

A GESTURAL HUMAN COMPUTER INTERFACE FOR SMART HEALTH

A THESIS IN

Computer Science

Presented to the Faculty of the University

Of Missouri-Kansas City in partial fulfillment

 Of the requirements for the degree

MASTER OF SCIENCE

By

SOWMYA GINJUPALLI

B.Tech, Acharya Nagarjuna University, 2009

Kansas City, Missouri

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62776102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

©2012

SOWMYA GINJUPALLI

ALL RIGHTS RESERVED

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engineering, have

examined a thesis titled “A Gestural Human Computer Interface for Smart Health,” presented by

Sowmya Ginjupalli, candidate for the Master of Science degree, and hereby certify that in their

opinion, it is worthy of acceptance.

Supervisory Committee

 Deendayal Dinakarpandian, Ph.D., Committee Co-Chair

School of Computing and Engineering

Yugyung Lee, Ph.D., Committee Co-Chair

School of Computing and Engineering

Praveen Rao, Ph.D.

School of Computing and Engineering

iii

A GESTURAL HUMAN COMPUTER INTERFACE FOR SMART HEALTH

Sowmya Ginjupalli, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2012

ABSTRACT

For centuries, man was forced to live a highly active lifestyle with food being a precious commodity.

Technological advances in the past few decades have resulted in increasingly sedentary lifestyles

and a surfeit of calorie dense foods. This has resulted in a global epidemic of obesity and a host of

associated health problems. One way to address this problem is to incorporate a higher level of

physical activity into the workday. The objective of this thesis is to design a low cost gestural human

computer interface for the recognition of vigorous gestures. We demonstrate that an action

vocabulary of eight intuitive gestures can be recognized by the use of inexpensive accelerometers

and a computationally simple approach involving Principal Component Analysis and Naïve Bayes

classification. The accuracy is comparable to more computationally intensive approaches. The

actions can be mapped to commands for controlling commonly used applications like e-mail and

customized to individual preferences. There is a significant rise in pulse rate during these actions

comparable to light aerobic activity. This has the potential to mitigate the harmful effects of

sedentary work habits by raising the rate of metabolism with minimal impact on productivity.

iv

TABLE OF CONTENTS

 Contents Page

ABSTRACT .. iii

ILLUSTRATIONS .. vi

TABLES ... ix

Chapter

1. INTRODUCTION

1.1 Motivation .. 1

1.2 Problem Statement .. 1

2.RELATED WORK

2.1 Different Devices and Software for Gesture Recognition .. 3

2.2 Chronos Watch ... 6

2.3 Chronos Flying Mouse .. 9

3.MODEL FOR GESTURE RECOGNITION

3.1 Principal Components .. 12

3.2 Principal Components for Gesture Recognition ... 16

3.3 Naïve Bayes Classifier and Multivariate Gaussian Distribution Probability Densities 22

3.4 Naïve Bayes Classification for Gesture Recognition ... 27

4.APPLICATION

4.1 Application Architecture .. 33

4.2 Acceleration Data Collection from Chronos Watch ... 34

4.3 Filtering of the Acceleration Data .. 38

v

4.4 Segmentation of Data ... 42

4.5 Description of the Gestures ... 49

5.IMPLEMENTATION

5.1 Overview of Implementation ... 55

5.2 Training of Gestures ... 56

5.3 Recognition of Gestures ... 68

6.EVALUATION OF GESTURAL HUMAN COMPUTER INTERFACE FOR SMART HEALTH

6.1 Instructions to Use the Application .. 76

6.2 Evaluation ... 80

7.CONCLUSION AND FUTURE WORK

7.1 Conclusion .. 95

7.2 Future Work ... 95

REFERENCE LIST .. 97

VITA .. 101

vi

ILLUSTRATIONS

Figure Page

2.1 eZChronos Watch .. 7

2.2 Chronos Control Center GUI .. 8

2.3 Using the eZ430-Chronos Watch with a PC ... 8

2.4 Chronos Control Center with Acceleration Data ... 9

2.5 Screenshot of the Chronos Flying Mouse Application .. 10

2.6 Chronos Flying Mouse Settings ... 11

3.1 Graph which Shows PCA Concept ... 12

3.2 First Principal Component and Second Principal Component for the Sample Data 15

3.3 3D Acceleration Readings Measured from an Accelerometer .. 16

3.4 Representation of the First Principal Component of the Acceleration Data........................... 17

3.5 Acceleration Measure for Gesture G2 ... 18

3.6 First Principal Component of the Acceleration Data for Gesture G2 19

3.7 Acceleration for the Test Gesture ... 20

3.8 First Principal Components of G1, G2 and Test Gesture ... 21

3.9 Three samples for Gesture G1 ... 28

3.10 Three samples for Gesture G2 .. 29

4.1 Architecture of Gestural Human Computer Interface for Smart Health 34

4.2 Log File with 3D Acceleration Values ... 37

4.3 Log File that Represents the Set of 3D Acceleration Values when the User is at Rest 38

4.5 Log File that Represents the Set of 3D Acceleration Values when the User Moves

his Hands Slowly ... 39

4.6 3D Acceleration Values when a Heavy Gesture is Performed by the User 40

vii

4.7 Log File Represents the Filtered Data .. 41

4.8 Log File and Graph when Two Gestures are Done Continuously .. 46

4.9 Segmented File and Graph Represents First Heavy Gesture ... 47

4.10 Segmented File and Graph Represents Second Heavy Gesture .. 48

5.1 A Matrix Constructed from a Text File .. 59

5.2 Average Principal Vector for Delete Gesture .. 61

5.3 Average Principal Vector for Send Gesture ... 62

5.4 Average Principal Vector for Scroll Down Gesture .. 63

5.5 Average Principal Vector for Scroll Up Gesture ... 64

5.6 Average Principal Vector for Punch Gesture ... 65

5.7 Average Principal Vector for Launch Gesture ... 66

5.8 Average Principal Vector for Search Gesture .. 67

5.9 Average Principal Vector for Open Gesture .. 68

5.10 Graph Showing First Principal Component of all the Gestures and Test Gesture 69

5.11 Application’s Output .. 70

5.12 Matrix for which Average Values are Found ... 71

6.1 Recognition Rate for the Gestures Done by an User Based upon Predefined Training 81

6.2 Recognition Rate of the Gesyures by a User’s Training ... 82

6.3 Average Recognition Rate for All 15 Volunteers ... 83

6.4 Percentage of Recognition of Gestures by Volunteers’ Training .. 84

6.5 Accuracy of All Gestures .. 85

6.6 Error Bar Chart Representing both Training Dependent and Independent 86

6.7 Accuracy of Pairs of Gestures Performed Continuously.. 87

6.8 Gestures Used for Evaluation for HMM Model Using Wii-mote ... 87

6.9 Average Recognition Rate of Gestures Using HMM Model .. 88

viii

6.10 Graph Shows the Recognition Rate of the Reference Gestures of Our model Versus HMM

model .. 89

6.11 Run Times for Different Modules in Application ... 90

6.12 Graph Shows Heart Rate of User at Three Different Events .. 93

ix

TABLES

Table Page

1.Training Set for Naive Bayes Classification .. 24

2.Calculated Parameters for the Training Set of Classification Example 25

3.Models Used for Gesture Classification .. 30

4.Description of Gestures and the Corresponding Email Activities ... 49

5.Description and Images of Gestures ... 51

6. Comparison of Run Time Models ... 91

7.Heart Rate of a user while he is at Rest .. 92

8.Heart Rate while Doing Conventional Actions in an Email Session for 8 min 92

9.Heart Rate whileDooing the Gestures for 10min .. 93

x

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 The usage of personal computers and other computing devices is increasing day by day.

There has been a substantial increase in the proportion of the workday that is based on their use.

People interact with these computing devices by means of interfaces like keyboard, mouse, voice

and touch screen. Interaction with computing devices can potentially result in two kinds of health

problems. First, one can suffer from occupational injuries, which can result from repetitive actions

and from resting parts of the body in unnatural positions for long periods of time. Second, humans

can suffer from the effects of a sedentary lifestyle as the usage of the devices requires very less

expenditure of energy. Two out of three US adults are overweight, and today’s growing concern is

childhood obesity [1]. A life style that combines a lack of physical activity with readily available

calorie-dese foods has resulted in several health problems like obesity, diabetes and even cancer.

1.2 Problem Statement

 People diet or exercise in order to prevent or overcome the health problems caused by weight

gain. Because of time constraints or inability to afford gym memberships, it is very hard for many

people to overcome the effects of a sedentary life style. On the other hand, several studies have

clearly shown that even a mild exercise regimen for relatively short periods of time provides

substantial health benefits [2]. This thesis exploits this observation by proposing a unique solution to

overcome the health problems caused our collective obsession with personal computers and

smartphones. The central idea is to raise the level of physical activity by replacing traditional

interfaces like keyboard, mouse and touchscreen with alternative intuitive interfaces that require

2

considerable expenditure of energy. Apart from increasing energy expenditure, this idea can also

provide entertainment to users, which can alleviate the monotony of repetitive work. Additionally, it

can minimize occupational injuries by requiring the body to be mobile and not frozen in

unergonomic positions for long periods of time. As the higher level of physical activity is integrated

with routine tasks, there is less need to spend time and money on traditional exercise sessions.

 This thesis presents a Gestural Human Computer Interface where users map heavy hand

gestures to control an application. A heavy hand gesture is defined as movement involving the

whole arm (rather than just fingers); it increases energy expenditure by involving the larger muscle

groups. This can customize the interface to different user work habits and preferences. The

effectiveness of such interfaces can be evaluated in terms of calorie expenditure, impact on

productivity and acceptability.

Recognition of these gestures with minimal overhead in computational processing is the main

concern, and is the core problem addressed by this thesis work. The Chronos watch from Texas

Instruments, which has a 3-axis accelerometer embedded in it, is used as an input device for

recording the gestures. This is a cost effective device and easy to use.

The models used for the recognition of these gestures are

1. Principal component Analysis

2. Naïve Bayes Classification.

3

CHAPTER 2

RELATED WORK

2.1 Different Devices and Software for Gesture Recognition

 Several applications based on gesture recognition have been developed. Some of these are used

for gaming, and others to facilitate certain activities. A variety of devices are used for gesture

recognition, such as wired gloves, cameras and accelerometers. Different models are used to

recognize gestures based on the requirements of applications.

Wired Gloves:

Wired Gloves or data gloves are used in many systems for hand gesture recognition [3]. Wired

gloves are used in application areas such as sign language education, teaching deaf children or

physically challenged people, simulating 3D molecules, proteins and DNA in the field of chemistry

and biology, multi media education, music in education and physical education. Wired glove is a 3D

input device and consists of sensors to determine 3D positional information. The position and

orientation of the data gloves are determined by an electromagnetic transducer and strain gauge

sensing devices. The data glove consists of small lightweight sensors. Each sensor is a fiber optic

cable with a photo transistor at one end and an LED at the other. Hand movements are recorded by

a Polhelmus 3 Space 3 dimensional position and orientation sensor [4]. In most cases, a motion

tracker such as a magnetic tracking device or inertial tracking device is attached to capture the

global position or data rotation of the glove. Accompanying software is used to interpret these hand

movements. These gestures can then be categorized into useful information, such as to recognize

Sign Language or other symbolic functions. Wired glove is a part of haptic science. Haptic science is

the science of applying tactile sensation to human interaction with computers [5]. A data glove can

act as a haptic device because it simulates physical contact between the computer and the user, and

it can also act as an output device. Wired gloves have only been available at a huge cost, with the

4

finger bend sensors and the tracking device having to be bought separately. There are a variety of

gloves which can be used to capture hand motions. Motion capture gloves range in price from

$2000 per pair for wired and up to $3500 per pair for wireless.

Video Tracking:

Video Signals are used as input for the recognition of gestures. An edge detection algorithm is

usually applied to the digitized picture for the identification of hand, face or body position [6]. These

edge detection algorithms are computationally expensive and dedicated hardware is also required.

The latest research, Digits by Cambridge, utilizes a small camera for the gesture control offered by

Kinect [7]. This camera has to be worn on a wrist strap and it tracks 2D movement rather than 3D. It

recognizes finger movements that are used to control the software. This can therefore be used in

applications such as translation of a sign language into a written text or controlling the slides of a

presentation using simple finger movements. A company Leap Motion makes gesture control with a

new type of motion controller [8]. The leap is a simple motion controller that can be plugged into

any of the USB ports on a PC. Leap software has to be installed and once the motion controller is

plugged in, it turns the 8 cubic feet of air in front of it into 3D interaction space. All the motions

within that space are tracked. The camera is about the size of a business-card holder, and can

discern all 10 fingers individually. Such detailed scanning allows us to do actions like actions like

pinch-to-zoom, or zero in on fine details in a drawing application.

