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SEMIPARAMETRIC AND NONPARAMETRIC METHODS FOR

THE ANALYSIS OF PANEL COUNT DATA

YANG LI

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Panel count data are one type of event-history data concerning recurrent events.

Ideally for an event-history study, subjects should be monitored continuously, so for the

events that may happen recurrently over time, the exact time of each event occurrence

is recordable. Data obtained in such cases are commonly referred to as recurrent event

data (Cook and Lawless, 2007). In reality, however, subjects may only be observed at

their clinical visits or discrete times. As a result, instead of observing the exact event

times, one only knows the numbers of events that happen between the observation

times. Such interval-censored recurrent event data are usually referred to as panel count

data (Kalbfleisch and Lawless, 1985; Sun and Kalbfleisch, 1995; Thall and Lachin,

1988).

The primary interest with panel count data is about the underlying recurrent event

process. Meanwhile for the analysis, one needs to consider the times when the obser-

vations occur, which can be regarded as realizations of an observation process with

follow-up times. This dissertation consists of four parts. In the first part, we will con-
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sider regression analysis of panel count data with dependent observation processes while

the follow-up times may be subject to a terminal event like death. A semiparametric

transformation model is presented for the mean function of the underlying recurrent

event process among survivals. To estimate the regression parameters, an estimating

equation approach is proposed and the inverse survival probability weighting technique

is used. In addition, the asymptotic distribution of the proposed estimate is derived

and a model checking procedure is presented. Simulation studies are conducted to e-

valuate finite sample properties of the proposed approach, and the approach is applied

to a bladder cancer study.

The second part will focus on regression analysis of multivariate panel count data

in the presence of a terminal event. Both the observation process and the terminal

event may be correlated with recurrent event processes of interest. We present a class

of semiparametric additive models for the mean functions of the underlying recurrent

event processes. For the estimation of the regression parameters, an estimating equa-

tion based inference procedure is developed. The asymptotic properties of the proposed

estimators are established and a model-checking procedure is derived for practical sit-

uations.

The third part will discuss nonparametric comparison based on panel count data.

Most approaches that have been developed in the literature require an equal observation

process for all subjects. However, such an assumption may not hold in reality. A new

class of test procedures are proposed that allow unequal observation processes for the

subjects from different treatment groups, and both univariate and multivariate panel

count data are considered. The asymptotic normality of the proposed test statistics

is established and a simulation study is conducted. The approach is applied to a skin
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cancer study. Finally, the last part will discuss some directions for future research.
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Chapter 1

INTRODUCTION

1.1 Introduction and Examples

1.1.1 Introduction

Panel count data are one type of event-history data or longitudinal data concerning

some recurrent events. In panel count data, the observations consist of discrete time

points with no information available about the timing of events between observation

times (Kalbfleisch and Lawless, 1985). Compared with event-history data with contin-

uous observation paths, which are commonly referred to as recurrent event data, panel

count data are interval-censored and can only provide the numbers of events occurring

between observation times. In addition, the observation times are usually different

from subject to subject.

There are two counting processes associated with panel count data: the observation

process and the recurrent event process. The response variable from the recurrent event
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process has observations only when the observation process has jumps. As a result,

the analysis of panel count data rely on both of these counting processes and their

relationships defined under various scenarios.

In many cases, potential observation times are predetermined. If study subjects can

follow their schedules throughout the study, the observation processes are independent

from the response variable since the preassigned observation times do not carry on or

affect anything of the recurrent events that may occur later on. Moreover, the observa-

tion processes can also be subject-independent if they all follow the same distribution.

In cases when the observation times are not predetermined, one may still have inde-

pendent observation processes if they are noninformative about either the subjects or

the response variable over time.

When the observation processes appear informative, one may suspect they are ei-

ther subject or response variable dependent (Sun et al., 2005). For example, consider

treatment comparisons in clinical trials, some treatments may require the subjects be-

ing examined more often than those with other treatments, so that the observation rate

of someone may depend on which treatment group one is from. Also, severe disease

development may also cause more or fewer clinical visits, so that the recurrent event

process and the observation process can be correlated. The analysis for such cases

must take into account the information implied by the observation process.

In practice, the observation process can be stopped by death, drop-out, or the end of

the study. Depending on whether or not a stopping event also terminates the underlying

recurrent event process, there are two scenarios. One is censoring, which only stops the

observation process but the recurrent event may still continue after it has occurred.

The other one is a terminal event, which terminates both the observation and the
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recurrent event processes. Both censoring and a terminal event can be independent

or not with the response variable. Inference methods need to be tuned to different

practical situations.

1.1.2 Examples

1.1.2.1 The National Cooperative Gallstone Study

The National Cooperative Gallstone Study (NCGS) is a double-blinded, placebo-

controlled clinical trial to study the effect of Chenodiol (chenodeoxycholic acid) in

dissolving cholesterol gallstones among 916 patients who chose nonsurgical treatments

(Schoenfield et al., 1981). Petients were followed for up to two years with each of the

three treatments randomly assigned: high dose (750 mg per day), low dose (375 mg

per day), or placebo. The primary objective was to assess the treatments effectiveness

on reducing the incidence of digestive symptoms associated with gallstone disease. For

this, patients were scheduled to return for clinical visits at 1, 2, 3, 6, 9 and 12 months,

and the incidences of digestive symptoms were reported. However, the actual visit

times varied. Thall and Lachin (1988) analyzed one of the symptoms, nausea, during

the first year of follow-up on a subset of 113 NCGS patients in the high-dose and

placebo groups. They treated the observation times as fixed at the scheduled times,

with randomly missed observations in between. In conclusion, they demonstrated a

significant difference between high-dose and placebo, especially during the first six

months of follow-up.
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1.1.2.2 The Bladder Cancer Study

The Bladder Cancer Study is a well-known example giving rise to panel count da-

ta. It was conducted by the Veterans Administration Cooperative Urological Research

Group (Sun and Wei, 2000; Ghosh and Lin, 2002; Wellner and Zhang, 2007). In the

study, 116 patients with stage I bladder cancer were randomly assigned to placebo,

pyridoxine or intravesical thiotepa and followed for recurrences of superficial bladder

tumors. All tumors were removed transurethrally at the beginning of the study. At

each patient’s clinical visit, the bladder tumors that occurred since the last visit were

removed after the number was recorded. During the study, each patient visited the

clinics periodically, and the actual visit times vary among the subjects. Besides treat-

ment groups, the data also include some other information of the patients on the initial

numbers of tumors, sizes of the largest initial tumors and the death times for those

who died during the study. The main purpose was to study the treatment effects on

reducing the rate of tumor occurrences. Among others, Sun and Wei (2000) demon-

strated that the patients in the thiotepa group tended to visit the clinics more often

than the patients in the placebo group, and also that thiotepa reduced the recurrences

of tumors significantly compared with placebo. With respect to the covariates, they

suggested that the number of initial tumors was a significant prognostic factor related

to tumor recurrences, but the initial size was not. Zhang (2002) also got the same con-

clusion using a robust semiparametric pseudolikelihood estimation method, in which

the Poison assumption on the recurrent event process could be relaxed. In addition,

Huang et al. (2006), Sun et al. (2007), He et al. (2009) and Zhao and Tong (2011)

considered that the observation processes may be informative about the occurrences

of tumors and all of their work demonstrated a significance effect on thiotepa. With
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respect to other covariate effects, however, He et al. (2009) concluded that neither the

number nor largest size of initial tumors were significant.

1.1.2.3 The Skin Cancer Study

The skin cancer chemoprevention trial is a double-blinded, placebo-controlled, 5-

year randomized Phase III clinical trial conducted by the University of Wisconsin

Comprehensive Cancer Center in Madison, Wisconsin (Li et al., 2011). In the study,

291 patients were randomly assigned to the placebo or difluoromethylornithine (DF-

MO) group, and the objective was mainly on evaluating the overall effectiveness of

0.5g/m2/day PO DFMO in reducing the recurrences of both basal cell carcinoma and

squamous cell carcinoma. Subjects were scheduled to be assessed every six months,

but the actual observation times varied. Covariates were recorded including treatment

type, the number of prior skin cancer reported up to randomization, gender and age at

enrollment. Li et al. (2011) analyzed the data and found that the number of prior skin

cancers seemed to be positively related to the recurrences of both basal cell carcinoma

and squamous cell carcinoma, but the DFMO treatment or other covariates mentioned

above did not show significant effects.

For the examples given above, the first two are univariate panel count data, and the

last one gives multivariate panel count data. The remainder of this chapter is organized

as follows. Section 1.2 introduces semiparametric and nonparametric estimation meth-

ods on the mean function of panel count data. Section 1.3 discusses nonparametric

comparison procedures with panel count data. The outline of the dissertation is given

in Section 1.4.
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1.2 Semiparametric and Nonparametric Estimation

for Panel Count Data

Consider a longitudinal study concerning some recurrent events. Let N(t) and O(t)

denote the underlying recurrent event process and the observation process, respectively,

representing the cumulative number of event occurrences and observation times up to

time t. Also let C be a censoring or follow-up time and Z(t) be a vector of external

covariate process (Kalbfleisch and Prentice, 2002). For the observation process, let K

denote the total number of observations, and {T1, · · · , TK} be the time points at which

O(t) jumps, then N(t) is observed only at these Tj’s. Suppose that the study consists

of n independent subjects. Then the observed data have the form

{Oi(t), Zi(t), Ni(Ti,1), . . . , Ni(Ti,Ki
); 0 ≤ t, Ti,Ki

≤ Ci, i = 1, . . . , n } .

For the recurrent event process, we will use Λ(t) to denote the mean function of

Ni(t)’s, i.e., Λ(t) = E{Ni(t)}, i = 1, . . . , n for the rest of this section.

1.2.1 Nonparametric Estimation of the Mean Function

Let s1 < · · · < sm denote the ordered different time points of all observation times

{Ti,j}. First consider a simple case, where Ti,j = sj and Ki = m for all i = 1, . . . , n.

Then Nelson-Aalen estimator can be used for estimating Λ(sl) in form of

Λ̂(sl) =
l∑

j=1

∑n
i=1 I(sj ≤ Ti,Ki

)(Ni(sj)−Ni(sj−1))∑n
i=1 I(sj ≤ Ti,Ki

)
.

In general for panel count data, since the observation times differ among subjects,
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the Nelson-Aalen estimator cannot be used to estimate Λ(t). Thall and Lachin (1988)

used data grouping method assuming the rate function dΛ(t) being constant between

common observation times for all subjects, then dΛ(t) can be estimated by

dΛ̂(t) =
1∑n

i=1 I(t ≤ Ti,Ki
)

n∑
i=1

Ki∑
j=1

Ni(ti,j)−Ni(ti,j−1)

ti,j − ti,j−1
I(ti,j−1 < t < ti,j).

And Λ(t) can be estimated by integrating dΛ̂(t)

Λ̂(t) =

∫ t

0

dΛ̂(s).

However, it is obvious that the assumption of the above method cannot always hold.

Instead of estimate dΛ(t), a more common practice is to estimate Λ(t) directly. A well-

known estimator of Λ(t) is given by the isotonic regression estimator (IRE) (Sun and

Kalbfleisch, 1995; Wellner and Zhang, 2000). Following the notation above, let wl and

N̄l represent the number and mean value of observations made at sl, l = 1, . . . ,m. The

isotonic regression estimator (Λ̂(s1), . . . Λ̂(sm)) is then defined as (Λ(s1), . . . ,Λ(sm))

that minimizes the weighted sum of squares

m∑
l=1

wl(N̄l − Λ(sl))
2

subject to the order restriction Λ(s1) ≤ · · · ≤ Λ(sm). Following the original formula for

isotonic regression (Barlow et al., 1972; Robertson et al., 1988), the isotonic estimator

for Λ(sl) is given by

Λ̂(sl) = maxr≤lminu≥l

∑u
v=r wvn̄v∑u
v=r wv

= minu≥lmaxr≤l

∑u
v=r wvn̄v∑u
v=r wv

, l = 1, . . . ,m. (1.1)
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Wellner and Zhang (2000) showed that IRE in (1.1) is the same as the nonpara-

metric maximum pseudo-likelihood estimator (NPMPLE). Assuming that the counting

process of N(t) is a non-homogeneous Poisson process and ignoring the dependence of

events of the same subject, the pseudo log likelihood function can be written as:

lpsn (Λ) =
n∑
i=1

Ki∑
j=1

{Ni(Ti,j)log(Λ(Ti,j))− Λ(Ti,j−1)}. (1.2)

Under the non-homogeneous Poisson assumption, Wellner and Zhang (2000) also

proposed a nonparametric maximum likelihood estimator (NPMLE) maximizing the

full log-likelihood function of Λ proportional to

ln(Λ) =
n∑
i=1

Ki∑
j=1

{Ni(Ti,j)−Ni(Ti,j−1)}log{Λ(Ti,j)− Λ(Ti,j−1)} −
n∑
i=1

Λ(Ti,Ki
). (1.3)

Wellner and Zhang (2000) studied the asymptotic properties of both estimators

and gave a modified iterative convex minorant (MICM) algorithm for NPMLE. It was

demonstrated that NPMLE could be more efficient than IRE or NPMPLE, but NPM-

LE is computationally more demanding. Hu et al. (2009a) proposed an alternative

algorithm which is simpler and faster.

Hu et al. (2009b) suggested a new class of estimates which can be considered as

generalizations of IRE, by minimizing the generalized least-squares function involving

a known Ki ×Ki symmetric weight matrix (W (Ti,j, Ti,l)):

n∑
i=1

Ki∑
j=1

Ki∑
l=1

W (Ti,j, Ti,l){Ni(Ti,j)− Λ(Ti,j)}{Ni(Ti,l)− Λ(Ti,l)} (1.4)

subject to the non-decreasing property of Λ(t). Compared with NPMLE, Hu et al.
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(2009b) showed that the estimator defined above could have close efficiency as NPMLE

for Poisson processes and be more efficient for non-Poisson processes.

Some other methods for the mean function estimation problem are given by Zhang

and Jamshidian (2003) and Lu et al. (2007). The former modeled the dependence

of {Ni(Ti,j), j = 1, . . . , Ki} by employing a latent variable, and an EM-algorithm was

developed when the latent variable followed a gamma distribution. The latter studied

both pseudo-likelihood and likelihood based approaches when the mean function of

Λ(t) can be approximated by the monotone cubic I-splines.

1.2.2 Semiparametric Regression Analysis

1.2.2.1 Observation times Independent of the Recurrent Responses

For noninformative observation processes, Cheng and Wei (2000) considered a semi-

parametric model, relating the mean of N(t) proportionally to a function of a time-

dependent covariate vector Z(t), given by

E{Ni(t)|Zi(t)} = µ(t) exp{β′Zi(t)},

where µ(t) is an unknown baseline mean function, and the observation process is as-

sumed to be independent with the event process subject to independent censoring. An

estimating equation method was employed for the inference and the proposed estimate

was shown to be asymptotically normal.

As shown by the Bladder Cancer Study in Section 1.1.2.2, sometimes the observation

times may be covariate dependent. Sun and Wei (2000) proposed the following model:
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conditioning on the covariate, Λi(t) = E{Ni(t)|Zi} is of the form

Λi(t) = Λ0(t) exp(βZi).

Three cases were studied for the observation process and follow-up times, including

both of those being covariate independent, and either one of them or both being co-

variate dependent. The analysis was based on estimating equation methods.

Sometimes it is plausible to assume that the recurrent event process, the observation

process and the censoring time are independent given the covariate Zi. For this, Hu,

et al. (2003) proposed the model

E{Ni(t)|Zi = zi} = Λ0(t) exp(β′zi).

Two estimating equation based methods were constructed by conditioning on or mod-

eling the observation process.

Instead of univariate panel count data, one may observe multivariate panel count

data. Suppose there are m types of recurrent events of interest and individuals are

only observed intermittently. For the analysis, one may use the above models for each

of the kth-type event and its observation process, i.e.

E{Nik|zi} = µk(t)gN(z′iβ0),

and

E{Oik|zi} = νk(t)gO(z′iγ0), k = 1, . . . ,m; i = 1, . . . , n,

where µk(t) and νk(t) are unknown baseline mean functions at time t, and gN , gO are
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positive functions that are strictly increasing and twice differentiable. He et al. (2008)

presented such class of marginal transformation models and developed estimating e-

quation based regression analysis along with the asymptotic properties of the proposed

estimators.

Assuming that observation times are independent of the response variable, some

other semiparametric regression methods proposed in the literature include Zhang

(2002) and Kim, Y. J. (2007). The former considered a proportional rate model on the

event process given the covariate Zi, and proposed a semiparametric pseudolikelihood

estimation method that is robust in sense that the estimator converges to its true value

whether or not N(t) is a Poisson process given Zi. The latter dealt with situations

when measurement errors may occur with covariates, and the estimation method in

Zhang (2002) was combined with a partial likelihood method using auxiliary covariates

(Zhou and Pepe, 1995; Zhou and Wang, 2000).

1.2.2.2 Observation times Dependent of the Recurrent Responses

For practical situations, the observation process and the recurrent event process may

be dependent. For this, Sun et al. (2007) proposed a semiparametric regression model

considering dependent observation times. The dependence structure was modeled via

a positive subject-specific shared frailty xi given by

E{Ni(t)|zi, xi} = xαi µ0(t) exp{β′zi}

for the event process and

λi(t) = xiλ0(t) exp(γ′zi)
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for the intensity of the observation process under a nonhomogeneous Poisson assump-

tion, with Λ0(τ) =
∫ t
0
λ0(s)ds = 1 or E(Xi) = 1 assumed for identifiability. Estimating

equation approaches were proposed for the estimate of regression parameters and the

asymptotic normality of the proposed estimates were also established.

Zhao and Tong (2011) discussed the above models and generalized the model by

replacing xαi by a completely unspecified function g(xi) and proposed a joint modeling

approach and established the asymptotic normality of the resulting estimates.

Other than the observation process, for some situations one may suspect that the

follow-up process may also be correlated with both the event process and the obser-

vation process. He et al. (2009) considered such cases with the main interest on the

estimation of covariate effects on the event process after adjusting for the possible cor-

relation among the three processes. Given zi and two latent variables ui and vi, the

model is:

E{Ni(t)|zi, ui, vi} = µN(t) exp(x′iβ1 + uiβ2 + viβ3)

for the event process. For the observation process, the intensity function is given by

λih(t) = λ0h(t) exp(z′iα1 + ui).

The hazard function of the follow-up time C∗i is in form of

λic(t) = λ0c(t) exp(z′iγ1 + uiγ2 + vi).

A three-step estimation procedure was developed based on estimating equations for

the above regression parameters.

For analyzing panel count data with observation process dependent of the recur-
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rent event process, all the above methods were constructed by shared frailty models.

Instead, one may wish to use marginal models on the response variable directly, with

the correlation structure incorporated. Li et al. (2010) considered a marginal trans-

formation model given by

E{Ni(t)|Zi(t),Fit} = g{µ0(t) exp(β′Zi(t) + α′h(Fit))},

where Fit = {Oi(s), 0 ≤ s < t} is the history or filtration of the observation process

O(·) up to time t− on subject i, h(·) is a vector of known functions of Fit, and g(·) is

a known twice continuously differentiable and strictly increasing function. The obser-

vation process was modeled under conditional Poisson assumption with its intensity in

form of

E{dOi(t)|Zi(t)} = λ0(t)e
γ′Zi(t)dt.

The regression parameters were estimated by estimating equation methods and they

were shown to be consistent and asymptotically normal. Furthermore, both of the

marginal models above can be extended to multivariate panel count data analysis with

dependent observation processes (Li et al., 2011).

All the methods discussed above considered censoring for the follow-up times. In re-

ality, however, there may also be some events terminating both the observation process

and the recurrent event process, like death. For such cases, we will present marginal ap-

proaches that model the mean function of recurrent events among survivals in Chapters

2 and 3.

13



1.3 Nonparametric Comparisons with Panel Count

Data

Besides estimation with panel count data, treatment comparison on the mean func-

tions is another objective of the most interests. Consider p populations corresponding

to p different treatments regarding the occurrences of some recurrent event. Let τ

be the largest follow-up time and Ni(t), Ki, Ti,j be defined as in the previous section.

Also, let Λl(t) be the mean function for group l, i.e., Λl(t) = E{Ni(t)} for i = 1, . . . , nl,

where nl is the sample size in group l. Now our goal is to test the null hypothesis H0:

Λ1(t) = · · · = Λp(t).

Thall and Lachin (1988) suggested first grouping the panel count data to K in-

tervals, then using specially defined multivariate Wilcoxon-like rank test within the

intervals. However, the test result may depend on how the intervals are divided.

Sun and Kalbfleisch (1993) and Sun and Fang (2003) proposed model-free test

procedures for the two-sample (p = 2) comparison problem. Let Zi represent a group

indicator valued 0 or 1 for subject i, i = 1, . . . , n, then the test statistic is in form of

USF =
n∑
i=1

Zi

Ki∑
j=1

{Ni(Ti,j)− Λ̂(Ti,j)},

where Λ̂(Ti,j) is the IRE as defined in (1.1). Under some regularity conditions and

H0, n
−1/2USF can be approximated by the normal distribution with mean zero and

variance

σ̂2
SF =

1

n

n∑
i=1

[
(Zi − Z̄){Ni(Ti,j)− Λ̂(Ti,j)}

]2
.

