k
yk

(θ−yk)

+
k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

· k2

(k + 1)y2
k

θe
− k
yk

(θ−yk)

]

×
[
π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
yk
e
− k
yk

(θ−yk)

+
k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k2

(k + 1)y2
k

θe
− k
yk

(θ−yk)

]
dθ

= J1 + J2 + J3, (4.18)

where

J1 =
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
2

y2
k

·
∫ ∞
yk

e
− 2k
yk

(θ−yk)
dθ

=
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
2

y2
k

· yk
2k

=
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
2yk

, (4.19)
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J2 =
k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

·
k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k4

(k + 1)2y4
k

·
∫ ∞
yk

θ2e
− 2k
yk

(θ−yk)
dθ

=
k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

·
k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k4

(k + 1)2y4
k

· 2k2 + 2k + 1

4k3
y3
k

=
k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

·
k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k(2k2 + 2k + 1)

4(k + 1)2yk
, (4.20)

J3 =

[
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· k
yk
·

k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k2

(k + 1)y2
k

+
π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
yk
·

k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

· k2

(k + 1)y2
k

]∫ ∞
yk

θe
− 2k
yk

(θ−yk)
dθ

=

[
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· k
yk
·

k+1
k
ykπ̄

′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· k2

(k + 1)y2
k

+
π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· k
yk
·

k+1
k
ykp
′(yk)

p(yk) + 1
k
p′(yk)yk

· k2

(k + 1)y2
k

]
· y

2
k(2k + 1)

4k2

=
p(yk)− ykp′(yk)
p(yk) + 1

k
p′(yk)yk

· π̄′(yk)

π̄(yk) + 1
k
π̄′(yk)yk

· 2k + 1

4

+
π̄(yk)− ykπ̄′(yk)
π̄(yk) + 1

k
π̄′(yk)yk

· p′(yk)

p(yk) + 1
k
p′(yk)yk

· 2k + 1

4
. (4.21)

Step 2. Find EθE
π̄[p(θ | xk)].

From Step 1, Eπ̄[p(θ | xk)] is a function of yk, say

Eπ̄[p(θ | xk)] = λ(yk). (4.22)

It is easy to see the c.d.f. of xi is

F (x) =
1− e−θx

1− e−θ2
, 0 < x < θ. (4.23)
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So the p.d.f. of yk is

gk(yk) = k[F (yk)]
k−1f(yk)

= k

(
1− e−θyk
1− e−θ2

)k−1
θ

1− e−θ2
e−θyk

=
kθ

(1− e−θ2)k
(1− e−θyk)k−1e−θyk , 0 < yk < θ.

We now calculate Eθ(yk),

Eθ(yk) =

∫ θ

0

kθ

(1− e−θ2)k
(1− e−θyk)k−1e−θykykdyk.

Change variable to

t = 1− e−θyk ,

with yk = − log(1− t)/θ and dt = θe−θykdyk.

Then,

Eθ(yk) =

∫ 1−e−θ2

0

− kθ

(1− e−θ2)k
tk−1

θ2
log(1− t)dt

= − k

θ(1− e−θ2)k

∫ 1−e−θ2

0

tk−1 log(1− t)dt.

Integrate by parts,
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u = log(1− t)⇒ du = − 1

1− t
dt,

dv = tk−1dt⇒ v =
tk

k
,

we have

Eθ(yk) = − k

θ(1− e−θ2)k
·

[
log(1− t)t

k

k
|1−e−θ

2

0 +
1

k

∫ 1−e−θ2

0

tk

1− t
dt

]

= − k

θ(1− e−θ2)k
·

[
−θ

2

k
(1− e−θ2)k +

1

k

∫ 1−e−θ2

0

tk

1− t
dt

]

= θ − 1

θ(1− e−θ2)k
·
∫ 1−e−θ2

0

tk

1− t
dt. (4.24)

By using the series 1/(1−x) =
∑∞

i=0 x
i and log(1−x) = −

∑∞
j=1 x

j/j, consider

the integral

∫ 1−e−θ2

0

tk

1− t
dt =

∫ 1−e−θ2

0

tk ·
∞∑
i=0

tidt

=
∞∑
i=0

∫ 1−e−θ2

0

tk+idt

=
∞∑
i=0

(1− e−θ2)k+i+1

k + i+ 1

=
∞∑
j=1

(1− e−θ2)j

j
−

k∑
j=1

(1− e−θ2)j

j

= θ2 −
k∑
j=1

(1− e−θ2)j

j
. (4.25)
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When k →∞,

k∑
j=1

(1− e−θ2)j

j
=
∞∑
j=1

(1− e−θ2)j

j
= θ2.

