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ABSTRACT

Notions of time and frequency are important constituents of most scientific in-

quiries, providing complimentary information. In an era of “big data,” methodol-

ogy for analyzing functional and/or image data is increasingly important. This dis-

sertation develops methodology at the cross-section of time-frequency analysis and

functional data and consists of three distinct, but related, contributions. First, we

propose nonparametric methodology for nonlinear multivariate time-frequency func-

tional data. In particular, we consider polynomial nonlinear functional data models

that accommodate higher dimensional functional covariates, including time-frequency

images, along with their interactions. The necessary dimension reduction for model

estimation proceeds through carefully chosen basis expansions (empirical orthogonal

functions) and feature-extraction stochastic search variable selection (SSVS). Prop-

erties of the methodology are examined through an extensive simulation study. Fi-

nally, we illustrate the approach through an application that attempts to charac-

terize spawning behavior of shovelnose sturgeon in terms of high-density depth and

temperature profiles. The second contribution proposes model-based time-frequency

estimation through Bayesian lattice filter time-varying autoregressive models. In this

context, we take a fully Bayesian approach and allow both the autoregressive coeffi-

cients and innovation variance to vary over time. Importantly, our model is estimated

within the partial autocorrelation domain (i.e., through the partial autocorrelation

coefficients). Additionally, all of the full conditional distributions required for our

algorithm are of standard form and thus can be easily implemented using a Gibbs

sampler. Further, as a by-product of the lattice filter recursions, our approach avoids

xiv



undesirable matrix inversions. As such, estimation is computationally efficient and

stable. We conduct a comprehensive simulation study that compares our method with

other competing methods and find that, in most cases, our approach performs supe-

rior in terms of average squared error between the estimated and true time-varying

spectral density. Lastly, we demonstrate our methodology through several real case

studies. The final project of the dissertation develops models that accommodate spa-

tially dependent functional responses with spatially dependent image predictors. The

methodology is motivated by a soil science study that seeks to model spatially cor-

related water content functionals as a function of electro-conductivity images. The

water content curves are measured at different locations within the study field and at

various depths, whereas the electro-conductivity images are spatially referenced im-

ages of wavelength by depth. Estimation is facilitated by taking a Bayesian approach,

where the necessary dimension reduction for model implementation proceeds using

basis function expansions along with SSVS. Finally, the methodology is illustrated

through an application to our motivating data.

xv



Chapter 1

Introduction

1.1 Introduction

Time-frequency analysis has become a fundamental tool in the analysis of nonstation-

ary signals. Due to the lack of applicability surrounding the global Fourier transform

for such processes, there has been significant research on time-frequency methodol-

ogy. In the time-frequency domain, crucial aspects of the underlying process of inter-

est often become apparent that would otherwise go undetected (Kestin et al., 1998;

Cranstoun et al., 2002; Ansari-Asl et al., 2005; Holan et al., 2010). For example, Holan

et al. (2010) consider time-frequency analysis in the context of animal communication

signals, whereas Ansari-Asl et al. (2005) investigate electroencephalograms (EEGs) in

the time-frequency domain. In contrast, Yang et al. (2013) (cf., Chapter 2) considers

time-frequency analysis to characterize spawning behavior of shovelnose sturgeon on

the Lower Missouri River. Importantly, analyses of these types may hold the keys to
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unraveling some of the mysteries of animal behavior and phenotypic selection, as well

as unlocking the secrets of brain function. Nevertheless, often, time-frequency analy-

ses are implemented in a “stand-alone” fashion with no quantification of uncertainty,

thus hindering inferential capacity.

Additionally, in many contexts, multiple signals and their interactions are neces-

sary for addressing core scientific questions. Furthermore, these time-frequency pre-

dictors may relate to the response nonlinearly. As a result, development of general

methodology for time frequency functional data is timely and relevant. Critically,

methodology for modeling complex processes using time-frequency functional pre-

dictors is needed that accurately quantifies uncertainty, accommodates multivariate

time-frequency predictors and allows for nonlinear behavior. Devoid of such method-

ology, substantive signal aspects may go undiscovered during many scientific inves-

tigations. For example, in the time-frequency domain, Holan et al. (2010) discover

several features of Enchenopa treehopper communication signals that are important

indicators of mating success (such as increased energy in the broadband clicks at the

start of the signal); these features were overlooked in previous time-domain analyses.

Similarly, Holan et al. (2012) utilize time-frequency functional models in the context

of macroeconomics/finance to reveal important features of daily NASDAQ returns

corresponding to economic recessions.

Recently, attention has been directed toward modeling data having image pre-

dictors (see Reiss and Ogden, 2010; Morris et al., 2011; Holan et al., 2010, and the

references therein). In contrast, relatively few research efforts have been devoted to

functional models with time-frequency functional predictors. Two notable exceptions

are given by Qin et al. (2009) and Holan et al. (2010). In the case of the former, the

2



authors develop a smoothing spline ANOVA model for the time-frequency coefficients.

Estimation is carried out using a two-stage approach and uncertainty is determined

through an asymptotic equivalence that yields a posterior Bayesian confidence inter-

val (Wahba, 1983). To implement this approach it is also necessary to choose block

sizes for calculating local periodograms. Holan et al. (2010) presents the first hier-

archical functional generalized linear model with time-frequency predictors. Specifi-

cally, Holan et al. (2010) represents the first instance of treating the time-frequency

representation (spectrogram) as a spatial image with the goal of incorporating the

time-frequency image as a regressor in a predictive model. Importantly, their method-

ology allows the practitioner to draw statistical inference in a rigorous manner based

on a dimension-reduced posterior mean difference-spectrogram (i.e., posterior mean

of dimension reduced time-frequency representation of successful mating minus that

of the unsuccessful mating), along with measures of uncertainty.

Many other efforts have been made to analyze time-frequency behavior (see, for ex-

ample, Ombao et al., 2002, 2005; Wolfe et al., 2004); however, these methods typically

analyze the nonstationary time series directly rather than using the time-frequency

representation as a predictor to describe a more complicated process and often con-

sider asymptotic arguments to assess uncertainty. Consequently, methodology is lack-

ing for nonlinear time-frequency functional data as well as for spatially-dependent

time-frequency functional data. Thus, given the current state of time-frequency anal-

ysis and functional data modeling, there is a definite need for the development of

flexible methodology for time-frequency functional data that can extract salient data

features while fully accounting for uncertainty.
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1.2 Time-Frequency Transformation

Estimation of the time-frequency surface of a signal can be achieved using various

approaches. The most common approach is to use the short-time Fourier transform

(STFT) to form a spectrogram or evolutionary spectrum (see Gröchenig, 2001; Op-

penheim and Schafer, 2009, and the references therein). Specifically, STFT segments

the signal and then computes the local Fourier transform to produce a local time-

frequency representation that characterizes local signal properties. This segmentation

results in artificially large Fourier coefficients at high frequencies and therefore some

form of smoothing (windowing) is often introduced (see Feichtinger and Strohmer,

1998, for further discussion). Several popular windows have been proposed for this

purpose (e.g., Hamming, Hanning, Bartlett and Kaiser windows). Consequently, in

practice, care must be taken to assess the sensitivity to the choice of window. An-

other approach uses smooth localized complex exponentials (SLEX) functions (Ombao

et al., 2002). The SLEX functions are simultaneously orthogonal and localized in time

and frequency by applying a projection operator (Ombao et al., 2002). Similar to the

STFT, this method requires segmentation and subsequent smoothing. Automatic

methods of SLEX have been proposed (Cranstoun et al., 2002), but may be difficult

to integrate into a fully Bayesian framework. Alternatively, one can use continuous

wavelet transforms (Mallat, 2008; Percival and Walden, 2000; Vidakovic, 1999) and

Gabor frames (Feichtinger and Strohmer, 1998; Fitzgerald et al., 2000; Wolfe et al.,

2004) to directly produce a time-frequency representation. These approaches use the

theory of frames and overcomplete dictionaries, introducing redundancy into the basis

functions. As a result, the time-frequency representation may simultaneously provide

better time and frequency resolution as a consequence of the Balian-Low Theorem
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(Gröchenig, 2001).

Instead of using nonparametric methods, one can alternatively employ a model-

based approach. In particular, the time-frequency representation of a nonstationary

signal can be obtained from the coefficients of a time-varying autoregressive model

(TVAR) along with the innovation variance (Kitagawa, 2009; Prado and West, 2010;

Priestley, 1981; Shumway and Stoffer, 2006). In contrast to nonparametric methods,

the model-based approach can be easily integrated into a fully Bayesian framework.

1.3 Dimension Reduction

One can consider the time-frequency representation as a spatial map, where the time

and frequency axis correspond to the “latitude” and “longitude”, respectively, and

the value of each pixel is the observed value on a regular lattice. Consequently, the

time-frequency representation includes pixels that are spatially dependent and the

dimension is extremely high. For example, Figure 1.1 contains the spectrogram of

a treehopper mating signal, with 87 time points and 129 frequencies, corresponding

to 11,223 possible time-frequency pixels. Clearly, if one were considering individual

pixels as covariates, there would be too many covariates to consider even with model

selection approaches.

To reduce the dimension of time-frequency representation, one could reduce the

number of time points of the signal in the time domain (e.g., through decimation)

and/or consider fewer frequencies in the time-frequency domain. However, because

the pixels in the time-frequency representation are spatially dependent, such an ap-

proach could possibly cause a loss of important information. Alternatively, to suf-
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ficiently reduce the dimensionality, one could use basis functions to decompose the

spectrogram (e.g., splines, wavelets, empirical orthogonal functions (EOFs), among

others). For example, one can vectorize the spectrogram and use a Karhunen-Loéve

decomposition (Wikle and Cressie, 1999; Jolliffe, 2010) to find EOFs and then use

the EOFs to produce expansion coefficients in low-dimensional feature space.

As mentioned above, the time-frequency decomposition of a signal represented as a

high-dimensional spectrogram can be projected into a lower dimensional feature space.

The lower dimensional space is important for identifying significant components of

the underlying complex process and for reprojecting these components back into the

time-frequency and/or time domain. Within the lower dimensional space variable

selection methods such as stochastic search variable selection (SSVS) are used to

facilitate such an identification. For example, Holan et al. (2010) use a stochastic

search variable selection (SSVS) procedure (George and McCulloch, 1993, 1997) to

identify important EOFs in terms of predicting mating success in Enchenopa tree

hoppers.

1.4 Overview

This dissertation is organized as follows. Chapter 2 introduces a class of nonlinear

multivariate time-frequency functional models using a fully Bayesian approach. This

methodology is motivated by an application to fisheries biology that seeks to charac-

terize spawning behavior of shovelnose sturgeon in terms of high-density depth and

temperature profiles. We conduct an extensive simulation study to examine the prop-

erties of model and then we apply the approach to the motivating ecological data.
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Chapter 3 introduces Bayesian lattice filter time-varying autoregressive models to pro-

vide model-based time-frequency estimation. The proposed models allow both the au-

toregressive coefficients and innovation variance to vary over time in order to capture

the complex dependence structure of nonstationary signals. Importantly, estimation

is performed in the partial autocorrelation domain. In this domain, our approach

avoids calculation of high-dimensional inverse matrices. A comprehensive simulation

study demonstrates that, in most cases, our approach has superior performance in

terms of estimating the time-frequency representation of various nonstationary signals

relative to existing state-of-the-art methodologies. We demonstrate our methodology

through several real-world examples. Chapter 4 develops models that accommodate

spatially dependent functional responses with spatially dependent image predictors.

The methodology is motivated by a soil science study that seeks to model spatially

correlated water content functionals as a function of electro-conductivity images. The

water conductivity curves are measured at different locations within the study field

and at various depths, whereas the electro-conductivity images are spatially referenced

images of wavelength by depth. Estimation is facilitated taking a Bayesian approach,

where the necessary dimension reduction for model implementation proceeds using

basis function expansions along with SSVS. Finally, the methodology is illustrated

through an application to our motivating data. The dissertation is concluded with a

brief discussion in Chapter 5.
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Figure 1.1: Representative treehopper mating signal in waveform (top) and an associ-
ated time-frequency representation using the short-time Fourier transform (bottom);
note that the red colored portions of the image are associated with higher energy
portions of the time-frequency domain
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Chapter 2

Ecological Prediction with
Nonlinear Multivariate
Time-Frequency Functional Data
Models

2.1 Introduction

The study of ecological processes has recently benefited from new data sources such

as remotely sensed satellite observations, long-term networks, telemetry, and data

storage tags. Such data sources typically bring vast amounts of data to bear on the

problem of interest, which in turn, requires the development of new methodology

to accommodate such high-dimensional data. We are interested in high-frequency

time series data and its use as functional covariates in predictive models for general

scientific processes, especially ecological. In particular, we consider the case where

such data are potentially nonstationary in time and where it is unknown a priori what
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features of the series are important to the ecological process. We are specifically

interested in the case where we may have multiple such time series and it is their

functional interaction that is fundamentally important.

In addition to the extensive development of time series methodology within the

time domain, time-frequency analysis has become a fundamental component of many

scientific inquiries. Crucial aspects of the underlying process of interest often be-

come apparent in the time-frequency domain that would otherwise go undetected

(Ansari-Asl et al., 2005; Cranstoun et al., 2002; Kestin et al., 1998; Holan et al.,

2010). For example, salient features found in animal communication signals and elec-

troencephalograms (EEGs) arise naturally in the time-frequency domain (Ansari-Asl

et al., 2005). These features hold the keys to unraveling some of the mysteries of

animal behavior and phenotypic selection, as well as unlocking the secrets of brain

function.

Time-frequency analyses are often implemented in a “stand-alone” fashion with

no quantification of uncertainty, thus hindering inferential capacity. In many con-

texts, multiple signals and their interactions are necessary for addressing core scien-

tific questions. These time-frequency predictors may relate to the response nonlin-

early. Therefore, methodology for modeling complex processes using time-frequency

functional predictors is needed that accurately quantifies uncertainty, accommodates

multivariate time-frequency predictors and allows for nonlinear behavior. Substan-

tive signal aspects may go undiscovered during many scientific investigations, if such

methodology is not available. For example, in the time-frequency domain Holan et al.

(2010) discover several features of Enchenopa treehopper communication signal found

to be important indicators of mating success (such as increased energy in the broad-
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band clicks at the start of the signal); these features were overlooked in previous

time-domain analyses. Similarly, Holan et al. (2012) utilize time-frequency functional

models in the context of macroeconomics/finance to reveal important features of daily

NASDAQ returns corresponding to economic recessions.

Attention has recently been directed toward modeling data having image predic-

tors (e.g., two-dimensional functional data) (see Reiss and Ogden, 2010; Morris et al.,

2011; Holan et al., 2010, and the references therein), though relatively few research

efforts have been devoted to functional models with time-frequency functional predic-

tors. Two notable exceptions are given by Qin et al. (2009) and Holan et al. (2010). In

the case of the former, the authors develop a smoothing spline ANOVA model for the

time-frequency coefficients. Estimation is carried out using a two-stage approach and

uncertainty is determined through an asymptotic equivalence that yields a posterior

Bayesian confidence interval (Wahba, 1983) (i.e., confidence intervals based on the

posterior covariance function of the estimates). To implement this approach it is also

necessary to choose block sizes for calculating local periodograms Holan et al. (2010)

presents the first hierarchical functional generalized linear model with time-frequency

predictors. Specifically, Holan et al. (2010) represents the first instance of treating

the time-frequency representation (spectrogram) as a spatial image with the goal of

incorporating the time-frequency image as a regressor in a predictive model. Their

methodology allows the practitioner to draw statistical inference in a rigorous manner

based on a dimension-reduced posterior mean difference-spectrogram (i.e., posterior

mean of dimension reduced time-frequency representation of successful maters minus

that of the unsuccessful maters), along with measures of uncertainty.

Recently, Martinez et al. (2013) studied chirp syllables of free-tailed bats using
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Bayesian functional mixed models. In contrast to Holan et al. (2010), the analysis

of Martinez et al. (2013) treats the spectrogram image (i.e., spectrograms of the

chirps) as the response. Their method provides an excellent modeling approach that

is complementary to Holan et al. (2010) and allows for modeling between-spectrogram

correlation.

Many other efforts have been made to analyze time-frequency behavior (see, for

example, Ombao et al., 2002, 2005; Wolfe et al., 2004); however, these methods

typically analyze the nonstationary time series directly rather than using the time-

frequency representation as a predictor to describe a more complicated process and

often consider asymptotic arguments to assess uncertainty. Consequently, methodol-

ogy is lacking for multivariate and/or nonlinear time-frequency functional data and

there is a definite need for the development of flexible methodology for time-frequency

functional data that can extract salient data features while fully accounting for un-

certainty.

The approach proposed here extends the methodology of Holan et al. (2010), in

a fully Bayesian context, to the case of multivariate and/or nonlinear time-frequency

predictors. Central to this proposed framework is the probabilistically consistent hi-

erarchical approach to incorporating multivariate time-frequency image predictors. It

is reasonable to consider a time-frequency representation of a nonstationary signal as

an image if one acknowledges that “nearby” time-frequency atoms are likely to be de-

pendent and can thus be thought of analogously to pixels in an image. Heuristically,

there is an extra data stage in our hierarchical model, the so-called “signal-data”

stage (see Sections 2.3.2 for details). In the signal-data stage of the hierarchy the sig-

nal is transformed from the time-domain to the time-frequency domain by projection
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onto various pre-specified basis functions (e.g., Fourier or wavelet transforms, etc.)

or frames (e.g., using overcomplete dictionaries such as Gabor or continuous wavelet

transforms, etc.). The time-frequency image is then incorporated as a predictor in

lower stages of the model hierarchy, after suitable dimension reduction (see Section

2.3.3 for details). At these stages, the time-frequency “image” predictor experiences

subsequent dimension reduction using feature-extraction stochastic search variable

selection (SSVS; George and McCulloch, 1993, 1997). Fundamental to our approach

is the coherent hierarchical formulation that accounts for the uncertainty induced by

the lower-dimensional transformation in the signal-data stage of the model and avoids

potential bias typically encountered from incorporating two-stage estimation proce-

dures. Furthermore, our methodology accounts for potential nonlinear interactions

between time-frequency and/or functional covariates.

This chapter is organized as follows. Section 2.2 describes the motivating eco-

logical problem of interest. This is followed by a description of the methodology in

Section 2.3 and the Bayesian inference and prediction in Section 2.4. Section 2.5

presents simulated examples that illustrate the effectiveness of our approach. Our

ecological data analysis, predicting spawning success of shovelnose sturgeon, is pro-

vided in Section 2.6 and Section 2.7 concludes with discussion.

