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ABSTRACT

The concept of Constant Proportion Portfolio Insurance (CPPI) in terms of jump-
diffusion, as well as the associated mean-variance hedging problem, has been studied.
Three types of risk related to: the probability of loss, the expected loss, and the
loss distribution are being analyzed. Both the discrete trading time case and the
continuous trading time case have been studied. Next, CPPI with stochastic dynamic
floors are being discussed. The concept of exponential proportion portfolio insurance
is being introduced. Finally CPPI associated with the fractional Brownian market is

being studied.
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Chapter 1

Introduction

Constant Proportion Portfolio Insurance (CPPI) was introduced by [61] for equity in-
struments, and has been further analyzed by many scholars(such as [10]). An investor
invests in a portfolio and wants to protect the portfolio value from falling below a
pre-assigned value. The investor shifts his asset allocation over the investment pe-
riod among a risk-free asset plus a collection of risky assets. The CPPI strategy is
based on the dynamic portfolio allocation of two basic assets: a riskless asset (usually
a treasury bill) and a risky asset (a stock index for example). This strategy relies
crucially on the concept of a cushion C, which is defined as the difference between
the portfolio value V and the floor F. This later one corresponds to a guaranteed
amount at any time ¢ of the management period [0, T]. The key assumption is that
the amount e invested on the risky asset, called the exposure, is equal to the cushion
multiplied by a fixed coefficient m, called the multiple. The floor and the multiple

can be chosen according to the investor’s risk tolerance.



In chapter 2

In this chapter, we introduce the background and concept of the CPPI and EPPI
modeling by a diffusion process. In section 2.1, we consider the simplest CPPI and
its background. In this case the risky asset model is the classical Black-Scholes model.
Both continuous and discrete are considered. We introduce the concept of EPPI (Ex-
ponential Proportion Portfolio Insurance). In section 2.3, we consider the case when
the stock model satisfies a GARCH model. We also consider both the discrete and

continuous trading cases. In section 2.4, we consider the EPPI in GARCH.

In chapter 3

In this chapter, we discuss the CPPI-jump-diffusion model when the trading time is
continuous. The jump-diffusion model was introduced and widely studied by [58] and
[65].

Let Y,, > —1 be the percentage of the size of n-th jump, and S; be the process who
represent the stock price at time t. Thus, S, = ST;(l +Y,). Between two jumps,
we assume the risky asset model satisfies Black-Scholes. The number of jumps upper

to time ¢ is a Poisson processes IN; with intensity ;. Then our model becomes

t 2 t Ny
Sy = Sy exp [/ (,us — %) ds +/ o, dW, + Zln(l +Y.)|.
0 0 n=1

We usually assume In(1 +Y;,) is i.i.d. and has density function fq.

Our outline of this section is following.

In section 3.1, we set up the jump-diffusion model, calculate the density function
and discuss the martingale measure. In section 3.2, we describe the CPPI strategy
and then calculate the CPPI portfolio value, its expectation and variance. In section

3.3, we consider the CPPI portfolio as a hedging tool. [16] considers the situation in
2



Black-scholes model. Our discussion is a generalization of it. Both the PDE/PIDE
approach and the martingale approach are studied there. However, because of the
introduction of the jump term in the model, the calculation is much more complex.
In section 3.2 and subsection 3.3, both short-sell and negative exposure are allowed.
In section 3.4, we consider the mean-variance hedging for a given contingent claim H.
In our jump-diffusion model, the market is not complete and then H is not attainable.
Thus, we consider the mean-variance hedging which is a kind of quadratic hedging.
[67] is a review paper about quadratic hedging, we adopt the symbol and definition
from it. We consider H as the function of portfolio value Vr and measure the risk in

probability Q. Our optimal problem is following

2

T
min E@ <ﬁ — 7 —/ ﬁudf/u)
(Zo,ﬂ)E]RX@ 0

We adopt the method in Chapter 10 in [18] and give the explicit form optimal solution
of Zy and ;. In section 3.2, section 3.3 and section 3.4, both short-sell and negative
exposure are allowed.

The main contribution of this chapter is in section 3.3 and section 3.4.

In chapter 4

In this chapter, we continue to discuss the CPPI in the jump-diffusion model.

In section 4.2, we discuss the Gap risk which is defined as the amount which repre-
sents how much that the portfolio value is below the floor at the terminal time. In
this case, we do not allow short-sell and negative exposure. It is deduced that the
gap happens only when the jump is negatively large enough such that 1 + mY; < 0.

The probability of loss, expected loss and loss distribution are introduced to measure



the gap. [17] has discuss the case in a more general model as

ds,
—— =dZ
St_ ty

where Z; is a Levy process. Our jump-diffusion model could be treated as a special
case. Thus, the conclusion in this section is a special case of [17]. However, we
deduce more explicit expression as compare with [17], which is more appreciated in
simulation. We will show that the conclusion of the probability of loss is consistant
the conclusion in [17]; our conclusion for the expected loss is more explicit and the
method is similar as [17]; our conclusion for the loss distribution is explicit and our
method is different from [17]. In section 4.3, we consider the conditional multiple
from the view of Probability of loss. Its idea is similar as the Value-at-Risk([27]).
Four kinds of conditional floor are also discussed from the view of expected loss and

loss distribution.

In chapter 5

In this chapter, we will study the jump-diffusion model when the trading time is
discrete.

The risky asset model is similar as that in chapter 3 and 4.

In section 5.2, we calculate the CPPI portfolio value and its expectation and variance.
Gap risks exist because the risky model has jumps and also the trading time is discrete.
In section 5.3, we measure the gap risk with respect to three aspects: probability of
loss, expected loss and loss distribution. We give out their explicit forms.

In section 5.4, we define the conditional multiples associated with the probability of
loss, conditional floors associated with expected loss and loss distribution.

In section 5.5, we prove that as the interval length of the trading times tends to zero,
the CPPI strategies in discrete trading time will convergent to the CPPI strategies

4



in continuous time.

In chapter 6

In this chapter, we investigate several types of stochastic floors and dynamic floors.
In [59], they have considered the cases of diffusion models without jumps. Here we
generalize it to the jump-diffusion case.

In section 6.2, we consider the case when the stochastic floor is equal to the maximum
of its past value and a given percentage of the portfolio value. The idea is that when
the portfolio value is large enough, the level of the floor rises. Both the continuous
trading and discrete trading time cases will be analyzed. We will calculate the distri-
bution of the time when the floor is increased.

In section 6.3, we consider the case when stochastic floor is indexed with respect to
the given portfolio performance. The idea is similar as section 6.2. Both the con-
tinuous trading and discrete trading time cases will also be analyzed. We will also
calculate the distribution of the first-time-change of the floor.

In section 6.4, we will deal with the Ratchet and Margin CPPI strategies with time
change related to the exposition variance. We will show in discrete trading time case,
the Ratchet CPPI is equivalent to the stochastic floor index on the given portfolio
performance. The idea of CPPI with margin is that when the floor is close to the
portfolio value, the exposure will be very small and we will reduce the floor. We will
discuss the distribution of the first-change-time of the floor in the continuous trading

time case.

In chapter 7

In this chapter, we consider the CPPI in a fractional Brownian Market.
Fractional Black-Scholes market was introduced by [35] where they utilize the wick

product and thus redefined many market concepts such as portfolio, value process,



self-financing, admissible, arbitrage and complete. In Section 7.1, we adopt the
fractional Brownian markets and new markets concepts as in [35]. Under this new
market, we calculate the CPPI portfolio value, its expectation and variance in Section
7.2. In Section 7.3, we calculate the CPPI option. Moreover, we consider the associate

hedging problem by PDE approach in Section 7.4.

In Chapter 8

In this chapter, we consider the CPPI in a fractional Brownian Markets with jumps.
This chapter could be treated as an extenstion of Chapter 7. In Section 8.1, we setup
the fractional Brownian markets with jumps and redifined many market concepts as
in Chapter 7. We also deduce the Girsanov Formula in fractional Black-Scholes model
with jumps. In Section 8.2, we calculate the CPPI portfolio value, its expectation

and variance.



Chapter 2

CPPI and EPPI in Diffusion model

2.1 CPPI in the Black-Scholes model

2.1.1 The continuous trading time case

The CPPI (Constant Proportion Portfolio Insurance) strategy is based on a dynamic
portfolio allocation on two basic assets: a riskless asset (usually a treasury bill) and
a risky asset (a stock index for example).

This strategy depends crucially on the cushion C', which is defined as the difference
between the portfolio value V' and the floor F'. This later one corresponds to a guar-
anteed amount at any time ¢ of the management period [0,7]. The key assumption
is that the amount e invested on the risky asset, called the exposure, is equal to the
cushion multiplied by a fixed coefficient m, called the multiple. The floor and the
multiple can be chosen according to the investors risk tolerance. The risk-aversion
investor will choose a small multiple or/and a high floor and vice versa. The higher
the multiple, the more the investor will benefit from increases in stock prices. Never-

theless, the higher the multiple, the higher the risk that the portfolio value becomes

7



smaller than the floor if the risky asset price drops suddenly. As the cushion value is
approximately equal to zero, exposure is near zero too. In the continuous-time case,
if the asset dynamics has no jump, then the portfolio value does not fall below the

floor. We define:

interest rate: r;
time: ¢;
time period: [0, T;
floor: F;
floor at time t: F};
portfolio value: V;
portfolio value at time ¢: Vj;
cushion C;
cushion at time t: Cy;
multiple m;
exposure €;
exposure at time ¢: e

riskless asset at time t: B,.

where

C=V-F e =mC.

Let (2,5, P) be a probability space satisfying the “usual assumption”. In the
simple CPPI continuous time case we assume that the risky asset satisfies the Black-

Scholes model, i.e.

dSt = St(/lzdt + O'th), SO =S, (21)

where V; = mC; + (V; — mC}).
Let the interest rate be r and floor at time t be F, = Fye™ = Fre "T=% . We denote

Fr=G.



Here are a list of their relation:

C; = Vi—F;
e, = mCy
Bt = ‘/2 — €.

Proposition 2.1. The portfolio value of CPPI under the Black-Scholes model in

continuous time trading 1s

m2o’t

Vi=(Vo—Ge ™) exp {(7’ +m(u—r))t— + mJWt} + G xexp{—r(T —t)}

(2.2)
where G = Fr.

Proof. We have

Vi = mCy+ (V; —mCy)
mC’t mC’t
- 1—
Vt(Vt +< V))

and by the assumption of self-financing, we have

mC’tdSt mOt dBt
dV, =V, — 1— ——
t t( Vi S +< Vi > Bt>’

thus

dCy = d(V; — F)

V. S Vi ) B.) "B
= (mdSt —(m — 1)rdt)
St

= Ci(m(udt + odW;) — (m — 1)rdt)
9



= Ci(r+m(p—r))dt + modW,).

Then

Cy = Cgexp{(r—irm(u—r))t— m

therefore, we have

Vi = G+ F

m2o?t

= Cpexp {(r +m(p—r))t — +m0Wt} + G xexp{—r(T —t)}

m2o’t

= (Vo— Ge_T(T_t)) exp {(T +m(p—r7))t — + maWt} + G x exp{—rT}.

]

The expectation and variance of the CPPI portfolio value are obviously two im-

portant values to describe the strategies.

We know that exp (maWt — %m202t) is an exponential martingale. Thus, we get the

expectation of the CPPI portfolio value in the following proposition.

Proposition 2.2. The expectation of CPPI portfolio value under the Black-Scholes

model in continuous time trading is

Ge" + (Vo — Ge™™") exp{(r + m(pu — r))t}

B = Ger 4 Coexpl(r + mlu — )E [exp (motWi — gt )|

= GeT7H 4 (Vo — Ge™™) exp{(r + m(pu — r))t}.

10



In order to calculate the variance, we will use the following lemma.

Lemma 2.3. Let hy = exp (moW, — m?c?t), then E[hy] = 1 and Var(h) = exp(b*t)—

1.

Proof. By Ito formula, dh; = bh;dW;, then
t
hi — hy = / bhsdWs,
0
then h; is a martingale and then E[h;] = E[hy] = 1. We have

Var(hy) = E(hy — E(h))?> = E(h, — ho)?

t 2 t
=K (/ bhdes> =E (/ bZhst)
0 0

(| B (1) ds) e < / E (exp 2maW; — m2%t)) ds)
E

]

Using the above lemma, we could calculate the variance of the CPPI portfolio

value in the following proposition. (Referent [16].)

Proposition 2.4. The variance of the CPPI portfolio value under the Black-Scholes

model in continuous time trading is
(Vo — Ge7 ™) exp(2(r + m(p — r)t) (exp (m*c?t) — 1).
Proof.

Var[V,] = Var[C}] 11



= C§exp(2(r +m(p — r)t)Var [exp <maWt — %m202t>]
= Cgexp(2(r + m(p — r)t)Var[hy]

= (Vo— Ge’rT)2 exp(2(r + m(pu — r)t) (exp (m*ct) — 1) .

]

It is interesting at this point to wonder how the leverage regime modifies the
return/risk profile of the product. As our intuition suggests, an increase in the gear-
ing constant (multiple) which determines the leverage regime amplifies heavily the

volatility.

Proposition 2.5. The expected portfolio value and the variance of the CPPI portfo-

lio’s value, increase with the multiple m. In particular it is true that for any t € [0, 7],

lim E[V,] = 4o0;
lim VarlV,] = 4o0;
and
lim E[Vi] =0,

m—o00 Var[Vt]

exp(m202t)—1

with an order of o (exp((r +m(p— r)t)é).

Proof. The first two equations is obviously.

and for the third one

LBV exp{(r + m{y )
m—oo Var([V] exp(2(r + m(p — r)t)(exp (m20%t) — 1)
1

xp((r + (s = 1)0) (exp (m20%) — 1)
~ 0. (m— o0)
12



]

The following proposition shows there is no fallen risk for the continuous trading

time CPPI defined on the continuous model.

Proposition 2.6. Let the risky asset model Sy be P almost sure continuous and the
trading time be continuous. If the CPPI defined on this model, then the portfolio value

Vi 1s almost sure greater than the floor F;.

Proof. In the proof of Proposition 2.1, we have got

dc, = C, (mdst — (m— l)rdt) .
t
Then
In(Cy) — In(Cy) = m(In(S;) — In(Sp)) — (m — 1)rt.
We have
St
Cy=Cpexp |In—= — (m —1)rt
So
and it is IP almost sure positive. Il

2.1.2 The discrete trading time case

Here we continue to assume that our risky asset satisfies the Black-Scholes model. In
addition, let 7V = {t, = 0 < t; <ty < ... < t,, = T’} denote a sequence of equidistant
refinements of the interval [0, T, where ¢, —tx = % for k=0,...,n—1. We assume
now that trading is restricted to the discrete set 7. We have

S
Ctk+1 = Ctk (mﬁ _ (m _ 1)erT/n) 7
St,

13



then

k=0 St
thus
Vi=Cr+G.
Since %, k = 0.1.2...n—1 are mutually independent and also they have the identity
k

distribution. Then we have

S T 1 .,T T
E [ﬂ] =E {exp <u— + oWry — —02—)} = exp (,u—> :
St n 2 n n

and
Sk T T
E |22 = El|exp(2u=— + 20Wrp — 02—
Stk n n
T T 1 T
= E {exp (Z,u— + 02—+ 20Wrm — —(20)2—)]
n n 2 n
T T
= exp (2u— + 02—> .
n n
In the discrete case, it is possible that V;, < F,. for some ¢;. We generally allow
the possibility of short-sell and negative cushion. However, this also means that the

CPPl-insured portfolio would incur a loss.

Proposition 2.7. The expected terminal CPPI portfolio value under Black-Scholes

model in the discrete trading is

(Vo — Ge™™) <m exp (M%) —(m — 1)61@/”)” +G. (23)

Proof.

n—1

S
Co H (m—g“ —(m — 1)eTT/”>
k=0 bk

14

E[Vy] = E[Cs]+G=E +G




n—1

= (p H (mE {%} — (m — 1)erT/") +G
k=0

tr

n—1
T
= Cy H (mexp (,u—) —(m — 1)6"T/") +G
k=0 n
—rT T rT/n !
= (Vo—Ge ™) [ mexp | p— | — (m—1)e +G.
n

]

In order to calculate the variance of the terminal CPPI portfolio value, we need

the following lemma.
Lemma 2.8. Let A;, i=1,2,...n be independent random variables, then we have

g

k=1

(BEA7) — [ (BA)*.

1 k=1

Var

n
k=

Proof. We have

]

By the above lemma, we could calculate the variance of the CPPI terminal port-

folio value in the following proposition.

Proposition 2.9. The variance of the CPPI terminal portfolio value under Black-

15



Scholes model in the discrete trading is

T T
(Vo — Ge )2 <(m2 exp (Z,ug + 025> + (m —1)%>T/m

— 2m(m —1)exp (M%) eTT/"Y — (m exp (M%) —(m — 1)eTT/">2n>.

Proof. Since

we have

Var[Vr]

Sie ) S
E[m? | =) 4 (m—1)2e¥T/" — 2m(m — 1) =t erT/n
Stk Stk

2 Stk+1 ? 2 _2rT/n Sthrl rT/n
m* | E—=— ] +(m—1)% —2m(m — 1)ES—6

tr

T T T
m? exp (Qu— + 02—> + (m — 1)2e¥ T/ — 2m(m — 1) exp (u—) ert/m,
n n n

= Var[C7]
n—1 S
= Var CO H <m bt ( 1)67“T/n)
k=0 St
n—1 S 9
= Cg H E (m g?rl (m 1)67~T/n)
k=0 k
n—1 9
S,
I (B (mg - )
k=0 Sty
= (% — Ge*TT)Q (<m2 exp <2N% + 02%) + (m _ 1)2627‘T/n

]

16



Probability of Loss

In the case of discrete-time trading, it is possible that the portfolio value falls below
the floor. i.e. V; < F; which is equivalent to C; < 0, happens only at time ¢;. We call
it the Probability of Loss.

There are two possible causes for gap risks. One is the existence of jumps in the
risky asset model and the other is because of the trading time is not continuous.
In this section, we consider the case when the gap risk happens at discontinuous
trading time. In section 4.2, we will consider the presence of jumps and the trading
time is continuous. In section 5.2, we will consider the co-existence of the above two

situations.

Proposition 2.10. The probability of the CPPI portfolio value under Black-Scholes

model in the discrete trading going below the floor taking happen is given by

P3t:V, <F]=1-0" (-%( %m (m7—1> + (r—u+°;) @)) (2.4)

where

Proof.




] 1(P{awg>1n(m71)+(w+§)§])n
e (SR (D)

where

]

Proposition 2.11. The probability of the CPPI portfolio value under the Black-
Scholes model in the discrete trading given by (2.4) is monotone increased function

as the multiple m.

Proof. We have

mi=2l=1-11=
1 <\/g1n(m7—l)+(r_u+§> \@) 1= (24) 1.

]

More description of the gap risk and their applications will be discussed in chapter

4 and chapter 5.

2.2 EPPI in Black-Scholes model

2.2.1 The discrete trading time case

It is sometimes not practical to assume that the multiple m is a constant. We consider
the case when the multiple is a function of time. Let my, =n + (St /Ste 1) where
a > 1. ie. at time ¢, we employ the multiple m,;,, where n > 0 is a constant. We

18



may as well assume n =m — 1 @St /St 1) — (St,/St,_,)*

When S;, > S,,_,, the stock price increases. Then

(Stk/Stkq) > 17 (Stk/Stkfl)a > 1.

Thus, my, > m. This means that we will invest more money into the stock market.

When S;, < Sy, _,, the stock price is decreases. Then

(Stk/Stk—l) < 17 (Stk/stk—l)a <L

Thus, m;, < m. This means that we will invest less money into the stock market.

When S, = S;,_,, the stock price is not changed. Then

(S4./Su_) =1, (St,/Sy_ )" =1

Thus, m;, = m. This means that we keep the strategy as before.

We call the new strategy an Exponential Proportion Portfolio Insurance (EPPI). This
is practical in real markets, the investor would like to invest more money when the
stock is increasing and less money when the stock is decreasing. Here the a > 1 is
just like a multiplier of the effect of the change of stock market. When we assume
a = 0, then m;, = m everywhere. The EPPI becomes CPPI. Thus, we can treat
EPPI as an extension of CPPI.