Therefore, from (4.24) and (4.25),

Eθ(yk) = θ as k →∞. (4.26)

Now using the Taylor expansion for the function λ(yk) in (4.22) about θ, we

have

λ(yk) = λ(θ) + (yk − θ)λ′(θ).

Then, from (4.26), as k →∞,

EθE
π̄[p(θ | xk)] = Eθ[λ(yk)]

= λ(θ) + [Eθ(yk)− θ]λ′(θ)

= λ(θ), (4.27)

where, from (4.19), (4.20), and (4.21),
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λ(θ) =
p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

· π̄(θ)− θπ̄′(θ)
π̄(θ) + 1

k
π̄′(θ)θ

· k
2θ

+
k+1
k
θp′(θ)

p(θ) + 1
k
p′(θ)θ

·
k+1
k
θπ̄′(θ)

π̄(θ) + 1
k
π̄′(θ)θ

· k(2k2 + 2k + 1)

4(k + 1)2θ

+
p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

· π̄′(θ)

π̄(θ) + 1
k
π̄′(θ)θ

· 2k + 1

4

+
π̄(θ)− θπ̄′(θ)
π̄(θ) + 1

k
π̄′(θ)θ

· p′(θ)

p(θ) + 1
k
p′(θ)θ

· 2k + 1

4
, θ ∈ Θ. (4.28)

Step 3. Integrate λ(θ) with respect to π̄(θ).

As k →∞, from (4.28), we could rewrite λ(θ) as follows,

λ(θ) =
π̄(θ)− θπ̄′(θ)
π̄(θ) + 1

k
π̄′(θ)θ

[
p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

k

2θ
+

p′(θ)

p(θ) + 1
k
p′(θ)θ

2k + 1

4

]
+

1
k
θπ̄′(θ)

π̄(θ) + 1
k
π̄′(θ)θ

[
2k2 + 2k + 1

4

p′(θ)

p(θ) + 1
k
p′(θ)θ

+
k(2k + 1)

4θ

p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

]
≈ π̄(θ)− θπ̄′(θ)

π̄(θ)
·
k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

+
1
k
θπ̄′(θ)

π̄(θ)

[
2k2 + 2k + 1

4

p′(θ)

p(θ) + 1
k
p′(θ)θ

+
k(2k + 1)

4θ

p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

]
(4.29)

Therefore,

∫ ∞
0

λ(θ)π̄(θ)dθ = K1 +K2, (4.30)

where
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K1 =

∫ ∞
0

[π̄(θ)− θπ̄′(θ)] ·
k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

dθ,

K2 =

∫ ∞
0

π̄′(θ)

[
2k2 + 2k + 1

4k

θp′(θ)

p(θ) + 1
k
p′(θ)θ

+
2k + 1

4

p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

]
dθ.

For K1,

K1 =

∫ ∞
0

k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄(θ)dθ −
∫ ∞

0

k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄′(θ)dθ.

Upon integration by parts, we have

∫ ∞
0

k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄′(θ)dθ =
k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄(θ)|∞0 −
∫ ∞

0

d

dθ

[
k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

]
π̄(θ)dθ.

As m is large enough, π̄(0) = π̄(∞) = 0, then the first term in the previous

equation is zero. So,

∫ ∞
0

k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄′(θ)dθ = −
∫ ∞

0

d

dθ

[
k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

]
π̄(θ)dθ.

This leads to

K1 =

∫ ∞
0

k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄(θ)dθ +

∫ ∞
0

d

dθ

[
k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

]
π̄(θ)dθ.

