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ABSTRACT 

 

Recent breakthroughs in deep learning have made possible the learning of deep 

layered hierarchical representations of sensory input. Stacked restricted Boltzmann 

machines (RBMs), also called deep belief networks (DBNs), and stacked autoencoders 

are two representative deep learning methods. The key idea is greedy layer-wise 

unsupervised pre-training followed by supervised fine-tuning, which can be done 

efficiently and overcomes the difficulty of local minima when training all layers of a deep 

neural network at once. Deep learning has been shown to achieve outstanding 

performance in a number of challenging real-world applications.  

Existing deep learning methods involve a large number of meta-parameters, such as 

the number of hidden layers, the number of hidden nodes, the sparsity target, the initial 

values of weights, the type of units, the learning rate, etc. Existing applications usually do 

not explain why the decisions were made and how changes would affect performance. 

Thus, it is difficult for a novice user to make good decisions for a new application in 

order to achieve good performance. In addition, most of the existing works are done on 

simple and clean datasets and assume a fixed set of labeled data, which is not necessarily 

true for real-world applications.  

  The main objectives of this dissertation are to investigate the optimal meta-

parameters of deep learning networks as well as the effects of various data pre-processing 

techniques, propose a new active labeling framework for cost-effective selection of 

labeled data, and apply deep learning to a real-world application – emotion prediction via 

physiological sensor data, based on real-world, complex, noisy, and heterogeneous sensor 



xi 

 

data. For meta-parameters and data pre-processing techniques, this study uses the 

benchmark MNIST digit recognition image dataset and a sleep-stage-recognition sensor 

dataset and empirically compares the deep network’s performance with a number of 

different meta-parameters and decisions, including raw data vs. pre-processed data by 

Principal Component Analysis (PCA) with or without whitening, various structures in 

terms of the number of layers and the number of nodes in each layer, stacked RBMs vs. 

stacked autoencoders.  For active labeling, a new framework for both stacked RBMs and 

stacked autoencoders is proposed based on three metrics: least confidence, margin 

sampling, and entropy. On the MINIST dataset, the methods outperform random labeling 

consistently by a significant margin. On the other hand, the proposed active labeling 

methods perform similarly to random labeling on the sleep-stage-recognition dataset due 

to the noisiness and inconsistency in the data. For the application of deep learning to 

emotion prediction via physiological sensor data, a software pipeline has been developed. 

The system first extracts features from the raw data of four channels in an unsupervised 

fashion and then builds three classifiers to classify the levels of arousal, valence, and 

liking based on the learned features. The classification accuracy is 0.609, 0.512, and 

0.684, respectively, which is comparable with existing methods based on expert designed 

features. 
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Chapter 1 

 

Introduction 

 

1.1 Motivations 

 

Shallow neural networks with an input layer, a single hidden layer, and an output 

layer require more computational elements or are hard to model complex concepts and 

multi-level abstractions. In contrast, multi-layer neural networks provide better 

representational power and could derive more descriptive multi-level models due to their 

hierarchical structures, with each higher layer representing higher-level abstraction of the 

input data. Unfortunately, it is difficult to train all layers of a deep neutral network at 

once [1]. With random initial weights, the learning is likely to get stuck in local minima. 

The breakthrough happened in 2006, when Hinton introduced a novel way called 

Deep Belief Networks (DBNs) to train multi-layer neural networks to learn features from 

unlabeled data [2]. A DBN trains a multi-layer neural network in a greedy fashion, each 

layer being a restricted Boltzmann machine (RBM) [3]. The trained weights and biases in 

each layer can be thought of as the features or filters learned from the input data. Then 

the weights and biases act as the initial values for the supervised fine-tuning using 

backpropogation. In short, a DBN discovers features on its own and does semi-supervised 

learning by modeling unlabeled data first in an unsupervised way and then incorporates 

labels in a supervised fashion. 
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A similar approach to the above mentioned stacked RBMs was introduced by Bengio 

[1] using stacked autoencoders instead of stacked RBMs. Each autoencoder is a one-

hidden-layer neural network with the same number of nodes in the input and output 

layers, which tries to learn an approximation to the identity function by applying regular 

backpropagation. The hidden layer with fewer units (or with a sparsity term) is a 

compressed representation of the input data, thus discovering interesting structure about 

the data. An autoencoder serves as a building block for deep neural networks similar to 

an RBM. The supervised fine-tuning stage could also be applied to stacked autoencoders 

by incorporating a softmax on top to train a classifier.  

One issue with current applications on deep learning is the lack of explanations about 

how to achieve a large number of meta-parameters that yield good results. Firstly, the 

authors usually fail to present the meta-parameters tuning process in their literature, 

particularly, the number of hidden layers and the number of hidden nodes. Thus, it is 

difficult for novice users to replicate the similar results on different problems. Secondly, 

although deep learning has the ability to learn features automatically from raw data, it 

may be interesting to investigate the effects of various data pre-processing techniques, 

either hand engineered features or commonly used dimension reduction algorithms such 

as principle component analysis (PCA) with or without whitening. Thirdly, RBMs and 

autoencoders are both designed to represent input data in a compressed fashion, but 

whether they perform the same in different problems remains questionable. 

Another practical problem with deep learning framework is how to choose samples to 

be labeled. Since the labeled data are scarce and expensive, it makes sense to choose the 

most informative samples to be labeled and then deep learning fine-tunes the 
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classification models using these labeled data. The existing researches on deep learning 

assume the labeled data are passive, either available there already or obtained from the 

samples randomly chosen to be labeled by human experts. The former may not be 

practical; the latter does not yield the best results. Suppose there is a budget on the 

number of samples to be labeled. It is expected to produce better classification 

performance in most cases (but the same or even worse performance on some datasets) 

for an active labeling algorithm to always select the most challenging samples to be 

labeled. This falls into the well-defined active learning framework [4]. However, how to 

estimate which samples are more informative or more challenging remains unexplored 

with deep learning.  

Last, despite the power of deep learning, blindly applying it to real scenarios does not 

yield satisfactory results, except on toy datasets. A pipeline of applying deep learning to 

actual problems is desired, which includes raw data pre-processing, raw data selection 

and division, normalization, randomization, and deep learning training and classification. 

To map physiological data to emotions using deep learning could serve as a good 

example to articulate the process. Physiological data is collected by sensors as a means of 

human-computer interaction by monitoring, analyzing and responding to 

psychophysiological activities [5]. The data types include a lot of channels, useful to 

predict human’s physical activities, emotions, and even potential diseases. Since the goals 

vary a lot, it is difficult to know useful features without expert’s knowledge. Deep 

learning is promising to overcome the barrier by extracting useful features automatically. 

Moreover, deep learning, acting as a semi-supervised machine learning algorithm, takes 

advantage of scarce labeled data and abundant unlabeled data in this scenario. 
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1.2 Contributions 

 

This dissertation makes three major contributions to the area of deep learning that are 

summarized as follows. 

First, I investigate the optimal meta-parameters of deep learning networks as well as 

the effects of various data pre-processing techniques. This study uses the benchmark 

MNIST digit recognition image dataset and a sleep-stage-recognition sensor dataset and 

empirically compares the deep learning network’s performance with quite a few 

combinations of settings, including raw data vs. pre-processed data by Principal 

Component Analysis (PCA) with or without whitening for MNIST and hand extracted 

features for the sleep stage dataset, various structures in terms of the number of layers 

and the number of nodes in each layer, different building blocks including stacked RBMs 

vs. stacked autoencoders. The process is presented as a guideline for future deep learning 

applications to tune meta-parameters and data pre-processing. 

Second, I propose a new active labeling framework for deep learning including both 

stacked RBMs and stacked autoencoders based on three metrics: least confidence, margin 

sampling, and entropy, for cost-effective selection of labeled data. Then I investigate the 

performance of the active labeling deep learning technique in all the three metrics, 

compared to a random labeling strategy, on the raw data and features of the MNIST 

dataset and the sleep stage dataset. 
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Last, I develop a pipeline to apply deep learning to emotion prediction via 

physiological data, based on real-world, complex, noisy, and heterogeneous sensor data. 

The system first extracts features from the raw data of four channels in an unsupervised 

fashion and then builds three classifiers to classify the levels of arousal, valence, and 

liking based on the learned features. 

 

1.3 Outline of the Dissertation 

 

This dissertation is organized into the following chapters. 

In Chapter 1, the motivations and the scope of the proposed research are introduced. 

Chapter 2 presents the background knowledge and state-of-the-art techniques of deep 

learning, and introduces two types of building blocks and their performance on a 

benchmark hand written digit dataset MNIST. 