Proposition 2.12. The cushion of EPPI under the Black-Scholes model in the dis-

crete trading satisfies

19



Proof. We have

™y Ct Bt
‘/tk+1 Sk’tk . Stk+1 + (V;fk mtkctk) B]:l
St 1 Bt 1
= My, Ctk Si: + (‘/;/k my, Ctk) BI:
Bt Bt St
- (Vtk Ctk) BI:l - (mtk 1)Ctk B,:l + tkCtk Si:l
B, Sy B,
— F k+1 C k+1 o 1 k+1
tg Btk + tg (mtk Stk ( ty ) Btk
St 1 Bt 1
= (g = =0 )
Since
Vtk+1 Efk+1 + Ctk+17
then we have
S,
Otk+1 Ctk (mtk ;*1 o (m e 1)67’T/n)
tg
]
Therefore, we have
n—1 S
k=0 b
n—1 S
_ VE) o Ge—rT (mt. tet1 (mt . 1)67“T/n) :
( ) kl:[ﬂ " .
and since
Vir=Cr+ G,

thus we get

Proposition 2.13. The EPPI terminal portfolio value under the Black-Scholes model

20



in the discrete trading is

Monte Carlo simulation techniques We want to simulate both the CPPI

strategy and EPPI strategy under the Black-scholes model. In the discrete case,

T 1,7 ,T
In Skt1 ~N|p——=0=0*=).
Sk n 2 n n

The algorithm could be

Generate (Zy, ..., Zn—1) ~ N(0,I);
fori=0,1..n—1;
A; — expu— — —02T + \/02>TZ1,
B; « mA; — (m — 1)e’"/™;
forj=0,1,..n—1
V}CPPI — (Vo —Ge ™)By* By % ... Bj_y + Gen=9)T/n,
mo=n-+1;fori =12 ..n—-1
— ) 4 ealn(4d),
B; — my A; — (my, — L)er T/,
for j = 0,1,..n— 1 VEPPL (v — Ge=T) B, « B, #

% Bj_y + Ge=I)T/n,
plot(V'CPPL EPPL)

We use matlab to implement the algorithm. (Figure 2.1)
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EPPI versus CPPI

5200 T T T
+ - red dot are EPPI
— % — blue dashed are CPPI
5150 P ’j\
o
5100 LA N
. T/ \%t ;’{ * \%
/ # ol .

5050
= + * \
© .
= \

5000% ! .

: /
\ +
\ i \
L * *
49501 Y \\+
s@\
4900 N
¥ —
4850 : : :
0 0.2 0.4 0.6 0.8
time

Figure 2.1: We design the function [Vn, Vn2|]=EPPIBS (r, mu, sigma, T, n, s0, m,

a, v0, G) with arguments in Matlab to implement the simulation.

When in EPPIBS (0.01, 0.02, 0.1, 1, 20, 10, 4, 5, 5000, 4500), this is in particular, here
we assume r = 0.01, . =0.02, 0 =01, T =1, n=20m =4, a =5, V(0) = 5000

and floor G = 4500.

2.2.2 The continuous trading time case

We still assume the stock price satisfies the Black-Scholes model. Let

O=ty<ti<tbhh<..<t,1<t,=T

where t 1 — t = % for k =0,...,n — 1. We reconsider the multiple only at time ¢;

which ¢ = 0,1, ...,n. Let

n+1;

n+ (St /St _1) when k > 1;

my,

22
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In this case, in every interval [ty, tx11), the strategy is standard CPPL. If we let a = 0,
then it is same as standard CPPIL. Therefore, we can treat this strategy also as an

extension of standard CPPI. We deduced

1
Ot Ctk exp { (T + My, (,u — ’l") — 5771?)@) (t — tk) + O-mtk(Wt — Wtk)}

when t € [tg, tx41), and thus

Ctk+1 = Ctk (mtk St - (mtk - 1)€TT/n) :
k

Therefore, we have

+...+m - o2 mg 4 ... +m}
Cr = C’oexp{rT+mD b (1 )T—? 0 - feotp
n

+o (B mey,(Wey,, — W) }

mo + ... +my, |

= (VO — Ge_TT) exp {TT +

o2mi+ ...+ m
_o e LT + o (S0, (WtiH—Wti))}.

2 n

Since

Vip=Cr+G,
thus we get

Proposition 2.14. The terminal EPPI portfolio value under the Black-Scholes model

in the discrete trading is

2 02 2
o°my + ... +my

e T

mo + ... + My,

(VO — Ge_TT) exp {T‘T +

+o (S0 my, (Wi, — Wa,)) } +G.
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Monte Carlo simulation techniques In this case, the algorithm could be

Generate (21, ..., Z,) ~ N(0, I);
fori=0,1...n—1;

Aj —exp i — 50270+ [0* 1 Z;;

mo =n+1; Gy = Vyy — Ge™'";
fori=1,2,..n—1

My, = 1 + e,

Cipyr = Cy, (my, A — (my, — 1)e" /™)
Vierr = Crpy + Geln=k=1)rT/n.

plot(V);

2.3 CPPI in GARCH model

2.3.1 The Continuous trading time cases

Here instead of treating the volatility as a constant, we consider the following model.
The ARCH/GARCH model considers the volatility which depend on the past history.
In particular consider the GARCH(p,q) model:

St 0752
n = wlot) — — + 0i€4,
S, . M( t) 9 t€¢

1

where p is a given function, €, €,...is a sequence of i.i.d. standard normal random

variables, and o, satisfies:

2 _ 4 2 q 2
0y =W + Eizlai(at,iet,i) + Zj:l/gjo-tfj
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W, a1, .0, B, ..., B, being fixed constants.
By an embedding methodology, we can recover the continuous-time GARCH(1,1)
model. ( Refer to [44])

og for 0<t<1
P, = {

2 1/2 ;
(w +« (X[t}_X[t]71> + BF(x)[zt]_1> fort >1

[\

¢ o2
Sy = Sy exp {/ (u(os_) — —==)ds + Xt} ;
0

t
Xt:/ 0s_dBy;
0

o= F(x).
We have
dSt = St (/L(O't_)dt + O't_dBt) .
Next we have,

Proposition 2.15. The CPPI cushion under GARCH(1,1) model in the continuous

trading time case above satisfies

C, = Cyexp </0t (M(as_) - ngg) ds + m/ot oy_dBs — (m — 1)7‘t> . (25)

Proof. Since the strategy is self-financing, thus, we have
mC't mCt
Vi=V; 1—
= (-5))

mCtdSt mCt dBt
v, — ey . 4oy
VtVt(VtSﬁ( w)&)

and

25



Then

dOt -
. mC’t dSt _ mC't ﬁ _F @
N Vi ) B ' B,

- ( y m)

= C(p(op-)dt +or-dB;) — (m — 1)rdt).

Hence, we get

t m2o2 t
C; = Cyexp </ (,u(as) ——3 S_> ds + m/ 0s—dBs — (m — 1)7“25) )
0 0

We then got the portfolio value is

‘/t = Ct+Ft = Ct+GeXp{—T(T—t)}

The following proposition is the property of GARCH(1, 1) model.

Proposition 2.16. Let n € N, we have

Eloy] = (a+ 0™ (USjLoz—l—uﬁ)—l) a oz+;—1'

Proof. By definition

opfor0<t<1
1/2

P = { : ;
(w +a (X[t}fX[t]A) + ﬁF(x)[Qt]l) fort > 1

2
Os_

S, :Soexp{/ot(u(as_) : )ds+Xt}

t
Xt:/ 0s_dBy;
0 26




then
{ op=0opfor0<t<1
2 )
o = G[Qt]w + « (f[g]_l os,dBS) + ﬁaﬁ]_l fort>1
thus,
n 2
ol = wta (/ Us—st> + Bos_
n—1
= wtu«o (Jnfl(Bn - anl))2 + ﬁo—i—l
= w+ U?L—l(a<Bn - Bn71)2 + ),
then
Eo? =w+ Eo?_(a+ f),
and hence
2 W 2 W
= E .
o2+ o = (a4 ) (Bl )+ )
Thus, we get

]

In order to calculate the expectation of V; explicitly, in the following, we assume

w(z) = p be constant function.

Lemma 2.17. Let h; = exp <f0t <mas,st — [ mQUE‘*) dS) , then E[h;] = 1.

0 2
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Proof. By Ito formula
dht = mat,htdBt,

thus

t
hy — ho = / mos_hsdB;.
0
Hence h, is a martingale and thus E[h;] = E[ho] = 1. O

Proposition 2.18. Let u(z) = p be constant function. Then the expectation of the
CPPI portfolio value V; under the GARCH(1,1) model in the continuous trading time
case 18

E(‘/t) — Ge—T(T—t) + <‘/0 . Ge—rT)em,ut—(m—l)rt‘

Proof.

E(‘/;) = GB_T(T_t) + C()Bm fot w(os—)ds—(m—1)rt)

o s[5 ))

— Ge—r(T—t) + (‘/O . Ge—rT)emut—(m—l)rt.

X

2.3.2 The Discrete trading time case GARCH(1,1) model

In this case, the model is

S 2
In Stil = pu(oy) — % + o€

af =w+ a(at_let_l)Q + ﬁof_l,

where w, «, 3 are fixed constants. We only consider the time on the integer-value,

i.e. integer times unit time.
28



Proposition 2.19. The CPPI cushion under GARCH(1,1) model in the discrete

trading time case model satisfies

Ct+1 = Ct (mS;+1 — (m — 1)€T> . (27)

t

Proof. Since the strategy is self-financing, we have

B
Vien = (Vi—m(CY) éﬂ + mCy(Se41/St)

t

B B
- (Vt - Ct) grl - (m - 1)Ct grl + mCt(St—i-l/St)
t t
. By St By
- F’t Bt + Ct (m St (m 1) Bt

and since

then

We then have

n—1
C, =Cy H <m5g:1 — (m — 1)€T> )
and

Vi,=C,+ F,=0C,+G.

Monte Carlo simulation techniques Our algorithm could be

29



Generate (€1, €, ...6) ~ N(0,1)

fori=1, ...t

op — Jw + a(o_16-1)% + Boi_y;
e o {utnd % 1)
Co = Ge™t:

fori=0,..t—1

Cip1 — Cy((mA; — (m —1)e"));
Visr = Cipa + Ge (79,

plot(V');

We use Matlab to implement the strategy according to the above algorithm.(Figure
2.2)

2.4 EPPI in GARCH(1, 1) model

We consider the EPPI in GARCH(1, 1) model. We assume the stock price satisfy:

St 0'2

t
n = uloy) — — + o€y,
S, . ,M( t) o t€t

1

o} =w+ a(or-16-1)° + Boiy,

where w, «, ( are fixed constants and the multiple is

my =1+ exp{aln(S;/S;_1)}.

Proposition 2.20. The EPPI cushion in the GARCH(1,1) model satisfies

S
Ct+1 == Ct (mt A (mt — 1)€r)



GARCH((1,1) model CPPI
5150 : :

5100 -

5050

5000+

value
£
+

+
4950 B+ b +
4900}

4850 ih s

4800 : : :
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Figure 2.2: We design the function GARCHCPPI(r, mu, sigma0, alphal,
betal,omega, n, v0, G, m) with arguments to implement the simulation.

When in GARCHCPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002, 100, 5000, 4500,
4), this is in particular, here we set p(os_ is constant, r = 0.0001, x = 0.00015,
oo = 0.0003, a = 0.05, 5 = 0.05, w = 0.0002, n = 100, m = 4, V(0) = 5000 and floor
G = 4500.

Proof. Since the strategy is self-financing, we have

Vt+1 = (Vt—mtct)

+ myCy(Si41/5:)

B
— (mt — 1)075 é+1

t t

t

+ myCy(Si41/5:)

and since

Vipr = Fop + Cig,
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then

Therefore we have

and

Vo=C,+F,=C,+G.

Monte Carlo simulation techniques Our algorithm could be

Generate (€1, €, ...€;) ~ N(0,1)

fori=1, ...t

oy — \/w + a(oy-160-1)% + Bo_y;
A; — exp (,u(at) — %2 + atet>;
Co = Ge™t;

mo = m;

fort=0,..t—1

mir1 =m — 1+ exp (aln(4;));
Cip1 — Ci((miAi — (m; — 1)e"));

Vigr = Cigq + Ge™ 9,

plot(V');

We use Matlab to implement the strategy according the above algorithm. (Figure
2.3)
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Figure 2.3: We design the function GARCHEPPI(r, mu, sigma0, alphal, betal,
omega, n, v0, G, m,a) with arguments to implement the simulation.

When in GARCHEPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002, 100, 5000, 4500,
4,2), this is particular, here we set u(os_) is constant, » = 0.0001, x = 0.00015,
oo = 0.0003, o = 0.05, # = 0.05, w = 0.0002, n = 100, m = 4, a = 2, V(0) = 5000
and floor G' = 4500.

The next figure draws the EPPI versus CPPI in GARCH. (Figure 2.4)
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GARCHEPPI versus GARCHCPPI
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Figure 2.4: We design the function GARCHEPPIvsCPPI(r, mu, sigma0, alphal,
betal, omega, n, v0, G, m,a)to implement the simulation.

When in [y1,y2]=GARCHEPPIvsCPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002,
100, 5000, 4500, 4,2), this is particular, here we set u(o,_) is constant, r = 0.0001,
1= 0.00015, og = 0.0003, o = 0.05, B = 0.05, w = 0.0002, n = 100, m = 4, a = 2,
V(0) = 5000 and floor G = 4500.
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Chapter 3

CPPI in the Jump-diffusion model
when the trading time is
continuous

3.1 Jump-diffusion model

3.1.1 Set up the model:

In this section, we consider the jump-diffusion model. It has been studied by many
researchers since the Merton’s Paper [58]. The model in our paper is described in
section 3.1.1 of [65]. [53] is another survey paper about jump-diffusion model, which
gives four reasons for choosing the jump-diffusion models. [53] also gives the short-
coming of the jump-diffusion model. We also want to mention [18], [71], [33], [57],
[50] among others, for further information.

Let (2,F,3:,P) be a probability space satisfying the “usual assumption”. Let the
price S; of a risky asset (usually stocks or their benchmark) be a right continuous
with left limits stochastic process on this probability space which jumps at the ran-

dom times T}, Ty,... and suppose that the relative/proportional change in its value at
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a jump time is given by Y7, Ys,... respectively. We assume In(1 + Y;,)s be i.i.d., and
denote the density of In(1+Y},)s by fo. We assume that, between any two consecutive
jump times, the price S; follows the Black-Scholes model. These T),s are the jump
times of a Poisson process IN; with intensity \; and the Y,s are a sequence of random

variables with values in (—1, +00). We have

Ny = Z Xt>T,

and

e~ Jo Asds <f0t >\st> !

n!

PN, =n] =

Then on the intervals [T},, T,.1), the description of the model can be formalized by

letting,
dSt = St<,U/tdt + O'tth>,
and in exponential form:
t o2 t
Sy = St, exp {/ (,us — ?) ds +/ JSdWS] )
n 0
At t =T, the jump size is given by AS,, = S, — S— = 57, V), ie.

St, = Sp-(1+Y,)

n
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which, by the assumption that Y,, > —1, leads to always positive values of the prices.

At the generic time ¢, S; can be expressed by the following equivalent representations

St

Sp exp

So exXp

SO exXp

ropt o2 t N

s — — | d AW 1+Y, Nl
[y fom flarn] o
[t o2 t Ny
/ <MS__8> d5+/ o dW, + ) In(1+Y;) (3.2)
| Jo 2 0 —

ropt o2 t t
/ (us—f) ds + / oudW, + / 1n<1+Ys>st] (3.3)
LJO 0 0

where Y; is obtained from Y,, by a piecewise constant and left continuous time inter-

polation, i.e.

Y, =Y, if T, < t < Thos,

here we let Ty = 0. The term 3™ In(1 + Y,)] in (3.2) is a compound Poisson

process. It has independent and stationary increments. Also because of (3.2), our

jump-diffusion model is an exponential levy model. Moreover, by the generalized Ito

formula, the processes S; is the solution of

dSt = St_[utdt + Utth + Y;dNt], (34)

with initial value Sp = s.

3.1.2 Two special Jump-diffusion models

Two important special jump-diffusion models will be considered and we introduce

them here.
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The Merton’s Model When we assume In(1 +Y;,) ~ N(«,d?). This is the
Merton’s model ([58]). The following Proposition considers the density of ln(g—;).

Proposition 3.1. Let ¢(x,m,v?) be a density function for a normally distributed

(z—m)?
random variable with mean m and variance v*, i.e. ¢(x,m,v?) = werno BT

Then, the density function of

St ! o ' N,
In{— )= s — —= ) ds+ [ odW,+ 3% In(1+Y,)
So 0 2 0

18!

e Jo dsds( [V N ds)i ! 2 '
p(r) = Z ‘ (o Asds) o (a:;/o (us - %) ds +ja,/0 o2ds +j52) . (3.5)

Jj=0 7

Proof. Let L = f(f (,us - %z)ds + fot adeS> and M =M In(1+Y,).

Then we have,

t 52 t
L~N (/ (us — —S> ds, / a?ds) :
0 2 0

When N; = j, by the properties of normal distribution, we have

t o2 ¢
L—i—MNN(/ (us—f)ds—kja,/agds%—jc?).
0 0

In general,
Vr € R,
P(L+M<z)=P (U(L+M§$,Nt:j)>
5=0

= Y P(L+M<zNy=j)=) P(L+M<z|N,=j)P(N, = j)
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= ZML + 57 In(14Y,) < 2N, = j)P(N, = j)

.S P(L+%)_, Eézlv:/;; =0 N =0y, — )

- ZP(L—|—Z 1 In(1+Y,) <2)P(N, = j)

o2 t —JoAsds( [t _ds)i
_ Z/ (/ (us——)ds+m/a§ds+j52)dye Uy Auts)
0 J:

When j = 0,we take Zﬁlzl In(1+4Y,) = 0. Each item in the above equations is positive,

thus the series is absolute convergence. Thus, the density function is

p(z)
oo T 2 o & Asds( ft sy
d(zjﬂfoogb(y;fot (Ns_7§> ds —1-]04 fO 2d5+j52>d 0 j(!fOAd,) )
) dx
e~ Jodeds( [P\ ds)i t 2 ¢
= Z e 7o ("/‘O s 8) gb (l‘7/ (Ms - %) ds —|—jo_z7/ O-gds +]62> )
Jj=0 J: 0 0

The Kou’s Model When we assume @) = In(1+Y,,) has an asymmetric double

exponential distribution with the density

foy) =p-me M xy>0+ q - m2e” ™ xy<0

where n; > 1,17, >0,p,¢q>0and p+q=1.
This is called the Kou’s model([51]). We have:
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Proposition 3.2. The density function of

St ' ol ! N,
In(—) = ps — = | ds+ [ o dWs+ 3t In(1+Y,)
So 0 2 0

18!

2 o fidds( [V ) ds) [ t 2 t :
p(z) :Ze Lo Asds) / cb(x—y;/o (Ms—%) ds,/o 03d8> 19 ) dy,

2 j! .

where fg)(y) is the density function of Zfl:l In(1+Y,).

Proof. Let L = |} (us - "7) ds + [ o.dW, and M = %N, In(1 + Y,). Then,

t o2 t
L~N (/ (us - —S> ds, / ogds) :
0 2 0

When N; = j, we have the distribution of the sum of two random variables is

T e’} t 0,2 t )
P(L+M <z)= / / ¢ (y - yz;/ (us - 3) ds,/ GEdS) £ (y2) dyady.
—00 J —00 0 0

We calculate the distribution of L + M in general.

Vr e R

P(L+M§x):P<G(L+M§I,Nt:j)>

J=0

- iIP((L+M§x,Nt:j)) :ip((L—f—MSx;Nt:j))

j=0 7=0

— i]P’(LJrMSSdNt:j)P(Nt:j)

j=0
— Z]P’(L%—Zi:l In(1+Y,) <z|N :j) P(N, = j)
j=0

Z P(L+Y_ In(1+Y,) <z,N,=j .
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o P(L+ 3 In(1 +Ys) < 2)P(N, = j)
Z P(Nt :J)

j*O

- ZIP((L+Zn 1 In(1+Y,) < 2)P(N, = j)

_ Z/ / (y—yz;/ot (us — %ﬁ) ds,/o 2d8) 19 (ys) dyy

e~ fo)‘dsf /\ds
j'

X

Each item in the above equations is positive, thus the series is absolute convergence.

Hence, the density function is

p(z)

o0 z o0 o= JE Asdsrt .ds)?
d (Zj:o f—oo ffoo ¢ (y — Y23 f(f (,us - ) dS fO st) f (yQ)ddey ]('.fo Asds) )

dx

0 o= Jo Asds t)\sdsj 00 t o2 ¢ .
= ;,fo ) / cb(m—y;/o (us—f) ds,/o de5> 18 (y)dy

Jj=0

fg)(y) can be calculated by the convolution of k fg(y)s. i.e.

15w = o) = fo(y) x .. foly) . (3.6)

N
j terms

Thus, the density function could be calculated explicitly. In generally, when we
assume Q,, = In(1+Y,,) have i.i.d. with density fq, then the density of 327 _ In(1+Y,,)

is g ). We have the following proposition:

Proposition 3.3. Let Q,, = In(1+Y},) be i.i.d. random variables with density function

fo. The density function of

St t 0_2 t N
In = ps — — | ds+ [ o dW,+ X5 In(1+Y,)
So 0 2 490



18!

p(z) = i o M;,fg hodsy /OO ¢ (rc — ¥ /Ot <us -

j=0 &

3.1.3 Martingale Measure

) ds,/t 05d3> fg)(y)dy.
0

For our jump-diffusion model defined by (3.2), consider a predictable §;-process v,

such that fot PiAgds < 00. Choose 0; and 1, such that
e + 00 + Yy Ny = 14

and

From here we see that
0, = 0;1(7% — pe — Y \y)

where 1)y is arbitrary. Define

t t t
L, = exp {/ {(1 — )\ — %92] ds +/ 0,dW, +/ lanst}
0 0 0

for t € [0, 7] and the Radon-Nykodymn derivative

aQ

@—LT.

