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Introduction
Productivity of US dairy farms has increased rapidly
over the past 50 years: from 1961 to 2011, milk pro-
duced per cow increased 296%, according to US
Department of Agriculture (USDA) Statistical Report-
ing Service (SRS; 1964) and USDA National Agricul-
tural Statistics Service (NASS; 2012) statistics. This
increased productivity is attributed to improved genet-
ics, advanced technology, and better management prac-
tices, including advanced breeding innovations. Modern
breeding technologies such as artificial insemination
(AI), embryo transplants (ET), and sexed semen (SS)
have been replacing conventional natural breeding for a
number of years: Khanal, Gillespie, and MacDonald
(2010) estimate that US dairy farms using genetic selec-
tion and breeding programs such as ET and AI increased
from 64.3% in 2000 to 81.5% in 2005. Breeding tech-
nology affects herd genetics and reproductive perfor-
mance, influencing farm economics and productivity.
Johnson and Ruttan (1997) suggested breeding technol-
ogies were the most significant factor contributing to
farm livestock productivity since the 1940s. The dairy
sector was the first to extensively adopt AI for commer-
cial production in the livestock sector. In this study, we
examine the type of producer most likely to adopt AI,
ET, and SS and evaluate the impact of these technolo-
gies on farm productivity and profitability. In this arti-
cle, factors influencing the adoption of AI, ET and/or SS
are examined, and the impacts of these technologies on
farm costs, profitability, and milk cow productivity are
shown.

Artificial insemination is the most widely used
advanced breeding technology on US dairy farms. After

its introduction to the United States from Denmark in
1938 (Shumway, Blake, R.W., Leatham, & Tomasze-
wski, 1987), AI experienced rapid initial diffusion
(Johnson & Ruttan, 1997). It was considered as a solu-
tion to the needs for genetic improvement and elimina-
tion of costly venereal diseases (Foote, 1996) and
allowed farmers to forgo keeping potentially tempera-
mental and dangerous dairy bulls on their farms. It is
likely to be particularly beneficial if it improves repro-
ductive success measured by calving interval, days
open, and other measures. Hogeland (1990) estimated
that 70% of the US dairy herd was bred via AI in 1990.
Approximately 81.4% of US dairy farms had adopted
AI by 2005; these farms produced 88.9% of the US milk
produced (Khanal et al., 2010). Results of the National
Animal Health Monitoring Study (NAHMS) survey,
conducted in 2007 by the USDA Animal Plant Health
Inspection Service (APHIS), showed that 88.4% of US
dairy operations had used AI in 2007, with approxi-
mately 72.5% of the pregnancies resulting from AI
(USDA APHIS, 2009). Statistics from the 2010 USDA
Agricultural Resource Management Survey (ARMS)
dairy version, conducted by USDA NASS and Eco-
nomic Research Service (ERS), suggest that 80.1% of
US dairy farms used AI in 2010, with these farms pro-
ducing 90.5% of the nation’s milk. Clearly, AI domi-
nates the use of natural service on US dairy farms. There
are various protocols that can be followed with AI use,
with adoption rates of various protocols shown and dis-
cussed in a report by USDA APHIS (2009) and an eco-
nomic analysis of several AI protocols conducted by
Olynk and Wolf (2009).
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Other modern breeding technologies, ET and SS, are
newer technologies on US dairy farms. Embryo trans-
plant technology was first used at the farm level after
the development of non-surgical methods in the 1970s.
Studies suggested that ET application could yield sub-
stantial genetic improvement and increase the reproduc-
tive rate of females (Arendonk, Van, & Bijma, 2003). Its
use reduces the number of dams needed to select for the
next generation. As discussed in a USDA APHIS report
(2009), ET usage has resulted in higher pregnancy rates
for cows under heat stress than AI alone. However,
embryo-based technologies have lower uptake rates in
dairy (Smeaton, Harris, Xu, & Vivanco, 2003), as they
require significant investment in facilities (Funk, 2006).
Results of the 2007 NAHMS survey suggest that about
11.5% of US dairy operations had used ET during the
past year, with 9.9% having pregnancies conceived by
ET during that year (USDA APHIS, 2009).

Farm use of SS technology is increasing, as indi-
cated by Dairy Herd Improvement Association herd
records, which show respective SS breeding increases
from 2006 to 2008 of 1.4% to 17.8% for heifers and
0.1% to 0.4% for cows (Norman, Hutchison, & Miller,
2010). It was first made commercially available in 2003
(Olynk & Wolf, 2007). Since SS application requires
sorting of semen by sex, it allows the dairy farmer to
increase the supply of replacement heifers (though it
might also be used to increase the supply of male
calves). Slow sorting speed in sperm sexing and a lower
conception rate associated with SS have been the main
limitations (Weigel, 2004). Sexed semen technology is
expected to have wider adoption and impact in the near
future (DeVries et al., 2008;Weigel, 2004). The 2007
NAHMS survey results show that, of the 88.4% of oper-
ations where pregnancies were conceived by AI, 11.4%
of the heifers had been inseminated with SS, compared
with 3.5% of the cows (USDA APHIS, 2009). The
greater use of SS with heifers is likely due to the greater
fertility of heifers, the lower counts of viable sperm per
straw with SS, and thus the recommendation that SS be
used only with virgin heifers (USDA APHIS, 2009).
DeVries (2013) discussed the increased supply of heif-
ers resulting from use of SS, estimating 722,000 addi-
tional heifers over the period of 2008-2012.

Approximately 10.4% of US dairy farms had
adopted ET and/or SS in 2005; these farms produced
15.7% of the milk produced in the United States (Kha-
nal et al., 2010). By 2010, USDA ARMS data suggested
that 17.8% of US dairy farms had adopted ET and/or SS
in 2010, with those farms producing 26.9% of the milk
produced in the United States.

