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ABSTRACT 

Finding similar 3D structures is crucial for discovering potential structural, 

evolutionary, and functional relationships among proteins. As the number of known 

protein structures has dramatically increased, traditional methods can no longer provide 

the life science community with the adequate informatics capability needed to conduct 

large-scale and complex analyses. A suite of high-throughput and accurate protein 

structure search and comparison methods is essential. To meet the needs of the 

community, we develop several bioinformatics methods for protein binding site 

comparison and global structure alignment. First, we developed an efficient protein 

binding site search that is based on extracting geometric features both locally and 

globally. The main idea of this work was to capture spatial relationships among 

landmarks of binding site surfaces and build a vocabulary of visual words to represent the 

characteristics of the surfaces. A vector model was then used to speed up the search of 

similar surfaces that share similar visual words with the query interface. Second, we 

developed an approach for accurate protein binding site comparison. Our algorithm 

provides an accurate binding site alignment by applying a two-level heuristic process 

which progressively refines alignment results from coarse surface point level to accurate 

residue atom level. This setting allowed us to explore different combinations of pairs of 



x 

 

corresponding residues, thus improving the alignment quality of the binding site surfaces. 

Finally, we introduced a parallel algorithm for global protein structure alignment. 

Specifically, to speed up the time-consuming structure alignment process of protein 3D 

structures, we designed a parallel protein structure alignment framework to exploit the 

parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, 

the framework is capable of parallelizing traditional structure alignment algorithms. Our 

findings can be applied in various research areas, such as prediction of protein 

interactions and screening in drug discoveries. The uniqueness of our methods is its 

ability to manipulate the big data of protein structures by integrating the feature- and 

alignment-based search and comparison approaches together, thus enabling more 

efficient and accurate analysis of large-scale protein structures for the research 

community. 
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CHAPTER ONE  

INTRODUCTION 

1.1. Motivations 

The great demand for an efficient and accurate comparison algorithm for three-

dimensional (3D) protein structures has continued to rise due to the dramatic increase in 

protein structural data and the role of protein structures in biological findings [1]. The 

number of known protein structures in the primary structural database, the Protein Data 

Bank (PDB), had reached 80,086 (~225,090 protein chain structures) as of 10 March 

2013, and this number is expected to continue growing at a high rate. Given a large-

scale database of protein structures, the main goal of structure comparison is either to 

find proteins that are structurally similar to a given protein (i.e., one-against-all 

comparison) or to build various connectivities among proteins by performing exhaustive 

comparisons on the whole database (i.e., all-against-all comparison). The results of 

structural comparison are useful in discovering potential structural, evolutionary, and 

functional relationships among these proteins and have significant impact on structure-

based drug design [2], protein-protein docking [3], and other biological findings [4].  

Protein structure comparisons can be generally classified into two categories: 

global and local comparisons. The global structure comparison tries to superimpose 

most of the corresponding backbone atoms from two proteins, while the local 

comparison seeks to find common substructures between two proteins irrespective of 

similarities of protein global structures. In this dissertation, the local structure 



 

2 

 

comparison refers to the match of protein binding sites (PBS). In a protein complex, the 

binding site corresponds to a region of residues that are in close spatial proximity and 

can interact with residues from another subunit (chain or domain) [5]. The interaction 

between two subunits, also known as protein-protein interaction (PPI), plays a 

significant role in controlling biological processes and determining corresponding 

functions [6,7,8].  

To provide global or local structure comparisons, one cluster of approaches is 

based on alignment of global or local structures to provide accurate comparison between 

two structures [9,10,11]. These approaches are usually computationally expensive, 

which makes them infeasible in coping with very large datasets. To accelerate this 

process, another cluster is to compare structures with extracted features without explicit 

alignments [12,13,14]. While this approach can deal with large datasets, a fine-level 

alignment is still needed to find accurate correspondences between two structures. 

Hence, the structure biology community needs informatics tools that can offer a full 

solution for fast retrieval and accurate alignment of global and local protein structures. 

1.2. Summary of Contributions 

In this dissertation, a suite of novel methods is proposed to quickly identify 

globally or locally similar protein structures from a large dataset and provide accurate 

alignments. The proposed methods integrate algorithms from information retrieval, 

computer vision, computer graphics, parallel computing, and structure biology to tackle 

computational biology challenges. The contributions of this dissertation are summarized 

as follows: 
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 Provides an efficient information retrieval algorithm for fast binding site search 

(PBSword). The method includes (i) a feature-based description of binding site 

surfaces by integrating both global and local geometric features and (ii) fast 

comparison algorithms for binding sites by utilizing a novel “visual words” 

representation generated by clustering a large set of feature descriptors. 

 Provides an accurate alignment algorithm to support superimposition of protein 

binding site (PBSalign). The algorithm combines surface and structure 

information and progressively refines alignments of binding sites. A “filter and 

refine” paradigm can be developed to perform accurate alignment of binding site 

for a short list obtained from PBSword.  

 Creates a parallel computing platform for large-scale protein global structure 

alignments (ppsAlign). The platform utilizes the massively parallel computing 

power of GPU (Graphic Processor Unit) to support residue-level alignment and 

optimizes the algorithm from the levels of architecture, memory layout and 

instruction. 

 Disseminates computational tools and data to the scientific community. The 

software package includes (i) feature database of candidate binding sites and (ii) 

standalone or web-based software for global and binding site comparison of 

protein structures.  

1.3. Thesis organization 

This dissertation is organized as follows. Chapter 2 surveys literature on recent 

research related to protein structure comparison. Chapter 3 introduces our feature-based 
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method for the local protein binding site search. Chapter 4 explains our alignment 

methods for accurate protein binding site comparisons. Chapter 5 describes our GPU-

based alignment algorithm for protein global structure comparisons. System design of 

PBSword server is given in Chapter 6. Finally, we summarize this dissertation and 

discuss possible future works in Chapter 7. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter surveys existing work in protein global structure comparisons, 

GPU-accelerated structure alignments, and protein binding site structure comparisons. 

2.1. Protein Global Structure Comparisons 

The purpose of global comparison is to align two protein structures using their 

overall structural similarities such that potential functional and evolutional relationship 

can be discovered. The global comparisons can be classified into two categories: (i) 

alignment-based methods and (ii) structural alphabet-based methods. The alignment-

based methods utilize the comparison of residues or fragments to build initial 

correspondences among residues which are further optimized by various procedures, 

such as Monte-Carlo, combinational search, and Dynamic Programming (DP). These 

methods can provide accurate alignments at the residue level but are usually 

computationally expensive. To accelerate the structural alignment, the structural 

alphabet-based approaches have been developed. These solutions map the protein 

structures into 1D sequences of structural alphabets and then use various sequence 

alignment methods to align two structures [15,16]. The structural alphabets are usually 

obtained by clustering geometrically similar fragments of proteins from a selected 

dataset. Generally, the structural alphabet-based approaches exhibit good efficiency; 

however, this is often achieved at the cost of loss of topological details, which could 
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lead to lower accuracy than the traditional alignment-based comparison methods or 

could be unsuitable to perform residue-level alignment. 

2.1.1 Alignment-based Methods 

DALI (Distance Alignment) [17] is a popular structural alignment method which 

performs pair-wise comparison based on a distance matrix, which is calculated using Cα 

coordinates of a pair of residues. The distance matrix is decomposed into sub-matrices to 

simplify the alignment complexity. Finally, a Monte Carlo procedure is deployed to 

generate a similarity score which is defined in terms of equivalent intra-molecular 

distances. 

CE (Combinatorial Extension) [18] aligns two protein structures based on the 

combinatorial extension of an alignment path. The alignment path is defined by aligned 

fragment pairs (AFPs) in which structures show certain similarity in their local 

geometry. Different combinations of AFP can be used to represent possible continuous 

alignment paths, which could be further used to produce an optimal alignment by 

extending along the aligned path.  

TM-align [19] initially superimposes protein structure pairs by TM-score [20] 

matrix and Dynamic Programming. Several seed alignment results are obtained after the 

initial superimposition, which are iteratively refined until the alignment becomes stable. 

The alignment with the highest TM-score is selected as the final result. In a 

benchmarking study [19], TM-align is reported to improve in both speed and accuracy 

over DALI and CE. An extension of TM-align, Fr-TM-align [21], is proposed to 

improve accuracy of TM-align by using an exhaustive search procedure to generate 
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initial seed alignments. Though showing a higher TM-score in comparison to TM-align, 

Fr-TM-align [21] is computationally more expensive than TM-align (~12 times slower 

than TM-align). 

MAMMOTH [22] uses the similar idea of AFP as CE to decompose protein 

structures into seven-residue fragments. The similarity score between two fragments is 

calculated using a unit-vector RMS (URMS) method [23]. These scores are stored in a 

similarity matrix, and a Dynamic Programming method is used to optimize residue-

residue correspondence and find the optimal residue alignment.  

SABERTOOTH [24] represents protein structure with a new concept of profile 

which can characterize global structure connectivity of each residue as well as reveal 

relationships between structure and sequence. Compared to existing methods, 

SABERTOOTH can simultaneously handle multiple scenarios of alignment, such as 

sequence-to-sequence and sequence-to-structure comparisons. 

SPalign [25] aligns two protein structures by optimizing a similarity score–

SPscore. Different from the existing similarity scores, SPscore is independent of protein 

size so that aligned regions with different sizes can be compared. The alignment method 

is similar to that of TM-align [19] which iteratively refines seed alignments to obtain an 

optimal result with the Dynamic Programming method.  

2.1.2 Alphabet-based Methods 

Kolodny et al. [26] introduced a library of 20 representative fragments (i.e., 

structural alphabet) by applying a clustering algorithm on a set of continuous residues 
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extracted from protein backbone and showed quality of fit (i.e., accuracy) of these 

fragments to their native structures. In a later study, both local and global sequences of 

structural alphabets are used to perform protein classification, and higher accuracy was 

achieved [27]. 

Brevern et al. [28] proposed a set of structural alphabet (or protein blocks) based 

on five-residue fragment. Each fragment is encoded using dihedral angles of residues, 

which are further clustered to form a representative set of 16 protein blocks. 

In 2006, Yang and Tung [16] developed 3D-Blast which characterizes patterns of 

the backbone fragments with 23 structural alphabet and then uses them to represent 

protein structure as 1D sequence. A database of alphabet sequence is constructed and the 

traditional BLAST [29], originally designed for comparing primary biological sequence, 

is employed as a search method to find the longest common substructures from the 

alphabet sequence database. 

YAKUSA [15] utilized protein backbone internal coordinates (alpha angles) to 

describe protein structure as a sequence of structural alphabets. YAKUSA searches for 

the longest common substructures existing between a query structure and every structure 

in the database using a similar method as BLAST. Finally, YAKUSA selects the 

compatible substructure pairs for the query and database structures based on a similarity 

score. 

Budowski-Tal, Nov, and Kolodny created FragBag [30] which describes a 

protein backbone by a collection of structural alphabets proposed in [26]. Each protein is 



 

9 

 

then represented as a vector of frequency (or histogram) of structural alphabets. Finally, 

the similarity of two structures is evaluated by the similarity of their vectors. 

Tyagi et al. [31] utilized the structure alphabet proposed in [28] to convert 

protein structure into a 1D sequence and defined a substitution matrix of the alphabet. 

The 1D sequence comparison is performed using the Dynamic Programming approach. 

The experimental results showed this approach to be comparable to the alignment-based 

comparison methods such as DALI. 

2.2. GPU-based Protein Alignments 

To accelerate the protein structure comparison, in addition to the approach of 

using 1D alphabet-based alignment, another approach was developed to parallelize 

traditional algorithms using a cluster or grid environment consisting of thousands of 

computing nodes [32,33]. These approaches can fulfill the desires of efficiency and 

accuracy but require high-performance computing environments which are energy-

consuming and may not be accessible to all biologists. 

With the increase in performance and programmability of many-core GPUs [34], 

more and more bioinformatics applications have been deployed on GPUs and have 

shown promising results in terms of speedup over the corresponding conventional CPU 

implementations.  

Liu et al. [35] implemented a GPU-based Smith-Waterman algorithm [36] for 

pair-wise DNA sequence alignment. The experimental results showed that on a NVIDIA 

GeForce 6800 GTO GPU card, the proposed approach allows speedups of more than one 
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order with respect to optimized CPU implementation on Intel Pentium 4 at 3.0 GHz with 

1 GB RAM (Random Access memory). Later, the efficiency of sequence alignments 

was continuously improved in [37,38,39,40].  

Vouzis and Sahinidis developed GPU-BLAST (Basic Local Alignment Search 

Tool) [41] to accelerate NCBI-BLAST [29]. When directly porting from the source 

codes of NCBI-BLAST, GPU-BLAST maintains the same input and output interface 

while producing identical results. In comparison to the CPU-based NCBI-BLAST 

running on a six-core Intel Xeon host CPU at 2.67 GHz with 12GB RAM, GPU-BLAST 

can achieve a speedup between 3 and 4 on a NVIDIA Fermi C2050 GPU card.  

Stivala et al. [42] utilized simulated annealing (SA) to develop a protein 

substructure searching algorithm, SA Tableau Search, to find structural motif at level of 

secondary structure element (SSE). The GPU implementation on NVIDIA Tesla C1060 

achieves up to 34 times speedup over the CPU implementation on AMD Quad Core 

Opteron at 2.3 GHz with 32 GB RAM. It is worth mentioning that from the literature, 

the SA Tableau Search is the first attempt to apply GPU in protein structure comparison 

at the SSE level. 

2.3. Protein Binding Site Comparisons 

Different from the protein global comparisons, protein binding site comparisons 

focus on local similarity. Early research studies in this area compared binding sites by 

aligning the corresponding Cα atoms from different protein complexes using global 

structural alignment tools [43,44,45]. This group of methods works well when sequence 

and structure are well conserved. However, as shown in an earlier work [46], the 
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limitation of global protein structure alignment is that it cannot usually produce accurate 

interface alignment since the true interface may not be the first priority for a global 

structure alignment method.  

To overcome this issue, several alignment-based methods have been developed 

specifically for the comparison of protein binding sites or protein-protein interfaces. 

Comparing protein binding sites at 3D level is challenging because the residues of a 

binding site are not always sequential in nature, resulting in a large searching space for 

possible alignments. To date, only a handful of methods are available for the binding site 

or protein-protein interface alignments, which is in sharp contrast to the overall structure 

alignment methods developed in the last three decades [47]. The alignment-based 

methods can provide accurate correspondence between two binding sites but are usually 

computationally expensive. 

Feature-based methods, on the other hand, make comparisons based on feature 

descriptors, which may represent structural and/or geometric properties of the binding 

site. Typically, the structural descriptors are distributions of distances between different 

types of functional atoms of the binding sites [48], whereas the geometric descriptors 

include spin-image [49], 3D-Zernike [13], shape distribution [12], and moment 

invariants [50]. After generating surface features, two binding sites can be compared 

using various metric functions in the feature space to perform high-throughput surface 

comparisons without explicit alignments. The existing feature-based methods mainly 

focus on protein-ligand binding sites, which have not been extensively applied or 

evaluated on protein-protein binding site classification and related applications. This is 
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important as protein-protein binding sites are known to have some unique 

characteristics, such as relatively large areas and flat binding site surfaces [51]. 