(3.7)

(3.8)

(3.10)

Then the Q is a risk neutral measure or martingale measure, i.e. a measure under

which S, = exp{— fot rsds}S; is a martingale (see [65]).
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Define

dWR = dW, — 6,dt; (3.11)

dMZ2 = AN, — M\t (3.12)
Then WtQ and Mé@ are Q-martingales. Also under the measure Q, S; satisfies
dSy = Sy [t + 000, + Yibe A )dt + o dW2 + V,dMP) . (3.13)

Under the measure QQ, N, is a Poisson Processes with intensity A;;.

There are many risk-neutral measures Q ~ P. A special case of a risk-neutral

measure, reflecting the case of a risk-neutral world, it should satisfy
E(S(t)) = Spe™.

(See page 312 on [33], page 248-250 on [38], page 19 on [57].)
For Merton Model, since its density function has explicit expression, we will deduce

it. We have deduce the density function of Merton’s model in (3.5).

0 o= JoAsds( [P\ ds)i t 2 t
:Ze i (,fo s3) o | s — 22 ) ds + ja, | o2ds + 582 ) .
: J! 0 2 o

j=0

Then

E(S(t)) = SoE (e™5/%0) = 5,
R

. e fo)‘dS f Aods)?
- SO/RG ; J! ¢( /(
> e_fcfksds(ft)\sds)j . t
= sY o /Rw(x;/o (us—

7=0
43
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ds + ja,

[\D o
C\“

olds + j52) dx

q
® N

t
) ds + ja, / olds +j52> dx
0
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o] *ft)\sds t)\d j t 52
e Jo sds . .
= S Uo A<ds) eXp{/ usds+joz+9—}
0

i1
= 7! 2

3 2
= S exp/ (us — s + ea+%)\s) ds.
0

In case of

then we have
2
s — s + eCH'%)\S =

. 52 .
Thus under our new risk-neutral measure P™, we can use r+\; —e*" 2 \; to substitute

ts. The model then becomes

9 Nt(rn)
O-S

t 5 t
S, = Spexp / <r FA— TN — 7) ds +/ o dW"+ Y In(1+7Y,)
0 0 n=1

(rn)

. . . ™
s~ is a Brownian motion and Nt( )

is a Poisson process whose intensity is Ag
under the probability measure P™. For convenient, we still denote them as W, and

N;. Then, under the probability measure P, the model is

t 2 2 t N
S; = Spexp [/ (r—k)\s—eo‘*i)\s—%) d8+/ JSdWS+Zln(1+Yn) )
0 0

n=1
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3.2 The CPPI strategies

3.2.1 The constant multiple case

Recall that in the jump-diffusion model, the exposure e; is equal to the cushion C;
multiplied by m. The cushion C; is the difference between the portfolio value V; and
the floor F; and F, = G x exp{—r(T —t)}. Tt is possible to have the portfolio value
less than the floor, which means that the cushion will be negative and so will be the
exposure. Thus short-sell should be allowed. The following proposition describes the
portfolio value under this strategy. CPPI would fail if the value of the portfolio falls
below the floor. We will measure the failure.

In our strategy the portfolio value V; consists of a riskless asset V; — mC} and risky

asset mC;. i.e. Vi = mC; + (Vi — mC})

Proposition 3.4. The CPPI portfolio value under the jump-diffusion model defined

by (3.2) is
t mo? t Ny
Vi, = Cyexp { / (r +m(ps — 1) — Ts> ds —l—/ mades} H(l +mY,) | + F,,
0 0 n=1
where

Co = (Vo — Ge_rT) ;

F, =G xexp{—r(T —1)}.
Proof. We have

Vi = mCy+ (V; —mCy)
mCt mC’t
=V 1—
t(Vt +< v ))
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and

Vi_ S V.. ) B,

Since B, is continuous, then B,_ = B,, we have

dCy = d(V; — 1)

Vi S Vi ) B) "B
=Cy_ (n;dSt — (m— 1)7“dt> (3.14)
t—

= Cy—(m(puedt + 01 dWy + YidNy) — (m — 1)rdt)

= Ci_((r + m(py — r))dt + mo dW; + mYdNy).

Then
t m2o2 t Nt
Ct:C()eXp{/ <r+m(,us—r)— 5 s)ds—i—/ manWS} H(1+mYn) )
0 0 n=1
Hence
Vi = Ci+ F
t mo? t Nt
= Cgexp{/ (7"~|—m(us—r)— 2s)ds+/made5} H(1+mYn) + F}.
0 0 n=1
n

2
If we substitute pus by r+ A\s — et As, under the probability measure P, we get

the following corollary.

Corollary 3.5. In the Merton’s model, under the probability measure P™, the CPPI
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portfolio value Vi under our jump-diffusion model is

Ny

t 52 m0.2 t
Cp exp { / (7’ +m\ — e TTN,) — : S) ds + / madeS} H(l +mY,)
0 0

n=1

+Ft7

where

Co= (Vo — Ge™™);

F, =G xexp{—r(T —1)}.

The expectation and variance of the CPPI portfolio value are deduced in the

following two propositions.

Proposition 3.6. The expected CPPI portfolio value at time t under the jump-

diffusion model is

v = Coesp { [/ min s} 35 B AT

k=1

+ F}.

[T +my,)

n=1

Proof. Because

e[ <] 0 i <o o]

n=1 k=1 [n=1
00 [ N T
= Y P[[(+mY,) <N, = k| PN, = ]
k=1 | n=1

0 [k
= Y P[] +mY,) < a|N, = k| PN, = ]
k=1

n=1

~ | (1+mY,) <z, Ny =k

— ;]P’[ ]P)[Nt: ] :|]P)[Nt:/€]
oo [Hizl(l +mY,) < x] P[N, = k]

> P[N, = &] PINe = #

n=1 47



we get
Nt 00— [txgdsy [t k k
e JoAs Agds
E(JJ+myn)| =) l(dfo g [Ja+my)
n=1 k=1 ' n=1
and then
E[Vi]
t 2 2 t
= C\E {exp {/ <7“ +m(ps — 1) — m208> ds +/ mOSdWS}}
0 0
Ny
<E [[J(1+mY,)| + F
n=1
t N
= Cpexp {/ (r +m(ps — r))ds} E H(l +mY,)| + F
0 n=1

[T +mY,)

n=1

+ F,.

t 00 JoAsds( [t ds)k
= Coexp{/(r+m }Ze ]i'fo +d5) E
0 1 :

]

Proposition 3.7. The variance of the CPPI portfolio value at time t under jump-

diffusion model is

2 ¢
e Jo ’\Sds(f(f Asds)*

k!
2

¢
C’gexp{/ 2(r +m(ps — ) +m?o? ds}ZE H1+mYn)
0 n=

. [exp {/Ot(r +m(uy — r))} ds ,; ek ASdsl(g{O As)' ﬁ(l +mY,)

n=1
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Proof. Similar to the proof of Prop. 3.6, we have

N 2 — Jg Asds( [t k k 2
0 Asd
]E[H(1+mYn) ]e ](dfo S>E[H(1+mY) ]
n=1 ’ n=1
Thus,
Var[V;] = Var|C]
t m2o2 t N
= CjVar |exp {/ <7“ +m(us —r) — 5 8) ds + / mades} H(l +mY,)
0 0 n=1
t m2o2 t N 2
= CZE |exp {/ (r +m(ps — 1) — 5 S) ds —l—/ madeS} H(l +mY,)
0 0 n=1
t m2o2 t Ny 2
~C3 | E exp{/ (T—I—m(,us—r)— 5 S)ds—f—/ manWs} H(l—i—mYn)
0 0 n=1
t m2o2 t Nt 2
= CZE |exp {/ (7’ +m(ps — 1) — 5 S) ds + / TI’LO'SdWS} H(l +mY,)
0 n=1
2
¢ JExs ds by d
~C? exp{/ (r+m(ps —1))ds Z i fo ) H (1+mY,)
0 k=1 n=1
t Nt 2
_ (2 22
= CyE|exp 2(r +m(ps — 1) —m-o;)ds + 2 mastVS E H(l +mY,)
0 0 el

_ Cg

t 00— [Idsy [t Nods)®
exp {/ (r +m(us — r))ds} Z ¢ ]go ) E
0 k=1 '

t 00
= Cgexp{/ 2(r + m(ps —r) +m?o?) }Z
0 k

e~ o Aods (1N ods)
k!

H (14+mY,)

X

< o= )\sds(ft/\ ds)k

- [eXp{/Ot(Ter(us—r))}dSZ g E

k=1

Remarks. (1) Another method to calculate the expectation of the portfolio value is
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through calculating the characteristic function of

t mo? t N
/ (r—{—m(,us—r)— 25) ds+/ madeS—l—H(l—l—mYn)
0 0

n=1

In subsection 3.5.2, we will use this method to calculate a similar expectation.

(2) For the Merton’s and Kou’s model, E [Hﬁzl(l + mYn)} and E [Hﬁzl(l + mYn)} i
can be calculated and thus expected portfolio can be calculated explicitly. In general,
if we assume @), = In(1 +Y,,) have i.i.d. with density fo, E [Hﬁzl(l + mYn)} and

2
E|[TF_,(1+ mYn)] still can be calculated in terms of the function fj.

The following lemma gives the density function of 1 + mY;.

Lemma 3.8. Let the density function of In(1+Y,,) be fo(y), then the density funtion

fo of the random variable 1 + mY; is

, 1 1
(2) = fa (ln(l—i—zm )) —_—

Proof. Since

—1
IP’(1+mY§§z)=IP’(1n(1+Yi)§1n(1+z ))
m
z—1

In(1+221)
_ / fol)dy,

—00

the density f; of the random variable 1 + mY; is

oy = AR MY <2) <ln(1+z—1)> |

dz m m+z—1

20



Now we can calculate

n=1

k k
E H(1+mYn) = E exp{Zln(l—l—mYn)}
n=1 n=1
= /exp foxfo* ... * fox) pdo
R NS ~~ >y
k items
and
k k
E 1_[(1—{—mYn)2 = E eXp{ZQIn(1+mYn)}

J/

= /Rexp 2 fo* fo* ... x folx) pdu.

g

k 1tems

3.2.2 The case when the multiple is a function of time

Let m; be the multiple at time ¢t. We have similar results:

Proposition 3.9. When the multiple is a function of time the CPPI portfolio value

under the jump-diffusion model is

Nt

t m2g2 ¢
Vt—C’Oexp{/ (r—l—ms(,us—r)— 82 5)(13—1—/ msades} H(l—l—mnYn)
0 0

n=1

+Ft7

where m,, s obtained from my; by the formula

my =mrg,,

where Ty = 0.

Proposition 3.10. When the multiple is a function of time the expected CPPI port-

o1



folio value under jump-diffusion model is

k

[T+ mayn)

n=1

t © o= o )\Sds<f0t Aods)*
Co exp{/o (7 + mis (s —T))dsz o E

k=1

}w

Proposition 3.11. When the multiple is a function of time the variance of the CPPI

portfolio value under jump-diffusion model is

t

C2 exp {/ 2 (r +ms(ps — r) + m2o?) ds}
0

K

[T+ m.ys)

o0

X Z]E
k=1

2 ¢
e~ Jo Asds(fot Asds)F

k!
=1
t o [t Asds t)\sd k k 2
_ [exp {/ (r 4+ mg(ps — r))ds} Z c- ]i'fo ) E H(l +m,Yy)
0 k=1 : n=1

Here we consider a special form of m;. Let 0 = tg <t1 <ta < ... <tp,_1 <t, =T

where ty 1 — tp = % for k =0,...,n — 1. We reconsider the multiple only at time ¢;

which ¢ = 0,1, ...,n. Let

mog = n+1
my, = 1+ S /St_1) When k > 1

my = My, When ¢t € [tk,tk+1)

Remarks. The above is called an EPPI strategy, a special case of which would be
when the multiple is a function of time. However, since CPPI is a common term in

financial mathematics, we still refer the above EPPI as a special case of CPPIL.
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3.3 The CPPI portfolio as a hedging tool

We have proved that the portfolio value is

N

t m2g2 t
V;:C’Oexp{/ (7‘—|—ms(,us—r) 52 S)ds+/ msanWS} H(1+mYn)
0 0

n=1

+ F,.

The following lemma is deduced from the Ito formula and will be used to prove some

later theorems.

Lemma 3.12. Let v(z,t) € CH%([0, T] x R) and bounded at infinity. Then the

conditional expectation of the composition process v(t,z(t)) satisfies

E[u(t,5,)[S(0) = Sy = v<o,so>+E[ / (ijs &, 1<ausu>2%) (0. 5.)

(0t S+ Su_ Vo) — v(u, S.))AN,[S(0) = 50] |
Proof. Our risky asset S; is given by
dS; = St (pdt + o dWy + Y, dNy).
By the Ito chain rule,

2
du(t. S)) (81} v , 0%

ot + peSe— Iz (UtSt )? Oz 2) (¢, S¢)dt
ov

+St Uta (t St)th + ( (t, St— + St_Y;) — U(t, St))dNt

When expressed in integral form, we have,

b ov 0 1 0?
we.5) = w050+ [ (G ms 5o+ s o) (S

t
+/ Suou%qu + (v(u, Sy— + Su—Yu) — v(u, Sy—))dN,.
0

23



By taking conditional expectation on both sides, we have

b ov ov 1 , 0%V
Efv(t,S:)]S(0) = So] = v(0,50) + E{/o (E + ptSu_% + §(auSu_) @) (u, Sy)

+ A (v(u, Sy + S, Yy) — v(u, S,))dN,|S(0) = 5’0] :

0
Remarks. The term (v(t, S;— + S;_Y;) — v(t, Sy))dN, describes the difference of the
portfolio value as a functional of S; when a jump occurs.

In section 4 of [16], the CPPI portfolio is utilized as a hedging tool under the
Black-scholes model. See also [26]. In this section, we generalize the above result to

our jump-diffusion case.

3.3.1 PIDE Approach

Suppose that n = ¢(St) is a contingent claim that the portfolio’s manager is aiming
to have at maturity. Can the CPPI portfolio be converted into a synthetic derivative

with pay-off specified by n = g(Sr)?

Theorem 3.13. Ifg : R — R is sufficiently smooth, there exists a unique self-financed
g(St) hedging CPPI portfolio V, defined by

V= o(t,S,) telo,T] (3.15)

where v € CY2([0,T] x R) is the unique solution of the following partial integro-
differential equations (PIDE).

ou ou 1 , 0% B
E(t’ s) + (,uts)g(t, s) + é(sat) %(t, s) —ru(t,s) =0 (3.16)
sz%(t, s) =u(t,s + sz) —u(t,s) (3.17)
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u(T,s) = g(s), (t,5)€[0,T] xR), uecC([0,T]x R) (3.18)

In particular the CPPI portfolio’s gearing factor is given by:

Bu(t,S;) S

< —— te|0,7T]. 3.19
Vi € [0, 7] (3.19)

my =

Proof. For V to be a a self-financed ¢(S7)-hedging portfolio, it is enough to ensure

that at maturity time we have
VT = g(ST), a.s..

Choose a map v € CY2([0, T] xR) and set V; = v(t,S;) (t € [0,T]). Then v(T, Sr) =
g(Sr) P-a.s., therefore
(T, s) = g(s), Vs € R.

Second by Ito’s chain rule,

0 ov o
dv(t, St) ((‘;t} + MtStfa (UtSt )? P Z) (t, Se)dt
v
+St O'ta (t St>th + ( (t, Stf + Stfya - U(t, St,))dNt.

Now V; satisfies

d‘/;g - dCt + dFt
= (V;g_ - Ft)(r + mt(,ut — T))dt + T’Edt + (‘/;5_ - Ft)thtth + (V;g_ - Ft)ththt

= (rVie + (Vie — F)my(pe — 7))dt + (Vie — Fy)myo dWy + (Vie — Fy)my Yid Ny

A comparison of the above two equations implies that

%(ta St)Stf
‘/;— - F17f557

my =

t €[0,7]



and

ou ou 1 ,0%u N
E(t7 s) + (,uts)%(t, s)+ 5(50,5) @(t, s) —ru(t,s) = 0;

sz%(t, s) =u(t,s+ sz) —u(t,s).

O

In a financial turmoil, the portfolio’s manager acting on the leverage regime may
convert the CPPI portfolio in a suitable synthetic derivative whose price is specified
by (3.15)-(3.18). Moreover the required dynamic gearing factor (multiple) can be
easily determined, using (3.19). This is the PIDE/PDE approach hedging.

Another observation that reveals to be central in the analysis of possible portfolio’s
hedges is that at any time of the financial horizon the CPPI portfolio value may be
regarded as a standard risky asset and therefore as an underlying for any convenient

contingent claim:

Theorem 3.14. Under the risk neutral measure Q, the discounted CPPI portfolio’s

value { Vi }icpo 1
‘,}t _ 6_Tt%7 t c [O,T] (320)

18 a martingale.

Proof. In the proof of Theorem 3.13, we have deduced
d‘/; = (7"‘/;5, -+ (V;g, — Ft)mt(ut — T’))dt + (‘/t, - Ft)mtatth + (‘/t, - Ft)th;dNt,
thus we have

dVy
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= (Ve + (Vie = F)mu(py — r))dt + (Vi — F)myor (AW, + 0,dt)
+(Vie = Fi)mi Y, dN;
= (Vie + (Vi = E)my(pe — 7+ 6,))dt + (Vi — F))myo,dW,2
+(Vie = Fi)m Y, dN;
= (rVi_ + (Vie — E)muo)dW2 4+ (Vie — E)my(=Yub N )dt + (Vie — F)m,Y,dN,

= (7“‘/;57 + (‘/Z, - Ft)mtat)thQ + (‘/;57 — Ft)thngP
Integration by parts implies that

AV, = de "'V, = —re "V, dt + eV,

= 67”((‘/1‘/7 - Ft)thtthQ +(Vie = Ft)thdMP)'

Thus, V, is a Q-martingale. O

2
If we substitute pus by 7+ s — et T s, under the probability measure P™, we get

the following corollary.

Corollary 3.15. In Merton’s model, under probability measure P™™, the discounted

CPPI portfolio’s value {V;}iejo1

s a martingale.

Proof. We have

vy
== (T‘/t_ + (‘/t_ - E)mt(,ut - T))dt + (‘/;5_ - Ft)mtatth + (‘/t_ - Ft)ththt

2
= <7’V27 + (‘/t, - Ft)mt ()\t — €a+%)\t)> dt + (‘/;5, - Ft)mtatth
o7



+(Vie = Fy)myY;dNy.
Thus

dV, = de "V, = —re "W,dt + eV,
= —re ""Vidt+e " (r‘/}_ + (Voo — Fy)my <)\t - ea+§)\t>> dt
+(Vie — F)myodW, + (Ve — F)myY,dNy)
= (Vi — Fm (A - ea+§At) dt + (Vi — F)myodW,
+(Vie — Fy)m Y dNy)
= e "(Vii — F))my <)\t — e‘”%)\t + )\th> dt

—|—(V;, — Ft)mtatth -+ (%7 - Ft)th;(dNt — )\tdt))
Since dN; — \dt is a martingale and
52
ElY,] =E ("0 — 1) = e*t7 — 1,

2 ~
we get E[(\, — e®TT \,)] = 0, so we prove V; is a P""-martingale. O

Given any claim n = g(V7), which is a function of the terminal portfolio’s price,

there exists a unique self-financed n = ¢g(Vr)-hedging strategy:

Theorem 3.16. Let g : R — R sufficiently smooth. Then there exists a unique

n = g(Vr)-hedging self-financed trading strategy (U, B) defined as

15)
U, = u(t, Vy), ﬁt_—a“(t,v;), te0,7),

Oz
where u € C2([0,T] x R) is the unique solution of the PIDE.

ou ou 1 0?u
E(t’ v) + Tv%(t,v) + §m20t2(v - f)2@(t,v) —ru(t,v) =0 (3.21)
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ou

mz(v — f)%(t, v) =u(t,v+m(v— f)z) —u(t,v) (3.22)

with the final condition uw(T',v) = g(v).

Proof. Consider an asset {V;}:c0,77, and pick a self-financed g(V7) hedging strategy

space (Uy, Bt)ico,r) by setting:
AUy = B1—dV; + (U= — B Vi )rdt
and
Ur=9Vr) as.
Since

AV, = (rVie + (Vi — Fy)my(pe — r))dt + (Vi — Fy)myo dW,

+(Vie = Fy)miYid Ny,
the hedging portfolio’s equation may be rewritten as:

dUt - ﬁt— (T‘/t— + (‘/t— - Ft)mt<,ut - T)dt + (‘/;t_ - Ft)mtO'tth
+(‘/t_ - Ft)th;dNt) —+ (Ut_ - ﬁt_‘/t_)Tdt
= (rUi + B (Vie — F)m(py — 7))dt + 8- (Vi — Fy)myordW;

+6i-(Vie — F)miYadNy).

Pick u € C12([0,T] x R) and set U; = u(t, V;), for t € [0, T].

For any t € [0, T],the Ito’s formula implies that:

0 0
du(t, Vi) = S(6V0) + (Vi +m(u = ) (Vi = F) - (L V)
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1 0%u ou
+§(mat)2(‘/}, — Ffﬁ(t, Vi)dt + moy(Vie — F))=—(t, Vi)dW,

Ox
+(u(t,Vie + m(Vie — F)Y;) —u(t, Vi_))dN,.