In Chapter 3, deep learning is revisited to explore the optimal settings of the input 

pre-processing, neural network structure, and the learning unit types. 

In Chapter 4, an active labeling deep learning framework is proposed to choose the 

most informative samples to be labeled. Three criteria are introduced in the active 

labeling framework.  

In Chapter 5, the application of DBNs on the physiological dataset DEAP [6] is 

developed and its performance is evaluated. 

Chapter 6 concludes the dissertation. 
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Chapter 2 

 

Deep Learning Background and General 

Knowledge 

 

2.1 Background 

 

An example of shallow neural networks with an input layer, a single hidden layer, and 

an output layer, as shown in Fig. 1, can be trained with backpropagation for classification 

or regression. Theoretically a shallow net can approximate any functions as long as it has 

enough units in the hidden layer [7, 8], but the size of hidden units grows exponentially 

with the input layer size [9]. So many units are needed in the hidden layer of a shallow 

neural network for a representative model is because the single hidden layer is just one 

step away from the input layer and the output layer, which is forced to translate the raw 

data from the input layer to complex features that can be used for classification in the 

output layer. Too many hidden units increase computational complexity, and even worse, 

easily result in overfitting, especially when the training set size is relatively small.  

In contrast, a deep network with two or more hidden layers provides better 

representational power and thus obtains more descriptive models thanks to feature 

sharing and abstraction. A lower layer’s features are reused by the layer above it, whereas 

a higher layer represents higher-level abstraction of data. In deep nets lower layers are 

relaxed to learn simple or concrete features whereas higher layers tend to represent 

complex or abstract features. For example, to transform the raw input images of 
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handwritten digits into three gradually higher levels of representations, the first layer 

could feature key dots, the second layer could represent lines and curves, and the features 

learned by the third layer are closer to more meaningful digit parts. 

 

 
Input layer

hidden layer

output layer

 

Fig. 1 An example of shallow neutral networks 

 

Unfortunately, it is difficult to train deep neutral networks  all layers at once [1]. With 

large initial weights, the learning is likely to get stuck in local minima. With small initial 

weights, the gradients are tiny, so the training takes forever to converge. 

Hinton [2, 10] proposed deep belief networks (DBNs) to overcome the difficulties by 

constructing multilayer restricted Boltzmann machines (RBMs) [3] and training them 

layer-by-layer in a greedy fashion. Since the network consists of a stack of RBMs, it is 

also called stacked RBMs. We use DBN and stacked RBMs interchangeably in this 

dissertation, as opposed to stacked autoencoders to be introduced later. 

The training process has two stages. The first is the pre-training stage, in which no 

labels are involved and the training is done in an unsupervised way. The training starts 

off with the bottom two layers to obtain features in hidden layer 1 from the input layer. 
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Then the training moves up to hidden layer 1 and layer 2, treating layer 1 as the new 

input to get its features in layer 2. The greedy layer-wise training is performed until 

reaching the highest hidden layer. The first stage trains a generative model as weights 

between layers to capture the raw input’s features, resulting in better starting point for the 

second stage than randomly assigned initial weights. The second is the fine-tuning stage. 

In this stage, a new layer is put on top of the stacked RBMs of the first stage to construct 

a discriminative model. The overall schema of a DBN with three hidden layers is shown 

in Fig. 2. 

 

h3

h2

h1

V

h3

h2

h1

V

labels

(a) (b)  

Fig. 2 A DBN schema with three hidden layers. (a) The pre-training stage without labels involved (b) The 

fine-tuning stage 

 

A variation to the above mentioned deep learning algorithm was introduced by 

Bengio[1] using stacked autoencoders. An autoencoder neural network is an 

unsupervised learning algorithm trying to learn an approximation to the identity function 
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by applying regular backpropagation. The hidden layer with fewer nodes (or with a 

sparsity term) than the input layer learns a compressed representation of the input data, 

aiming at the same goal as a hidden layer does in stacked RBMs. To exploit stacked 

autoencoders to do deep learning for a classification task, it also involves an unsupervised 

pre-training stage and a supervised fine-tuning stage. In the pre-training stage, the output 

of one hidden layer serves as the input for the higher hidden layer, resulting in a stacked 

hierarchical structure to learn more and more abstract features. In the fine-tuning stage, a 

softmax layer is added on top of the stacked autoencoders and a regular backpropagation 

is applied using the learned weights and biases in the first stage as a starting point.   

All in all, stacked RBMs and stacked autoencoders only differ in the unsupervised 

pre-training stage, where different building blocks are used, to attempt to achieve the 

same functionality. 

For simplicity, this dissertation refers stacked RBMs with a softmax on top to 

“stacked RBMs” or a “DBN”. The same rule applies to “stacked autoencoders”. 

 

2.2 The Building Blocks 

 

2.2.1 Restricted Boltzmann Machine 

As the building blocks of DBNs, a restricted Boltzmann machine (RBM) [3] has a 

visible layer consisting of stochastic, binary nodes as the input and a hidden output layer 

consisting of stochastic, binary feature detectors as the output, connected by symmetrical 

weights between nodes in different layers. RBMs have two key features. Firstly, there are 

no connections between the nodes in the same layer, making tractable learning possible. 
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Second, the hidden units are conditionally independent given the visible layer thanks to 

the undirected connections, so it is fast to get an unbiased sample from the posterior 

distribution. A graphical depiction of an RBM is shown in Fig. 3. 

j

i

hidden

visible

wij

 

Fig. 3 Graphical depiction of an RBM 

 

A joint configuration       of the visible and hidden nodes can be represented by an 

energy function given by 

 

         ∑            ∑      ∑         (1) 

 

where        is the energy with configuration   on the visible nodes and   on the hidden 

nodes,    is the binary state of visible node  ,    is the binary state of hidden node  ,     is 

the weight between node   and  , and the bias terms are    for the visible nodes and    for 

the hidden nodes (biases not shown in Fig. 3). 

The probability of a given joint configuration depends on the energy of that joint 

configuration compared to the energy of all joint configurations, specified by 

 

                     (2) 
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Concretely its probability is determined by normalizing it by a partition function  , as 

shown in 

 

        
        

 
      (3) 

  ∑         
         (4) 

 

The formula implies that the lower energy a configuration has, the higher probability 

it would occur. 

The summation along all the hidden units produces the probability of a configuration 

of the visible units. 

      
∑         

 

 
      (5) 

 

The binary nodes of the hidden layer are Bernoulli random variables. The probability 

that node    is activated, given visible layer  , can be derived from (4) as 

 

 (     |           ∑           (6) 

 

      
 

     
     (7) 

 

where       is called the sigmoid logistic function. 

The probability that node    is activated, given hidden layer h, can be calculated in a 

similar way as follows 
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       |           ∑           (8) 

 

It is intractable to compute the gradient of the log likelihood of   directly. Therefore, 

[11] proposed contrastive divergence by doing   iterations of Gibbs sampling to 

approximate it. Note from (8) it is easy to get an unbiased sample of the visible layer 

given a hidden vector because there are no direct connections between visible units in an 

RBM. The algorithm starts with a training vector on the units in the visible layer, then 

uses the vector to update all the hidden units in parallel, samples from the hidden units, 

and uses these samples to update all the visible units in parallel to get the reconstruction. 

This process is applied   (often    ) iterations to obtain the change to     as below 

 

 
        

    
               

         
     (9) 

 

where      is the average over a given size of samples when working with minibatches 

(described later) at a contrastive divergence iteration   and   is the learning rate. The 

update rule to the biases takes the similar form. Fig. 4 illustrates how to update an RBM 

with the contrastive divergence with k = 1 (CD1). 

The above-mentioned rule works, but a few tricks are used to accelerate the learning 

process and/or prevent overfitting. The three mostly commonly used techniques are 

minibatch, momentum, and weight decay [12]. 
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Fig. 4 Updating an RBM with contrastive divergence (k = 1) 

 

Minibatch is a minor variation of (9) in which     is updated by taking the average 

over a small batch instead of a single training vector. This produces two advantages. 

Firstly minibatch works with a less noisy estimate of the gradient since it takes the 

average and the outliers in the training vectors does not impact much. Secondly it allows 

a matrix by matrix product instead of a vector by matrix product, which can be taken 

advantage by modern GPUs or Matlab to speed up the computation. However, it is a bad 

idea to make the minibatch size too large because the number of updates will decrease 

accordingly, eventually resulting in inefficiency.  

Momentum is used to speed up learning by simulating a ball moving on a surface. It 

is an analogy to the acceleration as if     were the distance and      were the velocity. 