2.3.1 Alignment-based Methods 

I2ISiteEngine [52] calculates the surface properties of protein binding site at 

selected pseudo-center, which is defined as a site residue belonging to one of the 

following functional groups: hydrogen-bond donor (DO), hydrogen-bond acceptor (AC), 

mixed donor/acceptor (ACDO), hydrophobic aliphatic (AL) and aromatic (AO). The 

matching of interface is based on hashing of almost congruent triangles defined by 

triplets of pseudo-centers. Finally, a hierarchical scoring scheme (low- and high 

resolution) is applied simultaneously to both sides of the interface to find out the best 

solutions. Similar to I2ISiteEngine, PFS (Protein Functional Surfaces) [53] and 

SURFCOMP [54] utilize global shape and local physicochemical properties of binding 

site to match protein-ligand binding sites.  

Galinter [10] compares similarity of two protein-protein interfaces based on the 

geometry and type of non-covalent interactions. Each interface is modeled as a graph 

and maximum common subgraph [55] is used to align two interfaces. Evaluated on a 

pilot dataset introduced in [52], Galinter shows similar alignment quality as I2I-

SiteEngine for homologous complexes. ProBiS [56] also represents the protein interface 

as a graph and utilizes the graph theory to compare two interfaces. The difference is 

ProBiS clusters surface residues based on the same functional groups as that used in 

I2ISiteEngine.  
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iAlign [9] was developed to align residues from protein-protein interfaces based 

on a score of residue similarity and an iterative Dynamic Programming algorithm. The 

score could be TM-score [19] or an extension of TM-score which integrates the numbers 

of residue contacts of two interfaces. The experimental results show iAlign can achieve 

higher accuracy than I2I-SiteEngine based on the classification of protein-protein 

interfaces. CMAPi [57] searches the optimal alignment of two interfaces utilizing the 

Dynamic Programming method and contact map of interface residues which is a 2D 

matrix defined as the minimum distance between all heavy atoms on the interfaces.  

2.3.2 Feature-based Methods 

Merelli et al. [49] identified correspondences between points of two protein 

surfaces according to the similarity of spin-image, which is defined as a 2D image 

describing the local topology of a surface point. All these candidate pairs are then 

filtered, using specific similarity thresholds, and clustered to provide final match.  

Sael et al. [13] characterized surface points based on 3D Zernike descriptors, 

which provided a compact representation of a given property defined on a protein 

surface. Similarity measure of two descriptors was calculated using Euclidean distance. 

Das, Kokardekar and Breneman [12] described each protein-ligand binding site 

surface using property-encoded shape distributions (PESD). Similarity between the 

PESDs can then be treated as a measure of similarity between two binding sites. 
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Sommer et al. [50] utilized moment invariants as a descriptor to characterize 

protein-protein binding sites. The descriptor is based on shape features and can be used 

to compare the binding sites independently from the sequence similarities.  

Finally, Table 1 summarizes the typical methods of our survey. The column 

‘Method’ lists the name and reference of these methods which are classified into three 

categories (i.e., global structure alignments, alignment-based, and feature-based protein 

binding site comparisons) and marked using different background colors. The methods 

from row ‘DALI’ to ‘ppsAlign’ belong to the category of global structure alignment. The 

row ‘ppsAlign’ is a GPU-based platform for global structure alignment. The methods 

from row ‘I2ISiteEngine’ to ‘PBSalign’ are from the category of alignment-based 

protein binding site comparison. The methods from ‘Merelli et al.’ to ‘PBSword’ are 

from the category of feature-based protein binding site comparisons. In the table, the 

methods ‘ppsAlign’, ‘PBSalign’, and ‘PBSword’ are the key research results presented 

in this dissertation. The column ‘Type’ include three categories, ‘Global’, ‘Local’, and 

‘Local/Feature’, which corresponds to the global structure alignment, alignment-based, 

and feature-based binding site comparisons, respectively. The column ‘Hardware’ 

specifies hardware configuration for performance evaluation. The column ‘Dataset’ is a 

brief description of dataset used for the evaluation. The columns ‘Accuracy’ and 

‘Efficiency’ show experimental results of the methods.  
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Table 1: Summary of global and local protein structure comparisons. 
METHODS TYPE HARDWARE DATASET ACCURACY EFFICIENCY 

DALI [17] Global Sparc-1 representative 

protein chains 

n/a 5-10 min. for protein 

pairs 

CE [18] Global Ultra Sparc II 

248Mhz 

representative 

protein chains 

n/a 20 sec. for 100 

Protein structures 

TM-align [19] Global Intel 1.26 GHz 

Pentium III  

10,515 

representative 

protein chains 

TM-score of 

CE: 0.44 

DALI: 0.47 

TM-align: 0.51 

4 times faster than CE 

and 20 times faster 

than DALI 

Fr-TM-align [21] Global AMD 2 GHz 

Opteron  

10,515 

representative 

protein chains 

Improve TM-score 

by 9% 

12 times slower than 

TM-align 

MAMMOTH [22] Global n/a Predicted protein 

models 

Correlated better 

than other tools 

n/a 

SABERTOOTH 

[24] 

Global Intel 2.8 GHz 

Xeon  

525 protein 

structures  

Comparable 

accuracy as DALI, 

CE, and 

MAMMOTH 

Faster than DALI and 

CE, but slower than 

MAMMOTH 

SPalign [25] Global AMD 

1.8GHz Opteron 

representative 

protein chains 

Improve TM-score 

by 4.6% 

Similar as TM-align 

ppsAlign Global NVIDIA Tesla 

C2050 GPU 

and 

AMD 1.8GHz 

Opetron CPU 

representative 

protein chains 

Comparable 

accuracy as TM-

align, Fr-TM-align 

and MAMMOTH 

36-fold speedup over 

TM-align, 65-fold 

speedup over Fr-TM-

align, and a 40-fold 

speedup over 

MAMMOTH 

I2ISiteEngine [52] Local Intel 3.0GHz 

Xeon 

representative 

protein interfaces 

n/a 28 sec 

Galinter [10] Local 3.0 GHz CPU Dataset from 

I2ISiteEngine 

Comparable 

accuracy as 

I2ISiteEngine on 

homologous dataset 

138.5 sec 

CMAPi [57] Local n/a representative 

protein interfaces 

Better accuracy than 

its previous version 

n/a 

iAlign [9] Local AMD 2.4GHz 

Opteron 

Biologically 

related protein 

interfaces 

Better accuracy than 

I2ISiteEngine 

89-fold speedup over 

I2ISiteEngine 

PBSalign Local AMD 1.8GHz 

Opetron CPU 

Homologous 

and non-

homologous 

protein 

interfaces 

Better accuracy 

than iAlign 

Slower than iAlign and 

I2ISiteEngine 

Merelli et al. [49] Local/Feature Intel Core 2 

processors 

representative 

protein-ligand 

interfaces 

Better accuracy than 

ZDOCK and Rosetta 

DOCK for two-

thirds cases 

Seconds to 10 min 

Sael et al. [13] Local/Feature n/a representative 

protein-ligand 

interfaces 

Cluster proteins into 

function-related 

groups 

0.05 ~ 50 sec  

Das et al. [12] Local/Feature Intel 8 core 2.66 

GHz 

representative 

protein-ligand 

interfaces 

79.5% for top match 0.0056 sec 

Sommer et al. [50] Local/feature n/a representative 

protein-protein 

interfaces 

40% for top match n/a 

PBSword Local/Feature AMD 1.8GHz 

Opetron CPU 

Dataset from 

[50] 

76% for top match 0.0016 sec 
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CHAPTER THREE 

EFFICIENT PROTEIN BINDING SITE SEARCH 

In this chapter, we extend the text comparison method from the Information 

Retrieval (IR) area and propose a novel approach, PBSword, for characterizing protein 

binding sites with a collection of “visual words” such that similar binding sites from the 

database can be efficiently and accurately identified. The methods and results of this 

chapter have been published in Bioinformatics journal [58] 

3.1. Methods 

The framework of PBSword is shown in Figure 1. The inputs include a query 

binding site and a database of protein binding sites. The outputs are similarity scores 

between the query and database binding sites. The workflow of PBSword consists of the 

following four steps. First, we select feature points of each database binding site surface 

and extract corresponding geometric features. Second, a visual vocabulary is built by 

clustering a huge number of feature point descriptors collected from the entire database 

of binding sites. Third, according to its descriptor, each feature point is associated with 

the nearest visual word from the visual vocabulary. This allows each binding site to be 

represented by the corresponding distribution of visual words. The above processes for 

the database binding sites are performed off-line. For the query binding site, we follow 

similar steps to generate its visual word representation. Finally, pairs of binding sites are 

compared by a scoring function which calculates the similarity between the two visual 

word vectors. 
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Figure 1: Framework of PBSword. The inputs include a query binding site and a 

database of binding sites. The outputs are similarity scores between the query and the 

database binding sites. For each binding site, geometric features are extracted and 

assigned to the nearest visual word from a vocabulary which is generated by a huge set 

of features collected from the entire database. Thus, each binding site can be 

represented by a histogram of occurrence of visual words. Two binding sites can be 

compared by the similarity of two visual words vectors. 

Comparing protein binding sites is a more challenging problem than comparing 

protein sequences or structures since the residues of a binding site are not always 

sequential in nature [45]. Hence, a binding site cannot be represented by a string of 

residues from the N- to C- terminus of a protein chain. To solve this problem, we first 

use the surface features to represent the whole binding site. Then, by projecting the 

feature vectors into a visual word from the vocabulary, we can use the occurrence of 

visual words to describe the surface, which alleviates the need for sequential 

relationships between two feature points. As a feature-based method, PBSword shares 

some attractive properties with other similar methods in this category, such as being 

sequence- and structure- independent and alignment-free. The uniqueness of PBSword is 
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in the way it represents the binding sites as a collection of visual words, which can be 

used not only in the development of a compact representation for a family of protein 

binding sites but also in the construction of an inverted index for fast retrieval of 

geometrically similar binding sites from a large dataset. 

3.1.1 Surface generation 

For a protein complex, we use the MSMS program [59] to generate a 

triangulated mesh for each of its interacting subunits and set the density and probe radius 

to 2.0 points/Ǻ
2
 and 1.4 Ǻ, respectively. Since we are only interested in the binding 

regions, for each protein mesh, we retain only those surface points that are within a 

distance of 4Ǻ from the surface of its binding partner [52]. A triangle is selected when 

its three vertices are all retained in the interaction region. In this dissertation, we define a 

face, as used in the computer graphics community, to represent the surface of a triangle. 

3.1.2 Feature descriptor 

In our approach, feature points are defined as the centers of faces (or triangles), 

and a number of sample faces are selected using the procedure proposed in [60] to 

improve computational efficiency. In this method, we first calculate the area of each face 

on the surface and store it as an array of cumulative areas. Then, we generate a random 

number ranging from 0 to the total area, and select the face corresponding to that value 

in the array of cumulative areas.  
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Figure 2: Feature descriptors for a protein binding site. Two sample points (i and j) are 

shown on the binding site surface. ni (or nj) and ri (or rj) represent the normal vector and 

3D coordinate of the i-th (or j-th) face center, respectively. The geodesic distance gij is 

calculated between ri and rj, and the angle αj is calculated between nj and a unit vector 

pointing from ri to rj. 

 We further develop an approach based on the representation of shape contexts, 

originally introduced in [61] for 2D object matching as a feature descriptor for each 

feature point. Before calculating features, we normalize the scale of binding site mesh 

by the maximum geodesic distance from all pair-wise distances within each binding site. 

Assuming binding site A has N faces and M (M<<N) sample faces, for face Fi, we use ni 

and ri (see Figure 2) to represent the normal vector and 3D coordinate of the i-th face 

center, respectively. For a given sample face Fi (i=1,…,M) and another face Fj (j ≠ i, 

j=1,…,N) on the binding surface, we first calculate the geodesic distance gij between ri 

and rj using Dijkstra's shortest path algorithm [62] and angle αj between nj and a unit 

vector pointing from ri to rj. Then, a feature descriptor Wi (or shape context) for the 

sample face Fi is calculated to quantitatively measure the distributions between Fi and 

the remaining N-1 face centers in logarithmic geodesic distances bins and angles bins, 

which are set to 10 and 8, respectively. By construction, the feature vector at a given 

face center is invariant under translation and scaling. In total, we extract M features 

{Wi
A
, i∈{1,…,M}}, and say that binding site A is characterized by its feature descriptor 

W
A
. In the experiments, M is empirically set to 200. 
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3.1.3  Visual vocabulary construction 

The feature descriptors from different binding sites are clustered to construct a 

vocabulary of visual words, where each word in the vocabulary is quantitatively 

described by the corresponding cluster. We empirically identify a number of clusters 

based on the standard square-error partitioning method, k-means [63]. In this step, a 

vocabulary V= {V1, …,Vk} of size k is obtained. Descriptors sharing the same center will 

be represented by the same word.  

Unlike the vocabulary of a text corpus whose size is relatively fixed, the size of a 

vocabulary for protein binding sites is controlled by the number of feature clusters 

generated by k-means. With a small vocabulary, the visual word is not very 

discriminative because dissimilar feature points can be mapped to the same visual word. 

As the vocabulary size increases, the feature is expected to be more discriminative; 

however, it becomes possible for similar feature points to be mapped to different visual 

words. As there is no standard way to select the appropriate size of a vocabulary, we 

empirically select k based on the experiment for various vocabulary sizes (see Section 

3.2 Results). 

3.1.4 Surface visual words representation 

The surface visual words representation consists of two parts: (i) Single-word 

Frequency Profile (SFP) and (ii) Pair-word Frequency Profile (PFP). 

We first compute the frequency of occurrence of each individual visual word for 

a binding site A. Given a vocabulary V, for each sample face i∈A with descriptor Wi
A
, 
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we calculate the Euclidean distance between Wi
A
 (i=1,…,M) and each visual word Vj 

(j=1,…,k). We then associate face i with the index of the visual word with the smallest 

distance from the vocabulary V. 

 

Figure 3: Examples of surface single-word frequency profiles (SFP).(A) Binding site 

1m3d_78535_B_78538_C. (B) Binding site 1t60_106525_V_106528_W. (C) Binding 

site 1cer_29989_R_39901_O.The binding sites (A) and (B) are from same SCOPPI 

group (ID: d.169.1.6_1) while the binding site (C) is from another SCOPPI group (ID: 

c.2.1.3_25). The labels of x and y axes of histogram are “Index of visual words” and 

“Density”, respectively. 

