

COOPERATIVE RELAYING USING USRP

AND GNU RADIO

A THESIS IN

Electrical Engineering

Presented to the Faculty of the University

Of Missouri-Kansas City in partial fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

BY

GANGA MANJUSHA YANDAMURI

Bachelors, Jawaharlal Nehru Technological University, 2010

Master of Science, University Of Missouri- Kansas City, 2013

Kansas City, Missouri

2013

© 2013

GANGA MANJUSHA YANDAMURI

ALL RIGHTS RESERVED

iii

 COOPERATIVE RELAYING USING USRP AND GNURADIO

Ganga Manjusha Yandamuri, Candidate for the Master of Science Degree.

University Of Missouri-Kansas City, 2013

ABSTRACT

 Wireless communication systems have shown a tremendous development in

recent years. New technologies are born day to day. With today’s technology, users can

communicate with each other from any corner of the world. But wireless technologies

are often prone to various effects like multipath fading, interference, low signal strength,

reduced spectrum efficiency etc. which makes this system less reliable. Because of this

reason, researchers are continuously working to develop technologies that can make the

performance of a wireless system much better.

 Cooperative Communications is one of the fastest growing research technologies

that can enable efficient spectrum usage and create a reliable network. In traditional

networks, the physical layer is only responsible for communication in between two

nodes which are more hindered to the challenges of the network. Cooperative

Communication creates an extra communication with the help of a Relay in between the

terminals which thereby enhances the signal quality. We implement this strategy using

GNU Radio and three Radios (USRP-Universal Software Radio peripheral) which act as

a Transmitter, a Receiver and a Relay.

 Our main goal is to verify the communication in between the two Radios (a

Direct Link) and implement Cooperative communication by introducing a Relay in

iv

between the two radios. The Relay is made to operate on Amplify & Forward and

Decode & Forward scenarios. Characteristics like packet error rate (PER), bit error rate

(BER) and character error rates are studied with respect to individual scenarios and

overall bit error rate (BER) of the system is calculated. Then performance is compared

against different scenarios dealing with obstructions, transmit and receive gains, and

relaying approaches with the goal of determining which approaches are best in which

scenarios.

v

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and

Engineering, have examined a thesis titled “Cooperative Relaying Using USRP and

GNU Radio,” presented by Ganga Manjusha Yandamuri, candidate for the Master of

Science degree, and certify that in their opinion, it is worthy of acceptance.

Supervisory Committee

Cory Beard, Committee Chair

Associate Professor, School of Computing and Engineering.

Ghulam M. Chaudhry,

Professor & CSEE Department Chair

Ken Mitchell,

Associate Professor, School of Computing and Engineering.

vi

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………iii

ILLUSTRATIONS…………………………………………………………………...xi

1. INTRODUCTION…………………………………………………………………...1

1.1Overview……………………………………………………………………………..1

1.2 Objective………....2

2.BACKGROUND……………………………………………………………………..4

2.1Software Defined Radio (SDR)……………………………………………………..5

2.1.1 Sampling Rate…………………………………………...5

2.1.2 Baseband Sampling…………………………………………….…………………5

2.2 Detailed Understanding Of A Radio Transmission………………………………....7

2.2.1 Digital Signal Processing (DSP)…….…………………………………………...7

2.2.2 Digital Up Counter………………………………………………………….........7

2.2.3 D/A Converter…………………………………………………………………....8

2.2.4 RF Up Converter………………………………………………………………....8

2.3 Detailed Understanding Of A Radio Reception……………………………………9

2.3.1 RF Tuner………………………………………………………………………..10

2.3.2 A/D Converter………………………………………………………………….10

2.3.3 Digital Down Converter (DDC)………………………………………………..11

2.3.4 DSP(Digital Signal Processor)…………………………………………………11

vii

2.5 Disadvantages Of SDR…………………………………………………………12

2.6 Preparing For Implementation…………………………………………………..13

2.7 USRP (Universal Software Radio Peripheral)…………………………………..14

2.7.1 USRP Motherboard…………………………………………………………...15

2.7.2 ADC Section…………………………………………………………………..16

2.7.3 DAC Section…………………………………………………………………..17

2.7.4 Auxiliary Digital I/O ports…………………………………………………….17

2.7.5 FPGA…………………………………………………………………………..18

2.7.5.1 DDC (Digital Down Converter)……………………………………………..19

2.7.5.2 Digital Up Converter (DUC)……………………...21

2.7.6 Daughterboards………………………………………………………………..22

2.7.7 Basic TX/RX Daughterboards………………………………………………...22

2.7.8 Low Frequency TX/RX Daughterboards……………………………………...23

2.7.9 TVRX Daughterboard…………………………………………………………23

2.7.10 DBSRX Daughterboards……………………………………………………..23

2.7.11 RFX Daughterboards………………………………………………………....24

2.7.12 Power…………………………………………………………………………24

2.8 USRP Version 1 And Version 2…………………………………………………24

2.8.1 Their Comparisons……………………………………………………………..25

2.8.2 USRP1…………………………………………………………………………26

viii

2.8.2.1 RFX 900 Daughterboard With A Range Of 750-1050 MHz Rx/Tx……….27

2.8.2.2 VERT 900 Vertical Antenna (824-960 MHz, 1710-1990 MHz) Dual Band 28

2.8.2.3 SMA-Bulkhead Cable……………………………………………………...28

2.8.3 Features Of USRP1………………………………………………………….29

2.9 GNU……………………………………………………………………………29

2.9.1 GNU Radio…………………………………………………………………..30

2.9.2 Installing GNU Radio………………………………………………………..30

2.9.3 GRC (GNU Radio Companion)……………………………………………...31

2.9.4 Explanation of GRC Parameters……………………………………………..32

2.9.4.1 Variables……………………………………………………………………32

2.9.4.2 Variable Block……………………………………………………………..32

2.9.4.3 Variable Controls…………………………………………………………..32

2.9.4.4 String Evaluation…………………………………………………………...33

2.9.4.5 Flow Graph…………………………………………………………………33

2.9.4.6 Signal Block………………………………………………………………..33

2.9.4.7 Parameters………………………………………………………………….34

2.9.4.8 Sockets……………………………………………………………………..34

2.9.4.9 GR Buffer and GR Buffer Reader…………………………………………34

2.9.4.10 Connections …………………………………………………………….35

2.9.5 Using GRC…………………………………………………………………..35

ix

2.9.5.1 Running The Interface……………………………………………………35

2.9.5.2 Adding A Block………………………………………………………….35

2.9.5.3 Moving A Block………………………………………………………….35

2.9.5.4 Rotating A Block…………………………………………………………35

2.9.5.5 Deleting A Block…………………………………………………………35

2.9.6 Connecting Blocks………………………………………………………….36

2.9.7 Modifying Parameters………………………………………………………36

2.9.8 Numeric Expressions……………………………………………………….36

2.9.9 Flow Graph Validation……………………………………………………..36

2.9.10 Running A Flow Graph……………………………………………………37

2.9.11 A Simple Example Of GRC……………………………………………….37

2.10 Cooperative Relaying………………………………………………………. 40

3.DESIGN………………………………………………………………………..42

3.1 A Transceiver…………………………………………………………………42

3.1.1 A Transmitter……………………………………………………………….43

3.1.2 Receiver…………………………………………………………………….47

3.2 Implementation Of Cooperative Relays………………………………………50

3.2.1 A Relay……………………………………………………………………..51

3.2.1.1 Amplify And Forward……………………………………………………51

3.2.1.2 Decode and Forward……………………………………………………..53

x

3.3 Final Destination/Receiver………………………………………………….54

3.4 Detailed Explanation Of The Cooperative Relaying Process……………….53

3.4.1 Packet Structure …………………………………………………………..56

3.4.2 At Transmitter……………………………………………………………..57

3.5 At The Relay………………………………………………………………...59

3.5.1 Amplify And Forward…………………………………………………….59

3.5.2 Decode And Forward……………………………………………………..60

3.5.3 At The Receiver…………………………………………………………...62

RESULTS AND ANALYSIS …………………………………………………..66

CONCLUSION AND FUTURE WORK………………………………………73

5.1 Conclusion…………………………………………………………………..73

5.2 Future Work…………………………………………………………………75

APPENDIX……………………………………………………………………..75

BIBLIOGRAPHY………………………………………………………………899

VITA…………………………………………………………………………….92

xi

ILLUSTRATIONS

Figure Page

1: Signal Representation .. 5

2: Base Band Sampling .. 6

3: Block Diagram Of A Radio Transmitter ... 6

4: Digital Up Converter Process .. 8

5: Block Diagram Of A Radio Receiver .. 9

6: Digital Down Converter Process ... 11

7: USRP With Four Daughterboards ... 15

8: Block Diagram Of USRP Functionality .. 19

9: Block Diagram Of A FPFA DDC In USRP .. 20

10: Block diagram Of A Digital Up Converter In A USRP .. 21

11:USRP1 .. 25

12:USRP2 .. 25

13:USRP1 And Its Components .. 26

14:RFX900 Daughterboard ... 27

15:VERT900 Antenna ... 28

16: SMA-Cable .. 28

17: GRC Implementation Of A Band Pass Filter .. 37

18: FFT Plot Of A BPF .. 39

19: FFT Plot Of A BPF With Decimation Factor Of 2.. 40

20: Cooperative Relaying .. 41

21: Experimental Setup In Lab .. 42

22: Transceiver Implementation .. 42

xii

23: GRC Flow Graph Of A Transmitter .. 43

24: GMSK Modulator Block Diagram .. 45

25: Signal At The Transmitter ... 46

26: GRC Flow Graph Of A Receiver .. 47

27: M&M Discrete Error Tracking Synchronizer ... 48

28: GMSK Demodulator Block Diagram .. 49

29: FFT Plot At Receiver ... 49

30: Terminal Output Of The Data Received .. 50

31: Cooperative Relaying .. 50

32: GRC File For Transmitter... 51

33: Amplify And Forward Implementation ... 52

34: GRC Graph Implementation Of A&F ... 52

35: Decode And Forward Implementation .. 53

36: GRC Flow Graph of D&F Relay ... 54

37: GRC Flow Graph Of Final Destination ... 55

38: Packet Structure ... 57

39: Terminal Output At The Transmitter ... 59

40: Output For A&F Implementation .. 60

41: FFT Plot At The Relay .. 61

42: Terminal Output At Relay ... 62

43: FFT Plot At The Receiver ... 64

44: Terminal Output At The Receiver ... 64

xiii

45: AF&DF (LOS On Left And Obstruction Environment On Right), 20 dB Gain At

Relay, Variable Gain At Direct Link-RX .. 67

46: AF&DF (LOS On Left And Obstruction Environment On Right), 20 dB Gain At

Relay, Variable Gain At Relay Link-RX ... 68

47: AF&DF (LOS On Left And Obstruction Environment On Right), 10 dB Gain At

Relay, Variable Gain At Direct Link-RX .. 69

48: AF&DF (LOS On Left And Obstruction Environment On Right), 10 dB Gain At

Relay, Variable Gain At Relay Link-RX ... 70

49: AF&DF (LOS On Left And Obstruction Environment On Right), 0 dB Gain At

Relay, Variable Gain At Direct Link-RX .. 71

xiv

ACKNOWLEDGEMENTS

I would like to thank my Advisor Dr. Cory Beard for his immense support and

guidance throughout the research. While giving his students a degree of freedom to work

and extending help in each and every challenge of the project are deeply appreciated. It

is his excellent teaching skills in Wireless Communications, motivated me take a step

towards thesis. His enthusiasm in creating new ideas and genuine interest in the

student’s research work are commendable. He is not only known for being a

knowledgeable person but also known for his kindness, compassion and willingness to

help. I have not only got an opportunity to learn technical concepts from him but also to

be a better person. I am very lucky to be a part of his research team and much fortunate

to be his student.