Instead of using the estimated gradient to change weights directly as shown in (9), the 

momentum method uses it to change the velocity of weights change. 
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      (10) 

 

where   is a hyper-parameter to control the weight given to the previous velocity. 

Weight decay is a standard L2 regularization to prevent the weights from getting too 

large. The updated rule is changed to 

 

                        
  

   
             (11) 

 

where   is the weight cost which controls how much penalty should be applied to weight 

     . 

Moreover, a technique called early stopping is often exploited to prevent the model 

from overfitting. The root mean squared error (RMSE) between the input and its 

reconstruction on validation set (if available) or training set often acts as the loss function. 

Then the constant increase of the RMSE indicates the model is overfitting so the training 

should stop. 

 

2.2.2 Autoencoder 

An autoencoder [13-15] is an unsupervised learning algorithm that attempts to learn 

an identity function by setting the outputs to be equal to the inputs (or at least minimizing 

the reconstruction error), shown in Fig. 5. When the number of nodes in the hidden layer 

is larger than or equal to the number of nodes in the input/output layers, it is trivial to 

learn an identity function. By placing some restrictions on the network to make it as a 

regularized autoencoder, we can learn compressed representation of the input data. The 

easiest way to do so is limit the number of nodes in the hidden layer to force fewer nodes 
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to represent features. Actually the discovered low-dimensional features will be very 

similar to PCA.  In this sense, the mapping from the input layer to the hidden layer is 

called encoding and the mapping from the hidden layer to the output layer is called 

decoding. 

In summary, the basic autoencoder tries to find  

 

        |         |      
      

     (12) 

where x is the input, W is the weights, b is the biases, and h is the function mapping input 

to output. 

 

Input layer

hidden layer

output layer

 

Fig. 5 An autoencoder 

 

The argument above does not hold when the number of hidden nodes is large. But 

even when it is large, we can still apply a different kind of regularization called sparsity 

on the hidden nodes, to force them to learn compressed representations. Specifically, let 
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 ̂  
 

 
∑ [  

   
      ] 

        (13) 

 

be the average activation of hidden unit j over the training set of size m. The objective is 

to approximate the sparsity parameter p to  ̂. The extra penalty term to (12) to measure 

the difference between p and  ̂ could be 

 

∑     
 

 ̂ 
         

   

   ̂ 

  
        (14) 

 

where j is a hidden node,    is the number of nodes in the hidden layer. The value reaches 

its minimum of 0 at  ̂    and blows up as  ̂ approaches 0 or 1. 

The overall cost function now becomes 

 

                     (∑     
 

 ̂ 
         

   

   ̂ 

  
   )  (15) 

Now we need to do a backpropagation to update W and b. The full derivation is 

similar to that on an RBM. 

 

2.3 Unsupervised Learning Stage 

 

A single RBM or autoencoder may not be good enough to model features in real data. 

Iteratively we could build another layer on top of the trained RBM or autoencoder by 

treating the learned feature detectors in the hidden layer as visible input layer for the new 

layer, as shown in Fig. 2(a). The unsupervised learning stage has no labels involved and 



17 

 

solely relies on unlabeled data itself. The learned weights and biases reflect the features 

of the data and then will be used as the starting point for the fine-tuning supervised 

learning stage. 

 

2.4 Supervised Learning Stage 

 

To train a deep learning network as a discriminative model, the supervised learning 

stage adds a label layer and removes the links in the top to down direction, or decoding 

layers called by [2], as shown in Fig. 2(b). Then the standard backpropogation is 

executed. The goal is to minimize the classification errors given the labels of all or partial 

samples.  

Since the newly added top layer has one and only one unit that can be activated at a 

time and the probabilities of turning each unit on must add up to 1, (6) for binary units 

does not apply any more but it can be generalized to   alternative states by a softmax 

function. 

 

   
 
  

∑     
   

       (16) 

 

where      (     |   . 

The weights and biases are initialized as the values learned in the pre-training stage, 

except for those between the original top layer and the newly added top layer, which are 

randomly initialized. In the first few iterations, the training tackles the randomly 

initialized weights and biases between the top two layers by keeping other weights and 
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biased fixed. The reason to do this is because the initial values learned from the pre-

training are quite close to the representative features of the training data but the randomly 

initialized values are far from optimal. After the first few iterations, all layers are trained 

together treating the raw training data as the input and the labels as the output.  

If fewer labeled samples are used in the supervised learning stage than the unlabeled 

samples used in the unsupervised pre-training stage, it is a paradigm of semi-supervised 

learning [16]. 

A validation set should be used whenever possible to avoid overfitting the model, as 

done in the pre-training stage. The difference is now the validation set has labeled 

samples rather than unlabeled ones. 

 

2.5 Deep Learning Performance Evaluation on MNIST 

 

2.5.1 Stacked RBMs 

To evaluate the performance of DBNs and explore how the hyper-parameters 

settings impact the performance, a few experiments have been carried out on a widely 

used dataset MNIST. 

The MNIST handwritten digits dataset [17] has 70,000 samples in total, 

conventionally divided into a training set of 50,000 samples, a validation set of 10,000 

samples, and a test set of 10,000 samples. The digits have been size-normalized and 

centered in a 28 by 28 pixels image. The classes are 0 through 9. The MNIST dataset has 

been broadly used to evaluate the performance of machine learning algorithms. 
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[18] provided an object-oriented matlab toolbox named DBNToolbox for working 

with RBMs and DBNs. The toolbox has an abstract class NNLayer and its imeplemtation 

class RBM to train a single RBM, a class DeepNN to train all layer together in the fine-

tuning stage, and a few helper functions. The experiments in this section employed the 

DBNToolbox and most other experiments of my own proposed algorithms on top of the 

original DBNs were written based on the toolbox. 

The main metric to evaluate the performance in this work is the classification 

accuracy defined below 

                         
                                      

                       
 (17) 

 

The same network structure 784-500-500-2000-10 as in [2] results in 0.9849 

accuracy by the basic experiment, whose parameters are listed in Table 1. 

Table 1 DBN parameters on MNIST 

Unsupervised pre-training stage  

learning rate  0.05 

number of epochs 50 

minibatch size 100 

momentum 0.5 for the first 5 epochs, 0.9 thereafter  

weight cost 0.0002 

Supervised fine-tuning stage  

learning rate  0.05 

number of epochs 50 

minibatch size 1000 

number of initial epochs 5 

 

DBNs have the ability to learn features automatically, so it would be helpful to 

visualize the features learned in the example. Although[19] proposed two techniques 

called activation maximization and sampling from a unit to show clearer patterns in 

higher layers, they need to clamp input or somehow use the training set’s information. In 

contrast, it is more likely to show the features of the model itself by simply doing a 
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weighted linear summation over a visible layer to obtain a hidden layer’s feature as done 

in [20]. 

The figure below shows how each pixel of the input images weighs on each unit in 

the first layer as an image of the same size as the input images. The weights are scaled to 

[-1 1].  The unsupervised learned features of the units in the first hidden layer are 

depicted in Fig. 6. 

 

Fig. 6 Learned features of the first hidden layer 

 

The first layer’s weights multiplied by the second layer’s produce the features 

learned in the second layer in the input space, as shown in Fig. 7. The weights are scaled 

to [-1 1], too. 

The third layer’s features are shown in Fig. 8 by applying the same trick. 
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Fig. 7 Learned features of the second hidden layer 

 

 

Fig. 8 Learned features of the third hidden layer 
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It is quite hard to tell if each layer is more abstract than the layer below. Even the 

first layer does not have clearly human readable patterns. The reason is because the 

regular RBM is a distributed model, so the features learned are not local or sparse. [21] 

states that the sparsity regularization is important for the first layer to learn oriented edge 

filters. A sparse RBM (sRBM) proposed by [20] is an algorithm to make the features 

learned by RBMs sparse. This is done by adding a regularization term that penalizes a 

deviation of the expected activation of the hidden units from a fixed level. The update 

rule for hidden layer’s biases becomes 

 

                        (
  

   

          ) 

 
 

 
            |        (18) 

 

where   is a constant controlling the sparseness of the hidden units. The last term is 

introduced by sRBM.  

Since the original DBNToolbox does not have a sparse implementation of RBMs, I 

added a protected abstract method UpdateSparcity(obj, visSamples) to NNLayer.m. 

RBM.m implements the function, which is called at the end of each epoch by 

NNLayer.m’s Train method. The value of   can be set in RBM.m’s UpdateSparcity 

function. 