Accelerometer for Gesture Recognition:

Most of the previous work on gesture recognition is based on computer vision techniques. Lighting

condition and camera angle/field of vision are important constraints of computer vision based

approaches. In cases where there is poor lighting, it is very difficult to recognize gestures using a

camera based system. Additionally, it is inconvenient to have to face the camera all the time.

5

Accelerometer-based gesture recognition is a technique that is compatible with almost all physical

and computing environments. These devices are small and wireless, and hence easily wearable for

interacting with a wide range of applications. Examples of such kinds of device include Nintendo

Wii-mote and Chronos watch from Texas Instruments [9].

The Nintendo Wii-mote contains an integrated 3 axis acceleration sensor, and is connected via the

Bluetooth human interface device protocol for transmitting data [10]. A Java library is available for

gesture recognition with APIs for Bluetooth Wireless technology. It is a reusable and extensible

gesture recognition library for the recognition process. The application uses hidden Markov models

for gesture recognition [10].

In our application, heavy gesture based emailing, we have used Chronos watch from Texas

Instruments which consists of a 3 axis accelerometer. This watch is easy to wear and interact with a

wide range of applications, and this is also less expensive compared to the Wii-mote.

Models Used for Recognition:

Hidden Markov Model:

This is commonly used in many fields, e.g., Speech Recognition, Pattern recognition and Gesture

Recognition. HMMs are stochastic models for data that is serial or temporal. The word "hidden" in

the HMM refers to the hidden states that are mapped to the data. This model is typically used for

modeling sequences of events. This model is particularly useful when the data is noisy and

incomplete. It is based on estimating probability distributions and efficient algorithms for learning

and recognition such as Baum-Welch and Viterbi algorithms [10].

Support Vector Machine:

This technique can also used for the recognition of gestures [11]. It is a supervised linear

classification method that has a property of maximizing margins between classes. With an

appropriate choice of kernel functions, it also has nonlinear extensions. By using this method, 3 x 10

6

matrix is transformed into a linear vector with basic statistical elements like minimum, mean and

length. These values can be used to define the dynamics and direction of a gesture. Z-normalization

is used to make all the dimensions equal. In the recognition phase, the incoming movement is also

transformed and is normalized in the same way as the training samples before SVM classifies the

gesture.

Fuzzy Rule Based Method for Gesture Recognition:

Fuzzy Logic is a multivalued logic that allows intermediate values to be defined between

conventional evaluations like yes or no, true or false, 0 or 1, etc. This is used for the recognition of

hand gestures acquired from a data glove. An application for the recognition of gestures uses fuzzy

rule based method in which sets of angles of finger joints are used for the classification of hand

configurations. The set of all lists of segments of a given set of gestures is able to recognize every

such gesture [12].

In our application, we have used a light weight process for the recognition of gestures other than

Hidden Markov Model. The model which is used in our application is discussed in chapter 3.

2.2 Chronos Watch

Overview of Chronos Watch Used in Our Application:

eZ430-Chronos is a highly integrated, wearable wireless development system [9]. It may be used as

a wireless sensor node for remote data collection. It consists of a three axis accelerometer for motion

sensitive control. Figure 2.1 shows eZ430-Chronos watch.

7

Figure 2.1: eZChronos Watch

Acceleration Mode – RF : This mode requires the Chronos Control Center PC software. Figure 2.2

shows the GUI of the Chronos control center. The watch can be placed in the acceleration mode by

pressing "#" until "ACC" is shown on the LCD. “Acc” mode provides a continuous transmission of 3D

acceleration from the watch using TI's SimpliciTI protocol stack.

8

Figure 2.2: Chronos Control Center GUI

eZ430-Chronos RF Access Point: The RF access point is useful to communicate wirelessly with the

Chronos directly from a PC so that data can be downloaded, or programs running on a computer

can be controlled. It is based on the CC1111F32 controller, which features an integrated USB

controller in addition to a 1-GHz radio.

Figure 2.3: Using the eZ430-Chronos Watch With a PC

9

Transmission of Acceleration Data: Acceleration data that is transmitted from the watch to PC can

be seen in the control center in real time. Watch has to be switched to the acceleration mode, and

the RF access point has to be connected to the PC. When “start access point button” is clicked in

this interface, the watch is connected to the PC and 3D acceleration values are transmitted. Figure

2.4 displays the acceleration data of the watch for each axis.

Figure 2.4: Chronos Control Center with Acceleration Data

2.3 Chronos Flying Mouse

 The Chronos Flying Mouse is an innovative interface that can act as a high precision mouse or a

mouse-based joystick for applications that do not support true joystick input [13]. It is designed to

be a highly accurate, intuitive computer-input device. It has many customization options and offers

10

the abilities of several computer input devices without the position constraints of mounted

hardware. The primary mouse mode of the Chronos Flying Mouse enables the user to control a

cursor. This application is useful for presentations featuring interactive content, such as program

demonstrations or interactive PowerPoint presentations with links. In our application, we have used

the Chronos Flying Mouse code for data collection. Figure 2.5 shows the user interface of the

Chronos Flying Mouse.

Figure 2.5: Screenshot of the Chronos Flying Mouse Application

 This flying mouse has several joystick modes that allow gaming using a wide variety of

household objects. This mode allows existing video games to interact with the Chronos without

special programming and allows the Chronos to interact with a wide variety of applications.

11

Figure 2.6: Chronos Flying Mouse Settings

Settings of Chronos Flying Mouse: This application offers axis independent sensitivity control and

inversion. Because of this, a user can wear the watch on either the right or left hand. User can

calibrate the orientation to any desired angle. Figure 2.6 shows the GUI for Chronos Flying Mouse

settings. These settings are stored in an editable INI file without any registry modifications. In each

run of the application, these settings are saved and loaded; the Chronos Flying Mouse can be

therefore be safely deleted or moved to another computer without a complicated installation or

uninstallation process.

Functionality of Chronos Flying Mouse: Accelerometer data collected from the chronos watch is

sent through an exponential smoothing filter. This is used to remove noise or any unwanted high

frequency components. A Chebyshev high-pass filter is used to identify snaps, or other sharp

movements, in order to click. Euclidean angles are calculated from the acceleration from free-fall

vector returned and various settings are applied to produce the appropriate mouse movement or

joystick position. The most recent stable mouse position is calculated constantly, so that when a

click from the high frequency data registers, the mouse is rewound to its stable position for the click.

This allows for usable mouse clicks despite potential interference from unintentional motion.

12

CHAPTER 3

MODEL FOR GESTURE RECOGNITION

 An accelerometer is embedded in many devices such as Wii-mote, Chronos watch etc. in order

to measure triaxial acceleration. This measured acceleration data is used for gesture recognition. In

our model, recognition is based on principal component analysis and Naïve Bayes classification.

3.1 Principal Components

 The main use of Principal Component Analysis (PCA) is to reduce the dimensionality of a data set

while retaining as much information as possible. Orthogonal transformation is used in principal

component analysis to convert a set of values of possibly correlated variables into a set of values of

linearly uncorrelated variables. The maximum number of principal components is equal to the

number of original variables. So for the 3-axis acceleration data, the maximum number of principal

components is equal to three.

Figure 3.1: Visual depiction of the first Principal component

13

These principal components are perpendicular to each other, and the first principal component

contributes the maximum variability to the data. PCA axis is the line that goes through the centroid

of the data points and also minimizes the square of the distance of each data point to that line. See

figure 3.1.

Thus, any large set of data can be represented as a single vector, the first principal component,

pointing to the direction in which there is maximum variance in the data. The succeeding

components have the highest possible variance under the constraint that they must be completely

uncorrelated which implies that they are orthogonal to each other. Thus, a set of correlated

variables are transformed into a set of uncorrelated variables which are ordered by reducing

variability.

Calculation of Principal Component Coefficients

For the given set of data,

1. Covariance matrix has to be calculated.

2. Then the eigenvector vector of the covariance matrix has to be calculated.

Data =

7 4 3

4 1 8

6 3 5

8 6 1

8 5 7

7 2 9

5 3 3

9 5 8

7 4 5

8 2 2

Covariance of the data:

14

 Cov(data) =

 [2.3222222222 1.6111111111 -0.4333333333

 1.6111111111 2.5000000000 -1.2777777778

 -0.4333333333 -1.2777777778 7.8777777778]

Eigenvectors Vectors of the covariance matrix:

[-0.7017274262 -0.6990371198 -0.1375707982

 0.7074570306 -0.6608891708 -0.2504596851

 0.0841615661 -0.2730798586 0.9583027818]

This matrix contains the coefficients for principal components. Columns represent the coefficients

for principal components. Column 1 represents the first principal component and column 3

represents the first principal component. Figure 3.2 shows a graph of data together with the first

and second principal components.

15

Figure 3.2: First Principal Component and Second Principal Component for the Sample Data

Angles Between Principal Components: From the above calculations, the first principal component

vector is represented as,

 fc = -0.1375707982i -0.2504596851j + 0.9583027818k

the second principal component vector is given by

Sc= -0.6990371198i -0.6608891708j -0.2730798586k

And the third principal component vector is represented as

tc= -0.7017274262i + 0.7074570306j + 0.0841615661k

Let v1 and v2 be two vectors. By considering the dot product for the vectors, the angle between any

two vectors can be calculated by the formula:

Cos Ɵ = (v1.v2)/(|v1||v2|)

16

Based on the above formula,

Angle between first principal component and second principal component is 90 degrees

Angle between second principal component and third principal component is 90 degrees

Angle between first principal component and third principal component is 90 degrees.

3.2 Principal Components for Gesture Recognition

 An accelerometer provides a set of 3D data that represents the acceleration of a limb

performing the gesture. Figure 3.3 represents 3D acceleration for a gesture G1 measured by using

an accelerometer:

 Figure 3.3: 3D Acceleration Readings Measured from an Accelerometer

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 101112131415161718

X-axis

Y-axis

Z-axis

X axis Y axis Z axis

-104 17 13

-82 28 -28

-45 -14 4

-8 -35 48

55 -42 100

126 -44 120

127 -50 107

126 -42 86

89 -50 70

23 -45 56

-102 -2 40

-128 4 26

-128 17 6

-90 19 5

-44 25 9

-22 28 9

-19 30 9

17

By looking at the acceleration data we can say that the gesture is performed mainly in the x-z plane

as there is a low magnitude of accelerations along the y-axis. We can calculate the first principal

component for this data and then represent this whole data as a single vector.

First Principal component vector is 0.8825i -0.2702j 0.3850k

Figure 3.4: Representation of the First Principal Component of the Acceleration Data

0
0.2

0.4
0.6

0.8

-0.25

-0.2

-0.15

-0.1

-0.05

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

18

Figure 3.5 represents 3D acceleration for another gesture G2 measured by using an accelerometer:

Figure 3.5: Acceleration Measure for Gesture G2

The first Principal component vector is 0.8256i + 0.3017j + 0.4768k. Figure 3.6 represents the

first principal component of the acceleration data for gesture G2

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 101112131415161718

X-axis

Y-axis

Z-axis

x axis Y axis Z axis

-47 -29 -41

-51 -30 -39

-55 -27 -47

-69 -36 -51

-81 -29 -62

-123 -11 -89

-126 0 -128

-88 -62 -128

-17 -80 -64

-6 -67 -38

8 -69 -30

31 -60 -26

39 -42 -22

45 1 -16

38 28 -20

33 53 -22

14 67 -24

9 62 -22

19

Figure 3.6: First Principal Component of the Acceleration Data for Gesture G2

Gesture Recognition by Considering Angles: When a gesture G1 or G2 is repeated as a test, we will

get another set of acceleration data. For example if gesture G2 is performed again, the acceleration

data is similar to the acceleration data we already obtained for G2 gesture. Figure 3.7 represents

the acceleration for the test gesture:

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4
0

0.1

0.2

0.3

0.4

0.5

X axis

20

Figure 3.7: Acceleration for the Test Gesture

The first principal component vector for this test gesture if given by

0.3853i + 0.5948j + 0.7055k

Figure 3.8 represents the first principal components of G1, G2 and the test gesture superimposed in

the same graph. The red line represents the test gesture. In order to classify this as G1 or G2 we can

simply find the angle between

1. Test gesture and G1

2. Test gesture and G2

We can classify the test gesture as G1 or G2 based on the smaller of the two angles

-100

-50

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23

x axis

Y axis

z axis

X axis Y axis Z axis

8 29 11

8 22 9

11 9 10

10 -17 7

15 -48 2

8 -60 11

-5 -40 16

-6 -12 34

-21 52 62

-64 77 89

-68 78 94

60 47 97

112 57 124

51 34 111

-59 -37 8

-61 -67 -32

-42 -57 -39

-28 -10 -32

-19 10 -18

-10 13 2

-17 29 7

-14 42 6

-8 47 7

-16 47 11

21

Figure 3.8: First Principal Components of G1, G2 and Test Gesture

1. Angle between Test gesture and G1 is 63.1968

2. Angle between Test gesture and G2 is 33.4925

AS the minimum angle is 33.4925, which is between test gesture and G2 we can say that the

test gesture is classified as G2.