Special thanks to my project partner Aklilu A. Gebremichail for his constant

support and encouragement. This project is incomplete without his guidance on USRP

and GNU Radio.

Also, I would like to thank my lab partners Mustafa and Todd for their advices

and for being patient with the noises from radios (while testing music transmission).

Last but not least, my sincere gratitude to my parents and friends for supporting

me through all phases of my life and believing in me.

xv

To my Parents ……

1

 CHAPTER 1

 INTRODUCTION

1.1 Overview

 From past few decades, there has been a rapid increase in the demand for

wireless devices and applications which has led to significant development in wireless

communications. Users expect high data rates without any possible interruptions.

Improving the signal quality and meeting the expectations of the user is not an easy thing

to do with the environments we live in. The RF signal propagation has faces a lot of

channel impairments like small scale and large scale fading, path loss and multi path

propagation. The effect of multipath propagation has grabbed a lot of attention and is

considered to be a serious problem.

 Multipath fading occurs in an environment where the transmitted signal is

received in various forms at the receiver. This can come from reflections, diffractions,

scattering, or transmission through materials. The destination receives multiple copies

of the signal that has different magnitudes and phases. When the phases match they

produce a strong signal and when not, they produce a weak signal or no signal. Of

course, there is high probability for the signal to arrive with different phases.

 Researchers have worked hard on developing various approaches to resolve this

issue or to at least provide the signal that is least affected by Multipath fading. One of

those approaches is MIMO (Multiple Input and Multiple Output) where the signal is

transmitted over independent and individual paths that are distributed in frequency, time

and space and combined at the receiver. This approach is called Spatial diversity which

2

can improve the system performance. But, the limitation of size in the mobile devices

makes this approach less practical for now. The signal quality can still be improved

without the use of multiple antennas on the user end by a technique called Cooperative

Relaying where the signal strength is improved by introducing a Relay in between the

Transmitter and the Receiver. The Relay acts like a mediator and helps the TX by

forwarding the signal to the RX, especially when the link in between TX and RX is not

good enough to carry a signal.

1.2 Objective

 The main objective of our thesis project is to implement and test the performance

of Cooperative Relaying in a lab environment. Simulation and analytical results are

available, but in actual implementations we can see the value and performance of

Cooperative Relaying first hand. We have chosen to use USRP and GNU Radio, which

are widely used software defined radio hardware and software platforms.

 Our approach is as follows. Firstly, the signal performance in between TX and

RX is verified in both LOS (Line of sight) and obstruction environments. Secondly, a

Relay is introduced in between the source and the destination. There are two ways of

implementing Relay operation. They are to use Amplify and Forward or Decode and

Forward. Both of these cases are implemented with the help of GNU Radio Companion

(GRC) flow graphs. Thirdly, a few necessary changes are made in the Python code at the

TX and RX in order to observe the signal quality in terms of statistics like packet error

rates, bit error rate, character error rate and overall BER of the system when the signals

3

are combined using Cooperative Relaying. Also, the results show the individual number

of times the Relay path was better than direct path and vice versa.

4

CHAPTER 2

 BACKGROUND

 Before discussing the implementation, the general working of the radio

integrated with the software is introduced. The documentation of the systems that are

used in this thesis is lacking, so first section provides thorough information that is

needed.

2.1 Software Defined Radio (SDR)

 SDR is a reconfigurable communication system where the functions of physical

components like modulators, demodulators, amplifiers etc. in a radio can be

implemented by means of software. Different input signals can be processed without the

need of changing the hardware. Multiple radios can be integrated together by just

changing a few parameters in the software. At one instant a radio can be an AM receiver,

a voice transceiver, a digital date transceiver etc. by just making few significant changes

in the software block diagram. Upgrades are simple, quick, and of low cost. The

flexibility of software-based applications makes SDR an excellent choice to avoid issues

with compatibility and hardware reusability. Before we start discussing the functionality

of Software Defined Radio, let’s take a look at the important topic of Sampling Rate

which is considered to be most fundamental.

2.1.1 Sampling Rate

 Sampling rate is defined as the number of samples per unit time taken from a

continuous signal to make a discrete signal. Folds in the figure below represent the

5

frequency axis that are integral multiples of one half of the sampling frequency fs.

According to Nyquist’s theorem, the signal can be represented by discrete samples if the

sampling frequency is at least twice the bandwidth of the signal. Hence the area in

between the frequency points is a Nyquist Zone. [1]

Fig 1: Signal Representation

 Signals when mounted upon each other in a spectrum, create an aliasing effect

and can no longer be separated. If this effect occurs during sampling, the sampled data is

corrupted and can never be retrieved.

2.1.2 Baseband Sampling

 The baseband signal has frequency components that start from fs=0 to a

maximum frequency. To prevent aliasing, we have to make sure that all the signal

energy falls only in the first Nyquist zone. It can be done by either inserting a low pass

filter to eliminate all the signals above fs/2 or by increasing the sampling frequency so all

signals can fall below fs/2.

6

Fig 2: Base Band Sampling

2.2 Detailed Understanding Of A Radio Transmission

 Figure 3 shows the processes involved in radio transmission, which are discussed

in detail below.

 Fig 3: Block Diagram Of A Radio Transmitter

7

2.2.1 Digital Signal Processing (DSP)

 The input to the transmit side of an SDR is a digital baseband signal generated by

the sampling stage. The input can be of different types, audio, analog, digital data,

videos, pictures etc.

2.2.2 Digital Up Counter

This translates the baseband signal into an Intermediate Frequency (IF).

A DUC has three important sections:

 Interpolation filter

 Digital Mixer

 Digital Local Oscillator

 The digital mixer and digital local oscillator translate the baseband samples to the

IF frequency. The IF translation frequency is determined by the local oscillator. A mixer

generates one output sample for two inputs. The output generated by the mixer must be

equal to the D/A sample frequency fs. Therefore, the sample rates of both the inputs

should be fs. The sample rate of local oscillator is already fs. Since, the input baseband

frequency is much lower than fs, an interpolation filter is used. [2]

 The interpolation filter increases the baseband signal frequency by a factor of N

known as the Interpolation Factor. [1]

8

Fig 4: Digital Up Converter Process

2.2.3 D/A Converter

 A digital-to-analog converter converts the digital IF samples to an analog IF

signal.

2.2.4 RF Up Converter

This converts the analog IF signal to RF frequencies.

2.3 Detailed Understanding Of A Radio Reception

 Figure 5 shows the processes involved in radio transmission, which are discussed

in detail below. First, the analog RF signals from the antenna are sent to the RF Tuner.

9

 Fig 5: Block Diagram Of A Radio Receiver

2.3.1 RF Tuner

 The RF Tuner has an amplifier, a mixer, an oscillator. The RF signal is amplified

and then fed as one of the inputs to the mixer .The other input to the mixer is a signal

from a local oscillator whose signal frequency is determined by tuning control of the

radio. The mixer converts the signal to the Intermediate frequency (IF).

2.3.2 A/D Converter

 Once an analog IF signal is obtained, then it is passed through the converter to

convert them into digital IF samples.

10

2.3.3 Digital Down Converter (DDC)

 An SDR consists of a DDC which is typically an FPGA IP and is considered to

play a key role in processing of the signal.

A DDC has three sections:

 A Digital Mixer

 A Digital Local Oscillator

 An FIR low pass filter

 The digital mixer and local oscillator translate the digital IF samples down to

baseband. The low pass filter limits the signal bandwidth.

 Since the output of the FIR filter is bandlimited, the Nyquist theorem allows us to

lower the sampling rate. If we keep only one out of every N samples then sampling rate

is reduced by a factor of N called the Decimation factor. Now that the sampling rate is

reduced it is always good to make sure the Nyquist sampling theorem is maintained

relative to the new sampling rate to avoid aliasing in the digital signal. So, a low pass

filter is used as an ant-aliasing filter to reduce the bandwidth of the signal before it is

down sampled. [1] [3]

 Now it’s clear that DDC performs two operations:

 Frequency translation with tuning control local oscillator.

 Low pass filtering with bandwidth controlled by the decimation setting.

11

Fig 6: Digital Down Converter Process

2.3.4 DSP(Digital Signal Processor)

 The digital baseband samples are then fed to the Digital Signal Processing block

where decoding, demodulation and other processing tasks take place.

 In our implementation of SDR using USRP radios, the components include:

1. Antennas –to transmit and receive radio signals on the frequency of interest.

2. Radio integrated with daughter boards – These serve as a digital baseband and IF

section of the communication system.

3. Personal computer integrated with GNU Radio – to process the radio signals.

The signals are not processed on the radio, but rather on the PC and then fed

through a USB connection.

2.4 Advantages Of SDR

 There are several important benefits to SDR, which is making its popularity

increase as the hardware becomes available that can support it.

12

 Elimination of analog hardware and its cost, resulting in simplification of radio

architectures and improved performance.

 Software can be reused across radio "products", reducing development costs

dramatically.

 Over-the-air or other remote reprogramming, allowing "bug fixes" to occur while

a radio is in service, thus reducing the time and costs associated with operation

and maintenance.

 New features and capabilities to be added to existing infrastructure without

requiring major new capital expenditures.

 Remote software downloads, through which capacity can be increased, and

capability upgrades can be activated.

 Reconfigurable to suit customer requirements.

 The ability to receive and transmit various modulation methods using a common

set of hardware.

 The chance for new experimentation.

2.5 Disadvantages Of SDR

 There are a few disadvantages of SDR, however.

 Difficulty of writing software for various target systems.

 Fear of the unknown

 Documentation is rare in relation to hardware radios.

13

2.6 Preparing For Implementation

 In the establishment of SDR capabilities in our laboratory, several activities had

to be performed.

 First, we had to choose the most suitable Software Defined Radio among those

existing on the market. Below are the few of those:

 Microsoft Research Software Radio Platform for Academic Use(SORA):

 Microsoft offers this academic kit for research purposes. The estimated price for

this kit $4500-$5500. It has multi-core PC, RCB board, RF-front end software.

 Data Soft’s Typhoon SDR Development Platform:

 It operates an SDR full duplex transceiver system in the 400 MHz – 4 GHz band

with the ability to process signal bandwidth ranging from 50 KHz to 20MHz. It

supports GNU Radio and the Click modular router as software architecture. This

platform aims mostly at high end users and costs $10,000 per unit.

 CRC’s Coral Cognitive Radio Platform:

 Coral offers an experimental Cognitive Radio Platform operating in the 2.4 GHz

and 5.8 GHz ISM Bands, costing at $6000. It is primarily intended for improved

spectrum use research. It supports different modulation techniques. This platform

mostly directs towards cognitive radio which is not a primary focus of Cooperative

Relays.

 Ettus Research’s USRP N210:

14

 Ettus has established themselves as a best buy provider of platforms for research.

It offers several platforms – USRP1, USRP2 and USRP N210 which differ in the

levels of instantaneous bandwidth, re-programmability of FPGA, type of interface to

connect to the computer (USB or Ethernet) and price. It is compatible with GNU

Radio and is the best product for academic research.

The USRP1 developed by ETTUS was chosen as the most suitable SDR for our thesis

project.

2.7 USRP (Universal Software Radio Peripheral)

 USRP is an open source computer hosted SDR designed by Ettus Research, LLC

and National Instruments. The USRP product family is intended to be a comparatively

inexpensive hardware platform for software radio and is used widely in research labs,

universities etc. USRPs connect to a host computer through a high speed USB where the

software controls this radio to transmit and receive information.