2.2 Shovelnose Sturgeon Spawning Behavior

To help elucidate the model specifications that follow, we consider the motivating ex-

ample of tracking sturgeon spawning behavior in the Lower Missouri River. Human

activities such as flood control and power generation may have direct effects on the
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spawning success of sturgeon in the Missouri River (Galat and Lipkin, 2000). Such

variations in habitat may cause changes in the Missouri River native fish assemblage,

most notably in the decline of shovelnose sturgeon (Scaphirhynchus platorynchus)

and endangered pallid sturgeon (Scaphirhynchus albus) (Funk and Robinson, 1974;

Hesse and Sheets, 1993). Hence, to benefit sturgeon in the Lower Missouri River,

several management activities such as channel reconstruction and reservoir releases

have been introduced (U.S. Fish and Wildlife Service, 2000). Moreover, to under-

stand the spawning behavior of these species, the U.S. Geological Survey (USGS)

has implemented detailed studies in which data storage tags (DSTs) have been sur-

gically implanted in gravid, female shovelonse sturgeon in the Lower Missouri River

(DeLonay et al., 2007). Specifically, the DSTs provide high frequency depth (i.e.,

pressure) and temperature records, with measurements recorded every 15 minutes

throughout the spawning season (approximately 2-4 months).

This technology provides an opportunity to develop new models that take advan-

tage of the resulting high frequency data in order to extract crucial information on

sturgeon spawning behavior and success, in the form of egg release. DeLonay et al.

(2007) presented an exploratory analysis in which a change point modeling approach

was introduced to examine possible timing of spawning events, whereas Holan et al.

(2009) developed a hierarchical Bayesian Markov switching model with GARCH dy-

namics for predicting spawning success using DST depth time series data collected

during 2004-2006. Subsequently, Wildhaber et al. (2011b) applied the Bayesian

Markov switching model to data collected during 2007. Although these last two

efforts successfully argue for the use of DSTs in ichthyology, neither extracts the full

utility of the high frequency depth time series in the presence of temperature time
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series data. Incorporating the temperature profile into the statistical model provides

a unique challenge since temperature is one of multiple environmental factors consid-

ered key to spawning success (Wildhaber et al. (2011a) and the references therein),

and therefore, is not likely to alone be a significant predictor of spawning success.

This is further complicated by the fact that sturgeon, like most fish, are ectothermic

with their body temperature directly correlated to surrounding water temperature

and that there is strong homogeneity in water temperature in a large river system

such as the Lower Missouri River. As such, there is little separation in the tempera-

ture profiles of the successful and unsuccessful spawners. However, the critical nature

of temperature to development, maturation, and final release of eggs supports the

hypothesis that, with all other environmental cues at sufficient levels, on reaching a

certain temperature range the sturgeon settle down to lay their eggs (i.e., a decrease

in the variability in the depth profile). This suggests that temperature should be an

environmental cue to be considered in this model in combination with other factors

(Holan et al., 2009; Wildhaber et al., 2011b). Therefore, one can better make use

of this information by incorporating an interaction effect between a time-frequency

representation of depth and the temperature time series.

As an example of the data of interest here, Figure 2.1 displays the time series of the

(pointwise) mean values of the DST depth and temperature time series as well as the

mean spectrogram time-frequency plot of the depth for 40 gravid shovelnose sturgeon.

It can be seen that the time-frequency representation of depth illustrates interesting

features in the data that are difficult to glean from the original time series data. For

example, the time-frequency representation associated with the unsuccessful spawners

presents a more pronounced time-frequency representation around May 15th when
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compared with other regions and time periods. This attribute of the time-frequency

plot manifests itself at low frequencies, indicating that the difference in unsuccessful

spawners relative to spawners can be represented by a linear trend in depth as a

function of time, which is precisely what is seen in the corresponding time-plot.

The biological hypothesis of interest focuses on changes in the variability in the

depth profile as a function of time, which naturally present themselves through the

time series spectral representation. In this case, the appropriate quantity is time-

frequency, rather than just considering the spectral density, as the depth time series

are nonstationary. This nonstationary behavior can be seen from the nonconstant

mean and variance, slow decay of the autocovariance function (not shown), and other

attributes. Therefore, although we can use the time series data of depth and temper-

ature directly to study how their interaction effects corresponds to spawning success

of shovelnose sturgeon, it may be more illuminating to model the depth spectrogram

and the temperature time series and their potential interactions.

2.3 Methodology

We consider a general class of nonlinear multivariate time-frequency functional mod-

els. The method we propose is motivated by Holan et al. (2010), Wikle and Holan

(2011),Wikle and Hooten (2010) and Yao and Müller (2010). Wikle and Holan

(2011) develop polynomial nonlinear integro-difference equation models for discrete

time spatio-temporal processes whereas Wikle and Hooten (2010) present a general

class of models known as “general quadratic nonlinearity” for spatio-temporal pro-

cesses. In contrast, Yao and Müller (2010) introduce functional polynomial regression
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models, though the exposition is mostly developed in terms of the quadratic case.

Additionally, Yao and Müller (2010) proceed from a classical perspective, quantify-

ing uncertainty through asymptotic arguments. Our probabilistically coherent ap-

proach seamlessly embeds the nonlinear time-frequency representation into a flexible

Bayesian hierarchical model and allows inclusion of both multivariate time-frequency

and nonsignal predictors. As a result, the framework proposed here is extremely

flexible and manages uncertainty in complex functional modeling problems typical of

those encountered when adopting time-frequency predictors.

2.3.1 Time-Frequency Representations

Time-frequency analysis has become an important component in the analysis of many

nonstationary signals, though it is infrequently used in the context of ecological mod-

eling. Nonstationary signals such as depth profiles coming from DSTs necessitate

local (in time) frequency analysis. In particular, the global Fourier transform will be

of limited use when analyzing the spectrum of DST depth profiles, as corroborated

by the type of analysis conducted in Holan et al. (2009).

Following Holan et al. (2010, 2012), the time-frequency analysis we consider uti-

lizes the spectrogram and therefore relies on the short-time Fourier transform (STFT).

Specifically, by restricting the signal (f) to a particular interval and then computing

the Fourier transform, the STFT produces a local time-frequency representation that

characterizes local signal properties. The segmentation of the signal, f , results in a

function that is not periodic. Consequently, taking the Fourier transform will result

in boundary effects that lead to large Fourier coefficients at high frequencies. To alle-

viate these artifacts, one can appeal to smoothing (or windowing; see Feichtinger and
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Strohmer, 1998, for further discussion). The window used in our analysis (Section

2.6) is the Hamming window. A comprehensive discussion surrounding the Hamming

and other windows and their usage can be found in Oppenheim and Schafer (2009).

For completeness, let g 6= 0 denote a fixed window function. Then, at time t and

frequencies ω (t, ω ∈ Rd), the STFT of a function f with respect to g is defined as

Vgf(t, ω) =

∫
Rd

f(x)g(x− t)e−2πi·ωdx,

where i =
√
−1, and g(−x) = g∗(x) denotes complex conjugation (cf., Definition

3.1.1, Page 37, Gröchenig, 2001). Now, assuming g ∈ L2(Rd) is a window function and

||g||2 = 1, then the spectrogram of f with respect to g is defined by SPECgf(t, ω) ≡

|Vgf(t, ω)|2 (cf., Definition 4.1.1, Page 60 Gröchenig, 2001). See Holan et al. (2010)

and Holan et al. (2012) for further discussion.

It is important to note that the model we propose in the following sections uses a

time-frequency image. However, the methodology we present allows for general object

regression; e.g., images and/or functions. Moreover, our model can accommodate

functional data of arbitrary dimensions (i.e., scalars, curves, images, etc.) as well as

extract information from complex functional interactions.

2.3.2 Data Models

Using similar notation to Crainiceanu et al. (2009) and Yao and Müller (2010), we

assume that the outcome Yi, i = 1, . . . , N is a member of the exponential family (EF)

with linear or nonlinear predictor ϑ and dispersion parameter α (i.e., ϑ is related to
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the expected value of the response through a link function),

Yi|ϑi, α ∼ EF(ϑi, α).

In addition, we assume that the signal predictors may be observed with error. Let

sij(u
(j)) denote the j-th observed signal, j = 1, . . . , J for the i-th response, i =

1, . . . , N , at time-frequency location u(j) ≡ (ω(j), t(j))′, where ω(j) and t(j) are the

frequency and time indices, respectively, for the j-th signal. Note, in cases where

the signal predictor is stationary in time, we would have simply u(j) ≡ ω(j). Define

xij(u
(j)) to be the analogous “true” signal component associated with the observed

signal component sij(u
(j)). We assume the measurement (data) model

sij(u
(j))|xij(u(j)), σ2

ε,j ∼ N(xij(u
(j)), σ2

ε,j),

for i = 1, . . . , N , j = 1, . . . , J , and {u(j) = (ω(j), t(j))′ : ω(j) ∈ Ω; t(j) ∈ T }. Although

the true time-frequency signal elements are dependent, it is typically reasonable to

assume that the signal observations are conditionally independent given the true

signal. We note that dependence could be readily considered, if warranted, depending

on dimension constraints.

In practice, one typically is interested in a finite set of time-frequency observa-

tions. In this case, if we let sij ≡ (sij(u
(j)
1 ), . . . , sij(u

(j)
Mj

))′, where Mj = mj × Tj,

corresponding to mj frequencies and Tj times, then

sij = xij + εj, εj ∼ N(0,Σε,j),
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where xij is an Mj-dimensional vector of true signal components analogous to sij, and

we have written the more general covariance matrix Σε,j for the j-th signal. Typically,

sij come from the implementation of the spectrogram smoothing procedure described

in Section 2.3.1; e.g., the k-th element of the vector sij is equal to SPECgf(t
(j)
k , ω

(j)
k ).

As mentioned above, the errors are typically assumed to be independent and thus, in

this case, Σε,j ≡ σ2
ε, jI. We also assume that, for each response Yi, there are potentially

nz scalar covariates, given by zi, an nz-dimensional vector.

2.3.3 Nonlinear Processes

Most real-world processes are nonlinear and thus, it is essential that methodology be

developed that is flexible enough to model this complexity. The time-frequency func-

tional polynomial nonlinear (FPNL) models proposed here offer such flexibility. For

specificity, we first consider the quadratic case and subsequently present the general

case. Let β
(1)
j (u(j)) and β

(2)
j,j′(u

(j),u(j′)) be square integrable functions associated with

the linear and quadratic terms in the model, respectively. Specifically,

ϑi =
J∑
j=1

∫
Dj

β
(1)
j (u(j))xij(u

(j))du(j)

+
J∑
j=1

J∑
j′=j

∫
Dj

∫
Dj′

β
(2)
j,j′(u

(j),u(j′))xij(u
(j))xij′(u

(j′))du(j)du(j′) + z′iδ, (2.1)

where δ is an nz-dimensional vector of regression coefficients associated with the

covariates, zi. It is important to clarify that the x’s in this formulation are random

latent processes. Thus, the quadratic interaction between two values of x is considered

“random,” unlike a classical regression analysis where the x’s are fixed.
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Assume that {φ(j)
k (u(j)) : k = 1, . . . ,∞} form a complete orthonormal basis cor-

responding to the j-th signal, j = 1, . . . , J . Then, we have the unique representations

of the signals

xij(u
(j)) =

∞∑
k=1

ξij(k)φ
(j)
k (u(j)),

where ξij(k) are expansion coefficients associated with the i-th response and j-th

signal. In addition, we also have the unique representations

β
(1)
j (u(j)) =

∞∑
k1=1

b
(1)
j (k1)φ

(j)
k1

(u(j))

β
(2)
j,j′(u

(j),u(j′)) =
∞∑
k1=1

∞∑
k2=1

b
(2)
j,j′(k1, k2)φ

(j)
k1

(u(j))φ
(j′)
k2

(u(j′)),

where b
(1)
j (k1) and b

(2)
j,j′(k1, k2) are expansion coefficients associated with square in-

tegrable functions of the linear and quadratic terms in the model, respectively, and

the φ’s denote the orthonormal basis functions, as described above. Applying the

orthonormality property of the basis functions, and assuming b
(1)
j (k1) and b

(2)
j,j′(k1, k2)

are square summable, (2.1) can be alternatively expressed as a function of expansion

coefficients ξij(k) and the additional covariates

ϑi =
J∑
j=1

∞∑
k1=1

b
(1)
j (k1)ξij(k1) +

J∑
j=1

J∑
j′=j

∞∑
k1=1

∞∑
k2=1

b
(2)
j,j′(k1, k2)ξij(k1)ξij(k2) + z′iδ. (2.2)

Similar to applications in functional data analysis, we consider a finite approxima-

tion to the infinite summations in (2.2) and implement further dimension reduction

through SSVS (see Section 2.3.4). Also, note that the quadratic interaction of the ξ’s

is considered nonlinear because ξ are random due to the randomness of the x’s.
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Although we focus on the quadratic nonlinear case, we note that higher order

interactions follow similarly. For example, consider the more general case of p-th

order (p ≥ 3) polynomial regression. In this case,

ϑi =
J∑

j1=1

∫
Dj1

β
(1)
j1

(uj1)xij1(uj1)duj1

+
J∑

j1≤j2

∫
Dj1
×Dj2

β
(2)
j1,j1

(uj1 ,uj2)xij1(uj1)xij2(uj2)duj1duj2

+
J∑

j1≤j2≤j3

∫
Dj1
×Dj2

×Dj3

β
(3)
j1,j2,j3

(uj1 ,uj2 ,uj3)xij1(uj1)xij2(uj2)xij3(uj3)duj1duj2duj3

+ . . .+
J∑

j1≤...≤jp

∫
Dj1
×...×Djp

β
(p)
j1,...,jp

(uj1 , . . . ,ujp)xij1(uj1) . . . xijp(ujp)duj1 . . . dujp

+ z′iδ,

(2.3)

where β(`)(` = 1, . . . , p) are square integrable functions associated with the linear,

quadratic and `-th order terms in the model, respectively. Similar to the quadratic

case, (2.3) can be written in terms of the expansion coefficients

ϑi =
J∑

j1=1

∞∑
k1=1

b
(1)
j1

(k1)ξij1(k1) +
J∑

j1≤j2

∞∑
k1=1,k2=1

b
(2)
j1,j2

(k1, k2)ξij1(k1)ξij2(k2)

+
J∑

j1≤j2≤j3

∞∑
k1=1,k2=1,k3=1

b
(3)
j1,j2,j3

(k1, k2, k3)ξij1(k1)ξij2(k2)ξij3(k3)

+ · · ·+
J∑

j1≤···≤jp

∞∑
k1=1,...,kp=1

b
(p)
j1,...,jp

(k1, . . . , kp)ξij1(k1) . . . ξijp(kp)

+ z′iδ,
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where the terms are defined analogously to the quadratic case. As with the quadratic

case, the infinite summations are approximated by the finite summations and further

dimension reduction is achieved through SSVS as described in Section 2.3.4. The

model proposed here is extremely general and can easily accommodate multiple time

and/or time-frequency functionals. Process specific interaction coefficients can then

be accommodated through dependence priors in the SSVS procedure. Note that the

nonsignal covariates could also be allowed to interact with signal predictors.

It is important to note that no form for the complete orthonormal basis functions

were specified. In fact, there are many choices for the basis functions among the

class of orthogonal (or bi-orthogonal) bases (e.g., Fourier, splines, wavelets, empirical

orthogonal functions (EOFs), among others). The choice of basis function is some-

what subjective, but there can be advantages and disadvantages depending on the

application. In the remainder, we use the Karhunen-Loéve decomposition (Wikle and

Cressie, 1999; Jolliffe, 2010) to provide the following infinite decompositions for the

j-th signal

xij(u
(j)) =

∞∑
k=1

ξij(k)φ
(j)
k (u(j))

where

ξij(k) =

∫
xij(u

(j))φ
(j)
k (u(j))duj

with E(ξij) = 0 and Var(ξij) = λ
(j)
k . Thus, λ

(j)
k and {φ(j)

k (·)} are eigenvalues and

eigenfunctions of the covariance function of the j-th signal, respectively. In addition,

we assume a normal distribution for ξij ∼ N(0, λ
(j)
k ). In practice, we can calculate

eigenvalues and eigenfunctions from the empirical covariance matrix of the signals.

The obtained eigenfunctions are called empirical orthogonal functions (EOFs), as is
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common in spatial and spatio-temporal statistics (Cressie and Wikle, 2011, Chapter

5).

2.3.4 Stochastic Search Variable Selection

Although the basis expansion formulation is used to simplify the FPNL integrals

and facilitate parameter dimension reduction, the dimensionality still increases not

only by the number of signals but also by an order of magnitude for each additional

polynomial interaction. In addition, there is no reason that all time-frequency features

should be important relative to the responses (Holan et al., 2010; Wikle and Holan,

2011; Holan et al., 2012). Therefore, the FPNL model we propose makes use of a

SSVS algorithm. Such algorithms provide an effective means of model selection when

interest lies in considering a large number of potential submodels (see George, 2000,

for a detailed overview).

In general, there are two primary types of SSVS priors (George and McCulloch,

1997). One comes from a mixture of normals and the other is a mixture of a Dirac

function at zero and a normal distribution. Many variations of these two basic al-

gorithms have been proposed and applied across a broad range of applications (see

O’Hara and Sillanpää, 2009; Stingo et al., 2012, and the references therein). Both of

these prior formulations can be incorporated into our model. For the sake of brevity,

we only describe the latter approach here. Comprehensive details on the first ap-

proach can be found in George and McCulloch (1993, 1997); Holan et al. (2010), and

Wikle and Holan (2011).

Let ζ(`) be the vector of linear coefficients when ` = 1, the vector of quadratic

coefficients when ` = 2, and the non-signal coefficients when ` = 3 (e.g., the vectors
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b(1), b(2) and δ, respectively, in the quadratic model). Note, although we use ` = 3

here, this should not be confused with the third-order interaction effects. Then,

letting γ
(`)
k denote a latent binary variable associated with the k-th element ζ

(`)
k of

ζ(`), we have the following prior specification

ζ
(`)
k |γ

(`)
k , σ2

` ∼ (1− γ(`)k )δ0(ζ
(`)
k ) + γ

(`)
k N(0, κ

(`)
k σ

2
` ), (2.4)

where δ0(·) is the Dirac function at zero and the κ
(`)
k s are hyperparameters to be

chosen. Using this prior, if γ
(`)
k = 0 then ζ

(`)
k = 0 and if γ

(`)
k = 1 then ζ

(`)
k ∼

N(0, κ
(`)
k σ

2
` ). Usually, κ

(`)
k s are fixed at a common value (i.e., κ

(`)
k = κ

(`)
k′ ) and the

conjugate prior, IG(a`, b`), is often chosen for σ2
` with a` and b` specified.