This is how we can recognize a gesture using principal components.

Limitation of Principal Component Analysis Method for Gesture Recognition: If two or more

gestures are done in the same plane, in some cases there is a high probability of principal

component vectors pointing in almost same direction as the maximum variance of the data may be

in the same direction.

22

In such cases, we can consider another parameter along with principal components to classify the

gesture. We consider magnitudes of the acceleration data.

3.3 Naïve Bayes Classifier and Multivariate Gaussian Distribution Probability Densities

The Naïve Bayes classifier is a statistical classifier. It can predict probabilities such as the probability

that a given sample belongs to a particular class. This is based on the Bayes theorem formulation of

conditional probabilities. In Bayesian interpretation, probability measures a degree of belief. The

Bayes theorem links the degree of belief in a proposition before and after accounting for data or

evidence. Let A is the proposition and B is the evidence.

Bayes theorem gives the relation between the probabilities of A and B, P(A) and P(B) and the

conditional probabilities of A given B and B given A, P(A|B) and P(B|A) respectively.

For proposition A and evidence B,

• P(A), the prior is the initial degree of belief in A.

• P(A | B), the posterior is the degree of belief having accounted for B.

• P(B | A) / P(B) represents the support B provides for A.

P(A| B) = P(B | A)P(A)

 P(B)

Example: Suppose a customer visits a shop and leaves. Generally speaking, the probability that a

customer is female is 50%. Someone tells the shop owner that the customer had long hair.

Intuitively, there is now a higher chance that the customer was female.

To calculate the probability that the customer is female, assume that

F represents the event that the person who came to the shop was female

L represents the event that the customer has long hair.

P(F), the prior, the initial degree of belief in F = 0.5 (assume 50% of persons are females)

23

Let’s say that 60% of the females have long hair.

P(L|F), the probability of L given F is 0.6

Let’s say that 30% of the males have long hair.

P(L|M), the probability of L given M is 0.3.

Then P(F|L) = P(L | F)P(F)

 P(M)

= P(L|F)P(F)

P(L|F)P(F) + P(L|M)P(M)

So the probability that the customer is female is obtained as 66.66%

The Bayesian Classifier is capable of calculating the most probable output depending on the input. It

is possible to add new raw data at runtime and have a better probabilistic classifier. A naive Bayes

classifier assumes that the presence of a particular feature of a class is unrelated to the presence of

any other feature, given the class variable. Even if the features depend on each other or upon the

existence of other features, a Naive Bayes classifier considers all of these properties to

independently contribute to the probability. For features that are real numbers (rather than discrete

values), probability densities can be used instead of probability mass functions. The Gaussian

multivariate probability density is given by the formula below:

Probability density =

 where k = number of dimensions.

 ∑ - covariance matrix of the multivariate normal distribution

 |∑ |- Determinant of the covariance matrix

 µ - Mean

24

 X- Test data

Example 2: The problem is to classify whether a given person is male or female based on features

Body Mass Index and foot size.

We need training data for the classification of persons. Table 1 shows a training set for person

classification.

Table 1: Training Set for Naive Bayes Classification

Sex

Body Mass Index

(BMI)

Foot Size

Male

21 11

Male

23 12

Male

20 10

Male

26 12

Female

18 6

Female

20 8

Female

21 9

Female

19 7

Based on the probability density formula, we have to calculate mean and variance for Body Mass

Index and foot size data. Table 2 shows the mean and variance for Body Mass Index and foot size

data for male and female.

25

Table 2: Calculated Parameters for the Training Set of Classification Example

 Male Female

Mean (BMI) 22.5 19.5

Variance (BMI) 7 1.6667

Mean (foot size) 11.25 7.5

Variance (foot size) 9.1667e-01 1.6667e+00

Consider a test sample to be classified as male or female.

Sex Body Mass Index Foot Size (inches)

Sample 23 8

Based on the probability density formula we have to calculate,

P(BMI|male), Probability density of height in males

P(Foot size male), Probability density of male foot size

P(BMI|female), Probability density of female when height is considered

P(Foot size|female), Probability density of female when foot size is considered.

Probability of male,

 P(male) = P(BMI|male) * P(Foot size|male)

Probability of female,

 P(female) = P(height|female) * P(Foot size|female)

26

p(BMI |male) is calculated by substituting the parameters in the probability density equation. In

this case μ is 22.5 and σ2 is 7. See Table 2. Here, we get a value which is greater than 1. As this is a

probability density it can have a value greater than 1.

Similarly, the remaining parameters are also calculated by using the training set and mean and

variance values shown in Table 2.

p(BMI | male) = 0.14811736

p(foot size | male) = 0.00131124

P(male) = 0.14811736 * 0.00131124 = 0.000194218

Similarly, P(female) can also be calculated.

p(BMI | female) = 0.00783395

p(foot size | female) = 0.28668838

P(female) = 0.00783395 * 0.28668838 = 0.002246

As in this case P(female) > P(male), we can say that the given sample is female

27

3.4 Naïve Bayes Classification for Gesture Recognition

 The Naive Bayes classifier can be used for the recognition of gestures. With the help of an

accelerometer, we can get a set of 3D data which represents the acceleration of our hands

performing the gesture. In section 3.2, we have seen that Principal components can be used for

gesture classification. We can therefore calculate the Probability density of a gesture by considering

Principal components, Ppca, as one of the features.

 Suppose if we have two gestures performed in the same plane and a major part of those

gestures are performed in the same direction, then we will have the greatest variance in the same

direction. Thus, we may have the first principal components of the two gestures in the same

direction. In this case, Principal components alone may not be useful for the classification of

gestures. So we have to consider another factor along with the principal components for

classification. Magnitude of the acceleration values can be considered as another factor. The

probability density of a gesture can be calculated by considering the average magnitude of x, y, z

components of acceleration Pmag as follows:

Probability density of a gesture = Ppca * Pmag

Training Set: In order to make a training set for each gesture, a gesture has to be repeated a few

times. If a gesture is repeated 3 times then we will get three samples of the gesture. With the help

of an accelerometer, we will get several 3D acceleration datapoints for each sample.

Let’s say a gesture G1 is repeated three times. We have to find the principal components and

average magnitudes of x y z acceleration values. A training set is developed on these two features

and based on that gesture classification will be done. Figure 3.9 shows three samples of gesture G1.

First principal components and average magnitudes for x y and z axis are calculated for each sample.

“Fc” represents the first principal component, and “Mag” represents the vector of average

magnitude of x, y, z components of acceleration in our explanation.

28

Mag is given by,

Mag=[Avg(Xaxis), Avg(yaxis), Avg(zaxis)]

Fc= 0.593i -0.095j + 0.799k Fc= 0.623i -0.138j + 0.769k Fc= 0.560i -0.1075j + 0.821k

Mag = [-16.88 -12.16 6.6] Mag = [0.4 -24.95 12.5] Mag = [-13.48 -16.70 20.48]

Figure 3.9: Three Samples for Gesture G1

Now let’s say gesture G2 is also performed three times to form the training set. Figure 3.10

represents three samples of gesture G2, their first principal components and vector of average

magnitudes of x, y and z components.

X axis Y axis Z axis

-50 -26 1

-60 -25 10

-97 -10 4

-128 2 -33

-128 -5 -36

-128 1 -67

-128 -19 -78

-114 -35 -80

-79 -44 -99

-51 -51 -102

-39 -45 -104

-53 -75 -82

-8 -75 -84

-25 -80 -63

-22 -82 -41

-19 -81 -36

-26 -76 -4

-6 -61 -2

X axis Y axis Z axis

-50 -30 1

-77 -28 11

-128 -9 -10

-128 -28 -31

-128 -4 -91

-128 -39 -99

-128 -57 -110

-109 -65 -122

-74 -70 -121

-52 -82 -107

-21 -81 -109

-19 -83 -94

-3 -88 -85

-21 -84 -51

-24 -70 -23

3 -61 -25

-37 -69 11

-18 -61 49

X axis Y axis Z axis

-46 -27 -16

-61 -25 -12

-79 -19 -5

-128 -15 -16

-128 -13 -24

-128 11 -40

-128 -15 -61

-128 -37 -75

-124 -45 -85

-92 -48 -93

-65 -68 -102

-58 -92 -108

-38 -114 -113

-43 -103 -88

-40 -97 -49

8 -80 -44

-38 -70 -7

-1 -68 26

29

Fc= 0.152i 0.723 j + 0.673k Fc= 0.202i 0.706j + 0.678k Fc= 0.104 i 0.680 j + 0.725k

Mag = [-48.75 -4.931 -15.56] Mag = [-48.11 6.67 12.22] Mag = [-48.5 7.44 12.88]

Figure 3.10: Three samples for Gesture G2

X axis Y axis Z axis

-73 14 -30

-38 29 -33

-44 23 -23

-42 18 -16

-54 7 12

-58 -3 5

-59 9 -27

-53 1 -23

-64 -6 -25

-83 5 -61

-15 56 -25

-33 21 44

-37 39 40

-105 111 61

-26 118 84

-17 79 83

-14 62 27

10 30 -3

-21 -57 -74

-51 -128 -128

-128 -97 -31

32 0 -9

17 14 -8

X axis Y axis Z axis

-48 18 -37

-43 17 -15

-71 -4 16

-59 -1 -3

-45 8 -15

-48 9 -11

-74 11 -76

-63 29 15

7 3 48

-31 62 69

-67 52 60

3 86 42

-8 30 6

30 -14 -37

-128 -128 -101

25 22 -23

-86 64 -62

-20 -7 -10

10 -21 -10

-66 1 -21

-87 0 -24

-66 0 -7

-56 10 -7

X axis Y axis Z axis

 -63 25 -21

-50 24 -61

-55 20 -11

-43 5 -28

-87 -23 7

-27 19 13

-51 70 8

-70 87 64

-26 111 87

-29 103 74

1 78 46

4 34 2

-12 -32 -93

-96 -125 -128

-128 -125 -85

58 -47 21

-35 31 -22

38 -41 14

-11 -13 -18

-93 6 -41

-76 -8 -24

-50 -11 -23

-52 1 -18

30

A set of classification models can be formed. Table 3 shows the models for gesture

classification.

Table 3: Models used for Gesture Classification

Gesture Principal component matrix Magnitudes matrix

G1 [0.593 -0.095 0.799

0.623 -0.138 0.769

0.560 -0.1075 0.821]

[-16.88 -12.16 6.6]

0.4 -24.95 12.5

-48.5 7.44 12.88]

G2

[0.152 0.723 0.673

0.202 0.706 0.678k

0.104 0.680 0.725k]

[-48.75 -4.931 -15.56

-48.11 6.67 12.22

-48.5 7.44 12.88]

Consider a test gesture GT. It has to be classified as G1 or G2.

Probability density of a gesture for a given class = Ppca * Pmag

Calculation of Probability Density of a Gesture G1:

Probability density =

Where K=3(3 Dimension)

 ∑ - covariance matrix of the multivariate normal distribution

 |∑ |- Determinant of the covariance matrix

 µ - Mean

 x- Test data

31

For the calculation of Ppca, the principal component matrix for G1 is taken from the training set

Principal component matrix = [0.593 -0.095 0.799

 0.623 -0.138 0.769

 0.560 -0.1075 0.821]

 ∑ = 1.0e-03 * [0.9930 -0.4665 -0.8170

 -0.4665 0.4893 0.4335

 -0.8170 0.4335 0.6813]

|∑ | = -1.2722e-26

∑-1 = 1.0e+19 * [-1.3916 0.3476 -1.8898

 0.3476 -0.0868 0.4721

 -1.8898 0.4721 -2.5665]

µ = [(0.593+0.623+0.560)/3 (-0.095-0.138-0.1075)/3 (0.799+0.769+0.821)/3]

µ = [0.592 -0.1135 0.796]

For the test gesture GT, the principal component is [0.170 0.747 0.6416]

So x = [0.170 0.747 0.6416]

By substituting all these values in the probability density formula we get,

 Ppca = 0

Similarly, Pmag is also calculated by taking magnitude matrix for G1 from the training set.