A comparison between the above two equations implies in particular

ou

61‘/* = %(tu ‘/t)
and
ou ou I 5, 50U
E(t,v) + (rv +m(p —7)(v — f))a—x(fﬂj) +omo; (v—f) @(fﬂ))
0
= rut,v) +miu —1)(v— f) (¢ )
Thus
ou ou 1oy o , 0% B B
E(t,v) + TU%(t,U) + §m o;(v—f) @(t,v) ru(t,v) =0
and
ou
mz(v - f)a_(t7v) = U(tﬂ] + m(v - f)Z) - U(t,l})
x
with the final condition u(7T,v) = g(v). O

The rationale in constructing self-financed trading strategies that hedge the CPPI
portfolio’s terminal price, is that there are contingent claims particularly useful to
control both the closing-out-effect and the gap risk. As an example consider the case
of a Vanilla option based on the CPPI portfolio’s value. For instance being long in an
at-the-money put option on the portfolio with a strike at least equal to the protection
required is a natural way to hedge gap risk. Similarly being long in an at-the-money

call option on the portfolio is a natural way to invest in a CPPI’s portfolio preserving
60



the capability to not purse forward the investment in the case of closed out.

3.3.2 Fourier Transformation Approach

[14] and [54] do research on how to use Fourier transform to value option when we
know the characteristic function. We refer to their results to value our CPPI option.
Under the martingale measure Q, the discounted stock price S; = e"%S, is a mar-
tingale. Consider the European option with the pay-off as the function of Sy, i.e.
G(Sr), and denote by h its log-payoff function G(e*) = g(z) and by ® the character-

istic function of In(S;). Proposition 10 in [74] states the following result.

Proposition 3.17. Suppose that there exists R # 0 such that
h(z)e® has finite variance on R, h(z)e ™ € L'(R), E? [¢f*7-1] < 00 and

|Pr—t(u—iR)|
f]R 1+|u| du < 00.

Then the price at time t of the Furopean option with pay-off function G satisfies

P(t,5;) = e "T-RC [G(S*T)m} .
3.23

eiT(Tft) ~ 2 .
= / h(u+iR)®r_y(—u — iR)SE"du,
2m R

where h(u) := Jg € h(x)ds.

We are interested in considering the European option whose pay-off a function
depends on the discounted CPPI portfolio Vi, i.e. G(V}). Since V;, = Cy + F; and C}
are in exponential forms, it is more convenient to treat it as a function of the cushion

éT. Let GQ(@I) = hg(l’) and

Ny

e, = Cyexp {/Ot (m(us —r) - m;ag) ds + /Ot manWS} [Ha +mY,,)

n=1

. (3.24)

In subsection 4.2.2, we will show that the characteristic function ¢;(u) of In(g) is
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given by

o) = e fi( [ (min=r) = 7Y asYum g ([ motas) )
X exp {tA/R (€™ —1) fo (m (1+ ex”; 1)) m:; - 1d:c}.

Thus the characteristic function of In(Cr) is Cy¢y(u). We then have

Proposition 3.18. Suppose that there exists R # 0 such that
ho(x)ef has finite variance on R, hy(z)e € LY(R), E? [ef*7] < o0

|Copr—t(u—iR)|
and fR %du < 00.

Then the price at time t of the Furopean option with pay-off function Gy satisfies

P(t,V;) i= e "T-ORQ [GQ(GT)M

(Tt [ . (3.25)
= or / h2(u + iR)OoglsT_t(—U - @R)C’tR_wdu,
R

where h(u) := [, e™*h(x)ds.

Remarks. The European call option has pay-off G5(Cr) = (Cr+ Fr — K)™, therefore,

we have for all R > 1

~ ] (K _ FT)iu+1—R
hal ) = R (R~ 1= i)

3.3.3 Martingale Approach

It is possible to obtain a Black-Sholes type formula for pricing Vanilla options based
on the CPPI portfolio:
We first consider the general case. We assume that the In(1 +Y;) are i.i.d. with

common density function fg.
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Proposition 3.19. Let the density of In(1+Y;) be fo(x) and the density function of

In(L;) = /Ot {(1 — ) — %92] ds + /t 0,dW, + /t In 1, dN,

0 0

be fLt, where Ly is defined by (3.9). Then the vanilla call/put option on the whole

CPPI portfolio’s value at maturity is completely determined by:

Call(0,v,T, K)

00 —Jo¥shsds( [Ty N\ ds)k 00
(6 ijf'o Yshsds) > X / (Coe™ + Fy — e K) p™da
: S

k=0

and

Put(0,v,T, K)
00 — Jo ¥shsds( [Ty N\ ds)k 00

_ Z (6 0 ;{0 ws s 8) ) « / (_Coex —F +€_TTK)p(k)dﬂf,
k=0 ’ N

where K > Fr and

p® = fi % fg, * ...k fg,,
————

k terms

where for and fg, have the following relation:
. rQ _ , ANE Ly
/Rexp {zqu,(z)} dz = /Rexp { [fQ (zu)zu] * f (z)} dz
and f1 is the density function of the normal distribution

T mQO.g T 0
N(/O ((m(—sz)\s)— . >ds,/0 modeS)

_ e "TK—F,
and ¢ =1n <—Co )
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Proof. Consider the process:

t m2o2 t Ny
V, = Cgexp{/ (r+m(,u5—r)— ;S)ds—i—/madeS} H(1+mYn) + F
0 0 1
t m2o2 t
= Cgexp{/ (T+m(,us—r)—|—m0595— 5 S)ds+/ moSdWSQ}
0 0
Nt
X [H(1+mYn) + F,
n=1
t m2o2 t Ny
- C’Oexp{/ (r—mYs@/)s)\s— 28)ds—|—/ madesQ} H(l—l—mYn) + F.
0 0 i

In the case of Ny = k, we denote

k _ F T 2 2
L® = @_TT—VT L= exp { / (m(_Y@bs)‘S) - = 08) o
0

: }‘

> In(1+mY;)

n=1

T
+ / mo, dWE +
0

(see the remark (3) below the proof.) Because

1n(1+ez_1)

m

Pu(1 +m1) <) =P (w49 < (1451 ) = | foly)dy,

m —0o0

the density function fo of the random variable In(1 + mY;) under the probability

measure P is

Jolo) = AT D)y (14 £20))

Suppose the density function of In(1 4+ mY;) under the measure Q is fg, By the

properties of the Radon-Nikodym derivative and the characteristic function, we have

E@[exp{iuIn(1 +mY;)}] = Elexp{iuln(l+mY;)}Ls]

= Elexp{iuln(l +mY;) +1n Lz}]
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Under P, the density function of iuIn(1+mY;) is for (—) =, thus the density function

z
U

of iuln(l 4+ mY;) + In Ly under P is

o (2) 2] 0

m

and thus fo and fg/ have the following relation:

/Rexp {zufg/(z)} dz = /Rexp { [fQ/ (%) %] * fLT(z)} dz.

Since

T 2 2 T
/ (m(—sz)\s) - m;s) ds + / mo,dW2
0 0

T 2 2 T
~ N(,/ (m(—szAs) — m;s) ds,/ manW;@>,
0 0

we denote its density function by

filz) =9 (93, /OT (m(—sz)\s) — #) ds, /OT mastVP)

1 _ ((L‘fﬂb)Q

under the probability measure Q where ¢(z, m,v) = st Then the density

function p*) (x) of LK is

p® = fi % fg, % ...k fg,.
———

k terms

We have

E? (e_rT(VT(k) — K)*) = / (Coex + Fy — e_TTK) pFdz,
S
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where

thus

Call(0, v, T, K)
- —Jo ¥sAsds( [t N\ ds)k
— B9 (Ve - K)) = DO B® (T - K)Y) ( R )
k=0

k!
0 —JosAsds( [Ty \ ds)k 00
= Z (e : go Yedds) ) ></ (Coe” + Fy —e‘rTK)P(k)dx.
k=0 ) s
Similarly,

EC (e_rT(K - VT(,k))Jr) = / (—Coe® — Fy + e " TK)p®dx

S

and

Put(0,v,T, K)
_ - _ e Jovsdsds( [Ty N dis)*
— [EQ (6 rT(K_VT)+) — ZEQ (6 TT(K—VT(wk))+) ( k|0
k=0
o — [y sdsds ([ \.ds)k oo
_ Z (6 ;j"o ws s 3) ) « / (_Coez . FO —|—€_TTK)p(k)dl’.
k=0 ' <

]

Remarks. (1) The expression is not very explicit since they contain measure transfor-
mations and convolutions.

(2)When Q is the risk neutral measure, the price of a Vanilla call option is given by

Call(t,v,T, K) = E% [e " T (V" — K)*] = EY [e " T (Vp — K)T |V, = 0],
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for any ¢ € [0, T]. The CPPI portfolio’s value {V;} is a Markov process so that
Call(t,v,T, K) = Call(0,v,T — t, K),for t € [0, T]

and it is sufficient to cover the case of the Vanilla call option’s price at zero.
(3) The value of 1+ mY,, might be negative, in this case In(1+mY,,) is an imaginary

number.

Corollary 3.20. In Merton’s Model and under the probability measure P™™, let the
density of In(1 +Y;) be ¢(x,a, 6%). Then the Vanilla call/put option on the whole

CPPI portfolio’s value at maturity is completely determined by

el )\Sds(ft Asds)*

Call(0,v, T, K) = Z ( k,O : ) X / (Coe™ + Fy — e K pMda
: S

k=0
and
© (eI ,\Sds(fot )\Sds)k 00 o i
Put(0,v,T,K) = 0 x/ (=Coe” — Fy + e K) pdaz,
k=0 ' ¢

where K > Fr and

= fl * fQ/ S 3 fQ'?
—_——

k terms

B e —1 9 e*
fQ/(Z)—QS(lIl(].‘i‘ m >,a,5)m+ez-1,

and fy 1s the density function of the normal distribution

N (-,/OT (m <)\S — eo‘+§’\s> _ Y% ) ds / manW)
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iy (TE-Fy
and§f1n< o )

In the following proposition we consider the special case that Y,, =Y is a constant.

In this case, the expression is more explicit.

Proposition 3.21. In the case that Y, =Y is a constant, the vanilla call/put option

on the whole CPPI portfolio’s value at maturity has the explicit expression:

00 — [YpsAsds [ [T Aod b
C’all(O,v,T,K):Z - <f0¢ S)

k!
k=0
M®) 4y o2 — (k) _
X C’oeM(k)Jr%"(Qk)\I/ OB (Fo —e ™KW (M g)
O (k) I (k)
and
t t k
e~ Jo Yshsds (fo ¢s/\sd5>
Put(0,v, T, K) = Z 1
k=0
N M®*) — g2 4+ ¢ —M®)
X <—COeM“‘)+2”<k>qf <_ ® + (~Fo+eTK) v <—+§) ,
I (k) I (k)

where K > Fp and

2
mo;

) ds + kln(l 4+ mY),

and




Proof. We have

O'

t
V, = Coexp{/ (r+m(
0

ds
Zln 1+mY,)

}”t
n=1
t mo?
= COGXP{/ (T+m( Y’@Z)s s)_ 25)d8
0

/ mosd WQ + } + F}.
In case that Ny = k, we have

k T 2
ewu = exp { / (m(—Y@bs)\s) _ mos) ds
Co 0 2

/ mosdW +

Zln 1+ mY,)

n=1

/ mo dWE + Zln 1+ mY,) }
n=1
Then we have
Vk — Fr
—T'T k) ;2
(TG SN (M),
where
T mo2
ME = / <m(_Y¢5)\S) 5 8) ds + kln(1 4+ mY)
0
T
oy = / mo, dW2.
0
Thus

E® (e — K)Y) = / (Coe” + Fo — e T K) d (N (s MW, o))
S
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where
1 (Q_TTK — F())
¢=1n .
Co
and
v = [ et
xr) = e
—oo V2T
Then
Call(0,v,T, K)
0 — [Tpsheds( [t k
—7 — k € 7o (f ¢5A5d3)
= E%e M (Vp— K)Y) = Y BTV - K)T)( o )
k=0 :
— [Ypsreds [ [T F
e e Jo ¥PsAs <f0 ¢5A3d8>
N k!
k=0
M® 4 g2 —¢ ME
x CoeM(k)—i-%O'?k)\Il (k) . (FO . €_TTK)\IJ (—g> )
I(k) O (k)
Similarly,
k S
E® <€_TT(K — VT(, ))+ = / (—Coe” — Fo+ e K) d (N (; M®), U(Qk)>)
. M® — o2 +¢ —M®
= Gy (— & + (R +e TK) U (—+ g)
I (k) O (k)
and
Put(0,v,T, K)

70



oo ff%ps,\sds( tT/) \.d )k
e Jo sAsdS
— BT~ Vi)) = 3BT — Vi) U Yoot
k=0 )
¢ k
o (et ([t ds)
- k!
k=0
M®) — g2+ —M®
X <_CoeM(k)+§U(2k)\P <_ . +(-Fo+eK)¥ ( : C) :
(k) (k)

O

Remarks. The assumption of the jump Y,, be constant is not reasonable, however, it

is looks like the option formula in Black-Scholes model with constant coefficient.

3.4 Mean-variance Hedging

3.4.1 Introduction

Given a contingent claim H and suppose there is no arbitrage opportunities, then
in a complete market H is attainable, i.e. there exists a self-financing strategy with
final portfolio value Z; = H, P-a.s. However, when in our jump-diffusion model, the
market is not complete and so H is not attainable. In this case we consider quadratic
hedging. There are two approaches. One approach is risk-minimization; the other
approach is mean-variance hedging. See [67]. We employ the notations from that
paper.

We consider the mean-variance hedging. For any contingent claim, let the payoff at T’
be H. Our jump-diffusion model of the risky asset price S is a semimartingale under

P. The following definition is taken from section 4 in [67].

Definition 3.22. We denote by O, the set of all ¥ € L(S) such that the stochastic
integral process G(9) := [9dS satisfies Gr € L*(P). For a fixed linear subspace ©

of ©,, a O-strategy is a pair (Zy, ¥) € ]$ x O and its value process is Zy + G(¥).
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A O-strategy (ZO, 15) is called ©-mean-variance optimal for a given contingent claim
H € L?if it minimizes ||H — Zy — G(9)||12 over all O-strategies (Zy, 9) and Z, is

then called the ©-approximation price for H.

The linear subspace

G = Gr(O) — {/OTﬂudSu]ﬂ c @}

of L? describes all outcomes of self-financing ©-strategies with initial wealth Z, = 0

and
T
A=R+G = {Z() +/ U, dSu|(Zo, ¥) € (R x @)}
0

is the space of contingent claims replicable by self-financing ©-strategies. Our goal
in mean-variance hedging is to find the projection in L? of H on A and this can be
studied for a general linear subspace G of L? space. In analogy to the above definition,
we introduce a G-mean-variance optimal pair (Zo, g) ERx G for H € L? and call Zo

the G-approximation price for H. Our goal is to find

(ZO,%?EIIIRXQ HH —Zo— GT<19>||L2-

Since

dSt = St_[ﬂtdt + Utth + }/tht];
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we have

min

T
H— 7, —/ VudSy
0

(Zo,ﬁ)ERX@ L2
T
min H—-Z,— / VySu— [pudu + o, dW,, + YidN,]
(Z(),ﬁ)ERX@ 0 L2

2

T 2
= min (E {H — Zy — / VS [pudu + o, dW,, + Ythu]} )
(Zo,9)ERXO 0

[67] has pointed out that finding the optimal ¥ is in general an open problem. On
the other hand, in the case of real contingent claim pricing, we should always using
the risk-neutral measure. [20] gives the G-mean-variance optimal pair (Zy, §) when
the stocks’ model is an exponential levy form martingale. For similar consideration

also see Chapter 10 in [18].

3.4.2 Our Problem

Now we consider H as a function of Vr and denote H = ¢g(Vr). For any martingale
measure Q defined in (3.10), we have proved that V; = eV, is a Q-martingale.

Denote H = e "7 H. We want to consider the following optimization problem.
2

T
min EY (FI— Zy — / ﬁudf/u) : (3.26)
0

(Zo,9)ERXO

Proposition 3.23. The solution of the optimization problem (3.26) is

Zo = EQ [H];

Ut(cx(t> V;f)) + (C(tv ‘/t _I_ (V;f— - Ft>mtyvt) - C(t> V;f))Y;fAt"l}t

ﬁ p—
! o+ (Vie — F)m Y2
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Proof. We have

T 2 T 2
EQ (H — Zy— / ﬁudf/u) = E° (E@ [H] — Zo+ H —EQ [H] - / ﬁudf/u)
0 0
- 2 - - T \?
— E° {(EQ [H] - Zo> } + EQ (H—E@ [H] —/ ﬁuqu> .
0
We see that the optimal value for the initial capital is Z, = E© []:I ]

Define C(t,x) = e"'EY [PNHV,; = x} and C(t, ) = e "'C(t,z). By construction, C(t, )

is a Q-martingale. We have deduced that

d‘/; = (T‘/;ﬁ_ + (‘/;5_ — B)mt(ﬂ,t — T))dt ‘I— (‘/;_ — Ft)mtatth

+(Vie — Fy)miY;d Ny,
and
Vi = e (Vi = F)muodWE + (Vi — F)m,Y,dM2) .

Then by Ito’s formula we have

de (1, V)
- ( e (Vi) 4 e Tt V) + (Vi + (Vie — F)ma (s — 1)) "t Calt, Vi)
—i—%(Vt — F)*miote "Chl(t, Vt))dt + (Vi — Ey)ymyoe ""Cp(t, V,)dW,
+(e7C(t, V; + (Vie — F)myY;) — e "'C(t,V})) dN,
= (Vo — E)myoe "Co(t, V) dW 2

+ (e7C(t, Vi + (Vie — F)myY;) — e "C(t,V3)) dMR.
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Thus we have

A= [ o

= C(T,Vy) —C(0,V) — / Ve (Vi — FB)muodW2 + (Vie — F)m,YidM?)

- o / (Vie — Fymiou(Cult, Vi) — 0,)dIW2

T
[ €T+ (Vi = Fyma) = €.10) = 0,0 — F)mv)an? ).
0
By the Isometry formula, we have

o (H—E@ [ﬁ[] - /OTﬁuqu)2

e 2t (]EQ [ / T((v;f — F)myoy(Co(t, Vi) — 9y))%dt

+E® [/T(((C(ta Vi+ (V;t— - Ft)tht) - C<t7 W)) - 197&(‘/2— - Ft)tht))QAtwtdt} > .

This is the minimizing problem with respect to ¢J;. Differentiating the above expres-

sion with respect to ¥, and letting the first order derivative equal to 0, we have

(V- = F)muoe(Co(t, Vi) — 01) + (((C(4, Vi + (Vie — Fy)muYy)

—C(t7 Vt)) - 19t(‘/2— - Ft)tht))(V;t— - Ft)th75>\t"7Z)t =0,

thus

0i(Cu(t, V2)) + (C(t, Vi + (Vi — F)muY;) — C(t, V7)) Vil

19 p—
! o+ (Vie — F)m Y2\,

]

Remarks. When the contingent claim is the call option with the strike price K, i.e.
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H = (Vp — K)*, then
Zo = EQ [H} — Call(0,Vp, T, K)

and

C(t,r) = e"EC [ﬁ[ﬂft = x} = Call(t,z, T, K);

when the contingent claim is the put option with the strike price K, i.e. H =
(K — Vr)*, then
Zo = EQ [H} — Put(0,V;, T, K)

and

C(t,x) = e"RY [ﬁﬂ/; = x] = Put(t,z, T, K).

This is consitent with the calculation of call and put options.
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Chapter 4

Gap risks

4.1 Introduction
Let

as;
—— =dz,. 4.1
= (4.1

where Z; is a Levy process, a special case of which would be our jump diffusion. We
will show the probability of loss we obtain is consistant with [17] and our result on
the expected loss is more explicit and the method is similar to [17]; the result we
obtain for the loss distribution is explicit and our method is different from [17].

Two kinds of conditional floors will be introduced in section 4.3. Its idea is similar to
the Value-at-Risk considered in [27]. Meanwhile, four kinds of conditional floor are

discussed associated with expected loss and loss distribution.
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4.2 Gap risk Measure for CPPI strategies in Jump-
diffusion model

4.2.1 Probability of Loss

In practice, a CPPI-insured portfolio incurs a loss (breaks through the floor) if, for
some t € [0,7], V; < F;. The event V; < F; is equivalent to Cy; < 0. It happens at

time T;, associated with the ¢-th jump of the risky asset, 1 +mY; < 0. We have

Proposition 4.1. Let the density of In(1+Y,,) be fo(y). The probability of the CPPI

portfolio value going below the floor taking happen during time [0,T] is given by

P[Ete[0,T]: V; < F]=1—exp {/OT Asds (/10(011) foly)dy — 1) } (4.2)

Proof. Since

P(1+mn>0)zp(1n(1+m>1n (1—l)> :/loo Foly)dy,

)] (i)

then

P[3t€[0,7]: V, < F]| =P(3t€[0,T]: C, <0)
= PET, 1+mY; <0)=1-PNVT;, 1+mY; >0)

= 1—]P’<U[Vﬂ 1+mE>O,NT=J']>

j=0

= 1-) P(VT; 1+mY; >0, Ny = j])
=0

= 1-Y P(VT, 1+ mY; > 0[Ny = j)P(Ny = j)
§=0

= 1-Y P(VTY, Ty.. T}, 1+mY; > 0)P(Ng = j)

Jj=0
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_ Ly P(ﬁ(1+m1€>0)> P(Nr =)

= 1- P(1 +mY; > 0)P(Nr = j)

WE

=1

.

