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ABSTRACT

The concept of Constant Proportion Portfolio Insurance (CPPI) in terms of jump-

diffusion, as well as the associated mean-variance hedging problem, has been studied.

Three types of risk related to: the probability of loss, the expected loss, and the

loss distribution are being analyzed. Both the discrete trading time case and the

continuous trading time case have been studied. Next, CPPI with stochastic dynamic

floors are being discussed. The concept of exponential proportion portfolio insurance

is being introduced. Finally CPPI associated with the fractional Brownian market is

being studied.
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Chapter 1

Introduction

Constant Proportion Portfolio Insurance (CPPI) was introduced by [61] for equity in-

struments, and has been further analyzed by many scholars(such as [10]). An investor

invests in a portfolio and wants to protect the portfolio value from falling below a

pre-assigned value. The investor shifts his asset allocation over the investment pe-

riod among a risk-free asset plus a collection of risky assets. The CPPI strategy is

based on the dynamic portfolio allocation of two basic assets: a riskless asset (usually

a treasury bill) and a risky asset (a stock index for example). This strategy relies

crucially on the concept of a cushion C, which is defined as the difference between

the portfolio value V and the floor F . This later one corresponds to a guaranteed

amount at any time t of the management period [0, T ]. The key assumption is that

the amount e invested on the risky asset, called the exposure, is equal to the cushion

multiplied by a fixed coefficient m, called the multiple. The floor and the multiple

can be chosen according to the investor’s risk tolerance.
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In chapter 2

In this chapter, we introduce the background and concept of the CPPI and EPPI

modeling by a diffusion process. In section 2.1, we consider the simplest CPPI and

its background. In this case the risky asset model is the classical Black-Scholes model.

Both continuous and discrete are considered. We introduce the concept of EPPI (Ex-

ponential Proportion Portfolio Insurance). In section 2.3, we consider the case when

the stock model satisfies a GARCH model. We also consider both the discrete and

continuous trading cases. In section 2.4, we consider the EPPI in GARCH.

In chapter 3

In this chapter, we discuss the CPPI-jump-diffusion model when the trading time is

continuous. The jump-diffusion model was introduced and widely studied by [58] and

[65].

Let Yn > −1 be the percentage of the size of n-th jump, and St be the process who

represent the stock price at time t. Thus, STn = ST−
n

(1 + Yn). Between two jumps,

we assume the risky asset model satisfies Black-Scholes. The number of jumps upper

to time t is a Poisson processes Nt with intensity λt. Then our model becomes

St = S0 exp

[∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs +
Nt∑

n=1

ln(1 + Yn)

]
.

We usually assume ln(1 + Yn) is i.i.d. and has density function fQ.

Our outline of this section is following.

In section 3.1, we set up the jump-diffusion model, calculate the density function

and discuss the martingale measure. In section 3.2, we describe the CPPI strategy

and then calculate the CPPI portfolio value, its expectation and variance. In section

3.3, we consider the CPPI portfolio as a hedging tool. [16] considers the situation in

2



Black-scholes model. Our discussion is a generalization of it. Both the PDE/PIDE

approach and the martingale approach are studied there. However, because of the

introduction of the jump term in the model, the calculation is much more complex.

In section 3.2 and subsection 3.3, both short-sell and negative exposure are allowed.

In section 3.4, we consider the mean-variance hedging for a given contingent claim H.

In our jump-diffusion model, the market is not complete and then H is not attainable.

Thus, we consider the mean-variance hedging which is a kind of quadratic hedging.

[67] is a review paper about quadratic hedging, we adopt the symbol and definition

from it. We consider H as the function of portfolio value VT and measure the risk in

probability Q. Our optimal problem is following

min
(Z0, ϑ)∈R×Θ

EQ
(

H̃ − Z0 −
∫ T

0

ϑudṼu

)2

.

We adopt the method in Chapter 10 in [18] and give the explicit form optimal solution

of Z0 and ϑt. In section 3.2, section 3.3 and section 3.4, both short-sell and negative

exposure are allowed.

The main contribution of this chapter is in section 3.3 and section 3.4.

In chapter 4

In this chapter, we continue to discuss the CPPI in the jump-diffusion model.

In section 4.2, we discuss the Gap risk which is defined as the amount which repre-

sents how much that the portfolio value is below the floor at the terminal time. In

this case, we do not allow short-sell and negative exposure. It is deduced that the

gap happens only when the jump is negatively large enough such that 1 + mYi ≤ 0.

The probability of loss, expected loss and loss distribution are introduced to measure

3



the gap. [17] has discuss the case in a more general model as

dSt

St−
= dZt,

where Zt is a Levy process. Our jump-diffusion model could be treated as a special

case. Thus, the conclusion in this section is a special case of [17]. However, we

deduce more explicit expression as compare with [17], which is more appreciated in

simulation. We will show that the conclusion of the probability of loss is consistant

the conclusion in [17]; our conclusion for the expected loss is more explicit and the

method is similar as [17]; our conclusion for the loss distribution is explicit and our

method is different from [17]. In section 4.3, we consider the conditional multiple

from the view of Probability of loss. Its idea is similar as the Value-at-Risk([27]).

Four kinds of conditional floor are also discussed from the view of expected loss and

loss distribution.

In chapter 5

In this chapter, we will study the jump-diffusion model when the trading time is

discrete.

The risky asset model is similar as that in chapter 3 and 4.

In section 5.2, we calculate the CPPI portfolio value and its expectation and variance.

Gap risks exist because the risky model has jumps and also the trading time is discrete.

In section 5.3, we measure the gap risk with respect to three aspects: probability of

loss, expected loss and loss distribution. We give out their explicit forms.

In section 5.4, we define the conditional multiples associated with the probability of

loss, conditional floors associated with expected loss and loss distribution.

In section 5.5, we prove that as the interval length of the trading times tends to zero,

the CPPI strategies in discrete trading time will convergent to the CPPI strategies

4



in continuous time.

In chapter 6

In this chapter, we investigate several types of stochastic floors and dynamic floors.

In [59], they have considered the cases of diffusion models without jumps. Here we

generalize it to the jump-diffusion case.

In section 6.2, we consider the case when the stochastic floor is equal to the maximum

of its past value and a given percentage of the portfolio value. The idea is that when

the portfolio value is large enough, the level of the floor rises. Both the continuous

trading and discrete trading time cases will be analyzed. We will calculate the distri-

bution of the time when the floor is increased.

In section 6.3, we consider the case when stochastic floor is indexed with respect to

the given portfolio performance. The idea is similar as section 6.2. Both the con-

tinuous trading and discrete trading time cases will also be analyzed. We will also

calculate the distribution of the first-time-change of the floor.

In section 6.4, we will deal with the Ratchet and Margin CPPI strategies with time

change related to the exposition variance. We will show in discrete trading time case,

the Ratchet CPPI is equivalent to the stochastic floor index on the given portfolio

performance. The idea of CPPI with margin is that when the floor is close to the

portfolio value, the exposure will be very small and we will reduce the floor. We will

discuss the distribution of the first-change-time of the floor in the continuous trading

time case.

In chapter 7

In this chapter, we consider the CPPI in a fractional Brownian Market.

Fractional Black-Scholes market was introduced by [35] where they utilize the wick

product and thus redefined many market concepts such as portfolio, value process,
5



self-financing, admissible, arbitrage and complete. In Section 7.1, we adopt the

fractional Brownian markets and new markets concepts as in [35]. Under this new

market, we calculate the CPPI portfolio value, its expectation and variance in Section

7.2. In Section 7.3, we calculate the CPPI option. Moreover, we consider the associate

hedging problem by PDE approach in Section 7.4.

In Chapter 8

In this chapter, we consider the CPPI in a fractional Brownian Markets with jumps.

This chapter could be treated as an extenstion of Chapter 7. In Section 8.1, we setup

the fractional Brownian markets with jumps and redifined many market concepts as

in Chapter 7. We also deduce the Girsanov Formula in fractional Black-Scholes model

with jumps. In Section 8.2, we calculate the CPPI portfolio value, its expectation

and variance.

6



Chapter 2

CPPI and EPPI in Diffusion model

2.1 CPPI in the Black-Scholes model

2.1.1 The continuous trading time case

The CPPI (Constant Proportion Portfolio Insurance) strategy is based on a dynamic

portfolio allocation on two basic assets: a riskless asset (usually a treasury bill) and

a risky asset (a stock index for example).

This strategy depends crucially on the cushion C, which is defined as the difference

between the portfolio value V and the floor F . This later one corresponds to a guar-

anteed amount at any time t of the management period [0, T ]. The key assumption

is that the amount e invested on the risky asset, called the exposure, is equal to the

cushion multiplied by a fixed coefficient m, called the multiple. The floor and the

multiple can be chosen according to the investors risk tolerance. The risk-aversion

investor will choose a small multiple or/and a high floor and vice versa. The higher

the multiple, the more the investor will benefit from increases in stock prices. Never-

theless, the higher the multiple, the higher the risk that the portfolio value becomes

7



smaller than the floor if the risky asset price drops suddenly. As the cushion value is

approximately equal to zero, exposure is near zero too. In the continuous-time case,

if the asset dynamics has no jump, then the portfolio value does not fall below the

floor. We define:

interest rate: r;

time: t;

time period: [0, T ];

floor: F ;

floor at time t: Ft;

portfolio value: V ;

portfolio value at time t: Vt;

cushion C;

cushion at time t: Ct;

multiple m;

exposure e;

exposure at time t: et;

riskless asset at time t: Bt.

where

C = V − F e = mC.

Let (Ω, F, Ft, P) be a probability space satisfying the “usual assumption”. In the

simple CPPI continuous time case we assume that the risky asset satisfies the Black-

Scholes model, i.e.

dSt = St(µdt + σdWt), S0 = s, (2.1)

where Vt = mCt + (Vt − mCt).

Let the interest rate be r and floor at time t be Ft = F0e
rt = FT e−r(T−t). We denote

FT = G.
8



Here are a list of their relation:

Ct = Vt − Ft;

et = mCt;

Bt = Vt − et.

Proposition 2.1. The portfolio value of CPPI under the Black-Scholes model in

continuous time trading is

Vt =
(
V0 − Ge−rT

)
exp

{
(r + m(µ − r))t − m2σ2t

2
+ mσWt

}
+ G × exp{−r(T − t)}

(2.2)

where G = FT .

Proof. We have

Vt = mCt + (Vt − mCt)

= Vt

(
mCt

Vt

+

(
1 − mCt

Vt

))
,

and by the assumption of self-financing, we have

dVt = Vt

(
mCt

Vt

dSt

St

+

(
1 − mCt

Vt

)
dBt

Bt

)
,

thus

dCt = d(Vt − Ft)

= Vt

(
mCt

Vt

dSt

St

+

(
1 − mCt

Vt

)
dBt

Bt

)
− Ft

dBt

Bt

= Ct

(
mdSt

St

− (m − 1)rdt

)
= Ct(m(µdt + σdWt) − (m − 1)rdt)

9



= Ct((r + m(µ − r))dt + mσdWt).

Then

Ct = C0 exp

{
(r + m(µ − r))t − m2σ2t

2
+ mσWt

}
,

therefore, we have

Vt = Ct + Ft

= C0 exp

{
(r + m(µ − r))t − m2σ2t

2
+ mσWt

}
+ G × exp {−r(T − t)}

=
(
V0 − Ge−r(T−t)

)
exp

{
(r + m(µ − r))t − m2σ2t

2
+ mσWt

}
+ G × exp{−rT}.

The expectation and variance of the CPPI portfolio value are obviously two im-

portant values to describe the strategies.

We know that exp
(
mσWt − 1

2
m2σ2t

)
is an exponential martingale. Thus, we get the

expectation of the CPPI portfolio value in the following proposition.

Proposition 2.2. The expectation of CPPI portfolio value under the Black-Scholes

model in continuous time trading is

Ge−rT +
(
V0 − Ge−rT

)
exp{(r + m(µ − r))t}

Proof.

E[Vt] = Ge−r(T−t) + C0 exp{(r + m(µ − r))t}E
[
exp

(
mσWt −

1

2
m2σ2t

)]
= Ge−r(T−t) +

(
V0 − Ge−rT

)
exp{(r + m(µ − r))t}.

10



In order to calculate the variance, we will use the following lemma.

Lemma 2.3. Let ht = exp
(
mσWt − 1

2
m2σ2t

)
, then E[ht] = 1 and Var(ht) = exp(b2t)−

1.

Proof. By Ito formula, dht = bhtdWt, then

ht − h0 =

∫ t

0

bhsdWs,

then ht is a martingale and then E[ht] = E[h0] = 1. We have

Var(ht) = E(ht − E(ht))
2 = E(ht − h0)

2

= E
(∫ t

0

bhsdWs

)2

= E
(∫ t

0

b2hsds

)
= b2

(∫ t

0

E
(
h2

s

)
ds

)
= b2

(∫ t

0

E
(
exp

(
2mσWt − m2σ2t

))
ds

)
= b2

(∫ t

0

exp
(
b2s

)
E

(
exp

(
2mσWt −

(2b)2

2
m2σ2t

))
ds

)
= b2

(∫ t

0

exp
(
b2s

)
ds

)
= exp

(
b2t

)
− 1.

Using the above lemma, we could calculate the variance of the CPPI portfolio

value in the following proposition. (Referent [16].)

Proposition 2.4. The variance of the CPPI portfolio value under the Black-Scholes

model in continuous time trading is

(
V0 − Ge−rT )2 exp(2(r + m(µ − r)t

) (
exp

(
m2σ2t

)
− 1

)
.

Proof.

Var[Vt] = Var[Ct] 11



= C2
0 exp(2(r + m(µ − r)t)Var

[
exp

(
mσWt −

1

2
m2σ2t

)]
= C2

0 exp(2(r + m(µ − r)t)Var[ht]

=
(
V0 − Ge−rT

)2
exp(2(r + m(µ − r)t)

(
exp

(
m2σ2t

)
− 1

)
.

It is interesting at this point to wonder how the leverage regime modifies the

return/risk profile of the product. As our intuition suggests, an increase in the gear-

ing constant (multiple) which determines the leverage regime amplifies heavily the

volatility.

Proposition 2.5. The expected portfolio value and the variance of the CPPI portfo-

lio’s value, increase with the multiple m. In particular it is true that for any t ∈ [0, T ],

lim
m→∞

E[Vt] = +∞;

lim
m→∞

Var[Vt] = +∞;

and

lim
m→∞

E[Vt]

Var[Vt]
= 0,

with an order of o
(
exp((r + m(µ − r)t) 1

exp(m2σ2t)−1

)
.

Proof. The first two equations is obviously.

and for the third one

lim
m→∞

E[Vt]

Var[Vt]
∼ exp{(r + m(µ − r))t

exp(2(r + m(µ − r)t)(exp (m2σ2t) − 1)

∼ 1

exp((r + m(µ − r)t) (exp (m2σ2t) − 1)

∼ 0. (m → ∞)

12



The following proposition shows there is no fallen risk for the continuous trading

time CPPI defined on the continuous model.

Proposition 2.6. Let the risky asset model St be P almost sure continuous and the

trading time be continuous. If the CPPI defined on this model, then the portfolio value

Vt is almost sure greater than the floor Ft.

Proof. In the proof of Proposition 2.1, we have got

dCt = Ct

(
mdSt

St

− (m − 1)rdt

)
.

Then

ln(Ct) − ln(C0) = m(ln(St) − ln(S0)) − (m − 1)rt.

We have

Ct = C0 exp

(
ln

St

S0

− (m − 1)rt

)
and it is P almost sure positive.

2.1.2 The discrete trading time case

Here we continue to assume that our risky asset satisfies the Black-Scholes model. In

addition, let τN = {t0 = 0 < t1 < t2 < ... < tn = T} denote a sequence of equidistant

refinements of the interval [0, T ], where tk+1 − tk = T
n

for k = 0, ..., n− 1. We assume

now that trading is restricted to the discrete set τn. We have

Ctk+1
= Ctk

(
m

Stk+1

Stk

− (m − 1)erT/n

)
,

13



then

CT = Ctn = C0

n−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/n

)
,

thus

VT = CT + G.

Since
Stk+1

Stk
, k = 0.1.2...n−1 are mutually independent and also they have the identity

distribution. Then we have

E
[
Stk+1

Stk

]
= E

[
exp

(
µ

T

n
+ σWT/n − 1

2
σ2T

n

)]
= exp

(
µ

T

n

)
;

and

E
[
Stk+1

Stk

]2

= E
[
exp

(
2µ

T

n
+ 2σWT/n − σ2T

n

)]
= E

[
exp

(
2µ

T

n
+ σ2T

n
+ 2σWT/n − 1

2
(2σ)2T

n

)]
= exp

(
2µ

T

n
+ σ2T

n

)
.

In the discrete case, it is possible that Vti ≤ Fti for some ti. We generally allow

the possibility of short-sell and negative cushion. However, this also means that the

CPPI-insured portfolio would incur a loss.

Proposition 2.7. The expected terminal CPPI portfolio value under Black-Scholes

model in the discrete trading is

(
V0 − Ge−rT

) (
m exp

(
µ

T

n

)
− (m − 1)erT/n

)n

+ G. (2.3)

Proof.

E[VT ] = E[CT ] + G = E

[
C0

n−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/n

)]
+ G

14



= C0

n−1∏
k=0

(
mE

[
Stk+1

Stk

]
− (m − 1)erT/n

)
+ G

= C0

n−1∏
k=0

(
m exp

(
µ

T

n

)
− (m − 1)erT/n

)
+ G

=
(
V0 − Ge−rT

) (
m exp

(
µ

T

n

)
− (m − 1)erT/n

)n

+ G.

In order to calculate the variance of the terminal CPPI portfolio value, we need

the following lemma.

Lemma 2.8. Let Ai, i=1,2,...n be independent random variables, then we have

Var

[
n∏

k=1

Ai

]
=

n∏
k=1

(
EA2

i

)
−

n∏
k=1

(EAi)
2 .

Proof. We have

Var

[
n∏

k=1

Ai

]
= E

(
n∏

k=1

Ai

)2

−

(
E

n∏
k=1

Ai

)2

= E

(
n∏

k=1

A2
i

)
−

(
n∏

k=1

EAi

)2

=
n∏

k=1

(
EA2

i

)
−

n∏
k=1

(EAi)
2 .

By the above lemma, we could calculate the variance of the CPPI terminal port-

folio value in the following proposition.

Proposition 2.9. The variance of the CPPI terminal portfolio value under Black-

15



Scholes model in the discrete trading is

(V0 − Ge−rT )2

((
m2 exp

(
2µ

T

n
+ σ2T

n

)
+ (m − 1)2e2rT/n

− 2m(m − 1) exp

(
µ

T

n

)
erT/n

)n

−
(

m exp

(
µ

T

n

)
− (m − 1)erT/n

)2n
)

.

Proof. Since

E
(

m
Stk+1

Stk

− (m − 1)erT/n

)2

= E

(
m2

(
Stk+1

Stk

)2

+ (m − 1)2e2rT/n − 2m(m − 1)
Stk+1

Stk

erT/n

)

= m2

(
E

Stk+1

Stk

)2

+ (m − 1)2e2rT/n − 2m(m − 1)E
Stk+1

Stk

erT/n

= m2 exp

(
2µ

T

n
+ σ2T

n

)
+ (m − 1)2e2rT/n − 2m(m − 1) exp

(
µ

T

n

)
erT/n,

we have

Var[VT ] = Var[CT ]

= Var

[
C0

n−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/n

)]

= C2
0

[
n−1∏
k=0

E
(

m
Stk+1

Stk

− (m − 1)erT/n

)2

−
n−1∏
k=0

(
E

(
m

Stk+1

Stk

− (m − 1)erT/n

))2
]

= (V0 − Ge−rT )2

((
m2 exp

(
2µ

T

n
+ σ2T

n

)
+ (m − 1)2e2rT/n

− 2m(m − 1) exp

(
µ

T

n

)
erT/n

)n

−
(

m exp

(
µ

T

n

)
− (m − 1)erT/n

)2n
)

.
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Probability of Loss

In the case of discrete-time trading, it is possible that the portfolio value falls below

the floor. i.e. Vt ≤ Ft which is equivalent to Ct ≤ 0, happens only at time ti. We call

it the Probability of Loss.

There are two possible causes for gap risks. One is the existence of jumps in the

risky asset model and the other is because of the trading time is not continuous.

In this section, we consider the case when the gap risk happens at discontinuous

trading time. In section 4.2, we will consider the presence of jumps and the trading

time is continuous. In section 5.2, we will consider the co-existence of the above two

situations.

Proposition 2.10. The probability of the CPPI portfolio value under Black-Scholes

model in the discrete trading going below the floor taking happen is given by

P[∃ ti : Vti ≤ Fti ] = 1 − Ψn

(
− 1

σ

(√
n

T
ln

(
m − 1

m

)
+

(
r − µ +

σ2

2

) √
T

n

))
(2.4)

where

Ψ(y) =

∫ y

−∞

1√
2π

e−
x2

2 dx.

Proof.

P[∃ ti : Vti ≤ Fti ] = P[∀ ti : Cti ≤ 0]

= 1 − P[∃ ti : Cti > 0] = 1 − P

[
n∩

i=1

{Cti > 0}

]
= 1 −

n∏
i=1

P[{Cti > 0}]

= 1 −
n∏

i=1

P
[{

m
Sti

Sti−1

− (m − 1)erT/n > 0

}]
= 1 −

n∏
i=1

P
[{

m exp

{(
µ − σ2

2

)
T

n
+ σWT

n

}
− (m − 1)erT/n > 0

}]

17



= 1 −
(

P
[
σWT

n
≥ ln

(
m − 1

m

)
+

(
r − µ +

σ2

2

)
T

n

])n

= 1 − Ψn

(
− 1

σ

(√
n

T
ln

(
m − 1

m

)
+

(
r − µ +

σ2

2

) √
T

n

))

where

Ψ(y) =

∫ y

−∞

1√
2π

e−
x2

2 dx.

Proposition 2.11. The probability of the CPPI portfolio value under the Black-

Scholes model in the discrete trading given by (2.4) is monotone increased function

as the multiple m.

Proof. We have

m ↑⇒ m−1
m

= 1 − 1
m

↑⇒

− 1
σ

(√
n
T

ln
(

m−1
m

)
+

(
r − µ + σ2

2

) √
T
n

)
↓⇒ (2.4) ↑ .

More description of the gap risk and their applications will be discussed in chapter

4 and chapter 5.

2.2 EPPI in Black-Scholes model

2.2.1 The discrete trading time case

It is sometimes not practical to assume that the multiple m is a constant. We consider

the case when the multiple is a function of time. Let mtk = η + ea ln(Stk
/Stk−1

) where

a > 1. i.e. at time tk, we employ the multiple mtk , where η ≥ 0 is a constant. We

18



may as well assume η = m − 1 ea ln(Stk
/Stk−1

) = (Stk/Stk−1
)a.

When Stk > Stk−1
, the stock price increases. Then

(Stk/Stk−1
) > 1, (Stk/Stk−1

)a > 1.

Thus, mtk > m. This means that we will invest more money into the stock market.

When Stk < Stk−1
, the stock price is decreases. Then

(Stk/Stk−1
) < 1, (Stk/Stk−1

)a < 1.

Thus, mtk < m. This means that we will invest less money into the stock market.

When Stk = Stk−1
, the stock price is not changed. Then

(Stk/Stk−1
) = 1, (Stk/Stk−1

)a = 1.

Thus, mtk = m. This means that we keep the strategy as before.

We call the new strategy an Exponential Proportion Portfolio Insurance (EPPI). This

is practical in real markets, the investor would like to invest more money when the

stock is increasing and less money when the stock is decreasing. Here the a > 1 is

just like a multiplier of the effect of the change of stock market. When we assume

a = 0, then mtk = m everywhere. The EPPI becomes CPPI. Thus, we can treat

EPPI as an extension of CPPI.

Proposition 2.12. The cushion of EPPI under the Black-Scholes model in the dis-

crete trading satisfies

Ctk+1
= Ctk

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)
.
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Proof. We have

Vtk+1
=

mtkCtk

Stk

Stk+1
+ (Vtk − mtkCtk)

Btk+1

Btk

= mtkCtk

Stk+1

Stk

+ (Vtk − mtkCtk)
Btk+1

Btk

= (Vtk − Ctk)
Btk+1

Btk

− (mtk − 1)Ctk

Btk+1

Btk

+ mtkCtk

Stk+1

Stk

= Ftk

Btk+1

Btk

+ Ctk

(
mtk

Stk+1

Stk

− (mtk − 1)
Btk+1

Btk

)
= Ftk+1

+ Ctk

(
mtk

Stk+1

Stk

− (mtk − 1)
Btk+1

Btk

)
.

Since

Vtk+1
= Ftk+1

+ Ctk+1
,

then we have

Ctk+1
= Ctk

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)
.

Therefore, we have

CT = Ctn = C0

n−1∏
k=0

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)

=
(
V0 − Ge−rT

) n−1∏
k=0

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)
,

and since

VT = CT + G,

thus we get

Proposition 2.13. The EPPI terminal portfolio value under the Black-Scholes model

20



in the discrete trading is

(
V0 − Ge−rT

) n−1∏
k=0

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)
+ G.

Monte Carlo simulation techniques We want to simulate both the CPPI

strategy and EPPI strategy under the Black-scholes model. In the discrete case,

ln
Sk+1

Sk

∼ N

(
µ

T

n
− 1

2
σ2T

n
, σ2T

n

)
.