(4.31)
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For K2, similarly, upon integration by parts, we also have

K2 = −
∫ ∞

0

d

dθ

[
2k2 + 2k + 1

4k

θp′(θ)

p(θ) + 1
k
p′(θ)θ

+
2k + 1

4

p(θ)− θp′(θ)
p(θ) + 1

k
p′(θ)θ

]
π̄(θ)dθ

= −
∫ ∞

0

d

dθ

[
2k+1

4
p(θ) + k+1

4k
θp′(θ)

p(θ) + 1
k
p′(θ)θ

]
π̄(θ)dθ

≈ −
∫ ∞

0

d

dθ

[
k
2
p(θ) + θ

4
p′(θ)

p(θ) + θ
k
p′(θ)

]
π̄(θ)dθ. (4.32)

The combination of (4.30), (4.31), and (4.32) yields

∫ ∞
0

λ(θ)π̄(θ)dθ =

∫ ∞
0

k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

π̄(θ)dθ. (4.33)

As m → ∞, π̄(θ) converges weakly to the degenerate prior at the true θ0.

Therefore, from (4.33), we get

Eθ[p(θ | xk)] =
k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

. (4.34)

Now, according to (4.6), in order to maximize the divergence R−1
k (p) we need

to maximize the following integral

∫
Θ

Eθ[p(θ | xk)]dθ =

∫
Θ

k
2θ
p(θ) + 1

4
p′(θ)

p(θ) + θ
k
p′(θ)

dθ

=

∫
Θ

[
k

2θ
− 1

4
· p′(θ)

p(θ) + θ
k
p′(θ)

]
dθ.

Writing the integrand as a function of p(θ) and p′(θ), s(p(θ), p′(θ)), the solution is

found by solving the Euler-Lagrange equation (Hewitt and Stromberg, 1969),
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∂s

∂p
− d

dθ

(
∂s

∂p′

)
= 0,

or equivalently,

1

4
· p′(θ)[
p(θ) + θ

k
p′(θ)

]2 +
1

4
· d
dθ

{
p(θ)[

p(θ) + θ
k
p′(θ)

]2
}

= 0,

or,

p′(θ)[
p(θ) + θ

k
p′(θ)

]2 +
p′(θ)[p(θ) + θ

k
p′(θ)]2 − 2p(θ)[p(θ) + θ

k
p′(θ)][p′(θ) + p′(θ)

k
+ θ

k
p′′(θ)][

p(θ) + θ
k
p′(θ)

]4 = 0.

This leads to

p′(θ)

[
p(θ) +

θ

k
p′(θ)

]
− p(θ)

[
k + 1

k
p′(θ) +

θ

k
p′′(θ)

]
= 0,

or,

p(θ)p′(θ) + θp(θ)p′′(θ)− θp′2(θ) = 0.

Divided both sides by p′2(θ), we get

p(θ)

p′(θ)
− θ · p

′2(θ)− p(θ)p′′(θ)
p′2(θ)

= 0,
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or,

p(θ)

p′(θ)
− θ ·

[
p(θ)

p′(θ)

]′
= 0.

Let y(θ) = p(θ)/p′(θ). Then,

y′(θ)− 1

θ
y(θ) = 0

⇔ 1

θ
y′(θ)− 1

θ2
y(θ) = 0

⇔
[

1

θ
y(θ)

]′
= 0.

So,

1

θ
y(θ) =

1

c

⇔ p′(θ)

p(θ)
=

c

θ

⇔ [log p(θ)]′ =
c

θ
, c ∈ IR.

That is

log p(θ) = c log(c′θ)⇔ p(θ) = c′c · θc, c′, c ∈ IR.

Accordingly, the reference prior in the given example is

π(θ) ∝ θc, c ∈ IR.
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Now, one natural question arising is that how to choose c, which values of c are

better? In order to answer this question, we need to calculate the corresponding

Bayes risk and choose c such that it minimizes the Bayes risk. First, we find the

Bayes estimator, δπ(xk), under the squared error loss as follows. From (4.15), we

have

E(η | xk) =
π(x(k))

π(x(k)) + 1
k
π′(x(k))x(k)

· (x(k)) +
1
k
x(k)π

′(x(k))

π(x(k)) + 1
k
π′(x(k))x(k)

· (2x(k))

=
xc(k)

xc(k) + 1
k
cxc−1

(k) x(k)