Jj=0

2 o Jo Msds( [T )\ dg)i 0 ’
= 1 —Z Uy Asds) (/1 f@(y)dy>

1l
j= J: n(lfi)

{7 ))

Remarks. (1) When A; = A, the probability of loss is

1 —exp {T)\ (/10(011) foly)dy — 1) } (4.3)

Our conclusion is a special case of Corollary 3.1 in [17], where the probability of loss

is given by

In(1-1/m)
1 —exp (—T/ V(dm)) :

In our case the levy measure v is v(dz) = Afg(z)dx (See Page 75, [18] or Page 14,
[57]), then

In(1-1/m)
1 —exp (—T/ - V(dx))
In(1-1/m)
= 1—exp (—T/ - )\fQ(:v)dx>
= 1—exp {T)\ (/1 . foly)dy — 1) } .

(2) This proposition describes the loss takes place before the mature time 7". Thus,

it is naturally to generalize it to the time ¢ € [0, T]. We have the following corollary,
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Corollary 4.2. Assume A = A\ and let 7 < T if the loss take happen i.e. C; <0

and T = oo otherwise. The distribution of T is, for t € [0,T]

P(r<t)=1-—exp {M ([Z-l) faly)dy — 1) }

and the density function f; of T is

fr=—exp {M (AZ,L) foly)dy — 1) } (A </1r:i) foly)dy — 1)) . (44)

Proof. The first one is obvious and the second one is the derivative with respect to

t. [

4.2.2 Expected Loss

Let 7 be the first time when C'. < 0 and we let 7 = oo if the loss never happens. Let

Ny

g = Cpexp {/Ot (m(us —r)— m;af) ds + /Ot mades} [H(l +mY,)

n=1

(4.5)

If a loss takes place, then at time 7, the cushion C. < 0. If we do not allow short-sell,

then, at time 7+, we let the exposure be 0. Then, we have the discounted cushion:

Cr =erXesr +e-(L+mY; ) x-<r (4.6)

Remarks. In subsection 3.2 we allowed negative exposure to happen and we have the
expression for the cushion C; and the portfolio value V;. When the CPPI portfolio is
considered as an hedging tool in subsection 3.3, short-selling is allowed.

In this subsection, we take the exposure to be 0 at the time when there is a loss and

we measure the gap.

When t < 7, 1+mY; > 0 for T; <t. We first calculate the characteristic function
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of In <é—g> fort <.

Since 1 +mY; > 0 when t < 7, we have

e t m2o2 t Ny
In|— | = m(ps — 1) — 5 d3+/made5—l— In(1+mY,,).
(Co) /0 ( (s =) 2 ) 0 ; ( )

Proposition 4.3. Let the density function of In(1 +Y;) be fo(x). Whent < 7, the

characteristic function ¢,(u) of In ((%) is

o) = e o ([ (mne == 25 ) s w3 ([ motas) ot}
X exp {M/R(em ~1fg (m (1 n ei; 1)) mf; - 1da:} .

Proof. Since [ (m(us —r)— m22‘7§> ds+ [T modW, and 3N In(1+mY,) are inde-

pendent, thus the characteristic function of the sum of two random variables is the

production of characteristic function of each random variables.

20.2

[ ((m{ps — 1)) — ™2%)ds + [, mo,dW, is normal distribution with mean

2 2
US

f; (m(ﬂs —r)— =5 ) ds and variance fot m?02ds and hence its characteristic func-

tion is

¢14(u) = exp {Z (/Ot (m(us —7r) — m220§> d5> u— % (/Ot m%?ds) u2} .4

In section 3.3, we have deduced the density function f;, of the random variable In(1 +

mY;) is

, z_l z
fole) = 1o <ln(1+em )) m+eeZ—1'

We denote the characteristic function of f;, by fzg Then, the characteristic function
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¢a¢(u) of Zi\zl In(1+mY,) is

po4(u) = E |expiu (Zéln(qumYn))

n=1

exp iu. (Zt: In(1+ mYn)>

n=1

= E|E N,

—& | ()"
_ i €—At(_)\t){ (fé(u)> ~ oxp {)\t <fé(u) B 1)}

=0 J'

= exp {t/\/ (em’ — fQ (dz)
R

)
- enfo e (o(or %) i)

Then, the characteristic function ¢;(u) of In (C—t> is

Pe(u) = Pra(u)day(u)

= oo ([ ()Y u ([ o) )
exp {tA/R(ei“x ~1)fq (m (1 + ei; 1)) m:; - 1d9:} .

X

]

Definition 4.4. The conditional expectation of the discounted cushion is called the
conditional expected loss and we assume that E[C;|7 < T]; while the uncondi-

tional expected loss is represented by E[CTx-<7|.
We have:

Proposition 4.5. The expectation of loss conditioned on the fact that a loss has

occured 18

[0 g0 gy [T Code(—i) frdt
L —exp {T)‘ (ﬁi?l—%) foly)dy — 1)}
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and the unconditional expected loss satisfies

In(1—-1/m)

E[Cxr<r] = / fol)dy / Codn(—i)fdt (4.9)

—00

where f. is the density function of T and defined by (4.4) and ¢, is the characteristic

function of In <é—t0>

Proof. First the discounted cushion is

Cr = erxest+e-(1+mY:)xr<r.
Then

E[CrXr<r] = E[(1 +mY?)]E[e,].

(1 4+ mY;) is the size of the first jump which size is Y; < —1/m. Thus,

In(1—-1/m)

E[(1+mY,) (xrer)] = / foly)dy.

—00

By the property of the characteristic function, we have
Eles] = Cody(—1).
Therefore

E[Crxr<r] = E[(1 +mY:) (Xr<r)] Eler Xr<r]

In(1-1/m) T
_ 0

(e 9]

where f; is the density function of 7 and defined by (4.4). Furthermore, by the
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property of conditional expectation, we have

E[C%XTST] . fir;(ol_l/m) fQ dy fOT CO¢t(_Z)det .
Plr < T 1—exp{T)\<f1 fQ()y—1>}

E[C;lr < T) =

m
4.2.3 Loss Distribution
To compute risk measures, we consider, for x < 0, the quantity
PlCT < z|T <T]. (4.10)

This is called the Loss Distribution. We next have:

Proposition 4.6. Let the density of In(1 +Y,,) be fo(y) and C3 be the discounted

cushion. For x < 0, the unconditional loss distribution is

]P[ TXT<T <:U

/1n - / < / (m(us —r)— m220§> ds, /Ot magds) f.dt

. (4.11)
( o ( (1 i em_ 1)) -m f; + 1) z—ln(—éfo)—ldl'
and the loss distribution is
P[CE < z|r < T] = PlCixrer < 7] : (4.12)

oo (e o 1)

where f, is the density function of T and defined by (31) and ¢(x, m,v?) is the density

function of normal distribution which is same as defined in subsection 3.1.1.

84



Proof. For x < 0, the unconditional loss distribution is

P[Cixr<r < ] = Ple; (1 4+ mY;)xr<r < 7]

Er x
= P {a}(—(l +mY;))Xr<r > _50]

_p {m (é—;xw) +In ((—(1 +mY;))xr<r) > In (7%)}

[T (e () <2))

d
xaﬂﬂm«—ﬂ+mﬁ»Mﬂﬂ<@wpwnw4ﬂ

The last step is by the property of the distribution of the sum of two random variables.

Since

d Er d r Er

i (¢ (n(Ger) <)) = ([ (@) <2) )
B T t mQO_g t )
= /0 ¢(z,/0 (m(ﬂs—r)— 5 )ds,/o mosds> frdt

where f, is the density function of 7 and defined by (31) and ¢(x, m, v?) is the density

function of normal distribution which is same as defined in subsection 3.1.1 and

D B(in((—(1 + mY;))yrer) < 2))

(P((1 +mYz)xz<r > —€7))

dz
4
- g (IP (ln((l +Y:)Xr<r) > In (1 + _ejn_ 1)))
% ( /ln1 I(li_i)l) f@(y)dy)

= —fo (m <1+ — 1)) _mfez+1>
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substitute the above two expressions, we get

P[Cixr<r < 7]

[T ) <)

L (B(In((—(1 + mY;))xrer) < 2))

z=l

dl.

z:ln(—cio)—l

dz
[l - [

z=l

—e* -1 e*
x |- In {1+ dl.
( o (n( m >) —m—i—ez—i—l) Z=In(— & )—1
Co
Moreover, the loss distribution is
PIChx - P|IChx~
PO < afr < T) = [Cixr<r <] _ [Cixr<r < 2] _
Plr <71 1 —exp {T)\ (fli?l_%) foly)dy — 1)}

4.3 Conditional Floor and Conditional Multiple of
CPPI in the Jump-diffusion Model

4.3.1 Introduction

We want to control the level of the gap by suitably adjusting the floor or/and multiple.
For example, if we take m = 1, then the portfolio value is always greater than the
floor, and thus there is no gap risk in the case. Another case is if we make the floor
equal to initial portfolio measure, then there is also no gap risk. Risk occurs when
we choose large enough multiples or low floors which result in more exposures. [1]
and [2] describe how the conditional multiple and conditional floor control gap risks

in the continuous case. Risks occur because the trading time is discrete.
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4.3.2 Probability of Loss

Let the density of In(1 +Y,,) be fo(y). Recall that the probability that the CPPI
portfolio value falls below the floor during the time interval [0, 7] is given by (4.2).
We see that the probability of loss is irrelevant to the floor. It is also irrelevant to
the continuous part of the risky asset model. It is only related to the jump part of

risky asset model and the multiple m. Moreover, we have the following proposition.

Proposition 4.7. The probability of loss given in (4.2) is monotone increased func-

tion as the multiple m.

Proof. For m > 1 in general,

m increased =—
In (1 — L) is increasing =
fli?l_%) fo(y)dy — 1 is decreasing =
1—exp {foT Asds (fli?l_%) fo(y)dy — 1)} is increasing.

Like for the Value-at-Risk (VaR) (See [27]), we define:

Definition 4.8. For € > 0, the multiple m = my makes
Pt e [0,T]: V< F]=e¢

is called the e-conditional multiple.

mg can be treated as a quantile. Since the probability of loss is monotone increased

as the function of the multiple m. Then for m < my,

P[Et€[0,T]:V; < F] <e.
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Let the distribution function of In(1+Y},) be Fy, then the quantile point m is given
by:

PEte0,T]:V; < F]=¢

= 1—exp{/0T)\5ds (Azrio)fQ(y)dy—1>} =€

CIn(l—e) /m(l—wio)

— — = foly)dy
[T ads o o)
— In (1 - i) =y’ ——lng,l —¢)
mo Jo Asds
1
< My

Lo £ ()}

When we know the distribution function of the jump-part, it is easy to determine the

e-conditional multiple and hence the strategies accordingly.

4.3.3 Expected Loss

Through the notion of Probability of Loss, we determine the conditional multiple
and hence control the risk of the gap occurrence. From (4.8) and (4.9), we have the

following proposition:

Proposition 4.9. Given a fixed multiple, both the conditional expected loss given
by (4.8) and the unconditional expected loss given by (4.9) are monotone decreased

functions of the initial floor Fy.

Proof. From (4.8) and (4.9), we see that they are increasing functions of the initial

cushion Cy, and Cy = V) — Fy. ]

Similar to the concept of e-conditional multiple, we define the following;:
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Definition 4.10. For ¢ < 0 and m = my, the floor Fy = F'“! which causes
E[C7r <T]=0¢

is called the first type o-mg-conditional floor.
and

Definition 4.11. For ¢ < 0 and m = my, the floor Fy = F°2 which causes
ElCix-<r] = 0

is called the Second type p-my-conditional floor.

From (4.8) and (4.9), we can solve the two conditional floors easily.

4.3.4 Loss Distribution

Similar to the case of expected loss, we define the conditional floor in terms of loss
distribution. Equation (4.11) gives the unconditional loss distribution and equation
(4.12) gives the conditional loss distribution. The following propositions are immedi-

ate:

Proposition 4.12. Given a fized multiple and x < 0, the expressions (4.11) and

(4.12) are monotone increasing functions of the initial floor Fy

Proof. From equations (4.11) and (4.12), we see that they are increasing functions of

Co. Since Cg = Vb — F(),

F} increased =
Cy decreased =
In <—Ci> increased =
0

Both the expression (4.1]8)9and (4.12) are increased.



As in the case of e-conditional multiple, we define the following two concepts:

Definition 4.13. For € > 0, o < 0 and m = my, the floor F; = F associated with

the condition

E[Cix-<r < 0] =€

is called the third type e-0-mg-conditional floor.
and

Definition 4.14. For € > 0, o < 0 and m = my, the floor F, = F** which gives

E[C} <ot <T]=¢

is called the fourth type e-p-my-conditional floor.

4.3.5 Conclusion

The conditional multiple and four conditional floors defined in our section can be used
to the investment. The investor can determine them according to their risk-aversion

level.
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Chapter 5

CPPI in the jump-diffusion model
when the trading time is discrete

5.1 Introduction

In this chapter we discuss the case of discrete trading time. The risky asset model is
the same as in chapter 3 and 4.

In section 5.2, as in section 3.2, we calculate the CPPI portfolio value, its expectation
and variance.

The gap risks are occurred because the risky model has jumps and also the trading
time is discrete. As in section 4.2, we measure the gap risk from three aspects in
section 5.3: the probability of loss,the expected loss and the loss distribution.

In section 5.4, similar to the ideas given in section 4.3, we define the conditional
multiples associated with the probability of loss as well as the conditional floors from
the views of expected loss and loss distribution. It could be treated as an application
of 5.2.

In section 5.5, we prove that as the interval of the trading times tends to zero,

the CPPI strategies in discrete trading time is agrees with the CPPI strategies in
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continuous time.

5.2 The strategy

Let 7V = {to =0 <t; <ty <..<ty =T} be asequence of equidistant refinements
of the interval [0,7], where t541 — t) = % for Kk = 0,...,N — 1. Suppose that the

trading times are restricted to the discrete set 7%V. Futhermore we suppose
PT;=t]=0 Vi=0,1,2,3,....and 7 =0,1,2,..., N.

Hence we may assume T; # ¢, for Vi =0,1,2,3,.... and j = 0,1,2,..., N. We have

S,
Cipy = Ci, (mﬂ — (m— 1)erT/N) : (5.1)
St
then
N—1
S,
CT _ CtN C() H (m tet1 (m 1)erT/N> :
k=0 tk
thus

Vir=Cr+G.

Since S;fz“, k=0,1,2,...,n — 1 are manually independent and also they have the
k

identity distribution, i.e.

S, trt1 2 tet1 et
rmen | [T (m G ) [Teans 3 mer|
12 tk b

ng=DNy,

LT

S,
E [ﬂ] = [E {exp(u% +UWT/N — 502ﬁ)} E H (1 + Ynk>

ng=Nt,
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ka+1

= exp (,u%)]E IT a+v.,);

nk:Ntk
and
N¢
S, r I ( T T ik
E|—=2] = El|exp|2u—=+20Wrny —c*—= || E 14+Y,)2
[ Stk I ILLN T/N N nk];[\[tk( k)
I T T 1 Newes
= E exp(2uN+0N+20WT/N—§20 )11@ IT t+v)?

n= Ntk

T T tht+1
= exp (ZMN + azﬁ) E H (1+Y,,)%

nE=N¢,

Lemma 5.1. Let the density function of In(1+Y,) be fq, then we have

Ntk+1 o) fftkjL Asds tk+1
etk ([, Asds)?
| (ERRTRES phae—-
e ' (52)
X /exp fQ * fo * ... % fQ(a:)j dx
R Vo
j 1tems
and
Ntk+1 o0 *ft kot A dS( tk+1 )\ d )
E ] a+v,)2=> =
e ” ' (5.3)

Proof. As the proof of proposition 3.6, we have
Nty

E J] @+,

Nne= Ntk
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- 7fttk+1 )\st( trs1 . -
etk Asds)?
=y o E|J]@+my,,)
j=1 J: Lnk=1
oo IR ey oy [ (4
S Un Ao g exp{z<1+mynk>}
j=1 J: ng=1
j L K
00 o= Ju "t Aeds N ds))
-y : [ exp fafox s fola) o
= J: R
j 1tems
and
Nig
E J] 1+,
nk:Ntk
o0 —f:'” Asds ftk+1 i [
e Asds)?
=y 't E|[]Q+mY,)
j=1 J: | np=1
o _fttk+ As ds tk+1 o J
e Asds
— Z jlft y E exp{Q Z(1+mYnk)}
j=1 ’ L np=1

_ftk Asds fttk+1 \ods )

/Rexp 2fQ * fo * ... *fQ(xZ dz.

'

j items
O

Next we calculate the expectation and variance of the terminal CPPI portfolio

value:

Proposition 5.2. The expected terminal CPPI portfolio value in discrete trading

time case under the jump-diffusion model is

N-1 Nejiq
E[VT] = Co H m | exp ( ) E H 1+ Ynk — (’ITL _ 1)67"T/N + G,

k?:O ne= Ntk

where EHntT]\l,t (14Y,,) is given by (5.2).
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Proof.

+G

St+ T )
Mt  (m — 1)e" TN
IT (7% = m =1

N-1
= G [] E25 (g~ 1)V 4
= (Cy m S, (m—1)e +

tk+1

—1
= C’OH m exp( )E H (1+Y,)| = (m—-1e™™N | + @G,
k=0

ne= Nik

where Ean’”J\l,t (14Y,,) is given by (5.2). O

Proposition 5.3. The variance of terminal CPPI portfolio value in discrete time

case under the jump-diffusion model is

V(IT[VT] = Cg

N-1 T T Neg i
H <lm2 exp (2/LN + 02N> E H (1+Y,,)?

k=0 nk:Ntk

Ntk+1

T
+(m _ 1)2627‘T/N _ 2m<m _ 1)€TT/N exp (LLN) E H (1 + Ynk> )
nk:Ntk
N-1 Nejq 2
—H m exp( )E H (1+Y,) ]| = (m—1) TN ],
k=0 Nne— Ntk

where EH T (14Y,,) is given by (5.2) and E]] M (1+Y,,)? is given by (5.3).

Nk= Nt NEe= Nt

Proof. By Lemma 2.7, we have

Var|[Vy] = Var[Cr] = Var

N-1
C H m—St’“Jr1 — (m — 1)V
0 5,

k=0

(e o] ) B ()]

k=0

S 2
m*E (ﬂ> + (m —1)2e? TN —om(m — 1)e"T/NR—EEL
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N-—1 S 2
. ({mE tet1 (m o l)erT/N:|)
k=0 Sty
Nik+1

T T
m? | exp (2'UN + U2N) E H (1+Y,,)°

np=Ny,

tk+1

+(m — 1>2€2rT/N — 2m(m — 1)€TT/N exp ( ) E H (14+Y,,)

nE= Nt
N-1 Nty iy 2
—H m exp( )E H (14+Y,,) | —(m—1)e™N ],
k=0 ng=DNy,

where EHnt’“jj\l,t (1 4+Y,,) is given by (5.2) and EHHZ’“KZ (1 +Y,,)? is given by
(5.3). O

5.3 Measure the Gap risk for CPPI strategies in
the jump-diffusion model-the discrete time case

5.3.1 Probability of Loss

In practice,suppose that a CPPI-insured portfolio incurs a loss. That is, for some ¢; €

™, Vi, < F;,, which is equivalent to C;, < 0. We consider the following probabilities:

Definition 5.4. The probability

PIEL =PV, < F

t; tz+1

|Vtz > Fti) (54)

1+1

is called the probability of local loss.
and

Definition 5.5. The probability

PPL .= P(if for some 4 € ™.V, <F,) (5.5)



is called the probability of loss.

Remarks. We refer the definition of probability of local loss to page 209 in [5].

The following proposition gives a relation between the probability of local loss

and the probability of loss.

Proposition 5.6. The probability of loss defined by (5.5) and probability of local loss

defined by (5.4) have the following relation:

N

PrE—1-T[ (1-P"). (5.6)
Proof. We have

PPL = P(if for some ,t; € 7V : Vi, < F})

N
i=1

i1 > Fti1}>

N
= 1-[[P(Vi, > F. Vi, > F. . })
=1
N N
= 1-[[(-PQVi < RVi, > R b) =1- [ (1-BE2).
=1 Pl

O
Proposition 5.7. The probability of local loss defined by (5.4) is given by
PLL ()R
Ptmtiﬂ :/ p(l)(:c)d:c, (57)
where
) fAds(thl)\d)
e Jo s
) () —
7) = Z 4!
7=0 (5.8)

<[ o (a-u /( 97;> o[ o2 ) 1§ )y



where f3(y) = foly) * fa(y) * - fa(y)-

Conwolved 7 times

Proof. We have

]P)PLL — P(%i+1 < Ft

t; t7,+1

St
=P <m% — (m—1)e"/N) < 0)

t;

|‘/tz > th) = ]P(Ci+1 < 0|CZ > 0)

41

titv1 o2 tit1 Ntjyq
= Pl mexp / <,us — ?) ds +/ o, dW, + Z In(1+Y,)
t; ti n=Ny,

—(m — 1) /N < O)

Ny,
tita o2 ti+a lady m—1 rT
= ]P’(/tl <,us—?)ds+/tz O-deS—i_Zln(l_'—Yn)Sln(T)—i_W .