The algorithm could be

Generate (Z0, ..., Zn−1) ∼ N(0, I);

for i = 0, 1 ... n − 1;

Ai ← exp µT
n
− 1

2
σ2 T

n
+

√
σ2 T

n
Zi;

Bi ← mAi − (m − 1)erT/n;

for j = 0, 1, ... n − 1

V CPPI
j ← (V0 −Ge−rT )B0 ∗B1 ∗ ... ∗Bj−1 + Ge(n−j)T/n;

m0 = η + 1; for i = 1, 2, ... n − 1

mtk = η + ea ln(Ai);

Bi ← mtkAi − (mtk − 1)erT/n;

for j = 0, 1, ... n − 1 V EPPI
j ← (V0 − Ge−rT )B0 ∗ B1 ∗

... ∗ Bj−1 + Ge(n−j)T/n;

plot(V CPPI
j , V EPPI

j );

We use matlab to implement the algorithm. (Figure 2.1)
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Figure 2.1: We design the function [Vn, Vn2]=EPPIBS (r, mu, sigma, T, n, s0, m,
a, v0, G) with arguments in Matlab to implement the simulation.
When in EPPIBS (0.01, 0.02, 0.1, 1, 20, 10, 4, 5, 5000, 4500), this is in particular, here
we assume r = 0.01, µ = 0.02, σ = 0.1, T = 1, n = 20 m = 4, a = 5, V (0) = 5000
and floor G = 4500.

2.2.2 The continuous trading time case

We still assume the stock price satisfies the Black-Scholes model. Let

0 = t0 < t1 < t2 < ... < tn−1 < tn = T

where tk+1 − tk = T
n

for k = 0, ..., n − 1. We reconsider the multiple only at time ti

which i = 0, 1, ..., n. Let

m0 = η + 1;

mtk = η + ealn(Stk
/Stk−1

) when k ≥ 1;

mt = mtk when t ∈ [tk, tk+1).
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In this case, in every interval [tk, tk+1), the strategy is standard CPPI. If we let a = 0,

then it is same as standard CPPI. Therefore, we can treat this strategy also as an

extension of standard CPPI. We deduced

Ct = Ctk exp

{(
r + mtk(µ − r) − 1

2
m2

tk

)
(t − tk) + σmtk(Wt − Wtk)

}

when t ∈ [tk, tk+1), and thus

Ctk+1
= Ctk

(
mtk

Stk+1

Stk

− (mtk − 1)erT/n

)
.

Therefore, we have

CT = C0 exp

{
rT +

m0 + ... + mtk−1
(µ − r)

n
T − σ2

2

m2
0 + ... + m2

tk−1

n
T

+σ
(
Σn−1

i=0 mti(Wti+1
− Wti)

) }
=

(
V0 − Ge−rT

)
exp

{
rT +

m0 + ... + mtk−1

n
(µ − r)T

−σ2

2

m2
0 + ... + m2

tk−1

n
T + σ

(
Σn−1

i=0 mti(Wti+1
− Wti)

) }
.

Since

VT = CT + G,

thus we get

Proposition 2.14. The terminal EPPI portfolio value under the Black-Scholes model

in the discrete trading is

(
V0 − Ge−rT

)
exp

{
rT +

m0 + ... + mtk−1

n
(µ − r)T − σ2

2

m2
0 + ... + m2

tk−1

n
T

+σ
(
Σn−1

i=0 mti(Wti+1
− Wti)

) }
+ G.
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Monte Carlo simulation techniques In this case, the algorithm could be

Generate (Z1, ..., Zn) ∼ N(0, I);

for i = 0, 1 ... n − 1;

Ai ← exp µT
n
− 1

2
σ2 T

n
+

√
σ2 T

n
Zi;

m0 = η + 1; Ct0 = Vt0 − Ge−rT ;

for i = 1, 2, ... n − 1

mtk = η + ea ln(Ai);

Ctk+1
= Ctk

(
mtkAi − (mtk − 1)erT/n

)
Vtk+1

= Ctk+1
+ Ge(n−k−1)rT/n;

plot(V);

2.3 CPPI in GARCH model

2.3.1 The Continuous trading time cases

Here instead of treating the volatility as a constant, we consider the following model.

The ARCH/GARCH model considers the volatility which depend on the past history.

In particular consider the GARCH(p,q) model:

ln
St

St−1

= µ(σt) −
σ2

t

2
+ σtεt,

where µ is a given function, ε1, ε2,...is a sequence of i.i.d. standard normal random

variables, and σt satisfies:

σ2
t = ω + Σp

i=1αi(σt−iεt−i)
2 + Σq

j=1βjσ
2
t−j
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ω, α1, ...αp, β1, ..., βq being fixed constants.

By an embedding methodology, we can recover the continuous-time GARCH(1, 1)

model. ( Refer to [44])

F (X)t =

{ σ0 for 0 ≤ t < 1(
ω + α

(
X[t]−X[t]−1

)2

+ βF (x)2
[t]−1

)1/2

for t ≥ 1
;

St = S0 exp

{∫ t

0

(µ(σs−) −
σ2

s−

2
)ds + Xt

}
;

Xt =

∫ t

0

σs−dBs;

σ := F (x).

We have

dSt = St (µ(σt−)dt + σt−dBt) .

Next we have,

Proposition 2.15. The CPPI cushion under GARCH(1, 1) model in the continuous

trading time case above satisfies

Ct = C0 exp

(∫ t

0

(
µ(σs−) −

m2σ2
s−

2

)
ds + m

∫ t

0

σs−dBs − (m − 1)rt

)
. (2.5)

Proof. Since the strategy is self-financing, thus, we have

Vt = Vt

(
mCt

Vt

+

(
1 − mCt

Vt

))

and

dVt = Vt

(
mCt

Vt

dSt

St

+

(
1 − mCt

Vt

)
dBt

Bt

)
.
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Then

dCt = d(Vt − Ft)

= Vt

(
mCt

Vt

dSt

St

+

(
1 − mCt

Vt

)
dBt

Bt

)
− Ft

dBt

Bt

= Ct

(
mdSt

St

− (m − 1)rdt

)
= Ct((µ(σt−)dt + σt−dBt) − (m − 1)rdt).

Hence, we get

Ct = C0 exp

(∫ t

0

(
µ(σs−) −

m2σ2
s−

2

)
ds + m

∫ t

0

σs−dBs − (m − 1)rt

)
.

We then got the portfolio value is

Vt = Ct + Ft = Ct + G exp{−r(T − t)}.

The following proposition is the property of GARCH(1, 1) model.

Proposition 2.16. Let n ∈ N, we have

E[σ2
n] = (α + β)n−1

(
σ2

0 +
ω

α + β − 1

)
− ω

α + β − 1
. (2.6)

Proof. By definition

F (X)t =

{ σ0 for 0 ≤ t < 1(
ω + α

(
X[t]−X[t]−1

)2

+ βF (x)2
[t]−1

)1/2

for t ≥ 1
;

St = S0 exp

{∫ t

0

(µ(σs−) −
σ2

s−

2
)ds + Xt

}
;

Xt =

∫ t

0

σs−dBs;
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σ := F (x).

then {
σt = σ0 for 0 ≤ t < 1

σ2
t = σ2

[t]ω + α
(∫ [t]

[t]−1
σs−dBs

)2

+ βσ2
[t]−1 for t ≥ 1

,

thus,

σ2
n = ω + α

(∫ n

n−1

σs−dBs

)2

+ βσ2
n−1

= ω + α (σn−1(Bn − Bn−1))
2 + βσ2

n−1

= ω + σ2
n−1(α(Bn − Bn−1)

2 + β),

then

Eσ2
n = ω + Eσ2

n−1(α + β),

and hence

E[σ2
n] +

ω

α + β − 1
= (α + β)

(
E[σ2

n−1] +
ω

α + β − 1

)
.

Thus, we get

E[σ2
n] = (α + β)n−1

(
σ2

0 +
ω

α + β − 1

)
− ω

α + β − 1
.

In order to calculate the expectation of Vt explicitly, in the following, we assume

µ(z) = µ be constant function.

Lemma 2.17. Let ht = exp
(∫ t

0

(
mσs−dBs −

∫ t

0

m2σ2
s−

2

)
ds

)
, then E[ht] = 1.
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Proof. By Ito formula

dht = mσt−htdBt,

thus

ht − h0 =

∫ t

0

mσs−hsdBs.

Hence ht is a martingale and thus E[ht] = E[h0] = 1.

Proposition 2.18. Let µ(z) = µ be constant function. Then the expectation of the

CPPI portfolio value Vt under the GARCH(1, 1) model in the continuous trading time

case is

E(Vt) = Ge−r(T−t) + (V0 − Ge−rT )emµt−(m−1)rt.

Proof.

E(Vt) = Ge−r(T−t) + C0e
m

R t
0 µ(σs−)ds−(m−1)rt)

× E
[
exp

(∫ t

0

(
mσs−dBs −

∫ t

0

m2σ2
s−

2

)
ds

)]
= Ge−r(T−t) + (V0 − Ge−rT )emµt−(m−1)rt.

2.3.2 The Discrete trading time case GARCH(1,1) model

In this case, the model is

ln
St

St−1

= µ(σt) −
σ2

t

2
+ σtεt;

σ2
t = ω + α(σt−1εt−1)

2 + βσ2
t−1,

where ω, α, β are fixed constants. We only consider the time on the integer-value,

i.e. integer times unit time.
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Proposition 2.19. The CPPI cushion under GARCH(1, 1) model in the discrete

trading time case model satisfies

Ct+1 = Ct

(
m

St+1

St

− (m − 1)er

)
. (2.7)

Proof. Since the strategy is self-financing, we have

Vt+1 = (Vt − mCt)
Bt+1

Bt

+ mCt(St+1/St)

= (Vt − Ct)
Bt+1

Bt

− (m − 1)Ct
Bt+1

Bt

+ mCt(St+1/St)

= Ft
Bt+1

Bt

+ Ct

(
m

St+1

St

− (m − 1)
Bt+1

Bt

)
= Ft+1 + Ct

(
m

St+1

St

− (m − 1)
Bt+1

Bt

)
,

and since

Vt+1 = Ft+1 + Ct+1,

then

Ct+1 = Ct

(
m

St+1

St

− (m − 1)er

)
.

We then have

Cn = C0

n−1∏
k=0

(
m

Sk+1

Sk

− (m − 1)er

)
,

and

Vn = Cn + Fn = Cn + G.

Monte Carlo simulation techniques Our algorithm could be
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Generate (ε1, ε2, ... εt) ∼ N(0, I)

for i = 1, ... t

σt ←
√

ω + α(σt−1εt−1)2 + βσ2
t−1;

Ai ← exp
(
µ(σt) − σ2

t

2
+ σtεt

)
;

C0 = Ge−rt;

for i = 0, ... t − 1

Ci+1 ← Ct((mAi − (m − 1)er));

Vi+1 = Ci+1 + Ge−(t−i);

plot(V );

We use Matlab to implement the strategy according to the above algorithm.(Figure

2.2)

2.4 EPPI in GARCH(1, 1) model

We consider the EPPI in GARCH(1, 1) model. We assume the stock price satisfy:

ln
St

St−1

= µ(σt) −
σ2

t

s
+ σtεt;

σ2
t = ω + α(σt−1εt−1)

2 + βσ2
t−1,

where ω, α, β are fixed constants and the multiple is

mt = η + exp{a ln(St/St−1)}.

Proposition 2.20. The EPPI cushion in the GARCH(1, 1) model satisfies

Ct+1 = Ct

(
mt

St+1

St

− (mt − 1)er

)
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GARCH((1,1) model CPPI

Figure 2.2: We design the function GARCHCPPI(r, mu, sigma0, alpha1,
beta1,omega, n, v0, G, m) with arguments to implement the simulation.
When in GARCHCPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002, 100, 5000, 4500,
4), this is in particular, here we set µ(σs− is constant, r = 0.0001, µ = 0.00015,
σ0 = 0.0003, α = 0.05, β = 0.05, ω = 0.0002, n = 100, m = 4, V (0) = 5000 and floor
G = 4500.

Proof. Since the strategy is self-financing, we have

Vt+1 = (Vt − mtCt)
Bt+1

Bt

+ mtCt(St+1/St)

= (Vt − Ct)
Bt+1

Bt

− (mt − 1)Ct
Bt+1

Bt

+ mtCt(St+1/St)

= Ft
Bt+1

Bt

+ Ct

(
mt

St+1

St

− (mt − 1)
Bt+1

Bt

)
= Ft+1 + Ct

(
mt

St+1

St

− (mt − 1)
Bt+1

Bt

)
,

and since

Vt+1 = Ft+1 + Ct+1,

31



then

Ct+1 = Ct

(
mt

St+1

St

− (mt − 1)er

)
.

Therefore we have

Cn = C0

n−1∏
k=0

(
mk

Sk+1

Sk

− (mk − 1)er

)
,

and

Vn = Cn + Fn = Cn + G.

Monte Carlo simulation techniques Our algorithm could be

Generate (ε1, ε2, ... εt) ∼ N(0, I)

for i = 1, ... t

σt ←
√

ω + α(σt−1εt−1)2 + βσ2
t−1;

Ai ← exp
(
µ(σt) − σ2

t

2
+ σtεt

)
;

C0 = Ge−rt;

m0 = m;

for i = 0, ... t − 1

mi+1 = m − 1 + exp (a ln(Ai));

Ci+1 ← Ct((miAi − (mi − 1)er));

Vi+1 = Ci+1 + Ge−(t−i);

plot(V );

We use Matlab to implement the strategy according the above algorithm. (Figure

2.3)
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Figure 2.3: We design the function GARCHEPPI(r, mu, sigma0, alpha1, beta1,
omega, n, v0, G, m,a) with arguments to implement the simulation.
When in GARCHEPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002, 100, 5000, 4500,
4,2), this is particular, here we set µ(σs−) is constant, r = 0.0001, µ = 0.00015,
σ0 = 0.0003, α = 0.05, β = 0.05, ω = 0.0002, n = 100, m = 4, a = 2, V (0) = 5000
and floor G = 4500.

The next figure draws the EPPI versus CPPI in GARCH. (Figure 2.4)
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GARCHEPPI versus GARCHCPPI

red dot are GARCHEPPI
blue dashed are GARCHCPPI

Figure 2.4: We design the function GARCHEPPIvsCPPI(r, mu, sigma0, alpha1,
beta1, omega, n, v0, G, m,a)to implement the simulation.
When in [y1,y2]=GARCHEPPIvsCPPI(0.0001, 0.00015, 0.0003, 0.05, 0.05,0.0002,
100, 5000, 4500, 4,2), this is particular, here we set µ(σs−) is constant, r = 0.0001,
µ = 0.00015, σ0 = 0.0003, α = 0.05, β = 0.05, ω = 0.0002, n = 100, m = 4, a = 2,
V (0) = 5000 and floor G = 4500.
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Chapter 3

CPPI in the Jump-diffusion model
when the trading time is
continuous

3.1 Jump-diffusion model

3.1.1 Set up the model:

In this section, we consider the jump-diffusion model. It has been studied by many

researchers since the Merton’s Paper [58]. The model in our paper is described in

section 3.1.1 of [65]. [53] is another survey paper about jump-diffusion model, which

gives four reasons for choosing the jump-diffusion models. [53] also gives the short-

coming of the jump-diffusion model. We also want to mention [18], [71], [33], [57],

[50] among others, for further information.

Let (Ω, F, Ft, P) be a probability space satisfying the “usual assumption”. Let the

price St of a risky asset (usually stocks or their benchmark) be a right continuous

with left limits stochastic process on this probability space which jumps at the ran-

dom times T1, T2,... and suppose that the relative/proportional change in its value at
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a jump time is given by Y1, Y2,... respectively. We assume ln(1 + Yn)s be i.i.d., and

denote the density of ln(1+Yn)s by fQ. We assume that, between any two consecutive

jump times, the price St follows the Black-Scholes model. These Tns are the jump

times of a Poisson process Nt with intensity λt and the Yns are a sequence of random

variables with values in (−1, +∞). We have

Nt =
∑
n≥1

χt≥Tn

and

P[Nt = n] =
e−

R t
0 λsds

(∫ t

0
λsds

)n

n!
.

Then on the intervals [Tn, Tn+1), the description of the model can be formalized by

letting,

dSt = St(µtdt + σtdWt),

and in exponential form:

St = STn exp

[∫ t

Tn

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs

]
.

At t = Tn, the jump size is given by ∆Sn = STn − ST−
n

= STn−Yn, i.e.

STn = ST−
n

(1 + Yn)
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which, by the assumption that Yn > −1, leads to always positive values of the prices.

At the generic time t, St can be expressed by the following equivalent representations

St = S0 exp

[∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs

][
Nt∏

n=1

(1 + Yn)

]
(3.1)

= S0 exp

[∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs +
Nt∑

n=1

ln(1 + Yn)

]
(3.2)

= S0 exp

[∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs +

∫ t

0

ln(1 + Ys)dNs

]
(3.3)

where Yt is obtained from Yn by a piecewise constant and left continuous time inter-

polation, i.e.

Yt = Yn if Tn < t ≤ Tn+1,

here we let T0 = 0. The term
∑Nt

n=1 ln(1 + Yn)] in (3.2) is a compound Poisson

process. It has independent and stationary increments. Also because of (3.2), our

jump-diffusion model is an exponential levy model. Moreover, by the generalized Ito

formula, the processes St is the solution of

dSt = St−[µtdt + σtdWt + YtdNt], (3.4)

with initial value S0 = s.

3.1.2 Two special Jump-diffusion models

Two important special jump-diffusion models will be considered and we introduce

them here.
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The Merton’s Model When we assume ln(1 + Yn) ∼ N(α, δ2). This is the

Merton’s model ([58]). The following Proposition considers the density of ln( St

S0
).

Proposition 3.1. Let φ(x,m, υ2) be a density function for a normally distributed

random variable with mean m and variance υ2, i.e. φ(x,m, υ2) = 1√
2πυ2

e−
(x−m)2

2υ2 .

Then, the density function of

ln

(
St

S0

)
=

∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs + ΣNt
n=1 ln(1 + Yn)

is:

p(x) =
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
φ

(
x;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
. (3.5)

Proof. Let L =
∫ t

0

(
µs − σ2

s

2
)ds +

∫ t

0
σsdWs

)
and M = ΣNt

n=1 ln(1 + Yn).

Then we have,

L ∼ N

(∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
.

When Nt = j, by the properties of normal distribution, we have

L + M ∼ N

(∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
.

In general,

∀x ∈ R,

P(L + M ≤ x) = P

(
∞∪

j=0

(L + M ≤ x,Nt = j)

)

=
∞∑

j=0

P(L + M ≤ x,Nt = j) =
∞∑

j=0

P(L + M ≤ x|Nt = j)P(Nt = j)
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=
∞∑

j=0

P(L + Σj
n=1 ln(1 + Yn) ≤ x|Nt = j)P(Nt = j)

=
∞∑

j=0

P((L + Σj
n=1 ln(1 + Yn) ≤ x,Nt = j)

P(Nt = j)
)P (Nt = j)

=
∞∑

j=0

P((L + Σj
n=1 ln(1 + Yn) ≤ x)P (Nt = j)

P(Nt = j)
)P (Nt = j)

=
∞∑

j=0

P(L + Σj
n=1 ln(1 + Yn) ≤ x)P(Nt = j)

=
∞∑

j=0

∫ x

−∞
φ

(
y;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
dy

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
.

When j = 0,we take Σj
n=1 ln(1+Yn) = 0. Each item in the above equations is positive,

thus the series is absolute convergence. Thus, the density function is

p(x)

=

d

(∑∞
j=0

∫ x

−∞ φ
(
y;

∫ t

0

(
µs − σ2

s

2

)
ds + jα,

∫ t

0
σ2

sds + jδ2
)

dy
e−

R t
0 λsds(

R t
0 λsds)j

j!

)
dx

=
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
φ

(
x;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
.

The Kou’s Model When we assume Q = ln(1+Yn) has an asymmetric double

exponential distribution with the density

fQ(y) = p · η1e
−η1yχy≥0 + q · η2e

−η2yχy<0

where η1 > 1, η2 > 0, p, q ≥ 0 and p + q = 1.

This is called the Kou’s model([51]). We have:
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Proposition 3.2. The density function of

ln

(
St

S0

)
=

∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs + ΣNt
n=1 ln(1 + Yn)

is:

p(x) =
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!

∫ ∞

−∞
φ

(
x − y;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y)dy,

where f
(j)
Q (y) is the density function of

∑j
n=1 ln(1 + Yn).

Proof. Let L =
∫ t

0

(
µs − σ2

s

2

)
ds +

∫ t

0
σsdWs and M = ΣNt

n=1 ln(1 + Yn). Then,

L ∼ N

(∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
.

When Nt = j, we have the distribution of the sum of two random variables is

P(L + M ≤ x) =

∫ x

−∞

∫ ∞

−∞
φ

(
y − y2;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y2)dy2dy.

We calculate the distribution of L + M in general.

∀x ∈ R

P (L + M ≤ x) = P

(
∞∪

j=0

(L + M ≤ x,Nt = j)

)

=
∞∑

j=0

P((L + M ≤ x,Nt = j)) =
∞∑

j=0

P((L + M ≤ x,Nt = j))

=
∞∑

j=0

P (L + M ≤ x|Nt = j) P (Nt = j)

=
∞∑

j=0

P
(
L + Σj

n=1 ln(1 + Yn) ≤ x|Nt = j
)

P(Nt = j)

=
∞∑

j=0

P
(
L + Σj

n=1 ln(1 + Yn) ≤ x,Nt = j
)

P(Nt = j)
P(Nt = j)
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=
∞∑

j=0

P(L + Σj
n=1 ln(1 + Yn) ≤ x)P(Nt = j)

P(Nt = j)
P(Nt = j)

=
∞∑

j=0

P((L + Σj
n=1 ln(1 + Yn) ≤ x))P(Nt = j)

=
∞∑

j=0

∫ x

−∞

∫ ∞

−∞
φ

(
y − y2;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y2)dy2dy

×
e−

R t
0 λsds(

∫ t

0
λsds)j

j!
.

Each item in the above equations is positive, thus the series is absolute convergence.

Hence, the density function is

p(x)

=

d

(∑∞
j=0

∫ x

−∞

∫ ∞
−∞ φ

(
y − y2;

∫ t

0

(
µs − σ2

s

2

)
ds,

∫ t

0
σ2

sds
)

f
(j)
Q (y2)dy2dy

e−
R t
0 λsds(

R t
0 λsds)j

j!

)
dx

=
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!

∫ ∞

−∞
φ

(
x − y;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y)dy.

f
(j)
Q (y) can be calculated by the convolution of k fQ(y)s. i.e.

f
(j)
Q (y) = fQ(y) ∗ fQ(y) ∗ ...fQ(y)︸ ︷︷ ︸

j terms

. (3.6)

Thus, the density function could be calculated explicitly. In generally, when we

assume Qn = ln(1+Yn) have i.i.d. with density fQ, then the density of
∑j

n=1 ln(1+Yn)

is f
(j)
Q . We have the following proposition:

Proposition 3.3. Let Qn = ln(1+Yn) be i.i.d. random variables with density function

fQ. The density function of

ln

(
St

S0

)
=

∫ t

0

(
µs −

σ2
s

2

)
ds +

∫ t

0

σsdWs + ΣNt
n=1 ln(1 + Yn)
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is:

p(x) =
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!

∫ ∞

−∞
φ

(
x − y;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y)dy.

3.1.3 Martingale Measure

For our jump-diffusion model defined by (3.2), consider a predictable Ft-process ψt,

such that
∫ t

0
ψtλsds < ∞. Choose θt and ψt such that

µt + σtθt + Ytψtλt = rt (3.7)

and

ψt ≥ 0.

From here we see that

θt = σ−1
t (rt − µt − Ytψtλt) (3.8)

where ψt is arbitrary. Define

Lt = exp

{∫ t

0

[
(1 − ψs)λs −

1

2
θ2

s

]
ds +

∫ t

0

θsdWs +

∫ t

0

ln ψsdNs

}
(3.9)

for t ∈ [0, T ] and the Radon-Nykodymn derivative

dQ
dP

= LT . (3.10)

Then the Q is a risk neutral measure or martingale measure, i.e. a measure under

which S̃t = exp{−
∫ t

0
rsds}St is a martingale (see [65]).
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Define

dW Q
t = dWt − θtdt; (3.11)

dMQ
t = dNt − ψtλtdt. (3.12)

Then W Q
t and MQ

t are Q-martingales. Also under the measure Q, St satisfies

dSt = St−
[
(µt + σtθt + Ytψtλt)dt + σtdW Q

t + YtdMQ
t

]
. (3.13)

Under the measure Q, Nt is a Poisson Processes with intensity λtψt.

There are many risk-neutral measures Q ∼ P. A special case of a risk-neutral

measure, reflecting the case of a risk-neutral world, it should satisfy

E(S(t)) = S0e
rt.

(See page 312 on [33], page 248-250 on [38], page 19 on [57].)

For Merton Model, since its density function has explicit expression, we will deduce

it. We have deduce the density function of Merton’s model in (3.5).

p(x) =
∞∑

j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
φ

(
x;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
.

Then

E(S(t)) = S0E
(
eln St/S0

)
= S0

∫
R

exp(x)dx

= S0

∫
R

ex

∞∑
j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
φ

(
x;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
dx

= S0

∞∑
j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!