When      , the features learned in 3 layers of sRBMs are shown as follows. The 

classification accuracy is 0.9731, slightly worse than the DBN composed of regular 

RBMs. 
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Fig. 9 Learned features of the first hidden layer of sRBM 

 

Fig. 10 Learned features of the second hidden layer of sRBM 
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Fig. 11 Learned features of the third hidden layer of sRBM 

 

The features learned by sRBM are sparser and they are more human-readable. The 

first layer seems like strokes; the second layer looks like digits parts; digits and digit-like 

shapes are shown in the third layer.  

To demonstrate how DBNs work as a semi-supervised learning algorithm, 

experiments with different numbers of unlabeled samples for pre-training and different 

numbers of labeled samples for fine-tuning were performed. 

Because a small number of labeled samples are used in the experiment, 

DBNToolbox has a minor bug in this scenario. DeepNN’s default value for the parameter 

miniBatchSize is 1000. When calculating the number of mini-batches, the program floors 

it to 0 if the sampling size is less than 1000. To overcome the bug, DeepNN’s 

miniBatchSize is set to a number less than or equal to the size of training samples. 
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Another caveat is when the size of samples is small the distribution of digits could be 

highly unbalanced. A function was implemented to randomly sample indices for training 

and validation sets and guarantee each digit has the same size in both sets. DBNToolbox 

also requires in both sets there is at least one sample from each class. 

A 784-150-150-150-10 DBN with 0 to 6400 unlabeled samples and 50 to 250 labeled 

samples produces the result below. Each point is the average of 10 trials. 

 

 

Fig. 12 The predication accuracy of a 784-150-150-150-10 DBN using different numbers of unlabeled and 

labeled samples. The legends show the numbers of labeled samples. 

 

The unlabeled samples help, especially when the labeled samples are scarce. 

 

2.5.2 Stacked Autoencoders 

The similar experiments have been conducted on the same MNIST dataset using 

stacked autoencoders.  The Matlab code from [22] is used as a starting point for all the 
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staked autoencoders implementation. A 784-200-200-10 network with parameters listed 

in Table 2 yields 0.9781 classification accuracy. 

 

Table 2 Stacked autoencoders parameters on MNIST 

Unsupervised pre-training stage  

sparsity object 0.1 

sparsity penalty term 3 

weight decay 0.003 

maximum iteration 200 

Supervised fine-tuning stage  

weight decay 0.003 

maximum iteration 200 

 

The learned features in the first and second hidden layers are depicted in Fig. 13 and 

Fig. 14. The first layer seems to detect edges and the second layer seems to detect contours, 

which are similar to the features learned by the first and third layers of stacked sRBMs as 

shown in Fig. 9 and Fig. 11. 

 

Fig. 13 First hidden layer of stacked autoencoders detects edges 
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Fig. 14 Second layer of stacked autoencoders detects contours 

 

In conclusion, stacked RBMs and stacked autoencoders tend to learn similar features 

and achieve similar classification accuracy on the MNIST dataset. 

 

2.6 State of the Art on Deep Learning 

 

As the first breakthrough, a deep belief network (DBN) by stacking pre-trained 

RBMs without the decoding parts was proposed by Hinton [2, 10, 23]. The pre-training 

idea was then adopted by many researchers to come up with new algorithms. [20] used 

sparse RBMs as learning units. [1, 24, 25] used an autoencoder and its variants such as 

denoising or sparse version as the building blocks instead of RBM families.  

Deep learning shows it power mainly in two areas: speech recognition / language 

processing [26-29] and object recognition[30]. Recent success in these areas features two 

key ingredients: convolutional architectures[17, 21, 30] and dropouts[31, 32]. 
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The convolutional architectures alternate convolutional layers and pooling layers. 

Units on a convolutional layer only deal with a small window which corresponds to a 

spatial or temporal position. Units on a pooling layer aggregate the outputs on units at a 

lower convolutional layer. 

Dropouts intentionally ignore random nodes in hidden layers and input layers when 

training. This process mimics averaging multiple models. It also improves neural 

networks by preventing co-adaptation of feature detectors by forcing different nodes to 

learn different features. 

Sparsity, denoising, and dropouts all aim to reduce the capacity of neural networks to 

prevent overfitting. 
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Chapter 3 

 

Meta-parameters and Data Pre-processing in 

Deep Learning 

 

3.1 Motivation 

 

Existing deep learning methods involve a large number of meta-parameters, such as 

the number of hidden layers, the number of hidden nodes, the sparsity target, the initial 

values of weights, the type of units, the learning rate, etc. Existing applications usually do 

not explain why the decisions were made and how changes would affect performance.  

Firstly, how to determine the structure of deep learning networks is unknown. For 

example, the first DBN paper [2] used a 784-500-500-2000-10 DBN to achieve 98.8% 

classification accuracy on MNIST. It would be interesting to know why such a network 

configuration was chosen and if other choices could yield similar results. Thus, it is 

difficult for a novice user to make good decisions for a new application in order to 

achieve good performance.  

In addition, deep learning is promising to extract features on its own, therefore the 

raw input should work well. But what if we feed in hand-engineered features? Will it 

work better? Despite the same or slightly worse performance, is it worthwhile to apply 

dimension reduction beforehand to speed up the training process? 
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Last, even if the two types of building blocks in deep learning, namely RBMs and 

autoencoders, are expected to function similarly, it is still necessary to compare their 

performance in different settings on different datasets. 

This chapter will address these three important questions. 

 

3.2 Dimensionality Reduction by PCA and Whitening 

 

When the input space is too large for neural networks to handle, we often want to 

reduce the dimensionality of the input data to significantly speed up the training process. 

This could be done by a general dimensionality reduction algorithm, or by an expert 

designed feature extractor. The latter has the benefit of obtaining meaningful 

representation but it also loses some information of the raw data. 

For problems that do not have human understandable features, principal component 

analysis (PCA) is a popular choice as a linear dimensionality reduction technique.  

PCA is used to find a lower-dimensional subspace onto which the original data is 

projected. Usually we need data x that has zero mean. If the data does not have the 

property, we zero mean it. First we compute the covariance matrix of x as 

 

∑   
 

 
∑             
 

   

 (19) 

 

where      is one data point and m is the number of data points. 
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Then we apply standard singular value decomposition to the covariance matrix to get 

the matrix U of eigenvectors and the vector   of eigenvalues. We could preserve all the 

input data’s information but present it in a different basis by computing 

 

          

 

(20) 

The reduced dimension representation of the data can be obtained by computing 

 

 ̂      
      (21) 

 

where k is the dimension to keep. 

To set k, we usually determine it by the percentage of variance retained, which is 

given by 

 

∑   
 
   

∑   
 
   

 (22) 

 

To retain 99% of the variance, we need to pick the smallest value of k such at the 

above value is no less than 0.99. The special case is k = n, when the retaining rate is 1, 

which means the PCA processed data containing all the variance. 

The goal of whitening is to make features less correlated and have the same variance. 

We can simply get it done by rescaling features by 
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 ̂           
 ̂ 

√    
 (23) 

 

where   is a regularization term to prevent the result from blowing up. 

 

3.3 Sleep Stage Dataset and its Features 

 

The MNIST dataset and a sleep stage dataset will be used in this chapter. This 

section is the description of the benchmark sleep stage dataset provided by PhysioNet 

[33]. This study will use the first 5 acquisitions out of 25 available in the dataset (21 

males and 4 females with average age 50), each consisting of 1 EEG channel (C3-A2), 2 

EOG channels, and 1 EMG channel downsampled at 64Hz. Each acquisition lasts about 7 

hours on average. Each sample is taken from 1-second window with 256 dimensions, 

normalized to [0, 1]. The labels are 5 sleep stages: awake, stage 1 (S1), stage 2 (S2), slow 

wave sleep (SWS) and rapid eye-movement sleep (REM). 

A band-pass filter and a notch filter at 50Hz are applied to all channels. Then the 30-

second data before and after a sleep stage switch are removed. Finally all classes are 

balanced determined by the class with the fewest samples. 1/7 data is reserved for testing 

and the rest is for training, which results in 8508 samples for testing and 51042 for 

training. A 60-second raw data of each channel is depicted in Fig. 15.  

28 hand-made features are extracted from 1-second long samples. The features of a 

subject’s data are shown in Fig. 16. The details about how to calculate these features can 

be found in [34-38]. 