7L=Nti

The proof of Proposition 3.2 shows the density function p®® () of

tit1 2 tir1 Neitq
/ <us - —) ds +/ o dW, + Y In(1+1Y;)
ti t;

n:Nti

18

where 5 (y) = fo(y) * fa(y) * - fa(y).

Thus,

]P)PLL IP)(‘/t

tz t1+1

Nt,
ZH o i = m—1 rT

98 "=Nu

< F’tz+1|‘/;z > Ez)

i+1



By (5.6), the probability of loss PP can be obtained.

5.3.2 Expected Loss

Suppose that the first loss takes place at 7. I.e. C;, < 0. We let 7 = o0 if a loss never

happens. i.e.

T=1;if Vi, < Fy,and Vi, > Fy, for j=0,1,2,...,i—1;

T=+00if V;, > F, for j=0,1,2,..,N.
Since Vy > Fj, then

7=+ if V;, > F, for j=0,1,2,..,N
which is equivalent to

T=+o00if Vi, > F, for j=1,2,...,N.

By the definition, 7 is a stopping time.
We consider the following situation. If a loss happens at time 7, the cushion C. < 0.

If we do not allow the short-sell, then at this trading time 7, we take the exposure to

be 0. Let
i-1
S,
= G [T (% — (=0, 59
k=0 .
where
Ny
g g1 2 tht1 kA1
Pl _ ovp / R ds+/ o dW,+ Y In(1+Y,,)
Sy 2
k 12 23 ng=Ny,
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Then the discounted cushion is

N-1
Cr = exp(—rT ety Xr>1 + exp(—rT) Z Et; Xr=t;- (5.10)
=0

Definition 5.8. If a loss happens, the conditional expectation of the discounted
cushion is called the conditional expected loss and we denote this by E[C|T < T.
The expectation of the discounted cushion is called the unconditional expected

loss and we use E[C5x-<7] to represent it.
The following proposition gives the distribution of the break time 7.

Proposition 5.9. The distribution of T defined above is
P(r =t;) = PPLL, X H (1 — PP, ) (5.11)

Remarks. In the above, if j —1 < 0, let ]P’fj%it]_ = 0. In this case, P(7 = ty) = 0 as

expected.

Proof.

P(r=t;) =P(V;, < F,, and V;, > I}, for j=1,2,...,i — 1)

1—1
=P {V;fz < Fti i1 > Ei—l}m m{‘/tj > Ejﬂ/;fj—l > th—1}>

j=1

i—1
=P {‘/tz < Fti"/ti—l > Ei—l}) X H]P)({V;fj > E]’H/tj—l > th—1}>

Jj=1

i—1
=P {V;fz < Fti’%iﬂ > F;fifl}) X H(l o P({%J < th“/tj—l > thl}))

j=1

i—1
= P < JT(1-PE ).
j=1
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Lemma 5.10.

i1 Ney i
Eles,] = Co H m |exp ( ) E H 1+Y,)| = (m—=1e™N ]| +G. (5.12)
k=0 ng=DNy,

where EHH;’”J\Z (14Y,,) is given by (5.2).
Proof. This is an corollary of Proposition 4.2 when substitute ¢ to N. O]
Proposition 5.11. The expectation of loss conditional on the fact that a loss occur

18

exp(—rT) Z] 0 E[et].]IP)[T =]

E[Cr|m <T) = (5.13)
Zi:l Plr = t;]
and the unconditional expected loss satisfies
N-1
E[Cixr<r] = exp(—rT) > Ele ] (5.14)
7=0

where Ele,;] is given by (5.12) and P[r = t;] is given by (5.11).

Proof.
N-1
B{Cier] = B |exp(—T) 3 e xrms
=0
N-1 N_1
= exp(—rT) > Eler, xr—t,] = exp(— Ele, P
Jj=0 j:O

Elet,] is given by (5.12) and P[r = ;] is given by (5.11). Thus we prove (5.14).
Moreover, by the property of conditional expectation, we have

" o E[C’;XTST] o eXp(_TT) Z;V:T)l ]E[Etj]]P[T = tj]
==t = S Rrou

i=1

This is (5.13). O
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5.3.3 Loss Distribution

In order to compute risk measures, we utilize the distribution function of the loss.

We compute, for x < 0, the quantity

P[C} < z|7 < T).

We call it the Loss Distribution. For z < 0, the quantity

P[C;‘XTST < SC]

is called unconditional loss distribution.

(5.15)

(5.16)

Proposition 5.12. Let the density of In(1 +Y,,) be fo(y) and C5 be the discounted

cushion. For x < 0, the unconditional loss distribution is

N-1

+o0 +o0 +oo =2
PlCTXr<r < 3] = Z [/ / / Zln (may — (m —1)e’™/N)
Yi-1 JYi—2 Y k=0

§=0 0

+In (= (ma;m — (m — 1)6TT/N)) PO (z)dzgp™ (x1)day

.. .p(i72) (Ii,2>d$i,2p(i71) (xi,l)dxi,llP’[T = t]]]

and the loss distribution is

P[Chxr<r < 7]

PICr < x|t <T| = ,
SRR STy

where p(z) is given by (5.8) and P[r = t,] is given by (5.11) and

(Yo, Y1, Y25 - Yic1) € {(yo, Y1, Y2, - Yio1) € R’

m

-1
yp > ——e TN fork=0,1,2, ...
m
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Proof. We have

N-1
P[Crxr<r < x] =P |exp(—rT) Z e, < ;[;]

=0

=

= Plexp(—rT)e;, < x|t = t;]P[r = t;]].

<
Il
o

We now calculate Plexp(—rT)e;, < x|T = t;].

Plexp(—rT)e;, < x|T = t4]
i1

S,
exp(—rT) H Co <m% —(m— 1)€TT/N) < 2|t = tj]
k=0 k

_p [exp(—rT) (ﬁ o (msé_+ o 1>€TT/N>>

k=0

St
(mﬂ —(m — 1)€TT/N> <zlr = tj]
St

- P [exp(—rT) (ﬁ o) (mS;L: —(m— 1)erT/N>>

k=0

(_ (m% — (m — 1)€TT/N>) > —zx|T = tj]
St
i—2
= P Z]n m% _ (m_ 1)erT/N
S

Si 1 r —T
+1In (— (m;—;— (m—1)e T/N>> >1HF—|—TT’T:T]-]

=P

0

“+00 “+00 400 1—2
— / / / Z ln(mxk _ (m - 1)€T‘T/N)
Yi—1 Yi—2 Y k=0

0

+1In (= (maziy — (m — 1))

p(o) (%)dlﬁop(l) (x1)dzy.. 'p(ﬂ)? (xifQ)d$i72p(i71) (i—1)dx;_q,



where

(Yo, Y1, Y25 - Yim1) € {(yo, Y1, Yo, - Yio1) ER

-1

g > LD TN for k=0,1,2, ... —2
m

i—2

Zln (myx — (m — 1)erT/N)

k=0

+1n (= (myi_1 — (m — 1)e"™N)) > ln;—x +rT}.
0

Thus,

N-1
PCixr<r < z] =P [exp(—'rT) Z gy, < x]

J=0

N-1 +o00 +o00 +oo =2
= Z / / / Zln(mzk — (m — 1)e"T/N)y
j7=0 Yi—1 Yi—2 Yo k=0

+In(—(mz;—1 — (m — 1)e"™M))p(z0)dzop™ (z1)day
p(172) (xifg)dl‘ifgp(iil) (I‘i,1>dlﬂi,1P[T = t]]] .

Thus, we obtain (5.17). Through the property of conditional probability, we obtain
(5.18). m

5.3.4 Conclusion

The definition of probability of loss, expected loss and loss distribution in the jump-
diffusion model with discrete trading time is corresponding to the continuous trading

time case.
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5.4 Conditional Floor and Conditional Multiple of
CPPI under Jump-diffusion Model in Discrete
Trading Time

5.4.1 Introduction

In this section we study the conditional floor and conditional multiple from three

aspects: the probability of loss, expected loss and loss distribution.

5.4.2 Probability of Loss

Similar to proposition 1 in [2], we have the following proposition.

Proposition 5.13. The condition Cy, > 0 is satisfied at any time ti, of the manage-

ment period with probability 1 if and only if:

) b 1
min LARI g

1 — e*TT/N k41
k=0,1,..N—-1 Sy, m

(5.19)
Proof. Cy, has the relation in (5.1).

S,
Ciron = Cyy (m% —(m — 1)€TT/N> )
tg

The condition Cj, > 0 is true for any time ¢, if and only if

S,

Ett (g — 1)’ TN > 0
St,

for all k=0, 1, ... N — 1. This is equivalent to

1 — e "T/N Stie: < i
Stk m
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forall k=0, 1, ... N — 1 or equivalent to

St
min kA1

1— e—TT/N i
k=0,1,..N-1 S m

O

Proposition 5.14. The probability of loss defined by (5.5) and probability of local
loss defined by (5.4) are monotone increasing functions of the multiple m. Moreover

both of them are irrelevant with the floor Fy.

Proof. We have proved the probability of local loss defined by (5.4) is given by

(R
pPLE :/ P9 (z)dz.

ti, it
—0oQ

m increased = In(™-1) increased

(=5

— fi ~ p)(z)dx increased for each i =0, 1, ... N — 1

o0

— Pgﬁfﬂ increased for each ¢ =0, 1, ... N — 1

and by (5.6) implies P% increased.

From the expressions in (5.4), (5.5) and (5.6), we see both of them are irrelevant with

the floor F;. O

Similar to the Value-at-Risk (VaR) concept (See [27]), and as in the continuous

trading time case, we define:

Definition 5.15. For € > 0, the multiple m = my which satisfies

PRt e ™™V, <F,)=¢

is called the e-conditional multiple.
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mg can be treated as a quantile. Since the probability of loss is monotone increas-

ing as a function of the multiple m, then for m < my,
P [Elti eV Vi, < Fti] < €.

For
N
]PPL =1- H <1 B ]P)ifll:tz) =6
i=1

if we assume all the probability of local losses are the same, we obtain

2|~

P =1—(1—¢n.

From (5.7), we obtain the expression for my.

5.4.3 Expected Loss
First we have, from (5.13) and (5.14), the following proposition:

Proposition 5.16. Given a fized multiple, both the conditional expected loss given by
(5.13) and the unconditional expected loss given by (5.14) are monotone decreasing

functions of the initial floor Fy.
Proof. They are direct consequences of (5.13) and (5.14). O
Similar to the e-conditional multiple, we define following two concepts.

Definition 5.17. For p < 0 and m = my, the floor Fy = F°! which satisfies
ElCrlr<T]=0

is called the first type p-mo-conditional floor.

and 107



Definition 5.18. For ¢ < 0 and m = my, the floor Fy = F> which satisfies

E[C;:XTST] =0

is called the Second type p-my-conditional floor.

Similar to (5.13) and (5.14), we can solve for the two conditional floors immedi-

ately.

5.4.4 Loss Distribution

Proposition 5.19. Given a fized multiple and x < 0, the expressions (5.17) and

(5.18) are monotone increasing function of the initial floor Fy

Proof. Since Cy = Vi — Fy.

Fy increased =
Cy decreased —-

In(—Z) increased =

That is, both the expressions (5.17) and (5.18) are increasing.

Next we define the following two concepts.

Definition 5.20. For ¢ > 0, 0 < 0 and m = my, the floor Fy = F which satisfies

E[Cix-<r < 0] =€

is called the third type e-p-mg-conditional floor.

and
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Definition 5.21. For € > 0, o0 < 0 and m = my, the floor Fy = F** which satisfies
E[C} <olt <T]=¢

is called the fourth type e-o-mg-conditional floor.

The above two conditional floors are useful in numerical computations.

5.5 Convergence

In this section, we consider the relation between the case when the trading time is
continuous and the case when the trading time is disccrete.

Recall (5.1).

S
Ctk+1 = Ctk (m tet1 (m o 1)erT/N) :
St

When N — oo, At =T/N — 0

AW |
ex r— ~ T—.
PA"N N

Thus, we got

Cn — Cy, Sty — St
e = I Tl T ] — — 1) T/N
Cr + m A + (m—1)e

Let N — oo, we have

%Jrl:(m{%Jrl} —<m—1><1+rdt)),

and this is equivalent to

A _ (a5,
Cro

m— — (m — 1)(rd .
G (m =) t))



This is consistant with the continuous case (3.14). We have the following proposition:

Proposition 5.22. For N — o0, the portfolio value in discrete trading time converges

a.s. to the portfolio value in continuous trading time.
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Chapter 6

Stochastic and dynamic floors

6.1 Introduction

In section 6.2, we will consider the case of stochastic floor which is equal to the
maximum of its past value and a given percentage of the portfolio value. The idea is
that when the portfolio value is large enough, we will increase the level of the floor.
Both the continuous and discrete trading time cases will be analyzed. We will also
calculate the distribution of the time.

In section 6.3, we will consider the case of stochastic floor which is indexed by the
given portfolio performance. The idea is similar to that as in section 6.2. We will
also calculate the distribution of the first-time-change of the floor.

In section 6.4, we will deal with Ratchet and Margin CPPI strategies with the time-
change of strategy defined on the exposition variance. We will show that in the
discrete trading time case, the Ratchet CPPI is equivalent to the stochastic floor
which is indexed by the given portfolio performance. In the cases of CPPI with
margin when the floor is close to the portfolio value, the exposure will be very small
and we will reduce the floor. We will discuss the distribution of the first-change-time
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of the floor when the trading time is continuous.

6.2 When the floor equals to the maximum of its
past value and a given percentage of the port-
folio value

In this section, the current floor value is the maximum of the past floor value and a

given percentage of the current portfolio value.

6.2.1 Discrete-time case with fixed multiple

Let

"={ty=0<t1 <ty <..<t,=T}

denote a sequence of equidistant refinements of the interval [0, T, where ty1 — tx =
L—Afork=0,..,n—1.

n

Let

F,, = max{F,  exp(rd), zV,}

k

and the initial floor Fy = Ge™"? be the same as before and suppose z is an arbitrary
but fixed percentage of the portfolio value. This definition means that the floor is
equal to the maximum of its past value and a given percentage of the portfolio value.
As the portfolio value increases and if we keep the floor unchanged, the cushion will
be very big. Our idea is that as the portfolio value increase to a specific level, we will
also increase the level of the floor. In general, we assume zV, < Fj.

Let T} = min{t > 0 : F; = 2V;}. Denote respectively by 62 and 65 the shares invested
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on the riskless and risky assets. We have:

969 = (‘/()—96950)/30,

The following proposition calculates the probability of the first-time-change of the

floor taking place at t;.

Proposition 6.1. For the jump-diffusion model, if we assume x; 1 = ln(sfg—t_l), i =

0,1,2,.... be i.i.d. and their density function be p(x). Then the probability of the

first-time-change of the floor which takes happen at ty is

]P)[Tl = tl] = /l Fo/a—08 B p(l’)dl’

n(er m(Vo—Fp) )

Proof.

P[T, = t1] = P[F,, < 2V,,] = P[Fpe™ < 2(F,, +ey,)]

= P

Fpe™ < x <6(’JBBOeTA +m(Vo — Fp)

t1 2 t1 Niy
X exp / (,us — %) ds + / o, dW, + Zln(l +Y,) )
0 0 n=1

N
t1 0.2 t1 1 Fo/l'—@BBo
= P K AW+ In(1+Y,)| > et ==
exp /0 (/L 2) s+/0 o + n(l+Y,)| >e (Ve — Fo)

n=1

= pp P(T)dz
/m(ev-w;q-%fopjo)

[

Remarks. In the simple CPPI case, Y,, =0, us and o5 = o, then

1 Fy/x —6PB
P[Ftl = ‘r‘/;fl] = P [exp (H - §Uz> 1+ oWy, > eTAM
113 m(Vy — Fp)



o o 1))

This is the first part of the proposition 1 on [59].

In the following, we consider the probability that T = ty.

Proposition 6.2. For the jump-diffusion model, if assume the density function of x;

is p(x), the the probability of the first-time-change of floor at ty is
P[T} = ty] :// p(u;)...p(un)duidus...duy,
Dy
where

(uh "'7uN) € Dn Zﬁ

Vi< N —1, F()e”A >

Foe"™™ + Cy H g(uj)] ;

j=1

fori=N, F}ﬁ”NA <z

Foe™2 4+ C, H g(uN)] )

j=1
Proof. We have
P[Ty = ty] = P[Fy, > aViy, . Fry, > Vi |, By < 2V ]

and

‘/;. — Qg_lBti + Qi_lsti == Fti + Cti

3

Let g(z) =1+ (1 —m)(e"™® — 1) + m(e® — 1), then

t;
Vi, = Fye + Cy Hg(mt).
114 t=1



Thus,

P[Ty = ty] = P[F,, > 2V, .., Fiyy_, > Vi |, Fiy < 2Vi]

= P|Fye™ > a:[Foe’"A + Cog(x1)], ...y FperW=0A 5
tnN—1 tN
z | Fye" WA 4 ¢ H glzy) |, Foe'™® <z | Foe™2 4 Hg(xt)] ] )
t=1 t=1

Let

(ug,...,un) € D, iff

Vi< N —1, Fpe" >z

Fye™™ + O, Hg(u])] :

Jj=1

for i = N, Foe’"NA <z

Foe"™™ + O Hg(uN)] :

j=1

For the jump-diffusion model, when the density function of z; is p(z), we have

PIT} = ty] = / /D ).l s

]

Remarks. The second part of proposition 1 on [59] is a special case. Also, when
the density function p(x) of x; is given, the associated probability can be calculated

explicitly.

Next we have the following proposition ( see also [59]):

Proposition 6.3. For any t;, the stochastic floor F is equal to the stochastic floor ()
defined by:
" T ti—t'
Q:, = max | F},, supe ( J)th

J<i

115



Proof. (1) Firstly, the stochastic floor F' is above the deterministic floor F
F, > F, = Re™,
and secondly, we have:

F,, > xsup er(ti_tﬂ')th.
J<i

Indeed, by recursion we have:

FtA 2 €T6Ft

7

and Fy, > 2V},

i—1

F, > °F, ,and Fy,_, > 2V},_,.

1—1

Thus,

Fy, > max(e"V;,_; Vi),

i—1)

which, by iteration, leads to the inequality £}, > Q..

(2) Conversely, if F}, = xV,,, then

‘/21_ = sup er(ti_tj)‘/;j .

J<i
Therefore, since we have Q;, > e"~%)V,  for all j < i, we deduce that F,, < Q. O

The proposition shows that the previous CPPI strategy with floor F is the discrete-

time version of Time Invariant Portfolio Protection strategy(TIPP).
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6.2.2 Continuous-time case with a fixed multiple

As in the previous section, when the current floor value is the maximum of the past
floor value and a given percentage of the current portfolio value, the strategy is
equivalent to the TIPP strategy. Standard convergence results lead to the following

model, in continuous-time:

F, = max [ﬁ’t,xsup e"(ts)Vs] ,

s<t

€t = Tn(% :ZTH<LQ'—'E})

Define
TY = inf {t <T: F,=xsup er(ts)Vs] )

s<t
This is the first-time-change of floor. We will consider the probability distribution
of TT.

Before T}, we have

t 2 2
V, = C’Oexp{/ (T—I—m(,us—r)—m;s)ds
0

t Ny
+/ mosdW, + Z In(1+ mYn)} + Fye™.
0

n=1

Denote
¢ m2o2 t N
0 0 n=1

Thus, we have

177 = inf {t <T: F,=xsup eT(t_S)VS}

s<t

= inf [t <T:zsupe IV, =z <C’06” exp {sup Xs} + eTtF()) = Foe”}

s<t s<t
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= inf {tﬁT sup Xs > In {FO (1—1>H
s<t CO

When ps = o and o4 = o is constant and then

Ny
1
X, = <m(,u —r)— §m202) t+moW, + Z In(1 4+ mY,).

n=1

Let
(n—r)— smo®
A — 2
o

and

N
1
W = [As+ W, + —) In(1+mY,) ] .
| s+ Ws+ — ; n(l +mY,)
Then, we can calculate the distribution of sup,, W is

P (sup Wi < y)

s<t

=P [G <sup(As + W) + % Ztln(l +mY,) <y, N, = k)]

s<t n—1

s<t

Nt
1
P(sup (As + W) —i——Zln 1—|—mY)<y|Nt_k> P(N; = k)

o P (sups<t (As+ W)+ -L zf;l In(1 +mY,) <y, N; = k)
o P (supsgt(As +W,) + = SN In(14+mY,) < y) P(N; = k)
> BN, = k) =0

Ny

1
sup(As + W) -I——Zln 1—|—mY)<y) P(N, = k)

s<t

o~ Jo Asds (fg )\Sds) ’

k!

s<t

1 (
(supAs+W —i——Zln —|—mY)<y)
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Recall that a property possessed by the maximum value of the Brownian motion with

drift gives:

k
1
P A W — In(1 Y, <
(sup( s+ )+ma ngl n(l+mY,) y)

s<t

> 1 Y — Y \/¥>
= 1 — —Erf — A—
/_oo( 2 rc( V2t V2
1 2A(y—y2) (y—yz ﬂ))
= 2)r + A2 ) )dFu(ys),
26 e \/§t \/§ k(yQ)

where the function Erfc is given by:

2 e
Erfc(z) = — e " du
VT /gc

and the Fj(y») is the distribution function of —= S In(1 +mY,).