Pmag = 3.080328002979498E-49

Probability density of G1 = Ppca * Pmag

 = 0 * 3.080328002979498E-49

 = 0

32

Calculation of Probability of Gesture G2:

Ppca is calculated by taking the principal component matrix from the training set, and is obtained as

Ppca = 225.03729944998364

Pmag is calculated by taking magnitude matrix from the training set, and it is obtained as

Pmag = 9.524782203457256E-6

Probability density of gesture G2 = Ppca * Pmag

 = 225.03729944998364 * 9.524782203457256E-6

 = 0.0021434312649152854

The test gesture is classified as the gesture that has the highest class-dependent probability density.

As the probability density of gesture G2 is greater than the probability density of gesture G1, we can

say that the test gesture is G2.

33

 CHAPTER 4

APPLICATION

4.1 Application Architecture

 In Gestural Human Computer Interface for Smart Health, the user wears the Chronos Watch and

performs a set of predefined gestures for common activities in e-mail. Activities include composing

an email, sending an email, deleting an email, forwarding an email, searching for emails in the Inbox,

opening an attachment, scrolling up and scrolling down. The Chronos watch has an ultra-small size,

low power 3D accelerometer that measures acceleration relative to free-fall. The RF access point

allows it to wirelessly communicate with the Chronos directly from the PC. Figure 4.1 shows the

application architecture. The acceleration values are written to a text file by using the Chronos

Flying Mouse application. As the Chronos watch continuously senses the acceleration of the hands,

some undesired values are also written into the file, corresponding to accidental hand movements.

The file is parsed to filter undesired acceleration values. The filtering is based upon the difference

between two consecutive 3D acceleration values, which are referred to as delta values. As the idea

of the application is to perform heavy gestures, only heavy movements of the hands should be

considered. When the user performs a heavy gesture, the magnitudes of the acceleration values will

be high but will be low and almost constant if he moves hands slowly. Thus only the acceleration

values that correspond to the actual heavy gesture will be considered, with the remaining unwanted

values being discarded. The filtered data corresponding to one heavy gesture is considered as one

segment. The log file into which the sensed acceleration values are written is monitored

continuously and divided into segments. Each segment is sent to the Recognition algorithm.

Recognition is based on the magnitudes of the 3D acceleration values and the first principal

component of the segment. The matching algorithm interprets the gesture performed by the user

and maps it to the corresponding activity in the email.

34

Figure 4.1: Architecture of Gestural Human Computer Interface for Smart Health

4.2 Acceleration Data Collection from Chronos Watch

 In our application, we have used Chronos Flying Mouse application source code in order to

collect three dimensional acceleration data measured by Chronos watch. User has to tie the watch

and switch it to acceleration mode. The action is started by clicking on the start button on the

Chronos Flying Mouse window. The RF access point allows one to wirelessly communicate with the

Chronos directly from the PC. The code snippet that is used to check whether the RF access point is

connected correctly to the PC is reproduced below.

 int start_com()

 {

 if (is_com) return 0;

Recognition Algorithm (PCA,
Naïve Bayes Classification)

35

 is_com = BM_GetCOM(com_port);

 is_com = BM_OpenCOM(com_port, 115200, 30, false, false);

 if (!is_com)

 {

 set_status("Plug in RF point");

 return -1;

 }

 if (is_ppjoy)

 set_status("RF point and PPJoy found");

 else

 set_status("RF point found; no PPJoy found");

 return 0;

 }

 During that communication, the raw accelerometer data is passed through an exponential

smoothing filter for the smooth cursor movement in the flying mouse application. While passing the

raw accelerometer data to its own filter we capture the acceleration data and write it to a text file

called “log.txt.” The data from the file is then passed to a filter to discard unwanted acceleration

values which correspond to involuntary small hand movements that do not constitute the heavy

gesture. The code used to collect 3D acceleration into our “log.txt” file is given below and the

number of values recorded per second is 30.

Code Snippet for Acceleration Data Collection from Chronos Flying Mouse Application:

Void transform(DWORD spldata, of stream raw data) // function used to collect 3D acceleration

values

 {

 vector3 vdata = tovector3(spldata); // Our Edited code . vector3 is a class

 //contains x y z public data members

 ifstream fin("path\filename.txt");

 while(!fin.eof())

 fin>>d1>>x1>> y1>> z1;

36

 fin.close();

 fopen_s(&mydatalog1,"path /filename.txt","a");

 count++;

 sprintf(mycount, "%d ", count);

 sprintf(myx, "%f ", vdata.x);

 sprintf(myy, "%f ", vdata.y);

 sprintf(myz, "%f\n ", vdata.z);

 fprintf(mydatalog1,mycount); //writing 3D acceleration values to a file

 fprintf(mydatalog1,myx);

 fprintf(mydatalog1,myy);

 fprintf(mydatalog1,myz);

 }

This code writes the stream of 3D acceleration values into the log file. Figure 4.2 shows these values

37

Figure 4.2: Log File with 3D Acceleration Values

-150

-100

-50

0

50

100

150

1 4 7 10 13 16 19 22 25 28 31 34

X-axis

Y-axis

Z-axis

X axis Y axis Z axis

-65 30 5

-91 15 -53

-88 2 -52

-62 -11 -22

-8 -18 42

55 -15 96

110 -20 116

102 -28 103

121 -35 87

127 -30 64

96 -31 53

43 -35 67

-56 -33 78

-122 -3 50

-128 12 7

-94 30 -7

-45 40 -8

-12 39 -1

-8 38 4

-15 37 6

-15 38 7

-22 31 7

-20 33 5

-20 35 6

-18 36 7

-12 36 11

-3 32 16

-16 48 13

-11 26 20

-8 30 20

-10 38 16

-7 39 14

-6 38 13

-13 37 11

-6 36 13

-7 34 13

38

4.3 Filtering of the Acceleration Data

Filtering: Acceleration data is passed through our own filter in addition to the exponential

smoothing filter of the Chronos Flying Mouse application. This filter is used in order to distinguish

the actual heavy gesture from the normal hand movements of the user and incomplete gestures.

Filtering is done based on the absolute difference between consecutive 3D acceleration values

which are referred to as delta values. As the user has to perform a heavy gesture to perform an

email activity, the 3D acceleration values have to be large by definition. When user is at rest, the

acceleration will almost be zero in x and y axis, and a value of 1g in the z axis. This is because the

accelerometer of the Chronos watch measures acceleration in units of gravity. Figure 4.3 shows an

excerpt of 3D acceleration values from the log file when the user is at rest:

Figure 4.3: Log File of 3D Acceleration Values when User is at Rest

-30

-20

-10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14

X axis

Y axis

Z axis

X axis Y axis Z axis

-12 39 -1

-8 38 4

-15 37 6

-15 38 7

-22 31 7

-20 33 5

-20 35 6

-18 36 7

-12 36 11

-3 32 16

-16 48 13

-11 26 20

-8 30 20

-10 38 16

39

When the user is moving hands normally, the velocity will almost be constant. Hence the

acceleration is very low or almost zero in x and y axes and 2g in the z axis. Figure 4.5 shows the log

file of 3D acceleration values when the user moves hands slowly:

Figure 4.5: Log file of 3D Acceleration Values When the User Moves Hands Slowly

When the user performs a heavy gesture the 3D acceleration values will have larger magnitudes

and, depending upon the plane in which the user is performing the gesture, the acceleration values

-50

-40

-30

-20

-10

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27

X axis

Y axis

Z axis

X axis Y axis Z axis

-24 18 29

-10 18 24

-27 12 26

-32 10 29

-30 11 23

-38 16 7

-40 19 -1

-31 18 4

-25 16 14

-23 19 19

-21 20 21

-19 15 27

-31 19 27

-35 14 37

-43 12 36

-39 8 36

-25 8 33

-21 9 22

-30 6 19

-34 3 20

-34 4 23

-43 9 29

-32 4 30

-22 5 29

-23 7 29

-28 6 30

-30 5 27

40

will be high in those planes. Figure 4.6 shows the log file of 3D acceleration values when the user

performs a heavy gesture.

Figure 4.6: 3D Acceleration Values when a Heavy Gesture is performed by the User.

Based on the above three log files, it is clearly observed that the acceleration values are constant

when the user is at rest or moving hands slowly. So the delta values in such cases will be very low.

-150

-100

-50

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

X-axis

Y-axis

Z-axis

X axis Y axis Z axis

-15 -2 -12

-128 38 -18

-128 31 -61

-128 -1 -74

-101 -49 -68

-64 -42 -74

-54 -53 -67

-35 -50 -57

-35 -43 -29

-34 -46 -17

-50 -44 13

-30 -70 101

10 -49 101

-25 -25 127

21 18 25

-5 -14 36

-9 -8 43

-24 0 33

-27 -1 27

-21 -1 27

-18 -1 28

-10 -5 32

-9 -9 33

-14 -7 31

-13 -6 32

-14 -6 33

-19 -4 34

-21 -4 30

-23 -3 35

-21 -3 35

41

All the acceleration values with high delta values are retained while values with low delta values are

discarded with the help of the filter. Figure 4.7 shows the log file of the filtered data:

Figure 4.7: Log File Representing Filtered Data

-150

-100

-50

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21

X-axis

Y-axis

Z-axis

X axis Y axis Z axis

-15 -2 -12

-128 38 -18

-128 31 -61

-128 -1 -74

-101 -49 -68

-64 -42 -74

-54 -53 -67

-35 -50 -57

-35 -43 -29

-34 -46 -17

-50 -44 13

-30 -70 101

10 -49 101

-25 -25 127

21 18 25

-5 -14 36

-9 -8 43

-24 0 33

-27 -1 27

-21 -1 27

-18 -1 28

-10 -5 32

42

4.4 Segmentation of Acceleration Data

 The user typically sets the watch in acceleration mode and clicks on the start button only once,

followed by a sequence of gestures. The accelerometer continuously senses the acceleration of the

hand and 3D acceleration values are continuously written into the log file. This log file contains data

corresponding to heavy gestures, as well as rest and normal hand movements. This large file ideally

needs to be divided into segments, where each segment corresponds to one heavy gesture; data

corresponding to unwanted activities must be discarded. We keep polling the log file, and whenever

certain consecutive constant delta values are observed, these are discarded. Each set of values

delimited by (relatively) constant values is sent to a text file named “current time stamp.txt”. Each

such file represents a gesture. We continue polling the data in the log file, and if we observe

consecutive delta values with greater magnitude, we again send those values to another file named

“current time stamp.txt.” The data in each file forwarded to the recognition algorithm.

The code snippet below is used for filtering and segmentation of the data:

Pseudo Code:

Void Segment(DWORD spldata, ofstream& rawdata)

{

 if(abs(x1-vdata.x)<9 && abs(y1-vdata.y)<9 && abs(z1-vdata.z)<9) //finding the

difference

 //between consecutive acceleration

values

 {

 if(f_count1!=0 && abs(count-f_count1)==1)

 {

 filtercount++;

 }

 f_count1=count;

 }

 if(filtercount<3) // This condition indicates valid data to be sent for

recognition

 {

43

 writeit.open("path/filt.txt",ios::app);

 writeit<<count<<<<" "<<vdata.x<<" "<<vdata.y<<" "<<vdata.z<<"\n";

 writeit.close();

 }

 if(filtercount>=3) // This condition is to discard unnecessary values

 {

 if(count>13)

 {

 the_date[0] = '\0'; // After discarding unnecessary values send them to

 // timestamp.txt

 now = time(NULL);

 if (now != -1)

 {

 strftime(the_date, MAX_DATE, "%Y-%m-%d+%H-%M-%S.txt", gmtime(&now))

 }

 string datetime = "C:/Users/sowmya/Downloads/";

 datetime = datetime+ the_date;

 ifstream myReadFile;

 ofstream mywritefile1;

 mywritefile1.open(datetime,ios::app);

 myReadFile.open("C:/Users/sowmya/Downloads/msp430_005/Debug/filt.txt");

 if (myReadFile.is_open()) {

 while (!myReadFile.eof()) { //Placing the necessary values in

timestamp.txt

 myReadFile>>output1>>output2>>output3>>output4;

 mywritefile1<<output2<<" "<<output3<<" "<<output4;

 mywritefile1<<"\n";

 }

 }

 myReadFile.close();

 mywritefile1.close();

 }

 ct++; //Resetting all the variables for the next

segment

 count=0;

 f_count1=0;

 f_count2=0;

 filtercount=0;

 x1=0,y1=0,z1=0,d1=0;

 DeleteFile("C:/Users/sowmya/Downloads/msp430_005/Debug/filt.txt");

 }

 }

44

Consider the following hypothetical sequence of interactions with an e-mail program. The user

searches for a particular email message in his Inbox and then deletes it. During the process, every

movement is recorded by the watch. The log file contains the data corresponding to the gesture for

search, data corresponding to normal hand movement or when the hand is at rest, and data

corresponding to the action for delete. Filtering and segmentation code is used to filter the data

corresponding to normal hand movements and dividing the data into two segments in this case.