The corresponding classes are shown in Fig. 17. 
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Fig. 15 60-second raw data downsampled at 64Hz of sleep stage dataset.  
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Fig. 16 28 features of a subject's data. X-axis is time in seconds and y-axis shows non-normalized values 

 

 

Fig. 17 sleep stage classes of a subject. X-axis is time in seconds and y-axis is the 5 possible sleep stages 

 

3.4 Investigation of Optimal Meta-parameters and Pre-processing 

Techniques 

 

This study will conduct a search on 2 datasets (MNIST and sleep stage dataset) along 

3 dimensions: raw vs. PCA95% whitened data as input, net structures (different numbers 

of layers and different numbers of nodes), and RBM vs. autoencoder as learning units. 

There will be 8 possible combinations. 

Softmax regression serves as a baseline compared to more advanced deep learning 

algorithms (i.e., stacked RBMs and stacked autoencoders). 
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The following two sections will be experiments carried out on MNIST and the sleep 

stage dataset, respectively. In the first subsection, softmax regression only will be used to 

evaluate the performance of raw data vs. PCA processed data on MNIST or features on 

the sleep stage dataset. In the second subsection, different net structures will be tried on 

raw data and picked PCA processed data (as for retaining rate and with or without 

whitening) or features. 

 

3.5 Experimental Results on MNIST Dataset 

 

3.5.1 Data Pre-processing 

To evaluate how PCA processing with different retention rates and whitening affects 

the performance compared to the raw data, softmax regression is applied to the MNIST 

dataset. 

 

3.5.1.1 On Raw Data 

Weight decay of the softmax regression is set to be 3e-3. The training on raw data 

takes 17 seconds and achieves 0.9150 classification accuracy.  

The learned weights by the 10 softmax nodes in the output layer are shown in Fig. 18. 
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Fig. 18 weights learned by 10 softmax nodes on raw of MNIST 

 

3.5.1.2 On PCA With or Without Whitening 

90%, 95%, 99%, and 100% retention rates for PCA with or without whitening 

(regularization   = 0.1) are evaluated. The quality of recovered data from the lower 

dimensional space is shown in Fig. 19. Even if we reduce the data dimension to 64-d, it 

still retains 90% of the variance, and the digits are highly recognizable.  

 

 

raw     raw with zero mean 
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PCA90% 64-d          PCA95% 120-d 

 

PCA99% 300-d        PCA100% 784-d 

 

PCA90% with whitening      PCA95% with whitening 
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PCA99% with whitening      PCA100% with whitening 

Fig. 19 PCA with or without whitening 

 

The classification accuracy of softmax regression on raw and pre-processed data of 

MNIST is shown in Fig. 20. The time spent on training is depicted in Fig. 21. 

 

Fig. 20 Classification accuracy of softmax regression on MNIST 

 

0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy
 

softmax on MNIST 



39 

 

 

Fig. 21Training time of softmax regression on MNIST 

 

For softmax, using whitening or not does not affect the classification accuracy much, 

but PCA especially with whitening reduces training time a lot. Whitened data has smaller 

variations, which could be the reason it converges faster. For example, PCA95 with 

whitening saves ¾ of training time with less than 0.3% accuracy loss. However, PCA 

process alone takes about 10 seconds and whitening takes additional 10 seconds. The pre-

processing overhead makes it less attractive for simple classifier such as softmax 

regression. 

 

3.5.2 Deep Learning Network Structure 

Classifications on the raw and PCA95% whitened data using different network 

structures in terms of number of layers and number of nodes and different learning units 

will be carried out to compare their performance. 
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3.5.2.1 Stacked RBMs on Raw Data 

Fig. 22 shows classification accuracy of stacked RBMs of various network structures 

on raw of MNIST. More layers and more nodes seem to achieve better performance, but 

the performance gain is not very significant when the number of nodes grows more than 

200. The corresponding training time is shown in Fig. 23. The training time roughly has a 

linear relationship with the number of layers and number of nodes in each layer. 

 

Fig. 22 Classification accuracy of stacked RBMs of various net structures on raw of MNIST 
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Fig. 23 Training time of stacked RBMs of various net structures on raw of MNIST 

 

3.5.2.2 Stacked RBMs on PCA at Retention Rate 95% 

Fig. 24 and Fig. 25 show classification accuracy and training time of stacked RBMs of 

various network structures on PCA95% whitened data of MNIST.  

The classification accuracy is no better than that of softmax. Even worse, the 3-layer 

case can only achieve less than 0.8 classification accuracy. The reason is PCA itself 

extracts uncorrelated features and the stacked RBMs try to extract some correlations from 

uncorrelated features and of course fails. Thanks to the topmost softmax layer, stacked 

RBMs with 1 and 2 layers still work but 3-layer network does a terrible job in the pre-

training stage which cannot be offset by the fine-tuning stage. 

 

 

Fig. 24 Classification accuracy of stacked RBMs of various net structures on PCA95 whitened of MNIST 
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Fig. 25 Training time of stacked RBMs of various net structures on raw of MNIST 
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Fig. 26 and Fig. 27 show classification accuracy and training time of stacked 
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information from bottom to up due to too few nodes with sparsity regularization, so the 
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performance becomes better, and eventually beats 1-layer network. 
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Fig. 26 Classification accuracy of stacked autoencoders of various net structures on raw of MNIST 

 

 

Fig. 27 Training time of stacked autoencoders of various net structures on raw of MNIST 
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training time. However, when the number of nodes in each layer is small, the networks 

with 2 or 3 layers capture less and less useful information from bottom to up due to too 

few nodes with sparsity regularization, so the classification accuracy is as low as like 

random guessing. As the number of nodes grows, the performance becomes better. 

 

 

Fig. 28 Classification accuracy of stacked autoencoders of various net structures on PCA95 whitened of 

MNIST 

 

Fig. 29  Training time of stacked autoencoders of various net structures on PCA95 whitened of MNIST 
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3.6 Experimental Results on Sleep Stage Dataset 

 

3.6.1 Data Pre-processing 

To compare the performance of raw data and features of the sleep stage dataset, 

softmax regression is applied. 

 

3.6.1.1 On Raw Data 

Weight decay of the softmax regression is set to be 3e-3. The training on raw data 

takes 47 seconds and achieves 0.2056 classification accuracy. Softmax regression alone 

is too weak to capture useful information of the raw data.  

 

3.6.1.2 On Features 

Training on 28 features takes only 2.5 seconds and results in 0.5678 classification 

accuracy. The hand crafted features are very useful for the softmax classifier. 

 

3.6.2 Deep Learning Network Structure 

Classifications on the raw data and features using different network structures in 

terms of number of layers and number of nodes and different learning units will be 

carried out to compare their performance. 

3.6.2.1 Stacked RBMs on Raw Data 

Fig. 30 and Fig. 31show classification accuracy and training time of stacked RBMs of 

various network structures on raw of the sleep stage dataset. Stacked RBMs capture the 
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features well from the raw data and the classification performance is not sensitive to the 

network structures. 

 

 

Fig. 30 Classification accuracy of stacked RBMs of various net structures on raw of sleep stage dataset 

 

 

Fig. 31Training time of stacked RBMs of various net structures on raw of sleep stage dataset 
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3.6.2.2 Stacked RBMs on Features 

Fig. 32 and Fig. 33 show classification accuracy and training time of stacked RBMs of 

various network structures on features of the sleep stage dataset. The classification 

accuracy trained by features in a network with small number (e.g., 50) of nodes beats 

trained by raw data, suggesting deep learning fails to capture some of the useful 

information that a hand-crafted feature extractor can do. The training is fast, too, due to 

the low dimensionality of the feature space.  However, the performance is sensitive to the 

number of nodes in each layer. Too large number with more network capacities tends to 

deteriorate the classification performance. 

 

Fig. 32 Classification accuracy of stacked RBMs of various net structures on features of sleep stage dataset 
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Fig. 33 Training time of stacked RBMs of various net structures on features of sleep stage dataset 
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Fig. 34 Classification accuracy of stacked autoencoders of various net structures on features of sleep stage 

dataset 

 

 

Fig. 35 Training time of stacked autoencoders of various net structures on features of sleep stage dataset 
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with or without pre-processing. The listed optimal net structures will be used in the later 

studies. In conclusion, the optimal net structures are highly application-dependent. 