Prior specification requires the choice of prior distribution for γ = (γ(1)′ ,γ(2)′ ,γ(3)′)′,

where γ(`) = (γ
(`)
1 , . . . , γ

(`)
K )′, ` = 1, 2, 3. This is often taken to be a product of inde-

pendent Bernoulli distributions. However, the independence assumption for γ might

not be appropriate for our model because the quadratic terms are likely to be related

to the linear terms in the signals (e.g., similar to ANOVA models, where we assume

no interaction effects are significant unless the main effects are significant). Thus, we

use hierarchical priors that can describe relationships between linear and quadratic

terms (Chipman, 1996). That is, we first set a common probability for the linear

terms in the signals and covariate terms, P (γ
(1)
k = 1) = P (γ

(3)
k′ = 1) = P1. Note

that it is not necessary that each of the elements of the linear and covariate terms

have the same probability. After giving probabilities to the linear terms, we construct
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conditional probabilities for the quadratic terms,

p(γ(2)q,r = 1|γ(1)q , γ(1)r ) =


P00, if (γ

(1)
q , γ

(1)
r ) = (0, 0);

P01, if (γ
(1)
q , γ

(1)
r ) = (0, 1) or (1, 0);

P11, if (γ
(1)
q , γ

(1)
r ) = (1, 1),

where γ
(2)
q,r corresponds to the parameters associated with the interaction of the q-

and r-th linear coefficients, i.e., γ
(1)
q and γ

(1)
r . The choice of (P00, P01, P11) are typ-

ically based on different principles of variable selection. For example, one might

choose (P00, P01, P11) = (0, 0, p). This setting implies that for a quadratic term to be

included, all corresponding linear terms must also be included in the model. Compre-

hensive details can be found in Chipman (1996). Many alternative hyperparameter

specifications have been proposed for specific applications (see Vannucci and Stingo,

2010, and the references therein for an overview).

In the context of “big data” problems, especially those involving time-frequency

and functional covariates, SSVS has been shown to be extremely effective (Holan

et al., 2010; Wikle and Holan, 2011; Holan et al., 2012). Nevertheless, many other

model selection methods could be employed, including deviance information crite-

rion (DIC) (Spiegelhalter et al., 2002), posterior predictive loss (Gelfand and Ghosh,

1998), and cross-validation, among others. The advantage of using SSVS over other

model selection approaches is that SSVS produces a model averaged classification

while simultaneously achieving feature extraction (i.e., identifies important regions

of the time-frequency representation and/or function). In contrast, other model se-

lection approaches typically yield a single “preferred” model lacking robust feature

identification. More importantly, due to the high-dimensionality, typical of the prob-
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lems presented here, classical model selection methods are infeasible in searching the

candidate model space.

2.4 Bayesian Inference and Prediction

As described in Section 2.3, the model we propose is a joint nonlinear generalized

mixed effects model consisting of a signal measurement model and a generalized

linear model with nonlinear functional predictors in the link function. However,

for most nonlinear models, it is difficult to derive an explicit form for the marginal

likelihood corresponding to the response variables. A two-stage approach avoids this

problem with the following steps: (1) one obtains the predictors of the expansion

coefficients ξij, say ξ̂ij, and then (2) estimates the parameters of the response model

by replacing ξij with ξ̂ij (see Müller and Stadtmüller, 2005; Crainiceanu et al., 2009;

Holan et al., 2010; Yao and Müller, 2010; Holan et al., 2012, and the references

therein). For example, in the generalized linear model setting, Holan et al. (2010)

produced the expansion coefficients through EOF analysis and then implemented a

Bayesian SSVS procedure on the coefficients associated with the link function with the

goal of dimension reduction and feature extraction, as well as predicting the response

variables. Although it is easier to implement, the two-stage procedure has potential

problems. In particular, Crainiceanu et al. (2009) illustrate how such a substitution

induces bias in the estimators due to the misspecification of the variability associated

with the fixed and mixed effect parameters.

Due to the potential problems associated with the two-stage procedure, James

(2002) uses a non-Bayesian approach which treats the latent variables (i.e., true sig-
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nal) in the measurement model as missing values and makes inference jointly on both

measurement model and response model through the expectation-maximization (EM)

algorithm. Conversely, Crainiceanu et al. (2009) use the Bayesian framework to facil-

itate fitting the model jointly when the measurement model is a multilevel functional

model and the response model is a generalized linear model. The joint Bayesian anal-

ysis we propose is more complicated because our model has multiple measurement

models and the true process is modeled nonlinearly.

The main difference between the two-stage and joint Bayesian approach is that we

need to estimate the unknown expansion coefficient ξij through a MCMC procedure,

as well as the variance σ2
ε,j of the measurement error for the j-th signal. In Sec-

tion 2.3.3, the expansion coefficients ξij were assumed to have the prior, N(0, λ
(j)
k ).

Further, we use independent inverse gamma priors for λ
(j)
k ; λ

(j)
k ∼ IG(a

λ
(j)
k
, b
λ
(j)
k

),

j = 1, . . . , J , k = 1, . . . , K and σ2
ε,j ∼ IG(aε,j, bε,j) and specify a

λ
(j)
k

, b
λ
(j)
k

, aε,j and

bε,j such that each prior density has a mean equal to 2 and variance equal to 10,000.

Note that the prior distributions chosen are vague but proper, and thus, we maintain

propriety of the posterior distribution while imparting little impact on the analysis.

To be specific, in order to analyze shovelnose sturgeon spawning success, we focus

on a probit model with binary response variables. Other types of response variables

can be treated similarly. Full details of the MCMC estimation algorithms are provided

in the Appendix.
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2.5 Simulated Examples

In this section, we consider the performance of the FPNL model through simulated

examples similar to our motivating data that is analyzed in Section 2.6. Specifically,

we examine a probit model and consider estimation under various levels of magni-

tude for the signal and noise variances (i.e., signal-to-noise ratio). In addition, we

consider the performance of a two-stage implementation relative to our fully Bayesian

implementation.

The response variables were simulated from a probit model with quadratic pre-

dictor

Φ−1(pi) =
2∑
j=1

K1∑
k1=1

b
(1)
j (k1)ξij(k1) +

2∑
j=1

2∑
j′=j

K1∑
k1=1

K2∑
k2=1

b
(2)
j,j′(k1, k2)ξij(k1)ξij(k2),

for i = 1, . . . , n, where n = 100. We note that K1 and K2 depend on j. We used

the functional predictor xij(uj) =
∑5

k=1 ξij(k)φ
(j)
k (uj), where ξij ∼ D(λ

(j)
k ), with D(·)

a distribution to be specified below. In this example, {φ(1)
k (u1)} and {φ(1)

k (u2)} are

the sets of the top five eigenfunctions in terms of accounting for the most variation

of the depth and temperature profiles from the fish tracking data example presented

in Section 2.6, respectively. Choosing 5 EOFs for the simulation helps facilitate

rapid computation and constitutes the entire basis set for the simulated data. We

set b1(1) = 1.0, b1(3) = −1.5, b2(2) = 1.0, and b1,2(1, 2) = −1.4, with all remaining

b-parameters set to 0. Thus, the quadratic predictor can be rewritten as

Φ−1(pi) = ξi1(1)− 1.5ξi1(3) + ξi2(2)− 1.4ξi1(1)ξi2(2). (2.5)
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To model the simulated data, we consider probit models via the two approaches

described in Section 2.4. Specifically, denote a two-stage and joint Bayesian proce-

dure with linear predictors as M1 and M2, respectively. In addition, let M3 and M4

denote the model with a quadratic predictor using the two-stage and joint Bayesian

approach, respectively. In general, it is difficult to know the optimal choices for the

SSVS parameters (see Section 2.3.4). Therefore, we conducted a sensitivity analy-

sis that considered various possible values for these parameters and evaluated the

performance under several scenarios. Specifically, for M1 and M2, we set κ
(1)
j =

{0.001, 0.01, 0.1, 1, 10, 100, 1000} with P1 = 0.5. For M3 and M4, we considered the

following combinations of (κ
(1)
j , κ

(2)
j ): (0.001, 100), (0.001, 10), (0.001, 1), (0.01, 10),

(0.01, 1), (0.1, 1), and (1, 1). We considered the hierarchical prior (P00, P01, P11) =

(0.01, 0.01, 0.5), referred to as “weak heredity” by Chipman (1996). When the covari-

ate space is large, this setting is more appropriate than the “strong heredity” version,

suggested by Chipman (1996), in which P00 = P01 = 0.

To evaluate model performance, we considered the out-of-sample classification

rate using a leave-one-out-cross-validation experiment (across all of the n = 100

observations). The classification rate was obtained by considering posterior samples of

the mean probability of “successful spawning” over all iterations of the SSVS MCMC

iterations. The classification was assigned a 1 (“success”) if this probability was

greater than or equal to 0.5, and a 0 (“non-success”) if this probability was less than

0.5. Similar to Holan et al. (2010), this classification takes advantage of the Bayesian

model averaging, thereby reducing uncertainty in the model selection stage (Draper,

1995; Hoeting et al., 1999), while selecting important covariates/features through the

SSVS algorithm. The SSVS sampler results are based on 35,000 iterations with a
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5,000 iteration burn-in.

Consider the situation where one observes the noisy predictors sij(uj) = xij(uj)+

εij(uj), where εij(uj) ∼ N(0, σ2
ε,j) is the measurement error. We set ξij ∼ N(0, λ

(j)
k ),

where λ
(j)
k are eigenvalues of the depth and temperature profiles associated with

the fish tracking data discussed in Section 2.6: when j = 1, λ
(1)
1 = (1140.3)2,

λ
(1)
2 = (720.5)2, λ

(1)
3 = (530.8)2, λ

(1)
4 = (480.9)2, and λ

(1)
5 = (429.2)2; when j = 2,

λ
(2)
1 = (3.0597)2, λ

(2)
2 = (1.7659)2, λ

(2)
3 = (1.4325)2, λ

(2)
4 = (0.9477)2, and λ

(1)
5 =

(0.8666)2. To examine the effect of different noise variances, we considered three

different combinations of magnitudes for the noise variances (σ2
ε,1, σ

2
ε,2): (12, 0.012),

(4002, 12), and (8002, 22). We used the eigenfunctions associated with the depth and

temperature profile associated with the fish tracking data discussed in Section 2.6.

Table 2.1 shows the out-of-sample classification results for each model, as well as

the area under the receiver operating characteristic (ROC) curve (AUROC; Hosmer

and Lemeshow, 2000). The ROC curve measures the true positive rate along side

the false positive rate and AUROC values close to one indicate superior performance.

When (σ2
ε,1, σ

2
ε,2) = (12, 0.012), both quadratic models M3 and M4 show superior

performance compared to the linear models M1 and M2. In this case, M3 and M4

perform similarly (i.e., there is little difference between two-staged and joint Bayesian

analysis). When σ2
ε,1 and σ2

ε,2 increases to 12 and 4002, respectively, both M3 and M4

still show superior performance relative to M1 and M2. However, in this scenario,

M4 performs better than M3. In contrast, in the last scenario, M1 is superior to all

models. This is because the variance of σ2
ε,2 = 22 is larger than the variance of one of

the signals in the interaction term (λ
(2)
2 = (1.7659)2). As expected, the noise variance

significantly affects classification results, with the quadratic model performing the
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best, and with the one-stage model performing slightly better in many cases.

Finally, it is of interest to evaluate models M1 and M2 relative to M3 and M4 when

data arise from a linear model. Using the simulation setup previously described, we

simulated data from the linear predictors of (2.5). Model performance was assessed

using a sensitivity analysis with the same hyperparameter settings as the quadratic

case and we considered the out-of-sample classification rate using a leave-one-out-

cross-validation experiment. In summary, when simulating from a linear model, the

linear and quadratic models produce similar classification results (results not shown).

The reason for the similar classification is that the quadratic terms are chosen in the

model with low probability (i.e., significantly less relative to the linear terms across

both quadratic models and all signal to noise ratios). This aspect of the algorithm is

particularly advantageous.

2.6 Sturgeon Spawning Success Analysis

To illustrate the effectiveness of our approach we provide an analysis of the motivating

data on shovelnose sturgeon spawning behavior previously discussed in Section 2.2.

Specifically, using DST depth and temperature data collected in 2007, we predict

spawning success of shovelnose sturgeon and characterize the salient features of the

DST depth and temperature profiles associated with this outcome. In this context,

the measure that is used to assess spawning success is the same as in Holan et al.

(2009) and is given by the recapture oocyte ratio or spawning index (SI). This index

measures the ratio of mature oocytes (eggs) to early stage oocytes as an indicator of

the completeness of spawning. Lower ratios indicate more complete spawning.
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As a result of individual fish being tagged with DSTs at different time points

(i.e., the onset times of DST recordings were different), our analysis considers the

study period from April 19 to June 3. This constitutes the maximum time range that

includes the majority of the data. During this period, 41 of the 99 tagged fish were

recaptured. We note that one DST instrument failed and, thus, that fish was not

considered in this analysis. Of the recaptured fish, 29 were successful spawners and

11 were unsuccessful spawners.

The spectrogram for each DST depth time series was calculated using the signal

processing toolbox function spectrogram (short-time Fourier transform) in Matlab R©.

Specifically, we chose the default Hamming moving window (Oppenheim and Schafer,

2009) of length 64 time periods with an overlap of 10 time periods in this analysis.

We also evaluated the sensitivity of this choice by examining several combinations of

window length and overlap (16× 8, 32× 10, 32× 16, 64× 10, 64× 32, 128× 10 and

128× 64). Such specifications showed no difference with regards to variable selection

or classification in in-sample analysis when we considered a quadratic model with

depth and temperature.

In this example, we find the first 10 and 15 EOFs of the depth spectrogram account

for approximately 82.3% and 89.6% of the variation, respectively. Additionally, the

first 10 and 15 EOFs of the temperature time series account for approximately 86.3%

and 91.5% of the variation, respectively. We evaluate several combinations of the

number of EOF components of the depth spectrogram and temperature time series

(10× 10, 10× 15, 15× 10, and 15× 15). The in-sample analysis showed no difference

with regards to classification for such specifications. However, the result of variable

selection in the in-sample analysis indicate that EOFs 11-15 are less important to the
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spawning success. Consequently, we consider the parsimonious model based on the

first 10 EOFs of the depth spectrogram and temperature time series.

To predict spawning success, we considered models M1, M2, M3, and M4 described

in Section 2.5. M1 and M2 include the time-frequency depth predictor and functional

time series temperature predictor. M3 and M4 include both the time-frequency depth

predictor, functional time series temperature predictor, and their interaction. In

addition, let M5 and M6 denote the model with linear predictor including only the

time-frequency depth predictor using the two-stage and joint Bayesian approach,

respectively. We also conducted a sensitivity analysis using the same sets of SSVS

parameters described in Section 2.5. Finally, we used leave-one-out-cross-validation

to evaluate model performance. Each cross-validation procedure consists of 50,000

MCMC iterations with the first 25,000 discarded for burn-in.

Table 2.2 shows the out-of-sample classification results associated with M1, M2,

M3, M4, M5 and M6. In general, all of the models have the same performance in terms

of classifying unsuccessful spawners (72.73% correct), with M5 and M6 performing

superior to M1 and M2. This result demonstrates that including the time series for

temperature as a functional linear predictor provides diminished predictive power

for successful spawners. Such a result is not surprising because the sturgeon’s body

temperature is highly regulated by the temperature of the river, with little separation

between successful and unsuccessful spawners.

Both quadratic models M3 and M4 are superior compared to the linear models

M1, M2 and the depth only models, M5 and M6. Specifically, M4 shows superior

performance in classifying successful spawners relative to M3 (72.41% vs. 65.52%).

Furthermore, Table 2.3 shows the 15 most commonly selected variables for M1, M2,
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M3 and M4, as well as the 10 most commonly selected variables for M5 and M6,

based on the posterior probability of inclusion in the model. Depth EOF 6, 7, 5,

and 1 are commonly selected in all the models. This implies that M1, M2, M3, and

M4 select the same important information about sturgeon spawning behavior from

the DST depth profile as M5 and M6. In contrast, M1, M2, M3, and M4 selected

several common temperature EOFs. However, according to the classification results,

these EOFs may have less impact on spawning success. More specifically, in terms

of classification, the interaction between depth EOF 1 and temperature EOF 2 that

appears in models M3 and M4 results in a better predictor of successful spawning

behavior. This latter finding is consistent with the notion that successful spawning

may rely on multiple cues happening simultaneously; e.g., the sturgeon exhibit less

variability in their depth profile as they reach a suitable body temperature. These

results suggest that important information on spawning success is obtained from a

model that includes depth, temperature, and importantly, their interaction.

Holan et al. (2010) demonstrate the effectiveness of signal reconstruction to distin-

guish the important signal features driving mating success in insect communication

signals. An added facet of our approach is that it can reveal important aspects of

signal interactions corresponding to the response variables (spawning success). Now,

because M3 and M4 suggest that the interaction of depth EOF 1 and temperature

EOF 2 is an important predictor corresponding to spawning success, we reconstructed

the depth spectrogram based on the depth EOF 1, as well as temperature curve on

the temperature EOF 2; see Figure 2.2. This figure shows that the spectrogram of

successful spawners has less variability overall relative to the unsuccessful spawners,

and that a low-frequency region in the period between May 10 and May 20 may be
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an important indicator of spawning success. Moreover, the mean difference of the re-

constructed temperature expresses a deep trough/minimum in the period before the

lowest values of the mean difference of the reconstructed depth spectrogram, implying

a potential interaction between depth variability and temperature.

The model results can be used to suggest a hypothesized time period in which the

spawning may have occurred for these shovelnose in 2007 (i.e., May 10 through May

20, 2007). Spring (April-June) is when most shovelnose sturgeon spawning seems

to occur in the Lower Missouri River, with temperature a key factor influencing

timing (see Wildhaber et al., 2007, 2011a, and references therein). However, this is

no more than a hypothesis because recapture and validation of spawning of these fish

occurred weeks to months after the hypothesized time period. To provide support for

development of this type of hypothesis from this model will require validation through

verification of actual spawning dates for additional fish for which DST records are

available.

2.7 Discussion

Ecological data are often high-dimensional in terms of the response predictors. We

consider the situation where one has extremely high-dimensional nonstationary time

series predictors (functions) of responses that are not necessarily time-referenced.

In our case the number of subjects (fish) in the response is fairly low-dimensional

but the covariates themselves can be considered “big data.” High-frequency time-

series predictors, such as those coming from DSTs, typically exhibit nonstationarity.

Given the difficulty of establishing important features from such signals subjectively,
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it is necessary to develop a general methodology that can select important signal

components. Furthermore, most predictors do not influence responses unilaterally,

and thus we consider possible nonlinear interactions between multiple time signals.