Figure 4.8 shows the corresponding log file. It contains data corresponding to the first gesture, data

corresponding to normal hand movement during a delay between the first gesture and second

gesture, and data corresponding to the second gesture. The file is filtered and divided into two

segments by filtering and segmentation algorithms. In the log file, each heavy gesture which can be

done in a second, is expected to have at least 10 lines of 3D acceleration values. Apart from the lines

corresponding gestures remaining all lines will be filtered. Thus, filtering and segmentation is

performed.

45

Line Number X axis Y axis Z axis

1 -55 -16 -38

2 -50 -16 -40

3 -48 -18 -38

4 -67 -12 -32

5 -80 0 -21

6 -44 18 1

7 -106 48 46

8 -77 58 15

9 -30 -14 -56

10 -127 -128 -78

11 -31 -94 -20

12 -24 -76 -34

13 -7 -17 -16

14 -37 -16 -6

15 -58 -9 -11

16 -59 -16 -14

17 -69 -10 -8

18 -75 -6 -3

19 -65 -9 -6

20 -61 -11 -12

21 -54 -14 -13

22 -51 -13 -12

1 -58 -9 -10

2 -55 -10 -7

3 -56 -10 -12

4 -49 -10 -4

5 -53 -11 -4

1 -53 -9 -3

2 -51 -5 -2

3 -47 -6 1

4 -48 -6 1

1 -36 -14 18

2 -38 -12 20

3 -37 -14 22

4 -37 -13 21

1 -39 -14 20

2 -39 -15 20

3 -35 -17 20

4 -37 -19 19

1 -38 -23 16

2 -38 -23 15

3 -38 -23 16

4 -35 -22 16

1 -35 -24 17

2 -35 -23 17

3 -36 -24 16

4 -36 -24 16

1 -36 -24 17

2 -34 -23 17

3 -35 -23 18

4 -35 -23 18

1 -34 -23 18

2 -34 -23 18

3 -35 -22 18

4 -35 -23 18

1 -35 -22 18

2 -34 -22 18

3 -35 -23 17

4 -34 -22 18

46

Figure 4.8: Log File and Graph for a sequence of Two Gestures performed continuously

-150

-100

-50

0

50

100

150

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

X-axis

Y-axis

Z-axis

1 -34 -23 18

2 -34 -23 17

3 -34 -22 19

4 -34 -23 18

1 -33 -23 22

2 -33 -27 31

3 -33 -37 37

4 -38 -35 21

5 -40 -18 3

6 -41 -20 0

7 -50 -17 -9

8 -38 -15 -25

9 -42 -15 -26

10 -42 -19 -29

11 -47 -13 -39

12 -52 -13 -36

13 -50 -12 -35

14 -92 -13 -32

15 -89 -23 -38

16 -39 -10 -11

17 -60 -23 -14

18 -63 -17 -28

19 -128 28 -51

20 -128 11 -60

21 -128 -9 -87

22 -107 -22 -93

23 -87 -37 -102

24 -25 -82 -55

25 -54 -99 -25

26 -18 -94 24

27 -8 -94 123

28 -13 -11 97

29 1 -17 41

30 -15 -45 47

31 -41 -25 27

32 -11 -16 30

33 -21 -17 27

34 -26 -20 23

35 -26 -21 24

1 -20 -18 23

2 -27 -21 26

3 -17 -18 30

4 -22 -22 25

5 -21 -15 25

6 -22 -21 31

Line Number X axis Y axis Z axis

47

Figures 4.9 and 4.10 show two files and graphs after segmentation of the log file shown in figure 4.8.

Figure 4.9: Segmented File and Graph for First Heavy Gesture

-150

-100

-50

0

50

100

1 3 5 7 9 111315171921

X-axis

Y-axis

Z-axis

Line

Number X axis Y axis Z axis

1 -55 -16 -38

2 -50 -16 -40

3 -48 -18 -38

4 -67 -12 -32

5 -80 0 -21

6 -44 18 1

7 -106 48 46

8 -77 58 15

9 -30 -14 -56

10 -127 -128 -78

11 -31 -94 -20

12 -24 -76 -34

13 -7 -17 -16

14 -37 -16 -6

15 -58 -9 -11

16 -59 -16 -14

17 -69 -10 -8

18 -75 -6 -3

19 -65 -9 -6

20 -61 -11 -12

21 -54 -14 -13

22 -51 -13 -12

48

Figure 4.10: Segmented File and Graph for Second Heavy Gesture

-150

-100

-50

0

50

100

150

1 4 7 10 13 16 19 22 25 28 31 34

X-axis

Y-axis

Z-axis

Line Number X axis Y axis Z axis

1 -33 -23 22

2 -33 -27 31

3 -33 -37 37

4 -38 -35 21

5 -40 -18 3

6 -41 -20 0

7 -50 -17 -9

8 -38 -15 -25

9 -42 -15 -26

10 -42 -19 -29

11 -47 -13 -39

12 -52 -13 -36

13 -50 -12 -35

14 -92 -13 -32

15 -89 -23 -38

16 -39 -10 -11

17 -60 -23 -14

18 -63 -17 -28

19 -128 28 -51

20 -128 11 -60

21 -128 -9 -87

22 -107 -22 -93

23 -87 -37 -102

24 -25 -82 -55

25 -54 -99 -25

26 -18 -94 24

27 -8 -94 123

28 -13 -11 97

29 1 -17 41

30 -15 -45 47

31 -41 -25 27

32 -11 -16 30

33 -21 -17 27

34 -26 -20 23

35 -26 -21 24

49

4.5 Description of Gestures

Table 4: Description of Gestures and Corresponding Email Activities

SNO Email Action Conventional

method

Gesture Description of Gesture

1

Deleting an email

Clicking the delete

option

Delete

Imagine that you have a blackboard

in front of you (parallel to the screen

of your computer). Draw a big ‘Z’ on

that board.(This is just like you are

rubbing the blackboard with a

duster)

2

Sending an email

Clicking the send

Button

Send

Imagine that you have a blackboard

in front of you (parallel to the screen

of your computer). Draw a big ‘Tick

mark’ on that board.

3

See recent mails

in the current page

of Inbox

Scroll up the scroll

bar to see the

recent mails

Turn Right

Imagine that you have a big book on

your keyboard. Turn a page of that

book to the right to see the previous

page. Place your hand on the

bottom left corner of the keyboard

and turn the page to right making a

big arc.

4

See older mails in

the current page of

Inbox

Scroll down the

scroll bar

to see older mails

Turn Left

Imagine that you have a big book on

your keyboard. Turn a page of that

book to the left to see the next

page. Place your hand on the

bottom right corner of the keyboard

and turn the page to left making a

big arc.

5

Forwarding an

email

Clicking the

‘Forward to’ button

Forward

Join your palms with the fingers

pointing away from you and lock

your fingers. Move your locked hand

away from you

50

Table 4: -- Description of gestures and the corresponding email activities

SNO Email Action Conventional method Gesture Description of Gesture

6

Compose an

email

Clicking compose or

New button

Compose

Imagine that some nuts are scattered

on the table over a small area.

Gather all of them at once and toss

upwards.

7

Searching for a

mail in Inbox

Clicking the Search

Button

Search

Imagine that there is a book on the

keyboard and a magnifying glass in

your hand. Place your hand at the

bottom center of the keyboard and

rotate your hand clockwise. Make a

circle and semicircle with your hand.

8

Opening an

attachment

Clicking the open

Button in the pop-up

window after

downloading

Open

Place your hands at your shoulders

with palms facing the screen of the

computer. Then make fists and

slowly raise your hands up as if you

are opening the shutter of a store.

51

Table 5: Description and Images of Gestures

Description of Gesture Image Showing How to do the Gesture Graph Showing Acceleration Values

of a Sample

Delete:

Imagine that you have

a blackboard in front

of you (parallel to the

screen of your

computer). Draw a big

‘Z’ on that board.(This

is just like you are

rubbing the

blackboard with a

duster)

Send:

Imagine that you have

a blackboard in front

of you (parallel to the

screen of your

computer). Draw a big

‘Tick mark’ on that

board.

-150

-100

-50

0

50

100

1 5 9 13 17 21 25 29

X-

axis
Y-

axis
Z-

is

-150

-100

-50

0

50

100

150

1 2 3 4 5 6 7 8

X-axis

Y-axis

Z-axis

52

Table 5: -- Description and Images of Gestures

Description of

Gesture

Image Showing How to do the Gesture Graph Showing Acceleration Values of a

Sample

Turn:

Imagine that you

have a big book

on your

keyboard. Turn a

page of that

book to the left

to see the next

page. Place your

hand on the

bottom right

corner of the

keyboard and

turn the page to

left making a big

arc.

Turn from left to

right:

Imagine that you

have a big book

on your

keyboard. Turn a

page of that

book to the right

to see the

previous page.

Place your hand

on the bottom

left corner of the

keyboard and

turn the page to

right making a

big arc.

-150

-100

-50

0

50

100

1 4 7 10 13 16 19 22 25

X-axis

Y-axis

Z-axis

-150

-100

-50

0

50

100

1 4 7 10131619222528

X-axis

Y-axis

Z-axis

53

Table 5: -- Description and images of gestures

Description of

Gesture

Image Showing How to do the Gesture Graph Showing Acceleration Values of a

Sample

Search:

Imagine that

there is a book

on the keyboard

and a

magnifying glass

in your hand.

Place your hand

at the bottom

center of the

keyboard and

rotate your

hand clockwise.

Make a circle

and semicircle

with your hand.

Open:

Place your

hands at your

shoulders with

palms facing the

screen of the

computer. Then

make fists and

slowly raise your

hands up as if

you are opening

the shutter of a

store.

-150

-100

-50

0

50

100

1 4 7 10 13 16 19 22 25 28

X-axis

Y-axis

Z-axis

-60

-40

-20

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17

X-axis

Y-axis

Z-axis

54

Table 5: -- Description and images of gestures

Description of

Gesture

Image Showing How to do the Gesture Graph Showing Acceleration Values of a

Sample

Punch: Join your

palms with the

fingers pointing

away from you

and lock your

fingers. Quickly

Move your

locked hand

away from you

-150

-100

-50

0

50

100

150

1 5 9 1317212529333741

X-axis

Y-axis

Z-axis

55

CHAPTER 5

IMPLEMENTATION

5.1 Overview of Implementation

 The previous chapters focused on the methodology that makes it possible to recognize a set of

gestures based on acceleration values. This chapter discusses the implementation of training and

recognition. Users can train the application with as many gestures they want from the pool of the

gestures defined to map to email activities. Each gesture needs to be repeated eight times to create

a training set. Once all gestures are presented, training is completed by mapping to a multivariate

Gaussian model. The application is then ready to recognize the gestures.

In the implementation of this application, we use the modified .exe file of the Chronos Flying Mouse

application which is recompiled after adding our source code. This .exe file is invoked from the

training and recognition module.

Code Snippet Corresponding to Training and Recognition:

class NewThread extends MatlabSyntax implements Runnable

 {

 Thread t;

 // Training and Recognition code

}

public class trainreco

{

 public static void main(String[] args)

 {

 new NewThread();

 Process p = rt.exec("Filepath/Chronosflyingmouse.exe");

 }

}

56

In our application, we run the Chronos Flying Mouse .exe file in the main thread and the training and

recognition code in the child thread. Since both the threads run simultaneously, training and

recognition can occur in real time.