The above procedure requires that the treatment indicators Zi’s are independent

and identically distributed random variables, which may not hold in practice. Park
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et al. (2007) proposed a new class of two-sample nonparametric test procedures. Mo-

tivated by comparison methods of two survival functions (Pepe and Fleming, 1989;

Petroni and Wolfe, 1994), the class of test statistics are

UPSZ =

√
n1n2

n

∫ τ

0

Wn(t){Λ̂n1(t)− Λ̂n2(t)}dGn(t),

where Gn(t) = 1
n

∑n
i=1

∑Ki

j=1 I(tij ≤ t) and Λ̂n1(t), Λ̂n2(t) are the IREs for the mean

functions of Λ1(t) and Λ2(t) in each individual group.

It could be shown that under H0, the distribution of UPSZ is asymptotically normal

with mean zero and variance

σ̂2
PSZ =

n2

n
σ̂2
1 +

n1

n
σ̂2
2

with

σ̂2
l =

1

nl

nl∑
i=1

[ Ki∑
j=1

Wn(Ti,j){Ni(Ti,j)− Λ̂nl
(Ti,j)}

]2
, l = 1, 2.

Different weight functions may be chosen depending on the purpose of the study. For

example, W
(1)
n (t) = 1, W

(2)
n (t) = Yn(t) = 1

n

∑n
i=1 I(t ≤ Ti,Ki

) or W
(3)
n (t) =

Yn1 (t)Yn2 (t)

Yn(t)
.

Instead of employing IRE or NPMPLE for the estimation of the mean functions as

in the methods discussed above, one can consider using NPMLE for similar test proce-

dures. Motivated by the idea used in Sun and Fang (2003) for two-sample comparisons,

Balakrishnan and Zhao (2010) proposed the following test statistic with NPMLE Λ̂:

UBZ =
1√
n

n∑
i=1

Zi

[Ki−1∑
j=1

Λ̂(Ti,j){
∆Ni(Ti,j+1)

∆Λ̂(Ti,j+1)
− ∆Ni(Ti,j)

∆Λ̂(Ti,j)
}+ Λ̂(Ti,Ki

){1− ∆Λ̂(Ti,Ki
)

∆Λ̂(Ti,Ki
)
}
]
,
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where ∆Λ̂(Ti,j) = Λ̂(Ti,j) − Λ̂(Ti,j−1), ∆N(Ti,j) = N(Ti,j) − N(Ti,j−1) and Λ̂(t) is the

NPMLE of the common mean function Λ(t) under H0.

Under some regularity conditions, UBZ has an asymptotic normal distribution with

mean vector 0 and covariance

σ2
BZ = E

[
(Z − E(Z))

{K−1∑
j=1

Λ0(T1,j)

(
∆N(T1,j+1)

∆Λ0(T1,j+1)
− ∆N(T1,j)

∆Λ0(T1,j)

)

+Λ0(T1,K)

(
1− ∆N(T1,K)

∆Λ0(T1,K)

)}]2
,

where Λ0(·) is the true value of Λ(·). It was shown that σ2
BZ can be estimated consis-

tently by replacing E(Z) and Λ0(t) with Z̄ =
∑n

i=1 Zi/n and Λ̂(t), respectively.

For p-sample (p > 2) comparison problems, Balakrishnan and Zhao (2010) further

remarked that the above procedure can be extended with the test statistics being a

similar form. Let Zi be a p-dimensional vector of treatment indicators, with the lth

element equal to 1 if subject i is from group l and 0 elsewhere. Then a generalized

version of UBZ was proved to follow an asymptotic normal distribution with mean

vector 0. The covariance matrix estimate was also derived.

There are other procedures employing IRE or NPMPLE for p-sample comparisons,

including Zhang (2006), Balakrishnan and Zhao (2009) and Balakrishnan and Zhao

(2011). The former extended the two-sample test procedure in Park et al. (2007)

with the test statistics in a similar form and a common weight function for all groups.

The latter relaxed such an equal-weight requirement and used group-specific weight

functions in their proposed test statistics.

One hidden assumption that all the test procedures above have in common is that

the observation processes are identical across different treatment groups. However, as
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noticed by many authors, the observation processes may differ among different groups

of subjects. For this, Zhao and Sun (2011) proposed a class of nonparametric test

procedures allowing different observation processes given as follows.

Let G
(l)
n (t) = 1

nl

∑
i∈Sl

∑K
(l)
i

j=1 I(T
(l)
i,j ≤ t) and Gn(t) =

∑k
l=1 plG

(l)
n (t) be the empir-

ical observation process from group l and the overall empirical observation process

respectively, with pl = nl/n. Also define

Ψ(l)
n =

∫ τ

0

Wn(t)Λ̂(l)
n (t)dGn(t)

as a summary measure of the event history in group l, where Wn(t)’s are bounded

weight processes, and

σ̂2
l =

1

nl

∑
i∈Sl

[ K(l)
i∑

j=1

A(l)
n (T

(l)
i,j ){N (l)

i (T
(l)
i,j )− Λ̂(l)

n (T
(l)
i,j )}

]2
,

A(l)
n (t) =

k∑
r=1

nr
n
Wn(t)

G
(r)
n (t)−G(r)

n (t−)

G
(l)
n (t)−G(l)

n (t−)
.

Then their test statistics are given by

UZS =
k∑
l=1

cl(Ψ
(l)
n − Ψ̄n)2,

where cl = nl/σ̂
2
l , Ψ̄n =

∑k
l=1 αlΨ

(l)
n , αl = cl/(

∑k
l=1 cl) for l = 1, . . . , p. Under H0, UZS

asymptotically follows the central χ2−distribution with (p− 1) degrees of freedom.

All the procedures mentioned above involve the estimation of a common mean

function Λ(t) under H0 or group-specific mean function Λl(t), using either NPMLE,

IRE or NPMPLE. Such procedures can perform well when there are enough data
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over all observation times, however, if one can only obtain rare observations on some

observation times, the performance of the test procedures could be affected because

the mean function estimator may not perform well at those observation times. We

will discuss this issue in more details in Chapter 4 and propose a new class of test

procedures overcoming the problem.

1.4 Outline of the Dissertation

The rest of this dissertation contains four parts about semiparametric and non-

parametric methods for the analysis of panel count data from Chapter 2 to Chapter

5.

In Chapter 2, we consider regression analysis of panel count data in the presence of

dependent observation processes and a terminal event. A semiparametric transforma-

tion model is presented for the mean function of the underlying recurrent event process

among survivals. To estimate regression parameters, an estimating equation approach

is proposed in which the inverse survival probability weighting technique is used. In

addition, the asymptotic distribution of the proposed estimate is derived and a model

checking procedure for the mean function model is presented. Simulation studies are

conducted and the proposed approach is applied to the bladder cancer study described

in Section 1.1.2.2.

Chapter 3 discusses regression analysis of multivariate panel count data in the p-

resence of some terminal event. Furthermore, both the observation process and the

terminal event may be correlated with the underlying recurrent event process of in-

terest. A semiparametric additive model for the mean function of the recurrent event
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process will be considered and an estimating equation based inference procedure will

be developed for the estimation of the regression parameters. In the procedure, the

inverse survival probability weighting technique is used and the asymptotic properties

of the proposed estimators are established.

Chapter 4 considers nonparametric comparison based on panel count data. Most

approaches that have been developed in the literature require an equal observation

process for all subjects. However, such assumption may not hold in reality. A new

class of test procedures are proposed that allow unequal observation processes for the

subjects from different treatment groups, and both univariate and multivariate panel

count data are considered. The asymptotic normality of the proposed test statistics is

established and a simulation study is conducted to evaluate the finite sample properties

of the proposed approach. The simulation results show that the proposed procedures

work well for practical situations and especially for sparsely distributed data. They are

applied to a set of panel count data from the skin cancer study described in Section

1.1.2.3. The dissertation concludes with Chapter 5, which discusses several directions

for future research.
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Chapter 2

ANALYZING PANEL COUNT
DATA WITH DEPENDENT
OBSERVATION PROCESSES
AND A TERMINAL EVENT

2.1 Introduction

This chapter discusses semiparametric regression analysis of panel count data, which

usually arise in longitudinal follow-up studies that concern some recurrent events and

in which each study subject is observed only at discrete time points instead of con-

tinuously. In these situations, only the numbers of the events that occur between

observation times, not their exact occurrence times, are observed. For example, con-

sider the bladder cancer study discussed in Section 1.1.2.2 (Sun & Wei, 2000; Ghosh

& Lin, 2002; Wellner & Zhang, 2007). In the study, the patients visited the clinical

centers periodically and some patients died before the end of the follow-up. At each
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visit, only the number of the bladder tumors that occurred since the last visit was

recorded. That is, only panel count data are available about the tumor occurrence.

Other fields that often produce such data include clinical trials, reliability experiments,

sociological studies and tumorigenicity experiments.

As mentioned in Section 1.2, many authors have considered the analysis of panel

count data. For example, Sun & Kalbfleisch (1995) and Wellner & Zhang (2000) in-

vestigated nonparametric estimation of the mean function of the underlying recurrent

event process. Sun & Wei (2000), Cheng & Wei (2000), Zhang (2002) and Wellner

& Zhang (2007) developed some semiparametric procedures for regression analysis of

panel count data under the proportional mean models. More recently, Zhao, Balakr-

ishnan, & Sun (2011) gave a relatively complete review of the literature on panel count

data. In all of these methods and most of the existing approaches for panel count data,

it was assumed that the censoring or stopping time for the follow-up is independent of

the underlying recurrent event process of interest. In other words, there is no terminal

event. In many situations, however, the follow-up of study subjects could be stopped

by a terminal event, such as death, which precludes further recurrent events. For ex-

ample, tumors would not develop after death. Furthermore, it is often the case that

the terminal event is strongly correlated with recurrent events of interest. For example,

a higher rate of recurrent events is often associated with an increased rate of death.

Unlike recurrent event data, which are available if all study subjects are under con-

tinuous observation, panel count data also involve an observation process that charac-

terizes the observation times for each subject. In addition to the possible existence of a

dependent terminal event, this observation process could be related to the underlying

recurrent event process of interest too. As mentioned in Section 1.2.2.2, among others,
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Huang, Wang, & Zhang (2006), He, Tong, & Sun (2009) and Li, Sun, & Sun (2010) pro-

posed some semiparametric approaches for regression analysis of the panel count data

with dependent observation processes. However, all these authors treated the death as

an independent censoring variable or assumed that there does not exist a dependent

terminal event. Note that terminal events are quite different from the ordinary censor-

ing. When a terminal event occurs, the recurrent event will be stopped permanently,

while with a dependent censoring, the recurrent event may still occur continuously,

just cannot be observed. In the case of dependent death, the analysis that treats it as

a simple dependent censoring could generally overestimate the occurrence rate of the

recurrent events of interest.

In the presence of terminal events, there exists considerable work on regression

analysis of recurrent event data and in this case, two approaches are commonly adopted.

One is the marginal model approach that usually models the marginal rates of both

recurrent and terminal events and leaves the correlation between the recurrent event

process and the terminal event arbitrary (Cook & Lawless, 1997; Ghosh & Lin, 2002;

Zhao, Zhou, & Sun, 2011). The other is the frailty model approach that often employs a

latent variable to account for the correlation between the rates of recurrent and terminal

events and assumes that these two event processes are independent given the frailty

(Huang & Wang, 2004; Liu Wolfe, & Huang, 2004; Ye, Kalbfleish, & Schaubel, 2007;

Zeng & Cai, 2010). However, the problem is much harder for panel count data, and it

does not seem to exist an established procedure for panel count data with a dependent

terminal event. In the following, a semiparametric marginal model approach will be

developed for regression analysis of panel count data in the presence of a dependent

terminal event. In addition, the proposed approach will also allow the existence of a

22



dependent or informative observation process.

The rest of this chapter is organized as follows. We will begin in Section 2.2 with in-

troducing some notation and describing the proposed models that will be used through-

out this chapter. In particular, we will present a class of semiparametric transformation

models for the underlying recurrent event process of interest, which have great flex-

ibility and allow a variety of patterns for the underlying recurrent event process. In

Section 2.3, an estimating equation approach is developed for estimation of regression

parameters. The approach leaves the correlation between the recurrent event and the

terminal event unspecified and makes use of the inverse probability weighting tech-

nique to take into account the fact that the subjects who die cannot experience further

occurrence of the events of interest. Section 2.4 gives the asymptotic properties of the

proposed estimates and also presents a goodness-of-fit test procedure for checking the

adequacy of the proposed models. Some simulation results are given in Section 2.5

and in Section 2.6, we apply the proposed methodology to the bladder cancer study

described above. Section 2.7 contains some concluding remarks.

2.2 Notation and Models

Consider a longitudinal study concerning some recurrent events. Let Y (t) denote

the underlying point process representing the cumulative number of occurrences of the

events of interest up to time t andN(t) the observation process. In the following, we will

assume that N(t) is a continuous-time counting process with independent increments

and Y (t) is observed only at the time points where N(t) jumps. Also it will be assumed

that there exists a vector of external covariate process denoted by Z(t) (Kalbfleisch
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& Prentice, 2002) and a terminal event denoted by D that may be related to Y (t).

A common example of the terminal event is death and in this case, the correlation

between Y (t) and D occurs if, for example, the high recurrence rate of the events

such as tumors means the increasing death risk. Also the subjects can not experience

further observations and recurrent events after death. In this chapter, we will focus on

the actual recurrent event and observation processes Y ∗(t) = Y (t ∧ D) and N∗(t) =

N(t ∧ D), where a ∧ b = min{a, b}. Note that both N∗(t) and Y ∗(t) will remain

constants after D.

In practice, it is usually the case that there also exists a censoring or follow-up

time C. That is, the follow-up is stopped by T ∗ = C ∧ D and one only observes

Ỹ (t) = Y ∗(t ∧ C) and Ñ(t) = N∗(t ∧ C). Let {T1, · · · , TK} denote the time points at

which Ñ(t) jumps. Then Ỹ (t) is observed only at these Tj’s and K denotes the total

number of observations. Suppose that the study consists of n independent subjects.

Then the observed data have the form

{ Ñi(t), Zi(t), T
∗
i , I(Di ≤ Ci), Ỹi(Ti,1), . . . , Ỹi(Ti,Ki

); 0 ≤ t, Ti,Ki
≤ T ∗i , i = 1, . . . , n } .

Define Ft = {N(s), 0 ≤ s < t}, the history or filtration of the observation process N

up to time t−, and Z(t) = {Z(s), 0 ≤ s ≤ t}, the history of the covariate process. In

the following, we will assume that given Z(t), the adjusted observation process N∗(t)

follows the proportional rate model

E{dN∗(t)|Z(t)} = eγ
′
0Z(t)dΛ0(t) , (2.1)

where γ0 is a vector of unknown parameters and dΛ0(·) is an unspecified baseline rate
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function. Also it will be assumed that C is independent of {N∗(t), Y ∗(t), D} conditional

on Z(t).

To model the covariate effects on the recurrent event process Y ∗(t), we will assume

that given Z(t), Ft and D ≥ t, the conditional mean function of Y ∗(t) has the form

E{Y ∗(t)|Z(t),Ft, D ≥ t} = g{µ0(t)e
β′0Z(t)+α

′
0h(Ft)}, (2.2)

where g(·) is a known twice continuously differentiable and strictly increasing func-

tion, µ0(t) is an unspecified smooth function of t, α0 and β0 are vectors of unknown

parameters, and h(·) is a vector of known functions of Ft. Here g(·) can take many

forms to account for various types of dependence of Y ∗(t) and (Z(t),Ft). For example,

g(x) = x and g(x) = log x result in the proportional mean model and the additive mean

model, respectively. Besides, we can also take g to be the commonly referred Box-Cox

transformation, g(x) = (x+1)a−1
a

, where a is a constant. In particular, if a = 0, then

g(x) = log(x+1). For the choice of h(·), there are also various forms can be taken. One

example is h(Ft) = N(t−) if it is believed that Y (t) may depend on the total number

of visits up to t. It will be assumed that N∗i (t) and Y ∗i (t) are independent given Zi(t),

Di ≥ t and Fit.

Note that here we focus on the adjusted mean function and the same idea has been

used for the analysis of recurrent event data by several authors (e.g., Cook & Lawless,

1997; Ghosh & Lin, 2002). Among others, one advantage is that no assumption is

needed for the recurrent event process after the terminal event (Luo & Huang, 2010).

In contrast, if one simply treats death as a censoring variable as in most of the existing

methods, one could overestimate the mean function and it is obvious that the analysis

would not take into account the fact that the subjects who die can not experience any
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further recurrent events.

The model (2.2) is commonly referred to as the semiparametric transformation

model. It was motivated by Lin, Wei, & Ying (2001) and Sun et al. (2005) and is a

generalization of the model proposed in Li, Sun, & Sun (2010). It can be easily seen

that this model is quite flexible and allows various types of the dependence of the mean

function of Y ∗(t) on Z(t) and N∗(t). If there does not exist death or D = ∞, it is

obvious that Ê{Y ∗(t)|Z(t),Ft, D ≥ t} reduces to Ê{Y ∗(t)|Z(t),Ft}. In the presence

of death, one can show that the marginal mean function has the form

E{Y ∗(t)|Z(t),Ft} =

∫ t

0

S(u|Z)E{dY ∗(u)|Z(u),Fu, D ≥ u}

given Z(t) and Ft and after adjusting the fact that the death precludes further recurrent

events, where S(t|Z) = P (D ≥ t|Z(t)). It is easy to see that in this case, we have

Ê{Y ∗(t)|Z(t),Ft, D ≥ t} > Ê{Y ∗(t)|Z(t),Ft}

for t greater than the first observed death time.

In reality, the terminal event time D may also depend on covariates Z(t). For this,

we will assume that D follows the proportional hazards model given by

λd(t|Z(t)) = λd0(t) e
δ′0Z(t) , (2.3)

where λd0(t) is an unspecified baseline hazard function and δ0 is a vector of unknown re-

gression parameters. Under the above model, we have S(t|Z) = exp{−
∫ t
0
eδ
′
0Z(s)d∆0(s)},

where ∆0(t) =
∫ t
0
λd0(s)ds.
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2.3 Estimation Procedures

In this section, we will present some inference procedures for the models described in

the previous section. Let β0, α0 and γ0 denote the true values of β, α and γ, respectively,

and define Xi(t) = (Zi(t)
′, h(Fit)′)′, θ = (β′, α′)′, θ0 = (β′0, α

′
0)
′. First we will show that

Ỹi(t)dÑi(t) − I(Ci ≥ t)g{µ0(t)e
θ′0Xi(t)}eγ′0Zi(t)dΛ0(t) is a mean-zero stochastic process.

This is true because under models (2.1) and (2.2) and the conditional independent

assumptions for Y ∗i (t), N∗i (t) and Ci, we have

E{Ỹi(t)dÑi(t)} = E
[
E{I(Ci ≥ t)Y ∗i (t)dN∗i (t)|Zi(t),Fit}

]
= E

[
E{I(Ci ≥ t)|Zi(t)}E{Y ∗i (t)dN∗i (t)|Zi(t),Fit}

]
= E

[
E{I(Ci ≥ t)|Zi(t)}E{Y ∗i (t)|Di ≥ t,Zi(t),Fit}E{dN∗i (t)|Zi(t)}

]
= E

[
E{I(Ci ≥ t)g{µ0(t)e

θ′0Xi(t)}eγ′0Zi(t)dΛ0(t)|Zi(t),Fit}
]

= E
[
I(Ci ≥ t)g{µ0(t)e

θ′0Xi(t)}eγ′0Zi(t)dΛ0(t)
]
,

where the third equality holds because

E
{
Y ∗i (t)dN∗i (t)|Zi(t),Fit

}
= E

{
E
{
Y ∗i (t)dN∗i (t)|Di,Zi(t),Fit

}}
= E

{
Y ∗i (t)dN∗i (t)|Di ≥ t,Zi(t),Fit

}
P (Di ≥ t|Zi(t)) + 0× P (Di < t|Zi(t))

= E
{
Y ∗i (t)|Di ≥ t,Zi(t),Fit

}
E
{
dN∗i (t)|Di ≥ t,Zi(t)

}
P (Di ≥ t|Zi(t))

= E
{
Y ∗i (t)|Di ≥ t,Zi(t),Fit

}
E
{
dN∗i (t)|Zi(t)

}
.

Note that in practice, Ci is unobservable when Di ≤ Ci. Thus the mean-zero s-

tochastic process given above can not be directly used to construct estimating equation-

s. To overcome this, we employ the inverse probability weighting procedure to replace

27



I(Ci ≥ t) (i = 1, . . . , n) in the process. Specifically, define ωi(t) = I(T ∗i ≥ t)/S(t|Zi).