Previous studies have shown advanced breeding
technologies to have significant economic value in dairy
performance. The economic value of AI (Barber, 1983;
Hillers, Thonney, & Gaskins, 1982), ET (Seidel, 1984),
and SS (DeVries et al., 2008; Olynk & Wolf, 2007) have
been discussed. Olynk and Wolf (2007) found that SS
use—as opposed to conventional AI—yielded lower net
present value in all but the best-case scenario, where SS
provided 90% of the conception rate of conventional AI.
Past literature provides ample technical descriptions of
these technologies and experimental results but limited
analysis of adoption rates or farm economic impact. For
instance, with no dairy industry population estimates
having been made until recently by Khanal et al. (2010),
Butler and Wolf (2010) correctly suggested adoption
rates of AI to be > 60% of dairy cows and adoption rates
of ET to be < 20% of dairy farms. Understanding the
adoption of technology and the influences of technology
on profitability is of particular importance in an era of
rapid structural change. Determination of who are the
adopters of technology, their relative successes, and the
impacts of the technology on profitability is of impor-
tance to non-adopters who are currently considering
adoption, as well as industry leaders who seek greater
understanding of overall industry structure, conduct,
and performance.

Extensive literature has addressed technology adop-
tion on farms—much of the literature in the developing
country context (Feder, Just, & Zilberman, 1985) and
some with respect to the adoption of dairy breeding
stock (Abdulai & Huffman, 2005; Abdulai, Monnin, &
Gerber, 2008). Breeding technologies are often
described as information and knowledge-intensive tech-
nologies (Johnson & Ruttan, 1997) whose adoption is
affected by both biological and monetary factors (Bar-
ber, 1983). Numerous studies have examined technol-
ogy adoption in the US dairy industry (e.g., El-Osta &
Johnson, 1998; El-Osta & Morehart, 2000; Foltz &
Chang, 2002; McBride, Short, & El-Osta, 2004; Tauer,
2009). Several of these have cited challenges associated
with determining the impact of a particular technology,
separate from other technologies (El-Osta & Johnson,
1998; Foltz & Chang, 2002; McBride et al., 2004).
Since there are likely to be a number of factors affecting
profitability, the effects of other technologies must be
controlled for to assess the technology of major interest.

For the present study, first, an adoption decision
model assessing the factors affecting the adoption deci-
sion of breeding technologies is estimated, accounting
for the probable correlation of the adoption of breeding
technologies. The influences of adoption decisions on
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farm profit, costs, and milk production per cow are then
estimated in impact models. Results can assist producers
in making adoption decisions and industry leaders and
extension personnel in helping producers to decide
whether the technologies can be profitable for their
operations.

Modeling the Adoption and Impact of Dairy 
Breeding Technologies

Adoption Decision Model

Farmers’ technology adoption decisions are generally
affected by a number of demographic and socioeco-
nomic factors. In an economic sense, farmers adopt a
new technology if the utility associated with new tech-
nology adoption is greater than the utility associated
with the old technology. Let UO and UN represent the
utility associated with old (traditional) breeding technol-
ogies and new breeding technologies, respectively. The
dairy farmer adopts a new breeding technology if UN* =
UN – UO > 0. The net benefit of adoption of the new
breeding technology, UN*, which is latent to farmers, is
assumed to be a function of farm and farmer attributes,
as well as management considerations. Thus,

UN * = f (F, M), (1)

where F indicates farm and farmer attributes and M rep-
resents management considerations associated with the
technology and farm. If X is the vector containing all of
the variables in F and M, and α the coefficient vector of
X, then

UN * = X α + ε, (2)

where ε is assumed to be a normally distributed random
error term. So, the observable choice D to adopt new
breeding technologies will be: DN = 1 if UN* > 0; DN =
0 otherwise. Let AI* be the latent net benefits associated
with AI adoption and ETSS* be those associated with
adoption of ET and/or SS1 technologies. Then, AI* and
ETSS* depend on several variables (whose vectors are
X1 and X2, respectively, with b1 and b2 the respective
coefficients) such that

ETSS*= X11 + ε1 (3)

AI*= X22 + ε2 . (4)

Then, ETSS = 1 if ETSS* > 0 and AI = 1 if AI* > 0. Vari-
able AI = 1 for adoption and 0 for non-adoption, and
ETSS likewise.

Since both AI and ETSS are adopted as breeding
technologies, their adoption decisions may be related,
implying the correlation of ε1 and ε2. If so, their joint
probability should be considered, suggesting a bivariate
probit model rather than separate probit models for
each. Using the bivariate probit, the covariance of [ε1,
ε2] equals a constant ρ rather than zero, as is assumed
using individual probit models. An “older” technology,
AI has long been considered a successful, farmer-
friendly technology. On the other hand, ET and SS are
newer technologies. There is the involvement of semen
collected by artificial means in the use of both ET and
SS. Though it is not necessary for an ET adopter to also
use AI, for practical purposes, ET and/or SS adopters
are a subset of AI adopters since there would seldom be
a case where either would be used by a farmer without
AI. Thus, we assume that AI-adopting farms select to
either use or not use ETSS. If ETSS is adopted only on
farms where AI is adopted, there is no difference in
observability in the adoption pattern of the sets
(ETSS = 0 ∩ AI = 0) and (ETSS = 1 ∩ AI = 0), suggest-
ing the bivariate probit with selection, where ETSS data
would be observed only if AI = 1. This type of estimator
was proposed by Van De Ven and Van Praag (1981) and
has been used in other studies (Boyes, Hoffman, & Low,
1989; Kaplan & Venezky, 1994; Mohanty, 2002).

For the bivariate probit with selection model,
εi1, εi2 ~ bivariate normal (0, 0, 1, 1, ρ). The approp-
riate conditional probability for this case would be

Prob[ETSSi = 1 | AIi = 1] =                                         , 

where Φ represents the univariate cumulative distribu-
tion function and Φ2 the bivariate cumulative distribu-
tion function. Since ETSSi is not observed unless AIi =
1, there would be three observed outcomes in this selec-
tion model. Their unconditional means are

1. We created variable “ETSS” in accordance with the ARMS 
2005 question regarding breeding technology: “Did this 
operation adopt embryo transplants and/or sexed semen as a 
part of genetic selection?” We have considered the “ETSS” 
as an indicator of modern and more recently introduced 
breeding technologies other than AI.