5.2 Training of Gestures

 As discussed in section 3.4, we have a set of eight gestures, each used to perform an email

activity. Each gesture has to be trained eight times and the user can train as many gestures as he

wants. When the user does a gesture eight times, eight .txt files are generated, each corresponding

to one sample of the gesture. These text files contain the acceleration data that are written by our

data collection algorithm in the Chronos Flying Mouse application code. As discussed in section 5.1,

the Chronos Flying Mouse application and code corresponding to the training and recognition run

simultaneously. The acceleration data is continuously written into .txt Files and the training code

reads the files generated to do calculations for PCA and probability densities in real time for

practical purposes.

 For proper concurrency control, the main thread locks each file while writing it and unlocks

it as soon as it is done. The child thread opens the files sequentially for training and recognition.

Code Snippet Showing How Files are Searched in the Target Directory

class myfilesearch {

 public File[] finder(String dirName){

 File dir = new File(dirName);

 return dir.listFiles(new FilenameFilter() {

 public boolean accept(File dir, String filename)

 { return filename.endsWith(".txt") ; }

 });

 }

}

57

The files are indexed in a file array that is sorted by modification time, such that the first element in

the file array is the oldest file created and the last element in the array is the newest file.

Code Snippet Showing How Files are Sorted According to Modified Time.

class sortfiles

{

 public File[] getallfiles(){

 File temp;

 Scanner sc2 = null;

 myfilesearch sh = new myfilesearch();

 File[] f=sh.finder("C:/Users/sowmya/Downloads");

 //System.out.println(f.length);

 for(int j=0;j<(f.length)-2;j++)

 {

 for(int i=0; i<(f.length)-1 ; i++)

 {

 if(f[i].lastModified() > f[i+1].lastModified())

 {

 temp = f[i];

 f[i] = f[i+1];

 f[i+1] = temp;

 }

 }

 }

 return f;

 }

Ex:

C:\Users\sowmya\Downloads\2012-11-09+04-12-20.txt

C:\Users\sowmya\Downloads\2012-11-09+04-14-25.txt

C:\Users\sowmya\Downloads\2012-11-09+04-15-25.txt

C:\Users\sowmya\Downloads\2012-11-09+04-16-39.txt

C:\Users\sowmya\Downloads\2012-11-09+04-16-41.txt

C:\Users\sowmya\Downloads\2012-11-09+04-16-43.txt

C:\Users\sowmya\Downloads\2012-11-09+04-17-02.txt

C:\Users\sowmya\Downloads\2012-11-09+04-17-59.txt

C:\Users\sowmya\Downloads\2012-11-09+04-19-15.txt

C:\Users\sowmya\Downloads\2012-11-09+04-20-38.txt

C:\Users\sowmya\Downloads\2012-11-09+04-20-41.txt

C:\Users\sowmya\Downloads\2012-11-09+04-20-48.txt

C:\Users\sowmya\Downloads\2012-11-09+04-21-13.txt

C:\Users\sowmya\Downloads\2012-11-09+04-21-17.txt

C:\Users\sowmya\Downloads\2012-11-09+04-21-28.txt

Each file is read, and a matrix is constructed from the file.

Code Snippet Shows How the Matrix is constructed from a File.

58

FileInputStream fstream = new FileInputStream(f[i]);

 String sr = f[i].toString();

 sc2 = new Scanner(new File(sr));

 DataInputStream in = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new InputStreamReader(in));

 String str;

 while ((str = br.readLine()) != null) {

 System.out.println("str is"+ str);

 count++;

 }

 in.close();

 //count = count-2;

 m=count;

 System.out.println("count is"+ m);

 Matrix B = normRnd(0,1,m,3) ;

 while (sc2.hasNextLine()) {

 Scanner s2 = new Scanner(sc2.nextLine());

 boolean b;

 while (b = s2.hasNext()) {

 int threecount=1;

 while(threecount<4)

 {

 String s = s2.next();

 double cond = Double.parseDouble(s);

 int convertint = (int) cond;

 set(B,matrixindex,threecount,convertint);

 threecount++;

 }

 matrixindex++;

 }

 }

In Figure 5.1, the file on the left contains the acceleration data, while the one on the right side

shows the matrix that is constructed from the data.

59

Figure 5.1: A Matrix Constructed from a Text File

Based on the matrix, variances and covariances are calculated, and Eigenvectors are calculated in

turn for the transformation corresponding to the covariance matrix. As discussed in section 3.1., the

principal component corresponds to the Eigenvector with the highest variance, which is used for

gesture training and recognition.

Code Snippet Showing How the Principal Component is Calculated from the Constructed Matrix

Matrix covariance = cov(B);

Matrix eigenVectors = eig_V(covariance);

Matrix eigenValues = eig_D(covariance);

System.out.println("eigen Vectors are");

disp(eigenVectors);

60

Vector<Double> v = new Vector<Double>();

v.add(get(eigenVectors, 1, 3));

 v.add(get(eigenVectors, 2, 3));

 v.add(get(eigenVectors, 3, 3));

 Eigen vectors for the covariance of the matrix shown in fig: by using the above code

 [0.8741 -0.4760 -0.0965

 -0.2283 -0.5781 0.7834

 0.4287 0.6628 0.6140]

The first principal component calculated based on the code and matrix above is

[0.8741 -0.2283 0.4287]

For each sample, the principal component and average magnitude is calculated as discussed above.

Thus we get eight principal components for the eight samples, and then find the average principal

component.

The average principal component vector of the eight samples for the gesture delete is shown in

Figure 5.2 and represented as 0.8899i + -0.2730j + 0.3611k

61

Figure 5.2: Average Principal Vector for Delete Gesture

Similarly, the average principal component vector for eight samples of the send gesture is shown in

figure 5.3 and represented as 0.2373 i + 0.715j + 0.6372125k.

62

Figure 5.3: Average Principal Vector for Send Gesture

The average principal component vector of the eight samples of the scroll down gesture is shown in

Figure 5.4, represented as -0.4821375i -0.0086125j + 0.87165k.

63

Figure 5.4: Average Principal Vector for Scroll Down Gesture

The average principal component vector of the eight samples of the scroll up gesture is shown in

Figure 5.5, represented as 0.1351375i -0.0643875j + 0.9763k.

64

Figure 5.5: Average Principal Vector for Scroll Up Gesture

The average principal component vector of the eight samples of the punch gesture is shown in

Figure 5.6 and is represented as 0.20200388i + 0.713218536j + 0.654672013k.

65

Figure 5.6: Average Principal Vector for Punch Gesture

The average principal component vector of the eight samples of the launch gesture is shown in

Figure 5.7 and is represented as 0.7915i + 0.3174875j + 0.50325k.

66

Figure 5.7: Average Principal Vector for Launch Gesture

The average principal component vector of the eight samples of the search gesture is shown in

Figure 5.8 and is represented as -0.4482i + 0.8723j -0.1212k.

67

Figure 5.8: Average Principal Vector for Search Gesture

The average principal component vector of the eight samples of the open gesture is shown in Figure

5.9 and is represented as -0.192809669i -0.951398035j + 0.213508419k.

68

Figure 5.9: Average Principal Vector for Open Gesture

5.3 Recognition of Gestures

Consider a test gesture and let’s say its principal component vector is 0.87i -0.22 j + 0.42k

Once the principal component is calculated for the test gesture, angles between the test gesture

and the average principal component of each gesture are calculated. Figure 5.10 shows the first

principal component of all the predefined gestures and the test gesture.

69

Figure 5.10: Graph Showing First Principal Component of all Gesture Models with Test Gesture.

Angles are calculated by using the dot product of two vectors as discussed earlier.

Angle between test gesture and delete gesture stereotype principal components = 4.68

Angle between test gesture and send gesture stereotype principal components = 71.30

Angle between test gesture and scroll down gesture stereotype principal components = 92.74

Angle between test gesture and scroll up gesture stereotype principal components = 56.15

Angle between test gesture and punch gesture stereotype principal components = 72.75

Angle between test gesture and launch gesture stereotype principal components = 32.53

Angle between test gesture and search gesture stereotype principal components = 49.33

Angle between test gesture and open gesture stereotype principal components = 81.95

70

The smallest angle (1.74 degrees) is between the test gesture and the delete gesture model. The

test gesture is therefore recognized as delete.

Figure 5.11 is a screen shot of the application’s output for gesture recognition.

Figure 5.11: Application Output for Gesture Recognition

For the second method of gesture recognition, we take into account the probability densities of

both the principal component and the magnitude; the average x, y, and z accelerations are also

taken into account. The joint probability density of a gesture is given by the product of these two

probability densities.

The average magnitudes are calculated as follows. For the matrix shown in Figure 5.12, parsed from

the stream file, we take the averages of the first, second and third columns, which represent the

acceleration values in x, y and z dimensions.

Code Snippet Showing How to Calculate the Average Values of the Matrix:

 double sum1=0;

 double sum2=0;

 double sum3=0;

71

 for(int row=1; row<matrixindex;row++)

 {

 sum1 = sum1+ get(B,row,1);

 }

 for(int row=1; row< matrixindex;row++)

 {

 sum2 = sum2+ get(B,row,2);

 }

 for(int row=1; row< matrixindex; row++)

 {

 sum3 = sum3+ get(B,row,3);

 }

 double avg1 = sum1/(m-1);

 double avg2=sum2/(m-1);

 double avg3= sum3/(m-1);

Figure 5.12 : Matrix used to Compute Average Values

72

Avg(x) = -13.8182

Avg(y)=3.5

Avg(z) = 29.22727

The first principal component and average x y z accelerations are thus calculated for a file

representing one gesture sample. As discussed in section 3.4, a training set for gesture classification

is created based on these two features.

Code Snippet Showing How Principal Component Matrix and Magnitude Matrix are constructed

from the Training Set:

public void gettrainsets(int p, Matrix traineigenset,Matrix trainmagset,Matrix

eigenVectors,Matrix tmag)

 {

 int q=1;

 System.out.println("p is " +p + "q is "+q);

 set(traineigenset,p,q,get(eigenVectors, 1, 3));

 set(trainmagset,p,q,get(tmag, 1, 1));

 q++;

 System.out.println("p is " +p + "q is "+q);

 set(traineigenset,p,q,get(eigenVectors, 2, 3));

 set(trainmagset,p,q,get(tmag, 2, 1));

 q++;

 System.out.println("p is " +p + "q is "+q);

 set(traineigenset,p,q,get(eigenVectors, 3, 3));

 set(trainmagset,p,q,get(tmag, 3, 1));

 disp(traineigenset);

 }

Once the training set is created with the help of the above code, the likelihood for each gesture

model is calculated as follows.

Probability density =

Where

 ∑ - covariance matrix of the multivariate normal distribution

73

|∑ |- Determinant of the covariance matrix,

∑-1 - Inverse of the covariance matrix

 µ - Mean

Code Snippet for the Calculation of the Required Parameters

 double sum1=0;

 double sum2=0;

 double sum3=0;

 for(int row=1; row<9;row++)

 {

 sum1 = sum1+ get(traineigenset,row,1);

 }

 for(int row=1; row< 9;row++)

 {

 sum2 = sum2+ get(traineigenset,row,2);

 }

 for(int row=1; row< 9; row++)

 {

 sum3 = sum3+ get(traineigenset,row,3);

 }

 double ag1 = sum1/(8);

 double ag2=sum2/(8);

 double ag3= sum3/(8);

 Matrix meaneigenset = normRnd(0,1,3,1);

 set(meaneigenset,1,1,ag1);

 set(meaneigenset,2,1,ag2);

 set(meaneigenset,3,1,ag3);

 double s1=0;

 double s2=0;

 double s3=0;

 for(int row=1; row<9;row++)

 {

 s1 = s1+ get(trainmagset,row,1);

 }

 for(int row=1; row< 9;row++)

 {

 s2 = s2+ get(trainmagset,row,2);

 }

 for(int row=1; row< 9; row++)

 {

 s3 = s3+ get(trainmagset,row,3);

 }

74

 double a1 = s1/(8);

 double a2=s2/(8);

 double a3= s3/(8);

 Matrix meanmagset = normRnd(0,1,3,1);

 set(meanmagset,1,1,a1);

 set(meanmagset,2,1,a2);

 set(meanmagset,3,1,a3);

 meaneigenmatrices.add(meaneigenset);

 Matrix coveigenset= cov(traineigenset);

 Matrix invcoveigenset = inv(coveigenset);

 inveigenmatrices.add(invcoveigenset);

 double detcoveigenset = det(coveigenset);

 eigendets.add(detcoveigenset);

 meanmagmatrices.add(meanmagset);