Note that E{I(T ∗i ≥ t)|Zi(t)} = E{I(Ci ≥ t)|Zi(t)}S(t|Zi) based on the independence

of Ci and Di given Zi(·). This gives that E{ωi(t)|Zi(t)} = E{I(Ci ≥ t)|Zi(t)}. Define

dMi(t; θ, γ) = Ỹi(t)dÑi(t)− ωi(t)g{µ0(t)e
θ′Xi(t)}eγ′Zi(t)dΛ0(t)

and dMi(t) = dMi(t; θ0, γ0). Then it follows from models (2.1) and (2.2) thatE[dMi(t)] =

0 for i = 1, ..., n. Note that here ωi(t) is still unobservable, but it can be easily estimat-

ed by ω̂i(t) = I(T ∗i ≥ t)/Ŝ(t|Zi), where Ŝ(t|Zi) = exp
{
−
∫ t
0

exp{δ̂′Zi(s)}d∆̂0(s)
}

with

δ̂ and ∆̂0(t) being the maximum partial likelihood Breslow estimators of δ and ∆0(t),

respectively, given by model (2.3). By following the similar arguments as those in Lin,

Wei, & Ying (2001), it can be shown that for large n, the estimator ω̂i(t) always exists

and is unique and consistent.

For estimation of θ and µ0(t), first assume that γ and Λ0 are known. Then it is

natural to employ the following estimating functions

n∑
i=1

[
Ỹi(t)dÑi(t)− ω̂i(t)g{µ0(t)e

θ′Xi(t)}eγ′Zi(t)dΛ0(t)
]

= 0, 0 ≤ t ≤ τ, (2.4)

and

Uθ(θ; γ) =
n∑
i=1

∫ τ

0

W (t)Xi(t)
[
Ỹi(t)dÑi(t)− ω̂i(t)g{µ0(t)e

θ′Xi(t)}eγ′Zi(t)dΛ0(t)
]

= 0 ,

(2.5)

where τ is the longest follow-up time and W (t) is a possibly data-dependent weight

function. Of course, γ and Λ0 are unknown in general, but they can be easily estimated

based on the recurrent event data observed on model (2.1) (Cook & Lawless, 2007).
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Specifically, define

dM∗
i (t; γ) = dÑi(t)− ωi(t)eγ

′Zi(t)dΛ0(t)

and dM∗
i (t) = dM∗

i (t; γ0). It is easy to see that M∗
i (t) is a mean-zero stochastic

process. It follows that the consistent estimators of γ and Λ0(t), denoted by γ̂ and

Λ̂0(t), respectively, can be obtained by solving the following two estimating equations

Uγ(γ) =
n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; γ)

}
dÑi(t) = 0, (2.6)

and
n∑
i=1

[
dÑi(t)− ω̂i(t)eγ

′Zi(t)dΛ0(t)
]

= 0 .

In the above, Z̄(t; γ) = S(1)(t; γ)/S(0)(t; γ) and S(k)(t; γ) = n−1
∑n

i=1 ω̂i(t)Zi(t)
keγ

′Zi(t), k =

0, 1. In particular, we have

Λ̂0(t; γ) =

∫ t

0

dN̄(u)

S(0)(u; γ)
, (2.7)

where N̄(t) = n−1
∑n

i=1 Ñi(t). Given γ̂ and Λ̂0(t), one can estimate θ and µ0(t) by

plugging them into Equations (2.4) and (2.5).

Let θ̂ and µ̂0(t; θ̂, γ̂) denote the estimators of θ and µ0(t) defined above. In general,

there are no closed forms for these estimators except some special cases. One such case

is g(t) = tm and in this situation, µ̂0(t; θ, γ) has an explicit expression, where m is a

positive number. Another special case is when g(t) = log t and in this case, we have

θ̂ =
{∑n

i=1

∫ τ
0
W (t)

{
Xi(t)− X̄(t; γ̂)

}
X ′i(t)ω̂i(t)e

γ̂′Zi(t)dΛ̂0(t, γ̂)
}−1

×
∑n

i=1

∫ τ
0
W (t)

{
Xi(t)− X̄(t; γ̂)

}
Ỹi(t)dÑi(t),
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and

µ̂0(t; θ, γ) = exp
{ ∑n

i=1 Ỹi(t)dÑi(t)∑n
i=1 ω̂i(t)e

γ′Zi(t)dΛ0(t)
− θ′X̄(t; γ)

}
,

where

X̄(t; γ) =

∑n
i=1Xi(t)ω̂i(t)e

γ̂′Zi(t)∑n
i=1 ω̂i(t)e

γ̂′Zi(t)
.

To implement the estimation procedure proposed above, one needs to choose the link

function g and the weight function W . As commented by Li, Sun, & Sun (2010) and

others, this is usually difficult and a common strategy is to try several choices and

compare the obtained results.

2.4 Asymptotic Properties of θ̂ and Model Assess-

ment

In this section, we will establish the asymptotic properties of θ̂ and present a

goodness-of-fit test procedure for assessing the appropriateness of model (2.2). To

establish the asymptotic properties, define Nd
i (t) = I(Di ≤ t,Di ≤ Ci) and Md

i (t) =

Nd
i (t)−

∫ t
0
I(T ∗i ≥ s)eδ

′
0Zi(s)d∆0(s), i = 1, ..., n. Then it is easy to see that the Md

i (t)’s

are zero-mean martingale processes. Also define

M̂d
i (t) = Nd

i (t)−
∫ t

0

I(T ∗i ≥ s)eδ̂
′Zi(s)d∆̂0(s) , M̂

∗
i (t) = Ñi(t)−

∫ t

0

ω̂i(s)e
γ̂′Zi(s)dΛ̂0(s; γ̂) ,

M̂i(t) =

∫ t

0

Ỹi(s)dÑi(s)−
∫ t

0

ω̂i(s)g{µ̂0(s; θ̂, γ̂)eθ̂
′Xi(s)}eγ̂′Zi(s)dΛ̂0(s; γ̂) ,

ÊX(t; θ, γ) =

∑n
i=1Xi(t)ω̂i(t)ġ{µ̂0(t; θ, γ)eθ

′Xi(t)}eθ′Xi(t)+γ
′Zi(t)∑n

i=1 ω̂i(t)ġ{µ̂0(t; θ, γ)eθ′Xi(t)}eθ′Xi(t)+γ′Zi(t)
,
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Υ̂(t; θ, γ) = n−1
n∑
i=1

{
Xi(t)− ÊX(t; θ, γ)

}
ω̂i(t)g

{
µ̂0(t; θ, γ)eθ

′Xi(t)
}
eγ
′Zi(t) ,

R(k)(t; δ) = n−1
n∑
i=1

I(T ∗i ≥ t)eδ
′Zi(t)Zi(t)

⊗k, k = 0, 1, 2,

Ĥ(t;Zi) =

∫ t

0

eδ̂
′Zi(u)

{
Zi(u)− R(1)(t; δ̂)

R(0)(t; δ̂)

}
d∆̂0(u; δ̂) ,

and

Ω̂δ = n−1
n∑
i=1

∫ τ

0

[
R(2)(t; δ̂)

R(0)(t; δ̂)
−
{R(1)(t; δ̂)

R(0)(t; δ̂)

}⊗2]
dNd

i (t) .

In the above, ġ = dg(t)/dt, r(k)(t) = limn→∞R
(k)(t; δ0) with k = 0, 1, 2, and v⊗2 = vv′

for a vector v. Let s(0)(t), s(1)(t), ex(t), Υ(t) and Ωδ denote the limits of S(0)(t; γ0),

S(1)(t; γ0), ÊX(t; θ0, γ0), Υ̂(t; θ0, γ0) and Ω̂δ, respectively, and z̄(t) = s(1)(t)/s(0)(t). The

following theorem gives the consistency and asymptotically normality of θ̂.

Theorem 2.1. Assume that the conditions (C1)-(C5) given in Appendix A.1 hold.

Then θ̂ is a consistent estimator of θ0 and the distribution of n1/2(θ̂−θ0) can be asymp-

totically approximated by the normal distribution with mean zero and the covariance

matrix Â−1θ Σ̂Â−1θ , where Σ̂ = n−1
∑n

i=1(ξ̂1i − ξ̂2i − ξ̂3i)⊗2,

ξ̂1i =

∫ τ

0

W (t)
(
Xi(t)− ÊX(t; θ̂, γ̂)

)
dM̂i(t) ,

ξ̂2i =

∫ τ

0

{W (t)Υ̂(t; θ̂, γ̂)

S(0)(t; γ̂)
+ ÂγΩ̂

−1
γ

(
Zi(t)− Z̄(t; γ̂)

)}
dM̂∗

i (t) ,

ξ̂3i =

∫ τ

0

{
ÂγΩ̂

−1
γ Q̂1

(
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

)
+ ÂγΩ̂

−1
γ

Q̂2(t)

R(0)(t; δ̂)
+

B̂1(t)

R(0)(t; δ̂)

+B̂2

(
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

)}
dM̂d

i (t) ,
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Âγ = n−1
n∑
i=1

∫ τ

0

W (t)ω̂i(t)g{µ̂0(t; θ̂, γ̂)eθ̂
′Xi(t)}eγ̂′Zi(t)

[
Xi(t)− ÊX(t; θ̂, γ̂)

]
×
[
Zi(t)− Z̄(t; γ̂)

]′
dΛ̂0(t; γ̂) ,

Ω̂γ = n−1
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}⊗2ω̂i(t)eγ̂
′Zi(t)dΛ̂0(t; γ̂) ,

B̂1(t) = n−1
n∑
i=1

eδ̂
′Zi(t)

∫ τ

0

I(t < s)B̂∗i (s)dΛ̂0(s; γ̂) ,

B̂2 = n−1
n∑
i=1

∫ τ

0

B̂∗i (t)Ĥ(t;Zi)
′Ω̂−1δ dΛ̂0(t; γ̂) ,

B̂∗i (t) = W (t)ω̂i(t)e
γ̂′Zi(t)

[{
Xi(t)− ÊX(t; θ̂, γ̂)

}
g
{
µ̂0(t; θ̂, γ̂)eθ̂

′Xi(t)
}
− Υ̂(t; θ̂, γ̂)

S(0)(t; γ̂)

]
,

Q̂1 = n−1
n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; γ̂)

}
Q̂3(t;Zi)

′Ω̂−1δ dM̂∗
i (t) ,

Q̂2(t) = n−1
n∑
i=1

eδ̂
′Zi(t)

∫ τ

0

{
Zi(u)− Z̄(u; γ̂)

}
I(u ≥ t)dM̂∗

i (u) ,

and

Q̂3(t;Zi) =

∫ t

0

{
Zi(u)− Z̄(u; γ̂)

}
eδ̂
′Zi(u)d∆̂0(u; δ̂) .

For a given data set, one question of practical interest is to assess the adequacy of

the models described in Section 2.2. For both models (2.1) and (2.3), note that one

observes complete data and several procedures have been developed in the literature for

checking their goodness-of-fits (Lin et al., 1993; Lin et al., 2010; Schoenfeld, 1982). So

in the following, we will focus on model (2.2) and develop an omnibus goodness-of-fit

procedure.

Let the M̂i(t)’s be defined as above. Note that they represent the differences between

the observed and model-predicted numbers of events by time t. Thus it is natural to
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construct a test statistic based on them. Following Sun et al. (2007a), we consider the

following cumulative sums of residual process

F(t, x) = n−1/2
n∑
i=1

∫ t

0

I(Xi(u) ≤ x)dM̂i(u),

where the event {Xi(u) ≤ x} means that each components of Xi(u) is not greater than

the respective component of x. We will show in Appendix A.2 that the null distribution

of F(t, x) can be approximated by a zero-mean Gaussian process

F̂(t, x) = n−1/2
n∑
i=1

{
η̂1i(t, x)− Φ̂γ(t, x)Ω−1γ η̂2i − Φ̂θ(t, x)Â−1θ η̂3i

}
Gi . (2.8)

In the above, G1, . . . , Gn are independent standard normal variables independent of

the observed data,

η̂1i(t, x) =

∫ t

0

{I(Xi(u) ≤ x)−ÊI(u, x)}dM̂i(u)−
∫ t

0

Υ̃(u, x)

S(0)(u; γ̂)
dM̂∗

i (u)

−
∫ t

0

{
B̃1(u, t, x)

R(0)(u; δ̂)
+ B̃2(t, x)

(
Zi(u)− R(1)(u; δ̂)

R(0)(u; δ̂)

)}
dM̂d

i (u) ,

η̂2i =

∫ τ

0

[
Q1

{
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

}
+

Q2(t)

R(0)(t; δ̂)

]
dMd

i (t) +

∫ τ

0

{
Zi(t)− Z̄(t; γ̂)

}
dM∗

i (t) ,

η̂3i = ξ̂1i − ξ̂2i − ξ̂3i,

Υ̃(s, x) = n−1
n∑
i=1

{
I(Xi(s) ≤ x)− ÊI(s, x)

}
ω̂i(s)g

{
µ̂0(s)e

θ̂′Xi(s)
}
eγ̂
′Zi(s),

B̃1(u, t, x) = n−1
n∑
i=1

eδ̂
′Zi(u)

∫ t

0

I(u < s)B̃∗i (s, x)dΛ̂0(s),
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B̃2(t, x) = n−1
n∑
i=1

∫ t

0

B̃∗i (s, x)Ĥ(s;Zi)
′Ω̂−1δ dΛ̂0(s),

B̃∗i (s, x) = ω̂i(s)e
γ̂′Zi(s)

[{
I(Xi(s) ≤ x)− ÊI(s, x)

}
g
{
µ̂0(s)e

θ̂′Xi(s)
}
− Υ̃(s;x)

S(0)(s; γ̂)

]
,

Φ̂γ(t, x) = n−1
n∑
i=1

∫ t

0

[
I(Xi(u) ≤ x)− ÊI(u, x)

][
Zi(u)− Z̄(u; γ̂)

]′
ω̂i(u)

×g{µ̂0(u)eθ̂
′Xi(u)}eγ̂′Zi(u)dΛ̂0(u; γ̂),

Φ̂θ(t, x) = n−1
n∑
i=1

∫ t

0

I(Xi(u) ≤ x)
{
Xi(t)− ÊX(t; θ̂, γ̂)

}′
µ̂0(t)ω̂i(t)

×ġ{µ̂0(t)e
θ̂′Xi(t)}eθ̂′Xi(t)+γ̂

′Zi(t)dΛ̂0(t, γ̂),

and

ÊI(u, x) =

∑n
i=1 I(Xi(u) ≤ x)ω̂i(u)ġ{µ̂0(u)eθ̂

′Xi(u)}eθ̂′Xi(u)+γ̂
′Zi(u)∑n

i=1 ω̂i(u)ġ{µ̂0(u)eθ̂′Xi(u)}eθ̂′Xi(u)+γ̂′Zi(u)
.

Based on (2.8), it is easy to see that one could obtain a large number of real-

izations from F̂(t, x) by repeatedly generating the standard normal random sample

{G1, . . . , Gn} while fixing the observation data. Thus to check the validity of model

(2.2), one can plot these realizations of F̂(t, x) along with the observed F(t, x) and

examine any unusual pattern of F(t, x) compared to the realizations. Furthermore,

a formal lack-of-fit test can be constructed based on the statistic sup0≤t≤τ,x |F(t, x)|

and the corresponding p-value can be obtained by comparing the observed value of

sup0≤t≤τ,x |F(t, x)| to a large number of realizations from sup0≤t≤τ,x |F̂(t, x)|.

2.5 A Simulation Study

In this section, we report some results obtained from a simulation study conducted
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to assess the finite sample behavior of the estimation procedure proposed in the previous

section. In the study, the covariate Z was assumed to be a Bernoulli random variable

with the probability of success being 0.5 and the censoring time C was generated from

the uniform distribution U(τ/4, τ) with τ = 1. To generate the correlation between the

recurrent event process of interest and the terminal event, it was assumed that there is a

latent variable v following the positive stable distribution with Laplace transformation

L(s) = exp(−sρ) (Luonga & Doray, 2009). Here we took ρ = 0.7 or 1.0. Given v and Z,

the death time D was assumed to have the hazard function λ(t|Z, v) = 0.2v exp{0.5Z}.

It can be shown thatD satisfies model (2.3) with S(t|Zi) = exp{−(0.2te0.5Zi)ρ}. For the

observation process, we assumed that given Zi and T ∗i , Ñi(t) was a nonhomogeneous

Poisson process on [0, τ ] with E{dÑi(t)|Zi, T ∗i } = 10S−1(t|Zi)e0.5ZiI(T ∗i ≥ t). This

gives E{dN∗i (t)|Zi} = eγ0ZidΛ0(t) with γ0 = 0.5 and Λ0(t) = 10t. Also given Zi and

T ∗i , the number of observations Ki was generated from the Poisson distribution with

mean 10
∫ T ∗i
0

S−1(t|Zi)e0.5Zidt and the observation times (ti,1, . . . , ti,Ki
) were taken to

be the order statistics of a random sample of size Ki from the uniform distribution

over (0, T ∗i ).

For the generation of panel counts Y ∗i (ti,j), given Ki and (ti,1, . . . , ti,Ki
), we assumed

that

Y ∗i (ti,j) = Y ∗∗i (ti,1) + Y ∗∗i (ti,2 − ti,1) + · · ·+ Y ∗∗i (ti,j − ti,j−1)

with ti,0 = 0, j = 1, . . . , Ki. In the above, given vi, Zi and Fi,j, it was assumed that

Y ∗∗i (s) and Y ∗∗i (t− s) were the mixed Poisson distributions with the conditional mean

functions

φ(vi, s)g{µ0(s)e
βZi+αh(Fi,s)}
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and

φ(vi, t)g{µ0(t)e
βZi+αh(Fi,t)} − φ(vi, s)g{µ0(s)e

βZi+αh(Fi,s)} ,

respectively, where

φ(vi, t) = e−vi exp{(1 + λd0t e
δ0Zi)ρ − (λd0t e

δ0Zi)ρ} .

One can show that E{φ(vi, t)|Zi,Fit, Di ≥ t} = 1. The results reported below are

based on 500 replications and with the sample size n = 200 or 300.

Table 2.1 presents the results obtained for estimation of β and α based on the

simulated data with the true values of (β, α) being equal to (0, 0) (0.5, 0), (0, 0.1) or

(0.5, 0.1), g(t) = t, µ0(t) = t, h(Fi,t) = Ni(t−) and W (t) = 1. The results include

the estimated biases (BIAS) given by the averages of the estimators minus their true

values, the sampling standard errors (SSE), the averages of the estimated standard

errors (SEE), and the 95% empirical coverage probabilities (CP). The results suggest

that the proposed approach seems to perform well. Specifically, they indicate that the

proposed estimators seem to be unbiased and there is a good agreement between the

estimated and empirical standard errors. Also the coverage probabilities are reasonable

and consistent with the nominal levels and as expected, the estimated standard errors

became smaller as the sample size increased.

The results presented in Table 2.2 were also about the estimation of β and α and

obtained under the same set-up as those in Table 2.1 except that we used different link

functions g(t) = log(t) and µ0(t) = et. It can be seen that they gave similar conclusions

as those from Table 2.1. Both tables also suggest that it seems that the parameter

α can be estimated more accurately than the parameter β. We also considered other
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set-ups such as those with different link functions and obtained similar results.

2.6 An Application

Now we apply the statistical approach proposed in the previous sections to the

panel count data arising from the bladder cancer study described above. For the

analysis, following Li, Sun, & Sun (2010) and others, we will focus on the data from

the 85 bladder cancer patients in thiotepa (38) and placebo (47) groups. As mentioned

before, the original study includes another treatment but many authors have shown

that it did not have any effect on the recurrence rate of the bladder tumors. Also as

mentioned before, all patients had superficial bladder tumors when they entered the

study and all these tumors were removed at the beginning. During the follow-up, the

bladder tumors that were detected at each clinical visit were also removed. Of the 85

study subjects, there are 22 patients died before the end of the follow-up. For each

patient, two covariates were measured and they are the number of initial tumors that

the patients had before entering the study and the size of the largest initial tumor. The

second covariate has been shown to have no effect on the recurrence rate of bladder

tumors (Sun & Wei, 2000; Ghosh & Lin, 2002). Thus in the following, we will only

consider the number of initial tumors.

For the analysis, define Z1 to be the treatment indicator with Z1 = 1 for the subjects

in the thiotepa group and Z1 = 0 otherwise and Z2 the number of initial tumors. Then

β1 and β2 will represent the effects of the thiotepa treatment and the number of initial

tumors on the recurrence process of bladder tumors, respectively, while α gives the

effect of the observation or visit process on the recurrent event process. Table 2.3
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gives the obtained results, including the estimated effects, the 95% confidence intervals

and the p-values for testing the estimated parameter to be zero. Here we considered

three link functions for g(t) and took τ = 53 months, the longest observation time,

and h(Fi,t) = Ni(t−), assuming that the bladder tumor recurrent process depends on

the total number of observations or visits. It can be seen from the table that the

results suggest that both the thiotepa treatment and the initial number of tumors

had significant effects on the recurrence rate of the bladder tumor. In particular, the

thiotepa treatment seems to significantly reduce the recurrence of bladder tumors.

These results are similar to those given by other authors.

