

ACTIVE LABELING IN DEEP LEARNING

AND ITS APPLICATION TO EMOTION

PREDICTION

A Dissertation Presented to the Faculty of the Graduate School

University of Missouri-Columbia

In Partial Fulfillment

 of the Requirements for the Degree of

Ph.D. in Computer Science

by

DAN WANG

Advisor: Dr. Yi Shang

DECEMBER 2013

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled

ACTIVE LABELING IN DEEP LEARNING AND ITS APPLICATION TO

EMOTION PREDICTION

presented by Dan Wang

a candidate for the degree of Doctor of Philosophy

and hereby certify that in their opinion it is worthy of acceptance.

Dr. Yi Shang

Dr. Wenjun Zeng

Dr. Dale Musser

Dr. Tony Han

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to show my appreciation to my advisor, Dr. Yi Shang,

for his continuous support, guidance, and encouragement throughout my PhD study and

research. His deep insights and broad knowledge constantly keep my research on the

right track. I am also impressed by his patience and tireless help. The weekly individual

and group meetings with him are my greatest pleasure. He is a supportive advisor not

only on my study and research, but also on my life and career path.

I would like to thank my committee members, Dr. Wenjun Zeng, Dr. Dale Musser,

and Dr. Tony Han for reviewing my dissertation, attending my comprehensive exam and

defense, and offering all the constructive suggestions, guidance, and comments.

Thanks to Jodette Lenser and Sandra Moore for taking care of my academic needs.

Thanks to all the faculty and staff in the Department of Computer Science at University

of Missouri, for providing me with such a nice platform.

I also want to thank all the people in our research group, especially Peng Zhuang, Qi

Qi, and Chao Fang, for their selfless help. It was fun to exchange ideas and thoughts with

these great guys. Many thanks go to Qia Wang in Dr. Zeng’s group and Liyang Rui in Dr.

Ho’s group. I will never forget the good time when we worked together as a team.

Finally, I would like to thank my parents for their support from the other side of the

Earth.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF FIGURES ... vi

LIST OF TABLES ... ix

ABSTRACT .. x

Chapter 1 Introduction ... 1

1.1 Motivations .. 1

1.2 Contributions ... 4

1.3 Outline of the Dissertation ... 5

Chapter 2 Deep Learning Background and General Knowledge....................................... 6

2.1 Background .. 6

2.2 The Building Blocks .. 9

2.2.1 Restricted Boltzmann Machine ... 9

2.2.2 Autoencoder .. 14

2.3 Unsupervised Learning Stage .. 16

2.4 Supervised Learning Stage .. 17

2.5 Deep Learning Performance Evaluation on MNIST .. 18

2.5.1 Stacked RBMs .. 18

2.5.2 Stacked Autoencoders ... 25

2.6 State of the Art on Deep Learning ... 27

Chapter 3 Meta-parameters and Data Pre-processing in Deep Learning 29

3.1 Motivation .. 29

3.2 Dimensionality Reduction by PCA and Whitening ... 30

3.3 Sleep Stage Dataset and its Features .. 32

iv

3.4 Investigation of Optimal Meta-parameters and Pre-processing Techniques 34

3.5 Experimental Results on MNIST Dataset .. 35

3.5.1 Data Pre-processing .. 35

3.5.1.1 On Raw Data .. 35

3.5.1.2 On PCA With or Without Whitening ... 36

3.5.2 Deep Learning Network Structure .. 39

3.5.2.1 Stacked RBMs on Raw Data .. 40

3.5.2.2 Stacked RBMs on PCA at Retention Rate 95% ... 41

3.5.2.3 Stacked Autoencoders on Raw Data .. 42

3.5.2.4 Stacked Autoencoders on PCA at Retention Rate 95% ... 43

3.6 Experimental Results on Sleep Stage Dataset .. 45

3.6.1 Data Pre-processing .. 45

3.6.1.1 On Raw Data .. 45

3.6.1.2 On Features .. 45

3.6.2 Deep Learning Network Structure .. 45

3.6.2.1 Stacked RBMs on Raw Data .. 45

3.6.2.2 Stacked RBMs on Features .. 47

3.6.2.3 Stacked Autoencoders on Raw Data .. 48

3.6.2.4 Stacked Autoencoders on Features .. 48

3.7 Summary .. 49

Chapter 4 Active Labeling in Deep Learning .. 51

4.1 Motivation .. 51

4.2 Related Works on Active Learning .. 53

4.3 Algorithms ... 53

4.4 Experimental Results on MNIST ... 56

4.4.1 Stacked RBMs on Raw Data ... 57

v

4.4.2 Stacked Autoencoders on Raw Data ... 61

4.4.3 Stacked Autoencoders on PCA at Retention Rate 95% .. 61

4.5 Experimental results on sleep stage dataset ... 62

4.5.1 Stacked RBMs on Raw Data ... 63

4.5.2 Stacked RBMs on Features ... 63

4.5.3 Stacked Autoencoders on Features ... 64

4.6 Summary .. 65

Chapter 5 Modeling Raw Physiological Data and Predicting Emotions with Deep Belief

Networks ... 66

5.1 Introduction .. 66

5.2 Related Works on Modeling Physiological Data and Emotion Prediction 69

5.3 Train a DBN Classifier on Physiological Data .. 70

5.4 Experimental Results ... 72

5.5 Discussion .. 77

Chapter 6 Conclusion .. 78

Reference .. 80

Publications ... 87

VITA ... 88

vi

LIST OF FIGURES

Fig. 1 An example of shallow neutral networks ... 7

Fig. 2 A DBN schema with three hidden layers. (a) The pre-training stage without labels

involved (b) The fine-tuning stage .. 8

Fig. 3 Graphical depiction of an RBM.. 10

Fig. 4 Updating an RBM with contrastive divergence (k = 1).. 13

Fig. 5 An autoencoder ... 15

Fig. 6 Learned features of the first hidden layer ... 20

Fig. 7 Learned features of the second hidden layer .. 21

Fig. 8 Learned features of the third hidden layer .. 21

Fig. 9 Learned features of the first hidden layer of sRBM ... 23

Fig. 10 Learned features of the second hidden layer of sRBM .. 23

Fig. 11 Learned features of the third hidden layer of sRBM .. 24

Fig. 12 The predication accuracy of a 784-150-150-150-10 DBN using different numbers

of unlabeled and labeled samples. The legends show the numbers of labeled samples. .. 25

Fig. 13 First hidden layer of stacked autoencoders detects edges 26

Fig. 14 Second layer of stacked autoencoders detects contours 27

Fig. 15 60-second raw data downsampled at 64Hz of sleep stage dataset. 33

Fig. 16 28 features of a subject's data. X-axis is time in seconds and y-axis shows non-

normalized values ... 34

Fig. 17 sleep stage classes of a subject. X-axis is time in seconds and y-axis is the 5

possible sleep stages ... 34

Fig. 18 weights learned by 10 softmax nodes on raw of MNIST 36

Fig. 19 PCA with or without whitening .. 38

Fig. 20 Classification accuracy of softmax regression on MNIST 38

vii

Fig. 21Training time of softmax regression on MNIST ... 39

Fig. 22 Classification accuracy of stacked RBMs of various net structures on raw of

MNIST .. 40

Fig. 23 Training time of stacked RBMs of various net structures on raw of MNIST 41

Fig. 24 Classification accuracy of stacked RBMs of various net structures on PCA95

whitened of MNIST .. 41

Fig. 25 Training time of stacked RBMs of various net structures on raw of MNIST 42

Fig. 26 Classification accuracy of stacked autoencoders of various net structures on raw

of MNIST .. 43

Fig. 27 Training time of stacked autoencoders of various net structures on raw of MNIST

... 43

Fig. 28 Classification accuracy of stacked autoencoders of various net structures on

PCA95 whitened of MNIST ... 44

Fig. 29 Training time of stacked autoencoders of various net structures on PCA95

whitened of MNIST .. 44

Fig. 30 Classification accuracy of stacked RBMs of various net structures on raw of sleep

stage dataset .. 46

Fig. 31Training time of stacked RBMs of various net structures on raw of sleep stage

dataset ... 46

Fig. 32 Classification accuracy of stacked RBMs of various net structures on features of

sleep stage dataset ... 47

Fig. 33 Training time of stacked RBMs of various net structures on features of sleep stage

dataset ... 48

Fig. 34 Classification accuracy of stacked autoencoders of various net structures on

features of sleep stage dataset ... 49

Fig. 35 Training time of stacked autoencoders of various net structures on features of

sleep stage dataset ... 49

Fig. 36 The pool-based active learning cycle (taken from [4]) ... 52

Fig. 37 Active labeling – deep learning framework ... 54

Fig. 38 The mean of classification accuracy of random labeling DBN and active labeling

DBN. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

The performances of the three AL DBNs are close, all better than that of RL DBN. 58

viii

Fig. 39 All the 200 samples picked before the 1st iteration by RL DBN (top) and AL-LC

DBN (bottom). The digits in the bottom graph look harder to recognize, indicating AL-

LC DBN does pick more challenging samples than RL DBN.. 60

Fig. 40 The comparison of classification error rates on training and validation sets with

RL-DBN and AL-DBN-LC in one iteration. AL-DBN-LC works much worse on training

and validation sets because it always picks the most challenging samples. 60

Fig. 41 The mean of classification accuracy of random labeling stacked autoencoders and

active labeling stacked autoencoders. RL and AL-LC show their error bars. Iteration 0

means only the seed set is used. .. 61

Fig. 42 The mean of classification accuracy of random labeling stacked autoencoders and

active labeling stacked autoencoders. RL and AL-LC show their error bars. Iteration 0

means only the seed set is used. .. 62

Fig. 43 The mean of classification accuracy of random labeling stacked RBMs and active

labeling stacked RBMs. RL and AL-LC show their error bars. Iteration 0 means only the

seed set is used. ... 63

Fig. 44 The mean of classification accuracy of random labeling stacked RBMs and active

labeling stacked RBMs. RL and AL-LC show their error bars. Iteration 0 means only the

seed set is used. ... 64

Fig. 45 The mean of classification accuracy of random labeling stacked autoencoders and

active labeling stacked autoencoders. RL and AL-LC show their error bars. Iteration 0

means only the seed set is used. .. 65

Fig. 46 Learned EOG features. (top) hEOG (buttom) vEOG ... 73

Fig. 47 Learned EMG features. (top) zEMG (bottom) tEMG .. 74

Fig. 48 Accuracy of DBN classification. Error bars for DBN classification accuracy on

raw data and filled dots for Gaussian naïve Bayes on features ... 75

Fig. 49 Histogram of accuracy distribution in 32 subjects ... 76

ix

LIST OF TABLES

Table 1 DBN parameters on MNIST ... 19

Table 2 Stacked autoencoders parameters on MNIST ... 26

Table 3 Summary of network structures including optimal settings as well as pre-processing

techniques on MINIST and sleep stage dataset ... 50

Table 4 DBN parameters for both random and AL schemes ... 57

Table 5 DBN parameters ... 72

x

ABSTRACT

Recent breakthroughs in deep learning have made possible the learning of deep

layered hierarchical representations of sensory input. Stacked restricted Boltzmann

machines (RBMs), also called deep belief networks (DBNs), and stacked autoencoders

are two representative deep learning methods. The key idea is greedy layer-wise

unsupervised pre-training followed by supervised fine-tuning, which can be done

efficiently and overcomes the difficulty of local minima when training all layers of a deep

neural network at once. Deep learning has been shown to achieve outstanding

performance in a number of challenging real-world applications.

Existing deep learning methods involve a large number of meta-parameters, such as

the number of hidden layers, the number of hidden nodes, the sparsity target, the initial

values of weights, the type of units, the learning rate, etc. Existing applications usually do

not explain why the decisions were made and how changes would affect performance.

Thus, it is difficult for a novice user to make good decisions for a new application in

order to achieve good performance. In addition, most of the existing works are done on

simple and clean datasets and assume a fixed set of labeled data, which is not necessarily

true for real-world applications.