 Matrix covmagset = cov(trainmagset);

 Matrix invcovmagset = inv(covmagset);

 invmagmatrices.add(invcovmagset);

 double detcovmagset = det(covmagset);

 magdets.add(detcovmagset);

The probability of a gesture when Principal component is taken into account is calculated as follows:

for(probcnt =0; probcnt<meaneigenmatrices.size(); probcnt++)

 {

 Matrix mdiff = minus(tpca,(Matrix)meaneigenmatrices.get(probcnt));

 Matrix mtrans = t(mdiff);

Matrix interpca =

times(mtrans,(Matrix)inveigenmatrices.get(probcnt));

 Matrix finalpca = times(interpca,mdiff);

 double expower=-get(finalpca,1,1)/2;

double probpca =

(1/(Math.sqrt(Math.pow(2*3.14159,3)*(double)eigendets.get(probcnt)))

)*Math.exp(expower);

 System.out.println("prob pca is");

 System.out.println(probpca);

}

The probability density of a gesture when average magnitudes of x, y, z components of acceleration

are considered is calculated as follows:

for(probcnt =0; probcnt<meaneigenmatrices.size(); probcnt++)

 {

 Matrix magdiff = minus(tmag,(Matrix)meanmagmatrices.get(probcnt));

 Matrix magtrans = t(magdiff);

 Matrix intermag = times(magtrans,(Matrix)invmagmatrices.get(probcnt));

 Matrix finalmag = times(intermag,magdiff);

 double magexpower=-get(finalmag,1,1)/2;

 double probmag =

75

(1/(Math.sqrt(Math.pow(2*3.14159,3)*(double)magdets.get(probcnt))))*

Math.exp(magexpower);

 System.out.println("prob mag is");

 System.out.println(probmag);

 }

The joint probability density of a gesture is the product of the two probability densities.

probdensity=(probpca*probmag);

 totprob.add(probpca*probmag);

The recognized gesture is the gesture with highest likelihood or probability density.

76

CHAPTER 6

EVALUATION OF GESTURAL HUMAN COMPTER INTERFACE FOR SMART HEALTH

6.1 Instructions to Use the Application

Tie the Chronos watch to your right hand

1. Run the application

2. You will see “Enter your option” message in the console. Enter “1” to train your gesture.

3. When you press 1, the Chronos Flying Mouse window will pop up.

4. Click on “start/stop” button on the Chronos Flying Mouse window

5. Press the button on the watch that is on the bottom right of the watch. If everything is

performed correctly, the cursor will move on the screen if you slowly move your hand.

77

6. Perform the gesture you want to train. After completing it go to the C:\\ drive to see if text file

with the current time stamp is generated. That file will be generated only if you do heavy gesture

with reasonable force. Gestures of very short duration will not be recorded.

7. Repeat the same gesture seven more times, leaving a gap of 3-4 seconds between gestures.

Check the C:// drive to confirm that a total of eight .txt files are generated corresponding to each

gesture.

8. Once eight txt files are generated, close the Chronos Flying Mouse window and press 3 in the

console where you see "Enter 3 when finished training".

9. Once you have done that you will see “Enter your option” in the console.

 If you wish to train another gesture then repeat steps 3 to 8.

 10. Once you are done with training different gestures, enter “2” in the console.

78

 11. The Chronos Flying Mouse Window will pop up again. Click on the start button and perform any

gesture from the set of gestures you have trained. Confirm that a new file corresponding to the

gesture has appeared in C://.

12. Once you see the new .txt file that corresponds to the test gesture, enter “ 1” in the console.

13. The application will display the recognized gesture (See Figure 5.12).

 14. Repeat steps 10 to 13 to test the recognition as many times as you want.

 15. Once you are done, enter “2” in the console to exit the application.

79

80

6.2 Evaluation

 We have eight predefined gestures that map to email activities. In order to track the

performance, we conducted an evaluation with a volunteer group consisting of two men and 13

women aged between 22 and 30 years. We performed two kinds of evaluation – volunteer

independent and volunteer dependent. In volunteer independent evaluation, we pretrained all the

eight gestures to be recognized and asked each volunteer to randomly choose and execute any five

gestures out of the eight. In volunteer training dependent evaluation, each volunteer trained two to

three gestures to the application and then tested the ability to recognize the same gestures. If

misrecognition of gestures occurred during volunteer training independent evaluation, then the

volunteer was asked to create a volunteer dependent model of the misrecognized gestures and test

the accuracy of recognition.

Evaluation Setup: Each volunteer was requested to wear the watch and connect the eZ430-Chronos

RF Access Point to the PC for receiving acceleration data. An overview of the application and its uses

was given. We then explained all the eight gestures, how to do perform them and their purpose. The

operating instructions for the watch were explained to the volunteers. The volunteers then used our

application to train and/or execute the gestures.

Volunteer Training Independent Evaluation: For this evaluation, we used gesture models based on

a pre-existing training set for all the fifteen volunteers to test gesture recognition. Each volunteer

was asked to choose any five gestures out of the eight predefined gestures and repeat each 5 times.

Thus, each volunteer executed 5*5 = 25 gestures, the recognition of which was measured.

Example of Volunteer Training Independent Evaluation: Since a pre-existing set of gesture models

is used, we test the recognition of gestures performed by a volunteer. A volunteer chooses send,

open, punch, launch and search gestures to test recognition. She repeats each gesture 5 times and

81

tests its recognition, i.e., send is tested five times; open is tested five times and so on. Figure 6.1

shows the recognition accuracy for each gesture performed by that volunteer.

Figure 6.1: Recognition of User Gestures Based upon Predefined Training

Open, punch and search are recognized 100% of the time. Send and launch are recognized four

times out of five.

Volunteer Training Dependent Evaluation: The rationale for this type of evaluation is to

accommodate user preferences and allow for the fact that different users may perform the same

gesture in a slightly different way. For this evaluation, each volunteer chooses two to three gestures

from the set of eight gestures and performs training. For training a gesture, volunteer has to repeat

it eight times. Once the training is completed for the selected gestures, the same gestures are

performed once again, and prediction accuracy is noted.

Example of Volunteer Training Dependent Evaluation: In this evaluation, a volunteer chooses

delete, scroll down and scroll up gestures. She repeats the delete gesture eight times for training.

0

20

40

60

80

100

120

send open punch launch search

Percentage

of

Recognition

Gestures Performed by a Volunteer

82

Similarly, she trains the system with scroll down and scroll up gestures. When training is completed,

she tests the recognition of each gesture. Figure 6.2 shows the recognition rate for the gestures she

selected and trained.

Figure 6.2: Recognition of Gestures After User Training

We observed that the accuracy increased when the volunteer has trained their gestures.

On the whole, for user independent training evaluation, 278 gestures were performed by 15

volunteers of which 240 of them were recognized correctly. Figure 6.3 shows the average

recognition accuracy for all 15 volunteers.

0

20

40

60

80

100

120

delete scroll down scroll up

Percentage

of

Recognition

Gestures Performed

83

Figure 6.3: Average Recognition Rate for All 15 Volunteers on Pretrained Models

Overall accuracy of the gestures is given by 240/278 (86.33%).

When the volunteers trained their own gestures, essentially all the gestures were recognized

correctly. Figure 6.4 shows the percentage of recognition when each volunteer trained selected

gestures prior to testing recognition.

88.88

76.19

87.5
90 90

93.75

80.95
76.4

88.23

76.19

95

88.2388.88 90
87.5

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Average

Recognition

Rate

Volunteers

84

Figure 6.4: Recognition of Gestures by Volunteer Dependent Training

0

20

40

60

80

100

120

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Percentage

of

Recognition

Volunteer

Series1

85

Figure 6.5 shows the average accuracy of each gesture when 15 volunteers tested the recognition of

gestures in volunteer training independent evaluation.

Figure 6.5: Accuracy of All Gestures

The overall accuracy of the gestures is 86.33%.

88.88

73.5

82.14

91.18
88.63 87.8 87.5 85.29

0

10

20

30

40

50

60

70

80

90

100

delete send scroll

down

scroll up punch launch search open

Accuracy

in

Percentage

Gestures

86

Figure 6.6: Error Bar Chart Representing both Training Dependent and Independent Evaluation

Continuous Evaluation:

We also evaluated the Gestural Human Computer Interface for Smart Health while performing

continuous gestures to simulate real world use. We picked pairs of gestures and performed them

continuously. We chose pairs of gestures that make sense in an email session. The pairs of gestures

we chose for this type of evaluation are: launch-send, scroll up-scroll down, forward-send and

search-delete. We thus evaluate filtering and segmentation modules along with the accuracy of

gesture recognition. Figure 6.7 shows the accuracy of pairs of gestures performed continuously.

Scroll Up and scroll down gestures when performed together got less accuracy percentage. This is

because every time when the user performs scroll up gesture and after finishing it, one has to move

hand downwards immediately in order to perform scroll down gesture. So that unwanted

movement may not be segmented properly as, it is also done with enough force.

0

20

40

60

80

100

120

participant training

independent

participant training

dependent

Accuracy

in

percentage

participant training

independent

participant training

dependent

87

Figure 6.7: Accuracy of Pairs of Gestures Performed Continuously

Our Model Versus HMM:

We also compared our performance against published HMM models for gesture recognition with a

Wii controller [10]. Gestures used by the group for tests and evaluations are shown in figure 6.8.

and 1 to 9 digits

Figure 6.8: Gestures Used for Evaluation of HMM Model using Wii-mote

Figure 6.9 shows the average recognition rate for each of the five gestures by using HMM model

[10].

0

20

40

60

80

100

120

launch send scrollup

scrolldown

forward send search delete

Accuracy

in

Percentage

Pair of Gestures

88

Figure 6.9: Average Recognition Accuracy of Gestures Using HMM Model

To compare the PCA/magnitude model versus HMM, we repeated the same gestures shown in

Figure 6.8 and measured the accuracy. Note that principal components by definition can’t

distinguish between symmetrical closed loop gestures like square and circle as the variance is

symmetric. So we restricted the comparative evaluation to the remaining three gestures from the

reference gestures. Figure 6.10 shows the average recognition accuracy for the three gestures using

our model.

84.3

94.3 94.5

80

70

40

60

40

70

80

50

80

0

10

20

30

40

50

60

70

80

90

100

Average

Recognition

Rate

Gestures

Series1

89

Figure 6.10: Graph Comparing Gesture Recognition Accuracy of our Model Versus HMM

Based on the above comparison, our model yields an average accuracy of 73.78% while the HMM

model has an average accuracy of 70.26%.

Run Time of the Application:

Run time was tested on a PC with Intel Core i3 2.40 GHz processor and 4 GB memory. To calculate

the run time of the application, a gesture was repeated eight times to train the application. This was

followed by a test gesture.

Run Time of File Searching Algorithm:

The time taken by the program to search for eight training samples in a specific folder is 30 ms.

Run Time for Training:

The time taken to build the training set for a gesture based on eight training samples is 142.5 ms.

78.5

100

90

76.9

86.6

20

60

30

100

80
83.3

80
84.3

94.3 94.5

80

70

40

60

40

70

80

50

80

0

20

40

60

80

100

120

Roll Z Tennis digit 1 digit 2 digit 3 digit 4 digit 5 digit 6 digit 7 digit 8 digit 9

PCA

HMM

90

Run Time for Recognition:

The time taken for the recognition of a gesture when the application is trained by five gestures, each

repeated eight times, is 22 ms.

Thus, the total runtime of the program is approximately 194.5 ms. This time doesn’t include the

time taken by the user to perform a gesture.

Figure 6.11: Run Times for Different Modules in Application

Run Time of Gesture recognition using Wii-mote:

In order to calculate run time for this application, a gesture is trained and then tested for

recognition. We have calculated total run time of Gesture recognition using Wii-mote and it is 19415

ms. This includes the time taken by the user to train a simple gesture “moving hand left to right”

once and testing it for recognition.

In the paper on HMM based recognition [11], run time analysis is calculated for their application.

They trained 5 gestures, with the time taken for the recognition of each gesture being 52 ms (Table

6)..