With respect to the relationship between the recurrence process of bladder tumors

and the visit process, it seems that the total number of visits had no significant effect

on the recurrence rate of bladder tumors. This differs from the result given in Li,

Sun, & Sun (2010), which did not consider the terminal event death. One possible

explanation for this is that the relationship detected in Li, Sun, & Sun (2010) may be

due to the correlation between the bladder tumor occurrence process and the death.

Instead of taking h(Fi,t) = Ni(t−), we also performed the analysis by letting h(Fit) =

Ni(t−)−Ni(t− 6), where ti,j−1 < t ≤ ti,j, meaning that the tumor recurrence process

depends on the number of visits during the last six months. The obtained results are

given in Table 2.4 and they gave similar conclusions as those in Table 2.3.

To assess the adequacy of model (2.2), we apply the goodness-of-fit procedure pre-

sented in Section 2.4 to the bladder tumor panel count data. Specifically, we calculated

the statistic F(t, x) and obtained the p-value by comparing it to 1000 realizations of

the statistic sup1<t≤τ,x |F̂(t, x)|. For the analysis with h(Fit) = Ni(t−), the p-values

are 0.866 , 0.857 and 0.594 under the link functions g(t) = t, g(t) = t2, and g(t) = log t,
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respectively. When taking h(Fit) = Ni(t−) − Ni(t − 6), we obtained the p-values of

0.584, 0.6 and 0.454 for the same three link functions, respectively. These results

indicate that model (2.2) seems to fit the data well.

2.7 Discussion and Concluding Remarks

This chapter considered regression analysis of panel count data in the presence of a

terminal event. For the problem, a semiparametric transformation model was proposed,

which can be seen as a generalization of the model studied by Li, Sun, & Sun (2010). For

estimation of unknown parameters, the estimating equation approach and the inverse

survival probability weighting technique were used and we established both finite and

asymptotic properties of the resulting estimators. The simulation results indicate that

the proposed approach works well for practical situations. In addition, we presented a

goodness-of-fit test procedure for assessing the adequacy of the transformation model

for the underlying recurrent event process of interest.

One of the focus of this chapter has been to take into account the dependent ter-

minal event in the analysis of panel count data. It is worth noting that the models

proposed may be of more clinical interest to some extent because it directly accounts

for the covariate effects on the frequency of recurrent events among survivors with-

out modeling the recurrent event process after the terminal events or the correlation

between the rates of recurrent and terminal events. By models (2.2) and (2.3), the

proposed procedure examined the effects of covariates on both the survival probability

of the terminal event and the recurrent event rate among surviving subjects. In prac-

tice, if a treatment reduces the disease recurrence and death simultaneously or reduces
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the disease recurrence but has no significant impact on survival, then the treatment is

clearly preferred. However, if the treatment reduces the disease recurrence but increas-

es mortality, then it is more subtle to make a judgment on the treatment and need to

do further analysis.

To implement the proposed estimation procedure, one needs to choose the link

function g, which determines the pattern of the underlying recurrent event process or

the relationship between the recurrent event process and the covariate process. For

this, although one can develop some procedures for selecting or estimating g, it is

generally quite difficult as commented above. Of course, an alternative is to apply the

goodness-of-fit test procedure given in Section 2.4. The same is true about the link

function h, which represents the relationship between the underlying recurrent event

process and the observation process. For modeling the terminal event, we used the

proportional hazards model and in some situations, one may prefer some other models

such as the additive hazards model, the accelerated failure time model and the linear

transformation model, depending on the situation.
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Chapter 3

SEMIPARAMETRIC ANALYSIS
OF MULTIVARIATE PANEL
COUNT DATA WITH A
TERMINAL EVENT

3.1 Introduction

This chapter discusses regression analysis of panel count data for practical situations

similar as in Chapter 2. We will now focus on multivariate panel count data in the

presence of some terminal events (He et al., 2008; Zhao et al., 2011). Furthermore, both

the observation process and the terminal event may be correlated with the recurrent

event process of interest. As introduced by Chapter 1, panel count data arise in

recurrent event studies when study subjects can be observed only at discrete time

points instead of continuously. This is often the case in, for example, cohort studies,

epidemiological studies, reliability studies and tumorigenicity experiments. In this
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situation, the data take the form of counts of the cumulative numbers of the events of

interest at observation time points along with explanatory covariates.

As discussed in Chapter 2, for regression analysis of panel count data, two compli-

cated issues often arise. One is that the observation process that characterizes observa-

tion times on study subjects could be related to the underlying recurrent event process

of interest even given covariates. The other is that there sometimes exists a terminal

event such as death that stops the follow-up of the recurrent eventof interest or study

subjects. More importantly, it is often the case that the terminal event is correlated

with the recurrent event of interest. An example of this is that in a medical study,

a patient may have an increasing rate of death when the rate of some disease-related

recurrent event is unusually high. Note that terminal events are quite different from

the ordinary censoring. This is because when a terminal event occurs, the recurrent

event will be stopped permanently, while with censoring, the recurrent event may still

occur continuously, just cannot be observed.

Many authors have considered regression analysis of univariate panel count data

and these include Cheng and Wei (2000), Sun and Wei (2000), Wellner and Zhang

(2007) and Zhang (2002) as mentioned in Section 1.2.2. However, the methods given

by them assume that the underlying recurrent event process of interest and the obser-

vation process are independent completely or given covariates. Among others, He et

al. (2009), Huang et al. (2006), Sun et al. (2007), and Li et al. (2010) studied the

situation where the two processes may be correlated and proposed some approaches

that directly model the relationship between the two processes. There also exist some

procedures for regression analysis of multivariate panel count data (He et al., 2008;

Li et al., 2011). But it does not seem to exist an established procedure for regression
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analysis of multivariate panel count data with both dependent observation processes

and a terminal event.

In the presence of terminal events, there exists considerable work on regression

analysis of recurrent event data and in this case, two approaches are generally adopt-

ed. One is the marginal model approach, which focuses on the marginal rates of the

recurrent and terminal events and does not specify the correlation between them (Cook

and Lawless, 1997; Ghosh and Lin, 2002; Ye et al., 2007; Zhao et al., 2011). The other

is the frailty model approach, which employs some latent variables to account for the

correlation between the rates of recurrent and terminal events and assumes that these

two event processes are independent given the frailty (Huang and Wang, 2004; Liu et

al., 2004; Ye et al., 2007; Zeng and Cai, 2010). Similar approaches have been used for

univariate panel count data, but not for multivariate panel count data. For the latter,

an additional difficult issue is how to deal with the relationship among different types

of recurrent events.

In this chapter, we propose a semiparametric marginal modeling approach for re-

gression analysis of multivariate panel count data with dependent observation processes

and a terminal event. In the approach, the additive model is employed for the mean

functions of the underlying recurrent event processes and one advantage of such models

is that they allow one to directly estimate the absolute difference between the rates of

recurrent events. The proposed models are given in Section 3.2 along with some as-

sumptions and leave both the correlation between the recurrent events and the terminal

events and the correlation between different types of recurrent events unspecified. Sec-

tion 3.3 presents an estimating equation-based procedure for estimation of regression

parameters and the asymptotic properties of the resulting estimates are established. In
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the procedure, the inverse probability weighting technique is used to take into account

the facts that subjects who die cannot experience further observations or occurrence

of the recurrent events of interests and that the whole observation process is informa-

tive. In addition, a model checking procedure is also given. An extensive simulation

study is conducted in Section 3.4 and suggests that the proposed method works well

for practical situations.

3.2 Models and Assumptions

Consider a recurrent event study that involves K different types of recurrent events.

For each k (k = 1, . . . , K), let Yk(t) denote the recurrent event process indicating the

total number of occurrences of the kth type recurrent events of interest over the time

interval [0, t]. Also let Z(t) denote a vector of external covariate process (Kalbfleisch

and Prentice, 2002) and define Z(t) = {Z(s), 0 ≤ s ≤ t}, the history of covariates

up to time t. In the following, we assume that each Yk(t) is observed only at discrete

time points and will use the counting process Nk(t) to denote the total number of

observations up to time t. That is, Yk(t) can be observed only at the time points where

Nk(t) jumps.

Define Fkt = {Nk(s), 0 ≤ s < t}, the history or filtration of the observation process

Nk up to time t−. Assume that there exists a terminal event whose occurrence time is

denoted by D and which may be correlated with the recurrent events of interest. In the

following, to take into account the fact that the recurrent events will not occur further

after the terminal event, we will focus on Y ∗k (t) = Yk(t∧D) and N∗k (t) = Nk(t∧D), the

actual and adjusted recurrent event and observation processes. Note that both N∗k (t)
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and Y ∗k (t) will remain constants after D.

To model the effects of covariates, we will assume that given Z(t), Fkt and D, the

conditional mean function of Y ∗k (t) has the form

E{Y ∗k (t)|Z(t),Fkt, D ≥ t} = µ0k(t) + β′Z(t) + α′hk(Fkt), (3.1)

k = 1, ..., K. In the above, α and β are vectors of unknown regression parameters,

µ0k(t) is an unspecified baseline cumulative mean function, and hk(·) is a vector of

known functions of Fkt. Furthermore, it is assumed that µ0k(0) = hk(Fk0) = 0 and

µ0k(t) is an increasing function of t for t ≤ D. For the adjusted observation process

N∗k (t), it will be assumed that it is a non-homogeneous Poisson process satisfying the

following marginal rate model

E{dN∗k (t)|Z(t)} = eγ
′Z(t)dΛ0k(t), (3.2)

where γ is a vector of unknown regression parameters and dΛ0k(·) is an unspecified

baseline rate function.

Note that in both models (3.1) and (3.2), for the simplicity of presentation, we

assume that regression parameters α, β and γ are the same for different k. It is

straightforward to generalize the methodology proposed below to situations that they

may differ for different k. Model (3.1) can be seen as a generalization of model (2) of

Li et al. (2011) for E{Y ∗k (t)|Z(t),Fkt} since if D = +∞ or there is no terminal event,

E{Y ∗k (t)|Z(t),Fkt, D ≥ t} reduces to E{Y ∗k (t)|Z(t),Fkt}. Define S(t|Z) = P (D ≥
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t|Z(t)). One can easily show that

E{Y ∗k (t)|Z(t),Fkt} =

∫ t

0

S(u|Z)E{dY ∗k (u)|Z(u),Fku, D ≥ u} .

This yields that

E{Y ∗k (t)|Z(t),Fkt, D ≥ t} > E{Y ∗k (t)|Z(t),Fkt}

for t greater than the first observed terminal event time. In the following, we will

assume that given Z(t), Fkt and D, the adjusted recurrent event process Y ∗k (t) and the

adjusted observation process N∗k (t) are independent.

In practice, covariates may have effects on terminal events too. For this, we will

assume that the occurrence time D of the terminal event follows the proportional

hazards model given by

λd(t|Z(t)) = eδ
′Z(t)λd0(t), (3.3)

where λd0(t) is an unspecified baseline hazard function and δ is a vector of unknown

regression parameters. Define ∆0(t) =
∫ t
0
λd0(s)ds. Then we have

S(t|Z) = exp{−
∫ t

0

exp{δ′0Z(s)}d∆0(s)}.

We remark that instead of modeling the adjusted rate or mean functions as in

models (3.1) and (3.2), an alternative is to directly model the original recurrent event

processes of interest and observation processes. An advantage of models (3.1) and (3.2)

is that no assumption is needed for the recurrent event process after the terminal event

(Luo et al.,2010). Among others, Cook and Lawless (1997) and Ghosh and Lin (2002)
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discussed similar models for regression analysis of recurrent event data. An drawback

of model (3.1) is that one cannot directly estimate the overall covariates effects.

3.3 Inference Procedures

Let Yk(t), Nk(t), Y
∗
k (t), N∗k (t) and D be defined as in the previous section. In

practice, in addition to the terminal event D, there may also exist a censoring time

denoted by C. The actual follow-up time is then T ∗ = C ∧ D. In the following, for

simplicity and as with D, it will be assumed that C is the same for all K types of

recurrent events. Also we assume that C is independent of {N∗k (t), Y ∗k (t), D} condi-

tional on Z(t). Define Ỹk(t) = Y ∗k (t ∧ C) and Ñk(t) = N∗k (t ∧ C). Then for a study

consisting of n independent subjects, the observed data have the form

{Ñik(t), Ỹik(t) dÑik(t), Zi(t), T
∗
i , I(Di ≤ Ci) ; 0 ≤ t ≤ T ∗i , i = 1, . . . , n; k = 1, . . . , K} .

To present the estimation procedure, define Xik(t) = (Zi(t)
′, hk(Fikt)′)′ and θ =

(β′, α′)′. Note that under models (3.1) and (3.2) and based on the conditional inde-

pendent assumptions for Y ∗ik(t), N
∗
ik(t) and Ci, one can show that

E{Ỹik(t)dÑik(t)} = E{I(Ci ≥ t){µ0k(t) + θ′Xik(t)}eγ
′Zi(t)dΛ0k(t)}. (3.4)

This naturally suggests the estimating equation

n∑
i=1

[
Ỹik(t)dÑik(t)− I(Ci ≥ t){µ0k(t) + θ′Xik(t)}eγ

′Zi(t)dΛ0k(t)
]

= 0, 0 ≤ t ≤ τ,
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where τ is the longest follow-up time. The derivation of (3.4) will be given in Appendix

B.1. On the other hand, in practice, Ci and thus I(Ci ≥ t) are unobservable when

Di ≤ Ci and thus the equation given above is not applicable. To deal with this,

define ωi(t) = I(T ∗i ≥ t)/S(t|Zi) and one can show that E{ωi(t)|Zi(t)} = E{I(Ci ≥

t)|Zi(t)} since E{I(T ∗i ≥ t)|Zi(t)} = E{I(Ci ≥ t)|Zi(t)}S(t|Zi). By employing the

inverse probability weighting technique, this suggests that we can replace I(Ci ≥ t)

(i = 1, . . . , n) by ωi(t) and consider the zero-mean stochastic process

dMik(t; θ, γ) = Ỹik(t)dÑik(t)− ωi(t){µ0k(t) + θ′Xik(t)}eγ
′Zi(t)dΛ0k(t)

for the construction of estimating equations.

To use Mik(t; θ, γ), we need to estimate ωi(t). It is apparent that a natural estimate

is given by ω̂i(t) = I(T ∗i ≥ t)/Ŝ(t|Zi), where Ŝ(t|Zi) = exp
{
−
∫ t
0

exp{δ̂′Zi(s)}d∆̂0(s)
}

with δ̂ and ∆̂0(t) denoting the maximum partial likelihood estimate of δ and the Breslow

estimate of ∆0(t), respectively, under model (3.3). By using the same arguments as

those used in Lin et al. (2001) and Sun et al. (2005), one can show that for large n,

ω̂i(t) always exists and is unique and consistent. Let M∗
ik(t; θ, γ) denote Mik(t; θ, γ)

with ωi(t) replaced by ω̂i(t). Then if γ and Λ0k are known, it is natural to estimate

µ0k(t) and θ by the following estimating equations

n∑
i=1

dM∗
ik(t; θ, γ) = 0, 0 ≤ t ≤ τ, (3.5)

and

Uθ(θ; γ) =
n∑
i=1

K∑
k=1

∫ τ

0

W (t)Xik(t)dM
∗
ik(t; θ, γ) = 0 , (3.6)

where W (t) is a possibly data-dependent weight function.
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Of course, in reality, γ and Λ0k are unknown. On the other hand, they can be

readily estimated based on the recurrent event data on the N∗ik(t)’s. Specifically, define

S(j)(t; γ) = n−1
n∑
i=1

ω̂i(t)Zi(t)
jeγ

′Zi(t) , j = 0, 1 ,

and Z̄(t; γ) = S(1)(t; γ)/S(0)(t; γ). Then the consistent estimates, denoted by γ̂ and

Λ̂0k(t), of γ and Λ0k(t) can be obtained by solving the following two estimating equa-

tions

Uγ(γ) =
n∑
i=1

K∑
k=1

∫ τ

0

{
Zi(t)− Z̄(t; γ)

}
dÑik(t) = 0 (3.7)

and
n∑
i=1

[
dÑik(t)− ω̂i(t)eγ

′Zi(t)dΛ0k(t)
]

= 0 .

In particular, given γ, Λ̂0k(t) has the closed form

Λ̂0k(t; γ) =

∫ t

0

dN̄k(u)

S(0)(u; γ)
, (3.8)

where N̄k(t) = n−1
∑n

i=1 Ñik(t).

Let θ̂ and µ̂0k denote the estimates of θ and µ0k(t) given by equations (3.5) and

(3.6) with all unknowns replaced by their estimates. Then one can easily show that

θ̂ =
1

n
Â−1θ

n∑
i=1

K∑
k=1

∫ τ

0

W (t)
{
Xik(t)− X̄k(t; γ̂)

}
Ỹik(t)dÑik(t)

and

µ̂0k(t; θ̂, γ̂) =

∑n
i=1 Ỹik(t)dÑik(t)∑n

i=1 ω̂i(t)e
γ̂′Zi(t)dΛ0k(t)

− θ̂′X̄k(t; γ̂),
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where

Âθ = n−1
n∑
i=1

K∑
k=1

∫ τ

0

W (t)
{
Xik(t)− X̄k(t; γ̂)

}⊗2
ω̂i(t)e

γ̂′Zi(t)dΛ̂0k(t, γ̂)

and

X̄k(t; γ̂) =

∑n
i=1Xik(t)ω̂i(t)e

γ̂′Zi(t)∑n
i=1 ω̂i(t)e

γ̂′Zi(t)
.

That is, they have closed forms, which makes their determination quite easy.

To present the asymptotic properties of θ̂, define Nd
i (t) = I(Di ≤ t,Di ≤ Ci),

Md
i (t) = Nd

i (t)−
∫ t

0

I(T ∗i ≥ s)eδ
′
0Zi(s)d∆0(s) ,

M̂d
i (t) = Nd

i (t)−
∫ t

0

I(T ∗i ≥ s)eδ̂
′Zi(s)d∆̂0(s),

M̂∗
ik(t) = Ñik(t)−

∫ t

0

ω̂i(s)e
γ̂′Zi(s)dΛ̂0k(s; γ̂),

and

M̂ik(t) =

∫ t

0

Ỹik(s)dÑik(s)−
∫ t

0

ω̂i(s){µ̂0k(s; θ̂, γ̂) + θ̂′Xik(s)}eγ̂
′Zi(s)dΛ̂0k(s; γ̂).

Also define

Υ̂k(t; θ, γ) = n−1
n∑
i=1

{
Xik(t)− X̄k(t; γ)

}
ω̂i(t)

{
µ̂0k(t; θ, γ) + θ′Xik(t)

}
eγ
′Zi(t),

R(j)(t; δ) = n−1
n∑
i=1

I(T ∗i ≥ t)Zi(t)
⊗jeδ

′Zi(t), j = 0, 1, 2,
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Ĥ(t;Zi) =

∫ t

0

eδ̂
′Zi(u)

{
Zi(u)− R(1)(t; δ̂)

R(0)(t; δ̂)

}
d∆̂0(u; δ̂),

and

Ω̂δ = n−1
n∑
i=1

∫ τ

0

[
R(2)(t; δ̂)

R(0)(t; δ̂)
−
{R(1)(t; δ̂)

R(0)(t; δ̂)

}⊗2]
dNd

i (t) .

In the above, r(j)(t) = limn→∞R
(j)(t; δ0) with j = 0, 1, 2 and v⊗2 = vv′ for a vector

v. Let θ0 denote the true value of θ and s(0)(t), s(1)(t), x̄k(t), Υk(t) and Ωδ the limits

of S(0)(t; γ0), S
(1)(t; γ0), X̄k(t; γ0), Υ̂k(t; θ0, γ0) and Ω̂δ, respectively. Define z̄(t) =

s(1)(t)/s(0)(t). The following theorem gives the consistency and asymptotical normality

of θ̂.

Theorem 3.1. Assume that the conditions (C1)-(C5) described in Appendix B.2 hold.