∫
R

exφ

(
x;

∫ t

0

(
µs −

σ2
s

2

)
ds + jα,

∫ t

0

σ2
sds + jδ2

)
dx
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= S0

∞∑
j=0

e−
R t
0 λsds(

∫ t

0
λsds)j

j!
exp

{∫ t

0

µsds + jα + j
δ2

2

}
= S0 exp

∫ t

0

(
µs − λs + eα+ δ2

2 λs

)
ds.

In case of

E(S(t)) = S0e
rt,

then we have

µs − λs + eα+ δ2

2 λs = r.

Thus under our new risk-neutral measure Prn, we can use r+λs−eα+ δ2

2 λs to substitute

µs. The model then becomes

St = S0 exp

∫ t

0

(
r + λs − eα+ δ2

2 λs −
σ2

s

2

)
ds +

∫ t

0

σsdW rn
s +

N
(rn)
t∑

n=1

ln(1 + Yn)

 .

W
(rn)
s is a Brownian motion and N

(rn)
t is a Poisson process whose intensity is λs

under the probability measure Prn. For convenient, we still denote them as Ws and

Nt. Then, under the probability measure Prn, the model is

St = S0 exp

[∫ t

0

(
r + λs − eα+ δ2

2 λs −
σ2

s

2

)
ds +

∫ t

0

σsdWs +
Nt∑

n=1

ln(1 + Yn)

]
.
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3.2 The CPPI strategies

3.2.1 The constant multiple case

Recall that in the jump-diffusion model, the exposure et is equal to the cushion Ct

multiplied by m. The cushion Ct is the difference between the portfolio value Vt and

the floor Ft and Ft = G × exp{−r(T − t)}. It is possible to have the portfolio value

less than the floor, which means that the cushion will be negative and so will be the

exposure. Thus short-sell should be allowed. The following proposition describes the

portfolio value under this strategy. CPPI would fail if the value of the portfolio falls

below the floor. We will measure the failure.

In our strategy the portfolio value Vt consists of a riskless asset Vt − mCt and risky

asset mCt. i.e. Vt = mCt + (Vt − mCt)

Proposition 3.4. The CPPI portfolio value under the jump-diffusion model defined

by (3.2) is

Vt = C0 exp

{ ∫ t

0

(
r + m(µs − r) − mσ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft,

where

C0 =
(
V0 − Ge−rT

)
;

Ft = G × exp{−r(T − t)}.

Proof. We have

Vt = mCt + (Vt − mCt)

= Vt

(
mCt

Vt

+

(
1 − mCt

Vt

))
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and

dVt = Vt

(
mCt

Vt−

dSt

St−
+

(
1 − mCt

Vt−

)
dBt

Bt

)
.

Since Bs is continuous, then Bs− = Bs, we have

dCt = d(Vt − Ft)

= Vt

(
mCt−

Vt

dSt

St−
+

(
1 − mCt−

Vt

)
dBt

Bt

)
− Ft

dBt

Bt

= Ct−

(
mdSt

St−
− (m − 1)rdt

)
= Ct−(m(µtdt + σtdWt + YtdNt) − (m − 1)rdt)

= Ct−((r + m(µt − r))dt + mσtdWt + mYtdNt).

(3.14)

Then

Ct = C0 exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
.

Hence

Vt = Ct + Ft

= C0 exp

{ ∫ t

0

(
r + m(µs − r) − mσ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft.

If we substitute µs by r +λs − eα+ δ2

2 λs, under the probability measure Prn, we get

the following corollary.

Corollary 3.5. In the Merton’s model, under the probability measure Prn, the CPPI
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portfolio value Vt under our jump-diffusion model is

C0 exp

{ ∫ t

0

(
r + m(λs − eα+ δ2

2 λs) −
mσ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft,

where

C0 = (V0 − Ge−rT );

Ft = G × exp{−r(T − t)}.

The expectation and variance of the CPPI portfolio value are deduced in the

following two propositions.

Proposition 3.6. The expected CPPI portfolio value at time t under the jump-

diffusion model is

E[Vt] = C0 exp

{∫ t

0

(r + m(µs − r))ds

} ∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]
+ Ft.

Proof. Because

P

[
Nt∏

n=1

(1 + mYn) ≤ x

]
= P

[
∞∪

k=1

[
Nt∏

n=1

(1 + mYn) ≤ x,Nt = k

]]

=
∞∑

k=1

P

[
Nt∏

n=1

(1 + mYn) ≤ x|Nt = k

]
P[Nt = k]

=
∞∑

k=1

P

[
k∏

n=1

(1 + mYn) ≤ x|Nt = k

]
P[Nt = k]

=
∞∑

k=1

P

[∏k
n=1(1 + mYn) ≤ x,Nt = k

]
P[Nt = k]

P[Nt = k]

=
∞∑

k=1

P

[∏k
n=1(1 + mYn) ≤ x

]
P[Nt = k]

P[Nt = k]
P [Nt = k]

=
∞∑

k=1

P

[
k∏

n=1

(1 + mYn) ≤ x

]
P[Nt = k]
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=
∞∑

k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
P

[
k∏

n=1

(1 + mYn) ≤ x

]
,

we get

E

[
Nt∏

n=1

(1 + mYn)

]
=

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]

and then

E[Vt]

= C0E
[
exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

}]
×E

[
Nt∏

n=1

(1 + mYn)

]
+ Ft

= C0 exp

{∫ t

0

(r + m(µs − r))ds

}
E

[
Nt∏

n=1

(1 + mYn)

]
+ Ft

= C0 exp

{∫ t

0

(r + m(µs − r))ds

} ∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]
+ Ft.

Proposition 3.7. The variance of the CPPI portfolio value at time t under jump-

diffusion model is

C2
0 exp

{∫ t

0

2(r + m(µs − r) + m2σ2
s)ds

} ∞∑
k=1

E

[
k∏

n=1

(1 + mYn)

]2
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

−

[
exp

{∫ t

0

(r + m(µs − r))

}
ds

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]]2

.
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Proof. Similar to the proof of Prop. 3.6, we have

E

[
Nt∏

n=1

(1 + mYn)

]2
 =

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]2
 .

Thus,

Var[Vt] = Var[Ct]

= C2
0Var

[
exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]]

= C2
0E

[
exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]]2

−C2
0

(
E

[
exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]])2

= C2
0E

[
exp

{∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]]2

−C2
0

[
exp{

∫ t

0

(r + m(µs − r))ds

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]]2

= C2
0E

[
exp

{∫ t

0

2(r + m(µs − r) − m2σ2
s)ds + 2

∫ t

0

mσsdWs

}]
E

[
Nt∏

n=1

(1 + mYn)

]2

−C2
0

[
exp

{∫ t

0

(r + m(µs − r))ds

} ∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]]2

= C2
0 exp

{∫ t

0

2(r + m(µs − r) + m2σ2
s)ds

} ∞∑
k=1

E

[
k∏

n=1

(1 + mYn)

]2

×
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

−

[
exp

{∫ t

0

(r + m(µs − r))

}
ds

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mYn)

]]2

.

Remarks. (1) Another method to calculate the expectation of the portfolio value is
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through calculating the characteristic function of

∫ t

0

(
r + m(µs − r) − mσ2

s

2

)
ds +

∫ t

0

mσsdWs +
Nt∏

n=1

(1 + mYn)

In subsection 3.5.2, we will use this method to calculate a similar expectation.

(2) For the Merton’s and Kou’s model, E
[∏k

n=1(1 + mYn)
]

and E
[∏k

n=1(1 + mYn)
]2

can be calculated and thus expected portfolio can be calculated explicitly. In general,

if we assume Qn = ln(1 + Yn) have i.i.d. with density fQ, E
[∏k

n=1(1 + mYn)
]

and

E
[∏k

n=1(1 + mYn)
]2

still can be calculated in terms of the function fQ.

The following lemma gives the density function of 1 + mYi.

Lemma 3.8. Let the density function of ln(1+Yn) be fQ(y), then the density funtion

f ′
Q of the random variable 1 + mYi is

f ′
Q(z) = fQ

(
ln

(
1 +

z − 1

m

))
1

m + z − 1
.

Proof. Since

P(1 + mYi ≤ z) = P
(

ln(1 + Yi) ≤ ln

(
1 +

z − 1

m

))
=

∫ ln(1+ z−1
m

)

−∞
fQ(y)dy,

the density f ′
Q of the random variable 1 + mYi is

f ′
Q(z) =

d (P(1 + mYi ≤ z))

dz
= fQ

(
ln

(
1 +

z − 1

m

))
1

m + z − 1
.
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Now we can calculate

E

[
k∏

n=1

(1 + mYn)

]
= E

[
exp

{
k∑

n=1

ln(1 + mYn)

}]

=

∫
R

exp

f ′
Q ∗ f ′

Q ∗ ... ∗ f ′
Q(x)︸ ︷︷ ︸

k items

 dx

and

E

[
k∏

n=1

(1 + mYn)2

]
= E

[
exp

{
k∑

n=1

2 ln(1 + mYn)

}]

=

∫
R

exp

2 f ′
Q ∗ f ′

Q ∗ ... ∗ f ′
Q(x)︸ ︷︷ ︸

k items

 dx.

3.2.2 The case when the multiple is a function of time

Let mt be the multiple at time t. We have similar results:

Proposition 3.9. When the multiple is a function of time the CPPI portfolio value

under the jump-diffusion model is

Vt = C0 exp

{∫ t

0

(
r + ms(µs − r) − m2

sσ
2
s

2

)
ds +

∫ t

0

msσsdWs

} [
Nt∏

n=1

(1 + mnYn)

]
+ Ft,

where mn is obtained from mt by the formula

mn = mTn ,

where T0 = 0.

Proposition 3.10. When the multiple is a function of time the expected CPPI port-
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folio value under jump-diffusion model is

C0 exp

{∫ t

0

(r + ms(µs − r))ds

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mnYn)

]}
+ Ft.

Proposition 3.11. When the multiple is a function of time the variance of the CPPI

portfolio value under jump-diffusion model is

C2
0 exp

{∫ t

0

2
(
r + ms(µs − r) + m2

sσ
2
s

)
ds

}

×
∞∑

k=1

E

[
k∏

n=1

(1 + mnYn)

]2
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

−

[
exp

{∫ t

0

(r + ms(µs − r))ds

} ∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
E

[
k∏

n=1

(1 + mnYn)

]]2

.

Here we consider a special form of mt. Let 0 = t0 < t1 < t2 < ... < tn−1 < tn = T

where tk+1 − tk = T
n

for k = 0, ..., n − 1. We reconsider the multiple only at time ti

which i = 0, 1, ..., n. Let

m0 = η + 1

mtk = η + ealn(Stk
/Stk−1

) When k ≥ 1

mt = mtk When t ∈ [tk, tk+1)

Remarks. The above is called an EPPI strategy, a special case of which would be

when the multiple is a function of time. However, since CPPI is a common term in

financial mathematics, we still refer the above EPPI as a special case of CPPI.
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3.3 The CPPI portfolio as a hedging tool

We have proved that the portfolio value is

Vt = C0 exp

{∫ t

0

(
r + ms(µs − r) − m2

sσ
2
s

2

)
ds +

∫ t

0

msσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft.

The following lemma is deduced from the Ito formula and will be used to prove some

later theorems.

Lemma 3.12. Let v(x, t) ∈ C1, 2([0, T ] × R) and bounded at infinity. Then the

conditional expectation of the composition process v(t, x(t)) satisfies

E[v(t, St)|S(0) = S0] = v(0, S0) + E
[ ∫ t

0

(
∂v

∂t
+ µtSu−

∂v

∂x
+

1

2
(σuSu−)2 ∂2v

∂x2

)
(u, Su)

+λu(v(u, Su− + Su−Yu) − v(u, Su))dNu|S(0) = S0

]
.

Proof. Our risky asset St is given by

dSt = St−(µtdt + σtdWt + YtdNt).

By the Ito chain rule,

dv(t, St) =

(
∂v

∂t
+ µtSt−

∂v

∂x
+

1

2
(σtSt−)2 ∂2v

∂x2

)
(t, St)dt

+St−σt
∂v

∂x
(t, St)dWt + (v(t, St− + St−Yt) − v(t, St))dNt.

When expressed in integral form, we have,

v(t, St) = v(0, S0) +

∫ t

0

(
∂v

∂t
+ µtSu−

∂v

∂x
+

1

2
(σuSu−)2 ∂2v

∂x2

)
(u, Su)du

+

∫ t

0

Su−σu
∂v

∂x
dWu + (v(u, Su− + Su−Yu) − v(u, Su−))dNu.
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By taking conditional expectation on both sides, we have

E[v(t, St)|S(0) = S0] = v(0, S0) + E
[ ∫ t

0

(
∂v

∂t
+ µtSu−

∂v

∂x
+

1

2
(σuSu−)2 ∂2v

∂x2

)
(u, Su)

+λu(v(u, Su− + Su−Yu) − v(u, Su))dNu|S(0) = S0

]
.

Remarks. The term (v(t, St− + St−Yt) − v(t, St))dNt describes the difference of the

portfolio value as a functional of St when a jump occurs.

In section 4 of [16], the CPPI portfolio is utilized as a hedging tool under the

Black-scholes model. See also [26]. In this section, we generalize the above result to

our jump-diffusion case.

3.3.1 PIDE Approach

Suppose that η = g(ST ) is a contingent claim that the portfolio’s manager is aiming

to have at maturity. Can the CPPI portfolio be converted into a synthetic derivative

with pay-off specified by η = g(ST )?

Theorem 3.13. If g : R → R is sufficiently smooth, there exists a unique self-financed

g(ST ) hedging CPPI portfolio V , defined by

Vt = v(t, St) t ∈ [0, T ] (3.15)

where v ∈ C1,2([0, T ] × R) is the unique solution of the following partial integro-

differential equations (PIDE).

∂u

∂t
(t, s) + (µts)

∂u

∂x
(t, s) +

1

2
(sσt)

2∂2u

∂x2
(t, s) − ru(t, s) = 0 (3.16)

sz
∂u

∂x
(t, s) = u(t, s + sz) − u(t, s) (3.17)
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u(T, s) = g(s), (t, s) ∈ [0, T ] × R), u ∈ C1,2([0, T ] × R) (3.18)

In particular the CPPI portfolio’s gearing factor is given by:

mt =
∂u
∂x

(t, St)St−

Vt− − Ft

, t ∈ [0, T ]. (3.19)

Proof. For V to be a a self-financed g(ST )-hedging portfolio, it is enough to ensure

that at maturity time we have

VT = g(ST ), a.s..

Choose a map v ∈ C1,2([0, T ]×R) and set Vt = v(t, St) (t ∈ [0, T ]). Then v(T, ST ) =

g(ST ) P-a.s., therefore

v(T, s) = g(s), ∀s ∈ R.

Second by Ito’s chain rule,

dv(t, St) =

(
∂v

∂t
+ µtSt−

∂v

∂x
+

1

2
(σtSt−)2 ∂2v

∂x2

)
(t, St)dt

+St−σt
∂v

∂x
(t, St)dWt + (v(t, St− + St−Yt) − v(t, St−))dNt.

Now Vt satisfies

dVt = dCt + dFt

= (Vt− − Ft)(r + mt(µt − r))dt + rFtdt + (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt

= (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt.

A comparison of the above two equations implies that

mt =
∂u
∂x

(t, St)St−

Vt− − Ft

, t ∈ [0, T ]
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and

∂u

∂t
(t, s) + (µts)

∂u

∂x
(t, s) +

1

2
(sσt)

2∂2u

∂x2
(t, s) − ru(t, s) = 0;

sz
∂u

∂x
(t, s) = u(t, s + sz) − u(t, s).

In a financial turmoil, the portfolio’s manager acting on the leverage regime may

convert the CPPI portfolio in a suitable synthetic derivative whose price is specified

by (3.15)-(3.18). Moreover the required dynamic gearing factor (multiple) can be

easily determined, using (3.19). This is the PIDE/PDE approach hedging.

Another observation that reveals to be central in the analysis of possible portfolio’s

hedges is that at any time of the financial horizon the CPPI portfolio value may be

regarded as a standard risky asset and therefore as an underlying for any convenient

contingent claim:

Theorem 3.14. Under the risk neutral measure Q, the discounted CPPI portfolio’s

value {Vt}t∈[0,T ]

Ṽt = e−rtVt, t ∈ [0, T ] (3.20)

is a martingale.

Proof. In the proof of Theorem 3.13, we have deduced

dVt = (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt,

thus we have

dVt
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= (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσt(dW Q
t + θtdt)

+(Vt− − Ft)mtYtdNt

= (rVt− + (Vt− − Ft)mt(µt − r + θt))dt + (Vt− − Ft)mtσtdW Q
t

+(Vt− − Ft)mtYtdNt

= (rVt− + (Vt− − Ft)mtσt)dW Q
t + (Vt− − Ft)mt(−Ytψtλt)dt + (Vt− − Ft)mtYtdNt

= (rVt− + (Vt− − Ft)mtσt)dW Q
t + (Vt− − Ft)mtYtdMQ

t .

Integration by parts implies that

dṼt = de−rtVt = −re−rtVtdt + e−rtdVt

= e−rt((Vt− − Ft)mtσtdW Q
t + (Vt− − Ft)mtYtdMQ

t ).

Thus, Ṽt is a Q-martingale.

If we substitute µs by r +λs − eα+ δ2

2 λs, under the probability measure Prn, we get

the following corollary.

Corollary 3.15. In Merton’s model, under probability measure Prn, the discounted

CPPI portfolio’s value {Vt}t∈[0,T ]

Ṽt = e−rtVt, t ∈ [0, T ]

is a martingale.

Proof. We have

dVt

= (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt

=
(
rVt− + (Vt− − Ft)mt

(
λt − eα+ δ2

2 λt

))
dt + (Vt− − Ft)mtσtdWt

57



+(Vt− − Ft)mtYtdNt.

Thus

dṼt = de−rtVt = −re−rtVtdt + e−rtdVt

= −re−rtVtdt + e−rt
(
rVt− + (Vt− − Ft)mt

(
λt − eα+ δ2

2 λt

))
dt

+(Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYtdNt)

= e−rt(Vt− − Ft)mt

(
λt − eα+ δ2

2 λt

)
dt + (Vt− − Ft)mtσtdWt

+(Vt− − Ft)mtYtdNt)

= e−rt(Vt− − Ft)mt

(
λt − eα+ δ2

2 λt + λtYt

)
dt

+(Vt− − Ft)mtσtdWt + (Vt− − Ft)mtYt(dNt − λtdt)).

Since dNt − λtdt is a martingale and

E[Yt] = E
(
eln(1+Yn) − 1

)
= eα+ δ2

2 − 1,

we get E[(λt − eα+ δ2

2 λt)] = 0, so we prove Ṽt is a Pnr-martingale.

Given any claim η = g(VT ), which is a function of the terminal portfolio’s price,

there exists a unique self-financed η = g(VT )-hedging strategy:

Theorem 3.16. Let g : R → R sufficiently smooth. Then there exists a unique

η = g(VT )-hedging self-financed trading strategy (U, β) defined as

Ut = u(t, Vt), βt− =
∂u

∂x
(t, Vt), t ∈ [0, T ],

where u ∈ C1,2([0, T ] × R) is the unique solution of the PIDE.

∂u

∂t
(t, v) + rv

∂u

∂x
(t, v) +

1

2
m2σ2

t (v − f)2∂2u

∂x2
(t, v) − ru(t, v) = 0 (3.21)
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mz(v − f)
∂u

∂x
(t, v) = u(t, v + m(v − f)z) − u(t, v) (3.22)

with the final condition u(T, v) = g(v).

Proof. Consider an asset {Vt}t∈[0,T ], and pick a self-financed g(VT ) hedging strategy

space (Ut, βt)t∈[0,T ] by setting:

dUt = βt−dVt + (Ut− − βt−Vt−)rdt

and

UT = g(VT ) a.s.

Since

dVt = (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσtdWt

+(Vt− − Ft)mtYtdNt,

the hedging portfolio’s equation may be rewritten as:

dUt = βt−(rVt− + (Vt− − Ft)mt(µt − r)dt + (Vt− − Ft)mtσtdWt

+(Vt− − Ft)mtYtdNt) + (Ut− − βt−Vt−)rdt

= (rUt− + βt−(Vt− − Ft)m(µt − r))dt + βt−(Vt− − Ft)mtσtdWt

+βt−(Vt− − Ft)mtYtdNt).

Pick u ∈ C1,2([0, T ] × R) and set Ut = u(t, Vt), for t ∈ [0, T ].

For any t ∈ [0, T ],the Ito’s formula implies that:

du(t, Vt) =
∂u

∂t
(t, Vt) + (rVt− + m(µt − r)(Vt− − Ft))

∂u

∂x
(t, Vt)
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+
1

2
(mσt)

2(Vt− − Ft)
2∂2u

∂x2
(t, Vt)dt + mσt(Vt− − Ft)

∂u

∂x
(t, Vt)dWt

+(u(t, Vt− + m(Vt− − Ft)Yt) − u(t, Vt−))dNt.

A comparison between the above two equations implies in particular

βt− =
∂u

∂x
(t, Vt)

and

∂u

∂t
(t, v) + (rv + m(µt − r)(v − f))

∂u

∂x
(t, v) +

1

2
m2σ2

t (v − f)2∂2u

∂x2
(t, v)

= ru(t, v) + m(µt − r)(v − f)
∂u

∂x
(t, v).

Thus

∂u

∂t
(t, v) + rv

∂u

∂x
(t, v) +

1

2
m2σ2

t (v − f)2∂2u

∂x2
(t, v) − ru(t, v) = 0

and

mz(v − f)
∂u

∂x
(t, v) = u(t, v + m(v − f)z) − u(t, v)

with the final condition u(T, v) = g(v).

The rationale in constructing self-financed trading strategies that hedge the CPPI

portfolio’s terminal price, is that there are contingent claims particularly useful to

control both the closing-out-effect and the gap risk. As an example consider the case

of a Vanilla option based on the CPPI portfolio’s value. For instance being long in an

at-the-money put option on the portfolio with a strike at least equal to the protection

required is a natural way to hedge gap risk. Similarly being long in an at-the-money

call option on the portfolio is a natural way to invest in a CPPI’s portfolio preserving
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the capability to not purse forward the investment in the case of closed out.

3.3.2 Fourier Transformation Approach

[14] and [54] do research on how to use Fourier transform to value option when we

know the characteristic function. We refer to their results to value our CPPI option.

Under the martingale measure Q, the discounted stock price S̃t = e−rtSt is a mar-

tingale. Consider the European option with the pay-off as the function of S̃T , i.e.

G(S̃T ), and denote by h its log-payoff function G(ex) ≡ g(x) and by Φ the character-

istic function of ln(S̃t). Proposition 10 in [74] states the following result.

Proposition 3.17. Suppose that there exists R 6= 0 such that

h(x)eRx has finite variance on R, h(x)e−Rx ∈ L1(R), EQ [
eRXT−t

]
< ∞ and∫

R
|ΦT−t(u−iR)|

1+|u| du < ∞.

Then the price at time t of the European option with pay-off function G satisfies

P (t, S̃t) := e−r(T−t)EQ
[
G(S̃T )|Ft

]
=

e−r(T−t)

2π

∫
R

ĥ(u + iR)ΦT−t(−u − iR) ˆ̃SR−iu
t du,

(3.23)

where ĥ(u) :=
∫

R eiuxh(x)ds.

We are interested in considering the European option whose pay-off a function

depends on the discounted CPPI portfolio ṼT , i.e. G(ṼT ). Since Vt = Ct + Ft and Ct

are in exponential forms, it is more convenient to treat it as a function of the cushion

C̃T . Let G2(e
x) = h2(x) and

εt = C0 exp

{∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
. (3.24)

In subsection 4.2.2, we will show that the characteristic function φt(u) of ln( εt

C0
) is
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given by

φt(u) = exp

{
i

(∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds

)
u − 1

2

(∫ t

0

mσ2
sds

)
u2

}
× exp

{
tλ

∫
R

(
eiux − 1

)
fQ

(
ln

(
1 +

ex − 1

m

))
ex

m + ex − 1
dx

}
.

Thus the characteristic function of ln(CT ) is C0φt(u). We then have

Proposition 3.18. Suppose that there exists R 6= 0 such that

h2(x)eRx has finite variance on R, h2(x)e−Rx ∈ L1(R), EQ [
eRXT−t

]
< ∞

and
∫

R
|C0φT−t(u−iR)|

1+|u| du < ∞.

Then the price at time t of the European option with pay-off function G2 satisfies

P (t, Ṽt) := e−r(T−t)EQ
[
G2(C̃T )|Ft

]
=

e−r(T−t)

2π

∫
R

ĥ2(u + iR)C0φT−t(−u − iR) ˆ̃CR−iu
t du,

(3.25)

where ĥ(u) :=
∫

R eiuxh(x)ds.

Remarks. The European call option has pay-off G2(CT ) = (CT +FT −K)+, therefore,

we have for all R > 1

ĥ2(u + iR) =
(K − FT )iu+1−R

(R − iu)(R − 1 − iu)
.