The single-word frequency profile (SFP) of binding site A is a k×1 vector 

P
A
=(p1

A
,…,pk

A
), which is defined as the frequency of each word in A. An example of the 

SFP for three binding sites with k = 400 is shown in Figure 3. As these binding sites are 

from the database SCOPPI [64], we use the same identifier as [50] to name each binding 

site: <PDB-ID>_<SCOP-domain of the binding site>_<Chain-ID of the binding 

site>_<SCOP-domain of the binding partner>_<Chain-ID of the binding partner>. The 

group ID for each binding site is labeled as: <SCOP-family of the binding site 
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>_<cluster ID within the SCOP family>. In Figure 3, the binding sites 

1m3d_78535_B_78538_C and 1t60_106525_V_106528_W are from same SCOPPI 

group (ID: d.169.1.6_1) while the binding site 1cer_29989_R_39901_O is from another 

SCOPPI group (ID: c.2.1.3_25). From the figure, we can see that the SFPs of 

1m3d_78535_B_78538_C and 1t60_106525_V_106528_W are very similar whereas 

they are starkly different from the SFP of 1cer_29989_R_39901_O. 

 

Figure 4: Calculation of a pair-word frequency profile (PFP).Two sample points (i and 

j) are shown on the binding site surface. ni (or nj) and ri (or rj) represent the normal 

vector and 3D coordinate of the i-th (or j-th) face center, respectively. The geodesic 

distance gij is calculated between ri and rj, and the angle αj is calculated between nj and 

a unit vector pointing from ri to rj. 

The pair-word spatial-sensitive frequency profile (PFP) of binding site A, 

extended from [65] for texture analysis of images, is based on the idea that the surface of 

a binding site can be characterized spatially by measuring the local distribution of pairs 

of visual words that are within a given distance d in a given direction θ for a sample 

point. Given a sample point with a visual word index Vi, the frequency Pd,θ(i, j) is 

calculated by accumulating the occurrences of a pair of visual words that have visual 

word indices of visual word (Vi, Vj) and are located within a distance d in direction θ 

(see Figure 4). The following measures are computed for each binding site surface: 
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where µ=Σ(i,j)iPd,θ(i, j) and σ=Σ(i,j)(i-µ)
2
Pd,θ(i, j). Here, the distance d is defined as 50% of 

the maximum Euclidean distance between the coordinates of all visual words on the 

binding sites, and the direction θ is defined as the angle between the two corresponding 

normal vectors. As there is no particular purpose required to retain the θ dependence, we 

compute the above mentioned measures with θ = 0°, 45°, 90°, 135°, and 180° and take 

the average over these angles. 

3.1.5 Scoring function 

For a given query binding site A, the scoring function is used to assign a 

similarity score of a retrieved binding site B from the database. We first define the score 

of SFP as follows: 

1 ,
( , ) 1 ( )

|| || || ||

A B

SFP A B

P P
S A B COS

P P

  
 


, 

where P
A
 and P

B
 are the SFPs for binding sites A and B, respectively. <P

A
, P

B
> is the 

inner product of P
A
 and P

B
, and ||P

A
|| and ||P

B
|| are the norms of P

A
 and P

B
, respectively. 

In addition, we define a score for PFP as follows: 
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|| ||
( , ) 1

arg max(|| ||)

A B

PFP A i

i

T T
S A B

T T


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
, 

where T
A
 and T

B
 are the PFPs for binding sites A and B, respectively. The distance 

||T
A
−T

B
|| is normalized by the maximum distance between A and the database binding 

sites T
i
 (i=1,…,L) where L is the size of database. 

Finally, we also look at the ratio of areas between two binding sites A and B. The 

intuition is that if two binding sites display a significant difference in surface area, they 

will not be geometrically similar. We define the scoring function regarding area of 

binding sites as follows: 

min( , )
( , )

max( , )

A B

Area A B

R R
S A B

R R
 , 

where R
A
 and R

B
 are areas of binding sites A and B, respectively. 

An aggregated similarity function is defined to include the above three scoring 

functions to provide a final similarity score: 

SBS(A, B) = w1×SSFP + w2×SPFP + w3×SArea, 

where w1, w2, and w3 are used to weight the contributions from the three similarity 

terms.  

3.2. Results 

To demonstrate the significance of this work, we compare the performance to 

current methods in terms of accuracy and efficiency. The current methods include an 

alignment-based method, iAlign [9], which is designed for protein-protein interface 

comparison based on the local substructures of subunits, and a feature-based method, 
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Moment Invariants (MI) [50], which describes the geometric shape of a binding site 

using a feature vector based on moment invariants. 

We apply PBSword, iAlign, and MI to a non-redundant dataset from SCOPPI 

[64] to evaluate classification and retrieval performance for protein-protein binding 

sites. During the experiment, a query dataset is selected and used to retrieve similar 

binding sites from the entire database. 

To evaluate classification accuracy, we use a general metric, the correct 

classification rate (CCR), which is defined as follows: 

The number of correctly classified binding sites 
CCR

The total number of test binding sites
 . 

In addition, for each query, we identify the top results whose SCOPPI group matches the 

query’s group. The ranks of these “top results” are then accumulated with summary 

statistics reported. 

We also the use AUC (Area Under Curve) in the ROC (Receiver Operator 

Characteristics) curve [66] to measure how well each method identifies the other binding 

sites from the query’s group. An AUC of 1.0 would correspond to perfect classification, 

which would rank the binding sites from the same group as the query’s before all other 

binding sites, whereas an AUC of 0.5 would be expected for a random classifier. 

3.2.1 Protein binding site classification and retrieval with SCOP 1.69 

The dataset used in this experiment, denoted as D1, is a non-redundant dataset of 

protein binding sites extracted from SCOPPI 1.69 and has been used to evaluate the 
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performance of MI. Dataset D1 consists of 2,819 protein binding sites clustered into 501 

groups, as determined in [50]. The query dataset, denoted as Q1, includes 224 binding 

sites from 53 groups that are selected from D1 by applying a structural alignment tool, 

TM-align [19] to ensure that the similarity score (i.e., TM-score) among the binding 

sites within one group was greater than 0.45. For a more detailed description of D1, see 

[50]. 

Table 2: CCR of PBSword and MI for Q1 and D1.* 

TOP 1 5 10 1% 

PBSword 0.76 0.88 0.91 0.95 

MI 0.40 - - - 

*The result of MI is from caption of Fig.1 in [50].  

We tested our method with a vocabulary size (k) of 400 on all protein binding 

sites from Q1. As each binding site in D1 belongs to a group of geometrically similar 

binding sites, the purpose of our evaluation was to measure how well we can correctly 

classify members from the same group. For a query binding site, we rank each binding 

site in D1 (with the query binding site excluded) based on similarity score. In a perfect 

scenario, the query binding site would be classified into the same group as the top-

ranked binding site. Table 2presents the CCR performance comparison of PBSword and 

MI for Q1 and D1. Intuitively, the optimal accuracy of classification is100% CCR. Our 

classification results show that when using only the top rank, PBSword achieves a 76% 

CCR, which is a significant improvement over the 40% CCR reported by MI in its 

original paper [50]. We also investigated the performance of PBSword by examining up 

to the top 1% (=28) of ranked results. In these situations, if one protein binding site from 

the same group as query can be found in a certain range, the query binding site is 
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regarded as correctly classified. As shown in Table 2, CCRs are 88% and 91% when the 

top 5 and top 10 ranks are considered, respectively. 

Table 3: Summary statistics for best hits from PBSword and MI for Q1 and D1.* 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 1 1 1 1 587 

MI 1 1 2 18.3 1902 

*The results of MI are from [50].  

Table 3 shows summary statistics for the best hits from PBSword and MI for Q1 

and D1. The columns “1
st
 Q”, “2

nd
 Q”, and “3

rd
 Q” correspond to the first, second, and 

third quartile, respectively. Here, the quartiles are values that divide a set of data into 

four equal parts. From the table, we can see that the third quartile of PBSword is still 1, 

as opposed to 18.3 for MI, which represents a significant improvement. In the worst 

case, PBSword finds a binding site from the same group as the query at rank 587 (top 

20%). 

Table 4: Summary statistics for the AUC from PBSword and MI for Q1 and D1.* 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 0.66 0.94 0.99 1 1 

MI 0.30 0.94 0.98 0.99 1 

*The results of MI are from [50].  



 

28 

 

Figure 5: Histogram of AUC for the query dataset Q1.For easy comparison with Fig. 

1(B) in [50] which shows the histogram of AUC of MI on the same dataset, we use 

similar settings to plot the histogram: the x axis is broken into bins of 0.012 and 

frequency in the y axis is normalized with size of Q1. The insert illustrates the frequency 

of AUC within the first bin. 

Table 4 shows summary statistics for the AUC of PBSword and MI for Q1 and 

D1. From the table, we can see PBSword also out-performs MI in terms of AUC. In the 

worst case, PBSword can achieve an AUC of 0.66, which is better than a random 

classifier (0.5). Figure 5 presents the histogram of AUC values for PBSword. With our 

method, for 25% of the queries, we can identify all the members from the same group 

without any false positives, which significantly outperforms MI (5%) and improves by 

20%. 

In addition to comparing the feature-based method MI, we also perform the same 

experiments using the alignment-based method, iAlign, on Q1 and D1. Unfortunately, 

iAlign cannot always find all the alignments of binding sites from the dataset; hence, to 
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facilitate the comparison between PBSword and iAlign, we constructed a reduced query 

dataset, Q1’, by removing those groups from the query dataset that contained the binding 

sites iAlign could not find. This results in the exclusion of 10 groups (ID: a.2.11.1_3, 

c.1.9.2_7, c.1.14.1_1, c.48.1.2_2, d.8.1.1_2, d.8.1.1_5, d.19.1.1_36, d.58.33.1_6, 

d.153.1.4_13, and f.21.1.2_15) from the query dataset Q1, left 188 binding sites 

clustered into 43 groups.  

Table 5: CCR of PBSword and iAlign for Q1’ and D1. 

TOP 1 5 10 1% 

PBSword 0.77 0.88 0.92 0.95 

iALign 0.82 0.99 1 1 

 

Table 6: Summary statistics for the best hits from PBSword and iAlign for Q1’ and 

D1. 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 1 1 1 1 587 

iAlign 1 1 1 1 6 

 

Table 7: Summary statistics for the AUC from PBSword and iAlign for Q1’ and D1. 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 0.75 0.98 0.99 1 1 

iAlign 0.69 1 1 1 1 

 

Table 5 presents the CCR performance comparison between PBSword and 

iAlign for the reduced query dataset Q1’. As can be seen, PBSword achieves a 77% 

CCR, which is relatively close to the 82% CCR of iAlign. We further investigate the 

CCR performance by examining up to the top 1% of ranked results. By using the top 
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five results, PBSword can achieve a CCR of 88%, which is comparable to the CCR 

using top result from iAlign (82%). Thus, on this dataset, instead of performing one-

against-all structural alignment using iAlign, we can achieve a similar classification 

accuracy by checking the top five results (0.1% of the entire data-base of binding sites) 

generated by PBSword. Table 6 presents the summary statistics for the best hits from 

these two methods. Though it is noted that the worst rank of the best hit from PBSword 

is 587, which is worse than iAlign, PBSword still filters out about 80% of the dissimilar 

binding sites. By performing iAlign on the remaining 20% of binding sites in the 

database, we can not only achieve a similar classification accuracy as iAlign, but can 

also save about 80% in computing resources compared to a one-against-all alignment 

using iAlign. Table 7 shows the summary statistics for the AUC. In the worst case, 

PBSword obtains an AUC of 0.75, which is better than that of iAlign (0.69). From these 

experimental results, we can see that PBSword provides an efficient way to filter out 

geometrically dissimilar binding sites and obtain a short list of similar ones, which can 

be sent to the existing alignment-based methods for refinement. 

3.2.2 Protein binding site classification and retrieval with SCOP 1.75 

We also evaluate performance of PBSword using a nor-redundant dataset 

selected from SCOPPI 1.75, which is denoted as D2. For the dataset D1, protein 

structures can be downloaded from the Protein Quaternary Structure (PQS) server [67]. 

However, since the PQS server had not been updated since August 2009 and the 

SCOPPI 1.75 server did not provide detailed information of protein structure, we 

retrieved the protein structures of D2 from the DOMMINO server [68] by comparing 
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protein’s PDB ID, SCOP family, sequence, and binding site residues. The dataset 

D2consisted of 2,090 protein binding sites clustered into 475 groups. Query dataset, 

denoted as Q2, included 249 binding sites from 55 groups, which were selected from D2 

by ensuring that (i) difference of binding site residue number within one group was less 

than 50% and (ii) TM-score among the binding sites within one group was greater than 

0.45. The group members with TM-score less than or equal to 0.45 were discarded from 

the group. The dataset D2, though derived from an incremental release of SCOPPI 1.69, 

shared only 7.4% common binding sites with D1. This is because for each release of 

SCOPPI, the non-redundant interface datasets were generated for each family when new 

structures were added [64]. Dataset D2 and Q2 can be downloaded from the PBSword 

homepage (http://pbs.rnet.missouri.edu/). 

Table 8: CCR of PBSword for Q2 and D2. 

TOP 1 5 10 1% 

PBSword 0.84 0.93 0.95 0.96 

 

We tested our method with a vocabulary size (k) of 400 on all protein binding 

sites from Q2. For a query binding site, we ranked each binding site in D2 (with the 

query binding site excluded) based on the similarity score. Our classification results 

show that when using only the top rank, PBSword achieves an 84% CCR. We also 

assessed the performance of PBSword by examining up to the top 1% (=21) of ranked 

results. As shown in Table 8, CCRs are 93% and 95% when the top 5 and top 10 ranks 

are considered, respectively. 

http://pbs.rnet.missouri.edu/
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Table 9: Summary statistics for best hits from PBSword for Q2 and D2. 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 1 1 1 1 115 

 

Table 9 shows summary statistics for the best hits from PBSword for Q2 and D2. 

From the table, we can see that the third quartile of PBSword is still 1. In the worst case, 

PBSword finds a binding site from the same group as the query at rank 115 (top 6%). 

Table 10: Summary statistics summary for the AUC from PBSword for Q2 and D2. 

 MIN 1
ST

 Q 2
ND

 Q 3
RD

 Q MAX 

PBSword 0.89 0.99 0.99 1 1 

 

Table 10 shows summary statistics for the AUC of PBSword for Q2 and D2. 

Figure 6 presents the histogram of AUC values for PBSword. With our method, for 34% 

of the queries, we were able to identify all the members from the same group without 

any false positives. 

3.2.3 Efficiency 

We measured the average response time for 188 binding sites from Q1’ to 

evaluate the efficiency of PBSword. The experiments were conducted on a Linux Fedora 

server with AMD Opteron dual-core 1000 series processors and 8GB RAM. With 

PBSword, each query took0.31 second for one-against-all score calculations. For iAlign, 

however, each query took1,016 seconds to scan the entire database D1. Note that we 

have excluded the CPU time spent on generating the surface and calculating the visual 

words, as it can be performed off-line during the preprocessing stage. An efficiency 

comparison with I2ISiteEngine, another alignment-based method, was not performed in 

this dissertation, though we note that I2ISiteEngine has been evaluated elsewhere [9] 



 

33 

 

where experimental results showed that iAlign can achieve about an 89-fold speedup 

over I2ISiteEngine. 