An efficient way to represent nonstationary high-frequency time series signals is

in the time-frequency domain (e.g., via a spectrogram). Such representations show

regions in time-frequency space that exhibit high variability. However, a spectro-

gram representation comes at the price of having a substantially large number of

time-frequency “pixels” (typically many thousands). In practice, it is not feasible

to consider each of these pixels as a potential covariate. However, the pixels are

often dependent, as important features in time-frequency space occur over adjacent

frequency bands and across multiple time points. Thus, it is convenient to consider

the spectrogram as an “image” and utilize a low-rank spatial representation, similar

to what is commonly done in spatial and spatio-temporal statistics (see Cressie and

Wikle, 2011, for an overview). We demonstrate how such a methodology can be used

within a time-frequency functional polynomial nonlinear (FPNL) model. In particu-

lar, the main contribution we provide is to illustrate how one can account for signal

uncertainty as well as accommodate nonlinear interactions in an ecological (or other

scientific) model in which the signals are extremely high-dimensional.

The effectiveness of the methodology we propose is demonstrated through the

motivating example of predicting spawning success of shovelnose sturgeon. In addi-

tion, our approach produces feature extracted curves and images that highlight the

important aspects of depth variability and temperature, as they relate to successful

spawning. Our analysis suggests that depth, temperature, and their interaction are

all important predictors for successful spawning of shovelnose sturgeon in the Lower

37



Missouri River and details the specific components of each.

We note that similar to implementation of low-rank spatial and spatio-temporal

random effects models, the choice of basis functions is somewhat arbitrary (e.g., Wikle,

2010). An interesting extension is to consider the model performance under different

basis functions. In particular, it may be that jointly specified basis functions (e.g.,

for depth and temperature simultaneously) may provide a more efficient dimension

reduction and may facilitate superior interpretation. More investigation into the

importance of the uncertainty associated with the signal, both in terms of signal-to-

noise-ratio and registration, is warranted. These issues will be explored elsewhere.

2.8 Appendix: MCMC Algorithm

The MCMC algorithms differ for different types of response variables (i.e., contin-

uous, count, and binary variables) and different model structures. For specificity,

we consider a probit model (for a Bernoulli response) with quadratic predictor. In

particular, suppose we have binary response variables Yi = {0, 1}; following Albert

and Chib (1993), we define a continuous latent variable Zi such that

Yi =

 1; if Zi > 0,

0; if Zi ≤ 0,

with

Zi|· ∼ N(ϑi, 1).
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where

ϑi =
J∑
j=1

K1∑
k1=1

b
(1)
j (k1)ξij(k1) +

J∑
j=1

J∑
j′=j

K1∑
k1=1

K2∑
k2=1

b
(2)
j,j′(k1, k2)ξij(k1)ξij(k2) + z′iδ,

as described in Section 2.3.3.

We specify a SSVS prior described in Section 2.3.4 for the coefficients of the model.

Recall that ζ(`) denotes as the vector of linear coefficients when ` = 1, the vector of

quadratic coefficients when ` = 2, and the non-signal coefficients when ` = 3. In

addition, γ
(`)
k denotes a latent binary variable associated with the k-th element ζ

(`)
k

of ζ(`). Then, we have the following prior specification

ζ
(`)
k |γ

(`)
k , σ2

` ∼ (1− γ(`)j )δ0(ζ
(`)
k ) + γ

(`)
k N(0, κ

(`)
k σ

2
` ),

where δ0(·) is the Dirac function at zero, the κ
(`)
k s have a common value, say κ(`), and

γ = (γ(1)′ ,γ(2)′ ,γ(3)′)′ have hierarchical priors.

2.8.1 Full Conditionals

The full conditional of Zi is a truncated normal distribution given by

Zi|· =

 N0,∞(ϑi, 1); if Yi = 1,

N−∞,0(ϑi, 1); if Yi = 0.

However, because the SSVS prior is a mixture of a Dirac function at zero and a

normal distribution, the Gibbs sampler gets trapped easily at coefficients equal to

zero (George and McCulloch, 1997). To avoid this problem, we sample coefficients
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and associated latent binary variable simultaneously (Geweke, 1996). Letting w.p.

denote “with probability,” the full joint conditional of (ζ
(`)
k , γ

(`)
k ) is

ζ
(`)
k =

 0, w.p. 1− P̃ (`)
k ,

N(µ, (ξ̃
(`)′

k ξ̃
(`)
k )−1), w.p. P̃

(`)
k ,

with ξ̃
(`)
k = [ξ

(`)
1k , . . . , ξ

(`)
Nk, (κ

(`)σ2
` )

2]′. Here, {ξ(`)ik } are the associated expansion coef-

ficients, µ = (ξ̃
(`)′

k ξ̃
(`)
k )−1ξ̃

(`)′

k Z∗, where Z∗ = [Z∗1 , . . . , Z
∗
N , 0]′ and Z∗i = Zi − ϑi with

ζ
(`)
k = 0. Finally, P̃

(`)
k = P

(`)
k × R/(1− P `

k + P
(`)
k × R), where P

(`)
k is the prior of γ

(`)
k

and

R =

(
κ(`)σ2

`

N∑
i=1

(ξ
(`)
ik )2 + 1

)− 1
2

exp

(
κ(`)σ2

` (
∑N

i=1 Z
∗
i ξ

(`)
ik )2

2(κ(`)σ2
`

∑N
i=1(ξ

(`)
ik )2 + 1)

)
.

The full conditional of σ2
` is

σ2
` |· ∼ IG

(
n` + a`

2
,

∑K
k=1(ζ

(`)
k )2

2κ(`)
+
b`
2

)
,

where n` is the number of coefficients not equal to zero. The full conditional of λ
(j)
k is

λ
(j)
k |· ∼ IG

N + a
λ
(j)
k

2
,
b
λ
(j)
k

+
∑N

i=1(ξij(k))2

2

 .

The full conditional of σ2
ε,j is

σ2
ε,j|· ∼ IG

(
njN + aε,j

2
,
bε,j +

∑N
i=1 ||sij − φ

(j)ξij||2

2

)
,
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where nj is the dimension of the jth signal. The full conditional of ξij is

ξij|· ∝ exp

(
(Zi − ϑi)2 − ξ′ij(λ(j))−1ξij

2
−
||sij − φ(j)ξij||2

2σ2
ε,j

)
.

The full conditional of ξij has no analytical form. Therefore, we used a random walk

Metropolis-Hastings algorithm with a normal proposal distribution having mean equal

to current value and variance chosen to yield an acceptance rate of approximately 30%.
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Table 2.1: Out-of-sample prediction results of the simulated examples presented in
Section 2.5 using the “model averaged” probit model via the SSVS procedure. These
results are based on the leave-one-out cross-validation analysis (across all of the n =
100 observations). M1 and M2 denote the model with a linear predictor using the two-
stage and joint Bayesian approach, respectively. M3 and M4 denote the model with
a quadratic predictor using the two-stage and joint Bayesian approach, respectively.
Finally, AUROC denotes area under the receiver operating characteristic curve.

Classify To:
{σ2

ε,1,σ
2
ε,2}= {12,0.012} {4002,12} {8002,22}

Classify From: 0 1 0 1 0 1
M1: 0 88.46% 11.54% 76.92% 23.08% 71.15% 28.85%

1 10.42% 89.58% 22.92% 77.08% 22.92% 77.08%
AUROC .9127 .8654 .7989

M2: 0 88.46% 11.54% 75.00% 25.00% 67.31% 32.69%
1 10.42% 89.58% 14.29% 79.17% 25.00% 75.00%

AUROC .9127 .8743 .7849

M3: 0 96.15% 3.85% 78.85% 21.15% 67.31% 32.69%
1 2.08% 97.92% 16.67% 83.33% 25.00% 75.00%

AUROC .9952 .8774 .7865

M4: 0 94.23% 5.77% 80.77% 19.23% 67.31% 32.69%
1 2.08% 97.92% 14.58% 85.42% 22.92% 77.08%

AUROC .9956 .8790 .7821
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Table 2.2: Out-of-sample prediction results of the sturgeon spawning success analysis
from Section 2.6 using the “model averaged” probit model via the SSVS procedure.
These results are based on a leave-one-out cross-validation analysis (across all of the
n = 40 observations). Recall, M1 and M2 denote the model with a linear predictor of
the time-frequency depth and functional time series temperature using the two-stage
and joint Bayesian approach, respectively. The model with a quadratic predictor in-
cluding time-frequency depth predictor, functional time series temperature predictor
and their interaction by using the two-stage and joint Bayesian approach are denoted
by M3 and M4, respectively. Finally, M5 and M6 denote the model with a linear pre-
dictor of the time-frequency depth using the two-stage and joint Bayesian approach,
respectively. Note that unsuccessful and successful spawning are coded as 0 and 1, re-
spectively, and that AUROC denotes area under the receiver operating characteristic
curve.

Classify To:
M1 M2 M3

Classify From: 0 1 0 1 0 1
0 72.73% 27.27% 72.73% 27.27% 72.72% 27.27%
1 48.28% 51.72% 48.28% 51.72% 34.48% 65.52%

AUROC .5893 .5925 .6771

Classify To:
M4 M5 M6

Classify From: 0 1 0 1 0 1
0 72.73% 27.27% 72.73% 27.27% 72.72% 27.27%
1 27.59% 72.41% 42.38% 58.62% 42.38% 58.62%

AUROC .6740 .6834 .6708
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Table 2.3: Top selected variables from the SSVS cross-validation from each model
used in the analysis in Section 2.6. Here, di and tj denote the ith EOF of depth and
the jth EOF of temperature, respectively. The percentages shown are the mean of
the posterior probability of the variable being included in the model for each of the 40
cross-validation runs. Definitions of models M1-M6 are provided in Sections 2.5 and
2.6. Note that unsuccessful and successful spawning are coded as 0 and 1, respectively.

M1 M2 M3

Variable % of models Variable % of models Variable % of models

(d6,0) 77 (d6,0) 78 (d1,t2) 58
(d7,0) 67 (d7,0) 71 (d6,0) 55
(d5,0) 57 (d5,0) 61 (d7,0) 54
(t6,0) 52 (t6,0) 52 (t6,0) 51
(d1,0) 48 (t8,0) 51 (d5,0) 51
(t8,0) 45 (t10,0) 50 (d1,0) 50
(t1,0) 42 (t9,0) 50 (t8,0) 49
(t3,0) 41 (d1,0) 48 (t2,0) 48
(d3,0) 41 (t7,0) 48 (t3,0) 48
(t5,0) 38 (t5,0) 46 (t1,0) 48
(t7,0) 38 (t4,0) 43 (d3,0) 47
(t2,0) 38 (t3,0) 42 (t4,0) 47
(d4,0) 37 (t1,0) 41 (t7,0) 47
(d10,0) 37 (d3,0) 38 (t5,0) 46
(d2,0) 37 (t2,0) 38 (d9,0) 46

M4 M5 M6

Variable % of models Variable % of models Variable % of models

(d6,0) 56 (d6,0) 78 (d6,0) 77
(d7,0) 55 (d7,0) 71 (d7,0) 71
(d5,0) 52 (d5,0) 61 (d5,0) 61
(d1,0) 51 (d1,0) 47 (d1,0) 47
(t6,0) 50 (d3,0) 36 (d3,0) 36
(t8,0) 50 (d4,0) 34 (d4,0) 34
(t10,0) 50 (d10,0) 33 (d10,0) 33
(t9,0) 49 (d2,0) 32 (d2,0) 32
(t7,0) 49 (d8,0) 31 (d9,0) 31
(t5,0) 49 (d9,0) 31 (d8,0) 31
(d1,t2) 49
(t2,0) 49
(t4,0) 48
(t3,0) 48
(t1,0) 48
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Figure 2.1: (a) and (b) are time series plots of the mean values of depth and tem-
perature for successful and unsuccessful spawners, respectively. (c) and (d) are the
mean spectrograms of depth for successful and unsuccessful spawner, respectively.
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Figure 2.2: (a) and (c) are the mean reconstructed DST temperature using tempera-
ture EOF 2 for successful and unsuccessful spawners, respectively. (b) and (d) are the
mean reconstructed depth spectrogram using depth EOF 1 for successful and unsuc-
cessful spawners, respectively. (e) depicts the difference of reconstructed temperature
curve ((a)-(c)) (white curve) and depth spectrogram ((b)-(d)).
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Chapter 3

Bayesian Lattice Filters for
Time-Varying Autoregression and
Time-Frequency Analysis

3.1 Introduction

Recent advances in technology have lead to the extensive collection of complex high-

frequency nonstationary signals across a wide-array of scientific disciplines. In con-

trast to the time-domain, the time-varying spectrum may provide better insight into

important characteristics of the underlying signal (e.g., Holan et al., 2010, 2012; Rosen

et al., 2012; Yang et al., 2013, Chapter 2, and the references therein). For example,

Holan et al. (2010) demonstrated that features in the time-frequency domain of non-

stationary Enchenopa treehopper mating signals may describe crucial phenotypes of

sexual selection.

In general, time-frequency analyses can either proceed using a nonparametric or
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model-based (i.e., parametric) approach. The most common nonparametric approach

is the short-time Fourier transform (i.e., windowed Fourier transform) and produces a

time-frequency representation characterizing local signal properties (Gröchenig, 2001;

Oppenheim and Schafer, 2009). Common window (smoothing) functions that have

been proposed for this purpose include the Hamming, Hanning, Barlett and Kaiser

windows. Another path to time-frequency proceeds using smoothing splines to esti-

mate the local spectrum via the Whittle likelihood (Rosen et al., 2009, 2012). Simi-

larly, time-frequency can be achieved by applying smooth localized complex exponen-

tial (SLEX) functions to the observed signal (Ombao et al., 2002). The SLEX func-

tions are simultaneously orthogonal and localized in time and frequency because they

are obtained by applying a projection operator rather than a window. Alternatively,

one can use the theory of frames and over-complete bases to produce a time-frequency

representation. For example, continuous wavelet transforms (Vidakovic, 1999; Perci-

val and Walden, 2000; Mallat, 2008) or Gabor frames (Wolfe et al., 2004; Feichtinger

and Strohmer, 1998; Fitzgerald et al., 2000) could be used. By introducing redun-

dancy into the basis functions, these representations may provide better simultaneous

resolution over both time and frequency.

Model-based approaches typically proceed through the time-domain in order to

produce a time-frequency representation for a given nonstationary signal. In this

setting common approaches include fitting piecewise autoregressive (AR) models as

well as time-varying autoregressive models (TVAR). The former approach assumes

that the nonstationary signal is piecewise stationary. Consequently, the estimation

procedure for such models attempts to identify the order of the AR models along

with the location of each piecewise stationary series. For example, Davis et al. (2006)
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propose the AutoPARM method using minimum description length (MDL) and a

genetic algorithm (GA) to automatically locate the break points and AR model order

within each segmentation. In addition to providing a time-frequency representation,

this approach also locates change points. Wood et al. (2011) propose fitting mixtures

of AR models in each segment via Markov chain Monte Carlo (MCMC) methods.

Their approach selects a common segment length and then divides the signal into

these segments prior to implementation of the fitting procedure. Although such ap-

proaches may accommodate signals with several piecewise stationary structures, they

lack the capability of capturing momentary shocks to the system (i.e., changes to the

evolutionary structure that only occur over relatively few time points).

For many processes, TVAR models may provide superior resolution in the time-

frequency domain for both large and small scale features through modeling time-

varying parameters. A TVAR model of order P for a nonstationary univariate time

series xt, t = 1, . . . , T , can be expressed as

xt =
P∑

m=1

a
(P )
t,mxt−m + εt, (3.1)

where a
(P )
t,m and εt are the TVAR coefficients associated with time lag m at time t

and the innovation at time t, respectively. Typically, the innovations are assumed

to be uncorrelated zero-mean Gaussian random variables (i.e., εt ∼ N(0, σ2
t ), with

time-varying variance σ2
t ). The model corresponds to a stationary AR form at each

time t with the AR coefficients and variances evolving through time. In such settings,

the model is locally stationary but nonstationary globally. As will be illustrated, the

assumption of local stationarity (i.e., the forward and backward partial autocorrela-
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tions need not be equal) is not required for our approach. More importantly, because

this model generally allows both slow and rapid changes in the parameters, it can

flexibly model stochastic pattern changes often exhibited by complex nonstationary

signals.

To estimate the TVAR model coefficients, Kitagawa and Gersch (1996) treat the

coefficients as a stochastic process and model them using difference equations under

the assumption of a maximum fixed order of the TVAR model. Their estimation pro-

cedure for the coefficients is then based on state-space models with smoothness priors.

In this context, the innovation variances are treated as constant and estimated using

a maximum likelihood approach. West et al. (1999) expand this type of approach

into a fully Bayesian framework by simultaneous modeling the coefficients and the

innovation variances using random walk models. In contrast, by assuming constant

innovation variance, Prado and Huerta (2002) model the coefficients and order of

the TVAR model using random walk models. Further, to make the TVAR models

stable, the constraint that the roots of the characteristic polynomial lie within the

unit circle could be imposed. However, such an added condition makes estimation

more complicated and computationally expensive.

To avoid these issues, we can instead work with the partial autocorrelation coef-

ficients (i.e., in the partial correlation (PARCOR) coefficient domain) and then use

the Levinson recursion to connect the PARCOR coefficients and TVAR model coef-

ficients (Kitagawa and Gersch, 1996; Godsill et al., 2004). Godsill et al. (2004) use

a sequential Monte Carlo algorithms to estimate the TVAR coefficients by modeling

the PARCOR as a random walk using a truncated normal distribution. Alternatively,

assuming a constant innovation variance, Kitagawa and Gersch (1996) implement the
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smoothness prior within a lattice filter to estimate the PARCOR coefficients. From

a statistical point of view, these two approaches introduce an indirect way of fitting

the TVAR model. However, the former approach is computationally time consuming

and may suffer from the degeneracy problem (i.e., the collapse of approximations of

the marginal distributions). Although the latter takes advantage of the lattice form

to efficiently estimate the PARCOR coefficients, without considering the true evo-

lution of the volatility, it may be impractical for capturing the complex dependence

structures inherent in real-world data.

The approach we propose for estimating the TVAR models considers the PARCOR

coefficient domain and use the lattice structure to estimate the PARCOR coefficients

and innovation variances. The difference between our work and the work of Kitagawa

and Gersch (1996) is that our approach models both the evolution of the PARCOR

coefficients and innovation variances simultaneously within a fully Bayesian context.