3.3.3 Martingale Approach

It is possible to obtain a Black-Sholes type formula for pricing Vanilla options based

on the CPPI portfolio:

We first consider the general case. We assume that the ln(1 + Yi) are i.i.d. with

common density function fQ.
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Proposition 3.19. Let the density of ln(1 + Yi) be fQ(x) and the density function of

ln(Lt) =

∫ t

0

[
(1 − ψs)λs −

1

2
θ2

s

]
ds +

∫ t

0

θsdWs +

∫ t

0

ln ψsdNs

be fLt, where Lt is defined by (3.9). Then the vanilla call/put option on the whole

CPPI portfolio’s value at maturity is completely determined by:

Call(0, v, T,K)

=
∞∑

k=0

(
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)
×

∫ ∞

ς

(
C0e

x + F0 − e−rT K
)
p(k)dx

and

Put(0, v, T,K)

=
∞∑

k=0

(
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)
×

∫ ∞

ς

(−C0e
x − F0 + e−rT K)p(k)dx,

where K > FT and

p(k) = f1 ∗ fQ
Q′ ∗ ... ∗ fQ

Q′︸ ︷︷ ︸
k terms

,

where fQ′ and fQ
Q′ have the following relation:

∫
R

exp
{
iufQ

Q′(z)
}

dz =

∫
R

exp
{[

fQ′(
z

iu
)

z

iu

]
∗ fLT (z)

}
dz

and f1 is the density function of the normal distribution

N
(
·,

∫ T

0

(
(m(−Y ψsλs) −

m2σ2
s

2

)
ds,

∫ T

0

mσsdW Q
s

)
and ς = ln

(
e−rT K−F0

C0

)
.
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Proof. Consider the process:

Vt = C0 exp

{∫ t

0

(
r + m(µs − r) − m2

sσ
2
s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft

= C0 exp

{∫ t

0

(
r + m(µs − r) + mσsθs −

m2σ2
s

2

)
ds +

∫ t

0

mσsdW Q
s

}
×

[
Nt∏

n=1

(1 + mYn)

]
+ Ft

= C0 exp

{∫ t

0

(
r − mYsψsλs −

m2σ2
s

2

)
ds +

∫ t

0

mσsdW Q
s

} [
Nt∏

n=1

(1 + mYn)

]
+ Ft.

In the case of NT = k, we denote

L(k) = e−rT V k
T − FT

C0

= exp

{∫ T

0

(
m(−Y ψsλs) −

m2σ2
s

2

)
ds

+

∫ T

0

mσsdWQ
s +

[
k∑

n=1

ln(1 + mYn)

]}
.

(see the remark (3) below the proof.) Because

P(ln(1 + mYi) ≤ z) = P
(

ln(1 + Yi) ≤ ln

(
1 +

ez − 1

m

))
=

∫ ln(1+ ez−1
m )

−∞
fQ(y)dy,

the density function fQ′ of the random variable ln(1 + mYi) under the probability

measure P is

fQ′(z) =
d(P(ln(1 + mYi) ≤ z))

dz
= fQ

(
ln

(
1 +

ez − 1

m

))
ez

m + ez − 1
.

Suppose the density function of ln(1 + mYi) under the measure Q is fQ
Q′ . By the

properties of the Radon-Nikodym derivative and the characteristic function, we have

EQ[exp{iu ln(1 + mYi)}] = E[exp{iu ln(1 + mYi)}LT ]

= E[exp{iu ln(1 + mYi) + ln LT}]
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Under P, the density function of iu ln(1+mYi) is fQ′
(

z
iu

)
z
iu

, thus the density function

of iu ln(1 + mYi) + ln LT under P is

[
fQ′

( z

iu

) z

iu

]
∗ fLT (z)

and thus fQ′ and fQ
Q′ have the following relation:

∫
R

exp
{
iufQ

Q′(z)
}

dz =

∫
R

exp
{[

fQ′

( z

iu

) z

iu

]
∗ fLT (z)

}
dz.

Since

∫ T

0

(
m(−Y ψsλs) −

m2σ2
s

2

)
ds +

∫ T

0

mσsdW Q
s

∼ N
(
·,

∫ T

0

(
m(−Y ψsλs) −

m2σ2
s

2

)
ds,

∫ T

0

mσsdW Q
s

)
,

we denote its density function by

f1(x) = φ

(
x,

∫ T

0

(
m(−Y ψsλs) −

m2σ2
s

2

)
ds,

∫ T

0

mσsdW Q
s

)

under the probability measure Q where φ(x,m, υ) = 1√
2πυ2

e−
(x−m)2

2υ2 . Then the density

function p(k)(x) of L(k) is

p(k) = f1 ∗ fQ
Q′ ∗ ... ∗ fQ

Q′︸ ︷︷ ︸
k terms

.

We have

EQ
(
e−rT (V

(k)
T − K)+

)
=

∫ ∞

ς

(
C0e

x + F0 − e−rT K
)
p(k)dx,
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where

ς = ln

(
e−rT K − F0

C0

)
,

thus

Call(0, v, T,K)

= EQ (
e−rT (VT − K)+

)
=

∞∑
k=0

EQ
(
e−rT (V

(k)
T − K)+

) (
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)

=
∞∑

k=0

(
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)
×

∫ ∞

ς

(C0e
x + F0 − e−rT K)p(k)dx.

Similarly,

EQ
(
e−rT (K − V

(k)
T )+

)
=

∫ ∞

ς

(−C0e
x − F0 + e−rT K)p(k)dx

and

Put(0, v, T,K)

= EQ (
e−rT (K − VT )+

)
=

∞∑
k=0

EQ
(
e−rT (K − V

(k)
T )+

) (
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)

=
∞∑

k=0

(
e−

R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!

)
×

∫ ∞

ς

(−C0e
x − F0 + e−rT K)p(k)dx.

Remarks. (1) The expression is not very explicit since they contain measure transfor-

mations and convolutions.

(2)When Q is the risk neutral measure, the price of a Vanilla call option is given by

Call(t, v, T,K) = EQ [
e−r(T−t)(V t,v

T − K)+
]

= EQ [
e−r(T−t)(VT − K)+|Vt = v

]
,
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for any t ∈ [0, T ]. The CPPI portfolio’s value {Vt} is a Markov process so that

Call(t, v, T,K) = Call(0, v, T − t,K), for t ∈ [0, T ]

and it is sufficient to cover the case of the Vanilla call option’s price at zero.

(3) The value of 1 + mYn might be negative, in this case ln(1 + mYn) is an imaginary

number.

Corollary 3.20. In Merton’s Model and under the probability measure Prn, let the

density of ln(1 + Yi) be φ(x, α, δ2). Then the Vanilla call/put option on the whole

CPPI portfolio’s value at maturity is completely determined by

Call(0, v, T,K) =
∞∑

k=0

(
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

)
×

∫ ∞

ς

(
C0e

x + F0 − e−rT K
)
p(k)dx

and

Put(0, v, T,K) =
∞∑

k=0

(
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

)
×

∫ ∞

ς

(
−C0e

x − F0 + e−rT K
)
p(k)dx,

where K > FT and

p(k) = f1 ∗ fQ′ ∗ ... ∗ fQ′︸ ︷︷ ︸
k terms

,

fQ′(z) = φ

(
ln

(
1 +

ez − 1

m

)
, α, δ2

)
ez

m + ez − 1
,

and f1 is the density function of the normal distribution

N
(
·,

∫ T

0

(
m

(
λs − eα+ δ2

2
λs

)
− mσ2

s

2

)
ds,

∫ T

0

mσsdWs

)
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and ς = ln
(

e−rT K−F0

C0

)
.

In the following proposition we consider the special case that Yn = Y is a constant.

In this case, the expression is more explicit.

Proposition 3.21. In the case that Yn = Y is a constant, the vanilla call/put option

on the whole CPPI portfolio’s value at maturity has the explicit expression:

Call(0, v, T,K) =
∞∑

k=0

e−
R t
0 ψsλsds

(∫ t

0
ψsλsds

)k

k!


×

(
C0e

M(k)+ 1
2
σ2
(k)Ψ

(
M (k) + σ2

(k) − ς

σ(k)

)
− (F0 − e−rT K)Ψ

(
M (k) − ς

σ(k)

))

and

Put(0, v, T,K) =
∞∑

k=0

e−
R t
0 ψsλsds

(∫ t

0
ψsλsds

)k

k!


×

(
−C0e

M(k)+ 1
2
σ2
(k)Ψ

(
−

M (k) − σ2
(k) + ς

σ(k)

)
+

(
−F0 + e−rT K

)
Ψ

(
−M (k) + ς

σ(k)

))
,

where K > FT and

M (k) =

∫ T

0

(
(m − Y ψsλs) −

mσ2
s

2

)
ds + k ln(1 + mY ),

σ2
(k) =

∫ T

0

mσsdW Q
s ,

ς = ln

(
e−rT K − F0

C0

)

and

Ψ(x) =

∫ x

−∞

1√
2π

e−
1
2
t2dt.
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.

Proof. We have

Vt = C0 exp

{∫ t

0

(
r + m(µs − r) − mσ2

s

2

)
ds

+

∫ t

0

mσsdWs +

[
Nt∑

n=1

ln(1 + mYn)

]}
+ Ft

= C0 exp

{∫ t

0

(
r + m(−Y ψsλs) −

mσ2
s

2

)
ds

+

∫ t

0

mσsdWQ
s +

[
Nt∑

n=1

ln(1 + mYn)

]}
+ Ft.

In case that NT = k, we have

e−rT V k
T − FT

C0

= exp

{∫ T

0

(
m(−Y ψsλs) −

mσ2
s

2

)
ds

+

∫ T

0

mσsdWQ
s +

[
NT∑
n=1

ln(1 + mYn)

]}
.

Then we have

ln

(
e−rT V k

T − FT

C0

)
∼ N

(
.; M (k), σ2

(k)

)
,

where

M (k) =

∫ T

0

(
m(−Y ψsλs) −

mσ2
s

2

)
ds + k ln(1 + mY )

σ2
(k) =

∫ T

0

mσsdW Q
s .

Thus

EQ
(
e−rT (V

(k)
T − K)+

)
=

∫ ∞

ς

(
C0e

x + F0 − e−rT K
)
d

(
N

(
x; M (k), σ2

(k)

))
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= C0e
M(k)+ 1

2
σ2
(k)Ψ

(
M (k) + σ2

(k) − ς

σ(k)

)
−

(
F0 − e−rT K

)
Ψ

(
M (k) − ς

σ(k)

)
,

where

ς = ln

(
e−rT K − F0

C0

)
.

and

Ψ(x) =

∫ x

−∞

1√
2π

e−
1
2
t2dt.

Then

Call(0, v, T,K)

= EQ(e−rT (VT − K)+) =
∞∑

k=0

EQ(−rT (V
(k)
T − K)+)(

e−
R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!
)

=
∞∑

k=0

e−
R t
0 ψsλsds

(∫ t

0
ψsλsds

)k

k!


×

(
C0e

M(k)+ 1
2
σ2
(k)Ψ

(
M (k) + σ2

(k) − ς

σ(k)

)
− (F0 − e−rT K)Ψ

(
M (k) − ς

σ(k)

))
.

Similarly,

EQ
(
e−rT (K − V

(k)
T )+

)
=

∫ ς

−∞

(
−C0e

x − F0 + e−rT K
)
d

(
N

(
x; M (k), σ2

(k)

))
= −C0e

M(k)+ 1
2
σ2
(k)Ψ

(
−

M (k) − σ2
(k) + ς

σ(k)

)
+

(
−F0 + e−rT K

)
Ψ

(
−M (k) + ς

σ(k)

)

and

Put(0, v, T,K)
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= EQ(e−rT (K − VT )+) =
∞∑

k=0

EQ(−rT (K − V
(k)
T )+)(

e−
R t
0 ψsλsds(

∫ t

0
ψsλsds)k

k!
)

=
∞∑

k=0

e−
R t
0 ψsλsds

(∫ t

0
ψsλsds

)k

k!


×

(
−C0e

M(k)+ 1
2
σ2
(k)Ψ

(
−

M (k) − σ2
(k) + ς

σ(k)

)
+

(
−F0 + e−rT K

)
Ψ

(
−M (k) + ς

σ(k)

))
.

Remarks. The assumption of the jump Yn be constant is not reasonable, however, it

is looks like the option formula in Black-Scholes model with constant coefficient.

3.4 Mean-variance Hedging

3.4.1 Introduction

Given a contingent claim H and suppose there is no arbitrage opportunities, then

in a complete market H is attainable, i.e. there exists a self-financing strategy with

final portfolio value ZT = H, P-a.s. However, when in our jump-diffusion model, the

market is not complete and so H is not attainable. In this case we consider quadratic

hedging. There are two approaches. One approach is risk-minimization; the other

approach is mean-variance hedging. See [67]. We employ the notations from that

paper.

We consider the mean-variance hedging. For any contingent claim, let the payoff at T

be H. Our jump-diffusion model of the risky asset price S is a semimartingale under

P. The following definition is taken from section 4 in [67].

Definition 3.22. We denote by Θ2 the set of all ϑ ∈ L(S) such that the stochastic

integral process G(ϑ) :=
∫

ϑdS satisfies GT ∈ L2(P). For a fixed linear subspace Θ

of Θ2, a Θ-strategy is a pair (Z0, ϑ) ∈ R × Θ and its value process is Z0 + G(ϑ).
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A Θ-strategy (Z̃0, ϑ̃) is called Θ-mean-variance optimal for a given contingent claim

H ∈ L2 if it minimizes ||H − Z0 − GT (ϑ)||L2 over all Θ-strategies (Z0, ϑ) and Z̃0 is

then called the Θ-approximation price for H.

The linear subspace

G := GT (Θ) =

{∫ T

0

ϑudSu|ϑ ∈ Θ

}

of L2 describes all outcomes of self-financing Θ-strategies with initial wealth Z0 = 0

and

A = R + G =

{
Z0 +

∫ T

0

ϑudSu|(Z0, ϑ) ∈ (R × Θ)

}

is the space of contingent claims replicable by self-financing Θ-strategies. Our goal

in mean-variance hedging is to find the projection in L2 of H on A and this can be

studied for a general linear subspace G of L2 space. In analogy to the above definition,

we introduce a G-mean-variance optimal pair (Z̃0, g̃) ∈ R×G for H ∈ L2 and call Z̃0

the G-approximation price for H. Our goal is to find

min
(Z0, ϑ)∈R×Θ

||H − Z0 − GT (ϑ)||L2 .

Since

dSt = St−[µtdt + σtdWt + YtdNt],
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we have

min
(Z0, ϑ)∈R×Θ

∣∣∣∣∣∣∣∣H − Z0 −
∫ T

0

ϑudSu

∣∣∣∣∣∣∣∣
L2

min
(Z0, ϑ)∈R×Θ

∣∣∣∣∣∣∣∣H − Z0 −
∫ T

0

ϑuSu− [µudu + σudWu + YtdNu]

∣∣∣∣∣∣∣∣
L2

= min
(Z0, ϑ)∈R×Θ

(
E

{
H − Z0 −

∫ T

0

ϑuSu−[µudu + σudWu + YtdNu]

}2
) 1

2

.

[67] has pointed out that finding the optimal ϑ̃ is in general an open problem. On

the other hand, in the case of real contingent claim pricing, we should always using

the risk-neutral measure. [20] gives the G-mean-variance optimal pair (Z̃0, g̃) when

the stocks’ model is an exponential levy form martingale. For similar consideration

also see Chapter 10 in [18].

3.4.2 Our Problem

Now we consider H as a function of VT and denote H = g(VT ). For any martingale

measure Q defined in (3.10), we have proved that Ṽt = e−rtVt is a Q-martingale.

Denote H̃ = e−rT H. We want to consider the following optimization problem.

min
(Z0, ϑ)∈R×Θ

EQ
(

H̃ − Z0 −
∫ T

0

ϑudṼu

)2

. (3.26)

Proposition 3.23. The solution of the optimization problem (3.26) is

Z0 = EQ
[
H̃

]
;

ϑt =
σt(Cx(t, Vt)) + (C(t, Vt + (Vt− − Ft)mtYt) − C(t, Vt))Ytλtψt

σt + (Vt− − Ft)mtY 2
t λtψt

.
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Proof. We have

EQ
(

H̃ − Z0 −
∫ T

0

ϑudṼu

)2

= EQ
(

EQ
[
H̃

]
− Z0 + H̃ − EQ

[
H̃

]
−

∫ T

0

ϑudṼu

)2

= EQ
[(

EQ
[
H̃

]
− Z0

)2
]

+ EQ
(

H̃ − EQ
[
H̃

]
−

∫ T

0

ϑudṼu

)2

.

We see that the optimal value for the initial capital is Z0 = EQ
[
H̃

]
.

Define C(t, x) = ertEQ
[
H̃|Vt = x

]
and C̃(t, x) = e−rtC(t, x). By construction, C̃(t, x)

is a Q-martingale. We have deduced that

dVt = (rVt− + (Vt− − Ft)mt(µt − r))dt + (Vt− − Ft)mtσtdWt

+(Vt− − Ft)mtYtdNt,

and

dṼt = e−rt
(
(Vt− − Ft)mtσtdW Q

t + (Vt− − Ft)mtYtdMQ
t

)
.

Then by Ito’s formula we have

dC̃(t, Vt)

=
(
− re−rtC(t, Vt) + e−rtCt(t, Vt) + (rVt− + (Vt− − Ft)mt(µt − r))e−rtCx(t, Vt)

+
1

2
(Vt− − Ft)

2m2
t σ

2
t e

−rtCxx(t, Vt)
)
dt + (Vt− − Ft)mtσte

−rtCx(t, Vt)dWt

+
(
e−rtC(t, Vt + (Vt− − Ft)mtYt) − e−rtC(t, Vt)

)
dNt

= (Vt− − Ft)mtσte
−rtCx(t, Vt)dW Q

t

+
(
e−rtC(t, Vt + (Vt− − Ft)mtYt) − e−rtC(t, Vt)

)
dMQ

t .
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Thus we have

H̃ − EQ
[
H̃

]
−

∫ T

0

ϑudṼu

= C̃(T, VT ) − C̃(0, V0) −
∫ T

0

ϑte
−rt

(
(Vt− − Ft)mtσtdW Q

t + (Vt− − Ft)mtYtdMQ
t

)
= e−rt

( ∫ T

0

(Vt− − Ft)mtσt(Cx(t, Vt) − ϑt)dW Q
t

+

∫ T

0

((C(t, Vt + (Vt− − Ft)mtYt) − C(t, Vt)) − ϑt(Vt− − Ft)mtYt)dMQ
t

)
.

By the Isometry formula, we have

EQ
(

H̃ − EQ
[
H̃

]
−

∫ T

0

ϑudṼu

)2

= e−2rt

(
EQ

[∫ T

0

((Vt− − Ft)mtσt(Cx(t, Vt) − ϑt))
2dt

]

+EQ
[∫ T

0

(((C(t, Vt + (Vt− − Ft)mtYt) − C(t, Vt)) − ϑt(Vt− − Ft)mtYt))
2λtψtdt

])
.

This is the minimizing problem with respect to ϑt. Differentiating the above expres-

sion with respect to ϑt and letting the first order derivative equal to 0, we have

(Vt− − Ft)mtσt(Cx(t, Vt) − ϑt) + (((C(t, Vt + (Vt− − Ft)mtYt)

−C(t, Vt)) − ϑt(Vt− − Ft)mtYt))(Vt− − Ft)mtYtλtψt = 0,

thus

ϑt =
σt(Cx(t, Vt)) + (C(t, Vt + (Vt− − Ft)mtYt) − C(t, Vt))Ytλtψt

σt + (Vt− − Ft)mtY 2
t λtψt

Remarks. When the contingent claim is the call option with the strike price K, i.e.
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H = (VT − K)+, then

Z0 = EQ
[
H̃

]
= Call(0, V0, T,K)

and

C(t, x) = ertEQ
[
H̃|Vt = x

]
= Call(t, x, T,K);

when the contingent claim is the put option with the strike price K, i.e. H =

(K − VT )+, then

Z0 = EQ
[
H̃

]
= Put(0, V0, T,K)

and

C(t, x) = ertEQ
[
H̃|Vt = x

]
= Put(t, x, T,K).

This is consitent with the calculation of call and put options.
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Chapter 4

Gap risks

4.1 Introduction

Let

dSt

St−
= dZt. (4.1)

where Zt is a Levy process, a special case of which would be our jump diffusion. We

will show the probability of loss we obtain is consistant with [17] and our result on

the expected loss is more explicit and the method is similar to [17]; the result we

obtain for the loss distribution is explicit and our method is different from [17].

Two kinds of conditional floors will be introduced in section 4.3. Its idea is similar to

the Value-at-Risk considered in [27]. Meanwhile, four kinds of conditional floor are

discussed associated with expected loss and loss distribution.
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4.2 Gap risk Measure for CPPI strategies in Jump-

diffusion model

4.2.1 Probability of Loss

In practice, a CPPI-insured portfolio incurs a loss (breaks through the floor) if, for

some t ∈ [0, T ], Vt ≤ Ft. The event Vt ≤ Ft is equivalent to Ct ≤ 0. It happens at

time Ti, associated with the i-th jump of the risky asset, 1 + mYi ≤ 0. We have

Proposition 4.1. Let the density of ln(1+Yn) be fQ(y). The probability of the CPPI

portfolio value going below the floor taking happen during time [0, T ] is given by

P [∃t ∈ [0, T ] : Vt ≤ Ft] = 1 − exp

{∫ T

0

λsds

(∫ ∞

ln(1− 1
m)

fQ(y)dy − 1

)}
(4.2)

Proof. Since

P(1 + mYi > 0) = P
(

ln(1 + Yi) > ln

(
1 − 1

m

))
=

∫ ∞

ln(1− 1
m)

fQ(y)dy,

then

P[∃ t ∈ [0, T ] : Vt ≤ Ft] = P(∃ t ∈ [0, T ] : Ct ≤ 0)

= P(∃Ti, 1 + mYi ≤ 0) = 1 − P(∀Ti, 1 + mYi > 0)

= 1 − P

(
∞∪

j=0

[∀Ti 1 + mYi > 0, NT = j]

)

= 1 −
∞∑

j=0

P ([∀Ti 1 + mYi > 0, NT = j])

= 1 −
∞∑

j=0

P(∀Ti 1 + mYi > 0|NT = j)P(NT = j)

= 1 −
∞∑

j=0

P(∀T1, T2 ... Tj, 1 + mYi > 0)P(NT = j)
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= 1 −
∞∑

j=0

P

(
j∩

i=1

(1 + mYi > 0)

)
P(NT = j)

= 1 −
∞∑

j=0

j∏
i=1

P(1 + mYi > 0)P(NT = j)

= 1 −
∞∑

j=0

e−
R T
0 λsds(

∫ T

0
λsds)j

j!

(∫ ∞

ln(1− 1
m)

fQ(y)dy

)j

= 1 − exp

{∫ T

0

λsds

(∫ ∞

ln(1− 1
m)

fQ(y)dy − 1

)}
.

Remarks. (1) When λs = λ, the probability of loss is

1 − exp

{
Tλ

(∫ ∞

ln(1− 1
m)

fQ(y)dy − 1

)}
(4.3)

Our conclusion is a special case of Corollary 3.1 in [17], where the probability of loss

is given by

1 − exp

(
−T

∫ ln(1−1/m)

−∞
ν(dx)

)
.

In our case the levy measure ν is ν(dx) = λfQ(x)dx (See Page 75, [18] or Page 14,

[57]), then

1 − exp

(
−T

∫ ln(1−1/m)

−∞
ν(dx)

)

= 1 − exp

(
−T

∫ ln(1−1/m)

−∞
λfQ(x)dx

)

= 1 − exp

{
Tλ

(∫ ∞

ln(1− 1
m

)

fQ(y)dy − 1

)}
.

(2) This proposition describes the loss takes place before the mature time T . Thus,

it is naturally to generalize it to the time t ∈ [0, T ]. We have the following corollary,
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Corollary 4.2. Assume λ = λs and let τ ≤ T if the loss take happen i.e. Cτ ≤ 0

and τ = ∞ otherwise. The distribution of τ is, for t ∈ [0, T ]

P(τ ≤ t) = 1 − exp

{
tλ

(∫ ∞

ln(1− 1
m

)

fQ(y)dy − 1

)}

and the density function fτ of τ is

fτ = − exp

{
tλ

(∫ ∞

ln(1− 1
m

)

fQ(y)dy − 1

)}(
λ

(∫ ∞

ln(1− 1
m

)

fQ(y)dy − 1

))
. (4.4)

Proof. The first one is obvious and the second one is the derivative with respect to

t.

4.2.2 Expected Loss

Let τ be the first time when Cτ ≤ 0 and we let τ = ∞ if the loss never happens. Let

εt = C0 exp

{∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs

} [
Nt∏

n=1

(1 + mYn)

]
(4.5)

If a loss takes place, then at time τ , the cushion Cτ ≤ 0. If we do not allow short-sell,

then, at time τ+, we let the exposure be 0. Then, we have the discounted cushion:

C∗
T = εT χτ>T + ετ (1 + mYτ )χτ≤T (4.6)

Remarks. In subsection 3.2 we allowed negative exposure to happen and we have the

expression for the cushion Ct and the portfolio value Vt. When the CPPI portfolio is

considered as an hedging tool in subsection 3.3, short-selling is allowed.

In this subsection, we take the exposure to be 0 at the time when there is a loss and

we measure the gap.

When t < τ , 1 + mYi > 0 for Ti ≤ t. We first calculate the characteristic function
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of ln
(

εt

C0

)
for t < τ .

Since 1 + mYi > 0 when t < τ , we have

ln

(
εt

C0

)
=

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn).

Proposition 4.3. Let the density function of ln(1 + Yi) be fQ(x). When t < τ , the

characteristic function φt(u) of ln
(

εt

C0

)
is

φt(u) = exp

{
i

(∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds

)
u − 1

2

(∫ t

0

mσ2
sds

)
u2

}
× exp

{
tλ

∫
R
(eiux − 1)fQ

(
ln

(
1 +

ex − 1

m

))
ex

m + ex − 1
dx

}
.