Φ2 (Xʹi1 β1, Xʹi2 β2, ρ)

Φ2 (Xʹi2 β2)

AIi = 0: Prob(AIi = 0 | Xi1 , Xi2) = 1 − Φ(Xʹi2 β2)

ETSSi = 0, AIi = 1: Prob(ETSSi = 0, AIi = 1 | Xi1, Xi2)     

= Φ2 (−Xʹi1 β1 , Xʹi2 β2 − ρ)

ETSSi = 1, AIi2 = 1: Prob(ETSSi = 1, AIi = 1 | Xi1, Xi2)    

= Φ2 (Xʹi1 β1 , Xʹi2 β2 , ρ).

(5)
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As shown in Greene (2009), the log likelihood for the
bivariate probit model with selection is

Adoption Impact Model

A farm impact model assesses the impact of the adop-
tion of AI and ET and/or SS on farm productivity and
profitability. If Prodi is an indicator of farm productiv-

ity, then it is a function of vectors of explanatory vari-
ables (Zi) indicating farm size and specialization and

farmer demographics, as well as dummy variables AI
and ETSS for the adoption of breeding technologies.

Prodi = Zʹiα + γ1AIi + γ2ETSSi + ei , (7)

where α is the vector of parameters for vector Zi , AI and

ETSS are dummy variables indicating adoption/non-
adoption with 1 and 2 as respective parameters, and ei

is the random error term.
Other adopted technologies may also influence pro-

ductivity and profitability. So, if Tʹ is a vector of other
technologies, management practices, and production
systems on the farm, we can rewrite our impact model
as

Prodi = Ziʹα + γ1AIi + γ2ETSSi + Tiʹω + ei , (8)

where ω is the coefficient vector for other technologies
and Z includes all other independent variables besides
the technologies. Equation 8 can be estimated using
Ordinary Least Squares (OLS) regression. However,
estimators computed using simple OLS regression may
be biased and inconsistent in the presence of correlation
between the explanatory variables and ei. If there is

potential for this problem, it should be tested and, if
found, corrected to reduce bias and obtain consistent
estimates. Explanatory variables that are correlated with
ei are endogenous and the OLS estimator fails to esti-

mate accurately (Hill, Griffiths, & Lim, 2008). With
regard to productivity and profitability, we initially sus-
pected AI and ETSS to be endogenous since farmers
self-select into the adoption of AI and ETSS. In the case
of endogeneity, ETSS and AI should be replaced with
appropriate instrumental variables (Greene, 2008). Pre-
vious studies (Fernandez-Cornejo, Klotz-Ingram, &

Jans, 2002; Fernandez-Cornejo & McBride 2002; Foltz
& Chang, 2002) have used predicted probabilities from
probit adoption decision models as instrumental vari-
ables in profit equations. Replacing AI and ETSS vari-
ables with their predicted probabilities, our equation
would be

Prodi = Zʹi α + γ1 AIı + γ2 ETSSı + Tiʹω + ei , (9)

where AIı and ETSSı are predicted probabilities from the
bivariate probit equation, used as instruments. Alterna-
tive methods for dealing with self-selection issues have
included Heckman’s two-stage and switching regression
models. The Heckit model was tried for this analysis,
with results providing less plausible estimates that the
authors suspected overestimated the impacts of AI and
ETSS. With three potential outcomes, AI only, AI and
ETSS, and neither, the switching regression model
would result in three equations. These issues and our
model’s ability to adequately consider self-selectivity
were the principal bases for our model selection.

In the impact models, endogeneity was tested and
corrected for if detected. Based on suggestions by Wool-
dridge (2006) for testing endogeneity, predicted values
of  and  AI and ETSS obtained from the bivariate probit
adoption decision model were added as independent
variables into the structural (productivity) equations and
regressed to check for their significance. If either were
significant, both were included; otherwise actual values
for AI and ETSS were used.

Also of concern is identification of the model. For
the bivariate probit model with selection, due to non-lin-
earity of the model, the parameters are identified in
cases where both equations have the same independent
variables. However, such models can present estimation
difficulties and weak identification (Hotchkiss, 2004;
Jones, 2007). As such, this model is fully identified if
one variable is included in the selection equation (AI)
that is not in the ETSS equation. In our case, Grazer
indicates the farm was a pasture-based operation in the
AI equation, but is not included in the ETSS equation.
(A full discussion of all independent variables is found
in the next section.) Of further concern for identification
using instrumental variables estimation, a variable is
required in the first-stage estimation that is not corre-
lated with the error term in the second stage (profit/pro-
ductivity) equations. We include two variables, Ten
More Years and Off-farm Job, as identifying instruments
in the first-stage bivariate probit adoption model to
examine the effect of a longer planning horizon for the
dairy enterprise and holding off-farm employment on

LogL = ∑ AI=1,ETSS=1 log Φ2 [β1 , Xʹi2 β2 , ρ]

+ ∑ AI=1,ETSS=0 log Φ2 (−Xʹi1 β1 , Xʹi2 β2 − ρ)

– ∑AI=0 log Φ (Xʹi2 β2) .

(6)
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the adoption of management- and capital-intensive (in
the case of ETSS) technology, but not in the second-
stage profitability equations, as planning horizon and
off-farm employment are not considered as key vari-
ables in determining dairy enterprise profitability.
(Indeed, when Ten More Years and Off-farm Job were
included in the profitability equations, significant esti-
mates for these variables were not found.) Several vari-
ables are also included in second-stage equations that
are not included in the first-stage adoption equations,
including other technologies that could impact farm pro-
ductivity and a variable to examine farm size non-lin-
earities and profitability. The inclusion of these
additional variables is consistent with previous studies
of similar structure, such as Foltz and Chang (2002) and
McBride et al. (2004). Since we have two suspected
endogeneous variables and two instruments, the model
is “just identified,” so there is no value in testing for
overidentification (Wooldridge, 2006, p. 535), as would
be done via the Sargan Test. Further discussion about
regressors in the model is included in the Independent
Variables sections later in the article.