 A typical USRP can accommodate one motherboard and four daughter boards,

two for receiving and two for transmitting. A USRP can simultaneously transmit and

receive on two antennas. [4]

15

 Fig 7: USRP With Four Daughterboards

 The motherboard in a USRP has Clock generation, FPGA, DAC, ADC, power

regulation and host processor interface subsystems which are the basic components

required for processing of baseband signals. A modular front end called daughterboard is

used for analog operations such as DAC, ADC etc. According to USRP manual [5], the

following are the components:

2.7.1 USRP Motherboard

 The heart of the motherboard is Altera Cyclone EP1C12 FPGA. It has 4 Input

and 4 Output channels. These are connected to 4 high speed Analog to Digital

Converters (ADC) and 4 high speed Digital and Analog Converters (DAC). Each ADC

processes 12 bits per sample i.e. in total of 64 Msamples/second and each DAC

processes 14 bits per sample i.e. a total of 128 Msamples/second. The FPGA is in turn

connected to a USB2 interface chip called Cypress FX2 on to the computer.

16

2.7.2 ADC Section

 This is used when the signal is received .i.e., converting the analog signal from

the air to the digital format. As discussed above, there are 4 ADCs that have a sampling

rate of 64 Msamples/Second. They can bandpass sample signals up to 200 MHZ. An IF

frequency as high as 500 MHz can also be digitized but it causes several decibels of loss

in the signal. i.e. sampling a signal with IF larger than the 32 MHz introduces aliasing.

Hence, the best band of signal can be mapped to 32 MHz. As the frequency of the

sampled signal goes higher, the SNR gets degraded by jitter. Recommended upper limit

of the sampling rate is 100MHz.

 The full range of the Analog to Digital Converter is 2Vp-p and the input is

50 Ohms differential that produces 10 mW or 10 dBm. The programmable gain

amplifier (PGA) is software programmable before the ADC. It amplifies the input signal

(if the signal is weak) to utilize the entire range of ADC. The maximum range of the

PDC is 20dB. When the gain is set to zero, the input is 2 Vp-p and when set to 20 dB,

only a 0.2 Vp-p differential input is required to meet the full scale.

 There is no need to provide a DC bias when the signal is AC coupled as long as

the internal buffer turned on, which provides a 2V bias. If the signal is DC-coupled, a

DC bias of Vcc/2(1.65V) should be provided to both negative and positive outputs with

the internal buffer turned off. An ADC provides a reference voltage of 1V.

 There are 8 Auxiliary analog input channels connected to low speed 10 bit ADC

inputs (labeled AUX_ADC_A1_A, AUX_ADC_B1_A, AUX_ADC_A2_A,

AUX_ADC_B2_A, AUX_ADC_A1_B, AUX_ADC_B1_B, AUX_ADC_A2_B, and

17

AUX_ADC_B2_B) which can be read from software. These ADCs can convert up to

1.25M Samples/Second and have a bandwidth of around 200 KHz. These analog

channels are useful for sensing the RSSI signal levels, temperatures, bias levels, etc. The

USRP motherboard connectors have 2 independent analog input channels

(AUX_ADC_A1_A and AUX_ADC_B1_A for RXA and AUX_ADC_A2_A and

AUX_ADC_B2_A for TXA). There is also AUX_ADC_REF which can provide a

reference level for gain setting if it is necessary.

2.7.3 DAC Section

 The DAC Section is used at the transmitting path. As discussed above; the DAC

has a sampling rate of 128 MS/s whose Nyquist frequency is 64 MHz. It can supply

1 Vp-p and the input is a 50 Ohm differential load. The output frequency range which

yields a good signal is from DC to 44 MHz. A PGA which is software programmable

located after DAC provides 20dB of gain. The DAC signals vary in between 0 to 20 mA

and can be converted into voltages by placing a resistor.

 Additionally, there are 8 analog output channels connected low-speed 8bit DAC

outputs. These are AUX_DAC_A_A, AUX_DAC_B_A, AUX_DAC_C_A,

AUX_DAC_A_B, AUX_DAC_B_B and AUX_DAC_C_B. These DACs can be used

for supplying various control voltages such as external variable gain amplifier control. In

addition, there are two additional DACs (labeled AUX_DAC_D_A and

AUX_DAC_D_B) which are constructed using a 12 bit sigma-delta modulator with

external simple low pass filter. The USRP motherboard connectors (RXA and TXA)

18

share one set of the 4 analog output channels (AUX_DAC_A_A to AUX_DAC_D_A for

RXA and TXA)

2.7.4 Auxiliary Digital I/O ports

 The USRP motherboard has 32 bits for IO_RX and 32 bits for IO_TX

constituting of high speed 64 bit digital I/O ports. These are connected to the connecters

of daughterboard interfaces (RXA, TXA, RXB, TXB). Each of these connectors has 16

bit digital I/O bits which are controlled by writing and reading operations to the FPGA

registers independently and can be configured either as a digital input or a digital output.

 Several operations are performed by using these pins like, automatic receive and

transmit mode, power supply control, synthesizer lock detection etc. Also, these are used

for debugging FPGA implementations when logical analyzer is connected to it.

2.7.5 FPGA

 The FPGA plays an important role in the USRP system. The main function of the

FPGA is to reduce the data rates to a value that can be passed over to USB2.0 and also to

perform high bandwidth math. FPGA circuitry and a USB microcontroller are

programmable over a USB2 bus. [6]

19

 Fig 8: Block Diagram Of USRP Functionality

2.7.5.1 DDC (Digital Down Converter)

 DDC is implemented with 4 stages of a cascaded Integrated comb (CIC) filter.

These filters use only adders and delays to deliver a high integrated performance. 31

other tap half band filters and CIC filters put together are used for spectral shaping and

out of band signal rejection. A standard FPGA has two DDCs.

20

Fig 9: Block Diagram Of A FPFA DDC In USRP

 Firstly, the complex input signal (IF) is converted to Base band Signal. It is done

by multiplying the signal with a constant frequency which is usually an IF .The resulting

signal produced is also complex and centered at 0. Secondly, the signal is decimated by a

factor of ‘D’.A decimator is nothing but a combination of a low pass filter and a down

sampler. Where the low pass filter selects a band of frequency from a big stream of

frequencies. And thirdly, the down sampler dispreads the signal from [-Fs,Fs] to [-Fs/D,-

Fs/D] narrowing the frequency by a factor of ‘D’.

 Here we use decimation in order to meet the data rate of the USB2.0 and also can

keep up the computer’s computing capability. All the samples sent over USB interface

are 16 bit signed integers in IQ format ,i.e . 16 bit I and 16 bit Q resulting in 32 bits per

sample or 4 bytes per sample. Finally complex I/Q signal enters the computer USB.

21

If there are multiple channels and are interleaved, then the I/Q format of sending over

USB is I0 Q0, I1, Q1, I2, Q3 etc.In this case, all the input channels must be at the same

decimation ratio.

2.7.5.2 Digital Up Converter (DUC)

 The DUC is found at the transmitter path. The base band I/Q complex signal is

interpolated and up converted to the IF band and is sent to the DAC before transmitted

over the air.

 Fig 10: Block diagram Of A Digital Up Converter In A USRP

 The DUC is located in AD9862 CIDEC chips but not in the FPGA. The only

transmitted signal processing blocks in the FPGA are the CIC interpolators. The

interpolator outputs can be routed to any of the 4 CODEC inputs. Multiple TX channels

should have same data rates and can have different TX and RX rates. The modes operate

independent lof each other but the overall data rate should always be 32Mbytes/second

or less.

22

2.7.6 Daughterboards

 A mother board has 4 slots to plugin 2 TX basic daughter boards and 2 RX

daughter boards. Each daughter board in turn has 2 slots TXA and RXA. And each slot

can access 2-4 high speed A-D/D-A converters. If real sampling is used the daughter

boards develops two independent RF sections having 2 antennas. If IQ sampling is used,

each board can just support a single RF section. Two SMA connectors on each

daughterboard are usually used to connect the input or output signals.

 Each daughterboard has an I2C EEPROM which identifies the board of the

system. It also stores values like DC Offsets or IQ imbalances. EEPROM is not

programmed as compared to other components on board.

 Each TX daughterboard has two outputs (IOUTP_A/IOUTN_A and

IOUTP_B/IOUTN_B) sampled at 128MS/second and each RX daughterboard has 2

differential analog inputs (VINP_A/VINN_A and VINP_B/VINN_B) sampled at 64

MS/second.

2.7.7 Basic TX/RX Daughterboards

 The inputs from ADC and outputs from DAC are directly transformer-coupled to

SMA connectors without amplifying or filtering the signal. The basic TX and RX give

access to all the signals on the daughterboard interface and utilize a logic analyzer

connector for 16 general purpose IOs. The pins are used to perform debugging of FPGA

by providing access to the internal signals.

 Each has two SMA connectors that can be used to connect external up/down

tuners or signal generators. We can treat it as an entrance or an exit for the signal

23

without affecting it. Some form of external RF front end is required. The ADC inputs

and DAC outputs are directly transformer-coupled to SMA connectors with no mixers,

filters, or amplifiers. The basic TX and basic RX give direct access to all of the signals

on the daughterboard interface (including 16 bits of high-speed digital I/O, SPI and I2C

buses, and the low-speed ADCs and DACs). Each of the Basic TX/RX boards has logic

analyzer connecters for the 16 general purpose IOs. These pins are used to help

debugging your FPGA design by providing access to internal signals.

2.7.8 Low Frequency TX/RX Daughterboards

 The main difference in between using LF TX/RX and basic TX/RX is LF TX/RX

use differential amplifiers instead of transformers. They also have 30MHz low pass

filters for anti-aliasing.

2.7.9 TVRX Daughterboard

 This daughterboard is used for receiving of the signals. It is a VHF and UHF

system based on TV tuner module. It has a IF bandwidth of 6MHz and an RF frequency

range of 50 MHz to 860 MHz.This is the only board which is not MIMO capable and

has a typical noise figure of 8 dB.

2.7.10 DBSRX Daughterboards

 This board is similar to TVRX daughterboard which is also receive only. But this

daughterboard is MIMO capable and can power an active antenna via SMA connector. It

also has a software controllable channel filter that can vary in the range of 1MHz to

http://gnuradio.org/redmine/projects/gnuradio/wiki/UsrpDBoardBasicRX

24

60MHz. DBSRX can receive frequencies ranging from 700MHz to 2.4 GHz having a

noise figure of 3-5 dB.

2.7.11 RFX Daughterboards

 The family of RFX daughterboard is a complete transceiver system. It has a

built-in Transmit and Receive switching feature so TX and RX can be on same port. It

also has an independent local oscillator or RF synthesizers for both transmission and

reception which enables a split operation. These are fully synchronous and MIMO

capable.

2.7.12 Power

 The USRP is powered by a 6V 4A AC/DC power converter. This converter is

capable of 90-260VAC, 50/60 Hz operations. The USRP itself needs 5V of supply and

6V of supply is required for the daughter boards. It draws a 1.6 A with 2 daughterboards

fixed on it.

2.8 USRP Version 1 And Version 2

 We now compare the USRP1 and USRP2. Figures 11 and 12 show pictures of

them.

25

 Fig 11:USRP1

Fig 12:USRP2

2.8.1 Their Comparisons

Interface USRP1 USRP2

ADC 12 bit ,64 MS/second 14 bit,100MS/second

DAC 14 bit,128 MS/second 16 bit,400 MS/second

Power 6V,3A 6V,3A

26

RF Band width 8 MHz at 16 bits 25 MHz at 16 bits

FPGA Altera EP1C12 Xilinx Spartan 3 2000

Daughterboard Capacity 2 TX,2RX 1TX,1 RX

SRAM None 1 M byte

Cost $700 $1500

After analyzing the characteristics of the above two versions, we decided to choose the

USRP1 over the USRP 2 because it meets our requirements at lower cost.