Proof. Since
∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds+

∫ t

0
mσsdWs and

∑Nt

n=1 ln(1+mYn) are inde-

pendent, thus the characteristic function of the sum of two random variables is the

production of characteristic function of each random variables.∫ t

0
((m(µs − r)) − m2σ2

s

2
)ds +

∫ t

0
mσsdWs is normal distribution with mean∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds and variance

∫ t

0
m2σ2

sds and hence its characteristic func-

tion is

φ1,t(u) = exp

{
i

(∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds

)
u − 1

2

(∫ t

0

m2σ2
sds

)
u2

}
. (4.7)

In section 3.3, we have deduced the density function f ′
Q of the random variable ln(1+

mYi) is

f ′
Q(z) = fQ

(
ln

(
1 +

ez − 1

m

))
ez

m + ez − 1
.

We denote the characteristic function of f ′
Q by f̂ ′

Q. Then, the characteristic function
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φ2,t(u) of
∑Nt

n=1 ln(1 + mYn) is

φ2,t(u) = E

[
exp iu

(
Nt∑

n=1

ln(1 + mYn)

)]

= E

[
E

[
exp iu.

(
Nt∑

n=1

ln(1 + mYn)

)]
|Nt

]
= E

[(
f̂ ′

Q(u)
)Nt

]

=
∞∑

j=0

e−λt(−λt)j
(
f̂ ′

Q(u)
)j

j!
= exp

{
λt

(
f̂ ′

Q(u) − 1
)}

= exp

{
tλ

∫
R

(
eiux − 1

)
f ′

Q(dx)

}
= exp

{
tλ

∫
R

(
eiux − 1

)
fQ

(
ln

(
1 +

ex − 1

m

))
ex

m + ex − 1
dx

}
.

Then, the characteristic function φt(u) of ln
(

εt

C0

)
is

φt(u) = φ1,t(u)φ2,t(u)

= exp

{
i

(∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds

)
u − 1

2

(∫ t

0

m2σ2
sds

)
u2

}
× exp

{
tλ

∫
R
(eiux − 1)fQ

(
ln

(
1 +

ex − 1

m

))
ex

m + ex − 1
dx

}
.

Definition 4.4. The conditional expectation of the discounted cushion is called the

conditional expected loss and we assume that E[C∗
T |τ ≤ T ]; while the uncondi-

tional expected loss is represented by E[C∗
T χτ≤T ].

We have:

Proposition 4.5. The expectation of loss conditioned on the fact that a loss has

occured is

E[C∗
T |τ ≤ T ] =

∫ ln(1−1/m)

−∞ fQ(y)dy
∫ T

0
C0φt(−i)fτdt

1 − exp
{

Tλ
(∫ ∞

ln(1− 1
m) fQ(y)dy − 1

)} (4.8)

82



and the unconditional expected loss satisfies

E[C∗
T χτ≤T ] =

∫ ln(1−1/m)

−∞
fQ(y)dy

∫ T

0

C0φt(−i)fτdt (4.9)

where fτ is the density function of τ and defined by (4.4) and φt is the characteristic

function of ln
(

εt

C0

)
.

Proof. First the discounted cushion is

C∗
T = εT χτ>T + ετ (1 + mYτ )χτ≤T .

Then

E[C∗
T χτ≤T ] = E[(1 + mYτ )]E[ετ ].

(1 + mYτ ) is the size of the first jump which size is Yi < −1/m. Thus,

E [(1 + mYτ ) (χτ≤T )] =

∫ ln(1−1/m)

−∞
fQ(y)dy.

By the property of the characteristic function, we have

E[εt] = C0φt(−i).

Therefore

E[C∗
T χτ≤T ] = E [(1 + mYτ ) (χτ≤T )] E[ετχτ≤T ]

=

∫ ln(1−1/m)

−∞
fQ(y)dy

∫ T

0

C0φt(−i)fτdt,

where fτ is the density function of τ and defined by (4.4). Furthermore, by the
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property of conditional expectation, we have

E[C∗
T |τ ≤ T ] =

E[C∗
T χτ≤T ]

P[τ ≤ T ]
=

∫ ln(1−1/m)

−∞ fQ(y)dy
∫ T

0
C0φt(−i)fτdt

1 − exp
{

Tλ
(∫ ∞

ln(1− 1
m) fQ(y)dy − 1

)} .

4.2.3 Loss Distribution

To compute risk measures, we consider, for x < 0, the quantity

P[C∗
T < x|τ ≤ T ]. (4.10)

This is called the Loss Distribution. We next have:

Proposition 4.6. Let the density of ln(1 + Yn) be fQ(y) and C∗
T be the discounted

cushion. For x < 0, the unconditional loss distribution is

P [C∗
T χτ≤T < x]

=

∫ ln
“

− x
C0

”

0

∫ T

0

φ

(
z,

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds,

∫ t

0

mσ2
sds

)
fτdt

∣∣∣∣
z=l

×
(
−fQ

(
ln

(
1 +

−ez − 1

m

))
ez

−m + ez + 1

) ∣∣∣∣
z=ln(− x

C0
)−l

dl.

(4.11)

and the loss distribution is

P[C∗
T < x|τ ≤ T ] =

P[C∗
T χτ≤T < x]

1 − exp
{

Tλ
(∫ ∞

ln(1− 1
m) fQ(y)dy − 1

)} , (4.12)

where fτ is the density function of τ and defined by (31) and φ(x,m, υ2) is the density

function of normal distribution which is same as defined in subsection 3.1.1.
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Proof. For x < 0, the unconditional loss distribution is

P[C∗
T χτ≤T < x] = P[ετ (1 + mYτ )χτ≤T < x]

= P
[

ετ

C0

(−(1 + mYτ ))χτ≤T > − x

C0

]
= P

[
ln

(
ετ

C0

χτ≤T

)
+ ln ((−(1 + mYτ ))χτ≤T ) > ln

(
− x

C0

)]
=

∫ ln
“

− x
C0

”

0

d

dz

(
P

(
ln

(
ετ

C0

χτ≤T

)
< z

)) ∣∣∣∣
z=l

× d

dz
(P (ln ((−(1 + mYτ )) χτ≤T ) < z))

∣∣∣
z=ln

“

− x
C0

”

−l
dl.

The last step is by the property of the distribution of the sum of two random variables.

Since

d

dz

(
P

(
ln

(
ετ

C0

χτ≤T

)
< z

))
=

d

dz

(∫ T

0

P
(

ln

(
ετ

C0

)
< z

)
fτdt

)
=

∫ T

0

φ

(
z,

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds,

∫ t

0

mσ2
sds

)
fτdt

where fτ is the density function of τ and defined by (31) and φ(x,m, υ2) is the density

function of normal distribution which is same as defined in subsection 3.1.1 and

d

dz
(P(ln((−(1 + mYτ ))χτ≤T ) < z))

=
d

dz
(P ((1 + mYτ )χτ≤T > −ez))

=
d

dz

(
P

(
ln ((1 + Yτ )χτ≤T ) > ln

(
1 +

−ez − 1

m

)))
=

d

dz

(∫ ln(1− 1
m)

ln(1+−ez−1
m )

fQ(y)dy

)

= −fQ

(
ln

(
1 +

−ez − 1

m

))
ez

−m + ez + 1
,
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substitute the above two expressions, we get

P [C∗
T χτ≤T < x]

=

∫ ln
“

− x
C0

”

0

d

dz

(
P

(
ln

(
ετ

C0

χτ≤T

)
< z

)) ∣∣∣∣
z=l

× d

dz
(P(ln((−(1 + mYτ ))χτ≤T ) < z))

∣∣∣
z=ln(− x

C0
)−l

dl.

=

∫ ln
“

− x
C0

”

0

∫ T

0

φ

(
z,

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds,

∫ t

0

mσ2
sds

)
fτdt

∣∣∣∣
z=l

×
(
−fQ

(
ln

(
1 +

−ez − 1

m

))
ez

−m + ez + 1

) ∣∣∣∣
z=ln(− x

C0
)−l

dl.

Moreover, the loss distribution is

P[C∗
T < x|τ ≤ T ] =

P[C∗
T χτ≤T < x]

P[τ ≤ T ]
=

P[C∗
T χτ≤T < x]

1 − exp
{

Tλ
(∫ ∞

ln(1− 1
m

)
fQ(y)dy − 1

)} .

4.3 Conditional Floor and Conditional Multiple of

CPPI in the Jump-diffusion Model

4.3.1 Introduction

We want to control the level of the gap by suitably adjusting the floor or/and multiple.

For example, if we take m = 1, then the portfolio value is always greater than the

floor, and thus there is no gap risk in the case. Another case is if we make the floor

equal to initial portfolio measure, then there is also no gap risk. Risk occurs when

we choose large enough multiples or low floors which result in more exposures. [1]

and [2] describe how the conditional multiple and conditional floor control gap risks

in the continuous case. Risks occur because the trading time is discrete.
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4.3.2 Probability of Loss

Let the density of ln(1 + Yn) be fQ(y). Recall that the probability that the CPPI

portfolio value falls below the floor during the time interval [0, T ] is given by (4.2).

We see that the probability of loss is irrelevant to the floor. It is also irrelevant to

the continuous part of the risky asset model. It is only related to the jump part of

risky asset model and the multiple m. Moreover, we have the following proposition.

Proposition 4.7. The probability of loss given in (4.2) is monotone increased func-

tion as the multiple m.

Proof. For m > 1 in general,

m increased =⇒

ln
(
1 − 1

m

)
is increasing =⇒∫ ∞

ln(1− 1
m) fQ(y)dy − 1 is decreasing =⇒

1 − exp
{∫ T

0
λsds

(∫ ∞
ln(1− 1

m) fQ(y)dy − 1
)}

is increasing.

Like for the Value-at-Risk (VaR) (See [27]), we define:

Definition 4.8. For ε > 0, the multiple m = m0 makes

P[∃t ∈ [0, T ] : Vt ≤ Ft] = ε

is called the ε-conditional multiple.

m0 can be treated as a quantile. Since the probability of loss is monotone increased

as the function of the multiple m. Then for m < m0,

P [∃t ∈ [0, T ] : Vt ≤ Ft] < ε.
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Let the distribution function of ln(1 + Yn) be FQ, then the quantile point m0 is given

by:

P [∃t ∈ [0, T ] : Vt ≤ Ft] = ε

⇐⇒ 1 − exp

{∫ T

0

λsds

(∫ ∞

ln(1− 1
m0

)

fQ(y)dy − 1

)}
= ε

⇐⇒ − ln(1 − ε)∫ T

0
λsds

=

∫ ln
“

1− 1
m0

”

−∞
fQ(y)dy

⇐⇒ ln

(
1 − 1

m0

)
= F−1

Q

(
− ln(1 − ε)∫ T

0
λsds

)
⇐⇒ m0 =

1

1 − exp
{

F−1
Q

(
− ln(1−ε)

R T
0 λsds

)}
When we know the distribution function of the jump-part, it is easy to determine the

ε-conditional multiple and hence the strategies accordingly.

4.3.3 Expected Loss

Through the notion of Probability of Loss, we determine the conditional multiple

and hence control the risk of the gap occurrence. From (4.8) and (4.9), we have the

following proposition:

Proposition 4.9. Given a fixed multiple, both the conditional expected loss given

by (4.8) and the unconditional expected loss given by (4.9) are monotone decreased

functions of the initial floor F0.

Proof. From (4.8) and (4.9), we see that they are increasing functions of the initial

cushion C0, and C0 = V0 − F0.

Similar to the concept of ε-conditional multiple, we define the following:
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Definition 4.10. For % < 0 and m = m0, the floor F0 = F c1 which causes

E[C∗
T |τ ≤ T ] = %

is called the first type %-m0-conditional floor.

and

Definition 4.11. For % < 0 and m = m0, the floor F0 = F c2 which causes

E[C∗
T χτ≤T ] = %

is called the Second type %-m0-conditional floor.

From (4.8) and (4.9), we can solve the two conditional floors easily.

4.3.4 Loss Distribution

Similar to the case of expected loss, we define the conditional floor in terms of loss

distribution. Equation (4.11) gives the unconditional loss distribution and equation

(4.12) gives the conditional loss distribution. The following propositions are immedi-

ate:

Proposition 4.12. Given a fixed multiple and x < 0, the expressions (4.11) and

(4.12) are monotone increasing functions of the initial floor F0

Proof. From equations (4.11) and (4.12), we see that they are increasing functions of

C0. Since C0 = V0 − F0,

F0 increased =⇒

C0 decreased =⇒

ln
(
− x

C0

)
increased =⇒

Both the expression (4.11) and (4.12) are increased.
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As in the case of ε-conditional multiple, we define the following two concepts:

Definition 4.13. For ε > 0, % < 0 and m = m0, the floor F0 = F c3 associated with

the condition

E[C∗
T χτ≤T < %] = ε

is called the third type ε-%-m0-conditional floor.

and

Definition 4.14. For ε > 0, % < 0 and m = m0, the floor F0 = F c4 which gives

E[C∗
T < %|τ ≤ T ] = ε

is called the fourth type ε-%-m0-conditional floor.

4.3.5 Conclusion

The conditional multiple and four conditional floors defined in our section can be used

to the investment. The investor can determine them according to their risk-aversion

level.
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Chapter 5

CPPI in the jump-diffusion model
when the trading time is discrete

5.1 Introduction

In this chapter we discuss the case of discrete trading time. The risky asset model is

the same as in chapter 3 and 4.

In section 5.2, as in section 3.2, we calculate the CPPI portfolio value, its expectation

and variance.

The gap risks are occurred because the risky model has jumps and also the trading

time is discrete. As in section 4.2, we measure the gap risk from three aspects in

section 5.3: the probability of loss,the expected loss and the loss distribution.

In section 5.4, similar to the ideas given in section 4.3, we define the conditional

multiples associated with the probability of loss as well as the conditional floors from

the views of expected loss and loss distribution. It could be treated as an application

of 5.2.

In section 5.5, we prove that as the interval of the trading times tends to zero,

the CPPI strategies in discrete trading time is agrees with the CPPI strategies in
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continuous time.

5.2 The strategy

Let τN = {t0 = 0 < t1 < t2 < ... < tN = T} be a sequence of equidistant refinements

of the interval [0, T ], where tk+1 − tk = T
N

for k = 0, ..., N − 1. Suppose that the

trading times are restricted to the discrete set τN . Futhermore we suppose

P[Ti = tj] = 0 ∀i = 0, 1, 2, 3, .... and j = 0, 1, 2, ..., N.

Hence we may assume Ti 6= tj for ∀i = 0, 1, 2, 3, .... and j = 0, 1, 2, ..., N. We have

Ctk+1
= Ctk

(
m

Stk+1

Stk

− (m − 1)erT/N

)
, (5.1)

then

CT = CtN = C0

N−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/N

)
,

thus

VT = CT + G.

Since
Stk+1

Stk
, k = 0, 1, 2, ..., n − 1 are manually independent and also they have the

identity distribution, i.e.

Stk+1

Stk

= exp

∫ tk+1

tk

(
µs −

σ2
s

2

)
ds +

∫ tk+1

tk

σsdWs +

Ntk+1∑
nk=Ntk

ln(1 + Ynk
)

 ,

then we have

E
[
Stk+1

Stk

]
= E

[
exp(µ

T

N
+ σWT/N − 1

2
σ2 T

N
)

]
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)
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= exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
);

and

E
[
Stk+1

Stk

]2

= E
[
exp

(
2µ

T

N
+ 2σWT/N − σ2 T

N

)]
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)2

= E
[
exp

(
2µ

T

N
+ σ2 T

N
+ 2σWT/N − 1

2
(2σ)2 T

N

)]
E

Ntk+1∏
n=Ntk

(1 + Yn)2

= exp

(
2µ

T

N
+ σ2 T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)2.

Lemma 5.1. Let the density function of ln(1 + Yn) be fQ, then we have

E
Ntk+1∏

nk=Ntk

(1 + Ynk
) =

∞∑
j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!

×
∫

R
exp

fQ ∗ fQ ∗ ... ∗ fQ(x)︸ ︷︷ ︸
j items

 dx

(5.2)

and

E
Ntk+1∏

nk=Ntk

(1 + Ynk
)2 =

∞∑
j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!

×
∫

R
exp

2 fQ ∗ fQ ∗ ... ∗ fQ(x)︸ ︷︷ ︸
j terms

 dx.

(5.3)

Proof. As the proof of proposition 3.6, we have

E
Ntk+1∏

nk=Ntk

(1 + Ynk
)
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=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!
E

[
j∏

nk=1

(1 + mYnk
)

]

=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!
E

[
exp

{
j∑

nk=1

(1 + mYnk
)

}]

=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!

∫
R

exp

fQ ∗ fQ ∗ ... ∗ fQ(x)︸ ︷︷ ︸
j items

 dx,

and

E
Ntk+1∏

nk=Ntk

(1 + Ynk
)

=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!
E

[
j∏

nk=1

(1 + mYnk
)2

]

=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!
E

[
exp

{
2

j∑
nk=1

(1 + mYnk
)

}]

=
∞∑

j=1

e−
R tk+1

tk
λsds(

∫ tk+1

tk
λsds)j

j!

∫
R

exp

2 fQ ∗ fQ ∗ ... ∗ fQ(x)︸ ︷︷ ︸
j items

 dx.

Next we calculate the expectation and variance of the terminal CPPI portfolio

value:

Proposition 5.2. The expected terminal CPPI portfolio value in discrete trading

time case under the jump-diffusion model is

E[VT ] = C0

N−1∏
k=0

m

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 − (m − 1)erT/N

 + G,

where E
∏Ntk+1

nk=Ntk
(1 + Ynk

) is given by (5.2).
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Proof.

E[VT ] = E[CT ] + G

= C0E

[
N−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/N

)]
+ G

= C0

N−1∏
k=0

(
mE

Stk+1

Stk

− (m − 1)erT/N

)
+ G

= C0

N−1∏
k=0

m

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 − (m − 1)erT/N

 + G,

where E
∏Ntk+1

nk=Ntk
(1 + Ynk

) is given by (5.2).

Proposition 5.3. The variance of terminal CPPI portfolio value in discrete time

case under the jump-diffusion model is

Var[VT ] = C2
0

[
N−1∏
k=0

([
m2

exp

(
2µ

T

N
+ σ2 T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)2


+(m − 1)2e2rT/N − 2m(m − 1)erT/N

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 ])

−
N−1∏
k=0

m

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 − (m − 1)erT/N

2 ]
,

where E
∏Ntk+1

nk=Ntk
(1+Ynk

) is given by (5.2) and E
∏Ntk+1

nk=Ntk
(1+Ynk

)2 is given by (5.3).

Proof. By Lemma 2.7, we have

Var[VT ] = Var[CT ] = Var

[
C0

N−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/N

)]

= C2
0

[
N−1∏
k=0

(
E

[
m

Stk+1

Stk

− (m − 1)erT/N

]2
)

−
N−1∏
k=0

(
E

[
m

Stk+1

Stk

− (m − 1)erT/N

])2
]

= C2
0

[
N−1∏
k=0

([
m2E

(
Stk+1

Stk

)2

+ (m − 1)2e2rT/N − 2m(m − 1)erT/NE
Stk+1

Stk

])
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−
N−1∏
k=0

([
mE

Stk+1

Stk

− (m − 1)erT/N

])2
]

= C2
0

[
N−1∏
k=0

([
m2

exp

(
2µ

T

N
+ σ2 T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)2


+(m − 1)2e2rT/N − 2m(m − 1)erT/N

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 ])

−
N−1∏
k=0

m

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 − (m − 1)erT/N

2 ]
,

where E
∏Ntk+1

nk=Ntk
(1 + Ynk

) is given by (5.2) and E
∏Ntk+1

nk=Ntk
(1 + Ynk

)2 is given by

(5.3).

5.3 Measure the Gap risk for CPPI strategies in

the jump-diffusion model-the discrete time case

5.3.1 Probability of Loss

In practice,suppose that a CPPI-insured portfolio incurs a loss. That is, for some ti ∈

τN , Vti ≤ Fti , which is equivalent to Cti ≤ 0. We consider the following probabilities:

Definition 5.4. The probability

PPLL
ti, ti+1

:= P(Vti+1
≤ Fti+1

|Vti > Fti) (5.4)

is called the probability of local loss.

and

Definition 5.5. The probability

PPL := P(if for some ti ∈ τN : Vti ≤ Fti) (5.5)
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is called the probability of loss.

Remarks. We refer the definition of probability of local loss to page 209 in [5].

The following proposition gives a relation between the probability of local loss

and the probability of loss.

Proposition 5.6. The probability of loss defined by (5.5) and probability of local loss

defined by (5.4) have the following relation:

PPL = 1 −
N∏

i=1

(
1 − PPLL

ti−1, ti

)
. (5.6)

Proof. We have

PPL = P(if for some , ti ∈ τN : Vti ≤ Fti)

= 1 − P(∀ ti ∈ τN : Vti > Fti) = 1 − P

(
N∩

i=1

{Vti > Fti|Vti−1
> Fti−1

}

)

= 1 −
N∏

i=1

P({Vti > Fti|Vti−1
> Fti−1

})

= 1 −
N∏

i=1

(
1 − P({Vti ≤ Fti|Vti−1

> Fti−1
})

)
= 1 −

N∏
i=1

(
1 − PPLL

ti−1, ti

)
.

Proposition 5.7. The probability of local loss defined by (5.4) is given by

PPLL
ti, ti+1

=

∫ ln(m−1
m

)+ rT
N

−∞
p(i)(x)dx, (5.7)

where

p(i)(x) =
∞∑

j=0

e−
R t
0 λsds(

∫ ti+1

ti
λsds)j

j!

×
∫ ∞

−∞
φ

(
x − y;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y)dy,

(5.8)
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where f
(j)
Q (y) = fQ(y) ∗ fQ(y) ∗ ...fQ(y)︸ ︷︷ ︸

Convolved j times

.

Proof. We have

PPLL
ti, ti+1

= P(Vti+1
≤ Fti+1

|Vti > Fti) = P(Ci+1 ≤ 0|Ci > 0)

= P
(

m
Sti+1

Sti

− (m − 1)erT/N) ≤ 0

)

= P

(
m exp

∫ ti+1

ti

(
µs −

σ2
s

2

)
ds +

∫ ti+1

ti

σsdWs +

Nti+1∑
n=Nti

ln(1 + Yn)


−(m − 1)erT/N ≤ 0

)

= P

(∫ ti+1

ti

(
µs −

σ2
s

2

)
ds +

∫ ti+1

ti

σsdWs +

Nti+1∑
n=Nti

ln(1 + Yn) ≤ ln

(
m − 1

m

)
+

rT

N

)
.

The proof of Proposition 3.2 shows the density function p(i)(x) of

∫ ti+1

ti

(
µs −

σ2
s

2

)
ds +

∫ ti+1

ti

σsdWs +

Nti+1∑
n=Nti

ln(1 + Yn)

is

p(i)(x) =
∞∑

j=0

e−
R t
0 λsds

(∫ ti+1

ti
λsds

)j

j!

×
∫ ∞

−∞
φ

(
x − y;

∫ t

0

(
µs −

σ2
s

2

)
ds,

∫ t

0

σ2
sds

)
f

(j)
Q (y)dy,

where f
(j)
Q (y) = fQ(y) ∗ fQ(y) ∗ ...fQ(y)︸ ︷︷ ︸

j terms

.

Thus,

PPLL
ti, ti+1

= P(Vti+1
≤ Fti+1

|Vti > Fti)

= P

(∫ ti+1

ti

(
µs −

σ2
s

2

)
ds +

∫ ti+1

ti

σsdWs +

Nti+1∑
n=Nti

ln(1 + Yn) ≤ ln

(
m − 1

m

)
+

rT

N

)
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=

∫ ln(m−1
m )+ rT

N

−∞
p(i)(x)dx

By (5.6), the probability of loss PPL can be obtained.

5.3.2 Expected Loss

Suppose that the first loss takes place at τ . I.e. Cτ ≤ 0. We let τ = ∞ if a loss never

happens. i.e.

τ = ti if Vti ≤ Fti and Vtj > Ftj for j = 0 , 1 , 2 , ..., i − 1;

τ = +∞ if Vtj > Ftj for j = 0 , 1 , 2 , ..., N .

Since V0 > F0, then

τ = +∞ if Vtj > Ftj for j = 0 , 1 , 2 , ..., N

which is equivalent to

τ = +∞ if Vtj > Ftj for j = 1 , 2 , ..., N .

By the definition, τ is a stopping time.

We consider the following situation. If a loss happens at time τ , the cushion Cτ ≤ 0.

If we do not allow the short-sell, then at this trading time τ , we take the exposure to

be 0. Let

εti = C0

i−1∏
k=0

(
m

Stk+1

Stk

− (m − 1)erT/N

)
, (5.9)

where

Stk+1

Stk

= exp

∫ tk+1

tk

(
µs −

σ2
s

2

)
ds +

∫ tk+1

tk

σsdWs +

Ntk+1∑
nk=Ntk

ln(1 + Ynk
)

 .
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Then the discounted cushion is

C∗
T = exp(−rT )εtN χτ>T + exp(−rT )

N−1∑
j=0

εtjχτ=tj . (5.10)

Definition 5.8. If a loss happens, the conditional expectation of the discounted

cushion is called the conditional expected loss and we denote this by E[C∗
T |τ ≤ T ].