Data

We utilize data from the 2005 Agricultural Resource
Management Survey (ARMS), dairy version, conducted
by the ERS and NASS of the USDA. Altogether, the
dataset includes 1,814 observations from 24 states that
represent 90% of US dairy production. Sample dairy
farms were selected from the list of farms maintained by
USDA NASS. Data on agricultural production, land use,
revenue, expenses, and detailed information on input
usage are covered by ARMS. The survey also includes
information on farm operator and financial characteris-
tics, size, commodities produced, and technology use.
Dairy farm profitability and productivity varies among
years, so the use of one year of data is a limitation of the
study.

Each data unit (farm) in the ARMS is weighted
based on farm size, region, and production system (i.e.,
organic versus non-organic). Making the total number of
observations equal to the sample size; for our study,
weights were adjusted for each observation as

Wtsj =              * N, (10)

where Wtsj is the weight for farm j, wtj is the weight

variable (scalar) for the jth farm assigned in the ARMS
data, and N is the number of observations. Each data

unit used in this analysis is weighted and corrected for
potential heteroskedasticity. Mishra and El-Osta (2008)
used the Huber-White sandwich robust variance estima-
tor using ARMS data with logistic distributions. To cor-
rect for heteroskedasticity, we use this estimator for the
bivariate probit adoption decision model and the cor-
rected White estimator for the adoption impact OLS
equations.

Independent Variables: Adoption Decision 
Model

Table 1 shows descriptive statistics of variables used in
the adoption decision and impact models. Farm size and
specialization, farm characteristics, and demographic
characteristics are included as independent variables in
the adoption decision model. Previous technology adop-
tion studies in dairy have included herd size as the indi-
cator of farm size (Foltz & Chang, 2002; McBride et al.,
2004). Larger farms have been the greater adopters of
dairy technologies (El-Osta & Morehart, 2000; Khanal
et al., 2010). Artificial insemination may be considered
as scale-neutral, but ET is expected to have associated
scale economies, as additional facility investment will
be required in some cases (Funk, 2006). The number of
milk cows on the farm, Cows, is included as an explana-
tory variable in the adoption decision model.

Degree of specialization in dairy is expected to
impact managerial conditions—M in Equation 1. El-
Osta and Morehart (2000) found the likelihood of being
a top dairy producer to increase with specialization. We
use the ratio of dairy enterprise revenues to total farm
revenues, Specialized, to indicate degree of dairy enter-
prise specialization. A second dimension of specializa-
tion is the farmer’s off-farm work. The lower the off-
farm income, the greater has been the adoption of mana-
gerially-intensive technologies such as precision farm-
ing (Fernandez-Cornejo, 2007). Adoption of herbicide-
tolerant soybean, on the other hand, was positively
related with off-farm income (Fernandez-Cornejo, Hen-
drix, & Mishra, 2005), as this innovation was manage-
ment-reducing. As breeding technologies demand
greater management consideration through closer atten-
tion to animals’ biological processes, an off-farm job
may adversely affect their adoption. In this study,
dummy variable Off-farm Job, which indicates whether
the principal operator or spouse worked off-farm for
wages or salary, is included.

To consider regional differences, three variables are
included. West includes observations in Arizona, Cali-
fornia, Idaho, New Mexico, Oregon, Texas, and Wash-

j=1wtj

wtj
N
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ington; South includes Florida, Georgia, Kentucky,
Tennessee, and Virginia; and Northeast includes Maine,
New York, Pennsylvania, and Vermont. The base region
includes Illinois, Indiana, Michigan, Minnesota, Mis-
souri, Ohio, and Wisconsin.

Studies addressing the adoption of dairy technolo-
gies (Foltz & Chang, 2002; McBride et al., 2004) have
accounted for other technologies in the adoption equa-
tion. Khanal et al. (2010) found complementary rela-
tionships between dairy technologies, management
practices and/or production systems. Since having a par-
lor milking system was the most common factor associ-
ated with adoption of most of the other technologies,
management practices and production systems on dairy
farms (Khanal et al., 2010), Parlor is included as a
dummy variable in the adoption decision model as a
production system indicator. As discussed earlier,
Grazer, indicating whether the farm was pasture-based
(animals received ≥ 50% of forage needs from pasture

during the grazing season) was included in the AI equa-
tion, but not in the ETSS equation. Given that pasture-
based operations are generally lower-input, as shown by
Khanal et al. (2010), the relevant question was whether
they were adopters of AI, rather than ETSS, and Graze
in only the selection equation ensured identification in
the bivariate probit.

Farmer demographics are expected to be associated
with technology adoption. Younger farmers are gener-
ally expected to be the greater adopters of advanced
technologies (Feder et al., 1985; Massey et al., 2004), so
farmer Age is included. Dairy producers with longer
planning horizons may be more interested in investing
in the development of human or other capital that sup-
ports AI and/or ETSS adoption. In this study, Ten More
Years is a dummy variable indicating the operator plans
to continue farming for the next 10 years. Farmer educa-
tion has been consistently used in adoption studies.
More educated farmers are expected to more likely

Table 1. Weighted means of variables used in the study.