 

Table 3 Summary of network structures including optimal settings as well as pre-processing techniques on 

MINIST and sleep stage dataset 

Dataset Pre-processing stacked RBMs stacked autoencoders 

MNIST 

raw 

Good in any net structures 

[500 500 500] 

Good, except when hidden 

nodes are too few 

[200 200] 

PCA95% 

whitened 

Sensitive to number of 

layers 

[200 200] 

Sensitive to number of 

nodes 

[300] 

sleep stage 

dataset 

raw 

Good in any net structures 

[200] 

NA 

28 features 

sensitive to number of 

nodes 

[50] 

very sensitive to number of 

layers 

[50] 
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Chapter 4 

 

Active Labeling in Deep Learning 

 

4.1 Motivation 

 

In a semi-supervised learning paradigm such as deep learning, unlabeled data are 

easy to get at low or no extra cost, but labeled data are expensive. Due to limited 

resources, only very few labeled data can be obtained given a certain budget. For 

example, in a classification problem on physiological data from biosensors, the unlabeled 

data can be obtained by simply asking subjects to wear sensors day and night, but labeled 

data may not be available until human experts manually make annotations on selected 

unlabeled samples. Therefore, to make the best use of the budget for a discriminative 

learning task, it would be useful to propose an algorithm to carefully choose unlabeled 

samples to be labeled. 

Active learning (AL) [4] asks queries in the form of unlabeled instances to be labeled 

by an oracle (a human annotator). The goal is to achieve high classification accuracy 

using as few labeled samples as possible. A pool-based active learning queries the 

samples in the unlabeled pool that are most ambiguous for the current model. The newly 

labeled samples are added to the labeled pool and used to retrain the model. The two 

processes form a cycle as shown in Fig. 36. The problem to be solved in this chapter falls 

into the field of active learning. 
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To the best of my knowledge, there are no active learning algorithms applied in 

DBNs except for Active Deep Networks (ADNs) proposed by [39]. ADNs follow 

previous work on active learning for SVMs by defining the uncertainty of an unlabeled 

sample as its distance from the separating hyperplane and it can only work on binary 

classification problems. 

Since the top layer of both stacked RBMs and stacked autoencoders outputs the 

probabilities of each label to be chosen, it is promising to exploit the probabilities as 

indicators of uncertainty. My work aims to propose a few methods to effectively use the 

built-in classification uncertainty in deep learning networks to select unlabeled samples 

to be labeled. 

 

 

Fig. 36 The pool-based active learning cycle (taken from [4]) 
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4.2 Related Works on Active Learning 

 

Suppose there is a large pool of unlabeled data available at cheap cost and we want to 

sample from them to get labeled data. A pool-based sampling [40] was proposed to draw 

queries from the pool in a greedy fashion. 

Active learning is adopted for a range of base learners, such as support vector 

machines and Bayesian networks[41],  logistic regression[40], and Markov Models[42]. 

The pool-based active learning algorithm has been studied for many real-world 

problems, surveyed by [4],  such as text classification[40, 43-45], information 

extraction[46, 47], image classification and retrieval[48, 49], video classification and 

retrieval[50, 51], and speech recognition[52]. 

 

4.3 Algorithms 

 

The problem to be solved is formulized as follows. Given an unlabeled sample set    

and a labeled sample set   , the algorithm needs to take   samples from   , have them 

labeled, and add them to   , in order to minimize the classification error of a deep 

learning model fine-tuned by    , where   is a constant as the budget in each iteration. 

The basic idea of my algorithm is simple and not much different from other active 

learning algorithms – greedily select those samples that are most difficult to classify. The 

framework is depicted in Fig. 37. Then the problem remains how to find heuristic methods 
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to define difficulty, uncertainty, or ambiguity. Three criteria are proposed under the 

active labeling deep learning (AL-DL) framework. 

 

 

Fig. 37 Active labeling – deep learning framework 

 

The classification in step 4 applies (6) iteratively starting from an unlabeled sample 

fed into the lowest input layer until the top layer   and then uses (16) to softmax the 

AL-DL framework 

 

Input: an unlabeled sample set    

 

1. Use all the unlabeled data    to train a DL network (stacked RBMs or 

stacked autoencoders) layer by layer. The weights and biases will be used as the 

initial values for fine-tuning a DL network in the following steps. 

2. Randomly take    samples from   , have them labeled, and add them to the 

empty set    as a “seed” set. For simplicity, assume the classes are balanced in 

the set   .  

3. Use    to fine-tune a  -layer DL network classifier       . 

4. Use the classifier        to classify all the unlabeled samples in   . Take   

the most uncertain samples from   , have them labeled, and add them to   . 

(see the three detailed criteria to measure uncertainty in text). Go to step 3. 

 

Output: a  -layer DL network classifier        
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activations in the top layer. If   is predicted as the class of the sample    is determined by 

if the unit the class associated with has the largest probability  among all the units 

 (  
 |  ) in the top layer as below 

 

   {
             

 
   (  

 |  )  

                                        
 (24) 

     

Since the true class of the sample    is unknown yet, the predicted label    is not 

much interesting because we do not know it is correct or misclassified. 

However,  (  
 |  )  suggests the confidence of the prediction. Least confidence (LC), 

margin sampling (MS) [53], and entropy [54] can act as the criteria to pick the most 

uncertain samples   . 

Active labeling deep learning with least confidence (AL-DL-LC) picks the samples 

with the minimum of the maximum of activations as follows 

 

  
         

  

   
 

   (  
 |  )  (25) 

  

where    is an input vector,   
  is the activation of the unit   in the top layer. If more than 

one sample needs to be selected, the process could be performed in a greedy fashion. 

Least confidence works in the assumption that if the probability of the most probable 

label for a sample is low then the classification of the sample is uncertain. Thus it 

discards the information about the remaining label distributions.  

Active labeling deep learning with margin sampling (AL-DL-MS) partially corrects 

the shortcoming by incorporating the posterior of the second most likely label as follows 
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     |        |     (26) 

  

  

where    and    are the first and second most probable class labels under the model. 

Intuitively if the probabilities of predicting a sample to its most likely class and to its 

second most likely class are too close, the classifier is quite confused about the sample. 

Therefore some information is needed from the oracle to help the classifier discriminate 

these two classes.  

Active labeling deep learning with entropy (AL-DL-Entropy) aims to take all labels 

probabilities into consideration by 

 

  
       

       
  

 ∑ (  
 |  )    (  

 |  )

 

 (27) 

 

Entropy represents the amount of information or least number of bits to encode a 

distribution. It could act as a good measure of uncertainty. 

 

4.4 Experimental Results on MNIST 

 

To evaluate the performance of AL-DL in three criteria, a few experiments on the 

MNIST dataset have been performed. For comparison, a random selection strategy is 

employed as the baseline.  
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4.4.1 Stacked RBMs on Raw Data 

The hidden structure of DBN for pre-training is 500-500-500, with 50,000 for training 

and 10,000 samples for testing. A base set with 1,000 labeled samples (80% for training 

and 20% for validation) acts as the seed for both the random and active labeling schemes. 

These samples are balanced among all the classes. 

In each iteration the random scheme randomly picks 200 samples (80% for training 

and 20% for validation) and adds them to the training set and validation set. These two 

sets are used for the original classifier to train the model and test on the test set to get the 

classification accuracy. 

The AL scheme uses the model trained in the previous iteration to classify unlabeled 

samples. During the process the 200 (80% for training and 20% for validation) most 

uncertain samples are labeled by the oracle and added into the training set and validation 

set used for the new classifier. Then the AL scheme moves to the next iteration. Note the 

samples picked in this step are not necessarily balanced. 

Other DBN parameters are listed below. 

Table 4 DBN parameters for both random and AL schemes 

Unsupervised pre-training stage  

learning rate  0.05 

number of epochs 100 

minibatch size 100 

momentum 0.5 for the first 5 epochs, 0.9 thereafter  

weight cost 0.0002 

Supervised fine-tuning stage  

learning rate  0.05 

number of epochs 50 

minibatch size 100 

number of initial epochs 5 

 

10 trails are done for the random scheme and AL schemes with least confidence, 

margin sampling, and entropy. 
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The mean and standard deviation of the accuracy of these four methods are depicted 

below. 

 

 

Fig. 38 The mean of classification accuracy of random labeling DBN and active labeling DBN. RL and 

AL-LC show their error bars. Iteration 0 means only the seed set is used. The performances of the three AL 

DBNs are close, all better than that of RL DBN. 

 

The means of the accuracy of the three methods AL-LC DBN, AL-MS DBN, and AL 

–Entropy DBN are close, which all outperform the mean accuracy of RL DBN. The 

standard deviations of the three active labeling schemes are smaller than that of RL DBN, 

suggesting more consistent performance of AL DBN. 

To confirm the active labeling does pick the most challenging samples, all the 200 

samples picked before the 1st iteration by RL DBN (top) and AL –LC DBN (bottom) are 

shown below. 
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Fig. 39 All the 200 samples picked before the 1st iteration by RL DBN (top) and AL-LC DBN (bottom). 