 The main objectives of this dissertation are to investigate the optimal meta-

parameters of deep learning networks as well as the effects of various data pre-processing

techniques, propose a new active labeling framework for cost-effective selection of

labeled data, and apply deep learning to a real-world application – emotion prediction via

physiological sensor data, based on real-world, complex, noisy, and heterogeneous sensor

xi

data. For meta-parameters and data pre-processing techniques, this study uses the

benchmark MNIST digit recognition image dataset and a sleep-stage-recognition sensor

dataset and empirically compares the deep network’s performance with a number of

different meta-parameters and decisions, including raw data vs. pre-processed data by

Principal Component Analysis (PCA) with or without whitening, various structures in

terms of the number of layers and the number of nodes in each layer, stacked RBMs vs.

stacked autoencoders. For active labeling, a new framework for both stacked RBMs and

stacked autoencoders is proposed based on three metrics: least confidence, margin

sampling, and entropy. On the MINIST dataset, the methods outperform random labeling

consistently by a significant margin. On the other hand, the proposed active labeling

methods perform similarly to random labeling on the sleep-stage-recognition dataset due

to the noisiness and inconsistency in the data. For the application of deep learning to

emotion prediction via physiological sensor data, a software pipeline has been developed.

The system first extracts features from the raw data of four channels in an unsupervised

fashion and then builds three classifiers to classify the levels of arousal, valence, and

liking based on the learned features. The classification accuracy is 0.609, 0.512, and

0.684, respectively, which is comparable with existing methods based on expert designed

features.

1

Chapter 1

Introduction

1.1 Motivations

Shallow neural networks with an input layer, a single hidden layer, and an output

layer require more computational elements or are hard to model complex concepts and

multi-level abstractions. In contrast, multi-layer neural networks provide better

representational power and could derive more descriptive multi-level models due to their

hierarchical structures, with each higher layer representing higher-level abstraction of the

input data. Unfortunately, it is difficult to train all layers of a deep neutral network at

once [1]. With random initial weights, the learning is likely to get stuck in local minima.

The breakthrough happened in 2006, when Hinton introduced a novel way called

Deep Belief Networks (DBNs) to train multi-layer neural networks to learn features from

unlabeled data [2]. A DBN trains a multi-layer neural network in a greedy fashion, each

layer being a restricted Boltzmann machine (RBM) [3]. The trained weights and biases in

each layer can be thought of as the features or filters learned from the input data. Then

the weights and biases act as the initial values for the supervised fine-tuning using

backpropogation. In short, a DBN discovers features on its own and does semi-supervised

learning by modeling unlabeled data first in an unsupervised way and then incorporates

labels in a supervised fashion.

2

A similar approach to the above mentioned stacked RBMs was introduced by Bengio

[1] using stacked autoencoders instead of stacked RBMs. Each autoencoder is a one-

hidden-layer neural network with the same number of nodes in the input and output

layers, which tries to learn an approximation to the identity function by applying regular

backpropagation. The hidden layer with fewer units (or with a sparsity term) is a

compressed representation of the input data, thus discovering interesting structure about

the data. An autoencoder serves as a building block for deep neural networks similar to

an RBM. The supervised fine-tuning stage could also be applied to stacked autoencoders

by incorporating a softmax on top to train a classifier.

One issue with current applications on deep learning is the lack of explanations about

how to achieve a large number of meta-parameters that yield good results. Firstly, the

authors usually fail to present the meta-parameters tuning process in their literature,

particularly, the number of hidden layers and the number of hidden nodes. Thus, it is

difficult for novice users to replicate the similar results on different problems. Secondly,

although deep learning has the ability to learn features automatically from raw data, it

may be interesting to investigate the effects of various data pre-processing techniques,

either hand engineered features or commonly used dimension reduction algorithms such

as principle component analysis (PCA) with or without whitening. Thirdly, RBMs and

autoencoders are both designed to represent input data in a compressed fashion, but

whether they perform the same in different problems remains questionable.

Another practical problem with deep learning framework is how to choose samples to

be labeled. Since the labeled data are scarce and expensive, it makes sense to choose the

most informative samples to be labeled and then deep learning fine-tunes the

3

classification models using these labeled data. The existing researches on deep learning

assume the labeled data are passive, either available there already or obtained from the

samples randomly chosen to be labeled by human experts. The former may not be

practical; the latter does not yield the best results. Suppose there is a budget on the

number of samples to be labeled. It is expected to produce better classification

performance in most cases (but the same or even worse performance on some datasets)

for an active labeling algorithm to always select the most challenging samples to be

labeled. This falls into the well-defined active learning framework [4]. However, how to

estimate which samples are more informative or more challenging remains unexplored

with deep learning.

Last, despite the power of deep learning, blindly applying it to real scenarios does not

yield satisfactory results, except on toy datasets. A pipeline of applying deep learning to

actual problems is desired, which includes raw data pre-processing, raw data selection

and division, normalization, randomization, and deep learning training and classification.

To map physiological data to emotions using deep learning could serve as a good

example to articulate the process. Physiological data is collected by sensors as a means of

human-computer interaction by monitoring, analyzing and responding to

psychophysiological activities [5]. The data types include a lot of channels, useful to

predict human’s physical activities, emotions, and even potential diseases. Since the goals

vary a lot, it is difficult to know useful features without expert’s knowledge. Deep

learning is promising to overcome the barrier by extracting useful features automatically.

Moreover, deep learning, acting as a semi-supervised machine learning algorithm, takes

advantage of scarce labeled data and abundant unlabeled data in this scenario.

4

1.2 Contributions

This dissertation makes three major contributions to the area of deep learning that are

summarized as follows.

First, I investigate the optimal meta-parameters of deep learning networks as well as

the effects of various data pre-processing techniques. This study uses the benchmark

MNIST digit recognition image dataset and a sleep-stage-recognition sensor dataset and

empirically compares the deep learning network’s performance with quite a few

combinations of settings, including raw data vs. pre-processed data by Principal

Component Analysis (PCA) with or without whitening for MNIST and hand extracted

features for the sleep stage dataset, various structures in terms of the number of layers

and the number of nodes in each layer, different building blocks including stacked RBMs

vs. stacked autoencoders. The process is presented as a guideline for future deep learning

applications to tune meta-parameters and data pre-processing.

Second, I propose a new active labeling framework for deep learning including both

stacked RBMs and stacked autoencoders based on three metrics: least confidence, margin

sampling, and entropy, for cost-effective selection of labeled data. Then I investigate the

performance of the active labeling deep learning technique in all the three metrics,

compared to a random labeling strategy, on the raw data and features of the MNIST

dataset and the sleep stage dataset.

5

Last, I develop a pipeline to apply deep learning to emotion prediction via

physiological data, based on real-world, complex, noisy, and heterogeneous sensor data.

The system first extracts features from the raw data of four channels in an unsupervised

fashion and then builds three classifiers to classify the levels of arousal, valence, and

liking based on the learned features.

1.3 Outline of the Dissertation

This dissertation is organized into the following chapters.

In Chapter 1, the motivations and the scope of the proposed research are introduced.

Chapter 2 presents the background knowledge and state-of-the-art techniques of deep

learning, and introduces two types of building blocks and their performance on a

benchmark hand written digit dataset MNIST.

In Chapter 3, deep learning is revisited to explore the optimal settings of the input

pre-processing, neural network structure, and the learning unit types.

In Chapter 4, an active labeling deep learning framework is proposed to choose the

most informative samples to be labeled. Three criteria are introduced in the active

labeling framework.

In Chapter 5, the application of DBNs on the physiological dataset DEAP [6] is

developed and its performance is evaluated.

Chapter 6 concludes the dissertation.

6

Chapter 2

Deep Learning Background and General

Knowledge

2.1 Background

An example of shallow neural networks with an input layer, a single hidden layer, and

an output layer, as shown in Fig. 1, can be trained with backpropagation for classification

or regression. Theoretically a shallow net can approximate any functions as long as it has

enough units in the hidden layer [7, 8], but the size of hidden units grows exponentially

with the input layer size [9]. So many units are needed in the hidden layer of a shallow

neural network for a representative model is because the single hidden layer is just one

step away from the input layer and the output layer, which is forced to translate the raw

data from the input layer to complex features that can be used for classification in the

output layer. Too many hidden units increase computational complexity, and even worse,

easily result in overfitting, especially when the training set size is relatively small.

In contrast, a deep network with two or more hidden layers provides better

representational power and thus obtains more descriptive models thanks to feature

sharing and abstraction. A lower layer’s features are reused by the layer above it, whereas

a higher layer represents higher-level abstraction of data. In deep nets lower layers are

relaxed to learn simple or concrete features whereas higher layers tend to represent

complex or abstract features. For example, to transform the raw input images of

7

handwritten digits into three gradually higher levels of representations, the first layer

could feature key dots, the second layer could represent lines and curves, and the features

learned by the third layer are closer to more meaningful digit parts.

Input layer

hidden layer

output layer

Fig. 1 An example of shallow neutral networks

Unfortunately, it is difficult to train deep neutral networks all layers at once [1]. With

large initial weights, the learning is likely to get stuck in local minima. With small initial

weights, the gradients are tiny, so the training takes forever to converge.

Hinton [2, 10] proposed deep belief networks (DBNs) to overcome the difficulties by

constructing multilayer restricted Boltzmann machines (RBMs) [3] and training them

layer-by-layer in a greedy fashion. Since the network consists of a stack of RBMs, it is

also called stacked RBMs. We use DBN and stacked RBMs interchangeably in this

dissertation, as opposed to stacked autoencoders to be introduced later.

The training process has two stages. The first is the pre-training stage, in which no

labels are involved and the training is done in an unsupervised way. The training starts

off with the bottom two layers to obtain features in hidden layer 1 from the input layer.

8

Then the training moves up to hidden layer 1 and layer 2, treating layer 1 as the new

input to get its features in layer 2. The greedy layer-wise training is performed until

reaching the highest hidden layer. The first stage trains a generative model as weights

between layers to capture the raw input’s features, resulting in better starting point for the

second stage than randomly assigned initial weights. The second is the fine-tuning stage.

In this stage, a new layer is put on top of the stacked RBMs of the first stage to construct

a discriminative model. The overall schema of a DBN with three hidden layers is shown

in Fig. 2.

h3

h2

h1

V

h3

h2

h1

V

labels

(a) (b)

Fig. 2 A DBN schema with three hidden layers. (a) The pre-training stage without labels involved (b) The

fine-tuning stage

A variation to the above mentioned deep learning algorithm was introduced by

Bengio[1] using stacked autoencoders. An autoencoder neural network is an

unsupervised learning algorithm trying to learn an approximation to the identity function

9

by applying regular backpropagation. The hidden layer with fewer nodes (or with a

sparsity term) than the input layer learns a compressed representation of the input data,

aiming at the same goal as a hidden layer does in stacked RBMs. To exploit stacked

autoencoders to do deep learning for a classification task, it also involves an unsupervised

pre-training stage and a supervised fine-tuning stage. In the pre-training stage, the output

of one hidden layer serves as the input for the higher hidden layer, resulting in a stacked

hierarchical structure to learn more and more abstract features. In the fine-tuning stage, a

softmax layer is added on top of the stacked autoencoders and a regular backpropagation

is applied using the learned weights and biases in the first stage as a starting point.

All in all, stacked RBMs and stacked autoencoders only differ in the unsupervised

pre-training stage, where different building blocks are used, to attempt to achieve the

same functionality.

For simplicity, this dissertation refers stacked RBMs with a softmax on top to

“stacked RBMs” or a “DBN”. The same rule applies to “stacked autoencoders”.

2.2 The Building Blocks

2.2.1 Restricted Boltzmann Machine

As the building blocks of DBNs, a restricted Boltzmann machine (RBM) [3] has a

visible layer consisting of stochastic, binary nodes as the input and a hidden output layer

consisting of stochastic, binary feature detectors as the output, connected by symmetrical

weights between nodes in different layers. RBMs have two key features. Firstly, there are

no connections between the nodes in the same layer, making tractable learning possible.

10

Second, the hidden units are conditionally independent given the visible layer thanks to

the undirected connections, so it is fast to get an unbiased sample from the posterior

distribution. A graphical depiction of an RBM is shown in Fig. 3.

j

i

hidden

visible

wij

Fig. 3 Graphical depiction of an RBM

A joint configuration of the visible and hidden nodes can be represented by an

energy function given by

 ∑ ∑ ∑ (1)

where is the energy with configuration on the visible nodes and on the hidden

nodes, is the binary state of visible node , is the binary state of hidden node , is

the weight between node and , and the bias terms are for the visible nodes and for

the hidden nodes (biases not shown in Fig. 3).

The probability of a given joint configuration depends on the energy of that joint

configuration compared to the energy of all joint configurations, specified by

 (2)

11

Concretely its probability is determined by normalizing it by a partition function , as

shown in

 (3)

 ∑
 (4)

The formula implies that the lower energy a configuration has, the higher probability

it would occur.