Then θ̂ is a consistent estimator of θ0 and n1/2(θ̂ − θ0) converges in distribution to a

zero-mean normal random vector whose covariance matrix can be consistently estimated

by Â−1θ Σ̂Â−1θ , where Σ̂ = n−1
∑n

i=1(ξ̂1i − ξ̂2i − ξ̂3i)⊗2,

ξ̂1i =
K∑
k=1

∫ τ

0

W (t){Xik(t)− X̄k(t; γ̂)}dM̂ik(t),

ξ̂2i =
K∑
k=1

∫ τ

0

[
W (t)Υ̂k(t; θ̂, γ̂)

S(0)(t; γ̂)
+ ÂγΩ̂

−1
γ {Zi(t)− Z̄(t; γ̂)}

]
dM̂∗

ik(t),

ξ̂3i =
K∑
k=1

∫ τ

0

[
ÂγΩ̂

−1
γ Q̂1k

{
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

}
+ ÂγΩ̂

−1
γ

Q̂2k(t)

R(0)(t; δ̂)
+

B̂1k(t)

R(0)(t; δ̂)

+B̂2k

{
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

}]
dM̂d

i (t),

Âγ = n−1
n∑
i=1

K∑
k=1

∫ τ

0

W (t)ω̂i(t)e
γ̂′Zi(t){µ̂0k(t; θ̂, γ̂) + θ̂′Xik(t)}{Xik(t)− X̄k(t; γ̂)}
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×{Zi(t)− Z̄(t; γ̂)}′dΛ̂0k(t; γ̂),

Ω̂γ = n−1
n∑
i=1

K∑
k=1

∫ τ

0

{Zi(t)− Z̄(t; γ̂)}⊗2dÑik(t),

B̂1k(t) = n−1
n∑
i=1

eδ̂
′Zi(t)

∫ τ

0

I(t < s)B̂∗ik(s)dΛ̂0k(s; γ̂),

B̂2k = n−1
n∑
i=1

∫ τ

0

B̂∗ik(t)Ĥ(t;Zi)
′Ω̂−1δ dΛ̂0k(t; γ̂),

B̂∗ik(t) = W (t)ω̂i(t)e
γ̂′Zi(t)

[{
Xik(t)−X̄k(t; γ̂)

}{
µ̂0k(t; θ̂, γ̂)+ θ̂′Xik(t)

}
− Υ̂k(t; θ̂, γ̂)

S(0)(t; γ̂)

]
,

Q̂1k = n−1
n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t; γ̂)

}
Q̂3(t;Zi)

′Ω̂−1δ dM̂∗
ik(t),

Q̂2k(t) = n−1
n∑
i=1

eδ̂
′Zi(t)

∫ τ

0

{
Zi(u)− Z̄(u; γ̂)

}
I(u ≥ t)dM̂∗

ik(u),

and

Q̂3(t;Zi) =

∫ t

0

{
Zi(u)− Z̄(u; γ̂)

}
eδ̂
′Zi(u)d∆̂0(u; δ̂) .

For a given data set, one question of practical interest is to assess the adequacy of

the models described in Section 3.2. Note that for both models (3.2) and (3.3), one

observes complete data and several procedures have been developed in the literature for

checking their goodness-of-fits (Lin, Wei, & Ying, 1993; Lin, et al., 2000; Schoenfeld,

1982). So in the following, we will focus on model (3.1) and develop an omnibus

goodness-of-fit procedure.

Let the M̂ik(t)’s be defined as above. Note that they represent the differences

between the observed and model-predicted numbers of the kth type events by time t.
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Thus it is natural to construct a test statistic based on them. Now we consider the

following cumulative sums of residual process

F(t, x) = n−1/2
n∑
i=1

K∑
k=1

∫ t

0

I(Xik(u) ≤ x)dM̂ik(u),

where the event {Xik(u) ≤ x} means that each components of Xik(u) is not greater

than the respective component of x. We will show in Appendix B.3 that the null

distribution of F(t, x) can be approximated by a zero-mean Gaussian process

F̂(t, x) = n−1/2
n∑
i=1

{
η̂1i(t, x)− Φ̂γ(t, x)Ω−1γ η̂2i − Φ̂θ(t, x)Â−1θ η̂3i

}
Gi . (3.9)

In the above, G1, . . . , Gn are independent standard normal variables independent of

the observed data,

η̂1i(t, x) =
K∑
k=1

∫ t

0

{I(Xik(u) ≤ x)− Êk(u, x)}dM̂ik(u)−
∫ t

0

Υ̃k(u, x)

S(0)(u; γ̂)
dM̂∗

ik(u)

−
∫ t

0

{
B̃1k(u, t, x)

R(0)(u; δ̂)
+ B̃2k(t, x)

(
Zi(u)− R(1)(u; δ̂)

R(0)(u; δ̂)

)}
dM̂d

i (u) ,

η̂2i =
K∑
k=1

∫ τ

0

[
Q̂1k

{
Zi(t)−

R(1)(t; δ̂)

R(0)(t; δ̂)

}
+

Q̂2k(t)

R(0)(t; δ̂)

]
dM̂d

i (t)+

∫ τ

0

{
Zi(t)−Z̄(t; γ̂)

}
dM̂∗

ik(t) ,

η̂3i =
K∑
k=1

ξ̂1i − ξ̂2i − ξ̂3i,

Υ̃k(s, x) = n−1
n∑
i=1

{
I(Xik(s) ≤ x)− Êk(s, x)

}
ω̂i(s){µ̂0k(s) + θ̂′Xik(s)}eγ̂

′Zi(s),

B̃1k(u, t, x) = n−1
n∑
i=1

eδ̂
′Zi(u)

∫ t

0

I(u < s)B̃∗ik(s, x)dΛ̂0k(s),
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B̃2k(t, x) = n−1
n∑
i=1

∫ t

0

B̃∗ik(s, x)Ĥ(s;Zi)
′Ω̂−1δ dΛ̂0k(s),

B̃∗ik(s, x) = ω̂i(s)e
γ̂′Zi(s)

[{
I(Xik(s) ≤ x)− Êk(s, x)

}
{µ̂0k(s) + θ̂′Xik(s)} −

Υ̃k(s;x)

S(0)(s; γ̂)

]
,

Φ̂γ(t, x) = n−1
n∑
i=1

K∑
k=1

∫ t

0

[
I(Xik(u) ≤ x)− Êk(u, x)

][
Zi(u)− Z̄(u; γ̂)

]′
ω̂i(u)

×{µ̂0k(u) + θ̂′Xik(u)}eγ̂′Zi(u)dΛ̂0k(u; γ̂),

Φ̂θ(t, x) = n−1
n∑
i=1

K∑
k=1

∫ t

0

I(Xik(u) ≤ x)
{
Xik(u)− X̄k(t; γ̂)

}′
ω̂i(u)eγ̂

′Zi(u)dΛ̂0k(u, γ̂),

and

Êk(u, x) =

∑n
i=1 I(Xik(u) ≤ x)ω̂i(u)eγ̂

′Zi(u)∑n
i=1 ω̂i(u)eγ̂′Zi(u)

.

Based on Equation (3.9), it is easy to see that one could obtain a large number of

realizations from F̂(t, x) by repeatedly generating the standard normal random sample

{G1, . . . , Gn} while fixing the observation data. Thus to check the validity of model

(3.2), one can plot these realizations of F̂(t, x) along with the observed F(t, x) and

examine any unusual pattern of F(t, x) compared to the realizations. Furthermore,

a formal lack-of-fit test can be constructed based on the statistic sup0≤t≤τ,x |F(t, x)|

and the corresponding p-value can be obtained by comparing the observed value of

sup0≤t≤τ,x |F(t, x)| to a large number of realizations from sup0≤t≤τ,x |F̂(t, x)|.

3.4 A Numerical Study

To examine the finite-sample behavior of the estimation procedure proposed in

the previous section, an extensive simulation study was conducted. In the study,
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we considered the situation of K = 2 and the covariate Zi was assumed to follow

the Bernoulli distribution with probability equal to 0.5. The censoring time Ci was

generated from the uniform distribution U(τ/4, τ) with τ being 1 as the follow-up

time. A latent variable vi was used to simulate the dependence between the recur-

rent event process and the terminal event, and vi was assumed to follow the positive

stable distribution with Laplace transformation L(s) = E(e−svi) = exp(−sρ) (Luon-

ga and Doray, 2009). We took ρ = 0.7 or ρ = 1.0. Given Zi and vi, we assumed

the terminal event Di has a hazard function λ(t|Zi, vi) = 0.2vi exp{0.5Zi}. It could

be easily shown that S(t|Zi) = exp{−
(
0.2te0.5Zi

)ρ}. For the observation process, it

was assumed that given Zi and T ∗i , Ñik(t) was a nonhomogeneous Poisson process

on [0, τ ] with E{dÑik(t)|Zi, T ∗i } = S−1(t|Zi)e0.5ZidΛ0k(t)I(T ∗i ≥ t) for k=1,2. It also

implies E{dN∗ik(t)|Z} = e0.5ZidΛ0k(t). Accordingly, the number of observations mik

followed the Poisson distribution with mean
∫ T ∗i
0

S−1(t|Zi)e0.5ZidΛ0k(t), and the obser-

vation times (tik,1, . . . , tik,mik
) were taken as the order statistics of a random sample of

size mik from the uniform distribution over (0, T ∗i ). For the generation of panel counts

Y ∗ik(tik,j), given mik and (tik,1, . . . , tik,mik
), we assumed that

Y ∗ik(tik,j) = Y ∗∗ik (tik,1) + Y ∗∗ik (tik,2 − tik,1) + · · ·+ Y ∗∗ik (tik,j − tik,j−1)

with tik,0 = 0, j = 1, . . . ,mik. In the above, given vi, Zi and Fik,j, it was assumed that

Y ∗∗ik (s) and Y ∗∗ik (t− s) were the mixed Poisson distribution with the conditional mean

functions

Qiφ(vi, s)
(
µ0k(s) + β′Zi + α′hk(Fik,s)

)
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and

Qiφ(vi, t)
(
µ0k(t) + β′Zi + α′hk(Fik,t)

)
−Qiφ(vi, s)

(
µ0k(s) + β′Zi + α′hk(Fik,s)

)
,

respectively, where Qi was sampled independently from a gamma distribution with

mean 1 and variance 0.1, and

φ(vi, t) = e−vi exp{(1 + 0.2t e0.5Zi)ρ − (0.2t e0.5Zi)ρ} .

One can show that E{Qiφ(vi, t)|Z,Fikt, D ≥ t} = 1. The results reported below are

based on 500 replications and with the sample size n = 200 or 300.

Table 3.1 presents the results obtained for estimation of β and α based on the

simulated data with the true values of (β, α) being equal to (0, 0) (0.5, 0), (0, 0.1) or

(0.5, 0.1), µ01(t) = µ02(t) = t, Λ01(t) = Λ02(t) = 10t, h1(Fi1,t) = Ni1(t−), h2(Fi2,t) =

Ni2(t−) and W (t) = 1. The results include the estimated biases (BIAS) given by the

averages of the estimators minus their true values, the sampling standard errors (SSE),

the averages of the estimated standard errors (SEE), and the 95% empirical coverage

probabilities (CP). They suggest that the proposed approach seems to perform well.

Specifically, they indicate that the proposed estimators seem to be unbiased and there

is a good agreement between the estimated and empirical standard errors. Also the

coverage probabilities are reasonable and consistent with the nominal levels and as

expected, the estimated standard errors became smaller as the sample size increased.

In addition to that discussed in Table 3.1, we investigated many other set-ups. For

example, the results given in Table 3.2 were obtained under the same set-up as in Table

3.1 except that µ01(t) =
√
t, µ02(t) = t, Λ01(t) = 8t, Λ02(t) = 12t. Table 3.3 considered

56



the same setup as in Table 3.2 expect that h1(Fi1,t) = Ni1(t−), h2(Fi2,t) = Ni2(t−)−

Ni2(t − 0.5), while in Table 3.4, we employed h1(Fi1,t) = Ni1(t−) − Ni1(t − 0.75),

h2(Fi2,t) = Ni2(t−)−Ni2(t− 0.75), µ01(t) = µ02(t) = exp(t2), Λ01(t) = Λ02(t) = 8t. It

can be seen that all tables gave similar conclusions as those from Table 3.1.

Note that in the proposed methodology, we assume that the observation process

Ñik(t) is a non-homogeneous Poisson process and it is known that sometimes this may

not hold. To investigate the robustness of the proposed estimation procedure to this

assumption, we considered some situations where this Poisson assumption does not

hold. For example, Table 3.5 presents the results obtained under the same set-up as

in Table 3.2 except that E{dN∗ik(t)|Z} = Q′i e
0.5ZidΛ0k(t) with Q′i generated from a

gamma distribution with mean 1 and variance 0.01. One can see that they are similar

to those given in Table 3.2. That is, the proposed procedure seems to still perform

well.

3.5 Discussion and Concluding Remarks

Regression analysis of panel count data has been studied by many authors in the

literature when there is no terminal event. However, in many medical longitudinal

follow-up studies, there exist terminal events that stop permanently the further oc-

currence of the recurrent events of interest and make the analysis of panel count data

more challenging. For the problem, we proposed an additive mean model and for

estimation of regression parameters, the estimating equation approach and the in-

verse survival probability weighting technique were used. Both finite and asymptotic

properties of the resulting estimators were established, and in addition, a lack-of-fit
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test was also provided for assessing the adequacy of the model. Numerical results

showed that the proposed procedures work well for practical situations. In the p-

resence of a terminal event, the models proposed in this chapter are of more clinical

interest to some extent because they directly account for the covariate effects on the

frequency of recurrent events among survivals without modeling the recurrent even-

t process after the terminal events or the correlation between the rates of recurrent

and terminal events. In fact, the proposed estimation procedure is a joint analysis

of the survival probability of the terminal event and the recurrent event rate among

surviving subjects. This can be seen more clearly when the mean is expressed as

E{Y ∗(t)|Z(t),Ft} =
∫ t
0
S(u|Z)E{dY ∗(u)|Z(u),Fu, D ≥ u}. If a treatment reduces

disease recurrences and death simultaneously or reduces disease recurrences but has no

significant impact on survival, then the treatment is clearly preferred. However, if the

treatment reduces disease recurrences but increases mortality, then it is more subtle to

make a choice, and a marginal rate model is preferable.

One complication in the analysis of panel count data with terminal events is that

the censoring time is not always observable. To deal with this, we applied the in-

verse probability of survival weighting technique that models the survival distribution.

Instead one may use other weighting techniques too such as the inverse probability

of censoring weighting (Ghosh and Lin, 2002). One advantage of using the survival

weighting is that the survival distribution itself is usually of interest in clinical studies,

but not censoring distribution. For the problem considered here, we have focused on

the additive mean model, which has the advantage of giving direct estimation of ab-

solute differences, the quantities often interested by clinicians. As alternatives, many

other models could be used such as the multiplicative model or the semiparametric
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transformation model.
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Chapter 4

NONPARAMETRIC
COMPARISON FOR PANEL
COUNT DATA WITH UNEQUAL
OBSERVATION PROCESSES

4.1 Introduction

In many medical studies producing panel count data, including the skin cancer s-

tudy described in Section 1.1.2.3, treatment comparison is one of the most asked ques-

tions. The majority of existing test procedures assume identical observation processes

across different treatment groups or involve the mean function estimators in their test

statistics as discussed in Section 1.3. For example, Thall and Lachin (1988) suggested

transforming the problem to a multivariate comparison one by grouping panel coun-

t data to multivariate data. Sun and Kalbflieisch (1993), Sun and Fang (2003) and

Park, Sun and Zhao (2007) developed model-free approaches employing the isotonic
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regression estimator (IRE) for the mean function. Zhang (2006) and Balakrishnan and

Zhao (2011) used nonparametric maximum pseudo-likelihood estimator (NPMPLE)

for multi-sample comparisons. Also Balakrishnan and Zhao (2009, 2010) employed the

nonparametric maximum likelihood estimator (NPMLE) and proposed new classes of

test statistcs. All the approaches above require an identical observation process across

all study subjects, which may not be feasible in practice. For this, Zhao and Sun (2011)

proposed a test procedure which allows for unequal observation processes. However,

their test statistics also involved the estimation of the mean function and employed

IRE.

Although the mean function estimators IRE, NPMPLE or NPMLE perform well in

general, we noticed that they may be biased when the data are sparsely distributed. For

example, in the skin cancer data described above, we noticed that the observed data are

very sparsely distributed over all 1159 observation times made by 291 study subjects

over the study. In this chapter, we propose a new class of nonparametric test procedures

that allow different observation processes without employing the estimation of the mean

function. The new test procedure is motivated by those used for recurrent event data.

Unlike most test procedures listed above, the test statistics are constructed as contrasts

of the sample means of the integrated weighted responses from the underlying recurrent

event processes. It will be seen that the proposed test procedure performs well and

especially for sparsely distributed data. The remainder of the chapter is organized as

follows. Section 4.2 first considers the comparison problem for univariate panel count

data and presents a class of test procedures. Section 4.3 generalizes the test procedure

to multivariate panel count data. For both cases, the asymptotic normality of the

test statistics is established. Section 4.4 investigates the finite sample properties of
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the proposed test procedures through simulation studies and Section 4.5 applies the

methodology to the skin cancer study described above. Some concluding remarks are

provided in Section 4.6.

4.2 Nonparametric Comparison for Univariate Pan-

el Count Data

We now consider m groups of independent subjects in a recurrent event study

with total sample size n. For each subject, only panel count data are available, and

the observation processes are different for subjects from different groups. Specifically,

assume that there are nl subjects in the lth group, l = 1, . . . ,m, and let Sl denote

the set of indices for subjects in group l, where
∑m

l=1 nl = n. Suppose Zi is a group

indicator of subject i (i = 1, . . . , n) which can always be labeled as a scalar variable.

Without loss of generality, let Zi = 0 for i ∈ Sm (the control group). Also let Yi(t)

be the counting process representing the total number of recurrent event occurrences

up to time t from subject i. In addition, let Ci denote the censoring or follow-up

time of subject i. It censors the observation times Ti,1 < Ti,2 < . . . in the sense

that the event process Yi(·) is observed only at jumps of Ni(t) = N∗i (Ci ∧ t), where

N∗i (t) =
∑∞

j=1(Ti,j ≤ t) and a∧b denotes the minimum of a and b. Let mi represent the

total number of observation times for subject i and τ be the longest follow-up time. To

account for the fact that subjects from different groups may have different observation

processes, we assume that N∗i (t) depends on the treatment indicator Zi through the

rate model

E{dN∗i (t)|Zi} = exp(γZi)λ0(t)dt, (4.1)
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where λ0(·) is an unspecified continuous function and γ is an unknown regression

parameter. Model (4.1) implies that Zi has a multiplicative effect on the number of

observations, and γ = 0 means that the observation processes are the same. Similar

proportional models have been considered by many authors including Lin et al. (2000),

Sun and Wei (2000), Lin et al. (2001), Sun et al. (2005) and Li et al. (2010) among

others. The adequacy of model (4.1) is relatively easy to check since the observation

process provides complete data.

Unlike the observation process, the recurrent event process associated with pan-

el count data is not continuously observed and thus its model adequacy is generally

difficult to check. In this chapter, we focus on a treatment comparison procedure

which is model-free of the recurrent event process with panel count data while mod-

el (4.1) holds. Suppose that Ci is independent of Zi, and given Zi, Ci is indepen-

dent of {Yi(t), N∗i (t)}. Also the observation process is assumed to be noninforma-

tive, that is, Yi(t) and N∗i (t) are independent given Zi. The observed data consist of

{Ni(t), Zi, Ci, Yi(Ti,1), . . . , Yi(Ti,mi
); 0 ≤ t, Ti,mi

≤ Ci, i = 1, . . . , n}.

Our aim is to test the hypothesis

H0 : E{Yi(t)|Zi} is independent of Zi,

that is, the occurrence rate of the recurrent event of interest is the same for different

treatment groups. Let µ(t) denote the common mean function of Yi(t) under hypothesis

H0. Then under model (4.1) and the null hypothesis H0, we have

E
{ mi∑

j=1

Yi(Ti,j)|Zi
}

= E
{∫ τ

0

Yi(t)dNi(t)|Zi
}

=

∫ τ

0

µ(t)G(t) exp(γZi)λ0(t)dt,
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where G(t) = P (Ci ≥ t). Then

E
{∫ τ

0

Yi(t)dNi(t)

exp(γZi)
|Zi
}

=

∫ τ

0

µ(t)G(t)λ0(t)dt.

Define

Ỹi(t; γ) =

∫ t

0

Yi(u)dNi(u)

exp(γZi)
. (4.2)

Then H0 can be formulated as

H̃0 : E{Ỹi(t; γ)|Zi} is independent of Zi.

Note that Ỹi(t; γ) represents an integral of weighted responses from the underlying

recurrent event process on subject i and is continuous on time t. Motivated by the

idea commonly used for recurrent event data (Cook, Lawless and Nadeau (1996); Ghosh

and Lin (2000); Wang and Chiang (2002)), we propose the following test statistic

φ(γ̂) = n
1
2

m∑
l=1

∫ τ

0

W (t)Kldµ̂l(t; γ̂). (4.3)

In the above, W (t) is a predictable weighting process, γ̂ represents an estimator of γ,

K1, . . . , Km are a set of coefficients such that
∑m

l=1Kl = 0, and

µ̂l(t; γ̂) =
1

nl

∑
i∈Sl

∫ t

0

dỸi(u; γ̂), l = 1, . . . ,m (4.4)

is the sample mean of Ỹi(t; γ̂).

The test statistic φ(γ̂) represents a contrast of the sample means of the integrat-

ed weighted responses from the underlying recurrent event processes. The choice of
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K1, . . . , Km depends on the comparison problem of interest and determines the inter-

pretation of the contrast. To estimate γ, we can use the recurrent event data on the

counting process N∗i (t), and in this case, according to Lin et al. (2000), γ can be

consistently estimated by the unique solution to the estimating equation

U(γ) = n−1/2
n∑
i=1

∫ τ

0

{
Zi −

∑n
j=1 I(t ≤ Cj) exp(γZj)Zj∑n
j=1 I(t ≤ Cj) exp(γZj)

}
dNi(t) = 0. (4.5)

We show in Appendix C that under regularity conditions (C1) to (C5), φ(γ̂) follows

an asymptotic normal distribution with mean 0 and variance that can be consistently

estimated by σ̂2
φ. Therefore, a test of the hypothesis H0 can be performed using φ(γ̂)/σ̂φ

based on the standard normal distribution.