Variable name Description Mean

Age Principal operator’s age in years 51.467

College Principal operator’s education level: 1 if principal operator is college graduate or beyond 0.209

Off-farm job Operator’s off-farm job: 1 if principal operator or spouse work off-farm for wages or salary 0.475

Ten more years Continuation of farm operation: 1 if operator plans to continue the operation for next 10 
years or more, otherwise 0

0.605

Cows Continuous variable: Number of milk cows in the farm/1000 0.322

Specialized Farm specialization, contribution of the dairy total farm value of production (Dairy/
VPRODTOT)

0.849

West Regional dummy: 1 if farm is located in Western United States (CA, OR, WA, AZ, ID, NM, 
or TX), otherwise 0

0.212

South Regional dummy: 1 if farm is located in Southern United States (Appalachia—KY,TN, VA; 
or Southeast—FL, GA)

0.173

Northeast Regional dummy: 1 if farm is located in Northeastern United States (ME, NY, PA, VT) 0.260

Parlor 1 if parlor is adopted in the farm, otherwise 0 0.685

Grazer Grazing pattern: 1 if farm is pasture based (those that obtain 50-100% of the total forage 
ration for milk cows from pasture during the grazing season), otherwise 0

0.223

Milk 3 times Milking frequency: 1 if cows are milked 3 times per day, 0 if two times or less 0.149

Sum of technologies Sum of the eight dummy variables for eight different technologies or management 
practices of dairy (value 0 to 8)

2.91

AI Whether artificial insemination is adopted in the dairy farm in 2005: 1 if adopted, 0 if not 0.789

ETSS Whether embryo transplant and/or sexed semen is adopted in the farm in 2005: 1 if 
adopted, 0 if not

0.113

Return over total cost Net returns over total cost per cwt of milk produced (in dollars) -9.92

Return over operating cost Net returns over operating cost per cwt of milk produced (dollars) 5.02

Milk per cow Annual milk yield per cow (cwt) 165.96

Total cost Total costs per cwt of milk produced 27.87

Operating cost Operating cost per cwt of milk produced 12.93

Allocated cost Allocated costs per cwt of milk produced 14.94
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adopt new technologies—as found by McBride et al.
(2004) with recombinant bovine somatotropin (rbST)
and Gillespie, Davis, and Rahelizatovo (2004) with AI
in the hog industry—as education generally increases
managerial ability. Thus, a dummy variable indicating
the principal operator’s holding of a four-year college
degree, College, is included.

Dependent Variables: Adoption Impact Model

Milk yield, profit, and cost are analyzed in the adoption
impact models. First, productivity is measured as hun-
dredweight (cwt) of milk produced per cow (Milk per
Cow). Net returns over total costs per cwt milk produced
(Return over Total Cost) and net returns over operating
costs per cwt milk produced (Return over Operating
Cost) are measures of dairy enterprise profitability.
These measures have been used in previous studies as
indicators of dairy farm profitability: Return over Total
Cost (Gillespie, Nehring, Hallahan, & Sandretto, 2009),
Return over Operating Cost (McBride et al., 2004), and
both (Short, 2000, 2004). In constructing these mea-
sures, gross returns include the value of milk sold, reve-
nues from sales of culled cattle, the implicit fertilizer
value of manure produced, and other income from the
dairy. Operating costs include feed (including the
implicit value of homegrown feed), veterinary and med-
ical, bedding, marketing, custom services, fuel, lube,
electricity, repairs, other operating costs, and interest on
operating costs. Allocated overhead costs include hired
labor, the opportunity cost of unpaid labor, capital
recovery of machinery and equipment, the opportunity
cost of land (rental rate), taxes and insurance, and gen-
eral farm overhead.

Total costs per cwt of milk produced (Total Costs),
operating costs per cwt of milk produced (Operating
Cost), and allocated costs per cwt of milk produced
(Allocated Cost) are included as cost measures. Total
Cost is the sum of Operating Cost and Allocated Cost. It
is recognized that breeding technologies can be used to
alter herd productivity over a number of years. There-
fore, ideally, this analysis could examine the impact of
these technologies based upon the time period over
which they were implemented. This opens up the oppor-
tunity for further research that considers length of time
over which these technologies have been used.

Independent Variables: Adoption Impact 
Models

Previous adoption studies show that farm productivity
and profitability are influenced by farm size and special-

ization, technology, and demographic characteristics.
Farm size has been positively related with dairy profit in
previous studies (Foltz & Chang, 2002; McBride et al.,
2004). Assuming economies of size involved in dairy, as
shown by Tauer and Mishra (2006) and MacDonald et
al. (2007), profitability (cost) is expected to increase
(decrease) with Cows. A squared term on the number of
milk cows considers relationship non-linearities
between farm size and productivity. More specialized
dairy farms (Specialized) are expected to yield greater
enterprise net returns. Purdy, Langemeier, and Feather-
stone (1997) and El-Osta and Morehart (2000) found
more specialized operations to be the better financial
performers.

Previous studies have included technologies other
than those of primary interest in profit and productivity
equations to isolate the impacts of the technology of
interest (Foltz & Chang, 2002; McBride et al., 2004). To
isolate the effect of breeding technologies, we included
dummy variables for three production systems: PAR-
LOR, whether animals received ≥ 50% of their total for-
age ration from pasture during the grazing season
(Grazer), and whether animals were milked three times
per day (Milk 3 Times). Sum of Technologies is a sum-
mation of the adoption of eight dairy technologies and
management practices, providing a measure of the
intensity of technology adoption: (1) holding pen with
udder washer, (2) milking units with automatic take-
offs, (3) computerized milking system, (4) computerized
feeding system, (5) use of rbST, (6) Dairy Herd
Improvement Association membership, (7) use of a
nutritionist to purchase or formulate feed, and (8)
accessing the internet for dairy information. For descrip-
tions of each of these technologies and management
practices, see Khanal et al. (2010). As discussed earlier,
AI and ETSS or their predicted value instruments (if
endogeneity is found) are included. It is expected that
AI will positively influence profitability and productiv-
ity (Barber, 1983; Hillers et al., 1982). The impact of
ETSS is explored.