The expectation of the discounted cushion is called the unconditional expected

loss and we use E[C∗
T χτ≤T ] to represent it.

The following proposition gives the distribution of the break time τ .

Proposition 5.9. The distribution of τ defined above is

P(τ = ti) = PPLL
ti−1, ti

×
i−1∏
j=1

(
1 − PPLL

tj−1, tj

)
(5.11)

Remarks. In the above, if j − 1 < 0, let PPLL
tj−1, tj

= 0. In this case, P(τ = t0) = 0 as

expected.

Proof.

P(τ = ti) = P(Vti ≤ Fti , and Vtj > Ftj for j = 1 , 2 , ..., i − 1)

= P

(
{Vti ≤ Fti|Vti−1

> Fti−1
}

∩ i−1∩
j=1

{Vtj > Ftj |Vtj−1
> Ftj−1

}

)

= P

(
{Vti ≤ Fti|Vti−1

> Fti−1
}) ×

i−1∏
j=1

P({Vtj > Ftj |Vtj−1
> Ftj−1

}

)

= P

(
{Vti ≤ Fti|Vti−1

> Fti−1
}) ×

i−1∏
j=1

(1 − P({Vtj ≤ Ftj |Vtj−1
> Ftj−1

})

)

= PPLL
ti−1, ti

×
i−1∏
j=1

(
1 − PPLL

tj−1, tj

)
.

100



Lemma 5.10.

E[εti ] = C0

i−1∏
k=0

m

exp

(
µ

T

N

)
E

Ntk+1∏
nk=Ntk

(1 + Ynk
)

 − (m − 1)erT/N

 + G. (5.12)

where E
∏Ntk+1

nk=Ntk
(1 + Ynk

) is given by (5.2).

Proof. This is an corollary of Proposition 4.2 when substitute i to N .

Proposition 5.11. The expectation of loss conditional on the fact that a loss occur

is

E[C∗
T |τ ≤ T ] =

exp(−rT )
∑N−1

j=0 E[εtj ]P[τ = tj]∑N
i=1 P[τ = ti]

(5.13)

and the unconditional expected loss satisfies

E[C∗
T χτ≤T ] = exp(−rT )

N−1∑
j=0

E[εtj ]P[τ = tj], (5.14)

where E[εtj ] is given by (5.12) and P[τ = tj] is given by (5.11).

Proof.

E[C∗
T χτ≤T ] = E

[
exp(−rT )

N−1∑
j=0

εtjχτ=tj

]

= exp(−rT )
N−1∑
j=0

E[εtjχτ=tj ] = exp(−rT )
N−1∑
j=0

E[εtj ]P[τ = tj].

E[εtj ] is given by (5.12) and P[τ = tj] is given by (5.11). Thus we prove (5.14).

Moreover, by the property of conditional expectation, we have

E[C∗
T |τ ≤ T ] =

E[C∗
T χτ≤T ]

P[τ ≤ T ]
=

exp(−rT )
∑N−1

j=0 E[εtj ]P[τ = tj]∑N
i=1 P[τ = ti]

.

This is (5.13).
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5.3.3 Loss Distribution

In order to compute risk measures, we utilize the distribution function of the loss.

We compute, for x < 0, the quantity

P[C∗
T < x|τ ≤ T ]. (5.15)

We call it the Loss Distribution. For x < 0, the quantity

P[C∗
T χτ≤T < x] (5.16)

is called unconditional loss distribution.

Proposition 5.12. Let the density of ln(1 + Yn) be fQ(y) and C∗
T be the discounted

cushion. For x < 0, the unconditional loss distribution is

P[C∗
T χτ≤T < x] =

N−1∑
j=0

[ ∫ +∞

yi−1

∫ +∞

yi−2

...

∫ +∞

y0

i−2∑
k=0

ln
(
mxk − (m − 1)erT/N

)
+ ln

(
−

(
mxi−1 − (m − 1)erT/N

))
p(0)(x)dx0p

(1)(x1)dx1

...p(i−2)(xi−2)dxi−2p
(i−1)(xi−1)dxi−1P[τ = tj]

] (5.17)

and the loss distribution is

P[C∗
T < x|τ ≤ T ] =

P[C∗
T χτ≤T < x]∑N

i=1 P[τ = ti]
, (5.18)

where p(i)(x) is given by (5.8) and P[τ = tj] is given by (5.11) and

(y0, y1, y2, ... yi−1) ∈
{

(y0, y1, y2, ... yi−1) ∈ Ri

yk >
m − 1

m
erT/N for k = 0, 1, 2, ... i − 2
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i−2∑
k=0

ln(myk − (m − 1)erT/N)

+ ln
(
−

(
myi−1 − (m − 1)erT/N

))
> ln

−x

C0

+ rT

}
.

Proof. We have

P[C∗
T χτ≤T < x] = P

[
exp(−rT )

N−1∑
j=0

εtj < x

]

=
N−1∑
j=0

P[exp(−rT )εtj < x|τ = tj]P[τ = tj]].

We now calculate P[exp(−rT )εtj < x|τ = tj].

P[exp(−rT )εtj < x|τ = tj]

= P

[
exp(−rT )

i−1∏
k=0

C0

(
m

Stk+1

Stk

− (m − 1)erT/N

)
< x|τ = tj

]

= P

[
exp(−rT )

(
i−2∏
k=0

C0

(
m

Stk+1

Stk

− (m − 1)erT/N

))
(

m
Sti+1

Sti

− (m − 1)erT/N

)
< x|τ = tj

]

= P

[
exp(−rT )

(
i−2∏
k=0

C0

(
m

Stk+1

Stk

− (m − 1)erT/N

))
(
−

(
m

Sti+1

Sti

− (m − 1)erT/N

))
> −x|τ = tj

]

= P

[
i−2∑
k=0

ln

(
m

Stk+1

Stk

− (m − 1)erT/N

)

+ ln

(
−

(
m

Sti+1

Sti

− (m − 1)erT/N

))
> ln

−x

C0

+ rT |τ = τj

]

=

∫ +∞

yi−1

∫ +∞

yi−2

...

∫ +∞

y0

i−2∑
k=0

ln(mxk − (m − 1)erT/N)

+ ln
(
−

(
mxi−1 − (m − 1)erT/N

))
p(0)(x0)dx0p

(1)(x1)dx1...p
(i−2)(xi−2)dxi−2p

(i−1)(xi−1)dxi−1,
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where

(y0, y1, y2, ... yi−1) ∈
{

(y0, y1, y2, ... yi−1) ∈ Ri

yk >
m − 1

m
erT/N for k = 0, 1, 2, ... i − 2

i−2∑
k=0

ln
(
myk − (m − 1)erT/N

)
+ ln

(
−

(
myi−1 − (m − 1)erT/N

))
> ln

−x

C0

+ rT

}
.

Thus,

P[C∗
T χτ≤T < x] = P

[
exp(−rT )

N−1∑
j=0

εtj < x

]

=
N−1∑
j=0

[ ∫ +∞

yi−1

∫ +∞

yi−2

...

∫ +∞

y0

i−2∑
k=0

ln(mxk − (m − 1)erT/N)

+ ln(−(mxi−1 − (m − 1)erT/N))p(0)(x0)dx0p
(1)(x1)dx1

...p(i−2)(xi−2)dxi−2p
(i−1)(xi−1)dxi−1P[τ = tj]

]
.

Thus, we obtain (5.17). Through the property of conditional probability, we obtain

(5.18).

5.3.4 Conclusion

The definition of probability of loss, expected loss and loss distribution in the jump-

diffusion model with discrete trading time is corresponding to the continuous trading

time case.

104



5.4 Conditional Floor and Conditional Multiple of

CPPI under Jump-diffusion Model in Discrete

Trading Time

5.4.1 Introduction

In this section we study the conditional floor and conditional multiple from three

aspects: the probability of loss, expected loss and loss distribution.

5.4.2 Probability of Loss

Similar to proposition 1 in [2], we have the following proposition.

Proposition 5.13. The condition Ctk > 0 is satisfied at any time tk of the manage-

ment period with probability 1 if and only if:

1 − e−rT/N min
k=0, 1, ... N−1

Stk+1

Stk

<
1

m
. (5.19)

Proof. Cti has the relation in (5.1).

Ctk+1
= Ctk

(
m

Stk+1

Stk

− (m − 1)erT/N

)
.

The condition Ctk > 0 is true for any time tk, if and only if

m
Stk+1

Stk

− (m − 1)erT/N > 0

for all k = 0, 1, ... N − 1. This is equivalent to

1 − e−rT/N Stk+1

Stk

<
1

m
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for all k = 0, 1, ... N − 1 or equivalent to

1 − e−rT/N min
k=0, 1, ... N−1

Stk+1

Stk

<
1

m
.

Proposition 5.14. The probability of loss defined by (5.5) and probability of local

loss defined by (5.4) are monotone increasing functions of the multiple m. Moreover

both of them are irrelevant with the floor Ft.

Proof. We have proved the probability of local loss defined by (5.4) is given by

PPLL
ti, ti+1

=

∫ ln(m−1
m

)+ rT
N

−∞
p(i)(x)dx.

m increased =⇒ ln(m−1
m

) increased

=⇒
∫ ln(m−1

m
)+ rT

N

−∞ p(i)(x)dx increased for each i = 0, 1, ... N − 1

=⇒ PPLL
ti, ti+1

increased for each i = 0, 1, ... N − 1

and by (5.6) implies PPL increased.

From the expressions in (5.4), (5.5) and (5.6), we see both of them are irrelevant with

the floor Ft.

Similar to the Value-at-Risk (VaR) concept (See [27]), and as in the continuous

trading time case, we define:

Definition 5.15. For ε > 0, the multiple m = m0 which satisfies

P[∃ti ∈ τN : Vti ≤ Fti ] = ε

is called the ε-conditional multiple.
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m0 can be treated as a quantile. Since the probability of loss is monotone increas-

ing as a function of the multiple m, then for m < m0,

P
[
∃ti ∈ τN : Vti ≤ Fti

]
< ε.

For

PPL = 1 −
N∏

i=1

(
1 − PPLL

ti−1, ti

)
= ε,

if we assume all the probability of local losses are the same, we obtain

PPLL
ti−1, ti

= 1 − (1 − ε)
1
N .

From (5.7), we obtain the expression for m0.

5.4.3 Expected Loss

First we have, from (5.13) and (5.14), the following proposition:

Proposition 5.16. Given a fixed multiple, both the conditional expected loss given by

(5.13) and the unconditional expected loss given by (5.14) are monotone decreasing

functions of the initial floor F0.

Proof. They are direct consequences of (5.13) and (5.14).

Similar to the ε-conditional multiple, we define following two concepts.

Definition 5.17. For % < 0 and m = m0, the floor F0 = F c1 which satisfies

E[C∗
T |τ ≤ T ] = %

is called the first type %-m0-conditional floor.

and
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Definition 5.18. For % < 0 and m = m0, the floor F0 = F c2 which satisfies

E[C∗
T χτ≤T ] = %

is called the Second type %-m0-conditional floor.

Similar to (5.13) and (5.14), we can solve for the two conditional floors immedi-

ately.

5.4.4 Loss Distribution

Proposition 5.19. Given a fixed multiple and x < 0, the expressions (5.17) and

(5.18) are monotone increasing function of the initial floor F0

Proof. Since C0 = V0 − F0.

F0 increased =⇒

C0 decreased =⇒

ln(− x
C0

) increased =⇒

That is, both the expressions (5.17) and (5.18) are increasing.

Next we define the following two concepts.

Definition 5.20. For ε > 0, % < 0 and m = m0, the floor F0 = F c3 which satisfies

E[C∗
T χτ≤T < %] = ε

is called the third type ε-%-m0-conditional floor.

and
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Definition 5.21. For ε > 0, % < 0 and m = m0, the floor F0 = F c4 which satisfies

E[C∗
T < %|τ ≤ T ] = ε

is called the fourth type ε-%-m0-conditional floor.

The above two conditional floors are useful in numerical computations.

5.5 Convergence

In this section, we consider the relation between the case when the trading time is

continuous and the case when the trading time is disccrete.

Recall (5.1).

Ctk+1
= Ctk

(
m

Stk+1

Stk

− (m − 1)erT/N

)
,

When N → ∞, ∆t = T/N → 0

exp

(
r
T

N

)
∼ 1 + r

T

N
.

Thus, we got

Ctk+1
− Ctk

Ctk

+ 1 =

(
m

[
Stk+1

− Stk

Stk

+ 1

]
− (m − 1)erT/N

)
.

Let N → ∞, we have

dCt

Ct−
+ 1 =

(
m

[
dSt

St−
+ 1

]
− (m − 1)(1 + rdt)

)
,

and this is equivalent to

dCt

Ct−
=

(
m

dSt

St−
− (m − 1)(rdt)

)
.
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This is consistant with the continuous case (3.14). We have the following proposition:

Proposition 5.22. For N → ∞, the portfolio value in discrete trading time converges

a.s. to the portfolio value in continuous trading time.
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Chapter 6

Stochastic and dynamic floors

6.1 Introduction

In section 6.2, we will consider the case of stochastic floor which is equal to the

maximum of its past value and a given percentage of the portfolio value. The idea is

that when the portfolio value is large enough, we will increase the level of the floor.

Both the continuous and discrete trading time cases will be analyzed. We will also

calculate the distribution of the time.

In section 6.3, we will consider the case of stochastic floor which is indexed by the

given portfolio performance. The idea is similar to that as in section 6.2. We will

also calculate the distribution of the first-time-change of the floor.

In section 6.4, we will deal with Ratchet and Margin CPPI strategies with the time-

change of strategy defined on the exposition variance. We will show that in the

discrete trading time case, the Ratchet CPPI is equivalent to the stochastic floor

which is indexed by the given portfolio performance. In the cases of CPPI with

margin when the floor is close to the portfolio value, the exposure will be very small

and we will reduce the floor. We will discuss the distribution of the first-change-time
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of the floor when the trading time is continuous.

6.2 When the floor equals to the maximum of its

past value and a given percentage of the port-

folio value

In this section, the current floor value is the maximum of the past floor value and a

given percentage of the current portfolio value.

6.2.1 Discrete-time case with fixed multiple

Let

τn = {t0 = 0 < t1 < t2 < ... < tn = T}

denote a sequence of equidistant refinements of the interval [0, T ], where tk+1 − tk =

T
n

=: ∆ for k = 0, ..., n − 1.

Let

Ftk = max{Ftk−1
exp(r∆), xVtk}

and the initial floor F0 = Ge−rT be the same as before and suppose x is an arbitrary

but fixed percentage of the portfolio value. This definition means that the floor is

equal to the maximum of its past value and a given percentage of the portfolio value.

As the portfolio value increases and if we keep the floor unchanged, the cushion will

be very big. Our idea is that as the portfolio value increase to a specific level, we will

also increase the level of the floor. In general, we assume xV0 ≤ F0.

Let T1 = min{t > 0 : Ft = xVt}. Denote respectively by θB
0 and θS

0 the shares invested
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on the riskless and risky assets. We have:

θB
0 = (V0 − θS

0 S0)/B0,

θS
0 = m(V0 − F0)/S0.

The following proposition calculates the probability of the first-time-change of the

floor taking place at t1.

Proposition 6.1. For the jump-diffusion model, if we assume xi+1 = ln(Si+1

Si
), i =

0, 1, 2, .... be i.i.d. and their density function be p(x). Then the probability of the

first-time-change of the floor which takes happen at t1 is

P[T1 = t1] =

∫ ∞

ln(er∆
F0/x−θB

0 B0
m(V0−F0)

)

p(x)dx.

Proof.

P[T1 = t1] = P[Ft1 ≤ xVt1 ] = P[F0e
r∆ ≤ x(Ft1 + et1)]

= P

[
F0e

r∆ ≤ x

(
θB
0 B0e

r∆ + m(V0 − F0)

× exp

∫ t1

0

(
µs −

σ2
s

2

)
ds +

∫ t1

0

σsdWs +

Nt1∑
n=1

ln(1 + Yn)

)]

= P

exp

∫ t1

0

(
µs −

σ2
s

2

)
ds +

∫ t1

0

σsdWs +

Nt1∑
n=1

ln(1 + Yn)

 ≥ er∆F0/x − θB
0 B0

m(V0 − F0)


=

∫ ∞

ln

„

er∆
F0/x−θB

0 B0
m(V0−F0)

« p(x)dx.

Remarks. In the simple CPPI case, Yn = 0, µs and σs = σ, then

P[Ft1 = xVt1 ] = P
[
exp

(
µ − 1

2
σ2

)
t1 + σWt1 ≥ er∆F0/x − θB

0 B0

m(V0 − F0)

]
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= 1 − N

(
1

σ
√

∆

(
ln

[
er∆F0/x − θB

0 B0

m(V0 − F0)

]
−

(
µ − 1

2
σ2

)
∆

))
.

This is the first part of the proposition 1 on [59].

In the following, we consider the probability that T1 = tN .

Proposition 6.2. For the jump-diffusion model, if assume the density function of xi

is p(x), the the probability of the first-time-change of floor at tN is

P[T1 = tN ] =

∫
...

∫
DN

p(ui)...p(uN)du1du2...duN ,

where

(u1, ..., uN) ∈ Dn iff

∀i ≤ N − 1, F0e
ri∆ > x

[
F0e

ri∆ + C0

i∏
j=1

g(uj)

]
;

for i = N, F0e
rN∆ ≤ x

[
F0e

rN∆ + C0

i∏
j=1

g(uN)

]
.

Proof. We have

P[T1 = tN ] = P [Ft1 > xVt1 , .., FtN−1
> xVtN−1

, FtN ≤ xVtN ]

and

Vti = θB
ti−1

Bti + θS
ti−1

Sti = Fti + Cti

= F0e
rti + C0

ti∏
t=1

[
1 + (1 − m)

Bt − Bt−1

Bt−1

+ m
St − St−1

St−1

]
.

Let g(x) = 1 + (1 − m)(er∆ − 1) + m(ex − 1), then

Vti = F0e
rti + C0

ti∏
t=1

g(xt).
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Thus,

P[T1 = tN ] = P[Ft1 > xVt1 , .., FtN−1
> xVtN−1

, FtN ≤ xVtN ]

= P

[
F0e

r∆ > x[F0e
r∆ + C0g(x1)], ..., F0e

r(N−1)∆ >

x

[
F0e

r(N−1)∆ + C0

tN−1∏
t=1

g(xt)

]
, F0e

rN∆ ≤ x

[
F0e

rN∆ + C0

tN∏
t=1

g(xt)

]]
.

Let

(u1, ..., uN) ∈ Dn iff

∀i ≤ N − 1, F0e
ri∆ > x

[
F0e

ri∆ + C0

i∏
j=1

g(uj)

]
;

for i = N, F0e
rN∆ ≤ x

[
F0e

rN∆ + C0

i∏
j=1

g(uN)

]
.

For the jump-diffusion model, when the density function of xi is p(x), we have

P[T1 = tN ] =

∫
...

∫
DN

p(ui)...p(uN)du1du2...duN .

Remarks. The second part of proposition 1 on [59] is a special case. Also, when

the density function p(x) of xi is given, the associated probability can be calculated

explicitly.

Next we have the following proposition ( see also [59]):

Proposition 6.3. For any ti, the stochastic floor F is equal to the stochastic floor Q

defined by:

Qti = max

[
F̃ti , sup

j≤i
er(ti−tj)Vtj

]
.
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Proof. (1) Firstly, the stochastic floor F is above the deterministic floor F̃

Fti ≥ F̃ti = P0e
rti ,

and secondly, we have:

Fti ≥ x sup
j≤i

er(ti−tj)Vtj .

Indeed, by recursion we have:

Fti ≥ erδFti−1
and Fti ≥ xVti ,

Fti−1
≥ erδFti−2

and Fti−1
≥ xVti−1

.

Thus,

Fti ≥ max(erδVti−1
; Vti),

which, by iteration, leads to the inequality Fti ≥ Qti .

(2) Conversely, if Fti = xVti , then

Vti = sup
j≤i

er(ti−tj)Vtj .

Therefore, since we have Qti ≥ er(ti−tj)Vtj for all j ≤ i, we deduce that Fti ≤ Qti .

The proposition shows that the previous CPPI strategy with floor F is the discrete-

time version of Time Invariant Portfolio Protection strategy(TIPP).
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6.2.2 Continuous-time case with a fixed multiple

As in the previous section, when the current floor value is the maximum of the past

floor value and a given percentage of the current portfolio value, the strategy is

equivalent to the TIPP strategy. Standard convergence results lead to the following

model, in continuous-time:

Ft = max

[
F̃t, x sup

s≤t
er(t−s)Vs

]
,

et = mCt = m(Vt − Ft).

Define

T c
1 = inf

[
t ≤ T : Ft = x sup

s≤t
er(t−s)Vs

]
.

This is the first-time-change of floor. We will consider the probability distribution

of T c
1 .

Before T c
1 , we have

Vt = C0 exp

{ ∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds

+

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn)

}
+ F0e

rt.

Denote

Xt =

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn).

Thus, we have

T c
1 = inf

[
t ≤ T : Ft = x sup

s≤t
er(t−s)Vs

]
= inf

[
t ≤ T : x sup

s≤t
er(t−s)Vs = x

(
C0e

rt exp

{
sup
s≤t

Xs

}
+ ertF0

)
= F0e

rt

]
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= inf

[
t ≤ T : sup

s≤t
Xs ≥ ln

[
F0

C0

(
1

x
− 1

)]]
.

When µs = µ and σs = σ is constant and then

Xt =

(
m(µ − r) − 1

2
m2σ2

)
t + mσWt +

Nt∑
n=1

ln(1 + mYn).

Let

A =
(µ − r) − 1

2
mσ2

σ

and

W (A)
s =

(
As + Ws +

1

mσ

Nt∑
n=1

ln(1 + mYn)

)
.

Then, we can calculate the distribution of sups≤t W
(A)
s is

P
(

sup
s≤t

W (A)
s ≤ y

)
= P

[
∞∪

k=1

(
sup
s≤t

(As + Ws) +
1

mσ

Nt∑
n=1

ln(1 + mYn) ≤ y,Nt = k

)]

=
∞∑

k=1

P

(
sup
s≤t

(As + Ws) +
1

mσ

Nt∑
n=1

ln(1 + mYn) ≤ y|Nt = k

)
P(Nt = k)

=
∞∑

k=1

P
(
sups≤t(As + Ws) + 1

mσ

∑Nt

n=1 ln(1 + mYn) ≤ y,Nt = k
)

P(Nt = k)
P(Nt = k)

=
∞∑

k=1

P
(
sups≤t(As + Ws) + 1

mσ

∑Nt

n=1 ln(1 + mYn) ≤ y
)

P(Nt = k)

P(Nt = k)
P(Nt = k)

=
∞∑

k=1

P

(
sup
s≤t

(As + Ws) +
1

mσ

Nt∑
n=1

ln(1 + mYn) ≤ y

)
P(Nt = k)

=
∞∑

k=1

P

(
sup
s≤t

(As + Ws) +
1

mσ

k∑
n=1

ln(1 + mYn) ≤ y

)
e−

R t
0 λsds

(∫ t

0
λsds

)k

k!
.
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Recall that a property possessed by the maximum value of the Brownian motion with

drift gives:

P

(
sup
s≤t

(As + Ws) +
1

mσ

k∑
n=1

ln(1 + mYn) ≤ y

)

=

∫ ∞

−∞

(
1 − 1

2
Erfc

(
y − y2√

2t
− A

√
t√
2

)
−1

2
e2A(y−y2)Erfc

(
y − y2√

2t
+ A

√
t√
2

))
dFk(y2),

where the function Erfc is given by:

Erfc(x) =
2√
π

∫ ∞

x

e−u2

du

and the Fk(y2) is the distribution function of 1
mσ

∑k
n=1 ln(1 + mYn).

Then we have

P
(

sup
s≤t

W (A)
s ≤ y

)

=
∞∑

k=1

e−
R t
0 λsds

(∫ t

0
λsds

)k

k!

∫ ∞

−∞
(1 − 1

2
Erfc

(
y − y2√

2t
− A

√
t√
2

)
−1

2
e2A(y−y2)Erfc

(
y − y2√

2t
+ A

√
t√
2
)

)
dFk(y2).

Therefore, we have deduced the following proposition:

Proposition 6.4. When assume µs = µ and σs = σ be constant, the cdf of the first

time T c
1 before maturity T at which Ft = sups≤t e

r(t−s)Vs is given by:

P[T c
1 ≤ t] =

∞∑
k=1

e−
R t
0 λsds

(∫ t

0
λsds

)k

k!

∫ ∞

−∞

(
1

2
Erfc

(
y − y2√

2t
− A

√
t√
2

)
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+
1

2
e2A(y−y2)Erfc

(
y − y2√

2t
+ A

√
t√
2

))
dFk(y2).

Proposition 5 of [59] is a special case for the diffusion model without jump.

6.2.3 Capped CPPI

Assume that the portfolio manager does not want selling short on the money market

account (condition θB
t ≥ 0).

Therefore the exposure e is bounded by a fixed proportion $ of the portfolio value V .

We call it the Capped CPPI. This leads to the following conditions on the CPPI

strategy in continuous time:

(a)

Ft = max

[
F̃t, x sup

s≤t
er(t−s)Vs

]

The floor equals to the maximum of its past value and a given percentage of the

portfolio value.

(b)

et = inf($Vt,mCt)

We always assume that

Ct = Vt − Ft.