Our approach takes advantages of dynamic linear model theory (West and Harrison,

1997; West et al., 1999) and provides full conditional distributions of standard form

for both the PARCOR coefficients and innovation variances and thus Bayesian esti-

mation is computationally advantageous. Moreover, our estimation procedure takes

advantage of recursive one-dimensional equations so that, when the order P ≥ 2,

our approach avoids calculation of higher dimensional inverse matrices. Importantly,

the simulation study we provide demonstrates that, in many cases, our approach has

superior performance in terms of estimating the time-frequency representation of var-

ious nonstationary signals. Thus, our approach provides a stable and computationally

efficient way to fit TVAR models for time-frequency analysis.

The remainder of this chapter is organized as follows. Section 3.2 briefly intro-
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duces the lattice structure and describes our methodology along with prior specifi-

cation. Section 3.3 presents a comprehensive simulation study that illustrates the

effectiveness of our approach across an expansive array of nonstationary processes.

Subsequently, in Section 3.4, our methodology is demonstrated through applications

to modeling insect communication signals and environmental data; i.e, wind compo-

nents. Lastly, Section 3.5 concludes with discussion. For convenience of exposition,

details surrounding the estimation algorithms are left to the Appendix.

3.2 Methodology

3.2.1 Lattice Structures

Instead of fitting AR models directly, by estimating the AR coefficients, the lattice

structures provide an indirect way of fitting AR models through the PARCOR coef-

ficients (Kitagawa and Gersch, 1996). Using the Levinson-Durbin algorithm, there

is a unique correspondence between the PARCOR coefficients and the AR coeffi-

cients (Shumway and Stoffer, 2006; Kitagawa, 2009). The lattice structure provides a

means of directly estimating the PARCOR coefficients, associated with a particular

AR model, using the observed time series (Hayes, 1996; Haykin, 2002). Importantly,

stage P corresponds to the AR model of order P .

Let f
(P )
t and b

(P )
t denote the prediction error at time t for the forward and backward
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AR(P ) models, respectively, where

f
(P )
t = xt −

P∑
m=1

a(P )
m xt−m,

b
(P )
t = xt −

P∑
m=1

d(P )
m xt+m.

Then, the m-th stage of the lattice filter can be described by the pair of input-output

relations between the forward and backward predictions,

f
(m−1)
t = α(m)

m b
(m−1)
t−m + f

(m)
t , (3.2)

b
(m−1)
t = β(m)

m f
(m−1)
t+m + b

(m)
t , m = 1, 2, . . . , P (3.3)

with the initial condition, f
(0)
t = b

(0)
t = xt, and α

(m)
m and β

(m)
m are the lag m forward

and backward PARCOR coefficients, respectively. Equation (3.2) shows that the for-

ward PARCOR coefficient of lag m is a regression coefficient of the forward prediction

error f
(m−1)
t regressed on the backward prediction error b

(m−1)
t−m and the residual term

fmt is the forward prediction error of the forward (subset) AR(m) model. On the

other hand, (3.3) shows that backward PARCOR coefficient of lag m is a regression

coefficient of the backward prediction error b
(m−1)
t regressed on the forward predic-

tion error f
(m−1)
t+m and the residual term bmt is the backward prediction error of the

backward (subset) AR(m) model. Using (3.2) and (3.3) recursively, we can derive

the PARCOR coefficients for a given lag. In the stationary case, the forward and

backward PARCOR coefficients are equivalent, α
(m)
m = β

(m)
m .

Example: To illustrate f
(m)
t and b

(m)
t on the right hand side of (3.2) and (3.3) are the

prediction errors of the forward and backward AR models, respectively, we consider
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an example when P = 2. In this case, we first derive that the difference between f
(1)
t

and α
(2)
2 b

(1)
t−1 of (3.2) is equal to the forward prediction errors of AR(2) as follows

f
(1)
t − α

(2)
2 b

(1)
t−1 = f

(0)
t − α

(1)
1 b

(0)
t−1 − α

(2)
2 (b

(0)
t−2 − β

(1)
1 f

(0)
t−1)

= xt − α(1)
1 xt−1 − α(2)

2 (xt−2 − β(1)
1 xt−1)

= xt − (α
(1)
1 − α

(2)
2 β

(1)
1 )xt−1 − α(2)

2 xt−1

= f
(2)
t .

The above derivation shows that the difference between f
(1)
t and α

(2)
2 b

(2)
t−1 is equal

to the prediction errors of the forward AR(2). It also can be shown that (3.3) is

true. Moreover, when the signal is stationary, the forward and backward PARCOR

coefficients are equal (i.e., α
(m)
m = β

(m)
m ). In such cases, we can change the second

term of the third row to (α
(1)
1 − α

(2)
2 α

(1)
1 )xt−1.

The PARCOR coefficients α
(P )
P are equal to the last component of the coefficients

of the forward AR(P ) model; i.e., α
(P )
P = a

(P )
P . Using the Levinson-Durbin algorithm

(Shumway and Stoffer, 2006; Kitagawa, 2009), the rest of the AR coefficients and

innovation variance can be obtained as follows

â(P )
m = â(P−1)m − â(P )

P â
(P−1)
P−m , m = 1, . . . , P − 1. (3.4)

This equation implies that once the PARCOR coefficient a
(P )
P is estimated, the other

coefficients are automatically determined as well. More importantly, the estimates of

the AR coefficients are the minimum mean squared error estimate.
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3.2.2 The Lattice Structure of the TVAR model

Given the assumption of second-order stationarity, the forward and backward PAR-

COR coefficients are constant over time (i.e., shift-invariant). However, since most

real-world signals are nonstationary, the shift-invariant PARCOR coefficients are typ-

ically inappropriate. In such cases we can modify (3.2) and (3.3) as follows

f
(m−1)
t = α

(m)
t,m b

(m−1)
t−m + f

(m)
t , (3.5)

b
(m−1)
t = β

(m)
t,m f

(m−1)
t+m + b

(m)
t , m = 1, 2, . . . , P (3.6)

with both the forward and backward PARCOR coefficients α
(m)
t,m and β

(m)
t,m now time de-

pendent. Note that for notational simplicity, f
(m)
t and b

(m)
t here denote the prediction

error at time t of the forward and backward TVAR models of order m, respectively.

For locally stationary signals, we may impose the constraint that α
(m)
t,m = β

(m)
t,m at each

time t. However, for general nonstationary cases, α
(m)
t,m and β

(m)
t,m may not be identical

at each time t. Therefore, our approach will proceed without this constraint. Also,

the innovation terms, f
(m)
t and b

(m)
t , are assumed to follow zero-mean Gaussian dis-

tributions, N(0, σ2
f,m,t) and N(0, σ2

b,m,t), respectively. Finally, for the TVAR model of

order P , α
(m)
t,m = 0 when m > P , and σ2

f,P,t is identical to σ2
t of (3.1).

For each stage m of the lattice structure, we construct the following equations to

obtain the coefficients, a
(m)
t,k and d

(m)
t,k , of the forward and backward TVAR models,

respectively, (Hayes, 1996; Kitagawa and Gersch, 1996; Haykin, 2002)

a
(m)
t,k = a

(m−1)
t,k − a(m)

t,md
(m−1)
t,m−k (3.7)

d
(m)
t,k = d

(m−1)
t,k − d(m)

t,k a
(m−1)
t,m−k , k = 1, 2, . . . ,m− 1 (3.8)
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with a
(m)
t,m = α

(m)
t,m and d

(m)
t,m = β

(m)
t,m . Equations (3.7) and (3.8) describe the relationship

between the coefficients of the forward and backward TVAR models. In particular,

these relations illustrate that the forward coefficients at the current stage are a linear

combination of the forward and backward coefficients of the previous stage, with the

weights equal to the PARCOR coefficients. Importantly, such a combination also

includes the stationary and locally stationary cases. For the stationary case, since

α
(m)
t,m = β

(m)
t,m are constant over time, the general equations (3.7) and (3.8) can be

reduced to (3.4). For locally stationary cases, since α
(m)
t,m = β

(m)
t,m at time t, (3.7) and

(3.8) are identical.

3.2.3 Model Specification and Bayesian Inference

Since both the forward and backward PARCOR coefficients of (3.5) and (3.6) as well

as the corresponding innovation variances require evolutionary structures, we consider

random walk models for their evolutions. In such cases, the following two hierarchical

components are added to (3.5) and (3.6). The evolution of the forward and backward

PARCOR coefficients are modeled, respectively, as follows:

α
(m)
t,m = α

(m)
t−1,m + εα,m,t, εα,m,t ∼ N(0, wα,m,t) (3.9)

β
(m)
t,m = β

(m)
t−1,m + εβ,m,t, εβ,m,t ∼ N(0, wβ,m,t) (3.10)

where wα,m,t and wβ,m,t are time dependent system variances. These are defined

in terms of hyperparameters γf,m and γb,m, so called discount factors with range

(0, 1), respectively (West and Harrison, 1997). See the Appendix for further details.

Usually, we treat γf,m = γb,m = γm at each stage m. These two equations also imply
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a sequential update form that the PARCOR coefficient at time t + 1 is equal to the

sum of the PARCOR coefficient at time t plus a correction. Such form is used in the

gradient adaptive lattice filter (Hayes, 1996).

Similarly, both the evolution innovation variances, σ2
f,m,t and σ2

b,m,t, are modeled

through multiplicative random walks as follows

σ2
f,m,t = σ2

f,m,t−1(δf,m/ηf,m,t), ηf,m,t ∼ Beta(gf,m,t, hf,m,t) (3.11)

σ2
b,m,t = σ2

b,m,t−1(δb,m/ηb,m,t), ηb,m,t ∼ Beta(gb,m,t, hb,m,t) (3.12)

where δf,m and δb,m are hyperparameters (i.e., discount factors on the range (0,1)),

and the multiplicative innovations, ηf,t,m and ηb,t,m follow beta distributions with

parameters, (gf,m,t, hf,m,t) and (gb,m,t, hb,m,t), respectively (West et al., 1999). These

parameters are defined at each time t by the discount factors, δf,m and δb,m, as detailed

in the Appendix. In many cases, we also assume that δf,m = δb,m = δm at each stage

m. The series of stochastic error terms εα,m,t, εβ,m,t, ηf,m,t, and ηb,m,t are mutually

independent, and also independent of the forward and backward innovation term

series, f
(m)
t and b

(m)
t of (3.5) and (3.6).

We specify conjugate initial priors for α
(m)
0,m and σ2

f,m,0 at each stage m as follows

p(α
(m)
0,m|Df,m,0, σ

2
f,m,0) ∼ N(µf,m,0, cf,m,0), (3.13)

p(σ−2f,m,0|Df,m,0) ∼ G(vf,m,0/2, κf,m,0/2) (3.14)

where Df,m,0 denotes the information set at time t = 0 (the initial time), G(·, ·) is

the gamma distribution, µf,m,0 and cf,m,0 are user specified values of the mean and

variance for a normal distribution, and vf,m,0/2 and κf,m,0/2 are the shape and scale
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parameters for a gamma distribution. Usually, we treat the starting values µf,m,0,

cf,m,0, vf,m,0, and κf,m,0 as a common constant over stage m, respectively. Typically,

we choose µf,m,0 and cf,m,0 close to zero and one, respectively. In addition, to set

vf,m,0 and vf,m,0, we first fix vf,m,0 = 1 and calculate the sample variance of the ini-

tial components of the signal. Given these two values, we can obtain κf,m,0 through

the formula of the expectation of the gamma distribution. In such prior settings,

sequential filtering and smoothing algorithms for dynamic linear models deliver the

components of marginal posterior distributions (West and Harrison, 1997). Specifi-

cally, for t = 1, . . . , T , with the information set Df,m,T up to time T , the marginal

posterior distributions p(α
(m)
t,m |Df,m,T ) and p(σ−2f,m,t|Df,m,T ) are the t-distribution and

gamma distribution, respectively. Analogous to α
(m)
0,m and σ2

f,m,0, the same conjugate

initial priors for β
(m)
0,m and σ2

b,m,0 are specified at each stage m. Details of the sequen-

tial filtering and smoothing for the PARCOR coefficients and innovation variances

for each stage m are discussed in the Appendix.

3.2.4 Model Selection

Selection of the model order and set of discount factors {P, γm, δm;m = 1, . . . , P}

is essential for our approach. First, one can assume γm = γ and δm = δ, for m =

1, . . . , P . Then, the analysis will run through a specified set of combinations of

(P, γ, δ). Since γ is related to the variability of the PARCOR coefficients, it also

affects the variability of the TVAR coefficients. Hence, one can model the variance of

the time-varying coefficients and the innovation variances of the TVAR models using

discount factors γ and δ, respectively (West et al., 1999). Note that, in our context,

the discount factors (γm, δm) are a function of m (the lattice filter stage), whereas in
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the West et al. (1999) setting there are only one set of discount factors (γ, δ) that

need to be estimated. However, estimation of (P, γ, δ) using the approach of West

et al. (1999) entails repeatedly having to calculate inverse matrices in the sequential

filtering process. Alternatively, we consider the case that γm and δm may vary from

stage to stage. In such cases, we first specify a potential maximum value of P and a

set of combinations of {γm, δm} for each stage m. Given a value of P , we search for

the combination of {γ1, δ1} maximizing the log likelihood of (3.5) at stage one. Using

the selected γ1 and δ1, we can obtain the corresponding series {f (2)
t } and {b(2)t }, for

t = 1, . . . , T , as well as the value of log maximum likelihood of (3.5), `1. We then,

repeat the above search procedure for stage two using the output {f (2)
t } and {b(2)t }

obtained from implementing the selected hyperparameters γ1 and δ1. In turn, this

produces a new series of {f (3)
t } and {b(3)t }, for t = 1, . . . , T , as well as a value `2. We

repeat the procedure until the set of {γm, δm, `m}, m = 1, . . . , P , has been selected.

Here, we provide both a visual method and a numerical method to select the

order. Similar to the scree plot widely used in multivariate analysis (Rencher, 2002),

we can plot `m against order m. When the observed series follows an AR or TVAR

model, the values of `m will stop increasing after a specific lag, this lag can be chosen

as the order for the estimated model. Henceforth, this plot is referred to as “BLF-

scree.” This type of visual order determination can be directly quantified through the

relative change in the log-likelihood. Specifically, we provide a numerical method of

order selection based on calculating the percent change in going from `m−1 to `m,

{(`m − `m−1)/`m−1} ∗ 100. (3.15)

Based on simulation of various TVAR models we find that the value ofm for which this
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percentage becomes less than 0.5% reflects the “best” value of the order. That is, we

have found that 0.5% provides an effective cut-off for choosing the order. Although

this value provides a good guide to order selection, formal model selection in this

setting remains an area of future research.

We now summarize the procedure of our approach to fitting the TVAR models.

Given a set of hyperparameters {P, γm, δm;m = 1, . . . , P}, the procedure starts by

setting f
(0)
t = b

(0)
t = xt, for t = 1, . . . , T . Next, plugging {f (0)

t } and {b(0)t } into (3.5)

and (3.6) and using sequential filtering and smoothing algorithms, we obtain a se-

ries of estimated parameters {α̂(1)
t,1}, {β̂

(1)
t,1 }, {σ̂2

f,1,t}, and {σ̂2
b,1,t}, as well as the new

series of forward and backward prediction errors, {f (1)
t } and {b(1)t }, for t = 1 . . . , T ,

respectively. We then repeat the above procedure until {α̂(P )
t,P }, {β̂

(P )
t,P }, {σ̂2

f,P,t}, and

{σ̂2
b,P,t} have been obtained. Then, recursively plugging the estimates of {α(m)

t,m} and

{β(m)
t,m }, from m = 1, . . . , P into (3.7) and (3.8), we obtain the estimated time-varying

coefficients of (3.1). As part of this algorithm, the series of estimated innovation

variances are equal to {σ̂2
f,P,t}. Finally, for t = 1, . . . , T , the time-frequency rep-

resentation associated with the time-varying AR(P ) model can be obtained by the

following equation

S(t, ω) =
σ2
t∣∣∣1−∑P

m=1 a
(P )
t,mexp(−2πimω)

∣∣∣2 , − 1/2 ≤ ω ≤ 1/2 (3.16)

where i =
√
−1 (Kitagawa and Gersch, 1996). Plugging the estimated values â

(P )
t,m,

m = 1, . . . , P and σ̂2
f,P,t into (3.16) yields the estimated time-varying AR(P ) time-

frequency representation Ŝ(t, ω).
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3.3 Simulation Studies

In this section, we simulate various nonstationary time series in order to compare

the performance of our approach with three other approaches used to estimate the

time-frequency representation. The first approach is AdaptSPEC proposed by Rosen

et al. (2012). This approach adaptively segments the signal into finite pieces and

then estimates the time-frequency representation using smoothing splines via a local

Whittle likelihood approximation to the true likelihood. The size of a segment and the

number of the spline basis function are two essential parameters for this approach.

To reduce any subjectivity in our comparisons, we use the settings for these two

parameters considered in Rosen et al. (2012) (with their tmin = 40), as well as the same

settings for MCMC iterations and burn-in. The second approach is the AutoPARM

method (Davis et al., 2006). Although this approach combines the GA and MDL to

automatically search for potential break points along with the AR orders for each

segment, four parameters are crucial for the GA: numbers of islands, chromosomes

in each island, generations for migration, and chromosomes replaced in a migration;

see Davis et al. (2006) for a comprehensive discussion. All of these parameters were

chosen identical to those used in Davis et al. (2006). The last method we consider is

the approach of West et al. (1999), referred to as WPK1999. This approach requires

specification of three parameters: the TVAR order and two discount factors - one

associated with the variance of the time-varying coefficients and the other with the

innovation variances. In general, the discount factor values are in the range 0.9−0.999

(West et al., 1999). Therefore, for our simulations, we give each discount factor a set

of values from 0.8 to 1 (with equal spacing of 0.02) and, further, a set of values for

the TVAR order from 1 to 15. Given these values, we choose the combination that
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achieves the maximum likelihood (West et al., 1999).

Our approach uses the two selection methods discussed in Section 3.2.4 to search

for the TVAR order with appropriate discount factor values. The selected combina-

tion of {P, γ, δ} with γ and δ held fixed over all stages of the Bayesian lattice filter is

referred to as BLFFix. The selected combination of (P, γm, δm), for m = 1, . . . , P , is

referred to as BLFDyn. The candidate space of parameters for both discount factors

are from 0.8 to 1 (with equal spacing of 0.02), along with orders from 1 to 15.