West, South, and Northeast are included in impact
models, as are demographic variables. College is
expected to have positive influences on productivity
(McBride et al., 2004) and profitability (Foltz & Chang,
2002), though McBride et al. (2004) found a negative
association with profitability. Age is included. Previous
studies have found it to be negatively related to profit-
ability (Foltz & Chang, 2002; Gillespie et al., 2009).
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Results

Breeding Technology Adoption

Table 2 shows estimates of the bivariate probit with
selection adoption decision model. Separate probit
equations were also estimated but are not reported. The
likelihood ratio test was used to test the null hypothesis
of no correlation between the adoption of the two tech-
nologies. Log likelihood ratio statistics are given by LR-
statistic = 2 [ln Lbivariate – (ln L1+ln L2)]. Log likeli-

hood functions of the two separate probits are (lnL1 and
lnL2). The LR-statistic of 63.90, greater than the critical

value of χ2
0.05,1 = 3.84, indicates rejection of the null

hypothesis of no correlation, supporting choosing the
bivariate probit with selection.

Bivariate probit marginal effects may have origi-
nated from different sources. Total effects are the sum of
both direct and indirect effects. Direct effects are the
marginal effects of the variables that appear in the first
equation, while indirect effects are the effects from the
second set (Greene, 2009). Table 2 shows the total mar-
ginal effects of the respective variables (partial effects
for E [y1 | y2 = 1] with respect to the vector of character-
istics). The mean estimate of E [y1 | y2 = 1], which is
Prob [ETSS=1, AI=1] / Prob[AI=1], is 0.105.

Positive and significant coefficients of Cows and
Specialized in the AI equation suggest larger, more spe-
cialized operations were more likely to be AI adopters.
The result for farm size is generally consistent with
results from USDA APHIS (2009), where farms with
≥ 100 cows were numerically more likely to have cattle
pregnancies conceived by AI than those with < 100
cows (though farms with ≥ 500 cows had numerically
lower percentages than those with 100-499 cows to have
had cattle pregnancies conceived by AI). An off-farm
job held by the operator and/or spouse had negative
effects on AI and ETSS adoption, reducing the probabil-
ity of ETSS adoption given AI had been adopted by
0.033. An off-farm job may be associated with several
factors, one being less time available for farm manage-
ment. Southern and Western US dairy farmers were less
likely than Midwestern US farmers to adopt AI, while
Northeastern US dairy farmers were more likely to
adopt it. USDA APHIS (2009) divided farms into only
two regions, West and East, and did not find differences
in percentage of cattle pregnancies conceived via AI by
region. Farmers whose cows received > 50% of forage
needs from pasture during the grazing season were less
likely to adopt AI.

Age and Ten More Years were negatively and posi-
tively associated, respectively, with ETSS adoption. A
one-year increase in Age decreased the probability of
ETSS adoption, given AI had been adopted, by 0.0019.
Dairy operators planning to continue operating their
farms for ≥ 10 years had probabilities of ETSS adoption,
given AI had been adopted, that were 8.6 percentage
points higher than those planning to continue operating
for < 10 years. Holding a college degree increased the
probability of ETSS adoption, given AI had been
adopted, by 0.140.

Profitability and Productivity Measures

A brief examination of weighted means for productivity
and profitability measures is provided for three catego-
ries of farmers: (1) ETSS and AI adopters, (2) AI-only
adopters, and (3) adopters of neither ETSS nor AI, pro-
viding a starting point for analyzing profit and produc-

Table 2. Adoption decision model: Bivariate probit with 
selection.

Variables
ETSS 

estimates AI estimates
Total marginal 

effects

Constant -1.3801**
(0.5823)

0.2734
(0.2718)

Cows 0.0089
(0.1603)

0.3885***
(0.1006)

-0.0042
(0.0247)

Specialized 0.3451
(0.5785)

1.3814***
(0.1945)

0.0427
(0.0653)

Off-farm job -0.2014*
(0.1114)

-0.2470***
(0.0811)

-0.0333*
(0.0173)

West -0.0330
(0.2491)

-0.6348***
(0.1190)

0.0035
(0.0273)

South 0.0342
(0.3518)

-0.7967***
(0.1382)

0.0183
(0.0385)

Northeast 0.0225
(0.1130)

0.2444**
(0.1014)

0.0005
(0.0226)

Parlor 0.0983
(0.0995)

-0.0397
(0.0842)

0.0187
(0.0182)

Graze -0.3381***
(0.0900)

0.0051
(0.0157)

Age -0.0105**
(0.0042)

-0.0045
(0.0036)

-0.0019**
(0.0008)

Ten more 
years

0.4635***
(0.1114)

-0.0199
(0.0826)

0.0856***
(0.0180)

College 0.7944***
(0.1182)

0.3830***
(0.1171)

0.1404***
(0.0188)

Rho (1, 2) 0.26 (Selection model based on AI)

Log likelihood function -1227.09

Mean estimate E[y1 | y2=1]=0.105

***= Significant at 1%, **= Significant at 5%, * = Significant at 
10%
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tivity. Weighted means for Return over Total Cost for
the three groups were -$5.16, -$8.42, and -$14.99,
respectively, providing initial evidence of differences in
profitability. It is noted that these are highly negative,
suggesting these farms had high opportunity costs asso-
ciated with unpaid labor, capital, and land. Weighted
means for Return over Operating Cost were $4.67,
$4.98, and $4.88, respectively, suggesting any differ-
ences in net returns over operating costs among the
groups were less pronounced than with Return over
Total Cost. Finally, weighted means for Milk per Cow
were 209.95 cwt/cow, 177.14 cwt/cow, and 133.02 cwt/
cow, suggesting that adopters of AI and ETSS together
produced 58% more milk per cow than adopters of nei-
ther. Statistical significance of differences in these
means is not highlighted since they are not analyzed in a
multivariate framework that considers the influences of
other technologies, simultaneity of adoption, and self-
selectivity issues.