· (x(k)) +

1
k
x(k)cx

c−1
(k)

xc(k) + 1
k
cxc−1

(k) x(k)

· (2x(k))

=
1 + 2c

k

1 + c
k

x(k). (4.35)

So, the Bayes estimator δπ(xk) is

δπ(xk) = E(θ | xk)

= x(k) +
1

k
E(η | xk)

= x(k) +
1 + 2c

k

1 + c
k

x(k)

=
k2 + (c+ 1)k + 2c

k2 + ck
x(k). (4.36)

Then, as k →∞, we have

δπ(xk) = x(k), (4.37)

which does not depend on c. Therefore, the corresponding Bayes risk also does

not depend on c. In other words, there is no better c to answer the above question,
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we could choose any arbitrary c in IR to get the reference prior for this example

when β = −1.

Next, another question is that what is the reference prior for this example

when β = 0, the case of Kullback-Leibler divergence? For this situation, we know

that the reference prior is given by

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
,

fk(θ) = exp

{∫
p(x(k) | θ) log[π∗(θ | x(k))]dx(k)

}
.

However, analytical derivation of reference prior for this situation is hard to

obtain. Instead, we find the reference prior numerically by using the algorithm

given in Berger, Bernardo, and Sun (2009) as follows.

Step 1. Choose a moderate value for k;

Choose an arbitrary positive function π∗(θ), say π∗(θ) = 1;

Choose the number of m of samples to be simulated.

Step 2. For any given θ value, repeat, for j = 1, · · · ,m:

Simulate a random sample {x1j, · · · , xkj} of size k from p(x | θ);

Compute numerically the integral cj =
∫

Θ

∏k
i=1 p(xij | θ)π∗(θ)dθ;

Evaluate rj(θ) = log
[∏k

i=1 p(xij | θ)π∗(θ)/cj
]
.

Step 3. Compute π(θ) = exp
[
m−1

∑m
j=1 rj(θ)

]
and store the pair {θ, π(θ)}.



Reference prior under the Chi-squared divergence 111

Step 4. Repeat Step 2 and Step 3 for all θ values for which the pair {θ, π(θ)} is

required.

It is worth to say a little bit about how we can generate a random variable

from the distribution p(x | θ) in Step 2 . We know that if u ∼ uniform(0, 1), then

x = F−1(u) ∼ p(x | θ) as desired, where, from (4.23),

F−1(u) = −1

θ
log[1− (1− e−θ2)u].

The numerical computation was done for the problem by the following R code

and the figure 4.1 presents the reference prior numerically.

#############################

### R code for figure 4.1 ###

#############################

k = 500

m = 1000

theta = seq(0.05,10,length=100)

c = rep(NA,m)

r = rep(NA,m)

for (l in 1:length(theta))

{

G = function(y){

-1/theta[l]*log(1-(1-exp(-theta[l]^2))*y)
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}

for (j in 1:m){

x = rep(NA,k)

for (i in 1:k){

u = runif(1)

x[i] = G(u)

}

c[j] = integrate(function(t) t^k/(1-exp(-t^2))^k*exp(-t*sum(x)), max(x),Inf)

$value

r[j] = log(theta[l]^k/(1-exp(-theta[l]^2))^k*exp(-theta[l]*sum(x))/c[j])

}

ref[l] = exp(sum(r)/m)

}

plot(theta,ref,type="l",xlab=expression(theta),ylab=expression(pi(theta)))
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Figure 4.1: Numerical reference prior for the example 4.2 when β = 0, the
Kullback-Leibler divergence



Chapter 5

Summary and Comments

In this dissertation, we revisit the problem of using reference analysis to derive

objective priors. We generalize the results from Berger, Bernardo and Sun (2009),

Ghosh, Mergel and Liu (2011), and make some new contributions based on the

use of a very general class of divergence measures, known as β−divergence mea-

sures (Amari 1982, Cressie and Read 1984). This class of β−divergence measures

includes the Kullback-Leibler divergence, the Hellinger divergence, and the Chi-

squared divergence.

We introduce precise the definition of the reference prior with two properties,

permissible and maximizing missing information properties.