4.3 Nonparametric Comparison for Multivariate Pan-

el Count Data

Now suppose that there exist p (p > 1) types of recurrent events while model (4.1)

still holds. Following the notation above, at each observation time, one observes

Yi(t) = (Yi,1(t), . . . , Yi,p(t))
′ with Yi,k(t) representing the total number of the kth type

of recurrent event occurrences up to time t from subject i, k = 1, . . . , p. Then the null

hypothesis is

H∗0 : E{Yi(t)|Zi} is independent of Zi,

which can be formulated as

H̃∗0 : E{Ỹi,k(t; γ)|Zi} is independent of Zi,
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where

Ỹi,k(t; γ) =

∫ t

0

Yi(u)dNi(u)

exp(γZi)
, k = 1, . . . , p. (4.6)

This motivates the following test statistic for the hypothesis H̃∗0

φ∗(γ̂) = n
1
2

m∑
l=1

∫ τ

0

W (t)Kldµ̂
∗
l (t; γ̂), (4.7)

where W (t), γ̂, K1, . . . , Km are defined in the same way as for univariate cases, and

µ̂∗l (t; γ̂) =
1

nl

∑
i∈Sl

∫ t

0

dỸ ∗i (u; γ̂), and Ỹ ∗i (t; γ̂) =

p∑
k=1

Ỹi,k(t; γ̂), l = 1, . . . ,m. (4.8)

By using the similar arguments given in Appendix C for univariate cases, one can

show that φ∗(γ̂) is asymptotically normal with mean 0 and the variance that can be

consistently estimated by

σ̂∗2φ =
m∑
l=1

H∗l (γ̂)Γ̂∗lH
∗
l (γ̂)′,

In the above,

H∗l (γ̂) = (Kl

√
n

nl

√
nl
n
A∗(γ̂)B−1(γ̂)),

A∗(γ) = −
m−1∑
l=1

√
n

nl

∑
i∈Sl

p∑
k=1

∫ τ

0

W (t)Kl
ZiYi,k(t)dNi(t)

exp(γZi)
,

Γ̂∗l = n−1l
∑
i∈Sl

(
â∗i
b̂i

)
(â∗i b̂i), â

∗
i =

∫ τ

0

W (t){dỸ ∗i (t; γ̂)− dµ̂∗l (t; γ̂)}.

and B and b̂i are given in Appendix C same as for univariate cases.

Therefore, a test of the hypothesis H0 can be carried out by using the statistic
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φ∗(γ̂)/σ̂∗φ based on the standard normal distribution.

4.4 A Simulation Study

An extensive simulation study was conducted to assess the finite-sample properties

of the test procedures described in Sections 4.2 and 4.3. In the study, we focused on

the two-sample comparison problem with m = 2. Let Zi = 1 for i ∈ S1 (the treatment

group) and Zi = 0 for i ∈ S2 (the control group). The follow-up time Ci was uniform on

(0.8τ, τ) with τ = 20, i = 1, . . . , n. We then generated the total number of observation

times mi from a Poisson distribution under model (4.1) with the mean Λi(Ci),

Λi(t) = exp(γZi)

∫ t

0

λ0(u)du, (4.9)

and various choices of λ0(·). The observation times Tij’s were taken to be the order s-

tatistics ofmi random variables from a discrete uniform distribution over (0, 0.1, 0.2, . . . , Ci).

The panel count data Yi(t) = (Yi,1(t), . . . , Yi,p(t)) (i = 1, . . . , n) were assumed to

follow non-homogeneous mixed Poisson processes. Specifically, for given Tij’s and a

latent variable Qi, we generated Yi(Ti,j) based on

Yi,k(Ti,j) = Y ∗∗i,k (Ti,1) + Y ∗∗i,k (Ti,2 − Ti,1) + ...+ Y ∗∗i,k (Ti,j − Ti,j−1)

for j = 1, . . . ,mi, k = 1, . . . , p. In the above, all Y ∗∗i,k were assumed to follow Poisson

distributions with the mean functions defined as, givenQi and some baseline cumulative
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mean function µk(t),

E{Y ∗∗i,k (Ti,1)|Qi } = Qi µk(Ti,1) exp(βZi),

E{Y ∗∗i,k (Ti,j − Ti,j−1)|Qi } = Qi {µk(Ti,j)− µk(Ti,j−1) } exp(βZi) (4.10)

for j = 2, ...,mi. Here β is a parameter representing the treatment difference and the

Qi’s were generated from a Gamma distribution with mean 1 and variance 0.1. In the

following, all results reported below are based on W (t) = 1 and 1000 replications with

the significance level α = 0.05.

Table 4.1 shows the estimated test sizes and powers with Λi(t) = 0.75t exp(γZi) for

(4.9) and univariate panel count data. In this case, the test statistic has the form

φ(γ̂) = n
1
2

∫ τ

0

W (t){dµ̂1(t; γ̂)− dµ̂2(t; γ̂)}.

with K1 = 1 and K2 = −1, and the variance estimate

σ̂2
φ = H1(γ̂)Γ̂1H1(γ̂)′ +H2(γ̂)Γ̂2H2(γ̂)′,

where H1(γ̂) = (
√

n
n1

√
n1

n
A1(γ̂)B−1(γ̂)) and H2(γ̂) = (−

√
n
n2

√
n2

n
A1(γ̂)B−1(γ̂)).

When γ = 0, both groups have the same observation process. Otherwise, the two

observation processes are different. We took µ1(t) = 0.25t and µ1(t) = log(1 + t)

for (4.10). It shows that the test sizes are all close to the nominal level 0.05. Also as

expected, the powers increase when the sample size increases. We also considered other

set-ups for univariate panel count data such as different values of γ or other forms of

µ1(·) and obtained similar results.
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Table 4.2 presents the test results on bivariate panel count data (p = 2). In this

case, the test statistic has the form

φ∗(γ̂) = n
1
2

∫ τ

0

W (t){dµ̂∗1(t; γ̂)− dµ̂∗2(t; γ̂)}.

when K1 = 1 and K2 = −1, and the variance estimate

σ̂∗2φ = H∗1 (γ̂)Γ̂∗1H
∗
1 (γ̂)′ +H∗2 (γ̂)Γ̂∗2H

∗
2 (γ̂)′,

with

H∗1 (γ̂) = (

√
n

nl

√
n1

n
A∗(γ̂)B−1(γ̂)), H∗2 (γ̂) = (−

√
n

n2

√
n2

n
A∗(γ̂)B−1(γ̂)).

As with univariate cases, the proposed procedure also seems to perform well. Be-

sides, comparing the same set-up when µ1(t) = 0.25t in Tables 4.1 and 4.2, one may

find that the test powers given by a bivariate analysis could be higher than those by

a univariate analysis when β 6= 0. Similar comparisons can also be found for other

set-ups between the univariate and multivariate cases.

For the analysis of univariate panel count data, we also investigated the perfor-

mances of the proposed test procedure in comparison with the procedure given in

Zhao and Sun (2011). The results are shown by Table 4.3. For both test procedures

we took Λi(t) = 0.75t exp(γZi) and µ1(t) = log(1 + t), with Ci or Ti,j generated in

special schemes. We focused on the test sizes given by both procedures for varied

follow-up times and different settings of data. Scheme 1 represents a regular setting of

data, where Ti,j followed a discrete uniform distribution on (0, 0.1, 0.2, . . . , Ci) like for
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all the above tables, and Ci followed a uniform distribution on (0.5τ , τ). Schemes 2

and 3 represent settings of sparsely distributed data with differently varied follow-up

times. For both of those schemes, Ti,j’s followed a discrete uniform distribution on

(0, 0.01, 0.02, . . . , Ci), with Ci being uniform on (0.5τ , τ) or (0.8τ , τ). We found that

the test sizes given by Zhao and Sun (2011) seem to be inflated a little under Scheme 1,

especially when sample sizes are small. However, results from Schemes 2 and 3 indicate

that the test procedure in Zhao and Sun (2011) could overestimate the test sizes a lot

when the data are sparsely distributed. One explanation might be related to the IRE

Λ̂
(l)
n (t) employed for the mean function. When there are too few observations at some

observation times, Λ̂
(l)
n (t) at those observation times may not perform well. Extreme-

ly, if in one group the responses are time non-decreasing with only one observation

made at each observation time, then the procedure in Zhao and Sun (2011) will not be

applicable since their variance estimator σ̂2
l will be 0 on denominator.

4.5 An Application

In this section, we applied the proposed test procedure described in the previous

sections to the data from the skin cancer chemoprevention trial introduced in Section

1.1.2.3. In the study, 291 patients were randomly assigned to the placebo or the

DFMO group. Subjects were scheduled to be assessed every six months, but the actual

observation times varied a lot. Figure 4.1 shows the distribution of the numbers of

observations made on all the 1159 observation times. Of the observation times, 70.6%

of them had 1 or 2 observations and 92.3% of them had observations 5 or less. In

other words, the observed data are very sparsely distributed. As implied by Table 4.3
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of the simulation study, one may not wish to employ the mean function estimators for

analyzing such data since their performances may be highly affected.

For the analysis of DFMO treatment in reducing the occurrences of the two types

of related non-melanoma skin cancers: basal cell carcinoma (BCC) and squamous cell

carcinoma (SCC), we will focus on the 290 patients with at least one observation by

applying the proposed test procedure. Among the patients, 143 were from the DFMO

group (Zi = 1, i = 1, . . . , 143), and others were from the placebo group (Zi = 0,

i = 144, . . . , 290). We took the last observation times as each follow-up time Ci and

the largest follow-up time τ = 1879. To check whether model (4.1) is appropriate for

the study, Figure 4.2 shows the Aalen-Breslow-type estimates of the mean numbers of

observation times N(t). It appears that the two group means are quite proportional

to each other. The results are given by Table 4.4 with W (t) = 1.

We first did two univariate analyses on the occurrences of BCC and SCC separately.

Let Yi(t) denote the total number of the occurrences of BCC or SCC up to time t on

subject i, then treatment comparisons can be conducted by applying the proposed test

procedure described in Section 4.2. With the significance level 0.05, we concluded that

DFMO treatment was significantly effective on reducing the occurrences of BCC, but

not on SCC.

Next, we did a bivariate analysis on both BCC and SCC jointly. Let Yi,1(t) and

Yi,2(t) denote the total numbers of the occurrences of BCC and SCC, respectively, up

to time t on subject i, and apply the proposed test procedure described in Section 4.3.

With respect to the overall treatment effectiveness on reducing the non-melanoma skin

cancers, the results indicate there was no enough evidence to conclude a significant

effect of the 0.5g/m2/day PO DFMO. In comparison, the semiparametric regression
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model proposed by Li et al. (2011) also lead to a similar conclusion.

4.6 Discussions

This chapter proposed a class of test procedures for comparing panel count data

with different observation processes. The proposed test statistics were constructed as

contrasts of the sample means of the integrated weighted responses from the under-

lying recurrent event processes. In comparison, the test statistics in Zhao and Sun

(2011) were formulated as the sums of the differences between the integrated weighted

mean function estimators and their averages with IRE employed. As mentioned above,

although the procedure in Zhao and Sun (2011) is more general, its performance may

be affected due to much varied follow-up times or too few observations at some ob-

servation times. The proposed test procedure has the advantage that it works well in

such cases.

In this chapter, for the observation process N∗i (t), the proportional rates model

assumption was used to account for the fact that it may depend on the treatment

indicator. In practice, however, one could modelN∗i (t) differently. Here we considered a

constant proportional factor in model (4.1). In reality, a treatment may play differently

on the observation process over time, so one may wish to consider time-dependent γ

or Zi(·), both of which are currently under investigation.
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Chapter 5

FUTURE RESEARCH

In this chapter, we discuss some potential directions of future research for semi-

parametric and nonparametric analysis of panel count data following Chapters 2 to

4.

5.1 Analyzing Panel Count Data with Dependent

Observation Processes and a Terminal Event

There exist several directions for future research on the problem discussed here.

One of the model assumptions is that conditioning on Z(t), the time of censoring C

is independent of {N∗(t), Y ∗(t), D}. However, this may not be always true in reality

since Ci may also be informative about the event process and death. It would be useful

to extend the model to cases with informative censoring.

When building up estimating equations for the analysis, we also assumed that given

Zi and T ∗i , Ñi(t) was a nonhomogeneous Poisson process on [0, τ ]. Instead, we could
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generalize the estimation method considered here to observation processes without the

Poisson assumption.

In models (2.1) to (2.3), we considered multiplicative covariate effects. Instead, it

is possible that the covariates effects are in other forms. Meanwhile, with respect to

the correlated relationships considered here, we employed a function of filtration on the

observation process in (2.2). One may consider similar terms regarding the recurrent

event process as well and incorporate them into (2.1) and (2.3). For example, for the

terminal event model (2.3), it is possible that the total number of recurrent events can

increase the intensity of the terminal event.

A practical problem with model (2.2) involves the choice of h(·). Regarding the

transformation variable of g(·), h(·) can take many forms representing various depen-

dent structures between Y ∗(t) and N∗(t). However, for a given g(·), h(·) cannot be

arbitrary since the time non-decreasing property of E{Y ∗(t)|Z(t),Ft, D ≥ t} must be

theoretically satisfied. One may use a more general form instead for the transformation

variable or extend g(·) to be functionals.

5.2 Semiparametric Analysis of Multivariate Panel

Count Data with a Terminal Event

Similar as the univariate panel count data analysis discussed above, for multivariate

panel count data analysis, one can make the semiparametric regression models more

practical, for example, by allowing informative censoring for the response variable

or considering other counting processes for possible observation processes. Although

the simulation results show the proposed procedure is robust to the nonhomogeneous
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Poisson assumption on the observation processes, one may wish to use other models

that can be applied more generally.

For the recurrent event processes, we considered an additive model in (3.1). By

doing this, the effects from covariate or a dependent observation process are straight-

forward to interpret. Apart from this, however, one may easily extend (3.1) to other

forms. For example, transformation models considered for the univariate panel count

data analysis in Chapter 2 can also be employed here.

One hidden model assumption with model (3.1) is that Z(t) plays the same for all

recurrent events of interest because a common β is employed. A similar assumption also

exists for the observation process with model (3.2). Although theoretically such models

make sense, practically they may not. For example, if a covariate affects oppositely on

two types of recurrent events, results lead by model (3.1) may be hard to interpret.

5.3 Nonparametric Comparison for Panel Count Da-

ta with Unequal Observation Processes

There exist several directions for future work. For the observation process N∗i (t),

the proportional rates model assumption was used to account for the fact that it

may depend on the treatment indicator. In practice, however, one could model N∗i (t)

differently. Here we considered a constant proportional factor in model (4.1). In

reality, a treatment may play differently on the observation process over time, so one

may wish to consider time-dependent γ(·) or Zi(·), both of which are currently under

investigation.

In the analysis, we assumed noninformative N∗i (·) with respect to Yi(·) and inde-
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pendent identically distributed Ci for simplicity. In realistic cases, any of the above

assumptions could be violated. Especially, a way to account for possible dependence

between N∗i (·) and Yi(·) into nonparametric comparison is a challenging direction for

future work.
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Appendix A

A.1 Proof of Theorem 2.1

To derive the asymptotic properties of the proposed estimator θ̂, we need the following

regularity conditions.

(C1). {Ñi(·), Ỹi(·), T ∗i , I(Di ≤ Ci), Zi(·)}ni=1 are independent and identically distribut-

ed.

(C2). There exists a τ > 0 such that P (T ∗i ≥ τ) > 0.

(C3). Both Ñi(τ) and Ỹi(τ) (i = 1, . . . , n) are bounded.

(C4). W (t) and Zi(·), i = 1, . . . , n, have bounded variations and W (t) converges

almost surely to a deterministic function w(t) uniformly in t ∈ [0, τ ].

(C5). Aθ = E
[ ∫ τ

0
w(t)

{
X1(t)−ex(t)

}⊗2
ω1(t)ġ{µ0(t)e

θ′0X1(t)}eθ′0X1(t)+γ′0Z1(t)µ0(t)dΛ0(t)
]
,

Ωδ and Ωγ = E
[ ∫ τ

0

{
Z1(t) − z̄(t)

}⊗2
I(C ≥ t|Z1)e

γ′0Z1(t)dΛ0(t)
]

are all positive

definite.
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Define

U1(θ; γ) =
n∑
i=1

∫ τ

0

W (t)Xi(t)
[
Ỹi(t)dÑi(t)− ω̂i(t)g

{
µ̂0(t; θ, γ)eθ

′Xi(t)
}
eγ
′Zi(t)dΛ̂0(t, γ)

]
,

and note that µ̂0(t; θ, γ) satisfies

n∑
i=1

[
Ỹi(t)dÑi(t)− ω̂i(t)g

{
µ̂0(t; θ, γ)eθ

′Xi(t)
}
eγ
′Zi(t)dΛ̂0(t; γ)

]
= 0. (A.1)

Let Âθ(θ) = −n−1∂U1(θ, γ̂)/∂θ′, Âγ(γ) = −n−1∂U1(θ0, γ)/∂γ′, Aθ = limn→∞ Âθ(θ0)

and Aγ = limn→∞ Âγ(γ0). Then the Taylor series expansions of U1(θ̂; γ̂) at (θ0; γ̂)

and (θ0, γ0) yield n1/2(θ̂ − θ0) = A−1θ n−1/2U1(θ0; γ̂) + op(1) = A−1θ

{
n−1/2U1(θ0; γ0) −

Aγn
1/2(γ̂ − γ0)

}
+ op(1). To prove Theorem 2.1, we will need the following four steps

(i)-(iv).

(i) First, using some derivation operation to U1(θ; γ) and (A.1), we can get

Âθ(θ) = n−1
n∑
i=1

∫ τ

0

W (t)
{
Xi(t)− ÊX(t; θ, γ̂)

}⊗2
pxi (t)µ̂0(t; θ, γ̂)dΛ̂0(t, γ̂),

where pxi (t) = ω̂i(t)ġ{µ̂0(t; θ, γ̂)eθ
′Xi(t)}eθ′Xi(t)+γ̂

′Zi(t).

(ii) The use of the Taylor expansion to U1(θ0; γ0) yields

U1(θ0; γ0) =
n∑
i=1

∫ τ

0

W (t)Xi(t)

[
Ỹi(t)dÑi(t)− ω̂i(t)

[
g
{
µ0(t)e

θ′0Xi(t)
}

+ġ
{
µ∗(t)eθ

′
0Xi(t)

}
eθ
′
0Xi(t)

{
µ̂0(t; θ0, γ0)− µ0(t)

}]
eγ
′
0Zi(t)dΛ̂0(t, γ0)

]
,
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where µ∗ lies on the line segment between µ0(t) and µ̂0(t; θ0, γ0). This and the linear

expansion of (A.1) at θ = θ0 and γ = γ0 give us

{
µ̂0(t; θ0, γ0)−µ0(t)

}
dΛ̂0(t, γ0) =

∑n
i=1

[
Ỹi(t)dÑi(t)− ω̂i(t)g{µ0(t)e

θ′0Xi(t)}eγ′0Zi(t)dΛ̂0(t; γ0)
]

∑n
i=1 ω̂i(t)ġ{µ∗∗(t)eθ

′
0Xi(t)}eθ′0Xi(t)+γ′0Zi(t)

,

where µ∗∗ lies between µ0(t) and µ̂0(t; θ0, γ0). Hence we have

n−1/2U1(θ0; γ0) = n−1/2
n∑
i=1

∫ τ

0

W (t)
{
Xi(t)− ex(t)

}
di + op(1),

where

di = dMi(t) + {ωi(t)− ω̂i(t)}g
{
µ0(t)e

θ′0Xi(t)
}
eγ
′
0Zi(t)dΛ0(t)

−ω̂i(t)g
{
µ0(t)e

θ′0Xi(t)
}
eγ
′
0Zi(t)

{
dΛ̂0(t, γ0)− dΛ0(t)

}
.

Then it follows from Equation (2.7) that

dΛ̂0(t, γ0)− dΛ0(t) = n−1
n∑
i=1

[dM∗
i (t)

s(0)(t)
+
ωi(t)− ω̂i(t)

s(0)(t)
eγ
′
0Zi(t)dΛ0(t)

]
+ op(n

−1/2).

According to the functional delta method (van der Vaart & Wellner, 1996, Theorem

3.9.4, page 374) and the martingale central limit theorem, we have

ω̂i(t)− ωi(t) = n−1ωi(t)
[ n∑
j=1

∫ t

0

eδ
′
0Zi(u)dMd

j (u)

r(0)(u)

+H(t;Zi)
′Ω−1δ

n∑
j=1

∫ τ

0

{
Zj(u)− r(1)(u)

r(0)(u)

}
dMd

j (u)
]

+ op(n
−1/2).
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This gives

n−1/2U1(θ0; γ0) = n−1/2
n∑
i=1

[ ∫ τ

0

W (t)
{
Xi(t)−ex(t)

}
dMi(t)−

∫ τ

0

W (t)Υ(t)

s(0)(t)
dM∗

i (t)
]

−n−1/2
n∑
i=1

∫ τ

0

[
B1(u)

r(0)(u)
+B2

{
Zi(u)− r(1)(u)

r(0)(u)

}]
dMd

i (u) + op(1),

where

B∗i (t) = W (t)ωi(t)e
γ′0Zi(t)

[{
Xi(t)− ex(t)

}
g
{
µ0(t)e

θ′0Xi(t)
}
− Υ(t)

s(0)(t)

]
,

B1(u) = n−1
∑n

i=1 e
δ′0Zi(u)

∫ τ
0
I(u < t)B∗i (t)dΛ0(t), and

B2 = n−1
∑n

i=1

∫ τ
0
B∗i (t)H(t;Zi)

′Ω−1δ dΛ0(t).