Table 3 presents parameter estimates of the profit-
ability and productivity measures. Artificial insemina-
tion positively impacted profit, with increases in returns
over total costs per cwt milk produced of $1.20. Adop-
tion of ETSS was not found to impact profit. For both
profit measures per cwt milk produced, ETSS and AI
were found to be endogeneous; thus, instrumental vari-
ables were used to correct for endogeneity. From exam-
ining the raw means where differences in Return over
Total Cost were found, but not for Return over Operat-
ing Cost, these results are not surprising—the differ-
ences are much less pronounced than for the weighted
means, as the impacts of self-selection and the adoption
of complementary technologies are considered. A limi-
tation of this type of analysis stems from the possibility
of partial technology adoption. Some dairies, for
instance, may use a “clean-up bull” to breed females
unsuccessfully bred by AI. Likewise, ET and/or SS may
be used on subsets of animals. In fact, USDA APHIS
(2009) shows that 54.9% of US dairy operations had
pregnancies conceived via natural service and, consider-
ing their estimate of 88.4% and 9.9% of operations hav-
ing pregnancies resulting from AI and ET, respectively,
it appears that most operations were partial adopters.
Given this, AI and ETSS estimates for profitability, pro-
ductivity, and cost are likely to be underestimates of the
impacts resulting from 100% adoption. This is a com-
mon problem facing researchers in studies addressing
technology impacts on productivity and profitability
when data indicate only adoption/non-adoption
(Gillespie, Nehring, Hallahan, Sandretto, & Tauer,
2010; McBride et al., 2004; Tauer, 2009).

Other profitability results are also noteworthy.
Larger farms had higher returns over total costs per cwt
milk produced and returns over operating costs per cwt
milk produced, and Cows Squared was negative and sig-
nificant in both, as expected. More specialized dairies
had higher returns over total costs per cwt milk pro-
duced. The coefficients of Graze and Milk 3 Times were
negative for Return over Total Cost. Positive Sum of
Technologies (for Return over Total Cost) and Parlor
(for both) coefficients suggested adoption of dairy tech-
nologies was associated with higher profitability per cwt
milk produced. Southern and Northeastern US farmers
had lower returns over operating costs per cwt milk pro-
duced. Western United States and older farmers had
lower profitability under both measures. Similar

Table 3. Dairy enterprise profit and productivity measures.

Variables
Return over 

total cost/cwt

Return over 
operating 
cost/cwt

Milk per 
cow

Constant -16.53***
(2.25)

7.00***
(1.45)

133.47***
(7.72)

Cows 8.87***
(1.38)

2.16***
(0.61)

-0.84
(6.42)

Cows squared -1.33***
(0.29)

-0.25***
(0.08)

-0.63
(1.24)

Specialized 10.06***
(2.21)

-0.73
(1.36)

48.45***
(6.73)

Parlor 3.20***
(0.59)

0.51*
(0.28)

-0.62
(2.51)

Grazer -3.77***
(0.90)

-0.02
(0.35)

-7.23***
(2.77)

Milk 3 times -1.82**
(0.73)

-0.13
(0.39)

23.16***
(4.09)

Sum of 
technologies

1.99***
(0.18)

0.05
(0.09)

12.76***
(0.79)

West -1.47*
(0.88)

-2.24***
(0.35)

-4.58
(3.36)

South -1.43
(1.26)

-1.00*
(0.59)

-7.79*
(4.55)

Northeast -0.04
(0.73)

-1.86***
(0.33)

1.28
(2.50)

Age -0.16***
(0.02)

-0.02**
(0.01)

-0.77***
(0.09)

College -1.01
(0.65)

0.56*
(0.30)

-3.58
(2.82)

Predicted AI 1.20***
(0.42)

-0.09
(0.18)

7.17***
(1.14)

Predicted 
ETSS

0.54
(1.41)

0.86
(0.18)

15.03**
(6.79)

Adjusted R2 0.26 0.04 0.38

**= Significant at 1%, *= Significant at 5%.
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regional profitability signs have been found examining
the impact of recombinant bovine somatotropin on
Return over Operating Cost using ARMS dairy data
from 2000 (McBride et al., 2004) and 2005 (Gillespie et
al., 2010). College-educated farmers had higher returns
over operating costs per cwt milk produced.

The use of AI and ET and/or SS positively impacted
Milk per Cow; adopters produced 7.17 (AI only) and
15.03 (ETSS only) cwt more milk per cow, respectively,
than non-adopters. Instrumental variables for AI and
ETSS were used to correct for endogeneity. Other Milk
per Cow results are also notable. Dairy enterprise spe-
cialization resulted in greater milk per cow. Milk 3
Times and Sum of Technologies were positively and
Grazer was negatively associated with Milk per Cow.

Older farmers and those in the Southern United States
produced less milk per cow.

Cost Measures

To investigate contributors to profitability, the impacts
of AI and ETSS on cost are examined (Table 4). Similar
to the profit and Milk per Cow equations, predicted val-
ues for AI and ETSS (instrumental variables) were used.
Negative, significant coefficients of AI in the three cost
equations suggest that farmers can reduce both operat-
ing and allocated costs by adopting AI. Reductions in
operating and allocated costs by $0.42 and $1.28,
respectively, were associated with AI adoption, for a
total of $1.70. Thus, the major contributor to lower cost
was in allocated costs, with fewer bulls and associated
costs required.

Other notable results are that larger, more special-
ized farms had lower total, allocated, and operating
costs per cwt milk produced than their counterparts, and
in all three cases, Cows Squared was also significant.
Specialized operations had lower costs for all three mea-
sures. Pasture-based operations and those milking three
times daily had higher total and allocated costs per cwt
milk produced. Sum of Technologies results suggest
adoption of dairy technologies reduced total and allo-
cated costs, while Parlor reduced all three cost mea-
sures. Southern, Western, and Northeastern dairy farms
had relatively higher operating costs per cwt milk pro-
duced than Midwestern farms, though Northeastern
dairy farms had lower allocated costs per cwt milk pro-
duced. Younger operators had lower total and allocated
costs per cwt milk produced than their counterparts; col-
lege degree holders had higher total and allocated costs.