There are four cases have to be analyzed:

Case 1 (C1): Ft = F̃t and et = mCt (Standard CPPI);

Case 2 (C2): Ft = F̃t and et = $Vt (Standard capped CPPI);

Case 3 (C3): Ft = x sups≤t e
r(t−s)Vs and et = mCt;
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Case 4 (C4): Ft = x sups≤t e
r(t−s)Vs and et = $Vt.

For (C1):

We have Ft = F̃t, Thus, F̃t ≥ xVt or equivalently −F̃t ≤ −xVt.

Since et = mCt, we have $Vt ≥ mCt. Then et = mCt = m(Vt−F̃t) with −F̃t ≤ −xVt.

Therefore, we get:

et ≤ m(1 − x)Vt.

Additionally, since Ct ≤ (1 − x)Vt and $Vt ≥ mCt, we deduce:

Ct ≤ min
[
(1 − x),

$

m

]
Vt.

For (C2):

We have Ft = F̃t and et = $Vt. Thus, $Vt ≤ mCt. Then:

$Vt ≤ m(Vt − F̃t) ≤ m(1 − x)Vt

Consequently, we have:

$ ≤ m(1 − x).

Equivalently, if Ft = F̃t and $ > m(1 − x), then et = mCt, which means that the

TIPP strategy does not need to be capped, in that case.

For (C3) and (C4), whenever there exists a ratchet effect, the portfolio value Vt

satisfies Vt = sups≤t e
r(t−s)Vs. we have discuss the (C3) on section 6.2 and for the

(C4) we will do it on section 6.4.

121



6.3 CPPI with a floor indexed on a given portfolio

performance

In this section, the floor value is indexed accordingly on a given portfolio performance.

6.3.1 Discrete-time with a fixed multiple

For τ ∈ {t0 = 0, ..., tN = T}, the CPPI strategy is defined as follows. The floor is

now assumed to be standard (deterministic) until the portfolio return
Vti

V0
becomes

higher than a deterministic value αert where the coefficient α is higher than 1. As

soon as
Vti

V0
> αerti , the floor is equal to a fixed proportion β of the portfolio value

with 0 < β < 1. Therefore, the floor F is determined as follows. Denote by T d,α
1 the

first time at which the portfolio return
Vti

V0
is higher than αerti .

Proposition 6.5. Under above assumption, the time T d,α
1 is characterized by the

relation:

T d,α
1 = inf{ti ≤ T : Vti ≥ αV0e

rti}.

Thus the floor is given by:

Ftj = F̃tj = F0e
rtj for tj ≤ T d,α

1 ;

Ftj = βVT d,α
1

er(tj−T d,α
1 ) for tj > T d,α

1 .

In the following, we calculate the the probability of T d,α
1 = t1.

Proposition 6.6. For the jump-diffusion model, if we assume xi+1 = ln(Si+1

Si
), i =

0, 1, 2, .... is i.i.d. and their density function is p(x), then the probability of the first-

time-change of floor which takes happen at t1 is

P[Vt1 ≥ αV0e
r∆] =

∫ ∞

ln

„

er∆
αV0−θB

0 B0
m(V0−F0)

« p(x)dx.
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Proof. We have

P[T d,α
1 = t1] = P

[
Vt1 ≥ αV0e

r∆
]

= P
[
θB
0 B0e

r∆ + m(V0 − F0) × exp

[ ∫ t1

0

(
µs −

σ2
s

2

)
ds +

∫ t1

0

σsdWs

+

Nt1∑
n=1

ln(1 + Yn)

]
≥ αV0e

r∆

]

= P

[
exp

∫ t1

0

(
µs −

σ2
s

2

)
ds +

∫ t1

0

σsdWs +

Nt1∑
n=1

ln(1 + Yn)


≥ er∆αV0 − θB

0 B0

m(V0 − F0)

]
.

=

∫ ∞

ln

„

er∆
αV0−θB

0 B0
m(V0−F0)

« p(x)dx.

Remarks. For the simple CPPI case, Yn = 0, µs and σs = σ, then

P
[
Vt1 ≥ αV0e

r∆
]

= P
[
exp

(
µ − 1

2
σ2

)
t1 + σWt1 ≥ er∆F0/x − θB

0 B0

m(V0 − F0)

]
= 1 − N

(
1

σ
√

∆

(
ln

[
er∆αV0 − θB

0 B0

m(V0 − F0)

]
−

(
µ − 1

2
σ2

)
∆

))
.

In the following, we consider the probability that T1 = tN .

Proposition 6.7. For the jump-diffusion model, if we assume xi+1 = ln
(

Si+1

Si

)
,

i = 0, 1, 2, .... is i.i.d. and their density function is p(x), then the probability of the

first-time-change of floor which takes happen at tN is

P
[
T d,α

1 = tN

]
=

∫
...

∫
DN

p(ui)...p(uN)du1du2...duN ,
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where

(u1, ..., uN) ∈ Dn iff

∀i ≤ N − 1, F0e
ri∆ + C0

ti∏
t=1

g(xt) < αV0e
ri∆;

for i = N, F0e
rN∆ + C0

tN∏
t=1

g(xt) ≥ αV0e
rN∆.

Proof. We have

P[T1 = tN ] = P
[
Ft1 > xVt1 , .., FtN−1

> xVtN−1
, FtN ≤ xVtN

]
and

Vti = θB
ti−1

Bti + θS
ti−1

Sti = Fti + Cti

= F0e
rti + C0

ti∏
t=1

[
1 + (1 − m)

Bt − Bt−1

Bt−1

+ m
St − St−1

St−1

]
.

Let g(x) = 1 + (1 − m)(er∆ − 1) + m(ex − 1), then

Vti = F0e
rti + C0

ti∏
t=1

g(xt)

and

P[T d,α
1 = tN ]

= P
[
Vt1 < αV0e

r∆, .., VtN−1
< αV0e

r(N−1)∆, VtN ≥ αV0e
rN∆

]
= P

[
F0e

r∆ + C0g(x1) < αV0e
r∆, ..., F0e

r(N−1)∆ + C0

tN−1∏
t=1

g(xt) < αV0e
r(N−1)∆,

F0e
rN∆ + C0

tN∏
t=1

g(xt) ≥ erN∆

]
.
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Assume

(u1, ..., uN) ∈ Dn iff

∀i ≤ N − 1, F0e
ri∆ + C0

ti∏
t=1

g(xt) < αV0e
ri∆;

For i = N, F0e
rN∆ + C0

tN∏
t=1

g(xt) ≥ αV0e
rN∆,

then, we have

P
[
T d,α

1 = tN

]
=

∫
...

∫
DN

p(ui)...p(uN)du1du2...duN .

6.3.2 Continuous-time case

The floor is now assumed to be standard (deterministic) until the portfolio return

Vt/V0 is higher than a deterministic value of the form αert where the coefficient α is

higher than 1. As soon as Vt/V0 > αert, the floor is equal to a fixed proportion β of

the portfolio value with 0 < β < 1. Therefore, the floor F is determined as follows.

Denote by T c,α
1 the first time at which the portfolio return Vt/V0 is higher than αert.

Proposition 6.8. Under above assumption, the time T c,α
1 is characterized by the

relation:

T c,α
1 = inf{t ≤ T : Vt ≥ αV0e

rt}.

Thus, the floor is given by:

Ft = F̃t = F0e
rt for t ≤ T c,α

1 ;

Ft = βVT c,α
1

er(t−T c,α
1 ) for t > T c,α

1 .
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The stochastic floor is also defined by:

Ft = F̃tχt≤T c,α
1

+ βVT c,α
1

er(t−T c,α
1 )χt>T c,α

1
.

We assume that the exposure satisfies: et = mCt. Therefore at time T c,α
1 , the portfolio

value is such that VT c,α
1

≥ αV0e
rT c,α

1 . Thus, at time T c,α
1 , the floor is equal to βVT c,α

1

and the cushion is equal to (1 − β)VT c,α
1

.

As before we have

Proposition 6.9. The portfolio value after T c,α
1 (T c,α

1 < t ≤ T ) is

(1 − β)VT c,α
1

exp

{ ∫ t

T c,α
1

(
(r + m(µs − r)) − mσ2

s

2

)
ds

+

∫ t

T c,α
1

mσsdWs

}  Nt∏
n=N

T
c,α
1

(1 + mYn)

 + βVT c,α
1

.

and

Proposition 6.10. When assume µs = µ and σs = σ be constant, the cumulative

distribution function of T c,α
1 is given by

P(T c,α
1 ≤ t) = 1 −

∞∑
k=1

e−
R t
0 λsds

(∫ t

0
λsds

)k

k!

∫ ∞

−∞

(
1 − 1

2
Erfc

(
y − y2√

2t
− A

√
t√
2

)
−1

2
e2A(y−y2)Erfc

(
y − y2√

2t
+ A

√
t√
2

))
dFk(y2),

where the Fk(y2) is the distribution function of 1
mσ

∑k
n=1 ln(1 + mYn) and

y =
1

mσ
ln

(α − 1)F0 + αC0

C0

.
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Proof. We have

P(T c,α
1 ≤ t) = 1 − P(T c,α

1 > t)

Before T c,α
1 , we have

Vt = C0 exp

{ ∫ t

0

(
(r + m(µs − r)) − m2σ2

s

2

)
ds

+

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn)

}
+ F0e

rt.

Denote

Xt =

∫ t

0

(
m(µs − r) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn).

When µs = µ and σs = σ is constant, let

A =
(µ − r) − 1

2
mσ2

σ

and

W (A)
s =

(
As + Ws +

1

mσ

Nt∑
n=1

ln(1 + mYn)

)
,

then we have

P(T c,α
1 > t) = P

(
sup

0≤s≤t

Vt

Vs

< αert

)
= P

(
sup

0≤s≤t

(
C0e

Xs + F0

)
< αV0

)
= P

(
sup

0≤s≤t
Xs < ln

(αV0 − F0)

C0

)
= P

(
sup

0≤s≤t
W (A)

s <
1

mσ
ln

(α − 1)F0 + αC0

C0

)
.
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By subsection 6.2.2 we deduce that

P
(

sup
s≤t

W (A)
s ≤ y

)
=

∞∑
k=1

e−
R t
0 λsds

(∫ t

0
λsds

)k

k!

∫ ∞

−∞

(
1 − 1

2
Erfc

(
y − y2√

2t
− A

√
t√
2

)
−1

2
e2A(y−y2)Erfc

(
y − y2√

2t
+ A

√
t√
2

))
dFk(y2)

where Fk(y2) is the distribution function of 1
mσ

∑k
n=1 ln(1 + mYn).

Let y = 1
mσ

ln (α−1)F0+αC0

C0
, then we have the conclusion.

6.4 CPPI with a floor indexed on the exposition

variance

6.4.1 The “Ratchet” CPPI

Discrete-time case with fixed multiple

For τ ∈ {t0 = 0, ..., tN = T}, the CPPI strategy is defined as follows. The floor is

based on the difference between the two potential values of the exposure.

As usual, the exposure is defined as the minimum between the standard cushion

multiplied by the multiple and a given percentage of the portfolio value:

etk = inf[m(Vtk − F̃tk), $Vtk ]. (6.1)

We have

etk = inf[m(Vtk − F̃tk), $Vtk ] ⇐⇒ Ftk = max

[
F̃tk ,

m − $

m
Vtk

]
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This is equivalent to the situation in subsection 4.2.1 with the percentage

x =
m − $

m
.

Denote by T c,r
1 the first time at which m(Vtk − F̃tk) greater than $Vtk . Its properties

is a special case as in subsection 4.2.1 with the percentage

x =
m − $

m
.

Continuous-time case with fixed multiple

The floor is based on the difference between the two potential values of the exposure.

As usual, the exposure is defined as the minimum between the standard cushion

multiplied by the multiple and a given percentage of the portfolio value:

et = inf[mCt, $Vt]. (6.2)

At time 0, the exposure e0 is assumed to be equal to mC0. Consider the first time

T d,r
1 at which mCt becomes higher than $Vt. That is:

Proposition 6.11. Under above assumption, the time T d,r
1 is characterized by the

relation:

T d,r
1 = inf{t ≤ T : mCt ≥ $Vt}.

Then, the floor is defined as follows:

F r
t = F̃t if t < T r

1 ;

F r
t =

(
m − $

m

)
VT r

1
er(t−T r

1 ) if t ≥ T r
1 .
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We have

et = inf[mCt, $Vt] ⇐⇒ m(Vt − Ft) = inf[m(Vt − F̃t), $Vt]

⇐⇒ Ft = max

[
F̃t,

m − $

m
Vt

]

On the other hand, the standard convergence result in the discrete-time case and

proposition 4.3 lead to the equivalent situation given in subsection 4.2.2 with the

percentage

x =
m − $

m
.

Thus, we can calculate the probability distribution of T d,r
1 using the result in subsec-

tion 4.2.2.

6.4.2 CPPI with margin

This kind of strategy can be applied in the situation when the initial exposition is

too high.

The initial floor is chosen to be higher than the reference floor. The difference, called

the margin, can be used later if the exposure gets too small.

Denote by F0 the initial reference level of the floor. The initial value of the stochastic

floor F0 is equal to the reference level plus an initial margin equal to M0. Thus we

have:

F0 = F̃0 + M0.

The exposition e is equal to mC with C = V − F . Assume that Ft = F0e
rt until the

time Tmarg
1 at which the exposure e becomes less than or equal to 0. The floor F is

then:

FT marg
1

= (F̃0 + γM0)e
rT marg

1 with 0 < γ < 1. (6.3)
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That is, at time Tmarg
1 , the reduction of the floor equals to

(1 − γ)M0e
rT marg

1 .

Usually, the parameter γ is set to 1/2.

The probability distribution of the time Tmarg
1 is determined as follows. We consider

a “small” ε > 0 and examine the time Tmarg
1 (ε) at which Vt is equal or less than

(F0 + ε)ert. We have: for any t ≤ Tmarg
1 (ε)

Vt = C0 exp

{ ∫ t

0

(
r + m(µs − r) − m2σ2

s

2

)
ds

+

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn)

}
+ F0e

rt.

Denote

Xt =

∫ t

0

(
(m(µs − r)) − m2σ2

s

2

)
ds +

∫ t

0

mσsdWs +
Nt∑

n=1

ln(1 + mYn)

and

T
marg
1 (ε) = inf

{
t ≤ T | inf

0≤s≤t
(Xs) ≤ ln

[
ε

C0

]}
.

When the µs = µ and σs = σ are constants we have

Xt =

(
m(µ − r) − 1

2
m2σ2

)
t + mσWt +

Nt∑
n=1

ln(1 + mYn).

Let

A =
(µ − r) − 1

2
mσ2

σ
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and

W (A)
s =

(
As + Ws +

1

mσ

Nt∑
n=1

ln(1 + mYn)

)
,

so that

T
marg
1 (ε) = inf

t ≤ T

∣∣∣∣ inf
0≤s≤t

(
WA

s

)
≤

ln
[

ε
C0

]
mσ

 .

Denote

y =
ln

[
ε

C0

]
mσ

,

then

P
(

inf
0≤s≤t

(
WA

s

)
≤ y

)
= P

(
− inf

0≤s≤t

(
WA

s

)
≤ −y

)
= P

(
sup

0≤s≤t

(
−WA

s

)
≤ −y

)
.

Similar to our discussions in subsection 4.2.2, we get

P
(

inf
0≤s≤t

(
WA

s

)
≤ y

)
= P

(
sup

0≤s≤t

(
−WA

s

)
≤ −y

)

=
∞∑

k=1

e−
R t
0 λsds

(∫ t

0
λsds

)k

k!

∫ ∞

−∞

(
1

2
Erfc

(
−y − y2√

2t
+ A

√
t√
2

)
+

1

2
e−2A(−y−y2)Erfc

(
−y − y2√

2t
− A

√
t√
2

))
dF ′

k(y2),

where F ′
k(y2) is the distribution function of

− 1

mσ

k∑
n=1

ln(1 + mYn).

Therefore, we have:
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Proposition 6.12. Suppose that µs = µ and σs = σ are constants.Then the cdf of

the time Tmarg
1 (ε) is given by

P
(
T

marg
1 (ε) ≤ t

)
=

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!

∫ ∞

−∞

(
1 − 1

2
Erfc

(
−y − y2√

2t
+ A

√
t√
2

)
−1

2
e−2A(−y−y2)Erfc

(
−y − y2√

2t
− A

√
t√
2

))
dF ′

k(y2)

Proof.

P
(
T

marg
1 (ε) ≤ t

)
= 1 − P

(
T

marg
1 (ε) > t

)
= 1 − P

(
inf

0≤s≤t

(
WA

s

)
≤ y

)
.

Substitute last term and we get the conclusion.
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Chapter 7

CPPI in the Fractional Brownian
Markets

7.1 Fractional Brownian Markets

Define

φ(s, t) = H(2H − 1)|s − t|2H−2, s, t ∈ R. (7.1)

and suppose that BH(t) is a fractional Brownian motion with Hurst parameter H

in (1/2, 1) defined on the probability space (Ω, F, µφ). Let F
(H)
t be the filtration

generated by BH(t).

Reference [22] discusses the fractional Ito Integrals in terms of the Wick product

associated with the fractional Brownian motion having Hurst parameter in (1/2, 1).

i.e.

∫ b

a

f(t, ω)dBH(t) = lim
|∆|→0

n−1∑
k=0

f(tk, ω) ¦ (BH(tk+1) − BH(tk)). (7.2)

See also [35] for some finance applications .

For the detail of the wick product and construction of fractional Brownian motion
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with Hurst parameter H, see references [22] and [35].

Definition 7.1. The fractional Black-Scholes market has two investment com-

ponents:

(1)A bank account or a bond, where the price A(t) satisfies:

dA(t) = rA(t)dt, A(0) = 1; 0 ≤ t ≤ T. (7.3)

(2) A stock, where the price S(t) satisfies:

dS(t) = µS(t)dt + σS(t)dBH(t); S(0) = x > 0, (7.4)

and its solution is

S(t) = x exp

(
σBH(t) + µt − 1

2
σ2t2H

)
t ≥ 0. (7.5)

Definition 7.2. A portfolio or trading strategy θ(t) = θ(t, ω) = (u(t), v(t)) is an

F
(H)
t -adapted two-dimensional process giving the number of units u(t), v(t) held at

time t of the bond and the stock, respectively.

We assume the corresponding value process Z(t) = Zθ(t, ω) is given by

Zθ(t, ω) = u(t)A(t) + v(t) ¦ S(t). (7.6)

Definition 7.3. The portfolio is called self-financing if

dZθ(t, ω) = u(t)dA(t) + v(t) ¦ dS(t)

:= u(t)dA(t) + µv(t) ¦ S(t)dt + σv(t) ¦ S(t)dBH(t); t ∈ [0, T ].

(7.7)

The Girsanov theorem for the fractional Brownian motion(Theorem 3.18 in [35])
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shows that

B̂H(t) :=
µ − r

σ
t + BH(t) (7.8)

is a fractional Brownian motion with respect to the measure µ̂φ defined on FH
T by

dµ̂φ(ω) = exp

(
−

∫ T

0

K(s)dBH(s) − 1

2
|K|2φ

)
dµφ(ω), (7.9)

where K(s) = K(T, s) is defined by the following properties: supp K ⊂ [0, T ] and

∫ T

0

K(T, s)φ(t, s)ds =
µ − r

σ
, for 0 ≤ t ≤ T. (7.10)

For the self-financing portfolio, from (7.6) and (7.7), we have

dZθ(t) = rZθ(t)dt + σv(t) ¦ S(t)

[
µ − r

σ
dt + dBH(t)

]
(7.11)

= rZθ(t)dt + σv(t) ¦ S(t)dB̂H(t) (7.12)

Let L̂1,2
φ (R) denote the completion of the set of all F

(H)
t -adapted processes f(t) =

f(t, ω) such that

||f ||L̂1,2
φ (R) := Eµ̂φ

[∫
R

∫
R

f(s)f(t)φ(s, t)dsdt

]
+ Eµ̂φ

[(∫
R

Dφ
s f(s)ds

)2
]

< ∞.

Definition 7.4. A portfolio is called admissible if it is self-financing and v ¦ S ∈

L̂1,2
φ (R).

Definition 7.5. An admissible portfolio θ is called an arbitrage for the market in

t ∈ [0, T ] if

Zθ(0) ≤ 0, Zθ(T ) ≥ 0 a.s. and

µφ

(
ω : Zθ(T, ω) > 0

)
> 0.
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Definition 7.6. The market (A(t), S(t)); t ∈ [0, T ] is called complete if for every

F
(H)
T -measurable bounded random variable F (ω) there exists z ∈ R and portfolio

θ = (u, v) such that

F (ω) = Zθ,z(T, ω). (7.13)

This is the same as the condition that

e−rT F (ω) = z +

∫ T

0

e−rtσv(t) ¦ S(t)dB̂H(t). (7.14)

Reference [35] showes that the fractional Black-Scholes market (7.3) and (7.4) has no

arbitrage opportunities and it is complete.

7.2 CPPI in the Fractional Black-Scholes market

Recall that Vt is the portfolio value, Ft = rFtdt, FT = G is the floor, Ct = Vt − Ft is

the cushion, m is the multiplier and et = mCt is the exposure.

Proposition 7.7. The portfolio value of CPPI under the fractional Black-Scholes

model in continuous trading time is

Vt = (V0 − F0) exp

[
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

]
+ Ft. (7.15)

Proof. With the trading strategies denoted by θ(t) = (u(t), v(t)), we have the portfolio

value Vt

Vt = utAt + vt ¦ St, (7.16)

dVt = utdAt + vt ¦ dSt, (7.17)
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and

vt ¦ St = m(Vt − Ft). (7.18)

By (7.11), we have

dVt = rVtdt + σvt ¦ St

[
µ − r

σ
dt + dBH(t)

]
. (7.19)

Substitute (7.18) into (7.19), we obtain,

dVt = rVtdt + σm(Vt − Ft)

[
µ − r

σ
dt + dBH(t)

]
. (7.20)

Since Ct = Vt − Ft and dFt = rFtdt, we have

d(Vt − Ft) = r(Vt − Ft)dt + σm(Vt − Ft)

[
µ − r

σ
dt + dBH(t)

]
, (7.21)

thus,

dCt = rCtdt + σmCt

[
µ − r

σ
dt + dBH(t)

]
(7.22)

= Ct(r + m(µ − r)dt + mσdBH(t)). (7.23)

Then

Ct = C0 exp

[
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

]
. (7.24)

Therefore, we have (7.15).

By (3.50) in [35], we have

Eµφ
[Ct] = C0 exp [(r + m(µ − r))t] .
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Thus we have

Proposition 7.8. The expectation of CPPI portfolio value under the fractional Black-

Scholes model in continuous time trading is

(V0 − F0) exp [(r + m(µ − r))t] + Ft. (7.25)

Proposition 7.9. The variance of the CPPI portfolio value under the fractional

Black-Scholes model in continuous time trading is

Var[Vt] = (V0 − F0)
2 exp [2(r + m(µ − r))t]

[
exp

[
m2σ2t2H

]
− 1

]
. (7.26)

Proof.

Var[Vt] = Var[Ct]

= C2
0 exp [2(r + m(µ − r))t] Var

[
exp

[
−1

2
m2σ2t2H + mσBH(t)

]]
.

For Var
[
exp

[
−1

2
m2σ2t2H + mσBH(t)

]]
, we have

Var

[
exp

[
−1

2
m2σ2t2H + mσBH(t)

]]
= Eµφ

[
exp

[
−m2σ2t2H + 2mσBH(t)

]]
−

(
Eµφ

[
exp

[
−1

2
m2σ2t2H + mσBH(t)

]])2

= exp
[
m2σ2t2H

]
− 1.

For the last step, we have used (3.50) in [35]. Therefore, we get

Var[Vt] = C2
0 exp [2(r + m(µ − r))t]

[
exp

[
m2σ2t2H

]
− 1

]
.
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7.3 CPPI Option

We consider the Vanilla options underlying the CPPI portfolio.

Proposition 7.10. The pricing of CPPI portfolio call option under the fractional

Black-Scholes model is

e−rT Eµ̂φ
[(VT − K)+] = (V0 − F0)Φ

(
η +

1

2
mσTH

)
− (G − K)e−rT Φ

(
η − 1

2
mσTH

)
,

(7.27)

where

η = (mσ)−1T−H

(
ln

V0 − F0

G − K

)
+ rT

and Φ(t) is the normal distribution function.

Proof. Since

e−rT Eµ̂φ
[(VT − K)+] = e−rT Eµ̂φ

[(CT + G − K)+]

and Ct has the expression (7.23), when compared with (5.2) in [35], we see that the

result is the same as the one given in corollary 5.5 in [35] where we use G − K,

r + m(µ − r), V0 − F0, r and mσ to substitute for c, µ, x, ρ and σ in (5.23) of [35]

respectively. Therefore,

e−rT Eµ̂φ
[(VT − K)+] = (V0 − F0)Φ

(
η +

1

2
mσTH

)
−(G − K)e−rT Φ

(
η − 1

2
mσTH

)
,

where

η = (mσ)−1T−H

(
ln

V0 − F0

G − K

)
+ rT
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and Φ(t) is the normal distribution function.

7.4 PDE Approach

Theorem 7.11. For any contingent claim of the form g(St), there exists a unique

self-financed g(ST )-hedging CPPI portfolio V ; defined as

Vt = v(t, St) t ∈ [0, T ] (7.28)

for v ∈ C1,2([0, T ] × R) being the unique solution of the partial differential equation

(PDE).