2.8.2 USRP1

 Fig 13:USRP1 And Its Components

 The Ettus Research’s USRP1 is the original hardware of the USRP (Universal

Software Radio Peripheral) family of products, which enables engineers to rapidly

design and implement powerful, flexible software radio systems. The USRP1 provides

27

an entry-level platform with built-in MIMO expansion and a modular design allowing

the hardware to operate from DC to 6 GHz. The architecture includes an Altera Cyclone

FPGA, 64 MS/s dual ADC,128 MS/s dual DAC and USB 2.0 connectivity to provide

data-to-host processors. The USRP1 includes connectivity for two daughterboards,

enabling two complete transmit/receive chains. This feature makes the USRP1 ideal for

applications that require high isolation between transmit and receive chains, or dual-

band dual transmit/receive operation [7]. The USRP1 can stream up to 16 MS/s to host

applications. On-board DDCs and DUCs provide 15 MHz of tuning resolution and

adjustable sample rates.

 The USRP Hardware Driver is the official driver for all Ettus Research products,

and supports rapid development in a comprehensive environment. The USRP Hardware

Driver supports Linux, Mac OSX and Windows. [8] [9]

2.8.2.1 RFX 900 Daughterboard With A Range Of 750-1050 MHz Rx/Tx

Fig 14:RFX900 Daughterboard

 The RFX900 is a high-performance transceiver designed specifically for

operation in the 900 MHz band. With a typical power output of 200 mW, and noise

figure of 8 dB jumper settings, it can bypass an on-board SAW filter to allow operation

28

in a wider frequency range. Example application areas include cellular, paging, two-way

radio and 902-928 MHz ISM band. [10]

2.8.2.2 VERT 900 Vertical Antenna (824-960 MHz, 1710-1990 MHz) Dual Band

 This is an Omni directional antenna and has a 3dBi Gain. [11]

Fig 15:VERT900 Antenna

2.8.2.3 SMA-Bulkhead Cable

 Fig 16: SMA-Cable

 A 0.2M long SMA-M to SMA-F bulk head cable connects daughter board and

the antenna [12].

29

2.8.3 Features Of USRP1

 Use with GNU Radio

 Modular Architecture: DC-6 GHz

 Connectivity for Two, Complete Tx /Rx chains

 Two Dual 64 MS/s, 12-bit ADC’s

 Two Dual 128 MS/s, 14-bit DAC’s

 DDC/DUC with 15 mHz Resolution

 Up to 16 MS/s USB Streaming

 USB 2.0 Interface to Host

 Auxiliary Digital and Analog I/O

 25 ppm TCXO Frequency Reference

 One way to control the USRP1 is through a computer with GNU Radio installed

in addition to USRPs. This is our approach.

2.9 GNU

 GNU is a free operating system developed by GNU Project which was intended

to be compatible with UNIX. It was first initiated by Richard Stallman in 1983. Several

versions of GNU have been released but there is no stable version till date. It’s

abbreviated as “GNU’s not UNIX!” – a recursive acronym. Although GNU is like

UNIX, it differs by being free software and containing no UNIX code.

30

2.9.1 GNU Radio

 This is an open source software development tool kit that helps to process the

signal through software defined radio. You can write applications to transmit and receive

data streams through hardware.

 It has various elements (blocks) like filters, modulators, demodulators, encoders,

and decoders etc. which are typically found in a Radio. Primarily, it has a method of

connecting these blocks and managing the data step by step. Since GNU Radio is

software and handles only digital signals, the output of the transmitters and input of the

receivers are always complex baseband samples. The shifting of the signal to the desired

center frequency is done by the analog hardware.

 Any data type can be passed from one block to other – bytes, float or other

complex data types. There is also a feature where you can create a block you like and

use it for your application, which makes GNU Radio user friendly and hence used to

support real world radio systems and wireless communications mainly in academic and

research environments.

 Gnu Radio's applications are primarily written in the Python programming

language while the signal processing path is written in C++ which makes GNU Radio a

rapid application development environment.

2.9.2 Installing GNU Radio

 There are several ways of installing GNU Radio, using

 PyBOMBS

31

 Build-gnu radio script

 Pre-compiled Binaries

 Pre-compiled binaries from Ettus Research

 Manual install for source

 We chose to use the 'Build-gnu radio script' way because of its easy approach and

compatibility with UBUNTU. We just needed to run a script that is available in

www.gnuradio.org and the installation was done automatically. [13]

 This downloads the installer (build-gnuradio) and makes it executable. It then

downloads and installs all dependencies, downloads both UHD and GNU Radio from

Git (which means it will automatically install the latest version from the 'master' branch),

runs the make process, and installs it on your system). In most cases, simply running the

script will do all you need to get a running GNU Radio system built from source. Also,

you will have all the source code lying on your hard disk and therefore available for

future modifications. It combines the flexibility of installing from source with the ease of

using binaries and is recommended for most users of Ubuntu and Fedora.

2.9.3 GRC (GNU Radio Companion)

 Although GNU Radio's process is completely written in Python, there is a tool

called GNU Radio Companion (GRC) which allows you to construct blocks on the

application you want to build. So, it is not necessary for the users to know the Python

language to construct an application. Of course one needs to know Python if wanting to

understand the back end functionality of the application/flow graph that is made.

http://www.gnuradio.org/

32

 The functionality of “Cooperative Relays using GNU Radio and USRP” is

implemented in GRC and certain additions are being made in Python in order to obtain

the desired output and performance analysis.

 According to GNU Radio website [14] [15], the following are a few important

parameters used in GRC.

2.9.4 Explanation of GRC Parameters

2.9.4.1 Variables

 Variables map symbolic names to values. In GRC, a variable can define a global

constant or a variable can be used in conjunction with a GUI to control a running flow

graph. A variable holds a number that is available to all elements in the flow graph.

Variables serve two purposes: First, parameters can use a variable as a way to share

values. For example, if all parameters for sampling rate use the samp_rate variable,

changing the samp_rate variable once is easier than modifying every parameter. Second,

variables can also have a range (min and max) associated with them.

2.9.4.2 Variable Block

 The variable block is the most basic way to use a variable in GRC. The ID

parameter of the variable block is the "symbolic name". The symbolic name must be

alpha-numeric (underscores allowed) and begin with a letter. To use the variable, simply

enter the symbolic name into a parameter of another block.

2.9.4.3 Variable Controls

 Certain blocks have callback methods that allow their parameters to be changed

while executing flow graph. Variable controls in GRC use variables in combination with

33

callback methods to modify these parameters. If a parameter has a callback method, the

parameter will be underlined in the block-properties dialog. The variable slider, variable

text box, and the variable chooser block provide graphical widgets such as sliders, text

boxes, radio buttons, and drop downs as variable controls. In addition, the variable sink

block takes samples from a gnu radio stream and writes the samples to a variable.

2.9.4.4 String Evaluation

 String parameters have a two-phase evaluation. First, GRC evaluates the

parameter as it is. If the parameter does not evaluate to a string data type or the

evaluation fails, then it is understood that the parameter had implied quotation. In this

case, GRC will evaluate the parameter again with quotation marks; which will return a

string with the exact code that was typed into the parameter window.

 To use a variable inside a string simply type the name of the variable into the

parameter: my_var. If the variable is not a string, cast the variable with Python's str

function: str(my_var). Standard Python string functionality applies: "My Var = " +

str(my_var).

Note: String parameter types also include the file open and file save types.

2.9.4.5 Flow Graph

 A flow graph is an interconnection of signal processing blocks. GRC provides a

scrollable window to place and connect various signal blocks.

2.9.4.6 Signal Block

 Signal blocks perform all of the processing in a flow graph. For example: A

signal block can be a filter, an adder, a source, or a sink. GRC represents signal blocks as

34

rectangular blocks. Each block has a label indicating the name of the block and a list of

parameters.

2.9.4.7 Parameters

 Parameters influence the function of a signal block. For example, a parameter

can be a sampling rate, a gain etc. Most parameters for a signal block are displayed

below its label.

2.9.4.8 Sockets

 Sockets are the inputs and outputs of a signal block. Each signal block has certain

sockets associated with it. For example, an adder has two input sockets and one output

socket.

 GRC represents a socket as a small rectangle attached to the signal block. The

socket has a label indicating its function. Labels are usually named "in" or "out". Some

labels are named "vin" or "vout" to indicate a vector type. Sockets are also colored to

indicate their data type. Blue for complex, Red for float, Green for int, Yellow for short,

and Purple for byte.

2.9.4.9 GR Buffer and GR Buffer Reader

 Every block has a GR Buffer and a GR Buffer Reader. GR Buffer is used to hold

the processed data and is at the output of the block. GR Buffer Reader acts as an input of

the block which reads the data from its upstream GR Buffer. These two Buffers provide

a channel for exchanging data and status updates.

 Note: A source block doesn't have GR Buffer Reader since this block provides

the data and has no prior block. Vice versa is true with the Sink Block.

35

2.9.4.10 Connections

 A connection joins an input and an output socket. GRC represents connections by

drawing a line between the two sockets. Connections must be between matching data

types, including vectors.

2.9.5 Using GRC

2.9.5.1 Running The Interface

 To run a .grc file use simulate and run buttons on the top nav. A flow graph

generates a Python file called top_block.py.

2.9.5.2 Adding A Block

 Select a block from the signal block tree menu. Double click the block. A new

signal block will be placed on the screen.

2.9.5.3 Moving A Block

 Left click a block and drag it around the flow graph. If you drag a block near a

border that can be scrolled, wiggle the block to advance the scroll bar.

2.9.5.4 Rotating A Block

 With a block selected, select rotate right or left from the tool bar.

2.9.5.5 Deleting A Block

 With a block being selected, select delete from the tool bar. Short-cut keys:

delete

36

2.9.6 Connecting Blocks

 Left click on one socket and then left click on another socket. A connection will

only be created between an input socket and an output socket, and the input socket may

have no existing connections. An output socket may have unlimited connections. Red

lines surrounding the connection indicate that the data types of the sockets do not match.

2.9.7 Modifying Parameters

 Double click on a block or select it and choose properties from the edit menu. A

dialog containing all the parameters for the signal block will appear. Some parameters

are set via a drop down menu, and most must be typed in as characters. These

parameters are usually numeric, representing sampling rates, gains, and amplitudes.

Numeric parameters may contain mathematical expressions with variables.

2.9.8 Numeric Expressions

 A numeric expression may contain any number of variables, numbers, and

operators. There must be an operator between every pair of numbers/variables. Possible

operators are + - * / ^. Numbers can be integers, decimals, floating-point, and complex.

Python's built-in floating point and imaginary formats are used. Floating point numbers

end in an ‘e’ followed by a signed integer. Imaginary numbers end in a ‘j’. Matching

bracket pairs are allowed: (), [], {}. Variables are denoted by a leading '$' character.

2.9.9 Flow Graph Validation

1. Connections are between input and output sockets of the same data type.

Different data types have different colors. Therefore, input and output colors

must match. Invalid connections are highlighted red.

37

2. All sockets must be connected (except for the optional sockets).

Disconnected sockets cause their signal block to have a red label.

3. All signal block parameters must be valid. For instance, numerical

expressions can be parsed. Invalid parameters have colored red labels and

cause their signal block to have a red label.

2.9.10 Running A Flow Graph

 If a flow graph is valid, all parameters are valid and all sockets are connected.

Choose run from the tool bar or press F5. A window will appear with any sliders or

graphs that were added. To stop the flow graph, close the window, press stop in the tool

bar, or press F7. Flow graphs can be run without the interface by running top_block.py.

2.9.11 A Simple Example Of GRC

Here is an example GRC implementation of a Band Pass Filter

Fig 17: GRC Implementation Of A Band Pass Filter

38

This has two signal sources. A signal source has the important following properties:

 Sample rate: Sample rate is defined as the number of samples per unit of time

take from analog (continuous) signal to make a discrete signal. For our example

we are using a sampling rate of 32 kHz which means 32000 samples are being

generated for unit of time.