Conclusions
For the past 70 years, advanced breeding technologies
have been important components of structural change in
the US dairy industry, as adoption can have rapid effects
on genetics and reproductive performance. Artificial
insemination has been a widely adopted technology, and
ET and SS technologies are newer, still-diffusing tech-
nologies. Embryo transplant and SS technologies have
been suggested to have potentially wider adoption in the
near future.

This study accounts for the correlation of adoption
decisions of breeding technologies. The adoption of
breeding technologies in the United States has been
influenced by farm characteristics, operator characteris-
tics, adoption of other technologies, and regional differ-
ences. Artificial insemination and ET and/or SS

Table 4. Dairy enterprise cost measures.

Variables
Total cost/

cwt
Operating 
cost/cwt

Allocated 
cost/cwt

Constant 40.28***
(2.50)

16.75***
(1.07)

23.53***
(1.75)

Cows -8.38***
(1.36)

-1.67***
(0.48)

-6.71***
(1.15)

Cows squared 1.26***
(0.29)

0.18**
(0.07)

1.08***
(0.28)

Specialized -16.09***
(2.52)

-5.30***
(1.03)

-10.79***
(1.77)

Parlor -3.75***
(0.65)

-1.07***
(0.27)

-2.68***
(0.48)

Grazer 3.93***
(0.92)

0.18
(0.33)

3.75***
(0.69)

Milk 3 times 1.78***
(0.69)

0.08
(0.32)

1.69***
(0.51)

Sum of 
technologies

-2.02***
(0.19)

-0.08
(0.09)

-1.94***
(0.14)

West 0.43
(0.80)

1.21***
(0.32)

-0.77
(0.71)

South 2.40*
(1.43)

1.96***
(0.55)

0.43
(1.07)

Northeast 0.80
(0.74)

2.29***
(0.32)

-1.48***
(0.52)

Age 0.15***
(0.02)

0.01
(0.01)

0.13***
(0.02)

College 1.68**
(0.68)

0.11
(0.28)

1.57***
(0.52)

Predicted AI -1.70***
(0.44)

-0.42***
(0.15)

-1.28***
(0.33)

Predicted ETSS -0.70
(1.15)

-1.01
(0.67)

0.31
(0.95)

Adjusted R2 0.30 0.11 0.34

**= Significant at 1%, *= Significant at 5%
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adopting farms are, in general, run by relatively younger
and more educated farmers who do not work off-farm
and plan to continue farming for at least 10 years into
the future. They also produce more milk per cow than
non-adopters.

Our results suggest higher net returns over total
costs associated with AI adoption. The differences are
rather striking. Examining only the weighted means,
farmers using AI realized $6.57 higher net returns over
total costs per cwt milk than those not using it. From the
adoption impact model, the impact of AI was $1.20 per
cwt milk produced. Though a comparison of raw means
showed adopters of ETSS and AI to have returns over
total costs per cwt milk produced of $3.26 higher than
AI-only adopters, the impact of ETSS was non-signifi-
cant when placed in a multivariate regression frame-
work including other technologies and farmer
characteristics. Adopters of AI were lower-cost on total,
operating, and allocated cost bases, but differences in
cost structure with ETSS were not found. These results
are consistent with what might be expected, given the
high adoption rate of AI and the lower adoption rates of
ET and SS, the latter of which is a relatively newly
introduced technology to the industry and did not result
in increased net present value in the Olynk and Wolf
(2007) study unless the SS conception rate was 90% or
better than that of conventional AI. Despite this finding,
significant adoption diffusion of SS appears to be occur-
ring. The bottom line here is that AI-adopting farms
were more profitable than non-adopting farms, but the
adoption of the newer technologies, ET and/or SS,
which could not be separated, did not result in greater
profit for the “average” farm.

As with other studies, our findings show that larger
and more specialized dairy farms are more profitable,
suggesting that dairy farms can increase in size to cap-
ture the higher net returns per cwt milk. Depending
upon the measure used, costs decline up to 3,327-4,320
cows, beyond which there is little data from which to
draw inference. The adoption of SS may be associated
with an increase in the number of milk cows or at least
an increased productivity of milk cows by increasing the
supply of replacement heifers. Since some part of the
costs involved in either ET or SS adoption may be for
conducting AI, larger farms that had already adopted AI
may consider adoption of one or both of these technolo-
gies. Farm adoption decisions, however, would be based
on the added advantages of adoption versus the addi-
tional costs of adopting these.

There are at least three additional issues to be con-
sidered. First, one of the limitations of this study is the

inseparability of ET and SS adopters in the ARMS dairy
survey, which disallows analysis of SS and ET alone.
Though adopters of these technologies may have similar
traits, the results and implications when they are treated
separately may be different. Sexed semen technology
adoption is rapidly expanding and is expected to have
wider adoption in the near future. The actual impact of
SS, once it becomes more diffused, would be of further
interest. We acknowledge that our study provides
insights on adoption factors at an earlier stage of adop-
tion of SS and, as newer SS-specific economic data
become available, further analysis will be warranted; the
economic environment associated with a new technol-
ogy usually changes significantly, particularly in the
early stages of diffusion. The current study was con-
ducted prior to the 2010 ARMS dairy survey data avail-
ability, but the 2010 data do not separate ET and SS
either. Furthermore, more research on the conditions
under which SS can be expected to lead to greater prof-
itability would be warranted. Second, some farmers use
these breeding technologies for only a subset of ani-
mals; for instance, they may use bulls for animals that
do not breed back. Our analysis cannot account for par-
tial adoption since the data are unavailable on a national
basis for economic analysis purposes, but there may be
state-level datasets that can address these issues.
Thirdly, since farmers’ perceptions about the profitabil-
ity of the technology may also affect the adoption deci-
sion, inclusion of perception questions could also lead to
greater insight.
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