The summation along all the hidden units produces the probability of a configuration

of the visible units.

∑

 (5)

The binary nodes of the hidden layer are Bernoulli random variables. The probability

that node is activated, given visible layer , can be derived from (4) as

 (| ∑ (6)

 (7)

where is called the sigmoid logistic function.

The probability that node is activated, given hidden layer h, can be calculated in a

similar way as follows

12

 | ∑ (8)

It is intractable to compute the gradient of the log likelihood of directly. Therefore,

[11] proposed contrastive divergence by doing iterations of Gibbs sampling to

approximate it. Note from (8) it is easy to get an unbiased sample of the visible layer

given a hidden vector because there are no direct connections between visible units in an

RBM. The algorithm starts with a training vector on the units in the visible layer, then

uses the vector to update all the hidden units in parallel, samples from the hidden units,

and uses these samples to update all the visible units in parallel to get the reconstruction.

This process is applied (often) iterations to obtain the change to as below

 (9)

where is the average over a given size of samples when working with minibatches

(described later) at a contrastive divergence iteration and is the learning rate. The

update rule to the biases takes the similar form. Fig. 4 illustrates how to update an RBM

with the contrastive divergence with k = 1 (CD1).

The above-mentioned rule works, but a few tricks are used to accelerate the learning

process and/or prevent overfitting. The three mostly commonly used techniques are

minibatch, momentum, and weight decay [12].

13

Fig. 4 Updating an RBM with contrastive divergence (k = 1)

Minibatch is a minor variation of (9) in which is updated by taking the average

over a small batch instead of a single training vector. This produces two advantages.

Firstly minibatch works with a less noisy estimate of the gradient since it takes the

average and the outliers in the training vectors does not impact much. Secondly it allows

a matrix by matrix product instead of a vector by matrix product, which can be taken

advantage by modern GPUs or Matlab to speed up the computation. However, it is a bad

idea to make the minibatch size too large because the number of updates will decrease

accordingly, eventually resulting in inefficiency.

Momentum is used to speed up learning by simulating a ball moving on a surface. It

is an analogy to the acceleration as if were the distance and were the velocity.

Instead of using the estimated gradient to change weights directly as shown in (9), the

momentum method uses it to change the velocity of weights change.

hidden

visible i

j

i

j

t = 0 t = 1

0 jihv 1 jihv

14

 (10)

where is a hyper-parameter to control the weight given to the previous velocity.

Weight decay is a standard L2 regularization to prevent the weights from getting too

large. The updated rule is changed to

 (11)

where is the weight cost which controls how much penalty should be applied to weight

 .

Moreover, a technique called early stopping is often exploited to prevent the model

from overfitting. The root mean squared error (RMSE) between the input and its

reconstruction on validation set (if available) or training set often acts as the loss function.

Then the constant increase of the RMSE indicates the model is overfitting so the training

should stop.

2.2.2 Autoencoder

An autoencoder [13-15] is an unsupervised learning algorithm that attempts to learn

an identity function by setting the outputs to be equal to the inputs (or at least minimizing

the reconstruction error), shown in Fig. 5. When the number of nodes in the hidden layer

is larger than or equal to the number of nodes in the input/output layers, it is trivial to

learn an identity function. By placing some restrictions on the network to make it as a

regularized autoencoder, we can learn compressed representation of the input data. The

easiest way to do so is limit the number of nodes in the hidden layer to force fewer nodes

15

to represent features. Actually the discovered low-dimensional features will be very

similar to PCA. In this sense, the mapping from the input layer to the hidden layer is

called encoding and the mapping from the hidden layer to the output layer is called

decoding.

In summary, the basic autoencoder tries to find

 | |

 (12)

where x is the input, W is the weights, b is the biases, and h is the function mapping input

to output.

Input layer

hidden layer

output layer

Fig. 5 An autoencoder

The argument above does not hold when the number of hidden nodes is large. But

even when it is large, we can still apply a different kind of regularization called sparsity

on the hidden nodes, to force them to learn compressed representations. Specifically, let

16

 ̂

∑ [

]

 (13)

be the average activation of hidden unit j over the training set of size m. The objective is

to approximate the sparsity parameter p to ̂. The extra penalty term to (12) to measure

the difference between p and ̂ could be

∑

 ̂

 ̂

 (14)

where j is a hidden node, is the number of nodes in the hidden layer. The value reaches

its minimum of 0 at ̂ and blows up as ̂ approaches 0 or 1.

The overall cost function now becomes

 (∑

 ̂

 ̂

) (15)

Now we need to do a backpropagation to update W and b. The full derivation is

similar to that on an RBM.

2.3 Unsupervised Learning Stage

A single RBM or autoencoder may not be good enough to model features in real data.

Iteratively we could build another layer on top of the trained RBM or autoencoder by

treating the learned feature detectors in the hidden layer as visible input layer for the new

layer, as shown in Fig. 2(a). The unsupervised learning stage has no labels involved and

17

solely relies on unlabeled data itself. The learned weights and biases reflect the features

of the data and then will be used as the starting point for the fine-tuning supervised

learning stage.

2.4 Supervised Learning Stage

To train a deep learning network as a discriminative model, the supervised learning

stage adds a label layer and removes the links in the top to down direction, or decoding

layers called by [2], as shown in Fig. 2(b). Then the standard backpropogation is

executed. The goal is to minimize the classification errors given the labels of all or partial

samples.

Since the newly added top layer has one and only one unit that can be activated at a

time and the probabilities of turning each unit on must add up to 1, (6) for binary units

does not apply any more but it can be generalized to alternative states by a softmax

function.

∑

 (16)

where (| .

The weights and biases are initialized as the values learned in the pre-training stage,

except for those between the original top layer and the newly added top layer, which are

randomly initialized. In the first few iterations, the training tackles the randomly

initialized weights and biases between the top two layers by keeping other weights and

18

biased fixed. The reason to do this is because the initial values learned from the pre-

training are quite close to the representative features of the training data but the randomly

initialized values are far from optimal. After the first few iterations, all layers are trained

together treating the raw training data as the input and the labels as the output.

If fewer labeled samples are used in the supervised learning stage than the unlabeled

samples used in the unsupervised pre-training stage, it is a paradigm of semi-supervised

learning [16].

A validation set should be used whenever possible to avoid overfitting the model, as

done in the pre-training stage. The difference is now the validation set has labeled

samples rather than unlabeled ones.

2.5 Deep Learning Performance Evaluation on MNIST

2.5.1 Stacked RBMs

To evaluate the performance of DBNs and explore how the hyper-parameters

settings impact the performance, a few experiments have been carried out on a widely

used dataset MNIST.

The MNIST handwritten digits dataset [17] has 70,000 samples in total,

conventionally divided into a training set of 50,000 samples, a validation set of 10,000

samples, and a test set of 10,000 samples. The digits have been size-normalized and

centered in a 28 by 28 pixels image. The classes are 0 through 9. The MNIST dataset has

been broadly used to evaluate the performance of machine learning algorithms.

19

[18] provided an object-oriented matlab toolbox named DBNToolbox for working

with RBMs and DBNs. The toolbox has an abstract class NNLayer and its imeplemtation

class RBM to train a single RBM, a class DeepNN to train all layer together in the fine-

tuning stage, and a few helper functions. The experiments in this section employed the

DBNToolbox and most other experiments of my own proposed algorithms on top of the

original DBNs were written based on the toolbox.

The main metric to evaluate the performance in this work is the classification

accuracy defined below

 (17)

The same network structure 784-500-500-2000-10 as in [2] results in 0.9849

accuracy by the basic experiment, whose parameters are listed in Table 1.

Table 1 DBN parameters on MNIST

Unsupervised pre-training stage

learning rate 0.05

number of epochs 50

minibatch size 100

momentum 0.5 for the first 5 epochs, 0.9 thereafter

weight cost 0.0002

Supervised fine-tuning stage

learning rate 0.05

number of epochs 50

minibatch size 1000

number of initial epochs 5

DBNs have the ability to learn features automatically, so it would be helpful to

visualize the features learned in the example. Although[19] proposed two techniques

called activation maximization and sampling from a unit to show clearer patterns in

higher layers, they need to clamp input or somehow use the training set’s information. In

contrast, it is more likely to show the features of the model itself by simply doing a

20

weighted linear summation over a visible layer to obtain a hidden layer’s feature as done

in [20].

The figure below shows how each pixel of the input images weighs on each unit in

the first layer as an image of the same size as the input images. The weights are scaled to

[-1 1]. The unsupervised learned features of the units in the first hidden layer are

depicted in Fig. 6.

Fig. 6 Learned features of the first hidden layer

The first layer’s weights multiplied by the second layer’s produce the features

learned in the second layer in the input space, as shown in Fig. 7. The weights are scaled

to [-1 1], too.

The third layer’s features are shown in Fig. 8 by applying the same trick.

21

Fig. 7 Learned features of the second hidden layer

Fig. 8 Learned features of the third hidden layer

22

It is quite hard to tell if each layer is more abstract than the layer below. Even the

first layer does not have clearly human readable patterns. The reason is because the

regular RBM is a distributed model, so the features learned are not local or sparse. [21]

states that the sparsity regularization is important for the first layer to learn oriented edge

filters. A sparse RBM (sRBM) proposed by [20] is an algorithm to make the features

learned by RBMs sparse. This is done by adding a regularization term that penalizes a

deviation of the expected activation of the hidden units from a fixed level. The update

rule for hidden layer’s biases becomes

 (

)

 | (18)

where is a constant controlling the sparseness of the hidden units. The last term is

introduced by sRBM.

Since the original DBNToolbox does not have a sparse implementation of RBMs, I

added a protected abstract method UpdateSparcity(obj, visSamples) to NNLayer.m.

RBM.m implements the function, which is called at the end of each epoch by

NNLayer.m’s Train method. The value of can be set in RBM.m’s UpdateSparcity

function.

When , the features learned in 3 layers of sRBMs are shown as follows. The

classification accuracy is 0.9731, slightly worse than the DBN composed of regular

RBMs.

23

Fig. 9 Learned features of the first hidden layer of sRBM

Fig. 10 Learned features of the second hidden layer of sRBM

24

Fig. 11 Learned features of the third hidden layer of sRBM

The features learned by sRBM are sparser and they are more human-readable. The

first layer seems like strokes; the second layer looks like digits parts; digits and digit-like

shapes are shown in the third layer.

To demonstrate how DBNs work as a semi-supervised learning algorithm,

experiments with different numbers of unlabeled samples for pre-training and different

numbers of labeled samples for fine-tuning were performed.

Because a small number of labeled samples are used in the experiment,

DBNToolbox has a minor bug in this scenario. DeepNN’s default value for the parameter

miniBatchSize is 1000. When calculating the number of mini-batches, the program floors

it to 0 if the sampling size is less than 1000. To overcome the bug, DeepNN’s

miniBatchSize is set to a number less than or equal to the size of training samples.

25

Another caveat is when the size of samples is small the distribution of digits could be

highly unbalanced. A function was implemented to randomly sample indices for training

and validation sets and guarantee each digit has the same size in both sets. DBNToolbox

also requires in both sets there is at least one sample from each class.

A 784-150-150-150-10 DBN with 0 to 6400 unlabeled samples and 50 to 250 labeled

samples produces the result below. Each point is the average of 10 trials.

Fig. 12 The predication accuracy of a 784-150-150-150-10 DBN using different numbers of unlabeled and

labeled samples. The legends show the numbers of labeled samples.

The unlabeled samples help, especially when the labeled samples are scarce.

2.5.2 Stacked Autoencoders

The similar experiments have been conducted on the same MNIST dataset using

stacked autoencoders. The Matlab code from [22] is used as a starting point for all the

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 400 800 1600 3200 6400

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

size of unlabeled samples

150-150-150 stacked RBMs

50

100

150

200

250

26

staked autoencoders implementation. A 784-200-200-10 network with parameters listed

in Table 2 yields 0.9781 classification accuracy.

Table 2 Stacked autoencoders parameters on MNIST

Unsupervised pre-training stage

sparsity object 0.1

sparsity penalty term 3

weight decay 0.003

maximum iteration 200

Supervised fine-tuning stage

weight decay 0.003

maximum iteration 200

The learned features in the first and second hidden layers are depicted in Fig. 13 and

Fig. 14. The first layer seems to detect edges and the second layer seems to detect contours,

which are similar to the features learned by the first and third layers of stacked sRBMs as

shown in Fig. 9 and Fig. 11.