(iii) By the Taylor series expansions and differentiation of (A.1) with respect to γ,

we can obtain

Âγ(γ) = n−1
n∑
i=1

∫ τ

0

W (t)
[
Xi(t)− ÊX(t; θ0, γ)

]
ω̂i(t)g{µ̂0(t; θ0, γ)eθ

′
0Xi(t)}

×eγ′0Zi(t)
[
Zi(t)− Z̄(t; γ)

]′
dΛ̂0(t; γ) .

(iv) According to Equation (2.6) and the arguments similar as Ghosh & Lin (2002),

one can show that

n1/2{γ̂ − γ0} = Ω−1γ n−1/2
n∑
i=1

[ ∫ τ

0

{
Q1

(
Zi(t)−

r(1)(t)

r(0)(t)

)
+
Q2(t)

r(0)(t)

}
dMd

i (t)

+

∫ τ

0

{
Zi(t)− z̄(t)

}
dM∗

i (t)

]
+ op(1). (A.2)
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where Ωγ = E
[ ∫ τ

0

{
Z1(t)− z̄(t)

}⊗2
I(C ≥ t|Z1)e

γ′0Z1(t)dΛ0(t)
]
, Q1 = limn→∞ n

−1∑n
i=1∫ τ

0

{
Zi(t)−Z̄(t; γ)

}
Q3(t;Zi)

′Ω−1δ dM∗
i (t), Q2(t) = limn→∞ n

−1∑n
i=1

∫ τ
0

{
Zi(u)−Z̄(u; γ)

}
eδ
′Zi(t)I(u ≥ t)dM∗

i (u), and Q3(t;Zi) =
∫ t
0

{
Zi(u)− r(1)(u)

r(0)(u)

}
eδ
′Zi(u)d∆0(u).

Combining the results in steps (i)-(iv), we have

U1(θ0; γ̂) =
n∑
i=1

[ ∫ τ

0

W (t)
{
Xi(t)−ex(t)

}
dMi(t)−

∫ τ

0

W (t)Υ(t)

s(0)(t)
dM∗

i (t)

]
−

n∑
i=1

∫ τ

0

[
B1(t)

r(0)(t)

+B2

{
Zi(t)−

r(1)(t)

r(0)(t)

}]
dMd

i (t)− AγΩ−1γ
n∑
i=1

[ ∫ τ

0

{
Q1

(
Zi(t)−

r(1)(t)

r(0)(t)

)
+
Q2(t)

r(0)(t)

}
dMd

i (t) +

∫ τ

0

{
Zi(t)− z̄(t)

}
dM∗

i (t)

]
+ op(n

1/2).

Then it follows from the multivariate central limit theorem that the conclusion holds.

A.2 Proof of the Null Distribution of F(t, x) in Chap-

ter 2

Let V (θ̂, γ̂) =
∑n

i=1

∫ t
0
I(Xi(u) ≤ x)dM̂i(u; θ̂, γ̂). Then the Taylor series expansion

gives

F(t, x; θ̂, γ̂) = n−1/2V (θ0, γ0) +
∂V (θ0, γ0)

n∂γ′
√
n(γ̂ − γ0) +

∂V (θ0, γ̂)

n∂θ′
√
n(θ̂ − θ0) + op(1).

Using the arguments and algebra manipulations similar to those in Appendix A.1, one

can show that V (θ0, γ0) =
∑n

i=1 η1i(t, x). Note that one can estimate n−1∂V (θ0, γ0)/∂γ
′

and n−1∂V (θ0, γ̂)/∂θ′ by −Φ̂γ(t, x) and −Φ̂θ(t, x), respectively. It then follows from
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(A.2) that
√
n(γ̂ − γ0) = Ω−1γ n−1/2

n∑
i=1

η2i + op(1) .

Also it follows from Theorem 2.1 that

√
n(θ̂ − θ0) = A−1θ n−1/2

n∑
i=1

(ξ1i − ξ2i − ξ3i) + op(1) .

This indicates that F(t, x; θ̂, γ̂) can be expressed as a sum of i.i.d. zero-mean terms for

fixed t and thus by the multivariate central limit theorem, F(t, x) converges in finite-

dimensional distributions to a zero-mean Gaussian process. Since F(t, x) is tight based

on the empirical process theory, F(t, x) converges weakly to a zero-mean Gaussian

process that can be approximated by the zero-mean Gaussian process F̂(t, x) given by

Equation (2.8).
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Appendix B

B.1 Derivation of Equation (3.4)

E{Ỹik(t)dÑik(t)}

= E
{
E
{
I(Ci ≥ t)Y ∗i (t)dN∗i (t)|Zi(t),Fit

}}
= E

{
E
{
I(Ci ≥ t)|Zi(t)

}
E
{
Y ∗ik(t)dN

∗
ik(t)|Zi(t),Fikt

}}
= E

{
E
{
I(Ci ≥ t)|Zi(t)

}
E
{
Y ∗ik(t)|Di ≥ t, Zi(t),Fikt

}
E
{
dN∗ik(t)|Zi(t)

}}
= E

{
E{I(Ci ≥ t)g{µ0k(t)e

θ′Xi(t)}eγ′Zi(t)dΛ0(t)|Zi(t),Fit}
}

= E
{
I(Ci ≥ t){µ0k(t) + θ′Xik(t)}eγ

′Zi(t)dΛ0k(t)
}
,

where the third equality holds because

E
{
Y ∗ik(t)dN

∗
ik(t)|Zi(t),Fit

}
= E

{
E
{
Y ∗i (t)dN∗i (t)|Di, Zi(t),Fit

}}
= E

{
Y ∗ik(t)dN

∗
ik(t)|Di ≥ t, Zi(t),Fikt

}
P (Di ≥ t|Zi(t)) + 0× P (Di < t|Zi(t))

= E
{
Y ∗ik(t)|Di ≥ t, Zi(t),Fikt

}
E
{
dN∗ik(t)|Di ≥ t, Zi(t)

}
P (Di ≥ t|Zi(t))

= E
{
Y ∗ik(t)|Di ≥ t, Zi(t),Fikt

}
E
{
dN∗ik(t)|Zi(t)

}
.
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B.2 Proof of Theorem 3.1

To derive the asymptotical properties of the proposed estimator θ̂, we need the following

regularity conditions for i = 1, . . . , n.

(C1). {Ñik(·), Ỹik(·), T ∗i , I(Di ≤ Ci), Zi(·)} are independent and identically distribut-

ed.

(C2). There exists a τ > 0 such that P (T ∗i ≥ τ) > 0.

(C3). Both Ñik(τ) and Ỹik(τ) are bounded.

(C4). W (t) and Zi(·) have bounded variations and W (t) converges almost surely to

a deterministic function w(t) uniformly in t ∈ [0, τ ].

(C5). Aθ =
∑K

k=1E
[ ∫ τ

0
w(t)

{
X1k(t) − x̄k(t)

}⊗2
ω1(t)e

γ′0Z1(t)dΛ0k(t)
]
, Ωδ and Ωγ =∑K

k=1E
[ ∫ τ

0

{
Z1(t)− z̄(t)

}⊗2
dÑ1k(t)

]
are all positive definite.

Define

U1(θ; γ) =
n∑
i=1

K∑
k=1

∫ τ

0

W (t)Xik(t)
[
Ỹik(t)dÑik(t)−ω̂i(t)

{
µ̂0k(t; θ, γ)+θ′Xik(t)

}
eγ
′Zi(t)dΛ̂0k(t; γ)

]
,

and note that µ̂0k(t; θ, γ) satisfies

n∑
i=1

[
Ỹik(t)dÑik(t)− ω̂i(t)

{
µ̂0k(t; θ, γ) + θ′Xik(t)

}
eγ
′Zi(t)dΛ̂0k(t; γ)

]
= 0. (B.1)

Let Âθ = −n−1∂U1(θ, γ̂)/∂θ′, Âγ(γ) = −n−1∂U1(θ0, γ)/∂γ′, Aθ = limn→∞ Âθ and

Aγ = limn→∞ Âγ(γ0). Taylor expansions of U1(θ̂; γ̂) at (θ0; γ̂) and U1(θ0; γ̂) at (θ0, γ0)

yields n1/2(θ̂−θ0) = A−1θ n−1/2U1(θ0; γ̂) = A−1θ

{
n−1/2U1(θ0; γ0)−Aγn1/2(γ̂−γ0)

}
+op(1).
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(1) First, using some derivation operation to U1(θ; γ) and (B.1), we can get

Âθ = n−1
n∑
i=1

K∑
k=1

∫ τ

0

W (t)
{
Xik(t)− X̄k(t; γ̂)

}⊗2
ω̂i(t)e

γ̂′Zi(t)dΛ̂0k(t, γ̂).

(2) Taylor expansion to U1(θ0; γ0) yields

U1(θ0; γ0) =
n∑
i=1

K∑
k=1

∫ τ

0

W (t)Xik(t)

[
Ỹik(t)dÑik(t)− ω̂i(t)eγ

′
0Zi(t)

×
(
µ0k(t) + θ′0Xik(t) + µ̂0k(t; θ0, γ0)− µ0k(t)

)
dΛ̂0k(t, γ0)

]
.

From the linear expansion of (B.1) with θ = θ0 and γ = γ0, we have

{
µ̂0k(t; θ0, γ0)− µ0k(t)

}
dΛ̂0k(t, γ0)

=

∑n
i=1

[
Ỹik(t)dÑik(t)− ω̂i(t){µ0k(t) + θ′0Xik(t)}eγ

′
0Zi(t)dΛ̂0k(t; γ0)

]
∑n

i=1 ω̂i(t)e
γ′0Zi(t)

.

Hence, n−1/2U1(θ0; γ0) = n−1/2
∑n

i=1

∫ τ
0
W (t)

{
Xik(t) − x̄k(t)

}
dik + op(1), where dik =

dMik(t) +
{
ωi(t) − ω̂i(t)

}{
µ0k(t) + θ′0Xik(t)

}
eγ
′
0Zi(t)dΛ0k(t) − ω̂i(t)

{
µ0k(t) + θ′0Xik(t)

}
eγ
′
0Zi(t)

{
dΛ̂0k(t, γ0)− dΛ0k(t)

}
. Then it follows from (3.8) that

dΛ̂0k(t, γ0)− dΛ0k(t) = n−1
n∑
i=1

[dM∗
ik(t)

s(0)(t)
+
ωi(t)− ω̂i(t)

s(0)(t)
eγ
′
0Zi(t)dΛ0k(t)

]
+ op(n

−1/2).

According to the functional delta method (van der Vaart and Wellner, 1996, The-

orem 3.9.4, page 374) and the martingale central limit theorem, we have

ω̂i(t)− ωi(t) = n−1ωi(t)
[ n∑
j=1

∫ t

0

eδ
′
0Zi(u)dMd

j (u)

r(0)(u)
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+H(t;Zi)
′Ω−1δ

n∑
j=1

∫ τ

0

{
Zj(u)− r(1)(u)

r(0)(u)

}
dMd

j (u)
]

+ op(n
−1/2).

Then, we obtain that

n−1/2U1(θ0; γ0) = n−1/2
K∑
k=1

n∑
i=1

[ ∫ τ

0

W (t)
{
Xik(t)−x̄k(t)

}
dMik(t)−

∫ τ

0

W (t)Υk(t)

s(0)(t)
dM∗

ik(t)
]

−n−1/2
n∑
i=1

∫ τ

0

[
B1k(u)

r(0)(u)
+B2k

{
Zi(u)− r(1)(u)

r(0)(u)

}]
dMd

i (u) + op(1),

whereB∗ik(t) = W (t)ωi(t)e
γ′0Zi(t)

[{
Xik(t)−x̄k(t)

}{
µ0k(t)+θ

′
0Xik(t)

}
−Υk(t)

s(0)(t)

]
, B1k(u) =

n−1
∑n

i=1 e
δ′0Zi(u)

∫ τ
0
I(u < t)B∗ik(t)dΛ0k(t), andB2k = n−1

∑n
i=1

∫ τ
0
B∗ik(t)H(t;Zi)

′Ω−1δ dΛ0k(t).

(3) Based on some Taylor expansions and differentiation of (B.1) with respect to γ,

we have

Âγ(γ) = n−1
n∑
i=1

K∑
k=1

∫ τ

0

W (t)
{
Xik(t)− x̄k(t)

}{
Zi(t)− Z̄(t; γ)

}′
ω̂i(t)e

γ′0Zi(t)

×
{
µ̂0k(t; θ0, γ) + θ′0Xik(t)

}
dΛ̂0k(t; γ),

(4) According to equation (3.7) and arguments similar as Ghosh and Lin (2002),

we have

n1/2{γ̂ − γ0} = Ω−1γ n−1/2
n∑
i=1

K∑
k=1

[ ∫ τ

0

{
Q1k

(
Zi(t)−

r(1)(t)

r(0)(t)

)
+
Q2k(t)

r(0)(t)

}
dMd

ik(t)

+

∫ τ

0

{
Zi(t)− z̄(t)

}
dM∗

ik(t)

]
+ op(1). (B.2)
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where Ωγ =
∑K

k=1E
[ ∫ τ

0

{
Z1(t) − z̄(t)

}⊗2
dÑ1k(t)

]
, Q1k = lim

n→∞

1

n

n∑
i=1

∫ τ

0

{
Zi(t) −

Z̄(t; γ)
}
Q3(t;Zi)

′Ω−1δ dM∗
ik(t), Q2k(t) = lim

n→∞
n−1

n∑
i=1

∫ τ

0

{
Zi(u)−Z̄(u; γ)

}
eδ
′Zi(t)I(u ≥

t)dM∗
ik(u), and Q3(t;Zi) =

∫ t

0

{
Zi(u)− r(1)(u)

r(0)(u)

}
eδ
′Zi(u)d∆0(u).

Combining the results in steps (1)-(4), we have

U1(θ0; γ̂) =
n∑
i=1

K∑
k=1

[ ∫ τ

0

W (t)
{
Xik(t)−x̄k(t)

}
dMik(t)−

∫ τ

0

{W (t)Υk(t)

s(0)(t)
+AγΩ

−1
γ

(
Zi(t)−z̄(t)

)}

dM∗
ik(t)

]
−

n∑
i=1

K∑
k=1

∫ τ

0

[
B1k(t)

r(0)(t)
+B2k

{
Zi(t)−

r(1)(t)

r(0)(t)

}
+AγΩ

−1
γ

{
Q1k

(
Zi(t)−

r(1)(t)

r(0)(t)

)
+
Q2k(t)

r(0)(t)

}
dMd

i (t)

Then it follows from the multivariate central limit theorem that the conclusion

holds.

B.3 Proof of the Null Distribution of F(t, x) in Chap-

ter 3

Let V (θ̂, γ̂) =
∑n

i=1

∑K
k=1

∫ t
0
I(Xik(u) ≤ x)dM̂ik(u; θ̂, γ̂). Then the Taylor series expan-

sion gives

F(t, x; θ̂, γ̂) = n−1/2V (θ0, γ0) +
∂V (θ0, γ0)

n∂γ′
√
n(γ̂ − γ0) +

∂V (θ0, γ̂)

n∂θ′
√
n(θ̂ − θ0) + op(1).

Using the arguments and algebra manipulations similar to those in Appendix B.2, one

can show that V (θ0, γ0) =
∑n

i=1 η1i(t, x). Note that one can estimate n−1∂V (θ0, γ0)/∂γ
′

and n−1∂V (θ0, γ̂)/∂θ′ by −Φ̂γ(t, x) and −Φ̂θ(t, x), respectively. It then follows from
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(B.2) that
√
n(γ̂ − γ0) = Ω−1γ n−1/2

n∑
i=1

η2i + op(1) .

Also it follows from Theorem 3.1 that

√
n(θ̂ − θ0) = A−1θ n−1/2

n∑
i=1

(ξ1i − ξ2i − ξ3i) + op(1) .

This indicates that F(t, x; θ̂, γ̂) can be expressed as a sum of i.i.d. zero-mean terms for

fixed t and thus by the multivariate central limit theorem, F(t, x) converges in finite-

dimensional distributions to a zero-mean Gaussian process. Since F(t, x) is tight based

on the empirical process theory, F(t, x) converges weakly to a zero-mean Gaussian

process that can be approximated by the zero-mean Gaussian process F̂(t, x) given by

Equation (3.9).
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Appendix C

C.1 The Asymptotic Distribution of φ(γ̂) in Chap-

ter 4

To derive the asymptotic distribution of φ(γ̂), we need the following regularity condi-

tions:

(C1). {Ni(·), Yi(·), Ci, Zi}ni=1 are independent and identically distributed.

(C2). There exists a τ > 0 such that P (Ci ≥ τ) > 0.

(C3). Both Ni(τ) and Yi(τ) (i = 1, . . . , n) are bounded.

(C4). W (t) and Zi, i = 1, . . . , n, have bounded variations and W (t) converges almost

surely to a deterministic function w(t) uniformly in t ∈ [0, τ ].

(C5). Bγ = E
[ ∫ τ

0

{
Z1 − s(1)(t,γ0)

s(0)(t,γ0)

}2
I(C ≥ t|Z1)e

γ0Z1λ0(t)dt
]

is positive definite.
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Now consider φ(γ̂), which can be written as

φ(γ̂) =
m∑
l=1

φl(γ̂),

where

φl(γ̂) = n
1
2

∫ τ

0

W (t)Kldµ̂l(t; γ̂), l = 1, . . . ,m. (C.1)

At the true value γ0, φl(γ0), l = 1, . . . ,m are independent and all asymptotically

normal, so that φ(γ0) has mean 0 when H̃0 is true. With respect to φl(γ̂), it follows

from the definition of µ̂l(t; γ̂) that

φl(γ̂) =

√
n

nl

∑
i∈Sl

∫ τ

0

W (t)Kl
Yi(t)dNi(t)

exp(γ̂Zi)
l = 1, ...m.

Especially when l = m for the control group,

φm(γ̂) =

√
n

nm

∑
i∈Sm

∫ τ

0

W (t)KmYi(t)dNi(t) , φm,

which does not involve γ̂ since Zi = 0 for i ∈ Sm. Then we apply Taylor series expansion

to φl(γ̂) (l = 1, . . . ,m− 1) in φ(γ̂),

φl(γ̂) = φl(γ0) + Al,γB
−1
γ U(γ0).

In the above, γ0 denotes the true value of γ, Al,γ = limn→∞Al(γ0), Bγ = limn→∞B(γ0),

Al(γ) =
1√
n

∂φl(γ)

∂γ
= − 1

nl

∑
i∈Sl

∫ τ

0

W (t)Kl
ZiYi(t)dNi(t)

exp(γZi)
,
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B(γ) = − 1√
n

∂U(γ)

∂γ
=

1

n

n∑
i=1

∫ τ

0

S(2)(t, γ)S(0)(t, γ)− S2(1)(t, γ)

S2(0)(t, γ)
dNi(t),

S(r)(t, γ) =
∑n

j=1 I(t ≤ Cj) exp(γZj)Z
r
j , r = 0, 1, 2.