Note: According to Nyquist theorem, the sampling rate should be at least twice the

highest frequency of the signal.

 Signal Source: This option lets you choose which analog signal you want to use.

Cosine is the analog signal we chose.

 Frequency and Amplitude: Any frequency can be set since its signal is not going

to be transmitted over air. (We are not using any transmitter or receiver to send

the signal.) For our example, we chose two frequencies 500 and 1000Hz.

 Both of these signal sources are generating a Cosine wave at 32 kHz sampling

rate and at different frequencies are added together to produce a resultant 1.5 kHz signal.

A Throttle block is necessary in order to avoid congestion in the CPU.A The “Wx GUI

FFT Sink” plot is used to check our outputs. An adder is used to combine the two signals

and to produce a resultant 1.5 kHz signal.

 The 1.5 kHz signal is sent through the band pass filter to avoid noises/other

signals. A frequency range of 400 to 500 Hz is given so as to pass the 500 Hz signal.

Note: The decimation factor is set to 1. The other GUI plot is used to see the difference

in between the filtered and non-filtered signals.

39

 The plot below shows the difference between the filtered (above) and non-

filtered signal (below). The highest frequency is 16 kHz since the sampling rate of 32

kHz is used.

 Fig 18: FFT Plot Of A BPF

 Now consider changing the decimation factor to 2. A decimation factor of 'N'

reduces the sample rate by 'N' which means the signal coming into the filter at 32000

40

samples /second is changed to 16000 samples per second that changes the highest

frequency to 8000 HZ.

Note: Make sure to set the sample rate = sample rate/2 in WX GUI plot for correct

results.

 Fig 19: FFT Plot Of A BPF With Decimation Factor Of 2

2.10 Cooperative Relaying

 Cooperative Relaying enables efficient utilization of communication resources,

by allowing nodes or terminals in a communication network to collaborate with each

41

other in information transmission thereby increasing the quality of service. If the

transmitter is far from the receiver, a relay definitely acts as a best choice to improve the

signal quality. Of course, both the Direct Link and the path through the relay have their

own independent channel qualities.

 Fig 20: Cooperative Relaying

 We implement this method of communication using three Radios (USRP1’s),

which act as a Transmitter, Receiver and a Relay. Also, the GNU Radio software is used

for signal processing.

 Relay operation has been implemented in two ways:

1. Amplify and Forward: Amplifies the signal first and then forwards it to the

destination.

2. Decode and Forward: Decodes the signal and retransmits it.

o
u
r

t
e
x
t

h
e
r

42

 CHAPTER 3

DESIGN

This chapter discusses the design that was used for this thesis work. It provides

all of the details of the design so that further work can be conducted afterwards.

Fig 21: Experimental Setup In Lab

3.1 A Transceiver

 We started our research by first creating the ability to observe the characteristics

of a Transceiver using USRP 1 and GNU Radio.

 Fig 22: Transceiver Implementation

43

 Our goal is to find the characteristics of a received signal in terms of packet error

rate, character error rate and bit error rate.

 In order to implement this, we need a transmitter and a receiver. The

functionalities of a transmitter and a receiver are developed on the GRC files and used

for this experiment.

3.1.1 A Transmitter

 Fig 23: GRC Flow Graph Of A Transmitter

Now we describe some special features that were implemented in our research for the

transmitter.

 File Source: The text message which we want to transmit is written in a file and is

read from the file in this block to act as a source to this flow graph. The 'Repeat'

option is set to enable in order to transmit the text continuously. A continuous stream

of Character ‘h’ is sent; which looks like ‘hhhhhhhhhhhhhhhhhh’. We used this

44

known sequence of repeating characters to check for Character error rates at the

receiver. [16]

 Packet Encoder: The text data we have is in the digital format. In order for the signal

to be transmitted over the air the signal has to be made into packets. The Packet

encoder should always be followed by blocks like GMSK, DBPSK and QAM. The

packet encoder lets you choose number of samples/symbol and bits/symbol. [17]

 GMSK Modulator: Both the packet encoder and GMSK work synchronously. GMSK

takes the 0's and 1's transforms them into -1 and +1's and runs the data through

frequency modulator. The output of GMSK is always a phase modulated signal and

the inputs are symbols. The input is a byte stream (unsigned char) and the output is

the complex modulated signal at baseband. [18]

A GMSK block is composed of three blocks:

1. NRZ line coding: A stream of bytes is converted into +/- 1 symbols.

2. Gaussian Filter: It is a finite impulse response filter (FIR) which multiplies the

product of two numbers and adds that number to the accumulator. This procedure

is called MAC (Multiply-Accumulate). MAC is used in convolution if filter taps

with a stream of signals. Gaussian filter is used for filter shaping.

3. Frequency Modulator: It accumulates the phase changes of incoming sample and

outputs of I/Q samples. This block provides the modulation.

The packet passes through these blocks within a GMSK modulator.

45

 Fig 24: GMSK Modulator Block Diagram

We use GMSK over other modulation techniques due to:

 It's simplicity to implement in GNU Radio

 High spectral efficiency

 The tradeoff between demodulation accuracy and spectral efficiency can be set

with the help of a parameter called Bandwidth Time (BT) product, which

describes how much smoothing, can occur. A BT of 0.3 works fine for our

experiment.

 GMSK modulation again arises from the fact that none of the information is

carried as amplitude variations. This means that is immune to amplitude

variations and therefore more resilient to noise, than some other forms of

modulation, because most noise is mainly amplitude based.

 Throttle: A Throttle block is used to avoid the computer from freezing.

 USRP Sink: The analog signal generated by the blocks above is sent over the USRP

Sink for the transmission over air on the prescribed center frequency. We chose to

transmit the signal at 915MHZ since the daughter boards RFX 900 works best in the

range of 902-928 MHZ ISM band.

 Considerable changes have been made in Python code, in order to view the

number of packets being transmitted and also transmit a packet number with the

46

payload. Cooperative relaying combines or choose the best of the multiple signals it

receives. We need a packet number so that we can compare the same packets that are

received over these multiple path. These changes are described in the following

sections.

 Figure 25 illustrates the signal at the Transmitter

Fig 25: Signal At The Transmitter

Data sent from the transmitter is a stream of ‘hhhhhhhhhhhhhhhhhhhhh’.

47

3.1.2 Receiver

Fig 26: GRC Flow Graph Of A Receiver

Now we describe some special features that were implemented in our research for the

transmitter.

 USRP Source: The transmitted signal is received with this block. The center

frequency of transmitter and the receiver should always be same. The signal received

is analog and further blocks are used to convert this signal into the readable form.

48

 WX GUI FFT: It is used to view the received signal.

 GMSK Demodulator: It is reverse of a GMSK modulation. The input is the complex

modulated signal at baseband and the output is a stream of bits packed 1 bit per byte

(the LSB).

GMSK has three blocks:

1. Quadrature demodulator: it reversed the operation of frequency modulation. It

processed the incoming packets and estimates their phase information.

2. Clock Recovery: Is used to synchronize the symbols using Mueller and Muller

(M&M) discrete error tracking synchronizer. M&M tracks the symbol clock, re

samples as needed and gives an output in soft symbols.

 Fig 27: M&M Discrete Error Tracking Synchronizer

3. Slicer: For symbol decision

49

 Fig 28: GMSK Demodulator Block Diagram

 Packet Decoder: All the packets received are broken down to extract the data out of

the entire packet.

 File Sink: The extracted payload/data is sent to a file. The output file shows only the

text being sent but gives no information about the number of packets being dropped

during transmission. So, few changes have also been made in the receiver which are

discussed in the following sections.

Here is the plot that is seen of the Received signal:

 Fig 29: FFT Plot At Receiver

50

Figure 30 shows the terminal output that shows the Received Data for each packet and

the statistics.

Fig 30: Terminal Output Of The Data Received

3.2 Implementation Of Cooperative Relays

 We used three USRP1s for our experiment. One Transmitter, One Receiver and

other acts a Relay. See again Figure 21. All are placed at variable distances.

Figure 31: Cooperative Relaying

 The Transmitter is the same as the one used for Basic Transmitter (explained in

detail above).

51

Fig 32: GRC File For Transmitter

3.2.1 A Relay

3.2.1.1 Amplify And Forward

 This is a simple method that is useful to understand the concept of Cooperative

communication. The receiver receives a noisy version of two signals coming directly

from the transmitter and other from the relay. As the name implies, the signal along with

52

the noise from the channel is amplified and retransmitted at the relay. The base station

then takes a decision of choosing the best or combining packets from these paths. [19]

 Fig 33: Amplify And Forward Implementation

 Fig 34: GRC Graph Implementation Of A&F

53

 All that is needed for GRC and the USRP is to receive the signal and then send

the signal. Both the source and sink have amplifier gains; we study their impact on

performance.

3.2.1.2 Decode and Forward

 In this method, the signal from the Transmitter is decoded and then re-encoded in

an attempt to achieve better throughput. [19] We show in our results when this is and is

not the case.

Fig 35: Decode And Forward Implementation

54

Fig 36: GRC Flow Graph of D&F Relay

3.3 Final Destination/Receiver

 Figure 37 shows the GRC implementation of the receiver.

55

 Fig 37: GRC Flow Graph Of Final Destination

 The plot is similar to the receiver’s plot in a basic Transceiver [20] [21]. But the

USRP source is set to receive signals on two channels (one from Transmitter and other

from relay) at different frequencies. These come from separate daughterboards in the

receiver. The demodulation and decoder processes are done individually for both the

signals and stored to files.

3.4 Detailed Explanation Of The Cooperative Relaying Process

We made several changes to the Python code that operates below the GRC

implementations. This is described in detail here.

56

 Prior to explaining our Transmission and Reception procedure of Cooperative

Relays, we need to know how the data is packed into packets and transmitted over air.

3.4.1 Packet Structure

 After application of all the techniques like amplify, modulation etc., the data is

passed through a GNU Radio function called 'make_packet' where a complete packet is

formed. [22]

For this function, a packet consists of the following, as is also seen in Figure 38.

1. Preamble – 2 Bytes in length and used for maintaining synchronization (in

frequency and time) in between the Transmitter and the Receiver.

2. Access Code – 8 Bytes in length and positioned at the start of the packet. Both

Preamble and Access Code correlate with the Receiver for better

synchronization.

3. Header – 4 Bytes in length and has the information about length of the payload.

When a stream of sampled data comes to the receiver, all the data are discarded

until the beginning of the packet is signaled either by the stream tag or a trigger

signal from the coming inputs. Once the start of the packet is detected, the

preamble and header are copied to the output by the de-multiplexer. The header

is then demodulated with any of the GRC blocks.

4. CRC-32 – 4 Bytes in length and is used for error detection for the payload.

5. Whitener Offset – Ranges from 0 to 15 Bytes in length. The payload is 'whitened'

which means an XOR operation is done with a PN code generated by the Linear

57

feedback shift register (LFSR) in order to avoid phase error during the

transmission. This offset determines where to begin the whitening.

6. Payload – The length of the payload ranges from 1 to 4092 Bytes.

7. End Byte – 1 Byte in length which tells the receiver that the transmission is

complete.

 Fig 38: Packet Structure

The main functions in Python of a Transmitter, Relay and a Receiver are explained

below.

3.4.2 At Transmitter

 After the text from the file source is forwarded to the Packet encoder, the

complete packet structure is formed.

 Before encoding the packets, creation of Header and the Packet is necessary.

This is done within packet_utils.py which is located in /usr/local/lib/python2.7/dist-

packages/gnuradio/digital. The function used is make_header where the length of the

payload and whitener offset values are packed. The packet is framed within the function

make_packet. This function packs the packet with the payload (payload+packet

number+packet number), sampling rate, bits per symbol, preamble etc.