Fig. 13 First hidden layer of stacked autoencoders detects edges

27

Fig. 14 Second layer of stacked autoencoders detects contours

In conclusion, stacked RBMs and stacked autoencoders tend to learn similar features

and achieve similar classification accuracy on the MNIST dataset.

2.6 State of the Art on Deep Learning

As the first breakthrough, a deep belief network (DBN) by stacking pre-trained

RBMs without the decoding parts was proposed by Hinton [2, 10, 23]. The pre-training

idea was then adopted by many researchers to come up with new algorithms. [20] used

sparse RBMs as learning units. [1, 24, 25] used an autoencoder and its variants such as

denoising or sparse version as the building blocks instead of RBM families.

Deep learning shows it power mainly in two areas: speech recognition / language

processing [26-29] and object recognition[30]. Recent success in these areas features two

key ingredients: convolutional architectures[17, 21, 30] and dropouts[31, 32].

28

The convolutional architectures alternate convolutional layers and pooling layers.

Units on a convolutional layer only deal with a small window which corresponds to a

spatial or temporal position. Units on a pooling layer aggregate the outputs on units at a

lower convolutional layer.

Dropouts intentionally ignore random nodes in hidden layers and input layers when

training. This process mimics averaging multiple models. It also improves neural

networks by preventing co-adaptation of feature detectors by forcing different nodes to

learn different features.

Sparsity, denoising, and dropouts all aim to reduce the capacity of neural networks to

prevent overfitting.

29

Chapter 3

Meta-parameters and Data Pre-processing in

Deep Learning

3.1 Motivation

Existing deep learning methods involve a large number of meta-parameters, such as

the number of hidden layers, the number of hidden nodes, the sparsity target, the initial

values of weights, the type of units, the learning rate, etc. Existing applications usually do

not explain why the decisions were made and how changes would affect performance.

Firstly, how to determine the structure of deep learning networks is unknown. For

example, the first DBN paper [2] used a 784-500-500-2000-10 DBN to achieve 98.8%

classification accuracy on MNIST. It would be interesting to know why such a network

configuration was chosen and if other choices could yield similar results. Thus, it is

difficult for a novice user to make good decisions for a new application in order to

achieve good performance.

In addition, deep learning is promising to extract features on its own, therefore the

raw input should work well. But what if we feed in hand-engineered features? Will it

work better? Despite the same or slightly worse performance, is it worthwhile to apply

dimension reduction beforehand to speed up the training process?

30

Last, even if the two types of building blocks in deep learning, namely RBMs and

autoencoders, are expected to function similarly, it is still necessary to compare their

performance in different settings on different datasets.

This chapter will address these three important questions.

3.2 Dimensionality Reduction by PCA and Whitening

When the input space is too large for neural networks to handle, we often want to

reduce the dimensionality of the input data to significantly speed up the training process.

This could be done by a general dimensionality reduction algorithm, or by an expert

designed feature extractor. The latter has the benefit of obtaining meaningful

representation but it also loses some information of the raw data.

For problems that do not have human understandable features, principal component

analysis (PCA) is a popular choice as a linear dimensionality reduction technique.

PCA is used to find a lower-dimensional subspace onto which the original data is

projected. Usually we need data x that has zero mean. If the data does not have the

property, we zero mean it. First we compute the covariance matrix of x as

∑

∑

 (19)

where is one data point and m is the number of data points.

31

Then we apply standard singular value decomposition to the covariance matrix to get

the matrix U of eigenvectors and the vector of eigenvalues. We could preserve all the

input data’s information but present it in a different basis by computing

(20)

The reduced dimension representation of the data can be obtained by computing

 ̂
 (21)

where k is the dimension to keep.

To set k, we usually determine it by the percentage of variance retained, which is

given by

∑

∑

 (22)

To retain 99% of the variance, we need to pick the smallest value of k such at the

above value is no less than 0.99. The special case is k = n, when the retaining rate is 1,

which means the PCA processed data containing all the variance.

The goal of whitening is to make features less correlated and have the same variance.

We can simply get it done by rescaling features by

32

 ̂
 ̂

√
 (23)

where is a regularization term to prevent the result from blowing up.

3.3 Sleep Stage Dataset and its Features

The MNIST dataset and a sleep stage dataset will be used in this chapter. This

section is the description of the benchmark sleep stage dataset provided by PhysioNet

[33]. This study will use the first 5 acquisitions out of 25 available in the dataset (21

males and 4 females with average age 50), each consisting of 1 EEG channel (C3-A2), 2

EOG channels, and 1 EMG channel downsampled at 64Hz. Each acquisition lasts about 7

hours on average. Each sample is taken from 1-second window with 256 dimensions,

normalized to [0, 1]. The labels are 5 sleep stages: awake, stage 1 (S1), stage 2 (S2), slow

wave sleep (SWS) and rapid eye-movement sleep (REM).

A band-pass filter and a notch filter at 50Hz are applied to all channels. Then the 30-

second data before and after a sleep stage switch are removed. Finally all classes are

balanced determined by the class with the fewest samples. 1/7 data is reserved for testing

and the rest is for training, which results in 8508 samples for testing and 51042 for

training. A 60-second raw data of each channel is depicted in Fig. 15.

28 hand-made features are extracted from 1-second long samples. The features of a

subject’s data are shown in Fig. 16. The details about how to calculate these features can

be found in [34-38].

The corresponding classes are shown in Fig. 17.

33

Fig. 15 60-second raw data downsampled at 64Hz of sleep stage dataset.

0 1000 2000 3000 4000
0

0.5

1
EEG

0 1000 2000 3000 4000
0

0.5

1
EOG1

0 1000 2000 3000 4000
0

0.5

1
EOG2

0 1000 2000 3000 4000
0

0.5

1
EMG

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

0.8

EEG delta

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

EEG theta

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

0.8

EEG alpha

0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

EEG beta

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

EEG gamma

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

0.8

EOG delta

0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

0.5

EOG theta

0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

0.5

EOG alpha

0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

EOG beta

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

0.8

EOG gamma

0.5 1 1.5 2

x 10
4

0.05

0.1

0.15

EMG delta

0.5 1 1.5 2

x 10
4

0.05

0.1

0.15

0.2

EMG theta

0.5 1 1.5 2

x 10
4

0.1

0.2

0.3

0.4

0.5

EMG alpha

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

EMG beta

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

0.8

EMG gamma

0.5 1 1.5 2

x 10
4

0.2

0.4

0.6

EMG median

0.5 1 1.5 2

x 10
4

-0.5

0

0.5

EOG corr

0.5 1 1.5 2

x 10
4

5

10

15

EEG kurtosis

0.5 1 1.5 2

x 10
4

10

20

30

40

EOG kurtosis

0.5 1 1.5 2

x 10
4

10

20

30

40

50

EMG kurtosis

0.5 1 1.5 2

x 10
4

0.5

1

1.5

2

EOG std

0.5 1 1.5 2

x 10
4

1

1.5

2

EEG entropy

0.5 1 1.5 2

x 10
4

0.5

1

1.5

2

EOG entropy

0.5 1 1.5 2

x 10
4

0.5

1

1.5

2

EMG entropy

0.5 1 1.5 2

x 10
4

0.15

0.2

0.25

0.3

EEG spectral mean

0.5 1 1.5 2

x 10
4

0.15

0.2

0.25

0.3

0.35

EOG spectral mean

0.5 1 1.5 2

x 10
4

0.2

0.25

0.3

0.35

EMG spectral mean

0.5 1 1.5 2

x 10
4

-3

-2

-1

0

EEG fractal exponent

34

Fig. 16 28 features of a subject's data. X-axis is time in seconds and y-axis shows non-normalized values

Fig. 17 sleep stage classes of a subject. X-axis is time in seconds and y-axis is the 5 possible sleep stages

3.4 Investigation of Optimal Meta-parameters and Pre-processing

Techniques

This study will conduct a search on 2 datasets (MNIST and sleep stage dataset) along

3 dimensions: raw vs. PCA95% whitened data as input, net structures (different numbers

of layers and different numbers of nodes), and RBM vs. autoencoder as learning units.

There will be 8 possible combinations.

Softmax regression serves as a baseline compared to more advanced deep learning

algorithms (i.e., stacked RBMs and stacked autoencoders).

0 0.5 1 1.5 2 2.5

x 10
4

1

2

3

4

5

s
le

e
p
 s

ta
g
e

time (second)

35

The following two sections will be experiments carried out on MNIST and the sleep

stage dataset, respectively. In the first subsection, softmax regression only will be used to

evaluate the performance of raw data vs. PCA processed data on MNIST or features on

the sleep stage dataset. In the second subsection, different net structures will be tried on

raw data and picked PCA processed data (as for retaining rate and with or without

whitening) or features.

3.5 Experimental Results on MNIST Dataset

3.5.1 Data Pre-processing

To evaluate how PCA processing with different retention rates and whitening affects

the performance compared to the raw data, softmax regression is applied to the MNIST

dataset.

3.5.1.1 On Raw Data

Weight decay of the softmax regression is set to be 3e-3. The training on raw data

takes 17 seconds and achieves 0.9150 classification accuracy.

The learned weights by the 10 softmax nodes in the output layer are shown in Fig. 18.

36

Fig. 18 weights learned by 10 softmax nodes on raw of MNIST

3.5.1.2 On PCA With or Without Whitening

90%, 95%, 99%, and 100% retention rates for PCA with or without whitening

(regularization = 0.1) are evaluated. The quality of recovered data from the lower

dimensional space is shown in Fig. 19. Even if we reduce the data dimension to 64-d, it

still retains 90% of the variance, and the digits are highly recognizable.

raw raw with zero mean

37

PCA90% 64-d PCA95% 120-d

PCA99% 300-d PCA100% 784-d

PCA90% with whitening PCA95% with whitening

38

PCA99% with whitening PCA100% with whitening

Fig. 19 PCA with or without whitening

The classification accuracy of softmax regression on raw and pre-processed data of

MNIST is shown in Fig. 20. The time spent on training is depicted in Fig. 21.

Fig. 20 Classification accuracy of softmax regression on MNIST

0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

softmax on MNIST

39

Fig. 21Training time of softmax regression on MNIST

For softmax, using whitening or not does not affect the classification accuracy much,

but PCA especially with whitening reduces training time a lot. Whitened data has smaller

variations, which could be the reason it converges faster. For example, PCA95 with

whitening saves ¾ of training time with less than 0.3% accuracy loss. However, PCA

process alone takes about 10 seconds and whitening takes additional 10 seconds. The pre-

processing overhead makes it less attractive for simple classifier such as softmax

regression.

3.5.2 Deep Learning Network Structure

Classifications on the raw and PCA95% whitened data using different network

structures in terms of number of layers and number of nodes and different learning units

will be carried out to compare their performance.

0
2
4
6
8

10
12
14
16
18

tr
ai

n
g

ti
m

e
 (

se
co

n
d

)

softmax on MNIST

40

3.5.2.1 Stacked RBMs on Raw Data

Fig. 22 shows classification accuracy of stacked RBMs of various network structures

on raw of MNIST. More layers and more nodes seem to achieve better performance, but

the performance gain is not very significant when the number of nodes grows more than

200. The corresponding training time is shown in Fig. 23. The training time roughly has a

linear relationship with the number of layers and number of nodes in each layer.

Fig. 22 Classification accuracy of stacked RBMs of various net structures on raw of MNIST

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

50 100 200 300 400 500

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked RBMs on raw of MNIST

1-layer

2-layer

3-layer

0

20

40

60

80

100

120

140

50 100 200 300 400 500

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked RBMs on raw of MNIST

1-layer

2-layer

3-layer

41

Fig. 23 Training time of stacked RBMs of various net structures on raw of MNIST

3.5.2.2 Stacked RBMs on PCA at Retention Rate 95%

Fig. 24 and Fig. 25 show classification accuracy and training time of stacked RBMs of

various network structures on PCA95% whitened data of MNIST.

The classification accuracy is no better than that of softmax. Even worse, the 3-layer

case can only achieve less than 0.8 classification accuracy. The reason is PCA itself

extracts uncorrelated features and the stacked RBMs try to extract some correlations from

uncorrelated features and of course fails. Thanks to the topmost softmax layer, stacked

RBMs with 1 and 2 layers still work but 3-layer network does a terrible job in the pre-

training stage which cannot be offset by the fine-tuning stage.