Also by simple manipulation and the expression of U(γ) in (4.5),

U(γ0) = n−1/2
n∑
i=1

∫ τ

0

{
Zi −

S(1)(t, γ0)

S(0)(t, γ0)

}
dMi(t; γ0),

where

dMi(t; γ0) = dNi(t)− I(t ≤ Ci) exp(γ0Zi)λ0(t)dt, i = 1, . . . , n,

are mean-zero stochastic processes under model (4.1). Then asymptotically,

φ(γ̂) =
m∑
l=1

φl(γ̂)

=
m−1∑
l=1

φl(γ0) + AγB
−1
γ U(γ0) + φm

=
√
n
(m−1∑

l=1

Kl

nl

∑
i∈Sl

ai +
Km

nm

∑
i∈Sm

ai +
1

n
AγB

−1
γ

n∑
i=1

bi

)
=

m−1∑
l=1

1
√
nl

∑
i∈Sl

(
Kl

√
n

nl
ai +

√
nl
n
AγB

−1
γ bi

)
+

1
√
nm

∑
i∈Sm

(
Km

√
n

nm
ai +

√
nm
n
AγB

−1
γ bi

)
,

(C.2)

where ai =
∫ τ
0
W (t)Yi(t)dNi(t)

exp(γ0Zi)
, and bi =

∫ τ
0

{
Zi − s(1)(t,γ0)

s(0)(t,γ0)

}
dMi(t; γ0), for i = 1, . . . , n,

Aγ = limn→∞A(γ), A(γ) =
∑m−1

l=1 Al(γ) and s(r)(t, γ0) = limn→∞ S
(r)(t, γ0), r = 0, 1.
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For univariate cases, by the multivariate central limit theorem and some arguments

similar as those in Lin et al. (2000) (Appendix A.2.), φ(γ̂) is asymptotically normal

with mean 0 and the variance that can be consistently estimated by

σ̂2
φ =

m∑
l=1

Hl(γ̂)Γ̂lHl(γ̂)′,

where Hl(γ̂) = (Kl

√
n
nl

√
nl

n
A(γ̂)B−1(γ̂)), Γ̂l = n−1l

∑
i∈Sl

(âi
b̂i

)
(âi b̂i),

âi =
∫ τ
0
W (t){dỸi(t; γ̂)− dµ̂l(t; γ̂)} and b̂i =

∫ τ
0

{
Zi − S(1)(t,γ̂)

S(0)(t,γ̂)

}
dM̂i(t; γ̂),

with

dM̂i(t; γ̂) = dNi(t)− I(t ≤ Ci) exp(γ̂Zi)dΛ̂0(t) (C.3)

and the Aalen-Breslow-type estimator for the true cumulative baseline function Λ0(t) =∫ t
0
λ0(u)du,

Λ̂0(t) =
n∑
i=1

∫ t

0

dNi(u)

S(0)(u, γ̂)
.
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Table 2.1. Results for estimation of β and α with g(t) = t and µ0(t) = t

n = 200 n = 300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS 0.0070 -0.0064 -0.0987 0.0013 0.0062 -0.0039 -0.0001 -0.0036

SEE 0.2853 0.0381 0.3178 0.0472 0.2328 0.0310 0.2727 0.0331

SSE 0.2812 0.0413 0.3191 0.0478 0.2210 0.0328 0.2746 0.0360

CP 0.942 0.924 0.950 0.944 0.964 0.924 0.946 0.926

θ = (0.5, 0)

BIAS -0.0073 -0.0041 0.0304 0.0027 0.0061 -0.0036 -0.0021 -0.0035

SEE 0.2559 0.0323 0.2856 0.0403 0.2025 0.0295 0.2396 0.0337

SSE 0.2700 0.0332 0.2907 0.0408 0.1862 0.0299 0.2419 0.0352

CP 0.932 0.943 0.960 0.920 0.960 0.950 0.956 0.922

θ = (0, 0.1)

BIAS -0.0068 -0.0062 -0.0183 -0.0063 -0.0083 -0.0028 -0.0054 -0.0063

SEE 0.2028 0.0220 0.2597 0.0324 0.1666 0.0185 0.2125 0.0269

SSE 0.2006 0.0242 0.2639 0.0369 0.1653 0.0202 0.2096 0.0295

CP 0.952 0.908 0.948 0.910 0.954 0.914 0.944 0.918

θ = (0.5, 0.1)

BIAS -0.0216 -0.0040 -0.0072 -0.0052 -0.0203 -0.0046 -0.0083 -0.0037

SEE 0.1900 0.0231 0.2421 0.0303 0.1562 0.0189 0.1994 0.0256

SSE 0.1938 0.0265 0.2357 0.0350 0.1511 0.0207 0.1812 0.0286

CP 0.934 0.906 0.948 0.900 0.952 0.910 0.956 0.912
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Table 2.2. Results for estimation of β and α with g(t) = log(t) and µ0(t) = et

n = 200 n = 300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS -0.0053 -0.0026 -0.0063 -0.0008 -0.0055 -0.0020 -0.0055 -0.0008

SEE 0.0845 0.0196 0.0927 0.0224 0.0700 0.0153 0.0776 0.0161

SSE 0.0846 0.0202 0.0916 0.0256 0.0703 0.0165 0.0749 0.0172

CP 0.962 0.930 0.964 0.914 0.958 0.910 0.960 0.928

θ = (0.5, 0)

BIAS 0.0026 -0.0034 -0.0126 -0.0019 -0.0063 -0.0025 0.0003 -0.0019

SEE 0.1182 0.0272 0.1397 0.0278 0.0964 0.0229 0.1159 0.0233

SSE 0.1176 0.0298 0.1348 0.0288 0.1028 0.0241 0.1082 0.0253

CP 0.948 0.912 0.954 0.918 0.938 0.934 0.950 0.936

θ = (0, 0.1)

BIAS -0.0076 -0.0031 -0.0066 -0.0037 -0.0032 -0.0058 -0.0033 -0.0029

SEE 0.1306 0.0364 0.1606 0.0425 0.1088 0.0307 0.1298 0.0374

SSE 0.1319 0.0391 0.1569 0.0481 0.1144 0.0329 0.1270 0.0409

CP 0.964 0.912 0.954 0.904 0.934 0.914 0.958 0.912

θ = (0.5, 0.1)

BIAS -0.0107 -0.0048 -0.0202 -0.0076 -0.0046 -0.0037 -0.0190 0.0010

SEE 0.1626 0.0403 0.1959 0.0516 0.1339 0.0336 0.1725 0.0420

SSE 0.1577 0.0414 0.1917 0.0543 0.1335 0.0350 0.1652 0.0445

CP 0.956 0.936 0.950 0.912 0.956 0.934 0.962 0.926
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Table 2.3. Estimation results with h(Fit) = Ni(t−) for the bladder tumor study

g(t) β̂1 β̂2 α̂

95% CI for β̂1 95% CI for β̂2 95% CI for α̂

p-value for β̂1 p-value for β̂2 p-value for α̂

g(t) = t -1.8955 0.2961 0.0398

(-2.6442, -1.1467) (0.1487, 0.4436) ( -0.0086, 0.0883)

< 0.001 < 0.001 0.1074

g(t) = t2 -0.9474 0.1481 0.0199

(-1.3217, -0.5731) (0.0743, 0.2218) (-0.0043, 0.0441)

< 0.001 < 0.001 0.1075

g(t) = log t -4.0501 0.8464 0.0352

(-5.9544, -2.1459 (0.2636, 1.4292) (-0.1260, 0.1964)

< 0.001 0.0044 0.6683

102



Table 2.4. Estimation results with h(Fit) = Ni(t−)−Ni(t− 6) for the bladder

tumor study

g(t) β̂1 β̂2 α̂

95% CI for β̂1 95% CI for β̂2 95% CI for α̂

p-value for β̂1 p-value for β̂2 p-value for α̂

g(t) = t -1.6750 0.2901 0.0764

(-2.3786, -0.9713) (0.1483, 0.4318) (-0.0639, 0.2165)

< 0.001 < 0.001 0.2858

g(t) = t2 -0.8373 0.1450 0.0382

(-1.1890, -0.4854) (0.0742, 0.2159) (-0.0319, 0.1083)

< 0.001 < 0.001 0.2861

g(t) = log t -4.1338 0.8492 0.2189

(-6.2092, -2.0584) (0.2780, 1.4205) (-0.0703, 0.5080)

< 0.001 0.0036 0.1379
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Table 3.1. Results for estimation of β and α with µ01(t) = µ02(t) = t,

Λ01(t) = Λ02(t) = 10t, h1(Fi1,t) = Ni1(t−), h2(Fi2,t) = Ni2(t−)

n=200 n=300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS -0.0084 -0.0024 -0.0057 0.0002 -0.0086 -0.0012 -0.0042 -0.0002

SEE 0.0629 0.0136 0.0745 0.0149 0.0523 0.0113 0.0608 0.0121

SSE 0.0596 0.0148 0.0703 0.0149 0.0500 0.0119 0.0594 0.0128

CP 0.952 0.912 0.964 0.938 0.964 0.934 0.952 0.922

θ = (0.5, 0)

BIAS -0.0025 -0.0031 -0.0017 -0.0007 0.0089 -0.0012 -0.0062 -0.0012

SEE 0.0919 0.0196 0.1159 0.0219 0.0753 0.0160 0.0945 0.0176

SSE 0.0911 0.0215 0.1057 0.0226 0.0716 0.0178 0.0887 0.0174

CP 0.946 0.904 0.952 0.94 0.964 0.912 0.96 0.942

θ = (0, 0.2)

BIAS -0.0159 -0.0046 -0.0237 -0.0011 -0.0067 -0.0040 -0.0156 -0.0002

SEE 0.1532 0.0405 0.2131 0.0527 0.1241 0.0343 0.1785 0.0452

SSE 0.1474 0.0439 0.1858 0.0539 0.1173 0.0366 0.1667 0.0455

CP 0.966 0.908 0.970 0.926 0.97 0.920 0.968 0.936

θ = (0.5, 0.2)

BIAS -0.0100 -0.0100 -0.0094 0.0023 -0.0079 -0.0050 -0.0233 -0.0007

SEE 0.1731 0.0438 0.2480 0.0582 0.1411 0.0369 0.2070 0.0492

SSE 0.1691 0.0466 0.2327 0.0627 0.1345 0.0379 0.2000 0.0526

CP 0.96 0.916 0.962 0.914 0.968 0.924 0.968 0.934
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Table 3.2. Results for estimation of β and α with µ01(t) =
√
t, µ02(t) = t,

Λ01(t) = 8t, Λ02(t) = 12t, h1(Fi1,t) = Ni1(t−), h2(Fi2,t) = Ni2(t−)

n=200 n=300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS -0.0038 -0.0017 -0.0030 -0.0015 -0.0029 -0.0014 0.0019 -0.0013

SEE 0.0742 0.0146 0.0881 0.0154 0.0611 0.0122 0.0725 0.0128

SSE 0.0740 0.0145 0.0857 0.0173 0.0610 0.0123 0.0708 0.0136

CP 0.958 0.952 0.948 0.916 0.950 0.934 0.964 0.914

θ = (0.5, 0)

BIAS 0.0040 -0.0044 -0.0120 -0.0010 0.0059 -0.0019 -0.0058 0.0002

SEE 0.1014 0.0200 0.1273 0.0220 0.0831 0.0167 0.1062 0.0184

SSE 0.1003 0.0199 0.1187 0.0239 0.0762 0.0167 0.1022 0.0201

CP 0.950 0.930 0.948 0.932 0.966 0.946 0.962 0.924

θ = (0, 0.2)

BIAS -0.0181 -0.0046 0.0125 -0.0056 -0.0130 -0.0038 -0.0073 0.0005

SEE 0.1621 0.0424 0.2335 0.0567 0.1323 0.0350 0.1934 0.0488

SSE 0.1522 0.0460 0.2260 0.0627 0.1314 0.0360 0.1853 0.0490

CP 0.972 0.924 0.964 0.922 0.956 0.936 0.958 0.940

θ = (0.5, 0.2)

BIAS -0.0072 -0.0058 -0.0158 -0.0013 0.0091 -0.0067 -0.0065 -0.0041

SEE 0.1552 0.0399 0.2266 0.0527 0.1493 0.0381 0.2195 0.0511

SSE 0.1506 0.0437 0.2179 0.0555 0.1434 0.0417 0.2007 0.0539

CP 0.962 0.93 0.974 0.942 0.964 0.916 0.970 0.938
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Table 3.3. Results for estimation of β and α with µ01(t) =
√
t, µ02(t) = t,

Λ01(t) = 8t, Λ02(t) = 12t, h1(Fi1,t) = Ni1(t−), h2(Fi2,t) = Ni2(t−)−Ni2(t− 0.5)

n=200 n=300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS -0.0026 -0.0021 -0.0022 -0.0005 0.0025 -0.0020 -0.0048 0.0003

SEE 0.0745 0.0145 0.0890 0.0157 0.0612 0.0122 0.0620 0.0120

SSE 0.0703 0.0158 0.0847 0.0167 0.0589 0.0124 0.0599 0.0124

CP 0.962 0.926 0.974 0.924 0.952 0.944 0.954 0.93

θ = (0.5, 0)

BIAS -0.0038 -0.0018 -0.0044 0.0002 -0.0020 -0.0015 -0.0021 -0.0008

SEE 0.0923 0.0195 0.1277 0.0222 0.0758 0.0163 0.0954 0.0177

SSE 0.0908 0.0213 0.1211 0.0241 0.0755 0.0165 0.0865 0.0184

CP 0.942 0.910 0.960 0.930 0.956 0.932 0.954 0.940

θ = (0, 0.2)

BIAS 0.0208 0.0002 0.0165 0.0014 0.0015 -0.0018 0.0105 -0.0002

SEE 0.1585 0.0408 0.2285 0.0527 0.1302 0.0339 0.1875 0.0445

SSE 0.1517 0.0427 0.2126 0.0574 0.1251 0.0353 0.1743 0.0479

CP 0.950 0.934 0.974 0.900 0.954 0.940 0.968 0.902

θ = (0.5, 0.2)

BIAS 0.0172 -0.0050 0.0160 0.0023 0.0100 -0.0049 -0.0050 0.0024

SEE 0.1779 0.0443 0.2610 0.0588 0.1461 0.0370 0.2151 0.0497

SSE 0.1637 0.0475 0.2456 0.0628 0.1332 0.0378 0.1917 0.0510

CP 0.966 0.922 0.968 0.922 0.964 0.938 0.970 0.932
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Table 3.4. Results for estimation of β and α with µ01(t) = µ02(t) = exp(t2),

Λ01(t) = Λ02(t) = 8t, h1(Fi1,t) = Ni1(t−)−Ni1(t− 0.75),

h2(Fi2,t) = Ni2(t−)−Ni2(t− 0.75)

n=200 n=300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS 0.0055 -0.0043 0.0060 0.0025 0.0003 -0.0069 0.0285 -0.0006

SEE 0.1501 0.0305 0.2062 0.0350 0.1223 0.0252 0.1691 0.0288

SSE 0.1398 0.0319 0.1947 0.0391 0.1142 0.0262 0.1497 0.0287

CP 0.970 0.934 0.956 0.916 0.966 0.930 0.970 0.936

θ = (−1, 0)

BIAS -0.0062 -0.0059 0.0024 -0.0063 0.0097 -0.0054 0.0033 -0.0045

SEE 0.1122 0.0190 0.1499 0.0206 0.0917 0.0154 0.1232 0.0172

SSE 0.1078 0.0190 0.1380 0.0216 0.0884 0.0153 0.1226 0.0174

CP 0.964 0.928 0.970 0.930 0.944 0.936 0.954 0.940

θ = (0, 0.05)

BIAS 0.0089 -0.0082 0.0158 -0.0049 0.0022 -0.0056 0.0046 -0.0061

SEE 0.1635 0.0359 0.2305 0.0428 0.1342 0.0303 0.1876 0.0351

SSE 0.1551 0.0377 0.2105 0.0464 0.1279 0.0326 0.1754 0.0379

CP 0.964 0.914 0.958 0.904 0.956 0.922 0.964 0.916

θ = (−1, 0.05)

BIAS -0.0041 -0.0041 0.0203 -0.0054 0.0030 -0.0050 0.0242 -0.0039

SEE 0.1276 0.0257 0.1748 0.0299 0.1047 0.0214 0.1425 0.0246

SSE 0.1204 0.0272 0.1750 0.0300 0.1015 0.0226 0.1297 0.0257

CP 0.966 0.932 0.944 0.926 0.958 0.930 0.958 0.924
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Table 3.5. Results for estimation of β and α with µ01(t) =
√
t, µ02(t) = t,

E{dNik(t)|Z} = Q′i e
0.5ZidΛ0k(t), Λ01(t) = 8t, Λ02(t) = 12t, h1(Fi1,t) = Ni1(t−),

h2(Fi2,t) = Ni2(t−)

n=200 n=300

ρ = 1 ρ = 0.7 ρ = 1 ρ = 0.7

β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂

θ = (0, 0)

BIAS -0.0098 0.0035 -0.0202 0.0040 -0.0191 0.0026 -0.0218 0.0041

SEE 0.0745 0.0147 0.0893 0.0157 0.0615 0.0122 0.0739 0.0132

SSE 0.0751 0.0159 0.0892 0.0166 0.0543 0.0127 0.0706 0.0142

CP 0.948 0.932 0.940 0.944 0.970 0.930 0.944 0.940

θ = (0.5, 0)

BIAS -0.0223 0.0052 -0.0402 0.0074 -0.0191 0.0052 -0.0214 0.0045

SEE 0.1000 0.0204 0.1269 0.0223 -0.0191 0.0169 0.1053 0.0185

SSE 0.1026 0.0220 0.1195 0.0248 0.0808 0.0170 0.1037 0.0196

CP 0.924 0.916 0.942 0.922 0.950 0.940 0.938 0.934

θ = (0, 0.2)

BIAS -0.0574 0.0165 -0.0589 0.0192 -0.0565 -0.0176 -0.0562 0.0198

SEE 0.1658 0.0444 0.2417 0.0593 0.1360 0.0370 0.1958 0.0499

SSE 0.1587 0.0501 0.2374 0.0663 0.1386 0.0391 0.1862 0.0545

CP 0.954 0.926 0.954 0.922 0.928 0.930 0.952 0.940

θ = (0.5, 0.2)

BIAS -0.0698 0.0172 -0.0696 0.0222 -0.0779 0.0202 –0.0702 0.0210

SEE 0.1824 0.0473 0.2702 0.0656 0.1512 0.0399 0.2220 0.0551

SSE 0.1724 0.0527 0.2412 0.0707 0.1322 0.0415 0.2095 0.0597

CP 0.950 0.926 0.964 0.922 0.956 0.930 0.948 0.928
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Table 4.1. Estimated sizes and powers when Λi(t) = 0.75t exp(γZi),

E{Yi,1(t)|Qi} = Qi µ1(t) exp(βZi).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 50 n1 = n2 = 100

β γ = 0 γ = 0.2 γ = 0 γ = 0.2 γ = 0 γ = 0.2 γ = 0 γ = 0.2

µ1(t) = 0.25t µ1(t) = log(1 + t)

-0.1 0.123 0.135 0.184 0.178 0.096 0.111 0.168 0.170

-0.2 0.264 0.277 0.516 0.508 0.268 0.288 0.470 0.449

-0.3 0.547 0.561 0.830 0.820 0.508 0.502 0.775 0.782

0 0.047 0.053 0.042 0.056 0.051 0.054 0.053 0.045

0.1 0.128 0.119 0.182 0.168 0.105 0.132 0.162 0.177

0.2 0.340 0.337 0.556 0.558 0.299 0.312 0.501 0.508

0.3 0.607 0.667 0.878 0.887 0.535 0.576 0.863 0.873
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Table 4.2. Estimated sizes and powers of the proposed multivariate test procedure

when Λi(t) = 0.75t exp(γZi), E{Yi,1(t)|Qi} = Qi µ1(t) exp(βZi),

E{Yi,2(t)|Qi} = Qi µ2(t) exp(βZi).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 50 n1 = n2 = 100

β γ = 0 γ = 0.2 γ = 0 γ = 0.2 γ = 0 γ = 0.2 γ = 0 γ = 0.2

µ1(t) = 0.25t,µ2(t) = 0.15t µ1(t) = µ2(t) = log(1 + t)

-0.1 0.148 0.137 0.229 0.207 0.138 0.171 0.230 0.211

-0.2 0.400 0.399 0.642 0.630 0.396 0.429 0.631 0.672

-0.3 0.690 0.698 0.927 0.943 0.726 0.710 0.932 0.939

0 0.043 0.057 0.049 0.043 0.047 0.048 0.049 0.055

0.1 0.150 0.137 0.231 0.252 0.143 0.149 0.240 0.245

0.2 0.425 0.436 0.706 0.720 0.430 0.435 0.708 0.723

0.3 0.746 0.755 0.956 0.958 0.757 0.784 0.963 0.971
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Table 4.3. Estimated sizes of the proposed test procedure and the procedure in Zhao

and Sun (2011), when Λi(t) = 0.75t exp(γZi), E{Yi,1(t)|Qi} = Qi log(1 + t) exp(βZi),

Ci and Ti,j generated in special schemes.

Proposed Zhao&Sun(2011)

β = 0 γ = 0 γ = 0.2 γ = 0 γ = 0.2

n1 = n2 = 50

Scheme 1 0.049 0.056 0.077 0.067

Scheme 2 0.054 0.046 0.219 0.228

Scheme 3 0.051 0.048 0.213 0.228

n1 = n2 = 100

Scheme 1 0.041 0.044 0.060 0.058

Scheme 2 0.052 0.042 0.142 0.152

Scheme 3 0.045 0.048 0.149 0.141

Scheme 1: The censoring time Ci followed a uniform distribution from 0.5τ to τ ; Ti,j followed a discrete uniform

distribution on (0, 0.1, 0.2, . . . , Ci).

Scheme 2: The censoring time Ci followed a uniform distribution from 0.5τ to τ ; Ti,j followed a discrete uniform

distribution on (0, 0.01, 0.02, . . . , Ci).

Scheme 3: The censoring time Ci followed a uniform distribution from 0.8τ to τ ; Ti,j followed a discrete uniform

distribution on (0, 0.01, 0.02, . . . , Ci).
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Table 4.4. p-values for the effectiveness of DFMO treatment on non-melanoma skin

cancers

Basal cell carcinoma Squamous cell carcinoma Overall

0.0231 0.583 0.0872
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Figure 4.1. Distribution of the numbers of observation times
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Figure 4.2. Estimated means of observation times for different groups
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