 

Figure 6: Histogram of AUC for the query dataset Q2.The x axis is broken into bins of 

0.012 and frequency in the y axis is normalized with size of Q2. The insert illustrates 

the frequency of AUC within the first bin. 

3.2.4 Parameter selection 

The performance of our method is heavily dependent on the vocabulary size (k). 

To study the influence of k on the results, we carried out three experiments on D1 with 

k=200, 400, and 600. The corresponding CCR of top rank is 69%, 76%, and 74%, 

respectively. As such, we selected k=400 as our default settings. 
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Figure 7: Schematic representations of the three case studies. The protein chains A 

(green) and A’ (magenta) are from the query protein while B (blue) and B’ (orange) 

are from the database protein. (a) A and B are from same SCOP family whereas A’ 

and B’ are from different families. The binding site surface on A is geometrically 

similar to that on B. (b) A, A’, B, and B’ are all from different SCOP families but the 

two binding site surfaces are similar. (c) A, A’, B, and B’ are all from same SCOP 

family, but two interactions have dissimilar binding surfaces which correspond to the 

different functions carried out by each protein complex. 

3.3. Case Studies 

We have shown that PBSword can identify geometrically similar protein binding 

sites from the same SCOP family based on surface shape features. As the molecular 

shape has long been recognized as a key factor in protein-protein interactions, we further 

investigate whether PBSword can discover non-trivial biological connections among 

proteins from a geometric perspective. In this section, we first considered whether our 

approach can help investigate the relationships between the geometrically similar shapes 

of protein binding sites participating in an interaction and the functions carried out by 

the interactions. Specifically, we used our approach to first retrieve geometrically 

similar binding sites for a ‘seed’ binding site A, and then selected the top-ranked binding 

site B to analyze the functional similarity between the corresponding proteins. The 

binding partners of A and B are denoted as A’ and B’, respectively. We considered two 
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cases: (i) A and B are from same SCOP family, whereas A’ and B’ are from different 

families; and (ii) A, A’, B, and B’ are all from different SCOP families. We then studied 

the relationships between the shapes of protein binding sites and functional diversity 

within a SCOP family. Intuitively, proteins from the same family are expected to be 

structurally similar and have related functions. Discovering a protein binding site from 

such a family would not be very biologically significant, since the binding sites from the 

structurally similar proteins are expected to be similar and clustered together. What 

would be more interesting would be the discovery of two protein binding sites which are 

from the same family, but have dissimilar geometric shapes and different molecular 

functions. For this study, we considered another case (iii) where A, A’, B, and B’ are 

from the same SCOP family but belong to different functional groups. In this case, the 

binding site B is not the top-ranked, but B has the highest ranking result from the same 

family. The schematic representations for the three cases are shown in Figure 7. 

To study the structure-function relationship based on the geometric features of 

the binding site, we selected another non-redundant dataset of protein-protein interfaces 

generated by all-against-all interface comparisons of protein complexes from PDB using 

I2ISiteEngine [69]. This dataset, denoted as D3, consisted of 604 protein-protein 

interfaces clustered into 59 groups. In each group, interface members shared a sequence 

identity of less than 50%. As the binding site in this dataset is defined on the protein 

chain, we used<PDB-ID>_<Chain ID of the binding site><Chain ID of the binding site 

partner> to represent a protein binding site. 
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In the first case, the protein binding site 4sgb_EI was selected as a query to 

retrieve similar binding sites from D3 with our method. The top result was 1sgd_EI from 

the same group (see Figure 8A). The protein chains 4sgb_E and 1sgd_E are all from the 

prokaryotic pro-teases family, while the chain 4sgb_I and 1sgd_I belong to the plant 

proteinase inhibitors family and ovomucoid domain III-like family, respectively. The 

alignment results of TM-align and iAlign are shown in Figure 8B and Figure 8C, which 

show that two protein chain pairs can be well aligned. The TM-score of the two aligned 

protein structures was 0.99, and the IS-score of the aligned interfaces was 0.64, which is 

statistically significant [9,70]. The binding site surfaces with the chemical environments 

(i.e., electrostatic potential), shown in Figure 8D, are also similar. In this case, 4sgb_I 

and 1sgd_I belong to different families, but can bind to the equivalent sites of 

homologous 4sgb_E and 1sgd_E, respectively. This type of interactions, also known as 

convergently evolved interaction motifs, would be very biologically significant as it can 

be used to discover rules for interactions and design ligand [71]. 

In the second case, we select protein binding site 1b99_AD. In D2, 1b99_AD has 

been classified into a group including 1l0o_AB, 1l3b_AD, 1e7p_AD, 1gtt_BC, and 

1iun_AB [69]. The top result from PBSword is 1tmk_BA, which is from another group. 

The proteins 1b99 and 1tmk are from the nucleoside diphosphate kinase family and 

nucleotide and nucleoside kinases family, respectively. However, both proteins are 

kinase and mainly composed of α-helices and β-strands (see Figure 9A). The sequence 

alignment between the 1b99 and 1tmk binding chains shows low similarity. The global 

structure alignment using TM-align is given in Figure 9B, which shows that the residues 

from the binding chains 1b99_D and 1tmk_A cannot be aligned together. Hence, we 
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obtain a TM-score of 0.25, which is not statistically significant. In contrast, iAlign can 

find partial residue correspondences between the two interfaces (see Figure 9C) with an 

IS-score of 0.24 (p-value = 0.42×10
-2

). As a comparison, the binding site surfaces of 

1b99_AD and 1tmk_BA are shown in Figure 9D. Despite the sequence and global 

structure conservation being low, the binding site surfaces of 1b99_AD and 1tmk_BA 

are geometrically similar, which is effectively captured by PBSword. 

In the third case, we select the family of C-type lectin domains (SCOP ID 

d.169.1.1). In 1993, Drickamer first classified proteins in this family into seven groups 

and showed that such classification can capture functional similarities between proteins 

[72]. The classification was later revised [73,74], and currently this family has 17 

groups. The spatial relationships of protein binding sites in this family were analyzed in 

[75], and significant diversity was found. In this case, protein binding site 

1k9i_68344_B68349_G from this family, which is not included in the query dataset Q1, 

was selected and compared to the sites from D1. In D1, binding site 

1bv4_42381_B42383_C (see Figure 10A) from the same family is recognized as having 

a similar interface type and is classified into the same group (ID: d.169.1.1_21) 

according to the sequence and structure alignment methods employed by SCOPPI. With 

our approach, the binding site 1bv4_42381_B42383_C was ranked as 2,334. The 

structure alignments of TM-align and iAlign are shown in Figure 10B and Figure 10C, 

respectively. Since these two bind sites belong to same family, there is a significant 

similarity from TM-align (TM-score = 0.86). However, the IS-score from iAlign is only 

0.11 (p-value = 0.84). The binding site surfaces, shown in Figure 10D, are remarkably 

dissimilar. The functional groups of 1k9i and 1bv4 are also different. According to the 
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classification of functional groups in [74], protein 1k9i belongs to the asialoglycoprotein 

and DC receptors group while protein 1bv4 belongs to the collectins group. From this 

case, we can see that the surface dissimilarity detected by PBSword can be potentially 

used to discover functional diversity between two proteins from the same family.  
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Figure 8: Case study of protein binding site 4sgb_EI.(A) Protein structures of 

4sgb_EI (chain E-green, chain I-magenta) and 1sgd_EI (chain E-blue, chain I-

orange). The protein chains 4sgb_E and 1sgd_E are both from the prokaryotic 

proteases family, while the chains 4sgb_I and 1sgd_I belong to the plant proteinase 

inhibitors family and ovomucoid domain III-like family, respectively. (B) Global 

structure alignment of 4sgb_EI and 1sgd_EI using TM-align (TM-score = 0.99). (C) 

Local substructure alignment of 4sgb_EI and 1sgd_EI using iAlign (IS-score = 0.64). 

(D) Binding site surfaces with the chemical environments (i.e., electrostatic potential) 

of 4sgb_EI and 1sgd_EI. In this case, 4sgb_I and 1sgd_I belong to different families, 

but can bind to the equivalent sites of homologous 4sgb_E and 1sgd_E, respectively. 

This type of interaction is also known as convergently evolved interaction motifs. 
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Figure 9: Case study of protein binding site 1b99_AD. (A) Protein structures of 

1b99_AD (chain A-green, chain D-magenta) and 1tmk_BA (chain B-blue, chain A-

orange). The proteins 1b99 and 1tmk are from the nucleoside diphosphate kinase 

family and nucleotide and nucleoside kinases family, respectively. (B) Global 

structure alignment of 1b99_AD and 1tmk_BA using TM-align (TM-score = 0.25). 

(C) Local substructure alignment of 1b99_AD and 1tmk_BA using iAlign (IS-score = 

0.24). (D) Binding site surfaces with the chemical environments (i.e., electrostatic 

potential) of 1b99_AD and 1tmk_BA. In this case, despite the global structure 

conservation being low, the binding site surfaces of 1b99_AD and 1tmk_BA are 

geometrically similar, which is effectively captured by PBSword. 
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Figure 10: Case study of C-type lectin domains.(A) Protein structures of 

1k9i_68344_B68349_G (chain B-green, chain G-magenta) and 1bv4_42381_B42383_C 

(chain B-blue, chain C-orange). Both proteins are from the family of C-type lectin 

domains (B) Global structure alignment of 1k9i_68344_B68349_G and 

1bv4_42381_B42383_C using TM-align (TM-score = 0.86). (C) Local substructure 

alignment of 1k9i_68344_B68349_G and 1bv4_42381_B42383_C using iAlign (IS-

score = 0.11). (D) Binding site surfaces with the chemical environments (i.e., 

electrostatic potential) of 1k9i_68344_B68349_G and 1bv4_42381_B42383_C. In this 

case, despite the proteins being from same family, the binding site surfaces are 

remarkably dissimilar and belong to different functional groups. 
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CHAPTER FOUR 

ACCURATE PROTEIN BINDING SITEALIGNMENT 

In this chapter, PBSalign (Protein-protein Binding Site alignment) is introduced 

for sequence-independent local alignment of protein binding sites. One application of 

PBSalign is to perform accurate alignments for a selected list generated by PBSword 

(see Chapter 3) screening on a binding site database. Hence, PBSalign and PBSword can 

work together to provide an efficient and accurate approach for large-scale binding site 

comparison. 

4.1. Methods 

The framework of PBSalign is shown in Figure 11. The input of PBSalign is a 

pair of PPIs: IA={BSA
1
, BSA

2
} and IB={BSB

1
, BSB

2
}. Each protein-protein interface (PPI) 

consists of two binding sites (BS) which could come from the same or different fold(s). 

Without loss of generality, we assume BSA
1
 and BSB

1
 are binding site pairs for 

comparison and use BSA and BSB to represent these two sites in the following sections. 

During the alignment, BSA will be fixed, and BSB will be rotated and translated towards 

BSA as a rigid body. The outputs include residue correspondences and similarity score of 

alignment. Similar as the global structure alignment, PBSalign aims to determine an 

alignment between residues of two given binding sites such that functional and 

evolutionary relationships between them can be identified.  
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Figure 11: Framework of PBSalign. 

PBSalign mainly consists of three steps (see Figure 11): (i) preprocessing, (ii) 

initial alignment, and (iii) MaxSurf. In the preprocessing step, a binding site surface is 

generated and various surface properties are calculated. In the initial alignment step, 

similarity of properties is used to find potential correspondences between two binding 

site surfaces and a list of seed alignments is generated by the correspondences. Finally, 

the seed alignments are refined using MaxSurf, an algorithm developed to find maximal 

overlapping surface of two binding sites while minimizing RMSD (Root Mean Square 

Deviation) of alignment. 

4.1.1 Preprocessing 

The workflow of preprocessing is illustrated in Figure 12, which includes (i) 

surface generation, (ii) properties calculation, and (iii) feature point and region selection. 
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Figure 12: Illustration of the preprocessing method of PBSalign. From the input protein 

binding site structure (A), a triangulated mesh (B) is first generated using the MSMS 

program and various properties are calculated. (C) Feature point, represented using 

point in red color, is selected based on the distance to the binding site residue and 

feature region, which is growing around the feature point with radius r=4Å. For clarity, 

only one feature point and region is shown. 

Surface Representation 

For a given protein complex, we use the MSMS program [59] to generate a 

triangulated mesh for each of its interacting subunits and set the density and probe radius 

to 1.0 point/Å
2
 and 1.4 Å, respectively. Since we are only interested in the binding 

regions, for each protein mesh, we retain only those surface points that are within a 

distance cutoff from the surface of its binding partner. A triangle is selected when its 

three vertices are all retained in the interaction region. We represent binding site surface 

as a connected and non-directed graph G=(V, E) where each node v∊V represents a 
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surface point and E includes all and only the edges (vi, vj) such that point vi and vj are 

adjacent on the surface. 

Surface Properties 

Each node v∊V is associated with a local value of three properties: shape index, 

si(v), electrostatic potential, esp(v), and hydrophobicity, hyd(v). The shape index of v, 

si(v), is defined using the maximum (k1) and minimum (k2) local curvature, which is 

given as follows [76]: 

      
 

 
 

 

 
      

           

           
. 

It takes a value in the interval [0, 1] which is further divided into nine categories 

each corresponding to a well-known shape, such as dome and saddle [76]. The initial 

values of potential in v, esp(v) and hydrophobicity, hyd(v), are calculated using the 

software package VASCo [77], which are standardized and discretized into six 

categories by PBSalign. 

Feature Point and Region 

To find potential correspondences between two binding sites, we should specify 

some feature points on the surfaces. In PBSalign, a feature point corresponds to a 

binding site residue and is defined as the surface point which has the smallest Euclidean 

distance to the Cα atom of the corresponding residue. In the following sections, we will 

use the feature point and binding site residue interchangeably. 
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For a feature point vi, we grow a feature region Ri which is centered at the feature 

point and covers surface points with Euclidean distance < 4Å (see Figure 12). The 

feature region can be represented using 

Ri={c(Ri), n(Ri), s(Ri)}, 

where c(Ri) represents the coordinates of feature point, n(Ri) is the normal vector of 

feature point, and  a region signature set s(Ri) contains three signatures of the region Ri 

for the shape index, electrostatic potential, and hydrophobicity properties, respectively. 

Each signature is represented by a histogram and a region signature set has a collection 

of all histograms. The number of histogram bins is set to the discretization categories for 

the characteristics of the three signatures, which are empirically set to nine, six, and six 

for si, esp, and hyd, respectively. The above process is repeated for each binding site 

residue. 

4.1.2 Initial Alignment 

We use the feature regions to match the binding sites BSA and BSB by seeking a 

set of common feature regions on two binding sites and an alignment transformation that 

brings BSB close to BSA. For each feature region on BSA, we first find all corresponding 

feature regions on BSB and then extract subsets of consistent region correspondences. 