Fig. 24 Classification accuracy of stacked RBMs of various net structures on PCA95 whitened of MNIST

0

0.2

0.4

0.6

0.8

1

50 100 200 300 400 500

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked RBMs on PCA95 whitened of
MNIST

1-layer

2-layer

3-layer

42

Fig. 25 Training time of stacked RBMs of various net structures on raw of MNIST

3.5.2.3 Stacked Autoencoders on Raw Data

Fig. 26 and Fig. 27 show classification accuracy and training time of stacked

autoencoders of various network structures on raw of MNIST. When the number of nodes

in each layer is small (e.g., 50), the network with 3 layers captures less and less useful

information from bottom to up due to too few nodes with sparsity regularization, so the

classification accuracy is as low as less than 0.91. As the number of nodes grows, the

performance becomes better, and eventually beats 1-layer network.

0

50

100

150

200

250

50 100 200 300 400 500

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked RBMs on PCA95 whitened of
MNIST

1-layer

2-layer

3-layer

43

Fig. 26 Classification accuracy of stacked autoencoders of various net structures on raw of MNIST

Fig. 27 Training time of stacked autoencoders of various net structures on raw of MNIST

3.5.2.4 Stacked Autoencoders on PCA at Retention Rate 95%

Fig. 28 and Fig. 29 show classification accuracy and training time of stacked

autoencoders of various network structures on PCA95% whitened data of MNIST. The 1-

layer network achieves comparable results with that on raw data with nearly half of the

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

50 100 200 300

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked autoencoders on raw of
MNIST

1-layer

2-layer

3-layer

0

20

40

60

80

100

120

140

50 100 200 300

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked autoencoders on raw of
MNIST

1-layer

2-layer

3-layer

44

training time. However, when the number of nodes in each layer is small, the networks

with 2 or 3 layers capture less and less useful information from bottom to up due to too

few nodes with sparsity regularization, so the classification accuracy is as low as like

random guessing. As the number of nodes grows, the performance becomes better.

Fig. 28 Classification accuracy of stacked autoencoders of various net structures on PCA95 whitened of

MNIST

Fig. 29 Training time of stacked autoencoders of various net structures on PCA95 whitened of MNIST

0

0.2

0.4

0.6

0.8

1

50 100 200 300

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked autoencoders on PCA95
whitened of MNIST

1-layer

2-layer

3-layer

0

20

40

60

80

100

120

140

50 100 200 300

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked autoencoders on PCA95
whitened of MNIST

1-layer

2-layer

3-layer

45

3.6 Experimental Results on Sleep Stage Dataset

3.6.1 Data Pre-processing

To compare the performance of raw data and features of the sleep stage dataset,

softmax regression is applied.

3.6.1.1 On Raw Data

Weight decay of the softmax regression is set to be 3e-3. The training on raw data

takes 47 seconds and achieves 0.2056 classification accuracy. Softmax regression alone

is too weak to capture useful information of the raw data.

3.6.1.2 On Features

Training on 28 features takes only 2.5 seconds and results in 0.5678 classification

accuracy. The hand crafted features are very useful for the softmax classifier.

3.6.2 Deep Learning Network Structure

Classifications on the raw data and features using different network structures in

terms of number of layers and number of nodes and different learning units will be

carried out to compare their performance.

3.6.2.1 Stacked RBMs on Raw Data

Fig. 30 and Fig. 31show classification accuracy and training time of stacked RBMs of

various network structures on raw of the sleep stage dataset. Stacked RBMs capture the

46

features well from the raw data and the classification performance is not sensitive to the

network structures.

Fig. 30 Classification accuracy of stacked RBMs of various net structures on raw of sleep stage dataset

Fig. 31Training time of stacked RBMs of various net structures on raw of sleep stage dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 200 300 400 500

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked RBMs on raw of sleep stage
dataset

1-layer

2-layer

3-layer

0

20

40

60

80

100

120

140

50 100 200 300 400 500

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked RBMs on raw of sleep stage
dataset

1-layer

2-layer

3-layer

47

3.6.2.2 Stacked RBMs on Features

Fig. 32 and Fig. 33 show classification accuracy and training time of stacked RBMs of

various network structures on features of the sleep stage dataset. The classification

accuracy trained by features in a network with small number (e.g., 50) of nodes beats

trained by raw data, suggesting deep learning fails to capture some of the useful

information that a hand-crafted feature extractor can do. The training is fast, too, due to

the low dimensionality of the feature space. However, the performance is sensitive to the

number of nodes in each layer. Too large number with more network capacities tends to

deteriorate the classification performance.

Fig. 32 Classification accuracy of stacked RBMs of various net structures on features of sleep stage dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 200 300 400 500

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked RBMs on features of sleep
stage dataset

1-layer

2-layer

3-layer

48

Fig. 33 Training time of stacked RBMs of various net structures on features of sleep stage dataset

 3.6.2.3 Stacked Autoencoders on Raw Data

This experiment does not work due to an error in the training in which process

matrix is close to singular or badly scaled.

3.6.2.4 Stacked Autoencoders on Features

Fig. 34 and Fig. 35 show classification accuracy and training time of stacked

autoencoders of various network structures on features of the sleep stage dataset. The

classification accuracy trained by features in a network of 1-layer beats trained by raw

data. The training is fast, too, due to the low dimensionality of the feature space.

However, the performance is sensitive to the number of layers. 2-layer and 3-layer

networks do not work better than random guess.

0

20

40

60

80

100

120

140

50 100 200 300 400 500

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked RBMs on features of sleep
stage dataset

1-layer

2-layer

3-layer

49

Fig. 34 Classification accuracy of stacked autoencoders of various net structures on features of sleep stage

dataset

Fig. 35 Training time of stacked autoencoders of various net structures on features of sleep stage dataset

3.7 Summary

Followed is the summary of classification accuracy of various network structures of

stacked RBMs and stacked autoencoders on both MNIST and the sleep stage datasets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 200 300

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

number of nodes in each hidden layer

stacked autoencoders on features of
sleep stage dataset

1-layer

2-layer

3-layer

0

20

40

60

80

100

120

140

50 100 200 300

tr
ai

n
in

g
ti

m
e

 (
m

in
u

te
)

number of nodes in each hidden layer

stacked autoencoders on features of
sleep stage dataset

1-layer

2-layer

3-layer

50

with or without pre-processing. The listed optimal net structures will be used in the later

studies. In conclusion, the optimal net structures are highly application-dependent.

Table 3 Summary of network structures including optimal settings as well as pre-processing techniques on

MINIST and sleep stage dataset

Dataset Pre-processing stacked RBMs stacked autoencoders

MNIST

raw

Good in any net structures

[500 500 500]

Good, except when hidden

nodes are too few

[200 200]

PCA95%

whitened

Sensitive to number of

layers

[200 200]

Sensitive to number of

nodes

[300]

sleep stage

dataset

raw

Good in any net structures

[200]

NA

28 features

sensitive to number of

nodes

[50]

very sensitive to number of

layers

[50]

51

Chapter 4

Active Labeling in Deep Learning

4.1 Motivation

In a semi-supervised learning paradigm such as deep learning, unlabeled data are

easy to get at low or no extra cost, but labeled data are expensive. Due to limited

resources, only very few labeled data can be obtained given a certain budget. For

example, in a classification problem on physiological data from biosensors, the unlabeled

data can be obtained by simply asking subjects to wear sensors day and night, but labeled

data may not be available until human experts manually make annotations on selected

unlabeled samples. Therefore, to make the best use of the budget for a discriminative

learning task, it would be useful to propose an algorithm to carefully choose unlabeled

samples to be labeled.

Active learning (AL) [4] asks queries in the form of unlabeled instances to be labeled

by an oracle (a human annotator). The goal is to achieve high classification accuracy

using as few labeled samples as possible. A pool-based active learning queries the

samples in the unlabeled pool that are most ambiguous for the current model. The newly

labeled samples are added to the labeled pool and used to retrain the model. The two

processes form a cycle as shown in Fig. 36. The problem to be solved in this chapter falls

into the field of active learning.

52

To the best of my knowledge, there are no active learning algorithms applied in

DBNs except for Active Deep Networks (ADNs) proposed by [39]. ADNs follow

previous work on active learning for SVMs by defining the uncertainty of an unlabeled

sample as its distance from the separating hyperplane and it can only work on binary

classification problems.

Since the top layer of both stacked RBMs and stacked autoencoders outputs the

probabilities of each label to be chosen, it is promising to exploit the probabilities as

indicators of uncertainty. My work aims to propose a few methods to effectively use the

built-in classification uncertainty in deep learning networks to select unlabeled samples

to be labeled.

Fig. 36 The pool-based active learning cycle (taken from [4])

53

4.2 Related Works on Active Learning

Suppose there is a large pool of unlabeled data available at cheap cost and we want to

sample from them to get labeled data. A pool-based sampling [40] was proposed to draw

queries from the pool in a greedy fashion.

Active learning is adopted for a range of base learners, such as support vector

machines and Bayesian networks[41], logistic regression[40], and Markov Models[42].

The pool-based active learning algorithm has been studied for many real-world

problems, surveyed by [4], such as text classification[40, 43-45], information

extraction[46, 47], image classification and retrieval[48, 49], video classification and

retrieval[50, 51], and speech recognition[52].

4.3 Algorithms

The problem to be solved is formulized as follows. Given an unlabeled sample set

and a labeled sample set , the algorithm needs to take samples from , have them

labeled, and add them to , in order to minimize the classification error of a deep

learning model fine-tuned by , where is a constant as the budget in each iteration.

The basic idea of my algorithm is simple and not much different from other active

learning algorithms – greedily select those samples that are most difficult to classify. The

framework is depicted in Fig. 37. Then the problem remains how to find heuristic methods

54

to define difficulty, uncertainty, or ambiguity. Three criteria are proposed under the

active labeling deep learning (AL-DL) framework.

Fig. 37 Active labeling – deep learning framework

The classification in step 4 applies (6) iteratively starting from an unlabeled sample

fed into the lowest input layer until the top layer and then uses (16) to softmax the

AL-DL framework

Input: an unlabeled sample set

1. Use all the unlabeled data to train a DL network (stacked RBMs or

stacked autoencoders) layer by layer. The weights and biases will be used as the

initial values for fine-tuning a DL network in the following steps.

2. Randomly take samples from , have them labeled, and add them to the

empty set as a “seed” set. For simplicity, assume the classes are balanced in

the set .

3. Use to fine-tune a -layer DL network classifier .

4. Use the classifier to classify all the unlabeled samples in . Take

the most uncertain samples from , have them labeled, and add them to .

(see the three detailed criteria to measure uncertainty in text). Go to step 3.

Output: a -layer DL network classifier

55

activations in the top layer. If is predicted as the class of the sample is determined by

if the unit the class associated with has the largest probability among all the units

 (
 |) in the top layer as below

 {

 (

 |)

 (24)

Since the true class of the sample is unknown yet, the predicted label is not

much interesting because we do not know it is correct or misclassified.

However, (
 |) suggests the confidence of the prediction. Least confidence (LC),

margin sampling (MS) [53], and entropy [54] can act as the criteria to pick the most

uncertain samples .

Active labeling deep learning with least confidence (AL-DL-LC) picks the samples

with the minimum of the maximum of activations as follows

 (
 |) (25)

where is an input vector,
 is the activation of the unit in the top layer. If more than

one sample needs to be selected, the process could be performed in a greedy fashion.

Least confidence works in the assumption that if the probability of the most probable

label for a sample is low then the classification of the sample is uncertain. Thus it

discards the information about the remaining label distributions.

Active labeling deep learning with margin sampling (AL-DL-MS) partially corrects

the shortcoming by incorporating the posterior of the second most likely label as follows

56

 | | (26)

where and are the first and second most probable class labels under the model.

Intuitively if the probabilities of predicting a sample to its most likely class and to its

second most likely class are too close, the classifier is quite confused about the sample.

Therefore some information is needed from the oracle to help the classifier discriminate

these two classes.

Active labeling deep learning with entropy (AL-DL-Entropy) aims to take all labels

probabilities into consideration by

 ∑ (
 |) (

 |)

 (27)

Entropy represents the amount of information or least number of bits to encode a

distribution. It could act as a good measure of uncertainty.

4.4 Experimental Results on MNIST

To evaluate the performance of AL-DL in three criteria, a few experiments on the

MNIST dataset have been performed. For comparison, a random selection strategy is

employed as the baseline.