We consider four types of nonstationary signals: 1) TVAR of order 2 with con-

stant innovation variance; 2) TVAR of order 6 with constant innovation variance; 3)

a piecewise AR process with constant innovation variance; and 4) simulated signals

based on a Enchenopa treehopper communication signal (Holan et al., 2010); see Sec-

tion 3.4.1. Each simulation consists of 200 realizations. To evaluate the performance

in estimating the various time-frequency representations, we calculate the average

squared error (ASE) for each realization as follows (Ombao et al., 2001)

ASEn = (TL)−1
T∑
t=1

L∑
l=1

(
logŜ(t, ωl)− logS(t, ωl)

)2
,

where n = 1, . . . , 200, ωl = 0, 0.005, . . . , 0.5, and T denotes the length of the simulated

series. Lastly, we denote ASE = (1/200)
∑200

n=1 ASEn.
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3.3.1 Time-Varying AR(2) Process

We simulate signals from the same time-varying AR(2) process (TVAR2), used in

Davis et al. (2006) and Rosen et al. (2009, 2012), which is defined as follows

xt = atxt−1 − 0.81xt−2 + εt,

at = 0.8(1− 0.5cos(πt/1024)),

where εt
iid∼ N(0, 1) and t = 1, . . . , 1024. Figure 3.1 shows the BLF-scree plot of

the likelihood against order of the BLFDyn. This plot suggests that order two is

the appropriate choice for all 200 realizations. Since the time-varying coefficient at,

varies slowly with time, this process naturally exhibits a slowly evolving time-varying

spectrum (Figure 3.2). The box-plots of the ASE values in Figure 3.2 show that

the group of TVAR-based models (i.e., WPK1999, BLFFix, and BLFDyn) perform

superior to the group of non-TVAR-based models (i.e., AdaptSPEC and AutoPARM),

with BLFDyn performing the best. In fact, the reduction of ASE for BLFDyn is

36.57% over WPK1999, 36.80% over BLFFix, 84.33% over AutoPARM, and 87.71%

over AdaptSPEC.

3.3.2 Time-Varying AR(6) Process

We consider signals from the same time-varying AR(6) process of order six (TVAR6)

used in Rosen et al. (2009). This time-varying AR(6) process can be compactly

expressed as φt(B)xt = εt, t = 1, . . . , T , in terms of a characteristic polynomial

function φt(B), with εt
iid∼ N(0, 1) and B the backshift operator (i.e., Bpxt = xt−p).

63



The characteristic polynomial function for this process can be factorized as

φt(B) = (1− at,1B)(1− a∗t,1B)(1− at,2B)(1− a∗t,2B)(1− at,3B)(1− a∗t,3B),

where the superscript ∗ denotes the complex conjugate. Also, for p = 1, 2, 3, let

a−1t,p = Apexp(2πiθt,p), where the θt,ps are defined by

θt,1 = 0.05 + (0.1/(T − 1))t,

θt,2 = 0.25,

θt,3 = 0.45− (0.1/(T − 1))t,

with T = 1024. The values of A1, A2, and A3 are equal to 1.1, 1.12, and 1.1,

respectively.

Figure 3.3 suggests that order six is the appropriate choice for all 200 realizations.

The TVAR(6) contains three pairs of time-varying conjugate complex roots. Fig-

ure 3.4 illustrates that the TVAR(6) has a time-varying spectrum with three peaks.

Similar to the analysis of TVAR(2) (Section 3.3.1), the group of TVAR-based models

performs better than the group of non-TVAR-based models, with BLFDyn performing

superior to the others. Again, the percent reduction in ASE is notable. The reduc-

tion of ASE for BLFDyn is 29.57% over WPK1999, 35.43% over BLFFix, 75.26%

over AdaptSPEC, and 75.68% over AutoPARM.
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3.3.3 Piecewise Stationary AR Process

The signals simulated here are based on the same piecewise stationary AR process,

used by Davis et al. (2006) and Rosen et al. (2009, 2012) and is defined as follows

xt =


0.9xt−1 + εt; if 1 ≤ t ≤ 512,

1.69xt−1 − 0.8xt−2 + εt; if 513 ≤ t ≤ 768,

1.32xt−1 − 0.8xt−2 + εt; if 769 ≤ t ≤ 1024,

where εt
iid∼ N(0, 1). These generated signals are referred to as PieceAR. Since it

is difficult to choose the order for some realizations using Figure 3.5, we use (3.15)

to choose the order. The numerical method suggests order two for some realiza-

tions and order three for the others. The true process includes three segments, with

each of the segment mutually independent. The piecewise nature of this process is

clearly depicted by its time-varying spectrum (Figure 3.6b). The box-plot shows

that AutoPARM exhibits superior performance in terms of the smallest median ASE.

However, WPK1999 and BLFFix may perform more robustly (i.e., less outlying ASE

values). Although we see a 23.78% reduction in ASE for AutoPARM versus BLFFix,

we find that BLFFix performs superior to the remainder of the approaches and has

the smallest standard deviation across the 200 simulations. The findings here are not

surprising as AutoPARM is ideally suited toward identifying and estimating piecewise

AR processes and, for our approach, taking (γ, δ) fixed is advantageous for processes

that are not slowly-varying.
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3.3.4 Simulated Insect Communication Signals

The signals considered in this simulation are formulated such that they exhibit the

same properties as an Enchenopa treehopper mating signal; see Section 3.4.1 for

a complete discussion. Specifically, we fit a time-varying AR(6) model to obtain

time-varying AR coefficients and innovation variances. Typically, with these type of

nonstationary signals, the innovation variances are time dependent, which is markedly

different from the previous examples where the innovation variance was constant.

The signals generated by these parameters are referred as SimBugs. As expected,

Figure 3.7 suggests that order six may be an appropriate choice for all 200 realizations.

Panel (a) of Figure 3.8 demonstrates one realization of the SimBugs, whereas panel (b)

provides box-plots that characterize the distribution of ASEn over the 200 simulated

signals. Specifically, from Figure 3.8, we see that BLFFix and BLFDyn perform

better than the other approaches, in terms of median ASE. Further, we find that

BLFFix and BLFDyn are similar, in terms of ASE, although the median of BLFDyn

(0.2675) is smaller than that of BLFFix (0.3176).

Table 3.1 summarizes the mean values and standard deviations for this simulation.

From this table we see that the reduction of ASE for BLFDyn is 6.01% over BLF-

Fix, 30.04% over WPK1999, 51.77% over AutoPARM, and 78.07% over AdaptSPEC.

Lastly, BLFFix has the smallest sdASE of all of the approaches in this setting.
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3.4 Case Studies

3.4.1 Animal Communication Signals

Understanding the dynamics of populations is an important component of evolution-

ary biology. Many organisms exhibit complex characteristics that intricately relate

to fitness. For example, the mating signal of the Enchenopa treehopper represents a

phenotype of the insect that is used in mate selection (see Holan et al., 2010, and

the references therein). During the mating season, males in competition deliver their

vibrational signals through stems of plants to females (see Cocroft and McNett, 2006,

and the references therein). The data considered here comes from an experiment that

was previously analyzed in Holan et al. (2010). The experiment was designed with

the goal of reducing potential confounding effects between environmental and phe-

notypical variation. In this experiment, males signals were recorded one week prior

to the start of mating. Figure 3.9 (a) displays a typical signal of from a successful

mater, with length 4,739 downsampled from a registered signals of length 37,912. In

this context, justification for the appropriateness of downsampling the original signal

can be found in Holan et al. (2010). Also, as discussed in Holan et al. (2010), this

signal shows a series of broadband clicks preceding a frequency-modulated sinusoidal

component, followed by a series of pulses.

For this analysis, we used the BLFDyn approach to search for a model having

both discount factors in the range of 0.8 to 1 (with equal spacing of 0.02) and an

order between 1 and 25. Figure 3.10 summarizes the likelihood along with the time-

varying PARCOR coefficients, AR coefficients, and variances. The likelihood in panel

(a), different from the simulated time-varying AR models, increases along with the
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order. Hence, we use (3.15) with the model order chosen by our 0.5% rule of thumb.

This rule yields a time-varying AR model with order equal to six. In panel (b),

the PARCOR coefficients of lag larger than two are close to zero following time

around 0.3 (where the time access has been normalized such that t ∈ (0, 1)). Thus,

the last four TVAR coefficients after time 0.3 are close to zero in panel (c). Such

phenomena suggests that the period before time 0.3 has a more complex dependence

structure. Panel (d) shows that the innovation variance exhibits higher volatility at

the beginning signal. These bursts in the innovation variance are related to the series

of broadband clicks at the beginning of the signal. Finally, Figure 3.9 (b) presents the

time-frequency representation of the treehopper signal using the time-varying AR(6)

model and corroborates the significance of the broadband clicks at the beginning of

the signal.

3.4.2 Wind Components

We study the time-frequency representations of the east/west and north/south wind

components, recorded daily at Chuuk Island in the tropical Pacific during the period

of 1964 to 1994 (see Cressie and Wikle, 2011, Sections 3.5.3 and 3.5.4). The data

studied are at the level of 70 hPa, which is important scientifically due to the likely

presence of westward and eastward propagating tropical waves, and the presence of

the quasi-biennial oscillation (QBO) (Wikle et al., 1997). Figure 3.11 shows the two

wind component time series from which we can discern visually that the east/west

series clearly exhibits the QBO signal, but no discernible smaller-scale oscillations

are present in either series. Our interest is then whether the time-varying spectra for

these series suggest the presence of time-varying oscillations, which are theorized to
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be present.

We consider the same search space for the model order and discount factors as

that used for the treehopper communication signal (Section 3.4.1). Figure 3.12 shows

the analysis and corresponding inference for the east/west component of the wind.

Panel (a) shows an increase of the likelihood so that we use (3.15) with the critical

point 0.5% to choose the order equal to three. The PARCOR coefficient of lag one

depends on time but the PARCOR coefficient of lag two and three appear to be

constant. Panels (c) and (d) present the estimated time-varying coefficients and

innovation variances of the time-varying AR(3) model. Figure 3.13 show the analysis

and corresponding inference for the east/west component of the wind. Panel (a)

shows a turning point at order three so that we choose the order equal to four. The

PARCOR coefficients are time independent. Panel (c) and (d) present the estimated

time-varying coefficients and innovation variances of the TVAR model of order four.

Figure 3.14 shows the estimated time-frequency representations of the wind east/west

and north/south components. The east/west component time-varying spectrum does

suggest that the QBO intensity varies considerably as evidenced by the power in the

low-frequencies. Perhaps more interesting is the suggestion of time-varying equatorial

waves in the north/south wind component time-varying spectrum. In particular, the

lower-frequency (Kelvin and Rossby) waves with frequencies between 0.1 and 0.2

show considerable variation in duration of wave activity, as well as intensity. One

also sees time-variation in the likely mixed-Rossby gravity waves in the frequency

band between 0.2 and 0.35. Interestingly, in some cases these are in phase with the

lower-frequency wave activity but more often act in opposition. We also note the

almost complete collapse of the equatorial wave activity centered on 1984.
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3.5 Discussion

This chapter develops a computationally efficient method for model-based time-

frequency analysis. Specifically, we consider a fully Bayesian lattice filter approach

to estimating time-varying autoregressions. By taking advantage of the partial auto-

correlation domain, our approach is extremely stable. Notably, the full conditional

distributions arising from our approach are all of standard form and, thus, facilitate

easy estimation.

The framework we propose extends the current model-based approaches to time-

frequency analysis and, in most cases, provides superior performance, as measured

by the average squared error between the true and estimated time-varying spectral

density. In fact, for slowly-varying processes we have demonstrated significant esti-

mation improvements from using our approach. In contrast, when the true process

comes from a piecewise AR model the approach of Davis et al. (2006) performed best,

with our approach a close competitor and performing second best. This is not un-

expected as the AutoPARM method is a model-based segmented approach and more

closely mimics the behavior of a piecewise AR.

In addition to a comprehensive simulation study we have provided two real-data

examples, one from environmental science and the other from animal (insect) com-

munication. In both cases, the exceptional time-frequency resolution obtained using

our approach helps us identify salient features in the time-frequency surface. Finally,

as a by-product of taking a fully Bayesian approach, we are naturally able to quantify

uncertainty and, thus, use our approach to draw inference.
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3.6 Appendix: Sequential Updating and Smooth-

ing

To complete the Bayesian estimation of the forward and backward PARCOR coeffi-

cients, as well as the time-varying innovation variances, we use dynamic linear model

(DLM) methodology (see, West and Harrison, 1997; West et al., 1999). Specifically,

we provide the details and formulas for analysis for {α(m)
t,m} and {σ2

f,m,t}. The analysis

of {β(m)
t,m } and {σ2

b,m,t} follows similarly.

For t = 1, . . . , T , given the values of f
(m−1)
t and b

(m−1)
t−m at stage m, recall (3.5) of

Section 3.2.2 gives

f
(m−1)
t = α

(m)
t,m b

(m−1)
t−m + f

(m)
t ,

with f
(m)
t ∼ N(0, σ2

f,m,t). Modeling of {α(m)
t,m} and {σ2

f,m,t} proceeds by (3.9) and

(3.11):

α
(m)
t,m = α

(m)
t−1,m + εα,m,t, εα,m,t ∼ N(0, wα,m,t)

σ2
f,m,t = σ2

f,m,t−1(δf,m/ηf,m,t), ηf,m,t ∼ Beta(g
(m)
f,t , h

(m)
f,t ),

with wα,m,t = cf,m,t−1(1 − γf,m)/γf,m (see West and Harrison, 1997, Section 6.3)

and cf,m,t−1 the scale parameter of the marginal t-distribution of α
(m)
t−1,m given the

information set up to time t − 1. Moreover, gf,m,t = δf,m · vf,m,t−1/2, and hf,m,t =

(1−δf,m) ·vf,m,t−1/2 (see West and Harrison, 1997, Section 10.8), where vf,m,t−1/2 the

shape parameter of the marginal gamma distribution of σ−2f,m,t given the information

set up to time t − 1 (see Section 3.6.1). Then, given specified values for the two

discount factors γf,m and δf,m, as well as conditional on assuming conjugate initial

priors (3.13) and (3.14), we can derive the corresponding sequential updating and
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smoothing of DLM theory.

3.6.1 Sequential Updating

Using similar notation to West and Harrison (1997) and West et al. (1999), we

first sequentially update the joint posterior distributions of p(α
(m)
t,m , σ

−2
f,m,t|Df,m,t) over

t = 1, . . . , T. Since the initial priors have the conjugate normal/gamma forms,

p(α
(m)
t,m , σ

−2
f,m,t|Df,m,t) also has the normal/gamma form. Therefore, the marginal pos-

terior distribution of α
(m)
t,m is a t-distribution; i.e., p(α

(m)
t,m |Df,m,t) ∼ Tvf,m,t

(µf,m,t, cf,m,t),

with degrees of freedom vf,m,t, location parameter µf,m,t, and scale parameter cf,m,t.

The marginal posterior distribution of σ−2f,m,t is a gamma distribution p(σ−2f,m,t|Df,m,t) ∼

G(vf,m,t/2, κf,m,t/2), with shape parameter vf,m,t/2 and scale parameter κf,m,t/2. We

summarize the sequential updating equations of parameters for t = 1, . . . , T , as fol-

lows:

µf,m,t = µf,m,t−1 + zf,m,tef,m,t,

cf,m,t = (rf,m,t − z2f,m,tqf,m,t)(sf,m,t/sf,m,t−1),

and

vf,m,t = δf,mvf,m,t−1 + 1,

κf,m,t = δf,mκf,m,t−1 + sf,m,t−1e
2
f,m,t/qf,m,t,
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where

ef,m,t = f
(m)
t − µf,m,t−1b(m−1)t−m ,

zf,m,t = rf,m,tb
(m−1)
t−m /qf,m,t,

sf,m,t = κf,m,t/vf,m,t,

qf,m,t = rf,m,t + sf,m,t−1,

rf,m,t = cf,m,t + wα,m,t,

wα,m,t = cf,m,t−1(1− γf,m)/γf,m.

Importantly, since wα,m,t = cf,m,t−1(1 − γf,m)/γf,m, we can reduce rf,m,t to rf,m,t =

cf,m,t−1/γf,t.

3.6.2 Smoothing

After the sequential updating process, we can use a retrospective approach to derive

the smoothing joint distribution of p(α
(m)
t,m , σ

−2
f,m,t|Df,m,T ), for t = 1, . . . , T , given all the

information up to time T (West and Harrison, 1997; West et al., 1999). We summarize

the equations for the parameters of both marginal distributions, p(α
(m)
t,m |Df,m,T ) ∼

Tvf,m,t|T (µf,m,t|T , cf,m,t|T ), with degrees of freedom vf,m,t|T , location parameter µf,m,t|T ,

and scale parameter cf,m,t|T . Moreover, p(σ−2f,m,t|Df,m,T ) ∼ G(vf,m,t|T/2, κf,m,t|T/2),

with shape parameter vf,m,t|T/2 and scale parameter κf,m,t|T/2. It is important to

note that when t = T , we have µf,m,T |T = µf,m,T , cf,m,T |T = cf,m,T , vf,m,T |T = vf,m,T ,

and zf,m,T |T = vz,m,T from the results of sequential updating. Additionally, the point

estimate of σ2
f,m,t at time T is sf,m,T |T = sf,m,T . Then, for t = T − 1, . . . , 1, we can
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summarize the equations as follows:

µf,m,t|T = (1− γf,m)µf,m,t + (1− γf,m)µf,m,t+1|T ,

cf,m,t|T = [(1− γf,m)cf,m,t + γ2f,mcf,m,t+1|T ](sf,m,t|T/sf,m,t),

vf,m,t|T = (1− δf,m)vf,m,t + δf,mvf,m,t+1|T ,

1/sf,m,t|T = (1− δf,m)/sf,m,t + δf,m/sf,m,t|T ,

κf,m,t|T = vf,m,t|T/sf,m,t|T .

3.6.3 Algorithm to Fit TVAR Models

We summarize the algorithm of our approach to fitting a time-varying AR(P ) model

as follows:

Step 1. Give a value for order P and a set of values for {γm, δm}, for m = 1, . . . , P ,

as well as initial values of parameters at t = 0.

Step 2. For t = 1, . . . , T , set f 0
t = b0t = xt.

Step 3. Put {f 0
t } and {b0t} into (3.5) and then use sequential updating and smooth-

ing to obtain {α̂(1)
t,1}, {σ̂f,1,t}, and {f 1

t }.

Step 4. Put {f 0
t } and {b0t} into (3.6) and then run sequential updating and

smoothing to obtain {β̂(1)
t,1 }, {σ̂b,1,t}, and {b1t}.

Step 5. Put {f 1
t } and {b1t} into (3.5) and (3.6) and then run sequential updating

and smoothing to obtain {α̂(2)
t,2}, {σ̂f,2,t}, and {f 2

t } as well as {β̂(2)
t,2 }, {σ̂b,2,t}, and

{b2t}.