The initial correspondence set is then filtered by several pruning algorithms, to be 

discussed shortly, and the final set of matching regions is found using a maximal clique 

detection algorithm [78]. In this step, we keep all the consistent sets of matching feature 

regions, which are then used as seed alignments for further refinement by the next step, 

MaxSurf. An overview of initial alignment is illustrated in Figure 13. 
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Figure 13: Example of the initial alignment method of PBSalign. Suppose the binding 

site BSA and BSB have three feature points, denoted as {Ai} and {Bi}, i=1,..,3, 

respectively. (A) A product graph is generated. (B) After applying the properties 

pruning, vertices (A2, B2), whose region properties are incompatible, is removed from 

the graph. (C) Geometric consistence is used to filter out invalid correspondences and 

maximum clique is detected (thick lines in red and magenta colors). (D) Residue 

correspondences or seed alignments are generated. 

Product Graph 

Given the two binding sites, BSA and BSB, and their graph representations, 

GA=(VA, EA)and GB=(VB, EB), the product graph of GA and GB, GP=(VP, EP), is 

constructed by inserting every pair of feature points, vi∊VA and vj∊VB, from two binding 

sites into its vertices set VP. Edges are drawn between every two vertices if they do not 

share a common feature point.  
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Properties Pruning  

For each node of VP, correspondence between two feature points is established 

through their compatibility of associated regions. Two feature regions are compatible if 

a certain similarity is observed in their region properties. Let p = (A, B) be a potential 

region correspondence (i.e., a node in the product graph GP) between the binding sites 

BSA and BSB. We assess the compatibility of p by comparing the region signatures of A 

and B using the following similarity score of two feature regions: 

               
             

               
 . 

Here, s(RA) and s(RB) are the signature for regions A and B, respectively. <s(RA), s(RB)> 

is the inner product of s(RA) and s(RB), and ||s(RA)|| and ||s(RB)|| are the norms of s(RA) 

and s(RB), respectively. A region correspondence p is considered further only if SR(p) 

>εR (=0.6) holds true; otherwise we discard it from the product group GP. In PBSalign, 

similarity scores of properties shape index, electrostatic potential, and hydrophobicity 

are applied sequentially to filter out incompatible feature points or regions 

correspondences. 

Geometric Consistency 

Because the initial set of correspondences after the properties pruning might be 

quite large, we further examine the geometric consistency and relational constraints of 

two connected nodes in GP to remove outliers. These processes make the next step of 

maximal clique detection run faster, but do not affect the correctness of our algorithm. 
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Figure 14: Example of geometric consistency. A1(or A2) and B1(or B2) are feature 

regions from binding site A and B. c and n represents coordinate and normal vector of 

feature point. 

We call a pair of region correspondences, e.g.,p1 = (A1, B1) and p2 = (A2, B2), 

geometrically consistent (see Figure 14) if the Euclidean distance between the feature 

points’ position δA=||c(A1)−c(A2)|| and δB=||c(B1)−c(B2)|| are of similar length, i.e., 

|δA−δB|<εd (=2Å based on empirical observations), and the angles between corresponding 

pairs of vectors ∠(n(A1),n(A2))and ∠(n(B1), n(B2)) do not differ more than a certain 

threshold εα(=30° based on empirical observations). In the product graph GP, edges 

between p1 and p2 are removed if the geometric consistence does not hold.  

Maximal Clique Detection 

Having applied all the filters, the size of the potential correspondences is reduced 

so that it is possible to search for cliques in it. We use the algorithm of Bron and 

Kerbosch [78] to find all cliques with a minimum clique size of three. For each clique 

we generate a rigid body transformation based on all region correspondences, and we 

then calculate RMSD and the number of aligned surface feature points (Np) of this 

transformation. All the cliques are sorted according to the ratio of RMSD/Np in 

ascending order and up to Nseed (=20) cliques are selected as initial alignments for further 
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refinements. The binding site BSB is then transformed and rotated towards BSA using the 

results of the initial alignments. 

4.1.3 MaxSurf 

In this step, each seed alignment from the previous step is further refined by 

searching maximal surface overlapping through an iterative method, ICP (Iterative 

Closest Point) [79]. The final alignment is generated by a refinement process. 

Iterative Closest Point (ICP)  

The outputs of the initial alignments may not be the optimal transformation, but 

provide a coarse initialization for ICP to refine the rigid transformation. After applying 

ICP to the binding sites, the output is used to transform the binding site BSB towards 

BSA. As the ICP algorithm can only provide a local minimum of alignment error, the 

binding site pairs are sent to the next step for further refinement. 

Refinement 

In this step, we refine the matched binding site surfaces on the basis of the results 

recognized in the previous stage. For each seed alignment, we utilize the resulting 

product graph from the previous step. Secondly, we calculate the Euclidean distance 

between each residue on the binding site BSA and its nearest neighbor from the binding 

site BSB, then sort the distances in descending order and select 70
th
 percentile of the 

observed distance as a cutoff to prune feature point correspondences (vertices from the 

graph). Secondary structure of a residue is optionally applied in this step, which is 

calculated using Cα coordinate of five neighbor residues [19]. Finally, we utilize 
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maximum clique detection [80] to obtain a set of residue correspondences whose Cα 

atom distance is less than 4Å. 

The output of maximum clique detection consists of a string of aligned residue 

pairs which are sequentially ordered from their N to their C terminal. We further extend 

the alignments to include as many unaligned binding site residues as possible using a 

greedy approach. The fixed binding site, BSA, is selected as our starting point. We define 

a fragment as a set of at least two adjacent residues in the binding site BSA. For fragment 

F, let Fh denote the first residue and Ft denote the last residue of the fragment. The 

extension procedure for the fragment F is described as follows. First, we begin searching 

unaligned residues from Fh towards the N terminal. An unaligned residue is selected (if 

any) and the distance between its nearest unaligned residue from the BSB is calculated. If 

the distance is < 4Å, the residue pairs are marked as aligned and the next unaligned 

residue towards the N terminal is selected until an aligned residue or beginning of 

binding sites is approached. Second, a similar searching process is started from Ft 

towards the C terminal. Finally, we use the q-Score [81] to rank each valid seed 

alignment and select the top one as the final output. The valid alignment of PBSalign 

means the residue correspondence is unique and sequential. 

4.1.4 Time Complexity 

For clear description, we define the number of feature points on the binding site 

as m. In the preprocessing step, the properties are calculated for m feature points, which 

needs a complexity of O(m). In the second step, we define the number of 

correspondences of each feature point as n for each feature point. Hence, we need to 



 

52 

 

perform an n comparison of signatures for pruning and the complexity is O(mn). We 

define g as the number of vertices of the product graph, and the time complexity for 

detecting maximal cliques is O(3
g/3

) [82]. In the third step, ICP is implemented using a 

k-d tree [83], and its time complexity is O(bAlogbB) where bA and bB are the numbers of 

vertices on the binding site surface BSA and BSB, respectively. It can be seen that the 

total time complexity of first step is O(mn)+O(3
g/3

)+O(bAlogbB). 

4.2. Results 

In this section, we compare performance of PBSalign and the concurrent 

methods, which have publicly accessible software packages, including I2I-SiteEngine 

[52], iAlign [9], and Galinter [10]. Since the performance comparisons of Galinter/I2I-

SiteEngine and I2I-SiteEngine/iAlign were conducted somewhere else [9,10] and iAlign 

had the best performance, we selected iAlign for benchmarking the performance of 

PBSalign. The datasets consisted of homologous and non-homologous binding sites, as 

well as different types of protein complexes: 

• The first dataset, denoted as D1, is composed of homologous PPIs which was 

originally constructed to evaluate performance of iAlign [9].  

• The second dataset, denoted as D2, is taken from Table 1 in [43], which was 

used to study structurally similar binding sites coming from different protein folds (i.e., 

non-homologous).   

In the following sections, we used<PDB-ID>_<Chain ID of the binding 

site><Chain ID of the binding site partner> to represent a binding site. 
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Similar to the structural alignments, the performance comparison of binding sites 

alignments could be based on alignment quality or alignment accuracy. The alignment 

quality was evaluated using the geometric match measures, such as the RMSD of the 

superimposed structures. While the alignment accuracy, also known as the 

discrimination problem, measures the accuracy with which an alignment method 

classifies a pair of protein structures into a similar/dissimilar category [84,85] defined 

using the similarity of folds (e.g., SCOP [86]) or PPI (e.g., SCOPPI [64] and SCOWLP 

[87]). However, recent studies [14,43] show that some proteins or binding sites from 

different folds may have very similar structures. Hence, we only compare different 

alignment methods based on the alignment quality.   

When evaluated using the geometric match, the goal of structural alignment is to 

minimize the RMSD of the aligned region. However, as the RMSD depends on the 

number of aligned residues, the RMSD values associated with alignments of different 

lengths cannot be compared. To overcome this issue, we used the geometric match 

measures which simultaneously consider both factors, such as similarity index (SI), 

match index (MI), and structural alignment score (SAS). These measures, which have 

also been used in a comprehensive evaluation of protein structure alignment method 

[88], are defined as follows: 

   
                

  
, 

    
        

  
, 
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, 

where Ne is the number of aligned residues, ω0 is a normalizing factor and set to 1.5 

[88],  and LA and LB are the lengths of binding site BSA and BSB. The units of SI and SAS 

are Å. MI takes values between 0 and 1. For these measures, lower values correspond to 

better alignments. 

4.2.1 Database D1 

The dataset D1 consists of biologically related PPIs. Here, a PPI pair is said to be 

biologically related if they are from same SCOP superfamily and share a certain level of 

similarity. Hence, PPI pairs from this dataset are homologous. For details about 

selecting PPI pairs, see [9]. 

For a given PPI pair, IA={BSA
1
, BSA

2
} and IB={BSB

1
, BSB

2
}, iAlign first considers 

two possible ways of alignment. One is to align BSA
1
 to BSB

1
 and BSA

2
 to BSB

2
, and the 

other is to align BSA
1
 to BSB

2
 and BSA

2
 to BSB

1
. Then, iAlign selects the one whose score 

is the best. The final output of iAlign consists of two lists of residue correspondences, 

each of which is related to a pair of binding sites from different subunits. In contrast to 

iAlign, PBSalign is designed specifically for binding site comparison, which can 

designate binding site pairs for comparison. Hence, the problem is how to select one 

binding site pair aligned by iAlign and compare its alignment with that of PBSalign. Our 

solution is to pick the binding site pair which has lower SAS score to form a testing 

dataset for PBSalign. During the experiments, the geometric match measures are 

calculated on the same binding site pairs.  
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Table 11: Average (standard deviation) values of SI, SAS, and MI with iAlign and 

PBSalign for dataset D1. 

METHODS SI SAS MI 

iAlign 2.45(0.88) 7.15(3.25) 0.62(0.09) 

PBSalign 2.12(0.76) 6.23(3.04) 0.61(0.10) 

 

A comparison of the SI, SAS, and MI values obtained by iAlign and PBSalign is 

summarized in Table 11. As can be seen, PBSalign results in structural alignments with 

better SI, SAS, and MI values in comparison to iAlign. The detailed distributions of SI, 

SAS and MI values are given in Figure 15. We also tested the statistical significance of 

the observed difference in the mean values of SI, SAS, and MI using the paired t-test. 

The difference in the mean values of SI, SAS, and MI was found to be statistically 

significant (p-value <<0.001). 

We further analyzed the relative improvement in various geometric match 

measures obtained by PBSalign or iAlign. The measure difference is defined as 

(measure(PBSalign) – measure(iAlign)). For example, the measure difference of SI is 

given as dSI=(SI(PBSalign) – SI(iAlign)). Similarly, we defined the difference for SAS 

(dSAS) and MI (dMI). The detailed distribution of dSI, dSAS, and dMI values are 

shown in Figure 16. 
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Figure 15: Histogram of (A) SI, (B) SAS, and (C) MI for dataset D1. 
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Figure 16: Histogram of (A) dSI, (B) dSAS, and (C) dMI for dataset D1. 

For these measure differences, it is difficult to identify the exact value which 

shows a significant change in the alignment quality. Based on the experimental results, 

we have empirically considered a |dSI|>-0.5 as a significant improvement imposed by 

iAlign (i.e., dSI>0.5) or PBSalign (i.e., dSI<-0.5) and a dSI between -0.5 and 0.5 as not 

so significant. Similarly, we define |dSAS| > 1.5 and |dMI| > 0.05 as significant 

improvement for SAS and MI, respectively. Table 12 shows summary of alignment 
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improvement based on SI, SAS, and MI values. From the table, we can see that 

PBSalign results in alignments with better SI (by ~30%), SAS (by ~26%), and MI (by 

~14%) in comparison to iAlign. 

Table 12: Comparison of iAlign with PBSalign for dataset D1 

using SI, SAS, and MI measures. 

 % BINDING SITE PAIRS WHERE 

MEASURES PBSALIGN IS BETTER IALIGN IS BETTER 

SI 30 2 

SAS 26 3 

MI 14 4 

 

4.2.2 Dataset D2 

The dataset D2 consists of 69 binding sites from 10 groups. Members of each 

group had similar binding sites on one side of their interfaces, but the partner proteins 

were different. During the experiments, we performed pair-wise alignments among 

members from the same group. Hence, totally k×(k-1)/2 times of alignments are needed 

for each group where k is the size of group.  

Different from the dataset D1, the dataset D2 has designated similar binding site 

pairs. For some cases, iAlign cannot find the same matching binding site pairs as that of 

the datasets because of different definitions of similarity score and strategies to select 

paired binding sites. Hence, we simply excluded those pairs from the dataset D2 

according to the alignment results of iAlign. Finally, we obtained54 binding site pairs 

which are structurally similar but non-homologous. 
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Table 13: Average (standard deviation) values of SI, SAS, 

and MI with iAlign and PBSalign for dataset D2. 

METHODS SI SAS MI 

iAlign 2.95(1.39) 19.20(9.89) 0.68(0.10) 

PBSalign 2.06(1.07) 13.50(8.46) 0.63(0.10) 

 

We first calculated average and standard values of SI, SAS, and MI for the 

alignments generated by iAlign and PBSalign, which are shown in Table 13. From this 

table, we can see that PBSalign achieved better geometric match measures compared 

with iAlign. The detailed distributions of the SI, SAS and MI values are shown in Figure 

17. Next, we tested the statistical significance of the observed difference in the mean 

values of SI, SAS, and MI, using a paired t-test. The difference in the mean SI, SAS, and 

MI was found to be statistically significant (p-value <<0.001). 