57

4.4.1 Stacked RBMs on Raw Data

The hidden structure of DBN for pre-training is 500-500-500, with 50,000 for training

and 10,000 samples for testing. A base set with 1,000 labeled samples (80% for training

and 20% for validation) acts as the seed for both the random and active labeling schemes.

These samples are balanced among all the classes.

In each iteration the random scheme randomly picks 200 samples (80% for training

and 20% for validation) and adds them to the training set and validation set. These two

sets are used for the original classifier to train the model and test on the test set to get the

classification accuracy.

The AL scheme uses the model trained in the previous iteration to classify unlabeled

samples. During the process the 200 (80% for training and 20% for validation) most

uncertain samples are labeled by the oracle and added into the training set and validation

set used for the new classifier. Then the AL scheme moves to the next iteration. Note the

samples picked in this step are not necessarily balanced.

Other DBN parameters are listed below.

Table 4 DBN parameters for both random and AL schemes

Unsupervised pre-training stage

learning rate 0.05

number of epochs 100

minibatch size 100

momentum 0.5 for the first 5 epochs, 0.9 thereafter

weight cost 0.0002

Supervised fine-tuning stage

learning rate 0.05

number of epochs 50

minibatch size 100

number of initial epochs 5

10 trails are done for the random scheme and AL schemes with least confidence,

margin sampling, and entropy.

58

The mean and standard deviation of the accuracy of these four methods are depicted

below.

Fig. 38 The mean of classification accuracy of random labeling DBN and active labeling DBN. RL and

AL-LC show their error bars. Iteration 0 means only the seed set is used. The performances of the three AL

DBNs are close, all better than that of RL DBN.

The means of the accuracy of the three methods AL-LC DBN, AL-MS DBN, and AL

–Entropy DBN are close, which all outperform the mean accuracy of RL DBN. The

standard deviations of the three active labeling schemes are smaller than that of RL DBN,

suggesting more consistent performance of AL DBN.

To confirm the active labeling does pick the most challenging samples, all the 200

samples picked before the 1st iteration by RL DBN (top) and AL –LC DBN (bottom) are

shown below.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5 6 7 8 9 10

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked RBMs on raw of MNIST

RL

AL-LC

AL-MS

AL-Entropy

59

60

Fig. 39 All the 200 samples picked before the 1st iteration by RL DBN (top) and AL-LC DBN (bottom).

The digits in the bottom graph look harder to recognize, indicating AL-LC DBN does pick more

challenging samples than RL DBN

Fig. 40 The comparison of classification error rates on training and validation sets with RL-DBN and AL-

DBN-LC in one iteration. AL-DBN-LC works much worse on training and validation sets because it

always picks the most challenging samples.

Fig. 40 shows another interesting observation. In each iteration, the RMSE and

accuracy using the active labeling strategy on both training set and validation set are

much worse than using the random labeling method, but active labeling method’s

performance on the test set is better. This is because active labeling always puts the most

challenging samples to the training set and validation set, it’s understandable that the

classification accuracy on them is not as high as on randomly picked samples. However,

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

epoch

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

ra
te

RL-DBN on training set

RL-DBN on validation set

AL-DBN-LC on training set

AL-DBN-LC on validation set

61

since active labeling always learns from those challenging cases, it should actually

outperform the random labeling method that learns from less informative samples.

4.4.2 Stacked Autoencoders on Raw Data

A similar experiment is carried out using stacked autoencoders of 2 hidden layers,

each having 200 nodes. Fig. 41 shows active labeling stacked autoencoders beats its

random labeling counterpart by about 2% in iteration 5, in which AL-MS works the best.

Fig. 41 The mean of classification accuracy of random labeling stacked autoencoders and active labeling

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

4.4.3 Stacked Autoencoders on PCA at Retention Rate 95%

The experimental result using stacked autoencoders of 1 hidden layer, each having

300 nodes, on PCA 95% whitened data of MNIST, is shown in Fig. 42. Active labeling

stacked autoencoders outperforms the random labeling version by up to 4% in iteration 5,

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked autoencoders on raw of
MNIST

RL

AL-LC

AL-MS

AL-Entropy

62

in which AL-MS works the best.

Fig. 42 The mean of classification accuracy of random labeling stacked autoencoders and active labeling

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

4.5 Experimental results on sleep stage dataset

The same experiment is carried out on the sleep stage dataset using the optimal

settings to evaluate the performance of active labeling deep learning in a complex and

noisy dataset.

A base set of 1000 labeled samples acts as the seed for both the random and active

labeling schemes. These samples are balanced among all 5 classes. There will be 10 (for

stacked RBMs) or 5 (for stacked autoencoders) iterations, in each of which 200 samples

are picked, labeled, and added to the training set, by random or active labeling. 10 trials

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 1 2 3 4 5

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked autoencoders on PCA95% of MNIST

RL

AL-LC

AL-MS

AL-Entropy

63

are done for the random scheme and AL schemes with least confidence, margin sampling,

and entropy.

4.5.1 Stacked RBMs on Raw Data

A 1-layer with 200 hidden nodes stacked RBMs is trained on raw data of the sleep

stage dataset with random labeling and 3 different active labeling schemes. Their

classification accuracies do not show significant difference in Fig. 43.

Fig. 43 The mean of classification accuracy of random labeling stacked RBMs and active labeling stacked

RBMs. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

4.5.2 Stacked RBMs on Features

A 1-layer with 50 hidden nodes stacked RBMs is trained on features of the sleep

stage dataset with random labeling and 3 different active labeling schemes. No significant

difference is found in them according to Fig. 43.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked RBMs on raw of sleep stage
dataset

RL

AL-LC

AL-MS

AL-Entropy

64

Fig. 44 The mean of classification accuracy of random labeling stacked RBMs and active labeling stacked

RBMs. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

4.5.3 Stacked Autoencoders on Features

The similar experiment is carried out on a 1-layer with 50 nodes stacked autoencoders

on features of the sleep stage dataset. Fig. 45 suggests all 4 algorithms perform almost the

same.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked RBMs on features of sleep
stage dataset

RL

AL-LC

AL-MS

AL-Entropy

65

Fig. 45 The mean of classification accuracy of random labeling stacked autoencoders and active labeling

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used.

4.6 Summary

On MNIST, active labeling deep learning works better than its random counterpart,

no matter what uncertainty measurements (least confidence, marginal sampling, or

entropy), what learning units (RBMs or autoencoders), or what data pre-processing

techniques (raw or PCA processed data) are used.

However, active labeling strategy does not outperform random labeling deep learning

on the sleep stage dataset. The noise nature of the data seems to be blamed on. Since

active labeling proactively picks the most uncertain samples to be labels, these samples

are more likely to be mislabeled, introducing false information to the model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

iteration

stacked autoencoders on features
of sleep stage dataset

RL

AL-LC

AL-MS

AL-Entropy

66

Chapter 5

Modeling Raw Physiological Data and Predicting

Emotions with Deep Belief Networks

5.1 Introduction

Inspired by the relationship between emotional states and physiological signals [55,

56], researchers have developed a large amount of methods to predict emotions based on

physiological data [57-65].

The emotions could be empirically modeled as classes [61]. The negative emotions

include anger, anxiety, disgust, embarrassment, fear, and sadness; whereas the positive

emotions have affection, amusement, contentment, happiness, joy, pleasure, pride, and

relief. Arousal-valence space [66] is an alternative way to define emotions with

continuous values. The dimension of arousal represents calmness or excitement, whereas

the dimension of valence ranges from highly positive to highly negative.

The physiological data come from biosensors in the following channels:

Electrodermal Activity (EDA) that measures electrical conductivity or skin conductance,

Electrocardiogram (ECG) measuring heart beats, Electroencephalography (EEG)

measuring brain activities, Electrooculogram (EOG) measuring eye movements [67], and,

in a broader sense, accelerometer data, voice, GPS trajectories, etc.

Traditionally, no matter to map what biological signals to what emotions, the first

step is to retrieve features from the raw data. For example, the R-R intervals extracted

67

from ECG represent a person’s heart beat periods, whose changes may be resulted from

emotional changes between calmness and excitement. These features are usually hand-

engineered using task dependent techniques developed by domain experts [68-70] and

then selected either by experts or feature selection algorithms like principal components

analysis (PCA). The process works fine where what features are more relevant to a

specific task look obvious but it is still labor-intensive and time-consuming. When the

incoming physiological data types and/or prediction tasks change, we have to redo the

whole process to tailor new features. It would be useful to have a universal system that

can automatically extract features from the raw physiological data without the help of

expert knowledge.

Moreover, multi-task learning [71, 72], learning more than one problem at the same

time using a shared representation, is desired when learning physiological data. These

problems even include unknown ones. Multi-task learning aims to improve the

performance of learning algorithms by learning the commonality among multiple tasks.

When a subject wears a biosensor with several channels, the task could be to classify her

activities, or to determine her emotions. Even if the tasks may not yet be predefined we

still want the machine learning algorithm to acquire knowledge of the data. The learned

knowledge then can be used for classification problems as long as a task is ready.

Deep belief networks (DBNs) [2], as a semi-supervised learning algorithm, is

promising to tackle the above-mentioned problems. It trains a multilayer neural network

in a greedy fashion, each layer being a restricted Boltzmann machine (RBM) [3]. The

trained weights and biases in each layer can be thought of as features or filters learned

68

from the input data. The learned features are task-independent, so any tasks can take

advantage of them as a starting point for classification problems.

DBNs have been mostly applied in handwriting recognition [2, 20], natural image

recognition [73, 74], and modeling human motions [75]. When it comes to physiological

data as input, [18] used DBNs to classify EEG signals to five clinically significant waves;

[34] developed DBNs classifiers to determine sleep stages from EEG, EOG, and EMG.

However, to the best of my knowledge, there is no existing work to predict emotional

states using physiological data from biosensors using DBNs. This study explores such

possibilities.

This work uses DEAP dataset [6] to show how DBNs learn features from raw

physiological signals and predict emotion states.

DEAP is a multimodal dataset for the analysis of human affective states. The EEG

and peripheral physiological signals (downsampled to 128Hz) of 32 subjects were

recorded as each watched 40 one-minute long videos. The subjects rated the levels as

continuous values of arousal, valence, liking, dominance, and familiarity.

This study predicts the levels of arousal, valence, and liking. The arousal scale

ranges from calm or bored (1) to stimulated or excited (9). The valence scale ranges from

unhappy or sad (1) to happy or joyful (9). Liking also has values from 1 to 9. All three

ratings are float numbers.

32 EEG channels and totally 8 peripheral nervous system channels were recorded

including hEOG (horizontal EOG), vEOG (vertical EOG), zEMG (Zygomaticus Major

EMG), tEMG (Trapezius Major EMG), GSR (values from Twente converted to Geneva

format in Ohm), respiration belt, plethysmograph, and body temperature.

69

This experiment uses 4 peripheral channels to do the predication, which are the two

EOG channels and the two EMG channels. The EOG channels record eye movements.

The activity of the Zygomaticus major is monitored in zEMG to capture a subject’s

laughs or smiles, whereas the Trapezius muscle (neck) is recorded by tEMG to reflect

possible head movements.

[6] trained a Gaussian naïve Bayes classifier for each single subject due to the high

inter-subject variability. For each subject, three different binary classifiers were trained

and investigated to map the 8 peripheral channels to low (1-5) / high (5-9) arousal,

valence, and liking, respectively. A leave-one-video-out cross validation was performed.

In other words, in each trial a video was taken out for testing and the remaining 39 videos

were used for training. As was done in most machine learning researches on

physiological data, hand-engineered features such as eye blinking rate, energy of the

signal, mean and variance of EMG and EOG were extracted. All the extracted features

were fed into the classifier to train the model. Then the model was used to predict the test

cases. The average accuracy over all subjects was 0.570, 0.627, and 0.591 for arousal,

valence, and liking, respectively.

5.2 Related Works on Modeling Physiological Data and Emotion

Prediction

To mapping physiological data to emotions, we need to train a classification model.

The advance in machine learning provides many algorithms to get the job done [57].

70

[76, 77] used k-nearest neighbor. Naïve Bayes classifier and Bayesian networks were

employed in [78]. Support vector machines have proved its success in [79, 80].

Classification tree performed well in [81]. Artificial neural networks were used in [82-84].

5.3 Train a DBN Classifier on Physiological Data

The overall goal of this study is to train a single DBN classifier for all the subjects on

the raw data from two EEG and two EOG channels to predict arousal, valence, and liking

as binary classes (low or high). Classification accuracy defined in (17) evaluates the

performance.