58

 converted_pkt_no=struct.pack('!H', pkt_no & 0xffff)

 payload2=converted_pkt_no+converted_pkt_no+payload

 We add the packet number to the payload and transmit it over the air so we can to

calculate the errors that occurred due to interferences. This packet number is added twice

to the payload in order to increase the efficiency of our results. The packet numbers

which match with each other at the receiver will only be processed to calculate the

statistics of the system. Otherwise, errors have occurred in the packet numbers and This

function of checking the packet number match is done in relay_process.py file

programmed exclusively for our project.

 Packet transmission is done through the function send_packet in the Packet.py

file which is located in /usr/local/lib/python2.7/dist-packages/grc_gnuradio/blks2. The

send_packet function is a part of packet_encoder where the packet data is pushed onto

the message queue for transmission. After the complete packet structure is formed, it is

sent to our next block, the GMSK modulator. This function is located in

/usr/local/lib/python2.7/dist-packages/gnuradio/digital, where the entire procedure of

GMSK takes place. The working of the GMSK modulator was explained in the above

sections.

 Finally the message queue is passed over to the USRP Sink where the digital

signal is processed to an analog signal with the help of D/A converters and transmitted

over air.

 The signal transmitted can be viewed (on the terminal) by printing the payload as

seen below.

59

 Fig 39: Terminal Output At The Transmitter

 The first few characters of the stream ‘hhhhhhhhhhh’ are the hexadecimal

representation of the packet numbers. The original packet numbers can also be seen

above.

3.5 At The Relay

 The USRP source is used to receive the signal. The center frequency is set to a

frequency on which the signal is being transmitted. Gains are kept variable to see the

performance of the signal. These results are analyzed in the next chapter.

3.5.1 Amplify And Forward

 This just forwards the received signal onto another frequency. No additional

Python code changes are necessary in order to implement this scenario. The data along

with the packet numbers will automatically be forwarded to the receiver.

60

Output At A&F Relay

Fig 40: Output For A&F Implementation

3.5.2 Decode And Forward

 The signal received has both entities of the payload and the two packet numbers.

While the signal is decoded, the payload and the packet numbers are separated. So, to

retransmit the payload accompanied with the packet number, we had to add the received

packet numbers with the payload again. To meet this requirement, a few changes have

been made in packet.py and packet_utils.py.

 The header is first separated from the packet in the packet_decoder_thread

function located in packet.py. Packet number is extracted out from the payload in

packet.py as shown below.

(pkt_no,) = struct.unpack('!H', payload[0:2])

 The packet numbers are re added to the payload in make_packet function located

in packet_utils.py. Also, the payload is converted to upper case, just to create the

difference in between the payload coming from relay and the payload coming from the

61

Transmitter at the Final Destination. This allows the receiver to easily distinguish the

direct and relayed packets.

payload =converted_pkt_no +converted_pkt_no +payload.upper()

Output At D&F Relay

 Fig 41: FFT Plot At The Relay

62

Output In The Terminal

 Fig 42: Terminal Output At Relay

 The stream of “hhhhhhhhhhhhhhhhhhhhhhh” is the received payload. The stream

of ‘HHHHHHHHHHHHHHHHHHHHH’ is the retransmitted payload. The received

packet numbers are also observed above.

3.5.3 At The Receiver

 The USRP Source receives the input from two channels. One, directly from the

transmitter called Direct Link and other from the Relay. These two analog signals are

converted to digital (in frames/packets) in the mother board within USRP and forwarded

to the GMSK demodulator for converting complex modulated signal to the packets. The

gains are set variable in the Source to see the performance of both these signals. Some

additional details are as follows.

 GMSK_Demod: The complex baseband signal is sent to the Demodulator to

produce a stream of bits packed 1 bit per byte. The functionality of a GMSK

Demodulator is explained in the above sections.

63

 Packet Decoder: Used to unpack and decode the information. Firstly, we need to

unpack the packets before proceeding to decode function. This function is

located in packet_utils .py in /usr/local/lib/python2.7/dist-

packages/gnuradio/digital.

 Unmake Packet: This function is used to unmake the packet. This separates the

payload from other parameters like whitener offset dewhitening etc. After all the

conditions are verified, the data is now stored in “payload” variable.

 The payload is now forwarded to Packet.py located in

/usr/local/lib/python2.7/dist-packages/grc_gnuradio/blks2

 Packet_Decoder_thread: This function decodes the data and calculates the Bit

error Rates, Character Error Rates and Packet Error Rates coming from both the

Direct link and through the Relay.

After the packet numbers and the number of successful bits are written to file,

another Python file, relay_process.py, is run to calculate the Bit error rates of the entire

system. This implements the equivalent of a selection diversity relay combining

strategy. If both packets are received, the best packet is chosen. This is the one with the

fewest bit errors, which can be determined since we know the payload should either be

all ‘h’ or ‘H’ characters. If only one packet is received, that one is chosen even if it

comes from the path (direct or relayed) that might in general be worse.

64

 Fig 43: FFT Plot At The Receiver

 Fig 44: Terminal Output At The Receiver

The statistics shown above are picked from a batch of outputs produced at the

Receiver when the USRPs are placed in some random positions. Now that the packet

65

numbers and the bit success rates are entered into the files Direct_path.txt and Relay.txt,

the Overall BER of the system is calculated from relay_process.py.

66

CHAPTER 4

 RESULTS AND ANALYSIS

 Given below are statistics are obtained at random gains for the Relay receiver,

Relay transmitter, and Source transmitter (i.e., Direct Link). BER in Direct Link and

Relay Link are calculated individually from packet.py .The Overall BER is calculated

from relay_process.py were the best packets are chosen. As observed from the table, the

Overall BER is substantially improved in most of the conditions.

Gain

at

Relay

(dB)

Gain

at

Direct

link

(dB)

Gain

at

Relay

(dB)

Packet

Success

Rate

(Direct

Link)

BER

(Direct

Link)

CHAR

error

rate

(Direct

Link)

Packet

Success

Rate

(Relay)

BER

(Relay)

CHAR

error

rate

(Relay)

Overall

BER

D&F

or

A&F

20 8 20 0.937 0.002 0.021 1.0 0.0023 0.0115 0.00193 D&F

20 12 20 0.9633 0.0013 0.0123 0.9881 0.0007 0.00076 0.00039 A&F

20 20 5 0.99 0 0.0039 0.999 0.0034 0.012 0.06 D&F

20 20 10 1.0 0 0.0038 0.884 0.0041 0.029 0 A&F

10 13 20 0.847 0.118 0.069 1 0.0040 0.0115 0.005 D&F

10 10 20 0.807 0.01 0.0688 1 0 0.00389 0 A&F

10 20 10 1 0.003 0.0115 0.994 0.00305 0.0038 0.00006 D&F

10 20 2 1 0 0.00389 0.813 0.0084 0.00595 0.00 A&F

0 11 20 0.946 0.0002 .0180 1 0.0038 0.0115 0.00215 D&F

0 13 20 0.984 0.0005 .0074 1 0 0.00389 0 A&F

67

 The following plots show a more systematic investigation. The plots obtained by

varying the gains at the Relay and Receiver (both Relay and the Direct Link)

Fig 45: AF&DF (LOS On Left And Obstruction Environment On Right), 20 dB Gain At

Relay, Variable Gain At Direct Link-RX

 The above plots are obtained by applying 20 dB at the Relay and at the Receiver

for the Relay link. Gains at the receiver for the Direct Link are varied, to observe the

performance of the system. Plots show how the BER performance of the Direct Link and

Overall perform. The curves for the relay are not shown since they do not change and

would clutter the figure. In a LOS (Line of Sight) environment (shown in the plot on the

left), starting from the right at 20 dB moving left the BER in A&F works similar to each

other (for Direct Link and Overall) until close to 18 dB and then as the gain decreases,

the BER at Direct link increases faster. This means that above 18 dB the receiver would

choose the Direct Link, but at less than 18 dB it would choose the Relay path. The relay

continues to work better and all the packets from the Relay are processed at this time

maintaining lower Overall BER. The same happens with D&F. Interestingly, D&F is

sometimes better than A&F, sometimes not. The system performance in an obstruction

68

environment (seen on the right) is definitely worse in comparison with the LOS but

provides good Overall system performance in its own conditions.

Fig 46: AF&DF (LOS On Left And Obstruction Environment On Right), 20 dB Gain At

Relay, Variable Gain At Relay Link-RX

 Now we fix the received gain at the receiver for the Direct Link and vary the gain

at the receiver for the Relay link.. The above plot is obtained by maintaining 20dB at the

Relay and 20 dB at the receiver for the Direct Link. In the LOS scenario, the Overall

BER is always at its minimum value in A&F conditions. There is also drastically better

performance for the Overall BER in the D&F method since the Direct Link is working

on high gain. In the Obstruction environment, D&F performs better than the A&F

method. A&F doesn’t show much improvement between BER and Overall BER.

69

Fig 477: AF&DF (LOS On Left And Obstruction Environment On Right), 10 dB Gain

At Relay, Variable Gain At Direct Link-RX

 The above plot is obtained by maintaining 10dB at Relay, 20 dB at Relay Link at

RX. Gains on the Direct Link are kept varying to observe the performance. In the LOS

scenario, BERs in A&F are at minimum values from 20 dB down until 17 dB; from there

the BER on the Direct link gets worse. BER and Overall BER performance in A&F is

much better than D&F in most of the scenarios. In the Obstruction environment, the

BER can only be calculated from 20 dB down to 12 dB. Thereafter, there are constant

errors and CPU congestions that cause consecutive over runs. There are too many errors

to process.

70

Fig 488: AF&DF (LOS On Left And Obstruction Environment On Right), 10 dB Gain

At Relay, Variable Gain At Relay Link-RX

 The above plot is obtained by maintaining 10dB at the Relay, 20 dB at the

receiver for the Direct Link. Gains on the Relay Link are varied to observe the

performance. In the LOS scenario, the Overall BER in A&F remains constant at its

minimum value. Overall BER in D&F remains almost constant and continues to provide

better performance until it is lowered down below 10 dB. In the obstruction

environment, both the BER performances (A&F method) at the Relay are excellent since

the Direct Link is operating at high gain and also Relay’s gain is good enough to draw

the signal without errors.

71

Fig 499: AF&DF (LOS On Left And Obstruction Environment On Right), 0 dB Gain At

Relay, Variable Gain At Direct Link-RX

 The above plot is obtained by maintaining 0dB at the Relay, 20 dB at the receiver

for the Relay Link. Gains on the Direct Link are varied to observe the performance. In

LOS, A&F still continues to provide reliable Overall system performance although there

is 0 dB gain provided at the Relay. There is not much difference in the BER performance

in case of D&F which indicates that the overall performance of the BER in D&F is

worse in lower gain conditions. In the obstruction environment, A&F provides minimum

overall BER because the Relay provides high gain.

Fig 50: AF&DF (LOS On Left And Obstruction Environment On Right), 0 dB Gain At

Relay, Variable Gain At Relay Link-RX

72

 The above plot is obtained by maintaining 0dB at the Relay, 20 dB at the receiver

for the Direct Link. Gains on the Relay Link are varied to observe the performance. In

LOS, since the Direct Link is operated at high gain, the overall BER rates are maintained

on the minimum level. In the obstruction environment, BERs in A&F remain constant

and perform better until 15 dB and begin to show their difference as the gain is reduced.

D&F also delivers good and consistent performance.

73

CHAPTER 5

 CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In our research, we have chosen to develop some fundamental cooperative

communication techniques like Amplify & Forward and Decode & Forward strategies.

We studied these using a hardware-based SDR laboratory. We also analyzed and

compared them to interpret the best choice. GNU radio has been added with additional

programming codes and reprogrammed to study the characteristics of the signal. This

research project not only led us to learn the concepts of communication systems but also

gave us a chance to learn techniques that can improve signal quality in real-world noisy

environments.