We further analyzed the relative improvement in various geometric match 

measures by PBSalign. Similar to the dataset D1, we defined |dSI|> 0.5, |dSAS| > 1.5, 

and |dMI| > 0.05 as an significant improvement for SI, SAS, and MI, respectively. Table 

14 shows the summary of measure differences. From this table, we can see that 

PBSalign results in alignments with better SI (by ~56%), SAS (by ~76%), and MI (by 

~46%) in comparison to iAlign. The detailed distribution of dSI, dSAS, and dMI values 

are shown in Figure 18. 
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Figure 17: Histogram of (A) SI, (B) SAS, and (C) MI for dataset D2. 
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Table 14: Comparison of iAlign with PBSalign for the dataset D2 

using SI, SAS, and MI measures. 

 % BINDING SITE PAIRS WHERE 

MEASURES PBSALIGN IS BETTER IALIGN IS BETTER 

SI 56 2 

SAS 76 6 

MI 46 9 

 

 

Figure 18: Histogram of (A) dSI, (B) dSAS, and (C) dMI for dataset D2. 
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CHAPTER FIVE 

PARALLEL PROTEIN GLOBAL STRUCTURE ALIGNMENT 

To accelerate protein global structure alignment, we present ppsAlign, a parallel 

protein structure alignment framework designed and optimized to exploit the parallelism 

of GPUs. ppsAlign is a high-performance protein structure alignment tool designed to 

tackle the computational complexity issues associated with protein structural data. The 

solution presented in this chapter allows large-scale structure comparisons to be 

performed using massive parallel computing power of GPU. The methods and results of 

this chapter have been published in BMC Research Notes [89]. 

5.1. Methods 

The framework of ppsAlign is shown in Figure 19. The inputs include a target 

protein and a protein database Λ={P1, P2, …, Pn}. The outputs are structure alignments 

between the target protein and each database protein. The online alignment starts with a 

generation of some initial sets of matched fragments and corresponding alignments. 

Then, the initial alignments are extended and refined using Dynamic Programming to 

obtain the final results. Specifically, the ppsAlign algorithm consists of five steps: 1) 

Index-based matched fragment set (MFS) search is utilized to find the maximal Nseed 

seed MFS’ between the target protein and each database protein; 2) Fragment-level 

alignment is used to assemble the MFS’ and generate initial alignments; 3) Residue-

level alignment is used to refine the initial alignments to residue alignments; 4) Maximal 

alignment search is used to find a transformation that can best superimpose the entire 



 

63 

 

target protein over each database protein based on the obtained residue alignments; 5) 

Final assessment is performed to calculate z-Score and evaluate statistical significance 

of alignments. Steps 1) and 5) are executed on the CPU core, while steps 2) ~ 4), the 

most time-consuming parts of ppsAlign, are implemented as GPU kernels and iteratively 

executed on GPU for Niter times. 

 

Figure 19: Framework of ppsAlign. The framework consists of both GPU- and CPU- 

based processes. The input includes a target protein and database proteins. The output 

contains all the structural alignment results between the target protein and each 

database protein. 

The GPU kernels are developed using CUDA (Compute Unified Device 

Architecture) programming model [34]. During the alignment, the protein structures and 

intermediate results from each GPU kernel are stored in GPU’s on-board memory, such 

as read-only constant memory, read-only texture memory, and read-write global 
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memory. Generally, the constant and texture memory have limited capacity but high 

access rate compared to the global memory. For an overview of GPU architecture and 

CUDA model, readers are referred to [34,90]. To facilitate the search of structurally 

similar fragments from the protein database, ppsAlign has an off-line component that 

pre-processes substructures from the entire protein database and builds an indexing tree 

to allow fast retrievals. 

5.1.1 Index-based Matched Fragment Set Search 

The purpose of this CPU-based step is to quickly find all possible matched 

fragment sets (MFS’) between the target protein and each database protein for further 

refinement based on an information retrieval (IR) approach which goes beyond the 

capability of the traditional “bag of words” [30] concept by introducing spatial 

relationships among these fragments. Let Q={q1,q2,…,    } and P={p1, p2,…,    } be a 

target protein with LQ residues and a database protein with LP residues, respectively. 

Here, q and p represent 3D coordinates of the Cα atoms. A fragment f is a set of Lf (=8) 

continuous residues with the direction from N terminal to C terminal along the protein 

backbone. A MFS includes two non-empty subsets, FQ and FP, which contain an order 

of fragments that conforms to some criteria of structural similarity between Q and P, 

respectively. The fragments in an MFS were used to generate a rough alignment 

between Q and P in the fragment-level alignment. 

The MFS search utilizes the substructure mapping method of the Index-based 

Substructure Alignment algorithm [91] developed by the authors to retrieve similar 

fragments from the database proteins. In this method, substructures of the database 
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proteins, extracted by a large set of pairs of windows along the backbones, are indexed 

off-line by an indexing tree in which similar substructures are clustered into the same 

leaf node, denoted by ti
Λ
, and one substructure is selected as representative for each leaf 

node. Such representative structures preserve certain topological information, both 

locally and globally, from two disjoint substructures with various ranges of distances. 

Similarly, substructures in the target protein Q are indexed by an indexing tree in which 

each leaf node is denoted by tj
Q
. The representative substructure of each tj

Q 
was used to 

search the indexing tree of our database and a list of best matched t
Λ 

was returned. For 

simplicity, we used t to denote tj
Q
 and t

Λ
. The database proteins that have substructures 

in t
Λ
 can be found by an inverted index. Such a database protein, P, can be represented 

by an order of substructures, denoted by Ωt, occurring in t. Likewise, the protein Q can 

be represented by an order of substructures, denoted by Ωt
Q
, occurring in t. As 

substructures identified by the same t are similar, they can be used as “anchors” for 

rough alignments. For detailed explanation of the substructure mapping method, readers 

are referred to [91]. 

In ppsAlign, substructures are further projected into fragments as follows: if any 

residue of a substructure from Ωt
P
 (or Ωt

Q
) is located in a fragment, the fragment is 

selected and added to FP (or FQ). The fragment subsets FP and FQ are used to construct 

an MFS between the protein Q and P. After searching all t
Q
, we can obtain all possible 

MFS’ between Q and database proteins, if any. In this step, if the algorithm cannot find 

any MFS for a database protein, all the fragments from Q and the database protein are 

selected to form a MFS.  
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After searching MFS, a filtering process was called to remove redundant MFS’. 

Then, the non-redundant MFS’ between Q and each database protein were ranked 

according to scoring function SMFS and the top Nseed sets selected. The scoring function is 

defined as follows: 

        
  

 
 
     

  

  
     

           

           
, 

where NQ and NP denote the cardinality of FQ and FP in an MFS, respectively. 

Nf
Q
=⌈LQ/Lf⌉ and Nf

P
=⌈LP/Lf⌉ are the numbers of fragments in the target protein and a 

database protein, respectively. The third term of the above scoring function is used to 

favor MFS’ which have comparable NQ and NP. The values w1, w2, and w3 are used to 

weight the contributions from the three terms. 

The data needed by ppsAlign in order to compute the alignments on GPU are: 

structures of the protein Q and of the database proteins, and MFS’. To allow efficient 

processing, those data must be judiciously laid out on the GPU memories. Specifically, 

the database structures are transferred to the texture memory before execution.  The 

MFS’ are transferred from CPU memory to GPU global memory as inputs to the 

fragment-level alignment. Finally, the structure of protein Q is stored in the constant 

memory, which has smaller capacity but lower access latency compared to the texture 

memory. 

5.1.2 Fragment-level Alignment 

In this step, the fragments in each MFS are assembled to obtain initial alignments 

using Dynamic Programming (DP). For a given MFS, the DP algorithm first sorts the 
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fragments from FQ and FP according to their locations in Q and P. Then, it computes the 

similarity score Sf(i, j) of each fragment pair for 1≤i≤NQ and 1≤j≤NP using the following 

recurrence: 

            

                    

             
             

 , 

where Gf is gap penalty and Sf is based on the inverse cosine distance of fragment’s 

feature vector. Given a fragment pair, A and B, and their corresponding feature vectors 

DA and DB, Sf is calculated as follows: 

         
  
   

       

             
 , 

where <DA, DB> is the inner product of DA and DB, and ||DA|| and ||DB|| are the norm of 

DA and DB, respectively. In the current implementation, features only use Euclidean 

distance of each residue pair for fast calculation. The main reason for using feature 

distance as an approximate measure of fragment similarity is the need for simple control 

paths due to the SIMT (Single Instruction, Multiple Thread) computing mode of the 

GPU [34]. Traditional methods usually calculate RMSD and find an optimal 

transformation using the Kabsh algorithm [92], which contains complex control flows 

and is therefore not suitable for the SIMT mode. This step provides a rough alignment 

result which must be refined by the residue-level alignment. 
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Figure 20: Algorithm of fragment-level alignment. Fragment-level alignment consists 

of three GPU kernels. The first kernel performs the computation of the fragment 

scores. The second kernel implements the Dynamic Programming algorithm, and the 

third one performs the back tracing. 

GPU Computation for Fragment-level Alignment 

The pseudo-code in Figure 20 describes the fragment-level alignment. The 

algorithm splits the computation into three GPU kernels. The first kernel performs the 

computation of the fragment scores Sf by assigning a database protein to each thread. 

This kernel performs all-against-all fragment comparisons and writes similarity scores 

into the GPU global memory.  

The second GPU kernel implements the DP algorithm, whereas the third one 

performs back tracing. The total number of threads NT that can run concurrently on the 

GPU is mainly limited by the global memory capacity of the GPU (in this phase each 
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thread requires approximately 10kB of memory). Suppose that the total number of MFS 

between Q and all database proteins is NF. If NF>NT, the overall MFS’ will be divided 

into Nbatch=⌈NF/NT⌉ batches. ppsAlign sequentially schedules each batch to run on GPU. 

In each batch, the DP is first executed as a GPU kernel and each thread corresponds to a 

MFS. Then, the GPU kernel for the back tracing is called to obtain alignment paths for 

each MFS. When a batch terminates, ppsAlign transfers the output (i.e., alignment path 

for each MFS) from the GPU memory to CPU memory. After aggregating the outputs 

from all batches, ppsAlign first performs filtering to remove redundant alignments, and 

then assembles all the fragments along the alignment paths to form residue alignments 

which will be further refined by the residue-level alignment. 

It is critically important to effectively utilize the limited memory resources of the 

GPU. Our GPU memory allocation scheme is exemplified in Figure 21. The MFS’ are 

stored in a 2D block of size (NT×NS) where NS is the maximal size of all MFS’. Each 

thread of the DP kernel fetches a MFS to initialize its setting. The score and direction 

matrices are stored in a separate 3D memory block of size (NQ×NP×NT), where NQ and 

NP represent the maximal number of fragments from the target protein and all the 

database proteins, respectively. The alignment paths are then stored in a 2D block of size 

(NP×NT). In ppsAlign, multiple GPU memory accesses are coalesced into a single 

transaction whenever possible. This fragment-level alignment process provides a 

selection of seed fragments which are likely to be successful in accurate alignment. Only 

approximately 1.6% of the total execution time is spent in this phase. 
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Figure 21: GPU global memory layout of fragment-level alignment. The Matched 

Fragment Sets (MFS’) are stored in a 2D block. The score and direction matrices are 

stored in a separate 3D memory block. The alignment paths are stored in a 2D block. 

Residue-level Alignment 

The results of fragment-level alignment are then refined by a residue-level 

alignment process. Such a refined alignment result is an ordered set R={(qi, pi) | qi∊Q’, 

pi∊P’}, where Q’⊆Q (target protein) and P’⊆P (database protein).  

In this step, a rigid-body transformation (rotation and translation) T that 

minimizes the RMSD of R is first calculated. Then, the transformation T is used to 

superimpose all the residues from Q over P. Finally, the DP algorithm is used to find an 

alignment path between Q and P similar to the fragment-level alignment. In the DP, the 

gap penalty Gr is set to 0 and the residue similarity score Sr uses the scoring function 

from TM-align [19]. However, our framework can be configured to use any suitable 

residue-level scoring function [47].  

As we mentioned previously, the complex control flows present in the traditional 

method for computing T (e.g., Kabsch algorithm [92]) make it unsuitable for the SIMT 

computing model of GPU. To address this issue, we implemented and optimized a fast 
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algorithm using quaternion-based characteristic polynomial (QCP) [93], gRMSD-QCP, 

to determine the transformation T on GPU. In the gRMSD-QCP kernel, coordinates of 

residues from two protein structures were first written into the GPU global memory and 

origin of coordinate was moved to the center of coordinates for each protein. Then, we 

calculated the inner-product of two coordinate matrices, which is used by QCP for 

RMSD calculation. The work flow of gRMSD-QCP is relatively simple, and therefore, 

amenable to efficient GPU implementation. 

GPU Computation for Residue-level Alignment 

The GPU implementation of residue-level alignment starts with loading 

coordinates of residues from R to the GPU global memory. Next, the gRMSD-QCP 

kernel is invoked to calculate the transformation T which is also written into the GPU 

global memory. Finally, a DP kernel is called to find residue alignments which are 

transferred into the CPU memory after the kernel terminates. 

As in the fragment-level alignment phase, the residue-level alignments are 

divided into batches according to the memory requirement of the threads. After all the 

batches are executed, ppsAlign aggregates the outputs of residue alignment R, which are 

used in the next step for searching the maximal alignment. 

5.1.3 Maximal Alignment Search 

The maximal alignment search is used to find the largest subset M⊆R such that 

the score of the residue alignment R, denoted by Sa, is maximized. Because finding the 

largest subset M is extremely time-consuming, a heuristic and approximate algorithm, 

MaxSub [94], has been developed to solve this problem. In ppsAlign, a variant of 
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MaxSub, gMaxSub, is designed to parallelize the search process on the GPU. In the 

current implementation of ppsAlign, Sa is defined using the TM-score [19]. 

 

Figure 22: Comparison of MaxSub and gMaxSub. The original MaxSub algorithm on 

CPU searches the largest subset by shifting a window W along the residue alignment 

R. The gMaxSub searches the maximal alignment by concurrently dispatching each 

calculation of W to different GPU threads. 

GPU Computation for Maximal Alignment Search 

The input of this step is the alignment R from the residue-level alignment which 

has LR aligned residue pairs. The original MaxSub algorithm on CPU searches the 

largest subset M by shifting a window W of size LW along R (see Figure 22A). This leads 

to (LR-LW+1) shift operations which are candidates for parallelization.  Then, gMaxSub 

searches the maximal alignment by concurrently dispatching each calculation of W to 

different GPU threads (see Figure 22B). 
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Figure 23: Algorithm of maximal alignment search. For each search, the gRMSD-QCP 

kernel is invoked to calculate the transformation of superimposed residues with each 

window. The residue pair is added into the window if its distance is below a cutoff. 

Figure 23 describes a pseudo-code of gMaxSub. First, for each residue alignment 

R between Q and P, (LR-LW+1) windows are generated. Second, the gRMSD-QCP kernel 

is invoked to calculate the transformation T for the residue pairs within each W and then 

T is used to superimpose residues from Q over P in R. Third, residue pair (qi, pi)∊R is 

added into W if its distance is below a cutoff (4.0Å) after the superimposition. The 

above two steps (i.e., gRMSD-QCP and window extension) are iteratively executed for 

NMS times. Fourth, the last W is assigned to M and Sa is calculated.  