Step 6. Repeat Step 5 until {α̂(P )
t,P }, {σ̂f,P,t}, {β̂

(P )
t,P }, and {σ̂b,P,t} are obtained.

Step 7. Given the set of estimated values {α̂(m)
t,m}, {β̂

(m)
t,m }, for m = 1, . . . , P , use
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(3.7) and (3.8) iteratively to get the set of estimated {â(P )
t,m}, m = 1, . . . , P , as well

as set {σ̂2
t = σ̂f,P,t}.
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Table 3.1: The mean, ASE and standard deviation, sdASE, of the ASE values for
the simulations presented in Section 3.3. Note that the bold values represent the
approach having minimum ASE.

ASE(sdASE)
AdaptSPEC AutoPARM WPK1999 BLFFix BLFDyn

TVAR2 0.1383 (0.0275) 0.1085 (0.0302) 0.0268 (0.0093) 0.0269 (0.0093) 0.0170 (0.0084)
TVAR6 0.2195 (0.0351) 0.2233 (0.0439) 0.0771 (0.0171) 0.0841 (0.0191) 0.0543 (0.0276)
PieceAR 0.1070 (0.0227) 0.0702 (0.0392) 0.0931 (0.0218) 0.0921 (0.0205) 0.1607 (0.1107)
SimBugs 1.4760 (0.2237) 0.6711 (0.0725) 0.4627 (0.0796) 0.3444 (0.0659) 0.3237 (0.1075)
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Figure 3.1: BLF-scree plot of likelihood along with the TVAR order for the 200
realizations of the time-varying AR(2) process (TVAR2), given in Section 3.3.1.
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Figure 3.2: (a) and (b) depict one realization and the true time-frequency represen-
tation of the time-varying AR(2) process (TVAR2), respectively (Section 3.3.1). (c)
illustrates the box-plots of the average squared error (ASE) values corresponding to
the time-frequency representation of TVAR2 for all of the approaches considered.
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Figure 3.3: BLF-scree plot of the likelihood along with the TVAR order for the 200
realizations of the time-varying AR(6) process (TVAR6), given in Section 3.3.2.
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Figure 3.4: (a) and (b) depicts one realization and the true time-frequency represen-
tation of the time-varying AR(6) process (TVAR6), respectively (Section 3.3.2). (c)
illustrates the box-plots of the average squared error (ASE) values corresponding to
the time-frequency representation of TVAR6 for all of the approaches considered.
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Figure 3.5: BLF-scree plot of the likelihood along with the TVAR order for the 200
realizations of the piecewise stationary AR process (PieceAR), given in Section 3.3.3.
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Figure 3.6: (a) and (b) depict one realization and the true time-frequency repre-
sentation of the piecewise AR process (PieceAR), respectively (Section 3.3.3). (c)
illustrates the box-plots of the average squared error (ASE) values corresponding to
the time-frequency representation of the PieceAR for all of the approaches considered.
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Figure 3.7: BLF-scree plot of the likelihood along with the TVAR order for the
200 realizations of the simulated insect communication signal (SimBugs), given in
Section 3.3.4.
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Figure 3.8: (a) depicts one realization of the simulated insect communication signals
(SimBugs), Section 3.3.4. (b) illustrates the box-plots of the average squared error
(ASE) values corresponding to the time-frequency representation of the SimBugs for
all of the approaches considered.

84



0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a)

Time

F
re

qu
en

cy

(b)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

−80

−70

−60

−50

−40

−30

−20

Figure 3.9: (a) An example of typical signal corresponding to a successful mater
(Section 3.4.1). (b) Time-varying AR(6) spectral representation of the signal in plot
(a).
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Figure 3.10: (a) shows the likelihood along with increase of the TVAR order for fitting
the treehopper communication signal. (b) depicts the first six time-varying estimated
PARCOR coefficients. (c) and (d) show the estimated time-varying coefficients and
innovation variances of the time-varying AR(6) model.
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Figure 3.11: (a) and (b) show daily time series (1964-1994) of east/west and
north/south components of wind, respectively.
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Figure 3.12: (a) shows the likelihood along with increase of the TVAR order for
fitting the east/west component of the wind signal. (b) depicts the first three time-
varying estimated PARCOR coefficients. (c) and (d) show the estimated time-varying
coefficients and innovation variances of the time-varying AR(3) model.
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Figure 3.13: (a) shows the likelihood along with increase of the TVAR order for
fitting the north/south component of the wind signal. (b) depicts the first four time-
varying estimated PARCOR coefficients. (c) and (d) show the estimated time-varying
coefficients and innovation variances of the time-varying AR(4).
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Figure 3.14: (a) and (b) displays the time-frequency representations of the wind
east/west and north/south components.
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Chapter 4

Bayesian Analysis of
Spatially-Dependent Functional
Responses with
Spatially-Dependent Image
Predictors

4.1 Introduction

With advances in instrumentation such as satellites, sensor networks, data storage

tags, and spectroscopes, scientists are often faced with the problem of incorporating

extremely high-dimensional covariates into statistical models. The efficient use of

such “big data” is the subject of much active research in the statistics and computer

science communities. However, such problems are only compounded when these data

are collected over space and/or time, thereby introducing dependence. In cases where
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the response is also spatial and/or temporal, this dependence may be accounted

for by the covariates, but may also require temporal and/or spatially-explicit error

structures. Another complication arises when the responses themselves are inherently

functional (e.g., “curves” in time and/or space). This paper presents methodology

that can accommodate high-dimensional “image” covariates that vary in space, as well

as purely spatial scalar covariates, in the context of modeling spatially-dependent

functional responses. The methodology is presented using a hierarchical Bayesian

approach to account for uncertainties that arise in the observations, process and

parameters. Inference and prediction are facilitated by the use of stochastic search

variable selection (SSVS).

The use of so-called “image predictors” has seen increased utility in statistical

models over the last few years (e.g., see Reiss and Ogden, 2010; Morris et al., 2011;

Holan et al., 2010, 2012; Martinez et al., 2013; Yang et al., 2013, Chapter 2). Holan

et al. (2010) showed in the context of insect communication that one could treat a

time-frequency representation of a high-frequency nonstationary time signal as an

“image” and, with suitable functional dimension reduction and SSVS, easily incor-

porate such big data covariates into classical generalized linear mixed models. This

was subsequently considered in the context of business cycle modeling (Holan et al.,

2012) and with the incorporation of nonlinear interactions in modeling spawning suc-

cess of shovelnose sturgeon in Yang et al. (2013) (Chapter 2). Recently, Martinez

et al. (2013) considered a functional mixed model approach to modeling acoustic sig-

nals associated with bats. To our knowledge, modeling spatially-correlated functional

data with spatially-dependent image predictors has not been considered to date.

As previously alluded to, the use of spatially-dependent image predictors is com-
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pounded in the case where one has responses that are spatially-dependent functions as

well. Although functional responses have been considered in the context of image pre-

diction (e.g., Morris et al., 2011), the spatially-dependent functional case has not been

considered. Functional data analysis is fairly mature in statistics (e.g., see Bosq, 2000;

Ramsay and Silverman, 2005, among others), yet spatial functional data analysis has

just recently become an active sub-field of spatial statistics and functional data analy-

sis. Excellent reviews of recent work in the area can be found in Delicado et al. (2010),

Ruiz-Medina (2012a), and Kokoszka (2012). In general, geostatistical predictive and

clustering approaches have focused on co-kriging ideas (e.g., Goulard and Voltz, 1993;

Monestiez and Nerini, 2008; Giraldo et al., 2010, 2012) and the general theory of

spatial autoregressive and moving average Hilbertian processes (Ruiz-Medina, 2011;

Ruiz-Medina and Montes, 2011; Ruiz-Medina, 2012b; Ruiz-Medina and Espejo, 2013).

In addition, a more traditional functional principal components approach to spatially-

dependent functions, where interest is on estimation of mean functions, is given in

Gromenko et al. (2012) and Gromenko and Kokoszka (2013). These approaches have

been from the classical perspective, with relatively few Bayesian implementations.

Notable exceptions include Baladandayuthapani et al. (2008) who consider a Bayesian

hierarchical model with relatively simple spatial dependence on the functions at low

levels of the hierarchy. This was extended by Zhou et al. (2010) to have a more flex-

ible covariance structure, and was implemented using an expectation-maximization

(E-M) algorithm. These Bayesian approaches to spatial functional data analysis have

not considered SSVS, although Li and Zhang (2010) provide the groundwork for such

high-dimensional, highly-structured SSVS.

The contribution of this chapter is then the development of methodology for
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modeling spatially-dependent functional responses in terms of spatially-dependent

functional-image predictors, along with spatially-dependent covariates, within a Bayesian

paradigm that utilizes SSVS. Section 4.2 describes the methodology. A motivating ex-

ample from soil science is given in Section 4.3, followed by a discussion and concluding

remarks in Section 4.4.

4.2 Methodology

In this section, we introduce a class of spatially-explicit functional models. Different

from traditional spatial models, the proposed models include functional responses

and functional covariates. In general, these functional covariates can be curves of one

dimension, images of two dimensions, or objects of higher dimensions. In this chapter,

we focus on two-dimensional image covariates that are spatially dependent, although

it is straightforward to generalize the model to account for other functionals and their

interactions (e.g., see Yang et al., 2013, Chapter 2). Inference is performed in the

Bayesian framework, utilizing stochastic search variable selection (SSVS) algorithms

based on a mixture of normal priors.

4.2.1 Spatially-Dependent Functional-Image Model

We denote a response functional to be a continuous spatial process {Y (s, d) : s ∈

D ⊂ R2, d ∈ D ⊂ R}, where D is a continuous spatial domain. Furthermore, D rep-

resents a continuous one-dimensional domain, such as time or depth. For purposes

of this exposition, we refer to this dimension as “depth” to coincide with the appli-

cation in Section 4.3, but note that there are many applications in which this index
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would correspond to time. Also, denote Xj(s,uj) the j-th observed two-dimensional

functional covariate, j = 1, . . . , J , at spatial location s with {uj = (d, ωj)
′ : ωj ∈ Ω}

corresponding to the index of the two image dimensions of interest (e.g., depth and

wavelength, respectively). Note that the j subscript on uj serves to indicate that the

image “pixels” may be different for the different covariates (although this is not the

case in the example presented in Section 4.3). To give this notation some perspec-

tive relative to our application in Section 4.3, we let Ω correspond to the continuous

frequency (or wavelength) domain.

The primary model can then be written, at location s, as the relation between the

response functional and functional covariates as follows

Y (s, d) =
J∑
j=1

∫
Xj(s,uj)βj(uj, d)duj + z′(s)δ(d) + η(s, d) + ε(s, d), (4.1)

where βj(uj, d) is a square integrable functional coefficient corresponding to Xj(s,uj),

δ(d) is a p-vector of regression coefficients associated with the p× 1 spatially indexed

covariate vector z(s), η(s, d) is a random effect capturing spatial and depth depen-

dence, and ε(s, d) is an independent Gaussian process with mean zero and variance

σ2
ε (i.e., the nugget or measurement error). Typically, we specify η(s, d) to be a

Gaussian process with mean zero and covariance function C(s, d). In a traditional

spatial analysis, one might consider a three-dimensional spatial covariance function

if d corresponds to the vertical dimension, or a spatio-temporal covariance function

if d corresponds to time (e.g. Cressie and Wikle, 2011). Here, we deliberately keep

these indices separate given that the response and covariate vary functionally in the

dimension d, and this is assumed to operate on a different scale of variability rela-

tive to the two-dimensional spatial component of the process. That is, different from
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traditional geostatistics that is concerned with scalar or vector variables at location

s, the proposed model considers the case that the response variable of interest is a

functional (curve) in depth (or time) and some of covariates are also functionals. In

this sense, the function βj(uj, d) can be thought of as a kernel that “distributes” the

covariate Xj(s,u) to the depth of the response variable at location s.

Assume that {φjk(uj) : k = 1, . . . ,∞} form a complete orthonormal basis corre-

sponding to the j-th functional covariate. Then, we have the unique representation

of the functional covariate

Xj(s,uj) =
∞∑
k=1

ξjk(s)φjk(uj),

where ξjk(s) are expansion coefficient functions (for a given location s) associated

with the jth functional covariate. In addition, by considering the same basis we also

have the unique representation

βj(uj, d) =
∞∑
k=1

bjk(d)φjk(uj),

where bjk(d) are expansion coefficient functions (for a given depth d) associated with

the j-th square integrable function. Substituting these expressions into (4.1) and

making use of the orthogonality, we obtain

Y (s, d) =
J∑
j=1

∞∑
k=1

ξjk(s)bjk(d) + z′(s)δ(d) + η(s, d) + ε(s, d). (4.2)

In addition, assume that {ψi(d) : i = 1, . . . ,∞} form a complete orthonormal
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basis corresponding to depth. Then, we have the unique representations

Y (s, d) =
∞∑
i=1

αi(s)ψi(d),

bjk(d) =
∞∑
i=1

bjkiψi(d),

η(s, d) =
∞∑
i=1

θi(s)ψi(d),

where αi(s) and θi(s) are expansion coefficient functions (of s) corresponding to

Y (s, d) and η(s, d), respectively, and bjki are expansion coefficients associated with

bjk(d). Replacing Y (s, d), bjk(d) and η(s, d) in (4.2) with these expansions, we can

rewrite (4.2) as

∞∑
i=1

αi(s)ψi(d) =
J∑
j=1

∞∑
k=1

∞∑
i=1

ξjk(s)bjkiψi(d)+z′(s)δ(d)+
∞∑
i=1

θi(s)ψi(d)+ε(s, d). (4.3)

Finally, assume that {w`(s) : ` = 1, . . . ,∞} form a complete orthonormal basis

corresponding to s, which then gives the unique representations

αi(s) =
∞∑
`=1

w`(s)ai`,

ξjk(s) =
∞∑
`=1

w`(s)fjk`,

θi(s) =
∞∑
`=1

w`(s)gi`,

where ai`, fjk`, and gi` are expansion coefficients associated with αi(s), ξjk(s), and

θi(s), respectively. Substituting the above expansions into (4.3), we obtain the up-
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dated representation of (4.3),

∞∑
i=1

∞∑
`=1

w`(s)ψi(d)ai` =
J∑
j=1

∞∑
k=1

∞∑
i=1

∞∑
`=1

w`(s)ψi(d)fjk`bjki + z′(s)δ(d)

+
∞∑
i=1

∞∑
`=1

w`(s)ψi(d)gi` + ε(s, d). (4.4)

Similar to applications in traditional functional data analysis, we consider a finite

approximation to the infinite summation in (4.4),

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)ai` =
J∑
j=1

nkj∑
k=1

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)fjk`bjki + z′(s)δ(d)

+

ni∑
i=1

n∑̀
`=1

w`(s)ψi(d)gi` + ε(s, d). (4.5)

In practice the truncations nkj , ni, and n` are typically problem specific and can be

chosen based on percent of variance explained, cross-validation , and/or sensitivity

analysis. Further, denote ψ(d) ≡ [ψ1(d), . . . , ψni
(d)]′ and w(s) ≡ [w1(s), . . . , wni

(s)]′.

Then, we can rewrite (4.5) as

w(s)′Aψ(d) =
J∑
j=1

w(s)′Fjbjψ(d) + z′(s)δ(d) + w′(s)Gψ(d) + ε(s, d), (4.6)

where A and G are n` × ni matrices with elements {a`i} and {g`i}, respectively, Fj

is an n`×nk matrix with elements {fj`k}, and bj is an nkj ×ni matrix with elements

{bjki}, for i = 1, . . . , ni, k = 1, . . . , nkj , and ` = 1, . . . , n`.

In practice, one typically has observations at a finite collection of spatial lo-

cations and finite depths. In such a case, consider ns spatial locations and nd

depths. We denote Ψ ≡ [ψ(d1), . . . ,ψ(dnd
)] with the assumption of nd > ni and
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W ≡ [w(s1), . . . ,w(sns)]
′ with the assumption of ns > n`. Consequently, we can

rewrite (4.6) as

WAΨ =
J∑
j=1

WFjbjΨ + Z∆ + WGΨ + E, (4.7)

with Z ≡ [z(s1), . . . , z(snns)]
′, ∆ ≡ [δ(d1), . . . , δ(dnd

)], and E ≡ [ε(s1), . . . , ε(sns)]
′,

where ε(s) ≡ [ε(s, d1), . . . , ε(s, dnd
)]′. Because W and Ψ are orthogonal, it follows

that W′W = In`
and ΨΨ′ = Ini

. Then, we can simplify (4.7) such that

A =
J∑
j=1

Fjbj + W′Z∆Ψ′ + G + W′EΨ′, (4.8)

where W and Ψ are known. Consequently, our model reduces to a multivariate

multiple regression model with random effects.

To preserve the matrix structure, we utilize matrix variation normal distributions

as introduced by Dawid (1981). That is, if an m × t matrix U follows a matrix

variation normal distribution, it can be expressed as

U ∼ Nm,t(H,Σm,Σt),

where H is an m×t matrix of mean values, Σm is an m×m covariance matrix between

rows, and Σt is an t × t covariance matrix between columns. This can also be writ-

ten as a multivariate normal distribution with vec(U) ∼ MVN(vec(H),Σt ⊗ Σm),

where vec(U) is the vectorization of a matrix U, and one can see by the Kro-

necker product that the standard matrix normal representation implies a separable

covariance structure between the matrix row and column variables. In addition, the

matrix variation normal distributions have a property that the linear transforma-
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tions of U still follow the matrix variation normal distribution such as MUT′ ∼

Nm,t(MHT′,MΣmM′,TΣtT
′).

In our model, we then note that W′EΨ′ ∼ Nn`,ni
(0, σ2

ε In`
, Ini

) since W′W =

I and ΨΨ′ = I. Furthermore, we specify G ∼ Nn`,ni
(0,Σn`

,Σni
), where Σn`

=

W′CsW and Σni
= ΨCdΨ

′. In this case, Cd and Cs are nd × nd and ns × ns depth

and spatial covariance matrices, respectively. These may be specified, as is typical

in geostatistics, according to some valid spatial covariance function (e.g., a Matérn

model) or empirically, as in functional principal components analysis. Often Σni
and

Σn`
are then diagonal matrices (or nearly so) (e.g., see Cressie and Wikle, 2011).

Note that a non-separable covariance structure could be specified between depth and

space, as mentioned previously.

Upon estimation of the parameters, one can then perform prediction of the re-

sponse at any location and depth by utilizing the appropriate basis expansions to

obtain E(Y (s, d)). Critically, one must have basis functions that are defined at any

desired spatial and depth location.