0

20

40

60

80

100

120

140

160

Training Recognition

Run Time

in

milliseconds

Different Modules

91

Table 6: Comparison of Run Times of Models

 Our Model HMM Model

of gestures trained 5 5

Recognition time 22 ms 52 ms

Evaluation of Application in Terms of Energy Expenditure:

We also evaluated “Gestural Human Computer Interface for Smart Health” in terms of energy

expenditure. For this, we used “Beurer Heart Rate Monitor.” [14] With the help of this device, we

can record the heart rate for a desired duration. We recorded the heart rate of a user in three

situations - at rest, during an email session using a traditional interface, and while performing the

same set of activities by performing heavy gestures. We conducted t-tests to compare the three sets

of heart rate readings. Table 7 shows the heart rate of a user at rest. Mean of that data is 74 and

standard deviation is 5.11. Table 8 shows the heart rate of a user during a conventional email

session. Mean of that data is 70.63 and standard deviation is 3.32. Table 9 shows the heart rate of a

user performing heavy gestures during an email session. Mean of that data is 86.81 and standard

deviation is 8.02

92

 Table 7: Heart Rate of User while at Rest

Minutes Heart Rate

1 73

2 79

3 78

4 70

5 63

6 69

7 78

8 79

9 77

10 76

11 72

Table 8: Heart Rate during Conventional Email Session for 8 min

Minutes Heart Rate

1 73

2 74

3 71

4 68

5 62

6 70

7 72

8 72

9 72

10 70

11 73

93

Table 9: Heart Rate during Heavy Gestures for 10 min

Minutes Heart Rate

1 74

2 74

3 81

4 84

5 88

6 90

7 88

8 90

9 93

10 100

11 93

Figure 6.12: Graph Showing User Heart Rate in Three Different Situations

Results of t-test conducted for ‘Heart rate while doing gestures’ data versus ‘Heart rate during Rest’

data:

For One-tailed distribution and Two sample unequal variance:

50

60

70

80

90

100

110

0 2 4 6 8 10 12

Heart rate

Minutes

User at rest

User doing

conventional email
User doing gestures

94

p-value : 0.0001. There is a significant difference between two groups.

Results of t-test conducted for ‘Heart rate while doing gestures’ data versus ‘Heart rate while doing

conventional actions’ data:

For One-tailed distribution and Two sample unequal variance:

p-value : 0.000058 which is less than 0.05. So there is a significant difference between two groups.

t-test conducted for ‘Heart rate while doing conventional actions’ data and ‘Heart rate during rest’

data:

For One-tailed distribution and Two sample unequal variance:

p-value: 0.11 which is greater than 0.05. So there is no significant difference between two groups.

The comparative results show that the heart rate increased significantly when the user performed

heavy gestures compared with a conventional email session. The results demonstrate that energy

expenditure is higher when “Gestural Human Computer Interface for Smart Health” is used for

routine activities.

95

CHAPTER 7

CONCUSION AND FUTURE WORK

 In this section, the contribution of this thesis is summarized. Some thoughts on refining the

project and possible directions for future work are presented.

7.1 Conclusion

 We proposed the principle of working out while working to achieve potential health benefits

without dedicated exercise sessions. We implemented this idea in the form of a Gestural Human

Computer Interface for Smart Health where users can control computer applications by performing

heavy gestures. We used cost effective off the shelf hardware, the Chronos watch by Texas

Instruments, which measures the acceleration generated by heavy gestures. We developed an

application for training and recognition of gestures performed by a user. For the recognition,

lightweight algorithms based on principal component analysis and Naïve Bayes Classification are

used. We showed that the gestures can be successfully customized to accommodate user variation.

We observed a significant increase in the heart rate when using the Gestural Human Computer

Interface for Smart Health. The successful implementation of the Gestural Human Computer

Interface for Smart Health confirms that the application is feasible and effective in raising the heart

rate.

7.2 Future Work

We discuss some of the limitations of the project and scope for enhancement in this final section.

Since the acceleration data is reduced to the principal component, it cannot distinguish between

temporal profiles that are different but with identical time independent distributions. For example,

an action consisting of acceleration followed by deceleration cannot be distinguished from

96

deceleration followed by acceleration if they contain the same 3D acceleration values, although in a

different order. For example, the current approach can’t recognize the distinction between turning a

page from left to right and turning a page from right to left. This could potentially be resolved by

breaking down each action in multiple temporal windows, with a principal component for each sub

segment.

Since the recognition algorithm is essentially a maximum likelihood classification approach, any

gesture (not previously used in training) will be classified to a gesture. This can be resolved by a

secondary algorithm that takes the temporal pattern into account, especially in those cases where

there is ambiguity with regard to classification.

Though our approach compares favorably with HMM, the platforms used for comparison were not

identical – TI Chronos and Wii-mote respectively. This can affect both accuracy and processing time.

The ideal comparison should use identical gestures on the same hardware.

The interface can potentially be highly personalized in allowing users to create and use any gestures

of choice to control any aspect of human computer interaction. Using such active interfaces for even

short periods of time during the workday could alleviate boredom and counteract the effects of a

sedentary lifestyle.

97

REFERENCES

1. Gesundheit, N. Filling the treatment gap in the weight management of overweight and obese

patients. International Journal of Obesity Supplements, 2(1). S39-S42.

2. Blair, SN. and Connelly JC. How much physical activity we do? The case for moderate amounts and

intensities of physical activity. Research Quarterly for Exercise and Sport , 67(2). 193-205.

3. Ortega-Carrillo, H. and Martinez-Miron, E. Wired gloves for everyone. VRST ’08 Proceedings of the

2008 ACM symposium on Virtual reality software and technology, (Bordeaux, France, 2008), ACM,

305-306.

4. Sethi, A. Multimedia education theory and practice, International Scientific Publishing Academy,

NewDelhi, 2005, 187.

5. Alhalabi, M., Daniulaitis, V., Kawasaki, H., Tetsuya, M. and Ohtuka, Y. Future Haptic Science

Encyclopedia: An Experimental Implementation of Networked Multi-Threaded Haptic Virtual

Environment. in HAPTICS '06 Proceedings of the Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, (USA, 2006), IEEE Computer Society, 76.

6. Chen, F., Fu, C., Huang, C. Hand gesture recognition using a real time tracking method and hidden

Markov models. Image and Vision Computing, 21(3), 745-758.

7. Kim, D., Hilliges O., Izadi, O., Butler, A., Chen, J., Oikonomidis, I. and Oliver, P. Digits: freehand 3D

interactions anywhere using a wrist-worn gloveless sensor. in proceedings of the 25th annual ACM

symposium on User interface software and technology, (MA, USA, 2012), ACM, 171-176.

8. Leap Motion , https://www.leapmotion.com.

9. Texas Instruments, http://www.ti.com.

10. Schlomer, T., Poppinga, B., Henze, N. and Boll, S. Gesture recognition with a Wii controller. in

proceedings of the 2nd international conference on Tangible and embedded interaction, (Barcelona,

Spain, 2008), ACM, 11-14.

98

11. Joselli, M. and Clua, E. gRmobile: A framework for touch and accelerometer gesture recognition for

mobile games. SBGAMES '09 Proceedings of the 2009 VIII Brazilian Symposium on Games and Digital

Entertainment, (Brazil, 2009), IEEE Computer Society, 141-150.

12. Bedregal, B., Costa, O. and Dimuro, G. Fuzzy rule based hand gesture recognition. Artificial

Intelligence in Theory and Practice, 217(6). 285-294.

13. Texas Instruments, http://processors.wiki.ti.com/index.php/Chronos_Flying_Mouse

14. Beurer, http://www.beurer.com/web/en/product/heart_rate_monitors/heart_rate_monitors

15. Ren, Z., Meng J. and Yuan, J. Depth camera based hand recognition and its applications in human

computer interaction. in 8
th

 International Conference Information Communications and Signal

Processing, (Singapore, 2011), Conference Publications, 1-5.

16. Wang, L., Gu, T., Tao X. and Lu, J. A hierarchical approach to real-time activity recognition in body

sensor networks. Pervasive and Mobile Computing, 8(1). 115-130.

17. Bachlin, M. and Troster G. Swimming performance and technique evaluation with wearable

acceleration sensors. Pervasive and Mobile Computing, 8(1). 68-81.

18. Kong, F. and Tan, J. DietCam: Automatic dietary assessment with mobile camera phones. Pervasive

and Mobile Computing, 8(1). 147-163.

19. Freitag, G., Trankner, M. and Wacker, M. Enhanced feed-forward for a user aware multi-touch

device. in 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design,

(Denmark, 2012), ACM, 578-586.

20. Ewerling, P., Kulik, A. and Froehlich, B. Finger and hand detection for multi-touch interfaces based

on maximally stable extremal regions. in ACM international conference on Interactive tabletops and

surfaces, (Cambridge/Boston, MA, USA, 2012), ACM, 412.

21. Oh, K., Jeong, Y., Kim, S. and Choi, H. Gesture recognition application with parametric hidden

markov model for activity based personalized services in APRiME. in 2011 IEEE International Multi-

99

Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support, (Miami

Beach, FL, 2011), Conference Publications, 189-193.

22. Yang, Z., Li, Y., Zheng, Y.,Chen, W. and Zheng, X. An interaction system using mixed hand gestures. in

10th asia pacific conference on Computer human interaction, (Matsue, Japan, 2012). 125-132.

23. Liu, X. and Fujimura, K. Hand gesture recognition using depth data. in Sixth IEEE international

conference on Automatic face and gesture recognition, (Washington, DC, USA, 2008). IEEE Computer

Society. 529-534.

24. Nickel, K., Seemann, E. and Stiefelhagen, R. 3D-tracking of head and hands for pointing gesture

recognition in a human-robot interaction scenario. in Sixth IEEE international conference on

Automatic face and gesture recognition, (Washington, DC, USA, 2004). IEEE Computer Society. 565-

570.

25. Schmidt, G. and House, D. Towards Model-Based Gesture Recognition. in Fourth IEEE International

Conference on Automatic Face and Gesture Recognition 2000, (Washington, DC, USA, 2000). IEEE

Computer Society. 416.

26. Hongo, H., Yasumoto, M., Niwa, Y., Ohya, M. and Yamamoto, K. Focus of Attention for Face and

Hand Gesture Recognition Using Multiple Cameras. in Fourth IEEE International Conference on

Automatic Face and Gesture Recognition 2000, (Washington, DC, USA, 2000). IEEE Computer

Society. 156.

27. Marcel, S., Bernier, O., Viallet, J. and Collobert, D. Hand Gesture Recognition Using Input-Output

Hidden Markov Models. In Fourth IEEE International Conference on Automatic Face and Gesture

Recognition 2000, (Washington, DC, USA, 2000). IEEE Computer Society. 456.

28. Reilly, R. Applications of face and gesture recognition for human-computer interaction. in sixth ACM

international conference on Multimedia: Face/gesture recognition and their applications, (Bristol,

England, 1998). ACM. 20-27.

100

29. Kim, D., Song, J. and Kim, D. Simultaneous gesture segmentation and recognition based on forward

spotting accumulative HMMs. Pattern Recognition. 40 (11), 3012-3026.

30. Liu, J., Zhong, L., Wickramasuriya, J. and Vasudevan, V. uWave: Accelerometer-based personalized

gesture recognition and its applications. Pervasive and Mobile Computing , 5(6), 657-675.

31. Wright, M., Lin, C., O’Neill, E., Cosker, D. and Johnson, P. 3D gesture recognition: an evaluation of

user and system performance. in 9th international conference on Pervasive computing, (San

Francisco, USA, 2011). Springer-Verlag. 294-313.

32. Licsár, A. and Szirányi, T. User-adaptive hand gesture recognition system with interactive training.

Image and Vision Computing, 23 (12). 1102-1114.

33. Suk, H., Sin, B. and Lee, S. Hand gesture recognition based on dynamic Bayesian network

framework. Pattern Recognition, 43(9). 3059-3072.

101

VITA

 Sowmya Ginjupalli was born on August 18, 1988, in Guntur, Andhra Pradesh, India. She was

educated in a local public school and graduated from high school in 2005. She then completed her

Bachelor’s degree in Electrical and Electronics Engineering from Acharya Nagarjuna University in

Guntur in 2009. Upon the completion of her Bachelor’s, she worked as an Assistant Systems

Engineer at Tata Consultancy services until November 2010.

 In December 2010, Ms.Sowmya came to the United States to study Computer Science at the

University of Missouri-Kansas City (UMKC), specializing in Software Engineering. During summer

2012, Ms. Sowmya worked as an intern at Children’s Mercy Hospitals and Clinics. She was offered a

full time position at Sprint Nextel Corporation. Upon completion of her requirements for the

Master’s Program, Ms.Sowmya plans to work for Sprint Nextel Corporation.

102