As in previous phases, the maximal alignment searches are divided into batches. 

After all the batches are executed, ppsAlign aggregates the outputs of subset and selects 

the one with the largest Sa as the largest subset M. The transformation T associated with 

the largest subset M is used to superimpose all the residues from Q over P and the 



 

74 

 

residue pair whose distance is below a cutoff (4.0Ǻ) is selected to form a new residue 

alignment R.  

After gMaxSub terminates, if the current iteration number < Niter, the residue 

alignment R will be first filtered to remove redundant alignments from the same 

database protein and then sent to the residue-level alignment for further refinement; 

otherwise, R will be used as input for the next step of final assessment. 

Final Assessment of Alignment Quality 

After structure alignments are computed on GPU, the residue alignments R are 

transferred from the GPU memory to CPU memory. We use PSI (percentage of 

structural similarity), defined as the percentage of residue pairs from R with distance 

below 4.0Å, to score the alignment quality. We also assess the statistical significance of 

the alignments through z-Score of the PSI, which is given as follows:  

        
        

    
, 

where μPSI and σPSI denote mean and standard deviation of PSI for a given protein chain 

length, respectively. The parameters μPSI and σPSI are obtained using a method similar to 

[22], leading to the following settings: μPSI=375.64∙k
-0.5295

 and σPSI=99.67∙k
-0.5885

. Here, k 

is the minimum chain length between target and database proteins. 

5.2. Results 

In this section, ppsAlign’s performance is compared to concurrent methods in 

terms of alignment quality and computational efficiency. We evaluated ppsAlign using 

an NVIDIA Tesla C2050 GPU card equipped with 448 cores at 1.15GHz and 3GB 
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global memory. The concurrent methods included TM-align [19], Fr-TM-align [21], and 

MAMMOTH [22], which share similar computational framework as ppsAlign. As DALI 

[17] and CE [18] have been exhaustively evaluated elsewhere [19], this dissertation does 

not include these approaches in the description of experiments. Software packages of 

these methods were downloaded from their official websites and evaluated on a Linux 

personal computer with AMD Opetron dual-core 1000 series processor at 1.8GHz and 

8GB RAM. 

The main purpose of structure alignment was to maximize the number of aligned 

residues (Ne) while minimizing the RMSD of the aligned residues denoted by cRMSD. 

To eliminate the size dependence of cRMSD on Ne, in this dissertation we use a 

normalized measure of cRMSD, RMSD100, to evaluate the alignment quality. RMSD100 

is calculated as follows [95]: 

        
     

     
  
   

, 

which corresponds to the cRMSD value expected when two protein structures are100 

residues long. 

To evaluate efficiency, execution time was measured on a dataset in which the 

protein’s chain length ranged from 80 to 500 residues extracted from ASTRAL 1.75 

database [96] with sequence identity<40% (ASREAL40). The database protein chain 

length was determined by the global memory capacity on the GPU card. However, this 

limitation is not severe as 98.5% ASTRAL40 protein chains have less than 500 residues. 

We expect that the advancement of GPU technology will solve this memory limitation 
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issue in the near future so that the ppsAlign algorithm can handle protein chains longer 

than 500 residues. Currently, we can handle structures larger than 500 residues in one of 

the following two ways: 1) by sending the alignment tasks to our CPU-based algorithm 

and 2) if resource allows, by using another GPU card to align the remaining 1.5% of 

large structures. Although the algorithm can also handle small protein chains below 80 

residues (~16% of ASTRAL40), we do not use them for our testing because they have 

relatively simple topologies [70].To efficiently utilize global memory of GPU card, the 

entire database proteins are sorted according to the chain length and then divided into 

two small datasets: 1) D1, which includes 6,569 proteins in the range [80, 250) residues 

selected from ASTRAL40 according to the length distribution of proteins, and 2) D2, 

which includes 1,912 proteins in the range [251, 500) residues. The target dataset 

includes 100 proteins which are randomly selected in the range [80, 250) from 

ASTRAL40. For each target protein, a one-against-all alignment is performed with all 

database proteins and a total of 100×(6,569+1,912)=848,100 non-homologous protein 

pairs are compared during the experiment.   

5.2.1 Scalability of ppsAlign 

There are two critical parameters for ppsAlign, namely the maximal number of 

iteration (Niter) and the maximal number of MFS (Nseed). Intuitively, when increasing 

Niter or Nseed, ppsAlign will often obtain better alignment quality but the execution time 

will be significantly lengthened. To verify this, we preliminarily investigated the 

performance of different settings using a small target dataset of 17 proteins and the 

dataset D1 in terms of RMSD100. The experimental results of RMSD100 with Niter={3, 5, 

7} and Nseed={10, 30, 50, 70} are shown in Figure 24, which illustrates that ppsAlign has 
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decreased RMSD100 when Niter and/or Nseed is increasing. This figure can be used as a 

guideline for parameter selection of ppsAlign. For a fair comparison of efficiency 

improvement from ppsAlign to a concurrent method, we selected a combination of Niter 

and Nseed that achieved comparable alignment quality. 

 
 

Figure 24: Performance comparison of ppsAlign with different settings of Nseed and Niter. 

ppsAlign is running on NVIDIA Tesla C2050 GPU card with a small target dataset of 17 

proteins. The parameter settings of ppsAlign are Niter={3, 5, 7} and Nseed={10, 30, 50, 

70}. (A) Niter= 3. (B) Niter = 5. (C) Niter=7. 
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Table 15: Average execution time of TM-align, CPU-based ppsAlign, and ppsAlign 

with parameter settings (Niter=3 and Nseed=20). 

 

DATASET 

 

METHODS 

 

RMSD100 

 

EXEC TIME(S) 

SPEEDUP OF  

PPSALIGN 

 

D1 

ppsAlign 5.7 64 - 

CPU-based ppsAlign 5.7 1596 24.9 

TM-align 5.7 2170 33.9 

 

D2 

ppsAlign 5.3 41 - 

CPU-based ppsAlign 5.3 899 21.9 

TM-align 5.3 1597 39.0 

Total ppsAlign  105 - 

CPU-based ppsAlign  2495 23.8 

TM-align  3767 35.9 

 

5.2.2 Speedup over TM-align and CPU-based ppsAlign 

In this experiment, ppsAlign is executed with a parameter setting of Niter=3 and 

Nseed=20 which results in a comparable RMSD100 to TM-align and the CPU version of 

ppsAlign. Table 15 summarizes the alignment quality, average execution time, and 

corresponding speedup. ppsAlign achieves speedups of 23.8 and 35.9 compared to CPU-

based ppsAlign and TM-align, respectively.  

Table 16: Average execution time of Fr-TM-align and ppsAlign with parameter 

settings (Niter=6 and Nseed=30). 

DATASET METHODS RMSD100 EXEC TIME(S) SPEEDUP OF  

PPSALIGN 

D1 ppsAlign 5.4 326 - 

Fr-TM-align 5.4 19849 60.9 

D2 ppsAlign 5.1 224 - 

Fr-TM-align 5.1 15729 70.2 

Total ppsAlign  550 - 

Fr-TM-align  35578 64.7 

 

5.2.3 Speedup over Fr-TM-align 

Since Fr-TM-align performs more iterations to improve its alignment quality 

over TM-align, we increased both iteration and seed numbers of ppsAlign algorithm to 
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achieve a comparable alignment quality with Fr-TM-align. The experimental results of 

RMSD100, average execution time, and corresponding speedup with Niter=6 and Nseed=30 

are shown in Table 16. ppsAlign achieves speedup of 64.7 compared to Fr-TM-align 

with the same alignment quality.  

Table 17: Average execution time of MAMMOTH and ppsAlign with parameter 

settings (Niter=1 and Nseed=8) 

DATASET METHODS RMSD100 EXEC TIME(S) SPEEDUP OF  

PPSALIGN 

D1 ppsAlign 6.3 10 - 

MAMMOTH 10.3 470 47.0 

D2 ppsAlign 5.9 8 - 

MAMMOTH 9.2 255 31.9 

Total ppsAlign  18 - 

MAMMOTH  725 40.3 

 

5.2.4 Speedup over MAMMOTH 

In the last experiment, we used the same dataset to compare the performance of 

ppsAlign and MAMMOTH. Different from TM-align and Fr-TM-align, MAMMOTH 

was originally developed for the purpose of large-scale comparisons with high 

efficiency at the cost of the reduction of alignment quality. Because of its high speed, 

MAMMOTH was used as a benchmark for maximal speed on the CPU platform in [24]. 

The experimental results of RMSD100, average execution time, and corresponding 

speedup with Niter=1 and Nseed=8 are shown in Table 17. ppsAlign achieved speedup of 

40.3 compared to MAMMOTH and higher alignment quality.  

5.3. Discussion 

The framework of ppsAlign is a general-purpose GPU platform for protein 

structure alignment which could take many concurrent methods, such as TM-align [19] 
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and Fr-TM-align [21], into the parallelized algorithm design. An important innovation in 

our approach is the creation of a unique design to manage resources of the GPU 

architecture. First, an intelligent decomposition of the application in kernels 

characterized by different parallelization strategies is provided. In the existing methods 

for GPU-based sequence alignment mentioned previously, a pair-wise comparison is 

either assigned to a thread (i.e., inter-task parallelization) or corporately performed by a 

block of threads (i.e., intra-task parallelization) [35,37]. However, since the workflow of 

structure alignment is more complicated than that of sequence alignment, neither the 

inter- nor the intra- task parallelization can efficiently exploit the GPU computing 

power. Therefore, ppsAlign utilizes a hybrid inter- and intra- task parallel model. In 

particular, each task (i.e., pair-wise structural comparison) is divided into several 

independent seed alignments. Each seed alignment is assigned to a different thread 

(inter-task parallelization), whereas each block executes one or more pair-wise 

comparisons (intra-task parallelization). Second, a smart design of memory layout and 

memory access patterns are developed, with the former allowing an effective use of the 

memory capacity at the different levels of the GPU memory hierarchy, while the latter 

minimizes the memory bandwidth requirement of the application. Third, several 

efficient algorithms for avoiding complex control flow on GPU are proposed to take 

advantage of the SIMT nature of GPU. For instance, a feature-based measure is used to 

compute similarity of fragments at the fragment-level alignment thereby avoiding time-

consuming RMSD calculation at the initial stage of structure alignment.   

One of the major ways in which ppsAlign differs from other methods is its ability 

to implement protein structure alignment at the residue level on GPU. Recently, GPU-
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enhanced algorithms have gained increasing attention in bioinformatics. One of the 

major steps was a GPU implementation of a one-against-all sequence comparison using 

the Smith-Waterman algorithm [37,38]. With these methods, a sequence database search 

can be performed resulting in a list of similarity scores, although these methods do not 

provide the detailed alignment information of the best hits [40]. To provide detailed 

residue-residue correspondence, GPU-BLAST [41] was developed which allowed 

acceleration of the NCBI-BLAST search, achieving a speedup between 3 and 4 on an 

NVIDIA Tesla C2050 GPU card. Another approach to protein sequence that uses 

backtracking on GPU to construct an alignment of residues was  proposed 

[40].Compared to sequence alignments, the implementation of GPU structure alignment 

has been the more challenging task because some routines (e.g., RMSD calculation) can 

cause severe divergence among GPU threads and decrease GPU performance. One of 

the first structure comparison methods implemented on GPU, SA Tableau Search [42], 

aligned protein substructure at the secondary structure level, that is by aligning 

secondary structure elements while not aligning structures at the residue level. To the 

best of our knowledge, ppsAlign is the first protein structure comparison platform for 

GPU that provides residue level structural alignment. 

The substantial contribution of ppsAlign is that it provides a high-performance 

computing platform for the research community. An alternative solution to accelerate 

the protein structure alignment is to install more CPU computing cores in a single 

machine. However, using more CPU cores in a single machine necessitates upgrading 

the main board and memory accordingly, which could decrease the price/performance 

ratio. In contrast, installing a GPU card into a PCIe (Peripheral Component Interconnect 
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Express) slot does not require extra cost and more GPU cards can be installed into one 

PCIe slot by a switch. In this dissertation, an NVIDIA Tesla C050 GPU card was 

utilized to evaluate performance, which has also been used in GPU-BLAST [41]. 

Though it is a high end product of NVIDIA, we expect its price will drop in the near 

future due to market demand in the gaming industry. 
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CHAPTER SIX 

WEB-BASED SYSTEM 

To share our research results with the research community, we have developed a 

publicly accessible web-based system for efficient protein local binding site searches 

(PBSword). The accurate protein binding site alignment (PBSalign) and GPU-based 

protein global alignment (ppsAlign) are released as executable software packages, which 

can be downloaded from http://pbs.rnet.missouri.edu/. The design of PBSword server 

has been published in Nucleic Acids Research [97]. 

6.1. PBSword Server 

PBSword server (http://pbs.rnet.missouri.edu/PBSword.php) is developed to 

provide the community with a web service for searching similar protein binding sites in 

terms of ‘visual words’ (see Chapter 3).The key features of PBSword server are as 

follows: (i) The binding site comparison method introduces a novel feature extraction 

algorithm and online database indexing; (ii) The database of the binding site is based on 

the interactions between domains which are defined using the latest SCOP version [98]; 

(iii) For each retrieved binding site from the database, a 3D view of structure and 

surface, as well as physico-chemical properties are presented; (iv) The efficiency has 

been significantly enhanced to meet the requirements of large-scale protein binding site 

database searching. 

The system architecture of PBSword server, as shown in Figure 25, contains four 

modules: (i) database management and pre-processing; (ii) query interfaces; (iii) search 

http://pbs.rnet.missouri.edu/
http://pbs.rnet.missouri.edu/PBSword.php
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engine; and (iv) retrieval results visualization. A system tutorial can be viewed at the 

PBSword web site. 

 

Figure 25: PBSword server architecture. (a) The database management and pre-

processing module is responsible for feature extraction, visual vocabulary construction, 

and word representation of the database binding sites, which can be performed off-line. 

(b) The query interface modules provide friendly interfaces in an Internet browser to 

allow users to input protein ID or upload protein structure. (c) The search engine module 

organizes the word representation of the database binding site into indexing tree and 

returns n nearest neighbors for a query binding site in real-time. (d) The retrieval 

visualization module shows a 3D structure/surface view, sequence, and properties of 

retrieved binding sites. 
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6.1.1 Database management and pre-processing 

The database of PBSword contains domain-domain binding sites of known 

protein structures. The structural data are extracted from Protein Data Bank (PDB) [99]. 

If a PDB entry has more than one structure model, the first model is used in the 

database’s current implementation. For domain assignment, the most recent release 

(June 2009) of the manually curated SCOP database is used. For each PDB structure, 

each pair of determined subunits (i.e., domains) is analyzed to determine whether they 

interact with each other using the following definition. If any atom of a residue in one 

protein subunit is within 6Å of any atom of a residue in another protein subunit, the two 

residues are determined as the contact pair residues. Currently, the entire PBSword 

database contains 194,322 redundant binding sites selected from 3,123 SCOP families. 