5.2 Future Work

 In the future, cooperative Relays can be implemented using multiple TXs, RXs,

and Relays. The Relays can be made to forward the data only in the links that are more

reliable. The links having higher SNR ratio will be chosen to carry the signal. Of course,

this requires a lot of network coding and network protocols for the Relay to switch links.

 Also, the Relay has been tested in stationary environments until now. In the

future, a mobile Relay can be implemented by mounting a Relay on vehicles used for

emergency purposes. Also, the MRC (Maximum Ratio Combining) concept at the

Receiver can also increase spectrum diversity; we have only tested selection combining.

74

 Optimal position of relay placement and relay selection can be implemented

where the location of a relay in a cooperative relay network is important to take

advantage of the diversity characteristics of a wireless network. The CSI (Channel state

information) between the source and the final destination plays an important role to

select a relay that transmits a signal from the source to the destination.

 Cross-layer cooperative networking can be implemented so that this approach is

not limited to one particular layer. More scope of research can be done in application of

Network coding in cooperative networks.

75

APPENDIX

Packet.py on receiver end

(Extra code that is added to solve the purpose of our Project)

Packet Decoder

class _packet_decoder_thread(_threading.Thread):

def __init__(self, msgq, callback):

_threading.Thread.__init__(self)

self.setDaemon(1)

self._msgq = msgq

self.callback = callback

self.keep_running = True

self.start()

def run(self):

start_pkt_no = -1

pkt_counter = 0

char_success_counter = 0

char_total_counter = 0

bit_success_counter1 = 0

bit_success_counter2 = 0

bit_total_counter = 0

fileout=open('DirectPath.txt','w')

while (self.keep_running & (pkt_counter !=1000)):

#os._exit(0)

76

msg = self._msgq.delete_head()

ok, payload = packet_utils.unmake_packet(msg.to_string(), int(msg.arg1()))

print payload

thislen = len(payload)

(pktno,) = struct.unpack('!H', payload[0:2])

(pktno_check,) = struct.unpack('!H', payload[2:4])

if start_pkt_no == -1:

start_pkt_no = pktno

pkt_counter+=1

char_total_counter = char_total_counter + thislen-2

thispacket_bit_success_counter1=0

thispacket_bit_success_counter2=0

thispacket_char_success=0

for charindex in range(4, thislen):

c=payload[charindex]

if c in ['H','h']:

thispacket_char_success+=1

char_success_counter+=1

bitdiff1=(ord(c) ^ ord('H'))

bitdiff2=(ord(c) ^ ord('h'))

bitdiff_string1=bin(bitdiff1)

bitdiff_string2=bin(bitdiff2)

numerrors1 = 0

for charindex in range(1,len(bitdiff_string1)):

if bitdiff_string1[charindex]=='1':

numerrors1+=1

numerrors2 = 0

for charindex in range(1,len(bitdiff_string2)):

if bitdiff_string2[charindex]=='1':

numerrors2+=1

77

bit_total_counter+=8

bit_success_counter1=bit_success_counter1+(8-numerrors1)

bit_success_counter2=bit_success_counter2+(8-numerrors2)

thispacket_bit_success_counter1=thispacket_bit_success_counter1+(8-numerrors1)

thispacket_bit_success_counter2=thispacket_bit_success_counter2+(8-numerrors2)

success_ratio=(float)(pkt_counter)/(pktno-start_pkt_no+1)*100

success_ratio2=(float)(char_success_counter)/(char_total_counter)*100

if bit_success_counter1>=bit_success_counter2:

print "Packet number %d Bit Success %d Character Success %d" % (pktno,

thispacket_bit_success_counter1,thispacket_char_success)

print "Statistics for h: pktno = %4d, count=%d, all packets=%d, success=%f%% " %

(pktno,pkt_counter,pktno-start_pkt_no+1,success_ratio)

success_ratio=(float)(char_success_counter)/(char_total_counter)*100

print "Statistics for H: chars = %d, successful = %d, success=%f%%, fail = %f%%" %

(char_total_counter,char_success_counter, success_ratio, 100-success_ratio)

success_ratio=(float)(bit_success_counter1)/(bit_total_counter)*100

fail_ratio=(float)(bit_total_counter-bit_success_counter1)/(bit_total_counter)*100

print " Compared to H: bits = %d, successful = %d, success=%f%%, fail = %.12f%%"

% (bit_total_counter,bit_success_counter1, success_ratio, fail_ratio)

if pktno == pktno_check:

fileout.write("Packet number %d Bit Success %d\n" % (pktno,

thispacket_bit_success_counter1))

else:

print "Packet number %d Bit Success %d Character Success %d" % (pktno,

thispacket_bit_success_counter1,thispacket_char_success)

print "Statistics for h: pktno = %4d, count=%d, all packets=%d, success=%f%% " %

(pktno,pkt_counter,pktno-start_pkt_no+1,success_ratio)

success_ratio=(float)(char_success_counter)/(char_total_counter)*100

print "Statistics for h: chars = %d, successful = %d, success=%f%%, fail = %f%%" %

(char_total_counter,char_success_counter, success_ratio, 100-success_ratio)

success_ratio=(float)(bit_success_counter2)/(bit_total_counter)*100

fail_ratio=(float)(bit_total_counter-bit_success_counter2)/(bit_total_counter)*100

78

print " Compared to h: bits = %d, successful = %d, success=%f%%, fail = %.12f%%"

% (bit_total_counter,bit_success_counter2, success_ratio, fail_ratio)

if pktno == pktno_check:

fileout.write("Packet number %d Bit Success %d\n" % (pktno,

thispacket_bit_success_counter2))

if self.callback:

self.callback(ok, payload)

fileout.close()

os._exit(0)

Packet Decoder

class _packet_decoder_thread2(_threading.Thread):

This is for the relay, when the threshold is = -2

print 'just enterede'

def __init__(self, msgq, callback):

_threading.Thread.__init__(self)

self.setDaemon(1)

self._msgq = msgq

self.callback = callback

self.keep_running = True

self.start()

def run(self):

start_pkt_no = -1

pkt_counter = 0

char_success_counter = 0

char_total_counter = 0

bit_success_counter1 = 0

bit_success_counter2 = 0

bit_total_counter = 0

79

fileout=open('/home/aklilu1/gnuradio/grc/Project/relays/relay.txt','w')

print fileout

while (self.keep_running & (pkt_counter !=1000)):

#os._exit(0)

msg = self._msgq.delete_head()

print 'dtep'

ok, payload = packet_utils.unmake_packet(msg.to_string(), int(msg.arg1()))

print payload

thislen = len(payload)

(pktno,) = struct.unpack('!H', payload[0:2])

(pktno_check,) = struct.unpack('!H', payload[2:4])

if start_pkt_no == -1:

start_pkt_no = pktno

pkt_counter+=1

char_total_counter = char_total_counter + thislen-2

thispacket_bit_success_counter1=0

thispacket_bit_success_counter2=0

thispacket_char_success=0

for charindex in range(4, thislen):

c=payload[charindex]

#print c

if c in ['H','h']:

#print "hello"

char_success_counter+=1

thispacket_char_success+=1

bitdiff1=(ord(c) ^ ord('H'))

bitdiff2=(ord(c) ^ ord('h'))

#print bitdiff

bitdiff_string1=bin(bitdiff1)

bitdiff_string2=bin(bitdiff2)

80

numerrors1 = 0

for charindex in range(1,len(bitdiff_string1)):

if bitdiff_string1[charindex]=='1':

numerrors1+=1

numerrors2 = 0

for charindex in range(1,len(bitdiff_string2)):

if bitdiff_string2[charindex]=='1':

numerrors2+=1

bit_total_counter+=8

bit_success_counter1=bit_success_counter1+(8-numerrors1)

bit_success_counter2=bit_success_counter2+(8-numerrors2)

thispacket_bit_success_counter1=thispacket_bit_success_counter1+(8-numerrors1)

thispacket_bit_success_counter2=thispacket_bit_success_counter2+(8-numerrors2)

success_ratio=(float)(pkt_counter)/(pktno-start_pkt_no+1)*100

success_ratio2=(float)(char_success_counter)/(char_total_counter)*100

if bit_success_counter1>=bit_success_counter2:

print "Packet number %d Bit Success %d Character Success %d" % (pktno,

thispacket_bit_success_counter1,thispacket_char_success)

print "Relay: Statistics for H: pktno = %4d, count=%d, all packets=%d, success=%f%%

" % (pktno,pkt_counter,pktno-start_pkt_no+1,success_ratio)

success_ratio=(float)(char_success_counter)/(char_total_counter)*100

print "Relay: Statistics for H: chars = %d, successful = %d, success=%f%%, fail =

%f%%" % (char_total_counter,char_success_counter, success_ratio, 100-success_ratio)

success_ratio=(float)(bit_success_counter1)/(bit_total_counter)*100

fail_ratio=(float)(bit_total_counter-bit_success_counter1)/(bit_total_counter)*100

print "Relay Compared to H: bits = %d, successful = %d, success=%f%%, fail =

%.12f%%" % (bit_total_counter,bit_success_counter1, success_ratio, fail_ratio)

if pktno == pktno_check:

fileout.write("Packet number %d Bit Success %d\n" % (pktno,

thispacket_bit_success_counter1))

else:

81

print "Packet number %d Bit Success %d Character Success %d" % (pktno,

thispacket_bit_success_counter1,thispacket_char_success)

print "Relay Statistics for h: pktno = %4d, count=%d, all packets=%d, success=%f%%

" % (pktno,pkt_counter,pktno-start_pkt_no+1,success_ratio)

success_ratio=(float)(char_success_counter)/(char_total_counter)*100

print "Relay Statistics for h: chars = %d, successful = %d, success=%f%%, fail =

%f%%" % (char_total_counter,char_success_counter, success_ratio, 100-success_ratio)

success_ratio=(float)(bit_success_counter2)/(bit_total_counter)*100

fail_ratio=(float)(bit_total_counter-bit_success_counter2)/(bit_total_counter)*100

print "Relay Compared to h: bits = %d, successful = %d, success=%f%%, fail =

%.12f%%" % (bit_total_counter,bit_success_counter2, success_ratio, fail_ratio)

if pktno == pktno_check:

fileout.write("Packet number %d Bit Success %d\n" % (pktno,

thispacket_bit_success_counter2))

if self.callback:

self.callback(ok, payload)

fileout.close()

os._exit(0)

class packet_decoder(gr.hier_block2):

print 'i am into loop'

"""

Hierarchical block for wrapping packet-based demodulators.

"""

def __init__(self, access_code='', threshold=-1, callback=None):

"""

packet_demod constructor.