The digits in the bottom graph look harder to recognize, indicating AL-LC DBN does pick more 

challenging samples than RL DBN 

 

 

Fig. 40 The comparison of classification error rates on training and validation sets with RL-DBN and AL-

DBN-LC in one iteration. AL-DBN-LC works much worse on training and validation sets because it 

always picks the most challenging samples. 

 

Fig. 40 shows another interesting observation. In each iteration, the RMSE and 

accuracy using the active labeling strategy on both training set and validation set are 

much worse than using the random labeling method, but active labeling method’s 

performance on the test set is better. This is because active labeling always puts the most 

challenging samples to the training set and validation set, it’s understandable that the 

classification accuracy on them is not as high as on randomly picked samples. However, 
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since active labeling always learns from those challenging cases, it should actually 

outperform the random labeling method that learns from less informative samples.  

 

4.4.2 Stacked Autoencoders on Raw Data 

A similar experiment is carried out using stacked autoencoders of 2 hidden layers, 

each having 200 nodes. Fig. 41 shows active labeling stacked autoencoders beats its 

random labeling counterpart by about 2% in iteration 5, in which AL-MS works the best. 

 

Fig. 41 The mean of classification accuracy of random labeling stacked autoencoders and active labeling 

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used. 
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in which AL-MS works the best.

 

Fig. 42 The mean of classification accuracy of random labeling stacked autoencoders and active labeling 

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used. 
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are done for the random scheme and AL schemes with least confidence, margin sampling, 

and entropy. 

 

4.5.1 Stacked RBMs on Raw Data 

A 1-layer with 200 hidden nodes stacked RBMs is trained on raw data of the sleep 

stage dataset with random labeling and 3 different active labeling schemes. Their 

classification accuracies do not show significant difference in Fig. 43.  

 

Fig. 43 The mean of classification accuracy of random labeling stacked RBMs and active labeling stacked 

RBMs. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used. 

 

4.5.2 Stacked RBMs on Features 

A 1-layer with 50 hidden nodes stacked RBMs is trained on features of the sleep 

stage dataset with random labeling and 3 different active labeling schemes. No significant 

difference is found in them according to Fig. 43.  
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Fig. 44 The mean of classification accuracy of random labeling stacked RBMs and active labeling stacked 

RBMs. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used. 

 

4.5.3 Stacked Autoencoders on Features 

The similar experiment is carried out on a 1-layer with 50 nodes stacked autoencoders 

on features of the sleep stage dataset.  Fig. 45 suggests all 4 algorithms perform almost the 

same. 
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Fig. 45 The mean of classification accuracy of random labeling stacked autoencoders and active labeling 

stacked autoencoders. RL and AL-LC show their error bars. Iteration 0 means only the seed set is used. 

 

4.6 Summary 

On MNIST, active labeling deep learning works better than its random counterpart, 

no matter what uncertainty measurements (least confidence, marginal sampling, or 

entropy), what learning units (RBMs or autoencoders), or what data pre-processing 

techniques (raw or PCA processed data) are used.  

However, active labeling strategy does not outperform random labeling deep learning 

on the sleep stage dataset. The noise nature of the data seems to be blamed on. Since 

active labeling proactively picks the most uncertain samples to be labels, these samples 

are more likely to be mislabeled, introducing false information to the model. 
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Chapter 5  

 

Modeling Raw Physiological Data and Predicting 

Emotions with Deep Belief Networks 

 

5.1 Introduction 

 

Inspired by the relationship between emotional states and physiological signals [55, 

56], researchers have developed a large amount of methods to predict emotions based on 

physiological data [57-65].  

The emotions could be empirically modeled as classes [61]. The negative emotions 

include anger, anxiety, disgust, embarrassment, fear, and sadness; whereas the positive 

emotions have affection, amusement, contentment, happiness, joy, pleasure, pride, and 

relief. Arousal-valence space [66] is an alternative way to define emotions with 

continuous values. The dimension of arousal represents calmness or excitement, whereas 

the dimension of valence ranges from highly positive to highly negative.  

The physiological data come from biosensors in the following channels: 

Electrodermal Activity (EDA) that measures electrical conductivity or skin conductance, 

Electrocardiogram (ECG) measuring heart beats, Electroencephalography (EEG) 

measuring brain activities, Electrooculogram (EOG) measuring eye movements [67], and,  

in a broader sense, accelerometer data, voice, GPS trajectories, etc.  

Traditionally, no matter to map what biological signals to what emotions, the first 

step is to retrieve features from the raw data. For example, the R-R intervals extracted 
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from ECG represent a person’s heart beat periods, whose changes may be resulted from 

emotional changes between calmness and excitement. These features are usually hand-

engineered using task dependent techniques developed by domain experts [68-70] and 

then selected either by experts or feature selection algorithms like principal components 

analysis (PCA). The process works fine where what features are more relevant to a 

specific task look obvious but it is still labor-intensive and time-consuming. When the 

incoming physiological data types and/or prediction tasks change, we have to redo the 

whole process to tailor new features. It would be useful to have a universal system that 

can automatically extract features from the raw physiological data without the help of 

expert knowledge. 

Moreover, multi-task learning [71, 72], learning more than one problem at the same 

time using a shared representation, is desired when learning physiological data. These 

problems even include unknown ones. Multi-task learning aims to improve the 

performance of learning algorithms by learning the commonality among multiple tasks. 

When a subject wears a biosensor with several channels, the task could be to classify her 

activities, or to determine her emotions. Even if the tasks may not yet be predefined we 

still want the machine learning algorithm to acquire knowledge of the data. The learned 

knowledge then can be used for classification problems as long as a task is ready. 

Deep belief networks (DBNs) [2], as a semi-supervised learning algorithm, is 

promising to tackle the above-mentioned problems. It trains a multilayer neural network 

in a greedy fashion, each layer being a restricted Boltzmann machine (RBM) [3]. The 

trained weights and biases in each layer can be thought of as features or filters learned 
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from the input data. The learned features are task-independent, so any tasks can take 

advantage of them as a starting point for classification problems. 

DBNs have been mostly applied in handwriting recognition [2, 20], natural image 

recognition [73, 74], and modeling human motions [75]. When it comes to physiological 

data as input, [18] used DBNs to classify EEG signals to five clinically significant waves; 

[34] developed DBNs classifiers to determine sleep stages from EEG, EOG, and EMG. 

However, to the best of my knowledge, there is no existing work to predict emotional 

states using physiological data from biosensors using DBNs. This study explores such 

possibilities. 

This work uses DEAP dataset [6] to show how DBNs learn features from raw 

physiological signals and predict emotion states. 

DEAP is a multimodal dataset for the analysis of human affective states. The EEG 

and peripheral physiological signals (downsampled to 128Hz) of 32 subjects were 

recorded as each watched 40 one-minute long videos. The subjects rated the levels as 

continuous values of arousal, valence, liking, dominance, and familiarity.  

This study predicts the levels of arousal, valence, and liking. The arousal scale 

ranges from calm or bored (1) to stimulated or excited (9). The valence scale ranges from 

unhappy or sad (1) to happy or joyful (9). Liking also has values from 1 to 9. All three 

ratings are float numbers.  

32 EEG channels and totally 8 peripheral nervous system channels were recorded 

including hEOG (horizontal EOG), vEOG (vertical EOG), zEMG (Zygomaticus Major 

EMG), tEMG (Trapezius Major EMG), GSR (values from Twente converted to Geneva 

format in Ohm), respiration belt, plethysmograph, and body temperature. 
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This experiment uses 4 peripheral channels to do the predication, which are the two 

EOG channels and the two EMG channels. The EOG channels record eye movements. 

The activity of the Zygomaticus major is monitored in zEMG to capture a subject’s 

laughs or smiles, whereas the Trapezius muscle (neck) is recorded by tEMG to reflect 

possible head movements. 

[6] trained a Gaussian naïve Bayes classifier for each single subject due to the high 

inter-subject variability. For each subject, three different binary classifiers were trained 

and investigated to map the 8 peripheral channels to low (1-5) / high (5-9) arousal, 

valence, and liking, respectively. A leave-one-video-out cross validation was performed. 

In other words, in each trial a video was taken out for testing and the remaining 39 videos 

were used for training. As was done in most machine learning researches on 

physiological data, hand-engineered features such as eye blinking rate, energy of the 

signal, mean and variance of EMG and EOG were extracted. All the extracted features 

were fed into the classifier to train the model. Then the model was used to predict the test 

cases. The average accuracy over all subjects was 0.570, 0.627, and 0.591 for arousal, 

valence, and liking, respectively. 

 

5.2 Related Works on Modeling Physiological Data and Emotion 

Prediction 

 

To mapping physiological data to emotions, we need to train a classification model. 