Then we have

P (Sup wi < y)

s<t

k! \/§t_ ﬁ

— t
2AW—v2) Frfe (yﬁ% + A%)) dFy(y2)-

k
o e Jo Asds ft Nods o _

o0

x>
—_

DN —

Therefore, we have deduced the following proposition:

Proposition 6.4. When assume ps = p and o5 = o be constant, the cdf of the first

time TY before maturity T at which F; = sup,, e"t =)V, is given by:

00 effot)\sds <f(f)\sd8>k © /1 Y — s \/z
s = S [ (5 ()

o0
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1 — t
+562A(y—y2)E’rfC (y\/;f + A%) )dFk(3/2)'

Proposition 5 of [59] is a special case for the diffusion model without jump.

6.2.3 Capped CPPI

Assume that the portfolio manager does not want selling short on the money market
account (condition 87 > 0).
Therefore the exposure e is bounded by a fixed proportion w of the portfolio value V.

We call it the Capped CPPI. This leads to the following conditions on the CPPI

strategy in continuous time:

(a)

F, = max [F’t, T sup er(ts)‘/;]

s<t

The floor equals to the maximum of its past value and a given percentage of the

portfolio value.

(b)
e; = inf(wV;, mCy)
We always assume that
C; = V,—F.

There are four cases have to be analyzed:
Case 1 (Cl): F, = F, and e; = mC, (Standard CPPI);
Case 2 (C2): F, = F, and ¢; = @V, (Standard capped CPPI);

Case 3 (C3): F, = zsup,, e "9 and %55 mCi;



Case 4 (C4): F, = zsup,, e’ and ¢, = @V}

For (C1):

We have F; = Ft, Thus, Ft > zV; or equivalently —Ft < —zV,.

Since e; = m(C}, we have wV, > mC}. Then e, = mC; = m(Vt—Ft) with —ﬁ} < —zV,.

Therefore, we get:
e <m(l—xz)V.

Additionally, since Cy < (1 — )V, and wV; > mCy, we deduce:

Cy < min [(1 — ), E] Vi.

m

For (C2):
We have F; = Ft and e¢; = wV;. Thus, @V; < mC;. Then:

@V, <m(V; — F) <m(l—2)V,
Consequently, we have:
w < m(l—zx).

Equivalently, if F;, = F, and @ > m(1 — z), then e, = mC}, which means that the
TIPP strategy does not need to be capped, in that case.

For (C3) and (C4), whenever there exists a ratchet effect, the portfolio value V;
satisfies V; = sup,, e"@=*)V,. we have discuss the (C3) on section 6.2 and for the

(C4) we will do it on section 6.4.
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6.3 CPPI with a floor indexed on a given portfolio
performance

In this section, the floor value is indexed accordingly on a given portfolio performance.

6.3.1 Discrete-time with a fixed multiple

For 7 € {ty) = 0,...,txy = T}, the CPPI strategy is defined as follows. The floor is
now assumed to be standard (deterministic) until the portfolio return ‘(/—to becomes
higher than a deterministic value ae™ where the coefficient « is higher than 1. As
soon as \% > aei, the floor is equal to a fixed proportion 3 of the portfolio value
with 0 < # < 1. Therefore, the floor F is determined as follows. Denote by Tld “ the

Vi, .y ,
# is higher than ae™:.

first time at which the portfolio return

Proposition 6.5. Under above assumption, the time Tld’a 15 characterized by the

relation:

T = inf{t; < T :V, > aVpe'}.

Thus the floor is given by:

F,. = th:Foe”f for tngld’a;

J

J

d,o
F, = 5VTf,aeT<tf—T1 ) for t; > T8

In the following, we calculate the the probability of Tld “ =1

Proposition 6.6. For the jump-diffusion model, if we assume x; 3 = ln(ngfl), 1=

0,1,2,.... is i.i.d. and their density function is p(z), then the probability of the first-

time-change of floor which takes happen at tq is

o0

P[V;, > aVpe™] = / p(x)dx.

B
Infera aVp—0g’ Bo
m(Vo—Fp)
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Proof. We have

PT{ =t = PV, > aVe™]
t1 0,2 t1
= P{H(?Boem +m(Vo — Fpy) X exp {/ (ps — ?8) ds +/ o, dW
0 0
Ne,
+ Z In(1 + Yn)] > aVoe’"A]
n=1
t1 0.2 t1 Ntl
= Plexp / (,us — —S) ds +/ o dW + Zln(l +Y,)
0 2 0 n=1
erA aVp — QOBBO ‘
- m(Vo— )
= v oB p(z)dz.
/ln(eTA Tr‘L/(OVOG*OF}j?)
O
Remarks. For the simple CPPI case, Y,, =0, us and o5 = o, then
1 Fy/x — 08B
P [V}l > onOeTA} =P {exp (,u — 502) 1+ oWy, > eTA;ﬂL/(%—_(}:O)O]
1 aVy — GBBO} < 1 ) >)
= 1—-N In |ed———0 | — ——d?)|A) ).
<a A ( { mVo—Fo) ]~ \" 72
In the following, we consider the probability that T} = ty.
Proposition 6.7. For the jump-diffusion model, if we assume z;;; = In (SS—+>,

i =0,1,2,.... is i.i.d. and their density function is p(z), then the probability of the

first-time-change of floor which takes happen at ty is

P[Tfl’a:t]v] :/.../D p(w;)...p(un)durdus...duy,
N
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where

(ulv 7UN) € Dn Z.[f

t;
Vi < N —1, Fye"™ + C, Hg(xt) < alVpe™A:
t=1
tn
fori= N, Fye™® + H g(x;) > aVye™2,

t=1

Proof. We have
PTy =ty =P [F, > 2V,,,..F, , > a2V, ,, F, <a2V,]
and

‘/t, - QgilBti + 95715“ - Fti —|— Cti

By — By I mSt — S
By 4 Si1

t;
= Foe”" + C[)H |:]_ + (1 — m)
t=1

Let g(x) =1+ (1 —m)(e"™ — 1) + m(e® — 1), then
t;
Vi, = Foe™ + Co [ [ 9(z)

t=1

and

PIT{ = ty]

=P [V}l < aVpe™, s Vin, < aVper DA Viy = aVDe’”NA]

tN—1

= P|Fye™ + Cog(r1) < aVpe™, ..., Fper VD2 4 G H glzy) < aVper™W—ba,
t=1
tn
Foe'™™2 4+ ¢, Hg(a:t) > " NA|
t=1
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Assume

(uy,...,un) € D, iff
t;

Vi < N — 1, Fye"™ + C, Hg(xt) < aVpe™?;
t=1
tn

For i = N, Fye™" + C, Hg(xt) > aVye™A,

t=1

then, we have

P[Tfl’a:tjv] Z/.../D p(w;)...p(un)durdus...duy.

6.3.2 Continuous-time case

The floor is now assumed to be standard (deterministic) until the portfolio return
V;/Vp is higher than a deterministic value of the form ae™ where the coefficient « is
higher than 1. As soon as V;/Vy > «ae™, the floor is equal to a fixed proportion (3 of
the portfolio value with 0 < < 1. Therefore, the floor F is determined as follows.

Denote by 77" the first time at which the portfolio return V;/Vj is higher than ae™.

Proposition 6.8. Under above assumption, the time T{"® is characterized by the

relation:
TP =inf{t <T:V, > aVye}.
Thus, the floor is given by:

F, = F,=Fye™ fort < TP

_ o r(t=T0) Cc,0
Fy = [BVieee 1251 fort >1T".



The stochastic floor is also defined by:

c,a)

n r(t—T,
Fy = Fixi<ree + BVpeae t-h Xt>1p -

We assume that the exposure satisfies: e, = mCy. Therefore at time T}, the portfolio
value is such that Vyee > aVee'™'" . Thus, at time 77, the floor is equal to BVrpea
and the cushion is equal to (1 — 3)Vrea.

As before we have

Proposition 6.9. The portfolio value after TY* (T7" <t < T) is

a-aVieesp{ [ (4 mipe— ) = 2% ) as

e 2
t Ni
+ WMAW% [T a+mYo)| + BV
vao‘ TLZNTlc,a

and

Proposition 6.10. When assume ps = p and o;, = o be constant, the cumulative

distribution function of Ty® is given by

k
oo g JoAsds (f(f)\ ds) o0 1
c,a s Y—Y2 \/Z
P(THY <t)=1— 1—--F — A—
T =) Zkzl k! / ( 2 ch( NGT ﬁ)

L oagyy y—t Vit
5¢ Erfc NG +A\/§ dFy(y2),

[e.e]

where the Fy(y2) is the distribution function of - ZZZI In(1 4+ mY,) and

1 (CM — 1)F0 + O./CO
mo Co
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Proof. We have
P(Ty" <t)=1-P(I7" > t)

Before T, we have

V., = Coexp{/ot((r+m(us )ds

Nt
/ mosdW +Zln l—l—mY)}—l—F

n=1

Denote

t
Xt:/ (m(#s—r) mQU)dS+/mUSdW+E In(1 4+ mY,).
0

When p; = o and o5 = o is constant, let

4 =)= 3mo?

o

and

N
1
WA = [ As+ W, +—) In(1 Y,
s (s+ +— > In(1+m >>,

n=1

then we have

v
P(Ty* >t) =P ( sup — < ae”) =P ( sup (COeXS + FO) < a%)

0<s<t 0<s<t
Vo — F —1)F C
= P(sust<lnM) IP’(supWA)<—l (a=DFy+a O).
0<s<t Co 0<s<t mo Co
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By subsection 6.2.2 we deduce that

k
00 —ft)\sds<ft>\d)

e Jo saS o0 1 Y — Yo \/Z

P (sup W < ) = - / (1——Erfc< —A—)

(532 - =Y ; Kl g 2 Va2

[e.e]

L sy (Y82 4 V2
5¢ Erfe ot +A\/§ dFy(y2)

where FJ,(y) is the distribution function of - ZZ:1 In(1 +mY,).

(a—l)F0+aCo

Let y = - In o

, then we have the conclusion. Il

6.4 CPPI with a floor indexed on the exposition
variance

6.4.1 The “Ratchet” CPPI

Discrete-time case with fixed multiple

For 7 € {ty = 0,...,ty = T}, the CPPI strategy is defined as follows. The floor is
based on the difference between the two potential values of the exposure.
As usual, the exposure is defined as the minimum between the standard cushion

multiplied by the multiple and a given percentage of the portfolio value:

€¢

= inf[m(V;, — F},),@wVi,]. (6.1)

k

We have

er, = inf[m(V;, — Ftk), wV;, | <= F;, = max lﬁtk, —Vtk}
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This is equivalent to the situation in subsection 4.2.1 with the percentage

Denote by 77" the first time at which m(V;, — F}k) greater than wV}, . Its properties

is a special case as in subsection 4.2.1 with the percentage

Continuous-time case with fixed multiple

The floor is based on the difference between the two potential values of the exposure.
As usual, the exposure is defined as the minimum between the standard cushion

multiplied by the multiple and a given percentage of the portfolio value:
e; = inf[mCy, wV;]. (6.2)

At time 0, the exposure ¢; is assumed to be equal to mCy. Consider the first time

T ld " at which mC; becomes higher than wV;. That is:

Proposition 6.11. Under above assumption, the time Tld’T 1s characterized by the

relation:
TE = inf{t <T :mC; > @V,}.
Then, the floor is defined as follows:

Fr = Eift<Tr;

Fr = (m — w) Vppe" T it ¢ > 17

m
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We have

e; = inf[mCy, wVi] <= m(V; — F,) = inf[m(V; — F}), @V}

<— F, =max [Ft, m- th]
m

On the other hand, the standard convergence result in the discrete-time case and
proposition 4.3 lead to the equivalent situation given in subsection 4.2.2 with the

percentage

Thus, we can calculate the probability distribution of Tld " using the result in subsec-

tion 4.2.2.

6.4.2 CPPI with margin

This kind of strategy can be applied in the situation when the initial exposition is
too high.

The initial floor is chosen to be higher than the reference floor. The difference, called
the margin, can be used later if the exposure gets too small.

Denote by Fj the initial reference level of the floor. The initial value of the stochastic
floor Fy is equal to the reference level plus an initial margin equal to M,. Thus we
have:

Fy = Fy + M,.

The exposition e is equal to mC with C' =V — F. Assume that F;, = Fye™ until the
time T7"“"Y at which the exposure e becomes less than or equal to 0. The floor F is
then:

Fypmars = (Fy +yMo)e™" with 0 <y < 1. (6.3)
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That is, at time 77"""?, the reduction of the floor equals to

(1= ) Mo ™
Usually, the parameter v is set to 1/2.
The probability distribution of the time 77" is determined as follows. We consider
Tmarg

a “small” ¢ > 0 and examine the time 77"""(¢) at which V; is equal or less than

(Fo + ¢)e™. We have: for any ¢t < T7"*"(¢)

t 2 2
Vi = C’Oexp{/ (T—I—m(,us—r)—m;s)ds
0

t Ny
+/ mosdWs + Z In(1+ mYn)} + Fye™.
0

n=1

Denote
¢ m2o? t Nt
X, = / ((m(,us —r))— 5 5) ds +/ mosdWs + Zln(l +mY,)
0 0 n=1
and
marg, \ _ . < . < £
T, (¢) = inf {t <T| OISI;;(XS) <In [C’o] } :

When the pus = p and o4 = o are constants we have

N
1
X, = <m(u —r)— §m20'2) t+ moW; + Z In(1+mY,).

n=1

Let
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and

Ny
1
WA = As+ W, +— ) In(1 Y,
: <s+ + g 2 m >>,

so that
marg o lE]
T, "°(e) =inf ¢ t < T| inf (W) <
0<s<t mo
Denote
In [C—]
Yy = )
mo
then

Similar to our discussions in subsection 4.2.2, we get

P (L, (v <) =

k!
k=

—_

+
DN | —

V2t

where F}(yz) is the distribution function of

k
0o e~ fot Asds ft )\SdS o o
= ( 0 > / (%Erfe < Y— Y2

—00

sup (—W7) < —y>

0<s<t

V2t

e~ 2ACY—v) Brfe (_y _ 2 Aﬁ) )dF;é(yﬁ,

V2

1k
o E In(1 +mY,).
mo £

Therefore, we have:
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Proposition 6.12. Suppose that s = p and os = o are constants. Then the cdf of

the time T\""" () is given by

P (Tf”‘””g (e) < t)

_ i €_f0t>\sd5(fg Asds)k /oo (1 - lErfc (—y — Yo —I—Aﬁ)
P k! o\ 2 Va2t V2

_ L eacym) —y—yp Vi :
5¢ Erfe i A\/§ dF; (y2)

Proof.
P (Tlmarg(g) < t) —1-P (Tlmarg(s) > t) —1-P ( inf (WA) < y> .

Substitute last term and we get the conclusion. O]
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Chapter 7

CPPI in the Fractional Brownian
Markets

7.1 Fractional Brownian Markets

Define
P(s,t) = H2H — 1)|s — t|*2 s teR. (7.1)

and suppose that By(t) is a fractional Brownian motion with Hurst parameter H
in (1/2,1) defined on the probability space (€2,F, ). Let ) be the filtration
generated by By (t).

Reference [22] discusses the fractional Ito Integrals in terms of the Wick product
associated with the fractional Brownian motion having Hurst parameter in (1/2,1).

[ 50080 = i S stw)o Balten) - Bul). (72
a k=0

See also [35] for some finance applications .

For the detail of the wick product and construction of fractional Brownian motion
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with Hurst parameter H, see references [22] and [35].

Definition 7.1. The fractional Black-Scholes market has two investment com-
ponents:

(1)A bank account or a bond, where the price A(t) satisfies:
dA(t) =rA(t)dt, A(0)=1, 0<t<T. (7.3)
(2) A stock, where the price S(t) satisfies:
dS(t) = pS(t)dt + oS(t)dBg(t); S(0) =z >0, (7.4)
and its solution is
S(t) = xexp (JBH(t) + pt — %O’QtQH) t>0. (7.5)

Definition 7.2. A portfolio or trading strategy 6(t) = 0(t,w) = (u(t),v(t)) is an
SgH)—adapted two-dimensional process giving the number of units u(t), v(t) held at

time t of the bond and the stock, respectively.

We assume the corresponding value process Z(t) = Z%(t,w) is given by
Z0(t,w) = u(t)A(t) + v(t) o S(t). (7.6)

Definition 7.3. The portfolio is called self-financing if

dZ°(t,w) = u(t)dA(t) + v(t) o dS(t) -
— u()dA®) + po(t) o St + ov(t) 0 SH)ABu(t): te0.T].

The Girsanov theorem for the fractional Brownian motion(Theorem 3.18 in [35])
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shows that

Br(t) ==Lt + By(t) (7.8)

g

is a fractional Brownian motion with respect to the measure jis defined on §4 by

o) = exp (= [ K(9aBn(s) = KT ) () (79)

where K(s) = K(T,s) is defined by the following properties: supp K C [0,7] and

T p—r
/ K(T,s)o(t,s)ds = , for0<t<T. (7.10)
0 o
For the self-financing portfolio, from (7.6) and (7.7), we have

P "t + dBy(t) (7.11)

(o}

= 1 Z°(t)dt + ov(t) o S(t)dBy(t) (7.12)

dZ%(t) = rZ°t)dt + ov(t) o S(t)

Let ZAL(lz)Q(R) denote the completion of the set of all &EH)—adapted processes f(t) =
f(t,w) such that

||f||L12 =E,, U/f stdsdt]ﬂ% (/mf )2]<oo,

Definition 7.4. A portfolio is called admissible if it is self-financing and v ¢ S €

Definition 7.5. An admissible portfolio 6 is called an arbitrage for the market in

€ [0,77] if

7°0)<0,Z2°%T) >0 a.s. and
pg (w: Z°(T,w) > 0) > 0.
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Definition 7.6. The market (A(t), S(¢));t € [0,7] is called complete if for every
S(TH)—measurable bounded random variable F'(w) there exists z € R and portfolio

0 = (u,v) such that

F(w) = Z2%*(T,w). (7.13)
This is the same as the condition that

e TF(w) =2+ /OT e "ou(t) o S(t)dBy(t). (7.14)

Reference [35] showes that the fractional Black-Scholes market (7.3) and (7.4) has no

arbitrage opportunities and it is complete.

7.2 CPPI in the Fractional Black-Scholes market

Recall that V; is the portfolio value, F; = rFidt, Fr = G is the floor, C; =V, — F} is

the cushion, m is the multiplier and e; = mC} is the exposure.

Proposition 7.7. The portfolio value of CPPI under the fractional Black-Scholes

model in continuous trading time is
1
Vi=Vo— Fy)exp [(r+m(pu—1))t — §m202t2H +moBg(t)| + Fi. (7.15)

Proof. With the trading strategies denoted by 6(t) = (u(t), v(t)), we have the portfolio

value V;

Vi=u Ay + vy © St (7.16)

d‘/t = U,tdAt1§7'Ut <& dSt, (717)



and

UtOSt :m(%—ﬂ)

By (7.11), we have

AV, = rVidt + v, o S, {“ Tt + dBH(t)] .
g

Substitute (7.18) into (7.19), we obtain,

AV, = rV,dt + om(V, — F,) {“ a4 dBH(t)} .
o
Since Cy =V, — F; and dF; = rF,dt, we have
d(V, — F)) = r(V, — F)dt + om(V, — F}) {udt T dBH(t)] :
o

thus,

dC, = rCydt +omC, {“ — Lt + dBH(t)]
ag

= Cy(r+m(p—r)dt+modBy(t)).

Then

1
Cy=Coexp [(r+m(pu—r))t — §m202t2H + maBH(t)] :

Therefore, we have (7.15).

By (3.50) in [35], we have

By, [Ci] = Coexp [(r + m(p —1))t].
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Thus we have

Proposition 7.8. The expectation of CPPI portfolio value under the fractional Black-

Scholes model in continuous time trading is
(Vo — Fo) exp [(r +m(p —7))t] + F. (7.25)

Proposition 7.9. The variance of the CPPI portfolio value under the fractional

Black-Scholes model in continuous time trading is
VarlV;] = (Vo — Fy)®exp [2(r + m(p — 7))t] [exp [m*0?t*] — 1] . (7.26)
Proof.

Var[V;] = Var[C}]

1
= Cjexp[2(r +m(u —r))t] Var [exp [—émzaQtZH + mUBH(t)H :
For Var [exp [—im?c?t* + moBy(t)]], we have

1
Var [exp [—§m202t2H + maBH(t)H
= E,, [exp [-m*c**" + 2mo By (t)]]

— (Eu , [exp [—%ngQtﬂ{ + mUBH(t)”>2

= exp [m202t2H] — 1.
For the last step, we have used (3.50) in [35]. Therefore, we get

Var[V;] = CF exp [2(r + m(p — 7))t] [exp [m*0?t*7] — 1] .
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7.3 CPPI Option

We consider the Vanilla options underlying the CPPI portfolio.