We show how an explicit expression for the reference prior can be obtained

under very weak regularity conditions in the case 0 < |β| < 1 and it can be used

to derive new reference prior both analytically and numerically. It is shown that

for a model described by density p(x(k) | θ), the formula for the reference prior in

114
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this case, π(θ), is

π(θ) = lim
k→∞

fk(θ)

fk(θ0)
,

fk(θ) =

{∫
p(x(k) | θ)[π∗(θ | x(k))]−βdx(k)

}−1/β

,

where θ0 is an interior point of the parameter space Θ, x(k) = {x1, · · · ,xk} stands

for k replications of x, and π∗(θ | x(k)) is the posterior distribution corresponding

to some fixed arbitrary prior π∗(θ). This formula holds for any type of continuous

parameter models, regardless of the asymptotic nature of the posterior. Prior

under the Kullback-Leibler divergence is a special case in a limiting sense as β → 0.

In the final part, under the Chi-squared divergence, the boundary case when

β = −1, we find that, for the non-regular models, there is no general formula for

the reference priors. For some models there exist reference priors, for some other

models there do not.

For each β such that 0 ≤ |β| < 1 we have the corresponding divergence

measure and from this divergence measure we could construct a new reference

prior, enlarging the class of objective priors. These reference priors provide a new

insight about the concept of objective priors, low information priors. The study

of these priors will help us to see if the inferences based on these priors are robust

or not, at least with respect to the reference priors.

Next, one natural arising question: how to choose β? which β will be the best

in this β-divergence class? One way to answer this question is based on the Bayes
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risks, we will choose β such that the corresponding Bayes risk is smallest. The

routine will be as follows. First, we find the Bayes estimator for θ, δπ(xk) = E(θ |

xk), under the squared error loss. Then, we find the risk R(θ, δπ(xk)) = E(δπ(xk)−

θ)2. Next, calculate the Bayes risk r(π, δπ(xk)) =
∫

Θ
R(θ, δπ(xk))π(θ)dθ. The

Bayes risk r(π, δπ(xk)) is a function of β and hence we could choose β such that the

Bayes risk is smallest. However, for the complex models, it seems to be extremely

difficult to calculate the Bayes risk. So we could use the algorithm referred in

section 3 to find the numerical reference priors depending on β and see how they

are different. For example, consider again the uniform distribution on (θ, θ2) in

the Example 3.4 where now 0 ≤ |β| < 1. By using the similar R code as we did in

this example for β = 0.5, 0.9, 0.2,−0.5, we have the figure 5.1, which presents the

numerical reference priors for these cases.

#############################

### R code for figure 5.1 ###

#############################

beta = c(0.5,0.9,0.2,-0.5)

theta = seq(1.05,10,length=180)

c = rep(NA,m)

r = rep(NA,m)

ref = rep(NA,length(theta))

for (l in 1:length(theta))

{

G = function(y){
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theta[l]+(theta[l]^2-theta[l])*y

}

for (j in 1:m){

x = rep(NA,k)

for (i in 1:k){

u = runif(1)

x[i] = G(u)

}

c[j] = integrate(function(t) 1/(t^2-t)^k, sqrt(max(x)),min(x))$value

r[j] = (1/(theta[l]^2-theta[l])^k/c[j])^(-beta)

}

ref[l] = (sum(r)/m)^(-1/beta)

}

ref = ref/ref[theta==2]

From this figure we can see that the numerical reference priors are clearly

almost perfectly the same. Therefore, we could have a guess that there is no

better β for this example. We could choose any β such that 0 ≤ |β| < 1 to do

inferences and these inferences are robust. However, for this example, we have

derived the closed form for the reference prior as follows,

π(θ) ∝ 2θ − 1

θ2 − θ

[
2θ

2θ − (2θ − 1)β
+

2θ

(β + 2)Γ(−β)(2θ − 1)2

]− 1
β

. (5.1)
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Figure 5.1: Numerical reference priors for the uniform model on (θ, θ2) when
β = 0.5, 0.9, 0.2,−0.5