Two non-redundant databases, denoted as NR40 and NR60, are constructed using 

sequence similarity of 40% and 60%, respectively. 

The workflow of database pre-processing consists of the following three steps 

(see top-middle block of Figure 25). First, we select feature points from each database 

binding site surface and extract corresponding geometric features. Second, a visual 

vocabulary is built by clustering a large number (approximately 7×10
5
) of feature point 

descriptors collected from a non-redundant (nr) dataset. The nr-dataset is selected from 

the entire database by applying a cutoff of 40% sequence identity for each SCOP family 

using CD-HIT [100]. The clustering method is k-means and each feature cluster is 

represented by a representative, which is regarded as a visual word and used to form the 

final vocabulary. The size of vocabulary is determined by k, which is set to 1,000 in the 

PBSword server. Third, according to its descriptor, each feature point from the database 
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binding site surface is associated with the nearest visual word from the vocabulary. This 

allows each binding site to be represented by the corresponding distribution of visual 

words. It is noted that the above processes for the database binding sites are performed 

off-line. The web server users are encouraged to access our most recent (2012) article in 

Bioinformatics [58] to find out more about the history and features of our service. 

6.1.2 Query interfaces 

There are two types of query methods, ‘query by structure’ and ‘query by ID’, as 

shown in the top-left and top-right blocks of Figure 25, respectively. Using an Internet 

browser, a user can upload a new protein structure in PDB format or provide a protein 

ID contained in a PBSword database to find similar protein binding sites. The target 

database could be (i) redundant; (ii) NR40; or (iii) NR60.  

For the query by structure search, we follow the similar steps as the database 

binding sites to extract its features, map the features to the nearest visual word, and 

generate the visual word representation. The word representation of the query binding 

site is then sent to the search engine.  

For the query by protein ID search, users can provide (i) SCOP IDs for the 

interacting subunits or (ii) PDB ID and chain ID for the subunit under investigation. For 

the second option, chain ID of interacting partner is optional. In that case, PBSword will 

search the database to find matched binding sites and allow the user to select one from 

the matched list. After the query binding site is selected, the corresponding word 

representation is then sent to the search engine. 
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6.1.3 Search engine 

When the redundant PBSword database is selected as target, the on-line binding 

site search is performed on two customized indexing trees to avoid time-consuming one-

by-one feature similarity calculation for the two query methods, namely query by ID and 

query by 3D structure. In this case, the query protein binding site can be represented by 

a data point in the visual word (or feature) space populated by the database binding sites 

as mentioned in the previous two subsections. Thus, searching similar binding site from 

the database is analogous to the identification of n nearest neighbors in the feature space. 

Such a search can be completed in log(N) time, where N is the total number of binding 

sites in the database. When the NR40 or NR60 database is selected, binding site 

similarity and associated z-Score are calculated for each database binding site. 

6.1.4 Retrieval results visualization 

The visualization of retrieval results includes seven parts: (i) structure and 

surface display, (ii) ranked list, (iii) sequence, (iv) SCOP classification, (v) properties of 

binding site, (vi) properties of each binding site residue, and (vii) property statistics of a 

SCOP family. The properties of binding site mainly include accessible surface area 

(ASA), polarity, hydrophobicity, hydrogen bonds, planarity, and gap index, which are 

originally defined in [101,102]. For completeness, we briefly introduce the calculation 

of these properties as follows.  
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Figure 26: PBSword retrieval results visualization. (A) The top-left panel shows a 3D 

structure and surface view of a selected result protein binding site from the ranked list in 

the top-right panel. Users can click on the buttons and checkboxes in the top-left panel to 

select binding site and its partner as well as display modes of surface. (B) The sequence 

panel shows sequence information of subunit pairs. Each column in the panel 

corresponds to an amino acid of protein subunit, which consists of three rows. First row 

represents residue sequence numbers. For binding site residue, its number is in red font. 

For the residue with intermolecular hydrogen bonds, its numbers are underlined. Second 

row contains the residue name. The third row contains the residue check box. By clicking 

a checkbox, corresponding residues will be shown in the top-left structure view.  
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The ASA of binding site, ASAbs, is calculated as 

ASAbs = ASA1 – ASA2, 

where ASA1 and ASA2 are the ASAs of the subunit before and after its interacting partner 

presents, respectively. The ASA is calculated using the NACCESS, an implementation 

of the method proposed in [103]. A residue is defined as binding site residue if it loses 

1.0Å
2
 of ASA after subunit partner presents. The polarity of binding site is defined as 

[101] 

polarity = (ASApolar/ASAbs)×100, 

where ASApolar represents the difference of ASA of polar atoms before and after 

interacting partner presents. The hydrophobicity is measured using method proposed in 

[102]. The number of hydrogen bonds is calculated using the program HBPLUS [104]. 

The planarity is defined as the RMSD (Root Mean Squared Deviation) between all 

binding site atoms and a best-fit plane through all the binding site atoms, which is 

calculated using the PRINCIP program from the SURFNET package [105]. The gap 

index is defined as [101] 

gap index = gap volume/ASAbs, 

where gap volume is a measure of the closeness of the interface between the two 

subunits and calculated using the SURFNET package [105]. 

The retrieval results for an example query binding site 1m3d_78535_B_78538_C 

are shown in the top-left panel of Figure 26A. In PBSword, we use the identifier same as 
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[50] to name each binding site: <PDB-ID>_<SCOP- domain of the binding 

site>_<Chain-ID of the binding site>_<SCOP-domain of the binding partner>_<Chain-

ID of the binding partner>. Accordingly, each subunit is defined as <PBD_ID>_<SCOP-

domain ID>_<Chain-ID>. For each query, a set of 100 top-ranked binding sites is 

returned to the user, eight at a time for each page. To visualize the search results, a 3D 

structure and surface view of the top-retrieval result is displayed to the user. The user 

can select any of the ranked results from the top-right panel. The top-left panel in Figure 

26A presents the structure and surface view of the top-ranked result, 

1t61_106535_D_106538_E, which is generated by clicking on the thumbnail image on 

the top-right panel. In addition, the users can (i) select to show/hide structures of two 

subunits by clicking the checkboxes and (ii) specify different display themes of the 

binding site, such as opaque/translucent surface, by clicking on the buttons. The ranked 

list of protein binding sites can be downloaded from the result pages. 

The sequence panel (Figure 26B) shows the sequence information of a subunit 

and its partner. For easy identification, the binding site residues are shown in red font 

and the residues with intermolecular hydrogen bond are underlined. The users can use 

the ‘residue checkbox’ under the residue to interact with the 3D structure view shown in 

Figure 26A. Clicking on the ‘residue checkbox’ will highlight one designated residue. 

Hyperlinks pointing to the protein’s corresponding entry in PDB, PDBSum [106], 

SCOPPI [64], and SCOP [98] are also provided. 

The SCOP classification panel (Figure 27A) shows the description of 

corresponding SCOP class, fold, superfamily, family and species for two subunits. The 
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properties of binding site and its interacting partner are shown in Figure 27B, including 

the number of binding site residues, ASA, percentage of ASA, percentage of polarity, 

percentage of hydrophobicity, planarity, number of hydrogen bonds, and gap index. By 

clicking on the hyperlink of SCOP family at the row ‘Statistics of family,’ the user can 

view the histogram and summary statistics of each property by SCOP family (see Figure 

27D). The properties of each binding site residue, shown in Figure 27C, include ASA of 

all atoms and polar atoms for a specific residue and percentage of ASA against the entire 

binding site ASA, as well as the number of intermolecular hydrogen bonds. The family 

statistics panel (Figure 27D) shows the statistics summary of properties of binding sites 

belonging to a SCOP family, including total number of binding sites and amino acids 

compositions as well as the mean (standard deviation) and histogram of binding site 

properties. The properties include ASA, percentage of polarity, percentage of 

hydrophobicity, planarity, hydrogen bonding, and gap index. In this panel, hydrogen 

bonding is defined as the number of hydrogen bonds per 100 Å
2
 ASA. 

For a search with query ID, PBSword retrieval results can be generated in real-

time. For the query with protein structures, however, the system will usually take 

minutes to generate surface and extract features, which is dependent on the size of the 

query binding site. Our system provides two options for the users: (i) PBsword server 

will return a session ID for the query along with an estimated execution time after the 

query protein structure has been uploaded. The user can then bookmark the link of the 

session ID and check the resulting page a few minutes later. (ii) If the user is willing to 

provide an email address when the query protein structure is uploaded, PBSword server 

will send ranked results to the user’s email account. 
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Figure 27: PBSword retrieval results of binding site properties. (A) The SCOP 

classification panel shows the subunit’s classification, including class, fold, 

superfamily, family, and species. (B) The site properties panel shows values of 

various physic-chemical properties of binding sites, including number of residues, 

ASA, percentage of ASA, percentage of polarity, percentage of hydrophobicity, 

planarity, number of hydrogen bonds, and gap index. In addition, users can click on 

the hyperlink of SCOP family at the row “Statistics of family” to view the statistics 

summary of these properties for those binding sites belonging to same SCOP family. 

(C) The residue properties panel shows detailed properties for each binding site 

residue, including ASA, percentage of ASA, ASA of polar atoms, percentage of polar 

residue, and number of hydrogen bonds. (D) The family statistics panel shows the 

statistics summary of binding sites from a SCOP family, including number of binding 

sites and amino acids compositions as well as the mean (standard deviation) and 

histogram of binding site properties. The properties include ASA, percentage of 

polarity, percentage of hydrophobicity, planarity, hydrogen bonding, and gap index. 

Here, hydrogen bonding is defined as the number of hydrogen bonds per 100 Å2 

ASA. Due to the page limitation, we only show subset of each panel. 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 

We have presented a suite of methods (PBSword, PBSalign, and ppsAlign) for 

protein global and binding site structure comparisons. Among them, PBSword and 

PBSalign are designed to provide a pipelined process for search and comparison of 

protein binding site, while ppsAlign is designed as a parallel GPU computing platform 

for accelerating global structure alignment. These methods are expected to be utilized by 

the research community to investigate the structural, functional and evolutional 

relationships among proteins from large-scale structure and binding site databases.    

7.1. PBSword 

PBSword is a novel method for protein binding site characterization and 

comparison based on the distribution of visual words of surfaces. The proposed method 

complements existing alignment-based approaches in the analysis of protein-protein 

interactions. The method is applied to evaluate the classification and retrieval 

performance of protein-protein binding sites and is compared to an alignment-based 

method (iAlign) and to a feature-based method using moment invariants. The results 

show that PBSword can achieve comparable classification accuracy to the alignment-

based methods with greatly improved efficiency.  
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7.2. PBSalign 

PBSalign is a new method for explicitly comparing binding sites based on the 

geometric and physicochemical properties of local surfaces. PBSalign uses features 

extracted from the binding site surface to generate initial seed alignments which are 

further refined to produce accurate structural alignment. Our experimental results 

demonstrate that PBSalign can capture similarities of homologous and non-homologous 

protein binding sites accurately and provide alignments with better geometric match 

measures as compared to iAlign for a larger part of alignments in the selected datasets.  

The alignment of PBSalign is based on the geometric and physicochemical 

features of binding site surfaces, which is different from iAlign relying only on the 

structural information. Hence, PBSalign is complementary to the existing methods by 

taking more properties into account and introducing novel algorithms for binding site 

surface alignments. 

PBSalign is an alignment-based method for comparing binding sites. As we 

discussed in the Chapter 2 Literature Review, another type is the feature-based binding 

site comparison which utilize features (e.g. shape descriptors) to provide a fast 

comparison of binding sites without explicit alignment of residues. PBSword is this type 

of algorithm, which compares a pair of given binding sites by measuring similarities in 

their overall shapes. However, it does not output results of residue correspondences. 

PBSalign overcomes the problem of obtaining residue correspondences, which is 

essential to judge the quality of alignment. It is noted that when integrated with 

PBSword, PBSalign can quickly search a large-scale database, filter out geometrically 
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dissimilar binding sites, and provide accurate structural alignments only for the similar 

ones. 

7.3. ppsAlign 

ppsAlignis designed for large-scale protein structure alignment using GPUs. 

ppsAlign employs an index-based search procedure to find seeds of matched fragment 

sets, and then iteratively refines the seeds with fragment- and residue- level alignments. 

We provide an in-depth comparison of ppsAlign against several concurrent CPU-based 

methods. Our experimental results show that ppsAlign can achieve significant speedup 

over its CPU implementation, TM-align, Fr-TM-align, and MAMMOTH on a single 

NVIDIA Tesla C2050 GPU.  

The framework of ppsAlign is a general-purpose platform for protein structure 

alignments on GPU. With this platform, we can parallelize existing algorithms (e.g., 

TM-align and Fr-TM-align) on GPU and utilize the massive parallel computing power 

of GPU to achieve high-throughput structural comparisons without sacrificing alignment 

quality. 

7.4. Future Work 

7.4.1 PBSword 

Our future work of PBSword includes (i) the development of a more 

comprehensive scoring function for the surface comparison that takes into consideration 

physicochemical properties, and (ii) extension to the protein-ligand binding site 

comparison and retrieval. 
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7.4.2 PBSalign 

PBSalign currently finds residue correspondences based on the maximal clique 

detection algorithm, which is known to be NP-hard. To accelerate the execution time, 

we will parallelize PBSalign on our general-purpose platform of protein structure 

alignment on GPU by dispatching each refinement of seed alignment to a computing 

core of GPU.  

7.4.3 ppsAlign 

As ppsAlign is designed for general-purpose global protein structure alignment, 

the future work of ppsAlign will be porting other CPU-based alignment tools to GPU 

and evaluating performance. 

7.5. Biological Applications 

First application of our methods is protein binding site prediction, which is 

critical for understanding functions of protein and identifying targets for therapeutics 

development. Our methods, PBSword and PBSalign, can be integrated to realize a 

‘template-based’ prediction. First, binding site candidates or surface patches are 

identified based on the physicochemical and geometric features of query protein 

surfaces. Second, each patch is searched against our database of protein binding site 

using PBSword and a short list of similar sites is generated. As PBSword is dependent 

on the local surface features of binding site; this step is especially useful for remote 

similarities which cannot be directly revealed by conservation of the sequence or 

binding site structures. Finally, after performing PBSword screening, PBSalign is 
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applied for the filtered binding sites and accurate alignment results can be used to rank 

each patch and select protein binding sites. 

Second application is studying human influenza protein-protein interaction 

network based on the structural properties. The protein-protein interaction network and 

structure information can provide valuable insight into analyzing molecular mechanism 

of disease [107]. An interaction network of human - influenza A virus (IAV) interactions 

has been constructed in [108] and a couple of hub IAV and human proteins with a higher 

degree are identified. To identify potential targets of IAV protein, PBSword and 

PBSalign can be applied to search human protein database and return top ranked human 

proteins. 
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