4.2.2 Stochastic Search Variable Selection

Although the basis functions simplify the integrals and reduce the dimension of the

functional data and parameters, the dimensionality still can increase by the number

of functional covariates. This is particularly problematic in the context of image

predictors, as there are often very high numbers of “pixels” of potential interest, even

in the context of a functional representation (e.g., Holan et al. 2010). Therefore,

the model we propose makes use of a SSVS algorithm. Such algorithms provide an

effective means of model selection when interest lies in considering a large number of
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potential submodels (see George, 2000, for a detailed overview).

In general, SSVS priors include two types of mixture distributions (George and

McCulloch, 1997). One comes from a mixture of normals and the other is a mixture

of a Dirac function and a normal distribution. Many variations of these two basic

algorithms have been proposed and applied across a broad range of applications (see

O’Hara and Sillanpää, 2009; Stingo et al., 2012, and the references therein). Among

them, Brown and Vannucci (1998) extend the SSVS algorithm to multivariate regres-

sion models using a mixture of a Dirac function and a normal distribution. Both of

these prior formulations can be incorporated into our model. For the sake of brevity,

we only describe the SSVS prior of a mixture of normals here.

We denote B = [b′1, . . . ,b
′
j, (∆Ψ′)′]′ as an Q×ni matrix and γ as a latent binary

vector of length Q associated with each row of B, where Q = (
∑J

j=1 nkj + p). Using

similar notation to Brown and Vannucci (1998) and Brown et al. (2001), we have the

prior for each row of B

[B][q,:]|γq ∼ (1− γq)MVN(0, τΣni
) + γqMVN(0, cτΣni

), q = 1, . . . , Q,

where Σni
was defined above, [B][q,:] denotes the q-th row of B, and c and τ are

hyperpriors. In this formulation, if γq = 0, the associated parameters are close to

zero, and if γq = 1, the associated parameters are not necessarily close to zero.

Consequently, τ is typically chosen to be close to zero and c is specified to be large.

Further, B can be presented as a matrix variation normal distribution,

B|γ ∼ NQ,ni
(0,ΣQ,Σni

),
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where ΣQ is a diagonal matrix with elements equal to τ and cτ . We also specify a

Bernoulli distribution for γq,

γq ∼ Bern(πq),

where πqs are hyperparameters between 0 and 1. In general, we can give different

values for πq, q = 1, . . . , Q or specify πq to follow a beta distribution. In this context,

we specify a common value for πq, as discussed in Section 4.3.4.

4.3 Soil Science Application

This section describes a real-world motivating application in soils science. We present

the motivating problem and data, followed by the specific model choices used for

implementation, Bayesian estimation, and the results.

4.3.1 Motivating Problem

Scientific understanding of soil is important for many purposes, including the improve-

ment of sustainable agricultural production and possible remediation of atmospheric

carbon dioxide through carbon sequestration. Soil science traditionally requires sig-

nificant and laborious field work to collect samples as well as significant laboratory

time to analyze the chemical and biological properties of those samples. Increasingly,

soil sensing technology such as from precision agriculture, digital soil mapping, and

optical diffuse reflectance spectroscopy (DRS) in the visible and near-infrared (VNIR)

wavelength ranges (∼400-2500mm) is being used to obtain high-resolution soil infor-

mation (Sudduth and Hummel, 1996; Sudduth et al., 2010). In particular, this later
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technology offers a great deal of information through wavelength by depth maps (or

images). It is of increasing interest to be able to use such information as covariates

in spatial and spatio-temporal models because it is relatively inexpensive to obtain

and mitigates the need for expensive and time-consuming laboratory analyses. The

purpose of the analysis presented here is to ascertain whether functional/image co-

variates obtained from the VNIR soil spectra depth profiles can be useful in predicting

functional (in depth) response curves through the methodology described in Section

4.2.

4.3.2 Greenly Research Center Data

We consider soil data collected at 28 sites as shown in Figure 4.1. In general, we

are interested in predicting soil water content as a function of depth in terms of

images corresponding to the VNIR soil spectra depth profiles. At each location,

water content is measured at up to 48 depth segments as shown in Figure 4.2 and the

VNIR spectra are measured at wavelengths from 500 to 2,500 nanometers (nm) for

each depth segment as shown in Figure 4.3. We note that some locations have missing

information at the deeper depth segments. To retain as many locations as possible

for model building, we thus only consider the first 37 depth segments. Consequently,

we have 25 locations with complete covariate and response information and these

are used to fit the model in our analysis. Of the three discarded locations, two are

missing most of the VNIR spectra information and the other is missing the water

content response.

Specifically, the soil profile measurements we consider were collected at the Univer-

sity of Missouri Greenly Research Center near Novelty Missouri, USA (Lat. 40.0302◦,
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Lon. -92.188◦) ; see Myers et al. (2011) for a comprehensive description. The exact lo-

cations sampled within the study site are shown in Figure 4.1. Soil cores (4.5 cm x 1.2

m) were obtained from each location within the study area for ex-situ measurements.

These included diffuse reflectance spectra (500 x 2500 nm, FieldSpec Pro FR, ASD

Inc., Boulder, CO), miniaturized Wenner array soil electrical conductivity (ECm),

and gravimetric water content, all at 2.54 cm intervals along the core length. Soil

profile electrical conductivity (ECp) and penetration resistance was measured in-situ

using a Veris Profiler 3000 with an insulated shaft (Veris Technologies, Salina, KS,

USA) and interpolated to 2.54 cm intervals. Both in-situ and ex-situ measurements

were made on in the late spring of 2007, see Myers et al. (2010).

The analysis we consider can be viewed as an illustrative example, as it currently

does not include any additional spatial covariates (e.g., elevation). However, such

variables could easily be included as described in Section 4.2. Rather, our purpose

here is to investigate the utility of using the spatially-dependent functional VNIR

image covariates to predict water content as a function of depth.

4.3.3 Model Choices

The major model choices in this framework are concerned with the basis functions

– both the form and the number of functions. We choose the Karhunen-Loéve de-

composition for the image and water depth functions because of their efficiency in

representing a large amount of variation using a relatively small number of functions.

In fact, this is the basis for functional principal components analysis, which is common

in functional data analysis (Ramsay and Silverman, 2005). For both the image and

depth functions, we are not interested in predicting at new depths or wavelengths, so
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that such an emprically-based basis is sufficient. Thus, in practice we can calculate

eigenvalues and eigenfunctions from the symmetric decomposition of the empirical co-

variance matrix of the water content profiles as well as the depth/wavelength VNIR

images. The eigenfunctions obtained from this decomposition are called empirical

orthogonal functions (EOFs), as is common in spatial and spatio-temporal statistics

(see Cressie and Wikle, 2011). In this example, the first 10, 15 and 20 EOFs asso-

ciated with the image covariates account for approximately 94.0%, 97.3% and 99.2%

of the total variation, respectively. Additionally, the first 10, 15 and 20 EOFs of the

water content depth profiles account for approximately 98.7%, 99.6% and 99.9% of

the total variation, respectively. To facilitate the SSVS implementation, we thus se-

lect the first 20 EOFs for the image covariates because this is a reasonable number of

functions over which to conduct SSVS and it accounts for over 99% of the variation.

In addition, we consider the maximum 24 EOFs associated with the water content

depth functions (we lose one degree of freedom due to subtracting the mean) so that

we retain all of the variation in a relatively small number of coefficients. A sensitivity

analysis with 10 EOFs showed very similar results. Note, in this case, we recognize

that we do not have to project the functional responses onto a basis set, but the

methodology is designed for more general (high-dimensional) applications, in which

such a decomposition would be necessary.

For the spatial basis functions, we consider two-dimensional thin plate splines.

This gives the flexibility to predict at locations for which we do not have observations,

which is a central purpose of the methodology. We select 20 knot locations based on

the recommendation in Ruppert et al. (2003). In particular we use a space filling

design (Nychka and Saltzman, 1998) to select the knots as shown in Figure 4.4.
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4.3.4 Bayesian Implementation

In all cases, the basis functions are normalized by the square root of their respective

eigenvalues. Thus, it is reasonable to assume Σn`
= σ2

n`
In`

and Σni
= σ2

ni
Ini

. We

then give inverse gamma priors for σ2
n`
∼ IG(κn`

, νn`
) and σ2

ni
∼ IG(κni

, νni
) and

specify κn`
, νn`

, κni
, and νni

equal to one. In such settings, the prior distributions

are vague (i.e. non-informative relative to the scale of the data) so that they impart

little impact on the analysis.

Choices of τ and c need to be made to implement the SSVS algorithm. To find

suitable values, we consider various possible combinations for these hyperparameters

by way of a cross-validation sensitivity study (e.g., see Holan et al., 2010). Specifically,

with πq ≡ 0.5, we considered the following combinations of (τ, c): (0.1, 10), (0.01, 100),

(0.01, 10), (0.01, 1), (0.001, 100), (0.001, 10), (0.001, 1), and (0.0001, 100). The SSVS

algorithm results are based on 30,000 iterations with a 5,000 iteration burn-in.

To evaluate model performance, we considered mean square prediction errors

(MPSE) using a leave-one-out cross-validation experiment (across all of the 25 lo-

cations). This was calculated based on the observed depths associated with the water

content functional profiles.

4.3.5 Results

Table 4.1 shows that SSVS parameters τ = 0.1 and c = 10 give superior performance

in terms of cross-validation MPSE. We use this parameterization for the results pre-

sented herein. Figure 4.5 shows the in-sample fits of the water content depth profiles

given the VNIR image predictors. Specifically, panel (a) shows the posterior mean

water content depth profile for each of the 25 observation locations, panel (b) shows
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the associated posterior standard deviation, panel (c) the observed water content

depth profiles, and panel (d) the associated residuals (posterior mean minus the ob-

served). Note that many of the features at the upper and mid-depths are captured by

the model, but there are distinct regions of bias; e.g., the depths between increments

1 and 7 and depths from increment 22–30 show posterior means that are too large

relative to the observations, while increments from 9–12 and 32–37 show means that

are too small relative to the observations.

We also consider a true out-of-sample prediction at the location that had missing

information for the water content depth profile response (i.e., the blue point in Figure

4.1). Figure 4.6 shows the posterior mean prediction of the depth functional for this

location, along with the pointwise 95% credible intervals. We are also interested in

predicting spatial fields of the response variable at various depths. Figure 4.7 shows

a prediction grid over the spatial domain of interest, along with the observation

locations. The posterior predicted mean and standard deviation on this grid for

water content at depth level 15 are shown in Figure 4.8. Note that the spatial field

is relatively smooth as expected based on the spline basis representation. Also, note

that the most uncertainty occurs generally in the southwest portion of the domain.

Indeed, there is a relatively large portion of that area for which the posterior mean

is predicted to be zero (or less than zero) – clearly indicative of the uncertainty

associated with this relatively data poor area of the domain.
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4.4 Discussion and Conclusion

Scientists are increasingly faced with very large data signals from new technologies and

they are interested in relating these “big data” signals to various types of responses.

We consider here a particular case where we have functional responses and so-called

“image” predictors. In this case, we use the term image loosely, and consider it to

be any two-dimensional continuous process, such as a time-frequency representation

of a time signal or a depth-wavelength representation of a spectroscopic profile. We

consider here the additional complication that both the functional response and the

image covariates can be spatially-dependent. This brings together several areas of

research in functional data analysis, spatial statistics, and nonstationary time series

analysis.

We develop a flexible, yet fairly easy to implement, methodology for the aforemen-

tioned problem by considering several layers of basis expansions. In practice, these

expansions are truncated, leading effectively to a complex Bayesian mixed-effects mul-

tivariate multiple regression model. The major complication with implementation is

the potentially large number of covariates (even in the basis expansion context), which

is mitigated by the use of stochastic search variable selection priors on the parameters.

We demonstrate via an illustrative example that this methodology is useful in

the context of complex soil profile data. In particular, we consider a water content

depth profile response variable as predicted by depth/wavelength images of VNIR

measurements. Although the model fit does show some apparent biases with depth,

we have yet to include additional covariates that may be more related to the water

content depth profiles. We were encouraged by the ability of the model to reproduce

realistic depth profiles at spatial locations for which we did not have data.
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Future extensions of this work include the consideration of additional covari-

ates that are spatially dependent, including those that lack depth information. The

methodology developed here includes such a term, but we have yet to implement it

in practice. In addition, a real strength of this methodology will come from helping

to suggest to practitioners where they should take additional (image) observations

in order to most improve the predictions of the spatial distribution of the functional

response. We will consider such optimal adaptive spatial sampling design problems

as an extension to the work presented here.
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Table 4.1: Top selected variables from the SSVS cross-validation. The percentages
shown are the mean of the posterior probability of the variable being included in the
model for each of the 25 cross-validation runs. MPSE is the mean square prediction
errors associated with the water content depth profiles.

(τ = 0.1, c = 10) (τ = 0.01, c = 100) (τ = 0.01, c = 10) (τ = 0.01, c = 1)
MPSE=0.0118 MPSE=0.0339 MPSE=0.0294 MPSE=0.0426

Variable % of models Variable % of models Variable % of models Variable % of models
19 97 20 95 11 78 13 50
14 95 15 88 20 71 18 50
15 93 14 88 15 61 10 50
16 93 11 83 13 52 11 50
20 83 19 80 19 51 15 50
17 73 13 78 14 50 1 50
13 69 18 76 9 50 19 50
9 58 7 61 16 48 3 50
12 56 17 58 17 48 5 50
18 54 16 56 12 46 14 50
11 50 12 42 7 43 9 49
7 47 9 32 18 42 2 49
10 13 8 19 8 41 4 49
8 5 6 17 6 38 16 49
5 0 5 13 10 38 7 49

(τ = 0.001, c = 100) (τ = 0.001, c = 10) (τ = 0.001, c = 1) (τ = 0.0001, c = 100)
MPSE=0.0351 MPSE=0.0432 MPSE=0.0733 MPSE=0.0442

Variable % of models Variable % of models Variable % of models Variable % of models
20 100 9 99 4 50 20 100
19 100 13 99 7 50 19 100
18 100 11 99 5 50 18 100
17 100 15 98 10 50 17 100
16 100 17 98 19 50 16 100
15 100 8 97 3 50 15 100
14 100 6 97 1 50 14 100
13 100 4 97 14 50 13 100
12 100 19 97 8 50 12 100
11 100 20 96 13 50 11 100
9 100 14 96 12 50 10 100
4 95 12 96 6 49 9 100
6 91 16 95 11 49 8 100
10 88 5 90 16 49 7 100
7 80 7 90 9 49 6 100
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Figure 4.1: The elevation surface (measured in meters) of the study area. Black points
are the 25 observation locations considered in the analysis; blue stars are locations
with missing image covariate information, and the red triangle is the location with
no water content response data.
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Figure 4.2: Water content (measured in percent by mass) as a function of depth as
measured at the 25 locations shown in Figure 4.1.
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Figure 4.3: The VNIR covariate (measured in diffuse-reflectance) wavelength by depth
image from a randomly selected data location. Wavelength is measured in nanometers
whereas depth is measured in centimeter.
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Figure 4.4: Elevation surface of the study area (measured in meters). Observation
(black) and knots locations (red), as selected via a space-filling design.
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Figure 4.5: In sample prediction of water content depth profiles for each of the 25
observation locations based on the τ = 0.1, c = 10 stochastic search variable selection
(SSVS) implementation. Panel (a) shows the posterior mean profile, (b) shows the
posterior standard deviation, (c) shows the truth depth profile observations, and (d)
shows the residuals between the posterior means and the observed depth profiles.
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Figure 4.6: Prediction of water content depth profile (measured in percent by mass)
of the location indicated in blue in Figure 4.1. The solid line refers to the posterior
mean and the dotted lines show the pointwise posterior 95% credible intervals. Note
that the water content is measured in percent by mass.
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Figure 4.7: Elevation surface of the study area (measured in meters). Spatial predic-
tion grid (red dots) and observation locations (black dots).
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Figure 4.8: Predicted water content at depth segment 15 on the prediction grid shown
in Figure 4.7. (a) Posterior mean (negative values are truncated at 0), (b) Posterior
standard deviation.
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Chapter 5

Conclusion and Discussion

5.1 Summary

When observed signals are nonstationary and sampled at high-frequency, it is often

difficult to characterize important features. An efficient way to characterize such pro-

cesses is in the time-frequency domain (e.g., through a spectrogram representation).

Such representations can produce regions in time-frequency space that exhibit high

variability.

However, utilizing a spectrogram representation usually comes with a substantially

large number of time-frequency “pixels.” In practice, it is not feasible to consider each

of these pixels as a potential covariate. In addition to the large number of pixels, the

time-frequency image often exhibits a high-degree spatial dependence. To reduce the

inherent high-dimensionality, several orthogonal basis functions can be used (e.g.,

Fourier, splines, wavelets, and EOFs, among others). Some of them gather global
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variation of a signal into low dimension feature space, whereas some gather local

variation of a signal into feature space.

In many context, multiple signals and their interactions are necessary for ad-

dressing core scientific questions. These time-frequency predictors may relate to the

response nonlinearly. Therefore, methodology for modeling complex processes using

time-frequency functional predictors is needed that accurately quantifies uncertainty,

accommodates multivariate time-frequency predictors and allows for nonlinear be-

havior. In Chapter 2, we illustrated time-frequency functional polynomial nonlinear

(FPNL) models can account for signal uncertainty as well as accommodate nonlin-

ear interactions through the motivating example of predicting spawning success of

shovelnose sturgeon. Importantly, the approach produces feature extracted curves

and images highlighting the important aspects of depth and temperature variability

associated with successful spawning.

Different from nonparametric approach of time-frequency transform, model-based

approaches provide potential ways to model signals while maintaining the time res-

olution. In Chapter 3, we provide model-based Bayesian lattice filter time-varying

autoregressive models to estimate the time-frequency representation of nonstation-

ary signals. In the simulation study, we compare our approach with other competing

methods and the study shows that our approach performs superior in most simulation

cases.

Chapter 4 provide a class of spatially-dependent functional models when both

the response and covariates are functionals. Such models consider several layers of

basis expansions. In practice, these expansions are truncated, effectively leading

to a complex Bayesian mixed-effects multivariate multiple regression model. The
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truncations provide sufficient dimensional reduction for both the functional response

and covariates. Moreover, the stochastic search variable selection priors are used

to select the important covariates in low-rank space associated with the response

variable.

In many cases, time-frequency functional models have the ability to resolve com-

plex scientific inquiries. Nevertheless, more research still needs to be conducted. For

example, although the FPNL models allow multivariate signals, the dependence of

signals may affect the inferences. To decrease such an affect, instead of decomposing

various signals one by one, we may consider techniques to decompose them together.

In addition, we can extend the Bayesian lattice filter time-varying autoregressive

models to the multivariate context.
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