The corresponding posterior is

π(θ | tk) ∝
2θ − 1

(θ2 − θ)k+1

[
2θ

2θ − (2θ − 1)β
+

2θ

(β + 2)Γ(−β)(2θ − 1)2

]− 1
β

,(5.2)

where
√
t2 < θ < t1. Then, the Bayes estimator for θ is

δπ(tk) = E(θ | tk)

=

∫ t1√
t2

2θ−1
(θ−1)(θ2−θ)k

[
2θ

2θ−(2θ−1)β
+ 2θ

(β+2)Γ(−β)(2θ−1)2

]− 1
β
dθ∫ t1√

t2

2θ−1
(θ2−θ)k+1

[
2θ

2θ−(2θ−1)β
+ 2θ

(β+2)Γ(−β)(2θ−1)2

]− 1
β
dθ

. (5.3)

Obviously, it is extremely difficult to calculate these integrals. So, we will calculate

the Bayes risk numerically by the following R code.
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################################

### R code for the figure 5.2###

################################

beta = seq(-0.95,0.95,0.006)

k = 500

theta = seq(1.05,10,length=359)

bay.risk = rep(NA,length(beta))

for (j in 1:length(beta))

{

bay.est = rep(NA,length(theta))

for (l in 1:length(theta))

{

G = function(y){

theta[l]+(theta[l]^2-theta[l])*y

}

x = rep(NA,k)

for (i in 1:k){

u = runif(1)

x[i] = G(u)

}

bay.est[l] = integrate(function(t) (2*t-1)/(t-1)/(t^2-t)^k*(2*t/

(2*t-(2*t-1)*beta[j])+ 2*t/((beta[j]+2)*(gamma(1-beta[j])/

(-beta[j]))*(2*t-1)^2))^(-1/beta[j]), sqrt(max(x)),min(x))$value/
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integrate(function(t) (2*t-1)/(t^2-t)^(k+1)*(2*t/(2*t-(2*t-1)*beta[j])+

2*t/((beta[j]+2)*(gamma(1-beta[j])/(-beta[j]))*(2*t-1)^2))^(-1/beta[j]),

sqrt(max(x)),min(x))$value

}

prior = function(t){

(2*t-1)/(t^2-t)*(2*t/(2*t-(2*t-1)*beta[j])+ 2*t/((beta[j]+2)*

(gamma(1-beta[j])/(-beta[j]))*(2*t-1)^2))^(-1/beta[j])

}

ref = prior(theta)

ref = ref/(sum(ref*0.025))

risk = function(t){

var(bay.est)+(mean(bay.est)-t)^2

}

Risk = risk(theta)

bay.risk[j] = sum(ref*(Risk))*0.025

}

plot(beta,bay.risk,type="l",xlab=expression(beta),ylab= "bayes risk")

beta[which.min(bay.risk)]

The figure 5.2 shows the plot of the Bayes risk versus β and we see that the

minimum of the Bayes risk will be obtained when β is around 0.5. This result is

different from the previous guess (there is no better β for this example). Actually,

the range of the Bayes risk is rather small, (20.6, 21.6). Now, we consider another
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Figure 5.2: Numerical Bayes risk for the uniform model on (θ, θ2)

example where the model as follows,

p(x | θ) =
2x

θ4 − θ2
, (5.4)

where θ < x < θ2, θ > 1. This is a special case of the example 3.5 with g(x) =

x, a1(θ) = θ, and a2(θ) = θ2. Then, from (3.88), the closed form for the reference

prior in this example is

π(θ) ∝ 2θ2 − 1

θ3 − θ

[
2θ2

2θ2 − (2θ2 − 1)β
+

2θ2

(β + 2)Γ(−β)(2θ2 − 1)2

]− 1
β

. (5.5)

Similarly as in the previous example, the plot of the Bayes risk versus β is given

in the figure 5.3 by using the following R code.
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################################

### R code for the figure 5.3###

################################

beta = seq(-0.95,0.95,0.006)

k = 500

theta = seq(1.05,3,length=79)

bay.risk = rep(NA,length(beta))

for (j in 1:length(beta))

{

bay.est = rep(NA,length(theta))

for (l in 1:length(theta))

{

G = function(y){

theta[l]*sqrt((theta[l]^2-1)*y+1)

}

x = rep(NA,k)

for (i in 1:k){

u = runif(1)

x[i] = G(u)

