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ABSTRACT 

 

 

For centuries, man was forced to live a highly active lifestyle with food being a precious commodity. 

Technological advances in the past few decades have resulted in increasingly sedentary lifestyles 

and a surfeit of calorie dense foods.  This has resulted in a global epidemic of obesity and a host of 

associated health problems.  One way to address this problem is to incorporate a higher level of 

physical activity into the workday. The objective of this thesis is to design a low cost gestural human 

computer interface for the recognition of vigorous gestures. We demonstrate that an action 

vocabulary of eight intuitive gestures can be recognized by the use of inexpensive accelerometers 

and a computationally simple approach involving Principal Component Analysis and Naïve Bayes 

classification. The accuracy is comparable to more computationally intensive approaches. The 

actions can be mapped to commands for controlling commonly used applications like e-mail and 

customized to individual preferences. There is a significant rise in pulse rate during these actions 

comparable to light aerobic activity. This has the potential to mitigate the harmful effects of 

sedentary work habits by raising the rate of metabolism with minimal impact on productivity. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

 

             The usage of personal computers and other computing devices is increasing day by day. 

There has been a substantial increase in the proportion of the workday that is based on their use. 

People interact with these computing devices by means of interfaces like keyboard, mouse, voice 

and touch screen. Interaction with computing devices can potentially result in two kinds of health 

problems. First, one can suffer from occupational injuries, which can result from repetitive actions 

and from resting parts of the body in unnatural positions for long periods of time. Second, humans 

can suffer from the effects of a sedentary lifestyle as the usage of the devices requires very less 

expenditure of energy. Two out of three US adults are overweight, and today’s growing concern is 

childhood obesity [1]. A life style that combines a lack of physical activity with readily available 

calorie-dese foods has resulted in several health problems like obesity, diabetes and even cancer. 

        

 

 

1.2 Problem Statement 

       People diet or exercise in order to prevent or overcome the health problems caused by weight 

gain. Because of time constraints or inability to afford gym memberships, it is very hard for many 

people to overcome the effects of a sedentary life style. On the other hand, several studies have 

clearly shown that even a mild exercise regimen for relatively short periods of time provides 

substantial health benefits [2]. This thesis exploits this observation by proposing a unique solution to 

overcome the health problems caused our collective obsession with personal computers and 

smartphones. The central idea is to raise the level of physical activity by replacing traditional 

interfaces like keyboard, mouse and touchscreen with alternative intuitive interfaces that require 
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considerable expenditure of energy. Apart from increasing energy expenditure, this idea can also 

provide entertainment to users, which can alleviate the monotony of repetitive work. Additionally, it 

can minimize occupational injuries by requiring the body to be mobile and not frozen in 

unergonomic positions for long periods of time. As the higher level of physical activity is integrated 

with routine tasks, there is less need to spend time and money on traditional exercise sessions. 

       This thesis presents a Gestural Human Computer Interface where users map heavy hand 

gestures to control an application. A heavy hand gesture is defined as movement involving the 

whole arm (rather than just fingers); it increases energy expenditure by involving the larger muscle 

groups. This can customize the interface to different user work habits and preferences. The 

effectiveness of such interfaces can be evaluated in terms of calorie expenditure, impact on 

productivity and acceptability. 

Recognition of these gestures with minimal overhead in computational processing is the main 

concern, and is the core problem addressed by this thesis work. The Chronos watch from Texas 

Instruments, which has a 3-axis accelerometer embedded in it, is used as an input device for 

recording the gestures. This is a cost effective device and easy to use.  

The models used for the recognition of these gestures are 

1. Principal component Analysis 

2. Naïve Bayes Classification. 
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CHAPTER 2 

RELATED WORK 

2.1 Different Devices and Software for Gesture Recognition 

 

       Several applications based on gesture recognition have been developed. Some of these are used 

for gaming, and others to facilitate certain activities. A variety of devices are used for gesture 

recognition, such as wired gloves, cameras and accelerometers. Different models are used to 

recognize gestures based on the requirements of applications. 