@param access_code AKA sync vector

@param threshold detect access_code with up to threshold bits wrong (0 -> use default)

@param callback a function of args: ok, payload

"""

82

#access code

if not access_code: #get access code

access_code = packet_utils.default_access_code

if not packet_utils.is_1_0_string(access_code):

raise ValueError, "Invalid access_code %r. Must be string of 1's and 0's" %

(access_code,)

self._access_code = access_code

print 'into packet_decoder'

print 'Threshold = %d ' % (threshold)

thisthreshold = threshold

#threshold

if threshold < 0: threshold = DEFAULT_THRESHOLD

self._threshold = threshold

#blocks

msgq = gr.msg_queue(DEFAULT_MSGQ_LIMIT) #holds packets from the PHY

print 'msqq',msgq

correlator = digital.correlate_access_code_bb(self._access_code, self._threshold)

framer_sink = gr.framer_sink_1(msgq)

#initialize hier2

gr.hier_block2.__init__(

self,

"packet_decoder",

gr.io_signature(1, 1, gr.sizeof_char), # Input signature

gr.io_signature(0, 0, 0) # Output signature

)

#connect

self.connect(self, correlator, framer_sink)

#start thread

if thisthreshold == -1:

Thread for Direct Path

83

_packet_decoder_thread(msgq, callback)

else:

Thread for Relay path

_packet_decoder_thread2(msgq, callback)

##################################

Code for relay_process.py

#!/usr/bin/env python

Gnuradio Python Flow Graph

Title: Top Block

Generated: Wed Jul 17 12:56:08 2013

from gnuradio import digital

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from gnuradio.gr import firdes

from gnuradio.wxgui import forms

from grc_gnuradio import blks2 as grc_blks2

from grc_gnuradio import wxgui as grc_wxgui

from optparse import OptionParser

import wx

class relay_process():

fr=open('relay.txt','r')

fd=open('DirectPath.txt','r')

This parameter makes sure that pktno values are close to the previous value

It specifies how large of a gap can be seen in packet numbers and still be allowed.

allowed_pktno_gap = 200

84

Read the first Relay packet

str=fr.readline()

str=str.split()

fr_start_pktno=int(str[2])

fr_bit_success=int(str[5])

print "first packet number from the relay",fr_start_pktno

Read the first Direct Path packet

str=fd.readline()

str=str.split()

fd_start_pktno=int(str[2])

fd_bit_success=int(str[5])

print "first packet number from the direct path",fd_start_pktno

while fr_start_pktno < fd_start_pktno:

Read from fr until it matches fd

Loop until a valid packet is found

notvalidpacket = 1

old_fr_pktno = fr_start_pktno

while notvalidpacket==1:

str=fr.readline()

str=str.split()

fr_start_pktno=int(str[2])

fr_bit_success=int(str[5])

A valid packet has a pktno larger than the previously processed packet, and is not

too much larger in pktno (by allowed_pktno_gap)

if (fr_start_pktno < old_fr_pktno) or (fr_start_pktno > (old_fr_pktno+200)):

notvalidpacket=1

print 'Not a valid fr packet = %d, old_pktno = %d' % (fr_start_pktno,old_fr_pktno)

else:

notvalidpacket=0

this_fr_pktno = fr_start_pktno

this_fd_pktno = fd_start_pktno

85

Initialize counters

bit_success_counter = 0

bit_total_counter = 0

fr_only_pktcount = 0

fd_only_pktcount = 0

fr_best_pktcount = 0

fd_best_pktcount = 0

Assuming collection of 500 packets, process first 300

for i in range(1,300):

print 'Iteration %d' % i

If the fr packet number is less than the fd packet number, search through the fr file

and collect fr packet statistics until the latest fr packet in the file has a packet number

equal or greater than fd

while (this_fr_pktno < this_fd_pktno):

Read and collect statistics from fr until it matches fd

bit_success_counter = bit_success_counter + fr_bit_success

bit_total_counter+=4096

success_ratio = (float) (bit_success_counter)/(bit_total_counter) * 100

error_ratio=100-success_ratio

fr_only_pktcount += 1

print '%d Choose Relay: Overall bit error ratio after picking best packets is %f%%' % (

this_fr_pktno, error_ratio)

Read from fr

Loop until a valid packet is found

notvalidpacket = 1

old_fr_pktno = this_fr_pktno

while notvalidpacket==1:

Read the next fr packet

str=fr.readline()

str=str.split()

this_fr_pktno=int(str[2])

86

fr_bit_success=int(str[5])

A valid packet has a pktno larger than the previously processed packet, and is not

too much larger in pktno (by allowed_pktno_gap)

if (this_fr_pktno < old_fr_pktno) or (this_fr_pktno >

(old_fr_pktno+allowed_pktno_gap)):

notvalidpacket=1

print 'Not a valid packet = %d ' % (this_fr_pktno)

else:

notvalidpacket=0

print 'Fr packet = %d' % (this_fr_pktno)

print 'Fd packet = %d' % (this_fd_pktno)

if this_fd_pktno < this_fr_pktno:

print 'Looking in DirectPath.txt for: %d' % this_fr_pktno

If the fd packet number is less than the fr packet number, search through the fd file

and collect fd packet statistics until the latest fd packet in the file has a packet number

equal or greater than ff

while (this_fd_pktno < this_fr_pktno):

Read and collect statistics from fd until it matches fr

bit_success_counter = bit_success_counter + fd_bit_success

bit_total_counter+=4096

success_ratio = (float) (bit_success_counter)/(bit_total_counter) * 100

error_ratio=100-success_ratio

print '%d Choose Direct Path: Overall bit error ratio after picking best packets is %f%%'

% (this_fd_pktno,error_ratio)

fd_only_pktcount += 1

Read from fr

notvalidpacket=1

old_fd_pktno = this_fd_pktno

while notvalidpacket==1:

str=fd.readline()

str=str.split()

87

this_fd_pktno=int(str[2])

fd_bit_success=int(str[5])

if (this_fd_pktno < old_fd_pktno) or (this_fd_pktno >

(old_fd_pktno+allowed_pktno_gap)):

notvalidpacket=1

else:

notvalidpacket=0

This is the case where the packet numbers are the same

if this_fd_pktno == this_fr_pktno:

Compare bit success numbers and choose the best

if fd_bit_success <= fr_bit_success:

bit_success_counter = bit_success_counter + fr_bit_success

bit_total_counter+=4096

success_ratio = (float) (bit_success_counter)/(bit_total_counter) * 100

error_ratio=100-success_ratio

print '%d Match -- Choose Relay: Overall bit error ratio after picking best packets is

%f%%' % (this_fr_pktno,error_ratio)

fr_best_pktcount += 1

else:

bit_success_counter = bit_success_counter + fd_bit_success

bit_total_counter+=4096

success_ratio = (float) (bit_success_counter)/(bit_total_counter) * 100

error_ratio=100-success_ratio

fd_best_pktcount += 1

print '%d Match -- Choose Direct Path: Overall bit error ratio after picking best packets

is %f%%' % (this_fd_pktno,error_ratio)

Read the pktno values from both files, making sure to only use valid packets

Read from fr

notvalidpacket=1

old_fr_pktno = this_fr_pktno

while (notvalidpacket==1):

88

str=fr.readline()

str=str.split()

this_fr_pktno=int(str[2])

fr_bit_success=int(str[5])

print "FR: Packet number = %s" % this_fr_pktno

if (this_fr_pktno < old_fr_pktno) or (this_fr_pktno >

(old_fr_pktno+allowed_pktno_gap)):

notvalidpacket=1

else:

notvalidpacket=0

Read from fd

notvalidpacket=1

old_fd_pktno = this_fd_pktno

while (notvalidpacket==1):

str=fd.readline()

str=str.split()

this_fd_pktno=int(str[2])

fd_bit_success=int(str[5])

print "FD: Packet number = %s" % this_fd_pktno

if (this_fd_pktno < old_fd_pktno) or (this_fd_pktno >

(old_fd_pktno+allowed_pktno_gap)):

notvalidpacket=1

else:

notvalidpacket=0

print 'Relay only packets = %d, Direct Path only packets = %d' %

(fr_only_pktcount,fd_only_pktcount)

print 'When matching: Relay best packets = %d, Direct Path best packets = %d' %

(fr_best_pktcount,fd_best_pktcount)

89

BIBLIOGRAPHY

[1] R.H. Hosking, Software Defined Radio Handbook, New Jersey: Pentek,2011.

[2] Wiki,"Wikipedia,"[Online].

Available:http://en.wikipedia.org/wiki/Radio_broadcasting.

[3] Wikipedia,"Wiki," [Online]. Available:

http://en.wikipedia.org/wiki/Downsampling.

[4] Dawei Shen, "The USRP Board," August,2005. [Online].

Available: astro.square7.ch/Datenblaetter/gnuradiodoc-4.pdf

[5] Firas Abbas Hamza, "The USRP under 1.5 X Magnifying Lens," Bosten,June

2008. [Online]

Available:microembedded.googlecode.com/files/USRP_Documentation.pdf.

[6] Matt Ettus, "USRP User’s and Developer’s Guide," Ettus Research

LLC.[Online].Available:http://www.olifantasia.com/gnuradio/usrp/files/usrp_guid

e.pdf.

[7] Matthias Fähnle, "Software-Defined Radio with GNU Radio and USRP2

Hardware Frontend," Germany,2009. [Online]. Available: http://repo.zenk-

security.com/Others/Software-

Defined%20Radio%20with%20GNU%20Radio%20and%20USRP-

2%20Hardware%20Frontend:%20Setup%20and%20FM-

90

GSM%20Applications.pdf.

[8] "Ettus," National Instruments, [Online]. Available: www.ettus.com. [Accessed

2013].

[9] "Ettus," Ettus, [Online]. Available:

https://www.ettus.com/product/details/USRPPKG.

[10] Ettus, "Ettus research," [Online]. Available:

https://www.ettus.com/product/details/RFX900.

[11] Josh Blum, "Ettus Research," [Online]. Available:

https://www.ettus.com/product/details/VERT900.

[12] Ettus, "Ettus Research," [Online]. Available:

https://www.ettus.com/product/details/SMA-Bulkhead.

[13] GNURADIO, "GNU Radio," [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki/InstallingGR.

[14] GnuRadio, "GRC," [Online]. Available:

http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion.

[15] Naveen Manicka, "GNURadio Testbed," 2007. [Online]. Available:

http://www.eecis.udel.edu/~manicka/Research/NaveenManicka_Thesis.pdf.

[16] Maruganti Murali Krishna, "EXPERIMENTAL STUDY OF COOPERATIVE

COMMUNICATION USING SDR," Cleaveland, 2007. [Online]. Available:

91

http://www.csuohio.edu/engineering/ece/research/theses/2010/Marunganti%20Mur

ali%20Krishna.pdf.

[17] Jon Petter Skagmo, Per Eid Fjuk,Kristian Rygh Jerndahl, "Digital Voice

Communication with USRP2 & GNU Radio," February 2011.[Online].

Available:http://folk.ntnu.no/fjuk/mydoc/TTT4145_Radiocommunication.pdf

[18] Feng Ge, C. Jason Chiang, Yitzchak M. Gottlieb, Ritu Chadha, "GNU Radio-

Based Digital Communications," Telcordia Technologies, New Jersey.

[19] Aria Nosratinia, Todd E. Hunter, "Cooperative Communication in Wirelss

Networks," IEEE Communications Magazine, vol.42,no.10,pp.74,80,Oct 2004.

[20] "USRP users mailing list," Ettus, [Online]. Available:

http://comments.gmane.org/gmane.comp.hardware.usrp.e100/4313.

[21] GNURadio, "Mailing list Discuss-gnuradio@gnu.org," [Online]. Available:

http://gnuradio.4.n7.nabble.com/.

[22] Jhony Lee, "A Bidirectional Two-hop Relay Network Using Gnuradio And

Usrp",NorthTexas,2011"[Online].Available:http://digital.library.unt.edu/ark:/6753

1/metadc84237/m1/1/.

http://folk.ntnu.no/fjuk/mydoc/TTT4145_Radiocommunication.pdf

92

VITA

Ganga Manjusha Yandamuri was born on December 07, 1988, in Vishakapatnam,

Andhra Pradesh, India. She completed her schooling in Hyderabad and graduated from

high school in 2006. She then completed her Bachelor’s degree in Electronics and

Instrumentation Engineering from Jawaharlal Nehru Technological University in

Hyderabad in 2010. Upon completion of her Bachelor’s, she was placed in SIFY as a

Software Engineer. In August 2011, Ms.Ganga came to the United States to study

Electrical Engineering at the University of Missouri-Kansas City (UMKC), specializing

in Wireless Communications. During her graduation, she worked as a Graduate

Teaching Assistant for a year. Upon completion of her Master’s degree she will be

rendering her services to RF industry.