}

bay.est[l] = integrate(function(t) (2*t^2-1)/(t^2-1)/(t^4-t^2)^k*(2*t^2/

(2*t^2-(2*t^2-1)*beta[j])+2*t^2/((beta[j]+2)*(gamma(1-beta[j])/(-beta[j]))*

(2*t^2-1)^2))^(-1/beta[j]), sqrt(max(x)),min(x))$value/
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integrate(function(t) (2*t^2-1)/(t^3-t)/(t^4-t^2)^k*(2*t^2/

(2*t^2-(2*t^2-1)*beta[j])+2*t^2/((beta[j]+2)*(gamma(1-beta[j])/(-beta[j]))*

(2*t^2-1)^2))^(-1/beta[j]), sqrt(max(x)),min(x))$value

}

prior = function(t){

(2*t^2-1)/(t^3-t)*(2*t^2/(2*t^2-(2*t^2-1)*beta[j])+ 2*t^2/

((beta[j]+2)*(gamma(1-beta[j])/(-beta[j]))*(2*t^2-1)^2))^(-1/beta[j])

}

ref = prior(theta)

ref = ref/(sum(ref*0.025))

risk = function(t){

var(bay.est)+(mean(bay.est)-t)^2

}

Risk = risk(theta)

bay.risk[j] = sum(ref*(Risk))*0.025

}

plot(beta,bay.risk,type="l",xlab=expression(beta),ylab= "bayes risk")

beta[which.min(bay.risk)]

Once again, we have the Bayes risk is minimum when β is around 0.5 and the

range for the Bayes risk is rather small (0.87, 0.92).

The main scope of this dissertation is restricted to single parameter models.
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Figure 5.3: Numerical Bayes risk

It would be very useful to be able to generalize the results under this general diver-

gence measures class in the presence of nuisance parameters. The permissibility

and the MMI property could be generalized to the multi-parameter case. However,

the main purpose here is to find the explicit representation for the reference prior

as we did in the Theorem 3.1. Unfortunately, as mentioned in Berger, Bernardo,

and Sun (2009) for the Kullback-Leibler divergence when β = 0, it seems that any

generalizations require expressions involving limits over approximating compact

sequences, the feature we want to avoid when finding reference priors.

Finally, there is an interested note that when β = 0, the reference prior

corresponds to the maximin prior. The maximin prior story was outlined by

Clarke (2013) as follows. Under the maximin standpoint we want to find the

maximin prior πMn(θ) achieving

arg max
π

[
min
Q

∫
π(θ)∆β(Q,L(θ))dθ

]
, (5.6)
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where L(θ) is the likelihood function and ∆β(Q,L(θ)) is the β-distance between

Q(x) and L(θ),

∆β(Q,L(θ)) =
1

β(1− β)

[
1−

∫
Qβ(x)L1−β(θ)dx

]
. (5.7)

Under the Kullback-Leibler divergence (β = 0),

min
Q

∫
π(θ)∆β(Q,L(θ))dθ =

∫
π(θ)∆β(m,L(θ))dθ, (5.8)

or the marginal density m(x) is the Bayes estimator of the likelihood L(θ). Then,

from the relation L(θ)π(θ) = π(θ | x)m(x), we have

∫
π(θ)∆β(m,L(θ))dθ

=

∫
π(θ)

1

β(1− β)

[
1−

∫
mβ(x)L1−β(θ)dx

]
dθ

=
1

β(1− β)

{
1−

∫
π(θ)

[∫
mβ(x)L1−β(θ)dx

]
dθ

}
=

1

β(1− β)

{
1−

∫ [ ∫
πβ(θ)π1−β(θ | x)dθ

]
m(x)dx

}
= Rβ(π). (5.9)

Therefore, from (5.6), (5.8), and (5.9), we could see that if m(x) is the Bayes esti-

mator of the likelihood L(θ), then the maximin prior corresponds to the reference

prior. However, when β 6= 0 the Bayes estimator of the likelihood L(θ) is no longer

m(x) and the reference prior may be different from the maximin prior. In this

situation, we want to see if this difference is small asymptotically or not and that

will be what we deal with in the future.
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