The advance in machine learning provides many algorithms to get the job done [57].  
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[76, 77] used k-nearest neighbor. Naïve Bayes classifier and Bayesian networks were 

employed in [78]. Support vector machines have proved its success in [79, 80]. 

Classification tree performed well in [81]. Artificial neural networks were used in [82-84]. 

 

5.3 Train a DBN Classifier on Physiological Data 

 

The overall goal of this study is to train a single DBN classifier for all the subjects on 

the raw data from two EEG and two EOG channels to predict arousal, valence, and liking 

as binary classes (low or high). Classification accuracy defined in (17) evaluates the 

performance.  

There are five steps in the experiment: raw data pre-processing, raw data selection 

and division, normalization, randomization, and DBN training and classification. 

In the first step, all signals are pre-processed by notch filtering at 50 Hz in order to 

remove power line disturbances and bandpass filters of 0.3 to 32 Hz and 10 to 32 Hz are 

also applied to EOG and EMG, respectively, as suggested by [34]. 

The second step selects raw data and divides them into training set and test set. A 

subject’s physiological signals are more likely to be elicited by a video at the end of the 

one-minute watching period as the plot develops. Therefore, it sounds reasonable to 

discard the first 50 second and use only the last 10 seconds’ data in each one-minute 

record. Then the 10 seconds’ data are broke down into 10 one-second segments. In other 

words, the learning process trains and classifies one-second samples, each in 512 

dimensions (128Hz * 1s * 4channel). There are totally 12800 samples (32subject * 

40video * 10sample). In each trial, the 10 samples of one randomly chosen video from 
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each subject are left out for testing, resulting in the size of test set being 320 (32 subject * 

1video * 10sample). The remaining 12480 (32subject * 39video * 10sample) samples go 

to the training set.  

The third step applies a channel-wise normalization to scale all the values to [0 1] 

according to 

 

      
              

                  
 (28) 

 

where     represents all the data in the channel   and      is a data point in the channel  . 

The reason to normalize data this way is two-folded: a) the ranges of different channels 

may vary, so normalization makes them comparable when concatenating all channels as 

input, and b) a DBN’s node in the input layer has to have values between 0 and 1, to be 

treated as probabilities of activation of this node. Alternatively, the normalization could 

be done by saturating a signal at saturation constant max and min. Any values larger than 

max are set to max; any values smaller than min are set to min. Then apply (28). This 

trick should be able to remove outliers, too, but it requires some knowledge about the 

data’s reasonable ranges. Since the DEAP dataset is quite clean, I did not find 

performance difference between these two normalization methods. 

Randomizing training samples is necessary because the mini-batch technique in 

training DBNs requires samples of each class are (at least roughly) evenly distributed. 

The last step firstly pre-trains a DBN without any labels, which means the same 

features learned in the pre-train stage can be used for the three different classification 

problems in the fine-tuning stage. Since the pre-trained model captures the properties of 
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the data themselves, it can even be saved for unknown classification problems, as long as 

a new fine-tuning is applied to it using the new labeled data when they are available. 

After fine-tuning features based on labels and backpropagating to train a model for 

arousal classification, the model is used to predict arousal labels on the test set and 

compute the classification accuracy. The same process is applied on valence and liking 

classifiers. 

The same experiment runs 10 times to get the mean accuracy, as well as the standard 

deviation. 

The DBNToolbox matlab code published by [34] is provided to perform the 

experiment. A DBN with two hidden layers, each layer with 50 nodes is constructed. 

Therefore the DBN structure for the pre-training stage is 512-50-50 and for the fine-

tuning stage is 512-50-50-2. DBN parameters are listed below. 

 

Table 5 DBN parameters 

Unsupervised learning rate  0.05 

Supervised learning rate 0.05 

Number of epochs in pre-training 50 

Number of epochs in fine-tuning 20 

Mini-batch size in both stages 100 

 

5.4 Experimental Results 

 

To show the features learned in the first hidden layer, I simply take    , where   is  

these nodes corresponding to one channel in the visible layer and   is a fixed node in the 

hidden layer, and draw a one-dimensional graph for node   on one channel. In this 
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experiment, 200 such feature graphs (4channel * 50node) are grouped into 4 channels 

each of which is shown as a big graph matrix shown below. 

 

 

 

Fig. 46 Learned EOG features. (top) hEOG (buttom) vEOG 

 



74 

 

 

 

Fig. 47 Learned EMG features. (top) zEMG (bottom) tEMG 

 

The whole experiment with 10 trials took about 1 hour on a Windows 7 machine 

with 3.0 G dual-core CPU and 4G memory.  

The means and standard deviations of the accuracy of arousal, valence, and liking are 

0.609/0.074, 0.512/0.097, and 0.684/0.093, respectively, which are drawn in Fig. 48. The 

classification accuracy in [6] is also depicted as filled dots for comparison purposes.  
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Fig. 48 Accuracy of DBN classification. Error bars for DBN classification accuracy on raw data and filled 

dots for Gaussian naïve Bayes on features 

 

Note that the three major differences when comparing the two results. Firstly, the 

original paper employs a subject specific classification approach, but this study trains a 

universal model for all subjects. Secondly, the original paper uses all the 8 peripheral 

channels, compared to only 4 channels used in this work, which contain less information. 

Thirdly, the original work takes hand-crafted features; in contrast, this work simply feeds 

the raw data into the DBN. In this sense, this study solves a harder problem using DBNs. 

The liking accuracy of this work is higher than that of the original work; the arousal 

accuracy is slightly higher but not significant; however the valence accuracy is lower. 

There may be three reasons to explain the poorer valence classification performance: a) 

the 4 channels used in this work do not contain much useful information to discriminate 

different valences; b) the features of valence are too complex for the DBN in our settings 

to learn from the raw data; c) the inter-subject variability as claimed by [6] is too large 

for a single model to capture.   
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The distribution of DBN’s classification performance in each subject is depicted 

below. 

 

Fig. 49 Histogram of accuracy distribution in 32 subjects 
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5.5 Discussion 

 

This work presents a system to apply DBNs to learn features from raw physiological 

data and predict emotions. The trained universal model for all subjects in the DEAP 

dataset shows that DBNs are capable to learn useful features in an unsupervised fashion 

and have comparable classification performance with Gaussian naïve Bayes on hand-

crafted features. This result suggests the possibilities of further applications of DBNs on 

physiological signal analysis and even other fields of similar complexity.  
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Chapter 6  

 

Conclusion 

 

Leveraging the recent breakthrough in deep neural networks provides means to learn 

deep layered hierarchical representation of data. This brings us new possibilities to be 

explored and new problems to be solved. My research focuses on developing practical 

pipelines, frameworks, and systems on real-world deep learning applications. Particularly, 

I have studied a proper way to search for the optimal deep learning structures and pre-

processing techniques, a new active labeling framework for cost-effective selection of 

labeled data, and a pipeline to apply deep learning to emotion prediction via 

physiological sensor data. 

I empirically examine the optimal meta-parameters of deep learning networks in 

terms of number of layers, number of nodes, and learning unit types, as well as the effects 

of various data pre-processing techniques on the benchmark MNIST hand-written digit 

dataset and a sleep stage dataset side by side. This is the first such kind of comprehensive 

investigation. The experimental results show some settings are sensitive to the number of 

hidden layers, some are sensitive to the number of nodes in each hidden layer, and the 

others are not sensitive to the network structure at all. This suggests the optimal meta-

parameters are highly application dependent. 

 Inspired by the general active learning framework, I propose active labeling deep 

learning based on three metrics: least confidence, margin sampling, and entropy. This is 

the first work that fits deep learning into the active learning framework, to address the 
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practical needs for cost-effective selection of labeled data in the paradigm of semi-

supervised learning. On the MNIST dataset, the proposed methods outperform random 

labeling by 2%-4%, suggesting the usefulness of active labeling deep learning on clean 

datasets. On the other hand, the new method performs similarly to random labeling on the 

sleep stage dataset due to the noisiness and inconsistency in the data. 

I also propose a pipeline to apply deep learning to emotion prediction via 

physiological sensor data. This is the first system for modeling physiological data by 

extracting features automatically and using extracted features to predict emotions. The 

developed system has three advantages: 1) it does not require expert knowledge for 

extracting features; 2) the features learned in the unsupervised learning stage can be used 

by multiple tasks; and 3) the classification accuracy is 0.690, 0.512, and 0.684, for the 

levels of arousal, valence, and liking, respectively, which is comparable with existing 

methods based on expert designed features. 
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