There are five steps in the experiment: raw data pre-processing, raw data selection

and division, normalization, randomization, and DBN training and classification.

In the first step, all signals are pre-processed by notch filtering at 50 Hz in order to

remove power line disturbances and bandpass filters of 0.3 to 32 Hz and 10 to 32 Hz are

also applied to EOG and EMG, respectively, as suggested by [34].

The second step selects raw data and divides them into training set and test set. A

subject’s physiological signals are more likely to be elicited by a video at the end of the

one-minute watching period as the plot develops. Therefore, it sounds reasonable to

discard the first 50 second and use only the last 10 seconds’ data in each one-minute

record. Then the 10 seconds’ data are broke down into 10 one-second segments. In other

words, the learning process trains and classifies one-second samples, each in 512

dimensions (128Hz * 1s * 4channel). There are totally 12800 samples (32subject *

40video * 10sample). In each trial, the 10 samples of one randomly chosen video from

71

each subject are left out for testing, resulting in the size of test set being 320 (32 subject *

1video * 10sample). The remaining 12480 (32subject * 39video * 10sample) samples go

to the training set.

The third step applies a channel-wise normalization to scale all the values to [0 1]

according to

 (28)

where represents all the data in the channel and is a data point in the channel .

The reason to normalize data this way is two-folded: a) the ranges of different channels

may vary, so normalization makes them comparable when concatenating all channels as

input, and b) a DBN’s node in the input layer has to have values between 0 and 1, to be

treated as probabilities of activation of this node. Alternatively, the normalization could

be done by saturating a signal at saturation constant max and min. Any values larger than

max are set to max; any values smaller than min are set to min. Then apply (28). This

trick should be able to remove outliers, too, but it requires some knowledge about the

data’s reasonable ranges. Since the DEAP dataset is quite clean, I did not find

performance difference between these two normalization methods.

Randomizing training samples is necessary because the mini-batch technique in

training DBNs requires samples of each class are (at least roughly) evenly distributed.

The last step firstly pre-trains a DBN without any labels, which means the same

features learned in the pre-train stage can be used for the three different classification

problems in the fine-tuning stage. Since the pre-trained model captures the properties of

72

the data themselves, it can even be saved for unknown classification problems, as long as

a new fine-tuning is applied to it using the new labeled data when they are available.

After fine-tuning features based on labels and backpropagating to train a model for

arousal classification, the model is used to predict arousal labels on the test set and

compute the classification accuracy. The same process is applied on valence and liking

classifiers.

The same experiment runs 10 times to get the mean accuracy, as well as the standard

deviation.

The DBNToolbox matlab code published by [34] is provided to perform the

experiment. A DBN with two hidden layers, each layer with 50 nodes is constructed.

Therefore the DBN structure for the pre-training stage is 512-50-50 and for the fine-

tuning stage is 512-50-50-2. DBN parameters are listed below.

Table 5 DBN parameters

Unsupervised learning rate 0.05

Supervised learning rate 0.05

Number of epochs in pre-training 50

Number of epochs in fine-tuning 20

Mini-batch size in both stages 100

5.4 Experimental Results

To show the features learned in the first hidden layer, I simply take , where is

these nodes corresponding to one channel in the visible layer and is a fixed node in the

hidden layer, and draw a one-dimensional graph for node on one channel. In this

73

experiment, 200 such feature graphs (4channel * 50node) are grouped into 4 channels

each of which is shown as a big graph matrix shown below.

Fig. 46 Learned EOG features. (top) hEOG (buttom) vEOG

74

Fig. 47 Learned EMG features. (top) zEMG (bottom) tEMG

The whole experiment with 10 trials took about 1 hour on a Windows 7 machine

with 3.0 G dual-core CPU and 4G memory.

The means and standard deviations of the accuracy of arousal, valence, and liking are

0.609/0.074, 0.512/0.097, and 0.684/0.093, respectively, which are drawn in Fig. 48. The

classification accuracy in [6] is also depicted as filled dots for comparison purposes.

75

Fig. 48 Accuracy of DBN classification. Error bars for DBN classification accuracy on raw data and filled

dots for Gaussian naïve Bayes on features

Note that the three major differences when comparing the two results. Firstly, the

original paper employs a subject specific classification approach, but this study trains a

universal model for all subjects. Secondly, the original paper uses all the 8 peripheral

channels, compared to only 4 channels used in this work, which contain less information.

Thirdly, the original work takes hand-crafted features; in contrast, this work simply feeds

the raw data into the DBN. In this sense, this study solves a harder problem using DBNs.

The liking accuracy of this work is higher than that of the original work; the arousal

accuracy is slightly higher but not significant; however the valence accuracy is lower.

There may be three reasons to explain the poorer valence classification performance: a)

the 4 channels used in this work do not contain much useful information to discriminate

different valences; b) the features of valence are too complex for the DBN in our settings

to learn from the raw data; c) the inter-subject variability as claimed by [6] is too large

for a single model to capture.

 arousal valence liking
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

a
c
c
u
ra

c
y

76

The distribution of DBN’s classification performance in each subject is depicted

below.

Fig. 49 Histogram of accuracy distribution in 32 subjects

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

classification accuracy of arousal

nu
m

be
r

of
 s

ub
je

ct
s

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

classification accuracy of valence

nu
m

be
r

of
 s

ub
je

ct
s

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

classification accuracy of liking

nu
m

be
r

of
 s

ub
je

ct
s

77

5.5 Discussion

This work presents a system to apply DBNs to learn features from raw physiological

data and predict emotions. The trained universal model for all subjects in the DEAP

dataset shows that DBNs are capable to learn useful features in an unsupervised fashion

and have comparable classification performance with Gaussian naïve Bayes on hand-

crafted features. This result suggests the possibilities of further applications of DBNs on

physiological signal analysis and even other fields of similar complexity.

78

Chapter 6

Conclusion

Leveraging the recent breakthrough in deep neural networks provides means to learn

deep layered hierarchical representation of data. This brings us new possibilities to be

explored and new problems to be solved. My research focuses on developing practical

pipelines, frameworks, and systems on real-world deep learning applications. Particularly,

I have studied a proper way to search for the optimal deep learning structures and pre-

processing techniques, a new active labeling framework for cost-effective selection of

labeled data, and a pipeline to apply deep learning to emotion prediction via

physiological sensor data.

I empirically examine the optimal meta-parameters of deep learning networks in

terms of number of layers, number of nodes, and learning unit types, as well as the effects

of various data pre-processing techniques on the benchmark MNIST hand-written digit

dataset and a sleep stage dataset side by side. This is the first such kind of comprehensive

investigation. The experimental results show some settings are sensitive to the number of

hidden layers, some are sensitive to the number of nodes in each hidden layer, and the

others are not sensitive to the network structure at all. This suggests the optimal meta-

parameters are highly application dependent.

 Inspired by the general active learning framework, I propose active labeling deep

learning based on three metrics: least confidence, margin sampling, and entropy. This is

the first work that fits deep learning into the active learning framework, to address the

79

practical needs for cost-effective selection of labeled data in the paradigm of semi-

supervised learning. On the MNIST dataset, the proposed methods outperform random

labeling by 2%-4%, suggesting the usefulness of active labeling deep learning on clean

datasets. On the other hand, the new method performs similarly to random labeling on the

sleep stage dataset due to the noisiness and inconsistency in the data.

I also propose a pipeline to apply deep learning to emotion prediction via

physiological sensor data. This is the first system for modeling physiological data by

extracting features automatically and using extracted features to predict emotions. The

developed system has three advantages: 1) it does not require expert knowledge for

extracting features; 2) the features learned in the unsupervised learning stage can be used

by multiple tasks; and 3) the classification accuracy is 0.690, 0.512, and 0.684, for the

levels of arousal, valence, and liking, respectively, which is comparable with existing

methods based on expert designed features.

80

Reference

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise

training of deep networks," Advances in neural information processing systems,

vol. 19, p. 153, 2007.

[2] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with

neural networks," Science, vol. 313, pp. 504-507, 2006.

[3] P. Smolensky, "Information processing in dynamical systems: Foundations of

harmony theory," in Parallel distributed processing: explorations in the

microstructure of cognition, ed Cambridge, MA, USA: MIT Press, 1986, pp. 194-

281.

[4] B. Settles, "Active learning literature survey," University of Wisconsin, Madison,

2010.

[5] S. H. Fairclough, "Fundamentals of physiological computing," Interact. Comput.,

vol. 21, pp. 133-145, 2009.

[6] S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani, T. Ebrahimi, et al.,

"Deap: A database for emotion analysis using physiological signals," Affective

Computing, IEEE Transactions on, pp. 1-1, 2011.

[7] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward

networks with a nonpolynomial activation function can approximate any

function," Neural networks, vol. 6, pp. 861-867, 1993.

[8] K.-I. Funahashi, "On the approximate realization of continuous mappings by

neural networks," Neural networks, vol. 2, pp. 183-192, 1989.

[9] J. Hastad, "Almost optimal lower bounds for small depth circuits," in Proceedings

of the eighteenth annual ACM symposium on Theory of computing, 1986, pp. 6-20.

[10] G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep

belief nets," Neural computation, vol. 18, pp. 1527-1554, 2006.

[11] G. E. Hinton, "Training products of experts by minimizing contrastive

divergence," Neural computation, vol. 14, pp. 1771-1800, 2002.

[12] G. Hinton, "A practical guide to training restricted Boltzmann machines,"

Momentum, vol. 9, p. 1, 2010.

[13] Y. Le Cun, "Modèles connexionnistes de l'apprentissage," 1987.

[14] H. Bourlard and Y. Kamp, "Auto-association by multilayer perceptrons and

singular value decomposition," Biological cybernetics, vol. 59, pp. 291-294, 1988.

81

[15] G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description length, and

Helmholtz free energy," Advances in neural information processing systems, pp.

3-3, 1994.

[16] X. Zhu, "Semi-supervised learning literature survey," 2005.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied

to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[18] D. F. Wulsin, J. R. Gupta, R. Mani, J. A. Blanco, and B. Litt, "Modeling

electroencephalography waveforms with semi-supervised deep belief nets: fast

classification and anomaly measurement," Journal of Neural Engineering, vol. 8,

p. 036015, 2011.

[19] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, "Visualizing higher-layer

features of a deep network," Technical report, University of Montreal2009.

[20] H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area

V2," Advances in neural information processing systems, vol. 20, pp. 873-880,

2008.

[21] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief

networks for scalable unsupervised learning of hierarchical representations," in

Proceedings of the 26th Annual International Conference on Machine Learning,

2009, pp. 609-616.

[22] A. Ng. (2013). UFLDL Tutorial. Available:

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

[23] G. E. Hinton, "To recognize shapes, first learn to generate images," Progress in

brain research, vol. 165, pp. 535-547, 2007.

[24] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and

composing robust features with denoising autoencoders," in Proceedings of the

25th international conference on Machine learning, 2008, pp. 1096-1103.

[25] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked

denoising autoencoders: Learning useful representations in a deep network with a

local denoising criterion," The Journal of Machine Learning Research, vol. 9999,

pp. 3371-3408, 2010.

[26] F. Seide, G. Li, and D. Yu, "Conversational Speech Transcription Using Context-

Dependent Deep Neural Networks," in INTERSPEECH, 2011, pp. 437-440.

[27] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, et al., "Deep

neural networks for acoustic modeling in speech recognition: The shared views of

four research groups," Signal Processing Magazine, IEEE, vol. 29, pp. 82-97,

2012.

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

82

[28] Y. Bengio, "Neural net language models," Scholarpedia, vol. 3, p. 3881, 2008.

[29] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

"Natural language processing (almost) from scratch," The Journal of Machine

Learning Research, vol. 12, pp. 2493-2537, 2011.

[30] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in Neural Information Processing

Systems 25, 2012, pp. 1106-1114.

[31] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

"Improving neural networks by preventing co-adaptation of feature detectors,"

arXiv preprint arXiv:1207.0580, 2012.

[32] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,

"Maxout networks," arXiv preprint arXiv:1302.4389, 2013.

[33] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.

Mark, et al., "Physiobank, physiotoolkit, and physionet components of a new

research resource for complex physiologic signals," Circulation, vol. 101, pp.

e215-e220, 2000.

[34] M. Längkvist, L. Karlsson, and A. Loutfi, "Sleep Stage Classification Using

Unsupervised Feature Learning," Advances in Artificial Neural Systems, vol. 2012,

2012.