∂u

∂t
(t, s) + rs

∂u

∂x
(t, s) + σ2s2H

∂2u

∂x2
(t, s)t2H−1 − ru(t, s) = 0; (7.29)

u(T, s) = g(s), (t, s) ∈ [0, T ] × R), u ∈ C1,2([0, T ] × R); (7.30)

In particular the CPPI portfolio’s gearing factor is given by:

m =
∂u
∂x

(t, St)St

Vt − Ft

, t ∈ [0, T ]. (7.31)

Proof. In order to have V is a self-financed g(ST )-hedging portfolio, it is enough to

ensure that at maturity:

VT = g(ST ), a.s..

Choose v ∈ C1,2([0, T ] × R) and set Vt = v(t, St) (t ∈ [0, T ]).

Now, v(T, ST ) = g(ST ) P-a.s., so that:

v(T, s) = g(s), s ∈ R.
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Then, by the FBM version of Ito’s formula (see [25]),

dv(t, St) =

[
∂v

∂t
+ µSt

∂v

∂x
+ σ2S2

t H
∂2v

∂x2
t2H−1

]
(t, St)dt + σSt

∂v

∂x
¦ dBH(s).

On the other hand, by (7.20), Vt satisfies

dVt = rVtdt + σm(Vt − Ft)

[
µ − r

σ
dt + dBH(t)

]
,

A comparison between the above two equations gives

m =
∂v
∂x

(t, St)St

Vt − Ft

and

∂v

∂t
(t, s) + µs

∂v

∂x
(t, s) + σ2s2H

∂2v

∂x2
(t, s)t2H−1 = rv(t, s) + (µ − r)s

∂v

∂x
(t, s).

That is

∂v

∂t
(t, s) + rs

∂v

∂x
(t, s) + σ2s2H

∂2v

∂x2
(t, s)t2H−1 − rv(t, s) = 0.

Hence given any contingent claim η = g(VT ), there exists a unique self-financed

η = g(VT )-hedging strategy:

Theorem 7.12. For any map g : R → R sufficiently smooth, there exists a unique

η = g(VT )-hedging self-financed trading strategy (U, β) defined as

Ut = u(t, Vt), βt =
∂u

∂x
(t, Vt), t ∈ [0, T ],
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where u ∈ C1,2([0, T ] × R) is the unique solution of the PDE:

∂u

∂t
(t, v) + rv

∂u

∂x
(t, v) + Ht2H−1(mσ)2(v − f)2∂2u

∂x2
(t, v) − ru(t, v) = 0 (7.32)

with the final condition u(T, v) = g(v).

Proof. Consider {Vt}t∈[0,T ] as an asset, and pick a self-financed g(VT ) hedging strategy

(Ut, βt)t∈[0,T ] by setting:

dUt = βtdVt + (Ut − βtVt)rdt

and

UT = g(VT ) a.s.

Since

dVt = rVtdt + σm(Vt − Ft)

[
µ − r

σ
dt + dBH(t)

]
,

the hedging portfolio’s equation may be rewritten as:

dUt = βt

(
rVtdt + σm(Vt − Ft)

[
µ − r

σ
dt + dBH(t)

])
+ (Ut − βtVt)rdt

= [rUt + βt(Vt − Ft)m(µ − r)]dt + σmβt(Vt − Ft)dBH(t).

Pick u ∈ C1,2([0, T ] × R) and set Ut = u(t, Vt), t ∈ [0, T ].

For any t ∈ [0, T ], the FBM Ito’s formula implies that:

du(t, Vt) =

[
∂u

∂t
(t, Vt) + (rVt + m(µ − r)(Vt − Ft))

∂u

∂x
(t, Vt)

+Ht2H−1(mσ)2(Vt − Ft)
2∂2u

∂x2
(t, Vt)

]
dt

+mσ(Vt − Ft)
∂u

∂x
(t, Vt)dBH(t).
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A comparison between the above two equations implies in particular

βt =
∂u

∂x
(t, Vt)

and

∂u

∂t
(t, v) + (rv + m(µ − r)(v − f))

∂u

∂x
(t, v) + Ht2H−1(mσ)2(v − f)2∂2u

∂x2
(t, v)

= ru(t, v) + m(v − f)(µ − r)
∂u

∂x
(t, v).

Thus

∂u

∂t
(t, v) + rv

∂u

∂x
(t, v) + Ht2H−1(mσ)2(v − f)2∂2u

∂x2
(t, v) − ru(t, v) = 0

with the final condition u(T, v) = g(v).
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Chapter 8

CPPI in Fractional Brownian
Markets with Jumps

8.1 Fractional Brownian Markets with Jumps

As before consider:

φ(s, t) = H(2H − 1)|s − t|2H−2, s, t ∈ R. (8.1)

Let BH(t) be a fractional Brownian motion with Hurst parameter H in the interval

(1/2, 1), living under the probability space (Ω, F, µφ). Moreover, F
(H)
t denotes the

filtration generated by BH(t).

[22] introduces the fractional Ito Integrals in terms of the Wick product. That is,

∫ b

a

f(t, ω)dBH(t) = lim
|∆|→0

n−1∑
k=0

f(tk, ω) ¦ (BH(tk+1) − BH(tk)). (8.2)

Let the price St of a risky asset (usually stocks or their benchmark) be a right con-

tinuous with left limits stochastic process on this probability space which jumps at

the random times T1, T2,... and suppose that the relative/proportional change in
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its value at a jump time is given by Y1, Y2,... respectively. We usually assume the

ln(1 + Yn)s are i.i.d. and in our paper, we denote the density function of ln(1 + Yn)s

by fQ. We assume that, between any two consecutive jump times, the price St follows

the fractional Black-Scholes model. The Tn’s are the jump times of a Poisson process

Nt with intensity λt and the Yn’s are a sequence of random variables with values in

(−1, +∞). The description of the model can be formalized by letting, on the intervals

t ∈ [Tn, Tn+1),

dSt = St(µdt + σdBH(t)). (8.3)

Where, at t = Tn, the jump size is given by ∆Sn = STn − ST−
n

= STn−Yn, so that

STn = ST−
n

(1 + Yn)

and by assumption, Yn > −1, leads to positive values of the prices.

At the generic time t, St satisfies

dS(t) = S(t)(µdt + σdBH(t)) + S(t−)YtdNt (8.4)

where Yt is obtained from Yn by a piecewise constant and left continuous time inter-

polation, i.e.

Yt = Yn if Tn < t ≤ Tn+1,

here we let T0 = 0.

We have

St = S0 exp

(
σBH(t) + µt − 1

2
σ2t2H

) [
Nt∏

n=1

(1 + Yn)

]
(8.5)
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= S0 exp

[
σBH(t) + µt − 1

2
σ2t2H +

Nt∑
n=1

ln(1 + Yn)

]
(8.6)

= S0 exp

[
σBH(t) + µt − 1

2
σ2t2H +

∫ t

0

ln(1 + Ys)dNs

]
. (8.7)

The following definition is redefined by [35] and we adopt them.

Definition 8.1. The fractional Black-Scholes market with jumps has two pos-

sible types of investment:

(1)A bank account or a bond, where the price A(t) satisfies:

dA(t) = rA(t)dt, A(0) = 1; 0 ≤ t ≤ T. (8.8)

(2) A stock, where the price S(t) satisfies (8.4).

Definition 8.2. A portfolio or trading strategy θ(t) = θ(t, ω) = (u(t), v(t)) is an

F
(H)
t -adapted two-dimensional process giving the number of units u(t), v(t) held at

time t of the bond and the stock, respectively.

We assume that the corresponding value process Z(t) = Zθ(t, ω) is given by

Zθ(t, ω) = u(t)A(t) + v(t) ¦ S(t). (8.9)

Definition 8.3. The portfolio is called self-financing if

dZθ(t, ω) = u(t)dA(t) + v(t) ¦ dS(t)

:= u(t)dA(t) + µv(t) ¦ S(t)dt + σv(t) ¦ S(t)dBH(t)

+ v(t) ¦ S(t−)YtdNt; t ∈ [0, T ].

(8.10)

Consider a predictable F
(H)
t -process ψt, such that

∫ t

0
ψtλsds < ∞. Choose θ and
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ψt such that

µ + σθ + Ytψtλt = r (8.11)

and

ψt ≥ 0.

We see that

θ = σ−1(r − µ − Ytψtλt) (8.12)

where the choice of ψt is arbitrary. Define

Lt = exp

{∫ t

0

[(1 − ψs)λs]ds +

∫ t

0

ln ψsdNs −
∫ t

0

K(s)dBH(s) − 1

2
|K|2φ

}
(8.13)

for t ∈ [0, T ] where K(s) = K(T, s) is defined by the following properties: supp K ⊂

[0, T ] and ∫ T

0

K(T, s)φ(t, s)ds = −θ, for 0 ≤ t ≤ T. (8.14)

and the Radon-Nikodym derivative is

dµ̂φ(ω) = LT dµφ(ω). (8.15)

Define

B̂H(t) := −θt + BH(t). (8.16)

Then we have

Theorem 8.4. (Girsanov Formula )

(a.)B̂H(t) defined by (8.16) is a fractional Brownian motion that has the hurst pa-

rameter H ∈ (1/2, 1) with respect to the measure µ̂φ.
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(b.) Nt is a Poisson process with intensity λtψt with respect to the measure µ̂φ.

Proof. (a.)For any f ∈ S(R), suppf ⊂ [0, T ] we have

Eµ̂φ
exp

(∫ T

0

f(t)d(−θt + BH(t))

)
= Eµφ

[
exp

(∫ T

0

−f(t)θdt +

∫ T

0

f(t)dBH(t)

)

× exp

(∫ T

0

[(1 − ψs)λs]ds +

∫ T

0

ln ψsdNs −
∫ T

0

K(s)dBH(s) − 1

2
|K|2φ

) ]

= Eµφ
exp

(∫ T

0

[(1 − ψs)λs]ds +

∫ T

0

ln ψsdNs

)
exp

(∫ T

0

−f(t)θdt

)
×Eµ̂φ

exp

(∫ T

0

f(t)d(−θt + BH(t))

)
exp

(
−1

2
|K|2φ

)
.

For Eµφ
exp

(∫ T

0
[(1 − ψs)λs]ds +

∫ T

0
ln ψsdNs

)
, and we have

Eµφ
exp

(∫ T

0

[(1 − ψs)λs]ds +

∫ T

0

ln ψsdNs

)
= Eµφ

exp

(∫ T

0

ln ψsdNs

)
Eµφ

exp

(∫ T

0

[(1 − ψs)λs]ds

)
= Eµφ

NT∏
n=1

ψnEµφ
exp

(∫ T

0

[(1 − ψs)λs]ds

)
=

∞∑
k=0

Eµφ
ψk

nP(NT = k)Eµφ
exp

(∫ T

0

[(1 − ψs)λs]ds

)

= exp

(∫ T

0

−λsds

) ∞∑
k=0

Eµφ

(∫ T

0
−λsψsds

)k

k!
Eµφ

exp

(∫ T

0

[(1 − ψs)λs]ds

)
= exp

(∫ T

0

−λsds

)
Eµφ

exp

(∫ T

0

ψsλsds

)
Eµφ

exp

(∫ T

0

[(1 − ψs)λs]ds

)
= 1.

On the other hand, since suppf ⊂ [0, T ] and suppK ⊂ [0, T ], we have

∫ T

0

−f(t)θdt =

∫ T

0

f(t)

∫ t

0

K(t, s)φ(t, s)dsdt = 〈K, f〉2φ.
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Moreover, we have

Eµ̂φ
exp

(∫ T

0

f(t)dBH(t) −
∫ T

0

K(s)dBH(s)

)
= exp

(
1

2
|f − K|φ

)
.

Thus, we have

Eµ̂φ
exp

(∫ T

0

f(t)d(−θt + BH(t))

)
= exp

(
1

2
|f − K|2φ − 1

2
|K|2φ + 〈K, f〉φ

)
= exp

(
1

2
(|f |2φ + |K|2φ − 2〈K, f〉φ) −

1

2
|K|2φ + 〈K, f〉φ

)
= exp

(
1

2
|f |2φ

)
= Eµφ

exp

(∫ T

0

f(t)dBH(t)

)
.

Thus, we have proved that B̂H(t) defined by (8.16) is a fractional Brownian motion

with Hurst parameter H ∈ (1/2, 1) with respect to the measure µ̂φ.

(b.)Using the result of Eµφ
exp

(∫ T

0
[(1 − ψs)λs]ds +

∫ T

0
ln ψsdNs

)
in part (a), for any

nonnegative integer k, we have

µ̂φ(NT = k) = Eµ̂φ
1NT =k = Eµφ

1NT =kLT

= Eµφ
1NT =k exp

(∫ t

0

[(1 − ψs)λs]ds +

∫ t

0

ln ψsdNs

)
×Eµφ

exp

(
−

∫ t

0

K(s)dBH(s) − 1

2
|K|2φ

)
= Eµφ

1NT =k exp

(∫ t

0

[(1 − ψs)λs]ds +

∫ t

0

ln ψsdNs

)

= 1NT =k exp

(∫ T

0

−λsds

) ∞∑
i=0

Eµφ

(∫ T

0
−λsψsds

)i

i!
exp

(∫ t

0

[(1 − ψs)λs]ds

)

= exp

(∫ T

0

−λsds

)
Eµφ

(∫ T

0
−λsψsds

)k

k!
exp

(∫ t

0

[(1 − ψs)λs]ds

)

= exp

(∫ T

0

−λsψsds

) (∫ T

0
−λsψsds

)k

k!
.

Thus, we have proved that Nt is a Poisson process with intensity λtψt with respect
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to the measure µ̂φ.

Assume that θ = (u, v) is self-financing. Then by (8.9), we have

u(t) =
Zθ(t) − v(t) ¦ S(t)

A(t)
(8.17)

which, substituted into (8.10) gives

dZθ(t) =
Zθ(t) − v(t) ¦ S(t)

A(t)
dA(t) + µv(t) ¦ S(t)dt + σv(t) ¦ S(t)dBH(t)

+ v(t)S(t−)YtdNt

= rZθ(t) − rv(t) ¦ S(t)dt + µv(t) ¦ S(t)dt + σv(t) ¦ S(t)dBH(t)

+ v(t) ¦ S(t−)YtdNt

= rZθ(t) + σv(t) ¦ S(t) [dBH(t) − θdt] + v(t) ¦ S(t)Yt(dNt − ψtλtdt).

(8.18)

Let L̂1,2
φ (R) denote the completion of the set of all F

(H)
t -adapted processes f(t) =

f(t, ω) such that

||f ||L̂1,2
φ (R) := Eµ̂φ

[∫
R

∫
R

f(s)f(t)φ(s, t)dsdt

]
+ Eµ̂φ

[(∫
R

Dφ
s f(s)ds

)2
]

< ∞.

Definition 8.5. A portfolio is called admissible if it is self-financing and v ¦ S ∈

L̂1,2
φ (R).

Definition 8.6. An admissible portfolio θ is called an arbitrage for the market in

t ∈ [0, T ] if

Zθ(0) ≤ 0, Zθ(T ) ≥ 0 a.s. and

µφ

(
ω : Zθ(T, ω) > 0

)
> 0.
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From (8.18), we see that

Eµ̂φ

[
e−rT Zθ(T )

]
= Zθ(0), (8.19)

thus, no arbitrage exists.

Definition 8.7. The market (A(t), S(t)); t ∈ [0, T ] is called complete if for every

F
(H)
T -measurable bounded random variable F (ω) there exists z ∈ R and portfolio

θ = (u, v) such that

F (ω) = Zθ,z(T, ω). (8.20)

Proposition 8.8. The fractional Black-Scholes market with jumps is not complete.

Proof. µ̂φ is not unique since we could choose different ψs in (8.13). Thus, it is

without loss of generality to assume µ̂φ,1 and µ̂φ,2 as two distinguished measures on

probability space (Ω, F).

If the fractional Black-Scholes market with jumps is complete, then for every F
(H)
T -

measurable bounded random variable F (ω) there exist z ∈ R and portfolio θ = (u, v)

such that

F (ω) = Zθ,z(T, ω).

By (8.18), we see

Eµ̂φ,1
e−rT F (ω) = Eµ̂φ,2

e−rT F (ω). (8.21)

This contradicts our assumption that the µ̂φ,1 and µ̂φ,2 are distinct measures on the

probability space (Ω, F). Therefore, The fractional Black-Scholes market with jumps

is not complete.
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8.1.1 Esscher transform

From our previous section we know that the Radon-Nikodym measure transform

(8.15) is not unique. The Esscher Transform technique in [30] provides us a unique

risk-neutral transform. Here we apply the Esscher transform on our fractional Brow-

nian Markets with jumps model.

Denote

X(t) = σBH(t) + µt − 1

2
σ2t2H +

Nt∑
n=1

ln(1 + Yn)

and with density f(x, t). Then the stock price can be expressed as St = S0 exp[X(t)].

By the Esscher transform, the density function of Xt is: (refer [30])

f(x, t; h) =
ehxf(x, t)∫ ∞

−∞ ehyf(y, t)dy
=

ehxf(x, t)

M(h, t)
, (8.22)

where M(h, t) :=
∫ ∞
−∞ ehyf(y, t)dy is the generating function. Denote by M(z, t; h)

the moment generating function of X(t). From reference [30] we have

M(z, t; h) =
M(z + h, t)

M(h, t)
, (8.23)

and

M(z, t; h) = [M(z, 1; h)]t. (8.24)

As in [30], we define the risk-neutral Esscher transform as follows:

Definition 8.9. The risk-neutral Esscher transform is the Esscher transform

with the parameter h = h∗ and denote by µ∗
φ the correspondent probability measure,

such that

S(0) = Eµ∗
φ
[e−rtS(t)] (8.25)

[30] deduces that

er = M(1, 1; h∗). (8.26)
153



On the other hand, we have

M(z, t) = Eµφ

[
ezX(t)

]
= Eµφ

[
ez(σBH(t)+µt− 1

2
σ2t2H+

PNt
n=1 ln(1+Yn))

]
= ez+µtEµφ

[
e(

PNt
n=1 ln(1+Yn))

]
= ez+µtEµφ

Nt∏
n=1

(1 + Yn)

= ez+µt

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + Yn)

]
.

8.2 CPPI in fractional Black-Scholes market with

jumps

Recall that Vt represents the portfolio value, Ft = rFtdt, FT = G is the floor, Ct =

Vt − Ft is the cushion, m is the multiplier and et = mCt is the exposure.

Proposition 8.10. The portfolio value of CPPI under the fractional Black-Scholes

model with jumps in continuous time trading is

Vt =(V0 − F0) exp

[
(mµ − r(m − 1))t − 1

2
m2σ2t2H + mσBH(t)

]
×

[
Nt∏

n=1

(1 + mYn)

]
+ Ft.

(8.27)

Proof. With θ(t) = (u(t), v(t) as the trading strategy, we have:

Vt = utAt + vt ¦ St, (8.28)

dVt = utdAt + vt ¦ dSt, (8.29)
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and

vt ¦ St = m(Vt − Ft). (8.30)

By (8.18), we have

dVt =rVtdt − rv(t) ¦ S(t)dt + µv(t) ¦ S(t)dt

+ σv(t) ¦ S(t)dBH(t) + v(t) ¦ S(t−)YtdNt.

(8.31)

Substitute (8.30) into (8.31), we obtain,

dVt =rVtdt − rm(Vt − Ft)dt + µm(Vt − Ft)dt

+ σm(Vt − Ft)dBH(t) + m(Vt− − Ft)YtdNt.

(8.32)

Since Ct = Vt − Ft and dFt = rFtdt, we have

d(Vt − Ft) = − r(m − 1)(Vt − Ft)dt + µm(Vt − Ft)dt

+ σm(Vt − Ft)dBH(t) + m(Vt− − Ft)YtdNt.

(8.33)

Thus,

dCt = −r(m − 1)Ctdt + µmCtdt + σmCtdBH(t) + mCt−YtdNt, (8.34)

then

Ct =C0 exp

[
(mµ − r(m − 1))t − 1

2
m2σ2t2H + mσBH(t)

]
×

[
Nt∏

n=1

(1 + mYn)

]
.

(8.35)

Therefore, we have (8.27).
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Proposition 8.11. The expected CPPI portfolio value at time t under the fractional

Black-Scholes model with jumps is

Eµφ
[Vt] = C0 exp{(r + m(µ − r))t}

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
× Eµφ

[
k∏

n=1

(1 + mYn)

]
+ Ft.

Proof. Since

µφ

[
Nt∏

n=1

(1 + mYn) ≤ x

]
= µφ

[
∞∪

k=1

[
Nt∏

n=1

(1 + mYn) ≤ x,Nt = k

]]

=
∞∑

k=1

µφ

[
Nt∏

n=1

(1 + mYn) ≤ x|Nt = k

]
µφ[Nt = k]

=
∞∑

k=1

µφ

[
k∏

n=1

(1 + mYn) ≤ x|Nt = k

]
µφ[Nt = k]

=
∞∑

k=1

µφ

[∏k
n=1(1 + mYn) ≤ x,Nt = k

]
µφ[Nt = k]

µφ[Nt = k]

=
∞∑

k=1

µφ

[∏k
n=1(1 + mYn) ≤ x

]
µφ[Nt = k]

µφ[Nt = k]
µφ[Nt = k]

=
∞∑

k=1

µφ

[
k∏

n=1

(1 + mYn) ≤ x

]
µφ[Nt = k]

=
∞∑

k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
µφ

[
k∏

n=1

(1 + mYn) ≤ x

]
,

we get,

Eµφ

[
Nt∏

n=1

(1 + mYn)

]
=

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]
.

From (3.50) in [35], we obtain

Eµφ
[Vt] = C0Eµφ

[
exp

{
(mµ − r(m − 1))t − 1

2
m2σ2t2H + mσBH(t)

}]
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×Eµφ

[
Nt∏

n=1

(1 + mYn)

]
+ Ft

= C0 exp {(r + m(µ − r))t}
∞∑

k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!

×Eµφ

[
k∏

n=1

(1 + mYn)

]
+ Ft.

Proposition 8.12. The variance of the CPPI portfolio value at time t under the

fractional Balck-Scholes model with jumps is

C2
0 exp

{
2((r + m(µ − r)))t + m2σ2t2H

}
×

∞∑
k=1

Eµφ

[
k∏

n=1

(1 + mYn)

]2
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

−C2
0

[
exp{(r + m(µ − r))t

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]]2

.

Proof. Similar to the proof of the above proposition, we have

Eµφ

[
Nt∏

n=1

(1 + mYn)

]2
 =

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]2
 .

Thus,

Varµφ
[Vt] = Varµφ

[Ct]

= C2
0Varµφ

[
exp

{
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

} [
Nt∏

n=1

(1 + mYn)

]]

= C2
0Eµφ

[
exp

{
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

} [
Nt∏

n=1

(1 + mYn)

]]2

−C2
0

(
Eµφ

[
exp

{
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

} [
Nt∏

n=1

(1 + mYn)

]])2
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= C2
0Eµφ

[
exp

{
(r + m(µ − r))t − 1

2
m2σ2t2H + mσBH(t)

} [
Nt∏

n=1

(1 + mYn)

]]2

−C2
0

[
exp{(r + m(µ − r))t}

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]]2

= C2
0Eµφ

[
exp

{
2(r + m(µ − r))t − m2σ2t2H + 2mσBH(t)

}]
Eµφ

[
Nt∏

n=1

(1 + mYn)

]2

−C2
0

[
exp{(r + m(µ − r))t}

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]]2

= C2
0 exp

{
2(r + m(µ − r))t + m2σ2t2H

}
×

∞∑
k=1

Eµφ

[
k∏

n=1

(1 + mYn)

]2
e−

R t
0 λsds(

∫ t

0
λsds)k

k!

−C2
0

[
exp{(r + m(µ − r))t}

∞∑
k=1

e−
R t
0 λsds(

∫ t

0
λsds)k

k!
Eµφ

[
k∏

n=1

(1 + mYn)

]]2

.

The following lemma gives the density function of 1 + mYi.

Lemma 8.13. Let the density function of ln(1 + Yn) be fQ(y). Then the density

funtion f ′
Q of the random variable 1 + mYi is

f ′
Q(z) = fQ

(
ln

(
1 +

z − 1

m

))
1

m + z − 1
.

Proof. Since

µφ(1 + mYi ≤ z) = µφ

(
ln(1 + Yi) ≤ ln

(
1 +

z − 1

m

))
=

∫ ln(1+ z−1
m )

−∞
fQ(y)dy,

the density f ′
Q of the random variable 1 + mYi is

f ′
Q(z) =

d(µφ(1 + mYi ≤ z))

dz
= fQ

(
ln

(
1 +

z − 1

m

))
1

m + z − 1
.
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Now we can calculate

Eµφ

[
k∏

n=1

(1 + mYn)

]
= Eµφ

[
exp

{
k∑

n=1

ln(1 + mYn)

}]

=

∫
R

exp

f ′
Q ∗ f ′

Q ∗ ... ∗ f ′
Q(x)︸ ︷︷ ︸

Convolved k times

 dx

and

Eµφ

[
k∏

n=1

(1 + mYn)2

]
= Eµφ

[
exp

{
k∑

n=1

2 ln(1 + mYn)

}]

=

∫
R

exp

2 f ′
Q ∗ f ′

Q ∗ ... ∗ f ′
Q(x)︸ ︷︷ ︸

Convolved k times

 dx.
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