Proposition 7.10. The pricing of CPPI portfolio call option under the fractional
Black-Scholes model is

B (Ve = %] = (o= ) (n-+ gmoT™)
(7.27)

1
—(G-K)e "o (17 - EmJTH> ,

where

n = (mo) 'TH (ln —‘2 : []?) +7rT

and ®(t) is the normal distribution function.

Proof. Since
e B, (Ve — K)'] = e "B, [(Cr + G — K)*]

and C; has the expression (7.23), when compared with (5.2) in [35], we see that the
result is the same as the one given in corollary 5.5 in [35] where we use G — K,
r+m(pu—r), Vo — Fy, r and mo to substitute for ¢, p, x, p and o in (5.23) of [35]

respectively. Therefore,

e B, [(Ve —K)T] = (Vo— Fy)® (n + %maTH)

—(G—-K)e"® (77 - %mJTH) :

where

Vo — E
= (mo)'TH (In2—2) ++T
n = (mo) TR +
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and ®(t) is the normal distribution function. O

7.4 PDE Approach

Theorem 7.11. For any contingent claim of the form g(S;), there ezists a unique

self-financed g(St)-hedging CPPI portfolio V'; defined as
Vi=wv(t,S;) tel0,T] (7.28)

for v e CY2([0,T] x R) being the unique solution of the partial differential equation

(PDE).
ou ou 2 24,07 2H-1 _ _ 0.
5 (t,s)+ rse- (t,s)+o°s H0$2 (t,s)t ru(t,s) = 0; (7.29)
u(T,s) = g(s), (t,5)€[0,T] xR), uecC([0,T]x R); (7.30)

In particular the CPPI portfolio’s gearing factor is given by:

_ %(tv St)St

te 0,7 7.31
v —F € [0,7] (7.31)

Proof. In order to have V is a self-financed ¢(Sr)-hedging portfolio, it is enough to
ensure that at maturity:

VT = g(ST), a.s..
Choose v € CY2([0,T] x R) and set V; = v(t,S;) (t € [0,T)).

Now, v(T, St) = g(Sr) P-a.s., so that:

(T, s) =g(s), seR.
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Then, by the FBM version of Ito’s formula (see [25]),

g:+ﬂ5t@+0252 athH 1

dU(t,St) ) 02

On the other hand, by (7.20), V; satisfies

AV, = rV,dt + om(V, — F,) {udt + dBH(t)} ,
g

A comparison between the above two equations gives

% (ta St)St

Vi— L
and
ov ov 5 5, 0% oH-1 Ov
Fy —(t,s) + pso (t,s) +o°s H@(t, s)t =rv(t,s) + (pu — r)sax(t,s).
That is

g;j(t s)+7"sg—x(t s) + o?s Hg (t,s)t* =1 —ru(t,s) = 0.

]

Hence given any contingent claim n = g(V7r), there exists a unique self-financed

= g(Vr)-hedging strategy:

Theorem 7.12. For any map g : R — R sufficiently smooth, there exists a unique

= g(Vr)-hedging self-financed trading strategy (U, 3) defined as

ou

U = U(ta ‘/t)v By = %

(t,V4), te€][0,T],
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where u € C2([0,T] x R) is the unique solution of the PDE:

Ou Ou 2H-1 2 0% _ _
5 (t,v) + roo— (t,v) + Ht (mo)*(v— f) 97 (t,v) —ru(t,v) =0  (7.32)

with the final condition u(T,v) = g(v).

Proof. Consider {V, }icpo,r) as an asset, and pick a self-financed g(Vr) hedging strategy

(Ut, Bt)iepo,m by setting:
dUy = B,dV; + (U — B, Vy)rdt
and
Ur=g9(Vr) a.s.

Since
]

dV, = rVidt + om(V; — F) { ; Ldt+ dBH(t)} ;

the hedging portfolio’s equation may be rewritten as:

= [rU+ Bi(Vi — Fy)m(p — r)]dt + omB,(V; — Fy)dBy(t).

Pick u € C12([0,T] x R) and set U; = u(t,V;), t € [0,T].

For any t € [0, 7], the FBM Ito’s formula implies that:

0 0
du(t, Vi) = | S (6V0) + (Vi 4 mn = ) (Vi = B)) 5= (8, VA)
HE2E Y (o) 2(V, — F, 20% Vi) | dt
+ (mg)(t_ t) axQ(v t)
ou
+ma(V, = F) (1, V)dBr (t).
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A comparison between the above two equations implies in particular

ou
ﬁt = %(t ‘/t)
and
0 0 0?
S (0) + (ro - mlu =) (0 = P)Z= (40) + HET (mo) (0 = £ 55 (8,0)
0
= ru(t,v) + m(v— f)(p — r)a—Z(t, v).
Thus
%(t, v) + rv%(t,v) + H*H Y mo)? (v — f)Q%(t,v) —ru(t,v) =0

with the final condition u(7,v) = g(v).
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Chapter 8

CPPI in Fractional Brownian
Markets with Jumps

8.1 Fractional Brownian Markets with Jumps

As before consider:
d(s,t) = H2H — 1)|s —t|*" 2, s tecR. (8.1)

Let By(t) be a fractional Brownian motion with Hurst parameter H in the interval
(1/2,1), living under the probability space (£2,§, pts). Moreover, sﬁH) denotes the
filtration generated by By (t).

[22] introduces the fractional Ito Integrals in terms of the Wick product. That is,

f(t,w)dBy(t) = hm Z f(te,w) o (Bu(tes1) — Br(ty)). (8.2)

Let the price S; of a risky asset (usually stocks or their benchmark) be a right con-
tinuous with left limits stochastic process on this probability space which jumps at

the random times Ty, T5,... and suppo14 5that the relative/proportional change in



its value at a jump time is given by Yj, Y5,... respectively. We usually assume the
In(1 +Y,,)s are i.i.d. and in our paper, we denote the density function of In(1 + Y},)s
by fo. We assume that, between any two consecutive jump times, the price S; follows
the fractional Black-Scholes model. The T;,’s are the jump times of a Poisson process
N; with intensity \; and the Y,,’s are a sequence of random variables with values in
(—1, +00). The description of the model can be formalized by letting, on the intervals

te [T, Thi),
dSy = S(pudt + odBy(t)). (8.3)
Where, at ¢t = T,,, the jump size is given by AS,, = Sp, — ST; = Sp,-Y,, so that
St, = Sp-(1+Y,)

n

and by assumption, Y, > —1, leads to positive values of the prices.

At the generic time ¢, S; satisfies
dS(t) = S(t)(udt + odBg(t)) + S(t—)Y;dN; (8.4)

where Y; is obtained from Y,, by a piecewise constant and left continuous time inter-

polation, i.e.
Y, =Y, if Tn<t§Tn+la

here we let T, = 0.

We have

N¢

1
Sy = Spexp (UBH(t) + ut — 502752[{) [H(l +Y5)

n=1
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N
1
= Spexp |oBy(t) + ut — 502752[{ + Z In(1+Y,) (8.6)
n=1
1 t
0

The following definition is redefined by [35] and we adopt them.

Definition 8.1. The fractional Black-Scholes market with jumps has two pos-
sible types of investment:

(1)A bank account or a bond, where the price A(t) satisfies:
dA(t) =rA(t)dt, A(0)=1; 0<t<T. (8.8)

(2) A stock, where the price S(t) satisfies (8.4).

Definition 8.2. A portfolio or trading strategy 6(t) = 6(t,w) = (u(t),v(t)) is an
SgH)—adapted two-dimensional process giving the number of units wu(t), v(t) held at

time t of the bond and the stock, respectively.

We assume that the corresponding value process Z(t) = Z(t,w) is given by
Z0(t,w) = u(t)A(t) + v(t) o S(t). (8.9)

Definition 8.3. The portfolio is called self-financing if

dZ%(t,w) = u(t)dA(t) + v(t) o dS(t)
= u(t)dA(t) + p(t) o S(t)dt + ov(t) o S(t)dBy(t) (8.10)

+o(t) o S(t—)Y;dNy;  t e [0,T).

Consider a predictable &EH)—process 1, such that fot Widsds < 00. Choose 6 and
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1y such that

4ol + Y =7 (8.11)
and
P > 0.
We see that
0=0ct(r—pu—Yah) (8.12)

where the choice of ¢, is arbitrary. Define

pe=ew{ [10-vortas+ [moav— [ Keuapas) - i} 13

for t € [0, T] where K(s) = K(T,s) is defined by the following properties: supp K C
[0, 7] and
T
/ K(T,s)p(t,s)ds =—0, for0<t<T. (8.14)
0

and the Radon-Nikodym derivative is

djig(w) = Lydpig(w). (8.15)

Define

By (t) := —0t + By (t). (8.16)
Then we have

Theorem 8.4. (Girsanov Formula )
(a.)By(t) defined by (8.16) is a fractional Brownian motion that has the hurst pa-

rameter H € (1/2,1) with respect to the measure [is.
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(b.) Ny is a Poisson process with intensity Ay with respect to the measure fiy.

Proof. (a.)For any f € S(R), suppf C [0,7] we have

Ep, exp (/ f(t)d(—0t + By ( )))
e / ~sipai+ [ seiza0)

X exp ( / [0 = )AJds + / "I, - / " K($)dBus) %\K\Z) ]
— B, oxp ( /0 [0 = A Jds + /0 In wstS) exp ( /O ' —f<t>9dt>

i, ([ S0+ Bulo)) exp (518

For E,, exp (fOT[(l — s)As|ds + fOT In ¢SdNS>, and we have

T T
E,, exp (/0 [(1 —1)g)Aslds +/0 lnipsts)
T T
= E,, exp </0 lnz/JSst> E,, exp (/o [(1— z/JS)As]ds>

Nr

- E, LIIWEqu exp ( /0 T[(1 - ws)xs]ds>
= gEumZP(NT = k)E,, exp (/OT[(1 — @bs)As]ds)

- ([ ) £ B ([0 omie
— exp ( /0 ' —)\Sds) E,,, exp < /0 ws)\sds) E,, exp ( /0 T[(1 - ¢5)A5]d5)

= 1.

= ]EM¢

On the other hand, since suppf C [0,7] and suppK C [0,7], we have

/—f(t)edt:/ f@) | K(t,s)p(t,s)dsdt = (K, f)2.
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Moreover, we have

Mexp(/f (t)dBy(t /K )dBy (s ):exp<%|f—K|¢).

Thus, we have

By, [ FO(-01+ Bu(e) ) = exp (517~ KIE = SIKTE + (K., )
— exp (G712 + KB — 208, 1)0) — JIKE + (K. 1)

= e (31612) =B e ([ s0Bute)).

Thus, we have proved that By (t) defined by (8.16) is a fractional Brownian motion
with Hurst parameter H € (1/2,1) with respect to the measure fi,.
(b.)Using the result of E,, exp <fOT[(1 — g)As]ds + fOT In ¢5dNS> in part (a), for any

nonnegative integer k, we have
fig(Nr = k) = Eg, Ingot = By, Inp—i Ly
t t
— E,,ly,_exp < / (1= d)Ads + / In wsts)
0 0
! 1
<E,,, exp (—/ K()dBu(s) — 5|K|3;>
0
t t
= Eu¢1NT=k €xp </ [(1 - ws>>‘s]d3 +/ In wsts)

- tnson ([ ) S ) (i)

— exp ( /0 ' —)\Sds) E,, <f° _28!1/}st> exp ( /0 - ws))\s]ds)
— exp ( /0 ! —)\Szpsds) (foT _As¢sd8>k.

k!

Thus, we have proved that N, is a Poisson process with intensity A\;1; with respect
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to the measure fig. O

Assume that 6 = (u,v) is self-financing. Then by (8.9), we have

Z0(t) —v(t) o S(t)

u(t) = yie (8.17)
which, substituted into (8.10) gives
a7y = 220 = A“((tt)) S 1A + jolt) o S()dt + ou(t) o S()ABu ()
+o(t)S(t—)Y:dN,
= 1 Z°(t) — ro(t) o S(t)dt + pv(t) o S()dt + ov(t) o S()dBy(t) (8.18)

+o(t) o S(t—)Y,dN

= rZ(t) + ou(t) o S(t) [dBy(t) — 0dt] + v(t) o S(t)Yi(dN, — phdt).

Let [A/éz(R) denote the completion of the set of all 3§H)—adapted processes f(t) =

f(t,w) such that

1l =B | [ [ 1615 @0ts.0asat] + 5,

(/R fo(s)ds)2] < o0.

Definition 8.5. A portfolio is called admissible if it is self-financing and v o S €

Definition 8.6. An admissible portfolio 6 is called an arbitrage for the market in

te0,7]if

7°(0)<0,Z2%T) >0 as. and

pig (w: Z%(T,w) > 0) > 0.
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From (8.18), we see that
a, €7 2°(T)] = Z°(0), (8.19)

thus, no arbitrage exists.

Definition 8.7. The market (A(t),S(t));t € [0,7] is called complete if for every
S(TH)—measurable bounded random variable F'(w) there exists z € R and portfolio
0 = (u,v) such that

F(w) = Z%*(T,w). (8.20)
Proposition 8.8. The fractional Black-Scholes market with jumps is not complete.

Proof. fi5 is not unique since we could choose different 1, in (8.13). Thus, it is
without loss of generality to assume fis1 and fis2 as two distinguished measures on
probability space (€, F).

If the fractional Black-Scholes market with jumps is complete, then for every S'E,,H)—
measurable bounded random variable F(w) there exist z € R and portfolio § = (u, v)
such that

F(w) = Z%*(T,w).

By (8.18), we see

E,, e TF(w) =K, e " F(w). (8.21)

g1 g2

This contradicts our assumption that the fis; and fi42 are distinct measures on the
probability space (€2, §). Therefore, The fractional Black-Scholes market with jumps

is not complete. O
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8.1.1 Esscher transform

From our previous section we know that the Radon-Nikodym measure transform
(8.15) is not unique. The Esscher Transform technique in [30] provides us a unique
risk-neutral transform. Here we apply the Esscher transform on our fractional Brow-
nian Markets with jumps model.

Denote

Nt
1 2,2H
X(t) = 0By(t) + pt — ot + ;ln(l +Y,)

and with density f(x,t). Then the stock price can be expressed as S; = Sy exp[X (1)].

By the Esscher transform, the density function of X, is: (refer [30])

fla th) = 7 St i@ (8.22)

> etvf(y.tydy  M(h,t)’

where M (h,t) := [~ e f(y,t)dy is the generating function. Denote by M(z,t;h)

(&
—00

the moment generating function of X (¢). From reference [30] we have

M(z,t:h) = % (8.23)
and
M(z,t;h) = [M(z,1; h)]". (8.24)

As in [30], we define the risk-neutral Esscher transform as follows:

Definition 8.9. The risk-neutral Esscher transform is the Esscher transform
with the parameter h = h* and denote by pj the correspondent probability measure,
such that

S(0) = B[S (1) (8.25)

[30] deduces that

¢" = M(1,1; ). (8.26)
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On the other hand, we have

M(z,t) = E,, [er(t)}

= E

[ez(UBH (t)+pt— %UQtQH—i-Zgil ln(1+Y,L)):|
He

= ¢HME,, [e(zfgln(lm))}

Ny
= E,, [J1+7Y0)

n=1
[e%e) _ftAst<ft)\d )k
e Jo sasS
= e~ E k!O E,,

k=1

8.2 CPPI in fractional Black-Scholes market with
jumps

Recall that V; represents the portfolio value, F; = rFdt, Fr = G is the floor, C; =

Vi — F} is the cushion, m is the multiplier and e, = mC} is the exposure.

Proposition 8.10. The portfolio value of CPPI under the fractional Black-Scholes

model with jumps in continuous time trading s

1
Vi =(Vo — Fy) exp {(mu —r(m—1))t — §m202t2H + moBy(t)

N (8.27)
X [H(l +mY,)| + F,.
n=1
Proof. With 0(t) = (u(t),v(t) as the trading strategy, we have:
‘/; = utAt + Vg © Su (828)
d% = 'Ll/tdAt + v © dSt, (829)
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and

UVt © St = m(% — F;g) (830)

By (8.18), we have

AV, =rVidt — ro(t) o S(t)dt + po(t) o S(t)dt

(8.31)
+ ov(t) o S(t)dBy(t) + v(t) © S(t—)Y:dN;.
Substitute (8.30) into (8.31), we obtain,
dVy =rVidt — rm(V; — Fy)dt + pm(V; — Fy)dt
(8.32)
+om(V; — Fy)dBy(t) + m(Vie — F;)YidNy.
Since C; = V; — F; and dF; = rF,dt, we have
d(V; — Fy) = —r(m — 1)(V; = Fy)dt + pm(V; — Fy)dt (8.33)
8.33
+ om(V, — F,)dBg(t) + m(V,_ — F)Y;dN;.
Thus,
dC; = —r(m — 1)Cydt + pmCidt + omCyd By (t) + mCy_Y,dNy, (8.34)
then
1
Cy =Cy exp {(m,u —r(m—1))t— §m202t2H + moBpg(t)
Nt (835)
X [H(l +mY,)| .
n=1
Therefore, we have (8.27). O
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Proposition 8.11. The expected CPPI portfolio value at time t under the fractional

Black-Scholes model with jumps is

0 o= JoAsds( [t ds)k k
e sds
E,,,[Vi] = Coexp{(r +m(u — )t} Y AT g, [T+ my) | +
k=1 ' n=1

Proof. Since

n=1 k=1 Ln=1

00 [ N T

= > pg [JJA+mY,) < 2Ny = k| pg[N, = K]
k=1 Ln=1 |
0o [k ]

= > wo |JJ(A+mYo) <alNy = k| ps[N, = K]
k=1 Ln=1
g [HZ:1(1 +mY,) <z, Ny =

= 1 pio[ Ny = k]
; ’ pio[ Ny = k] o

k=1 n=1
[e') _ft Sds(ftAd)k
e Jo sds
= > W o |IJ+mY) <a),
k=1 ’ n=1
we get,
Ny 00— [tsdsy [t k k
e~ Jo A5 ( [ 5 Nods)
E,, |[Ja+mY)| => k|0 E,, [[](1+mYa)|.
n=1 k=1 n=1
From (3.50) in [35], we obtain
1
E., Vil = GE,, {exp {(m,u —r(m—1))t— §m202t2H + maBH(t)}}
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N

[ +mys)

n=1

xE,, + F;

0 o= Jo Asds( [t oL
= Coexp{(r+m(u—r)t}> é{ow)

k=1

k

[J+my,)

n=1

xE,, + F.

]

Proposition 8.12. The variance of the CPPI portfolio value at time t under the

fractional Balck-Scholes model with jumps s

Cgexp {2((r + m(p — r)))t + m*c*t*"'}

k 2 — [Exsds( [t k
e~ JoAsds( [ N\ ds)
[T +my,) k!O

n=1

o0

X ZE%
k=1

—Cg

o= JoMds( [T\ ds)k
expl(r-+ m(u— ) 3 A

1

Proof. Similar to the proof of the above proposition, we have

2

Nt — i Xeds( [ k k
e~ JoAsds( 7 N\ ds)
E., | [[JA+mY)| | = k'o E,, | [J](L+mYs)
n=1 ’ n=1
Thus,
Var,,, [V{] = Var,,[C}]
Ny
1
= CjVar,, |exp {(r +m(p—r7))t— §m20'2t2H n maBH(t)} [H(l +mY,)
n=1
1 al i
= CZE,, |exp {(7’ Fmp— 1))t — §m202t2H + mJBH(t)} [H(l +mY,)
n=1
1 ak i
—C2 (]E% exp {(7" +m(p— )t — §m202t2H + mUBH(t)} [H(l +mY,) >
n=1
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Ne
= C{E,, |exp {(r +m(p— 1))t — %m202t2H + mJBH(t)} (14+mY,)
n=1
2
e~ Jo Mds( [T\ ds)k i
G [exo (= 3 U Aol [T
=1 n=
N 2
= C3E,, [exp {2(r + m(u — r))t = m*c*t*" + 2moBy (1)} E,, H(l +mY,)
n=1
2
> e ho Asds ( 25)\8d3)’“ b
—C§ |exp{(r +m(p —r))t} ; k:{o E,., 11(1 +mY,)
= Ciexp{2(r+m(p—r)t+m?o’t*"}
0 k 2 — [Easds( [t k
e~ JoAsds( [ \ids)
XZ]EWb H(1+mYn) k'O
k=1 n=1
00 ffgxsds( t)\ d )k k 2
e sds
—C§ |exp{(r +m(p —r))t} kz: k{o E,., 1_[1(1 +mY,)
=1 n=
[

The following lemma gives the density function of 1 + mY;.

Lemma 8.13. Let the density function of In(1 +Y,) be fo(y). Then the density

funtion f§ of the random variable 1+ mY; is

, 1 1
o(2) = fa (ln(l—i—zm )) —_—

Proof. Since

ln(1+ Z;Ll )

o+ < 2) =g (140 < (14 222)) = [0 oy

m 00

the density f; of the random variable 1 + mY; is

o = BTS2y

dz m m+z—1
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Now we can calculate

k k
E., H(1+mYn) = E,, exp{Zln(1+mYn)}
n=1 n=1
= /exp foxfo*...x fox) pdo
R A ~~ >y
Convolved k times
and
k k
E,., H(1+mYn)2 = E,, exp{Zan(l—i—mYn)}
n=1 n=1

= /exp 2 fo* fo* ... folx) ¢ du.
R \ /

Convolved k times
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