[35] A. R. Osborne and A. Provenzale, "Finite correlation dimension for stochastic

systems with power-law spectra," Physica D: Nonlinear Phenomena, vol. 35, pp.

357-381, 1989.

[36] L. Zoubek, S. Charbonnier, S. Lesecq, A. Buguet, and F. Chapotot, "Feature

selection for sleep/wake stages classification using data driven methods,"

Biomedical Signal Processing and Control, vol. 2, pp. 171-179, 2007.

[37] E. Pereda, A. Gamundi, R. Rial, and J. Gonzalez, "Non-linear behaviour of

human EEG: fractal exponent versus correlation dimension in awake and sleep

stages," Neuroscience letters, vol. 250, pp. 91-94, 1998.

[38] T. Gasser, P. Bächer, and J. Möcks, "Transformations towards the normal

distribution of broad band spectral parameters of the EEG,"

Electroencephalography and clinical neurophysiology, vol. 53, pp. 119-124, 1982.

[39] S. Zhou, Q. Chen, and X. Wang, "Active deep networks for semi-supervised

sentiment classification," in Proceedings of the 23rd International Conference on

Computational Linguistics: Posters, 2010, pp. 1515-1523.

83

[40] D. D. Lewis and W. A. Gale, "A sequential algorithm for training text classifiers,"

in Proceedings of the 17th annual international ACM SIGIR conference on

Research and development in information retrieval, 1994, pp. 3-12.

[41] S. Tong, "Active learning: theory and applications," Citeseer, 2001.

[42] T. Scheffer, C. Decomain, and S. Wrobel, "Active hidden markov models for

information extraction," in Advances in Intelligent Data Analysis, ed: Springer,

2001, pp. 309-318.

[43] A. McCallum and K. Nigam, "Employing EM and Pool-Based Active Learning

for Text Classification," in ICML, 1998, pp. 350-358.

[44] S. Tong and D. Koller, "Support vector machine active learning with applications

to text classification," The Journal of Machine Learning Research, vol. 2, pp. 45-

66, 2002.

[45] S. C. Hoi, R. Jin, and M. R. Lyu, "Large-scale text categorization by batch mode

active learning," in Proceedings of the 15th international conference on World

Wide Web, 2006, pp. 633-642.

[46] C. A. Thompson, M. E. Califf, and R. J. Mooney, "Active learning for natural

language parsing and information extraction," in ICML, 1999, pp. 406-414.

[47] B. Settles and M. Craven, "An analysis of active learning strategies for sequence

labeling tasks," in Proceedings of the Conference on Empirical Methods in

Natural Language Processing, 2008, pp. 1070-1079.

[48] S. Tong and E. Chang, "Support vector machine active learning for image

retrieval," in Proceedings of the ninth ACM international conference on

Multimedia, 2001, pp. 107-118.

[49] C. Zhang and T. Chen, "An active learning framework for content-based

information retrieval," Multimedia, IEEE Transactions on, vol. 4, pp. 260-268,

2002.

[50] R. Yan, J. Yang, and A. Hauptmann, "Automatically labeling video data using

multi-class active learning," in Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on, 2003, pp. 516-523.

[51] A. G. Hauptmann, W.-H. Lin, R. Yan, J. Yang, and M.-Y. Chen, "Extreme video

retrieval: joint maximization of human and computer performance," in

Proceedings of the 14th annual ACM international conference on Multimedia,

2006, pp. 385-394.

[52] G. Tur, D. Hakkani-Tür, and R. E. Schapire, "Combining active and semi-

supervised learning for spoken language understanding," Speech Communication,

vol. 45, pp. 171-186, 2005.

84

[53] N. Roy and A. McCallum, "Toward optimal active learning through monte carlo

estimation of error reduction," ICML, Williamstown, 2001.

[54] C. E. Shannon and W. Weaver, "A mathematical theory of communication," ed:

American Telephone and Telegraph Company, 1948.

[55] R. R. Cornelius, The science of emotion: Research and tradition in the psychology

of emotions vol. 133001539: Prentice Hall Upper Saddle River, NJ, 1996.

[56] D. Sander, D. Grandjean, and K. R. Scherer, "2005 Special Issue: A systems

approach to appraisal mechanisms in emotion," Neural networks, vol. 18, pp. 317-

352, 2005.

[57] D. Novak, M. Mihelj, and M. Munih, "A survey of methods for data fusion and

system adaptation using autonomic nervous system responses in physiological

computing," Interacting with Computers, vol. 24, pp. 154-172, 2012.

[58] D. McDuff, A. Karlson, A. Kapoor, A. Roseway, and M. Czerwinski,

"AffectAura: an intelligent system for emotional memory," in The ACM SIGCHI

Conference on Human Factors in Computing Systems, Austin, TX, 2012, pp. 849-

858.

[59] E. W. Boyer, R. Fletcher, R. J. Fay, D. Smelson, D. Ziedonis, and R. W. Picard,

"Preliminary Efforts Directed Toward the Detection of Craving of Illicit

Substances: The iHeal Project," Journal of Medical Toxicology, pp. 1-5, 2012.

[60] K. Plarre, A. Raij, S. M. Hossain, A. A. Ali, M. Nakajima, M. Al'absi, et al.,

"Continuous inference of psychological stress from sensory measurements

collected in the natural environment," in Information Processing in Sensor

Networks (IPSN), 2011 10th International Conference on, Chicago, IL, USA,

2011, pp. 97-108.

[61] S. D. Kreibig, "Autonomic nervous system activity in emotion: A review,"

Biological Psychology, vol. 84, pp. 394-421, 2010.

[62] J. Wagner, E. Andre, and F. Jung, "Smart sensor integration: A framework for

multimodal emotion recognition in real-time," in Affective Computing and

Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd International

Conference on, 2009, pp. 1-8.

[63] M. E. Miiller, "Why Some Emotional States Are Easier to be Recognized Than

Others: A thorough data analysis and a very accurate rough set classifier," in

Systems, Man and Cybernetics, 2006. SMC '06. IEEE International Conference

on, 2006, pp. 1624-1629.

[64] C. Peter, E. Ebert, and H. Beikirch, "A wearable multi-sensor system for mobile

acquisition of emotion-related physiological data," Affective Computing and

Intelligent Interaction, pp. 691-698, 2005.

85

[65] R. W. Picard, "Affective computing: challenges," International Journal of

Human-Computer Studies, vol. 59, pp. 55-64, 2003.

[66] M. M. Bradley and P. J. Lang, "Measuring emotion: Behavior, feeling, and

physiology," Cognitive neuroscience of emotion, vol. 25, pp. 49-59, 2000.

[67] R. A. Calvo and S. D'Mello, "Affect detection: An interdisciplinary review of

models, methods, and their applications," Affective Computing, IEEE

Transactions on, vol. 1, pp. 18-37, 2010.

[68] G. Chanel, J. J. Kierkels, M. Soleymani, and T. Pun, "Short-term emotion

assessment in a recall paradigm," International Journal of Human-Computer

Studies, vol. 67, pp. 607-627, 2009.

[69] J. Kim and E. André, "Emotion recognition based on physiological changes in

music listening," Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 30, pp. 2067-2083, 2008.

[70] P. Rainville, A. Bechara, N. Naqvi, and A. R. Damasio, "Basic emotions are

associated with distinct patterns of cardiorespiratory activity," International

journal of psychophysiology, vol. 61, pp. 5-18, 2006.

[71] S. Thrun, "Is learning the n-th thing any easier than learning the first?," Advances

in neural information processing systems, pp. 640-646, 1996.

[72] S. Thrun, "Learning to learn: Introduction," in In Learning To Learn, 1996.

[73] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny

images," Master's thesis, Department of Computer Science, University of Toronto,

2009.

[74] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, "Extracting and

composing robust features with denoising autoencoders," in Proceedings of the

25th international conference on Machine learning, 2008, pp. 1096-1103.

[75] G. W. Taylor, G. E. Hinton, and S. T. Roweis, "Modeling human motion using

binary latent variables," Advances in neural information processing systems, vol.

19, p. 1345, 2007.

[76] C. A. Frantzidis, C. Bratsas, M. A. Klados, E. Konstantinidis, C. D. Lithari, A. B.

Vivas, et al., "On the classification of emotional biosignals evoked while viewing

affective pictures: an integrated data-mining-based approach for healthcare

applications," Information Technology in Biomedicine, IEEE Transactions on, vol.

14, pp. 309-318, 2010.

[77] C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Troster, and U. Ehlert,

"Discriminating stress from cognitive load using a wearable EDA device,"

86

Information Technology in Biomedicine, IEEE Transactions on, vol. 14, pp. 410-

417, 2010.

[78] D. J. Hand and K. Yu, "Idiot's Bayes—not so stupid after all?," International

Statistical Review, vol. 69, pp. 385-398, 2001.

[79] G. E. Sakr, I. H. Elhajj, and H.-S. Huijer, "Support vector machines to define and

detect agitation transition," Affective Computing, IEEE Transactions on, vol. 1, pp.

98-108, 2010.

[80] D. Wu, C. G. Courtney, B. J. Lance, S. S. Narayanan, M. E. Dawson, K. S. Oie, et

al., "Optimal arousal identification and classification for affective computing

using physiological signals: virtual reality Stroop task," Affective Computing,

IEEE Transactions on, vol. 1, pp. 109-118, 2010.

[81] J. N. Bailenson, E. D. Pontikakis, I. B. Mauss, J. J. Gross, M. E. Jabon, C. A.

Hutcherson, et al., "Real-time classification of evoked emotions using facial

feature tracking and physiological responses," International journal of human-

computer studies, vol. 66, pp. 303-317, 2008.

[82] V. Kolodyazhniy, S. D. Kreibig, J. J. Gross, W. T. Roth, and F. H. Wilhelm, "An

affective computing approach to physiological emotion specificity: Toward

subject‐independent and stimulus‐independent classification of film‐induced

emotions," Psychophysiology, vol. 48, pp. 908-922, 2011.

[83] F. Nasoz, C. L. Lisetti, and A. V. Vasilakos, "Affectively intelligent and adaptive

car interfaces," Information Sciences, vol. 180, pp. 3817-3836, 2010.

[84] E. L. van den Broek, V. Lisý, J. H. Janssen, J. H. Westerink, M. H. Schut, and K.

Tuinenbreijer, "Affective man-machine interface: unveiling human emotions

through biosignals," in Biomedical Engineering Systems and Technologies, ed:

Springer, 2010, pp. 21-47.

87

Publications

[1] Dan Wang and Yi Shang, “Modeling Physiological with Deep Belief Networks,” in

International Journal of Information and Education Technology, vol. 3, no. 5, pp. 505-

511, 2013.

[2] Dan Wang and Yi Shang, “Active Labeling in Deep Learning”, to be submitted.

[3] Dan Wang, Peng Zhuang, and Yi Shang, "A new framework for multi-source geo-

social based mobile classifieds searches," in Artificial Neural Networks In Engineering

2010, St. Louis, MO, USA, 2010, pp. 129-135.

[4] Yi Shang, Wenjun Zeng, Dominic K. Ho, Dan Wang, Qia Wang, Yue Wang,

Tiancheng Zhuang, Aleksandre Lobzhanidze, Liyang Rui, “Nest: NEtworked

Smartphones for Target localization”, in 2012 IEEE Consumer Communications and

Networking Conference (CCNC), Las Vegas, NV, USA, 2012, pp. 732-736.

[5] Peng Zhuang, Dan Wang, and Yi Shang, "SMART: Simultaneous indoor localization

and map construction using smartphones," in 2010 International Joint Conference on

Neural Networks (IJCNN2010), Barcelona, Spain, 2010©IEEE. doi:

10.1109/IJCNN.2010.5596552.

[6] Peng Zhuang, Dan Wang, and Yi Shang, "Distributed faulty sensor detection," in

2009 IEEE Global Telecommunications Conference, Honolulu, Hawaii, USA,

2009©IEEE. doi: 10.1109/GLOCOM.2009.5425702.

88

VITA

Dan Wang was born in Chengdu, China. He is currently a PhD student in Computer

Science Department at the University of Missouri, Columbia, MO 65211, USA. He got

MS in Communication and Information System and BS in Communications Engineering

from Southwest Jiaotong University, Chengdu, China, in 2007 and 2003, respectively. He

has published 5 papers. His research interests include mobile computing, machine

learning, and wireless sensor networks. He was a summer intern with Amazon Web

Services in Seattle, WA, in 2011, 2012, and 2013. He will be joining Google as a

software engineer.