Wired Gloves: 

Wired Gloves or data gloves are used in many systems for hand gesture recognition [3]. Wired 

gloves are used in application areas such as sign language education, teaching deaf children or 

physically challenged people, simulating 3D molecules, proteins and DNA in the field of chemistry 

and biology, multi media education, music in education and physical education. Wired glove is a 3D 

input device and consists of sensors to determine 3D positional information. The position and 

orientation of the data gloves are determined by an electromagnetic transducer and strain gauge 

sensing devices. The data glove consists of small lightweight sensors. Each sensor is a fiber optic 

cable with a photo transistor at one end and an LED at the other. Hand movements are recorded by 

a Polhelmus 3 Space 3 dimensional position and orientation sensor [4]. In most cases, a motion 

tracker such as a magnetic tracking device or inertial tracking device is attached to capture the 

global position or data rotation of the glove. Accompanying software is used to interpret these hand 

movements. These gestures can then be categorized into useful information, such as to recognize 

Sign Language or other symbolic functions. Wired glove is a part of haptic science. Haptic science is 

the science of applying tactile sensation to human interaction with computers [5]. A data glove can 

act as a haptic device because it simulates physical contact between the computer and the user, and 

it can also act as an output device. Wired gloves have only been available at a huge cost, with the 
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finger bend sensors and the tracking device having to be bought separately. There are a variety of 

gloves which can be used to capture hand motions. Motion capture gloves range in price from 

$2000 per pair for wired and up to $3500 per pair for wireless.  

Video Tracking:   

Video Signals are used as input for the recognition of gestures. An edge detection algorithm is 

usually applied to the digitized picture for the identification of hand, face or body position [6]. These 

edge detection algorithms are computationally expensive and dedicated hardware is also required. 

The latest research, Digits by Cambridge, utilizes a small camera for the gesture control offered by 

Kinect [7]. This camera has to be worn on a wrist strap and it tracks 2D movement rather than 3D. It 

recognizes finger movements that are used to control the software. This can therefore be used in 

applications such as translation of a sign language into a written text or controlling the slides of a 

presentation using simple finger movements. A company Leap Motion makes gesture control with a 

new type of motion controller [8]. The leap is a simple motion controller that can be plugged into 

any of the USB ports on a PC. Leap software has to be installed and once the motion controller is 

plugged in, it turns the 8 cubic feet of air in front of it into 3D interaction space. All the motions 

within that space are tracked. The camera is about the size of a business-card holder, and can 

discern all 10 fingers individually. Such detailed scanning allows us to do actions like actions like 

pinch-to-zoom, or zero in on fine details in a drawing application. 

 

Accelerometer for Gesture Recognition: 

Most of the previous work on gesture recognition is based on computer vision techniques. Lighting 

condition and camera angle/field of vision are important constraints of computer vision based 

approaches. In cases where there is poor lighting, it is very difficult to recognize gestures using a 

camera based system. Additionally, it is inconvenient to have to face the camera all the time. 
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Accelerometer-based gesture recognition is a technique that is compatible with almost all physical 

and computing environments. These devices are small and wireless, and hence easily wearable for 

interacting with a wide range of applications. Examples of such kinds of device include Nintendo  

Wii-mote and Chronos watch from Texas Instruments [9]. 

The Nintendo Wii-mote contains an integrated 3 axis acceleration sensor, and is connected via the 

Bluetooth human interface device protocol for transmitting data [10]. A Java library is available for 

gesture recognition with APIs for Bluetooth Wireless technology. It is a reusable and extensible 

gesture recognition library for the recognition process. The application uses hidden Markov models 

for gesture recognition [10]. 

In our application, heavy gesture based emailing, we have used Chronos watch from Texas 

Instruments which consists of a 3 axis accelerometer. This watch is easy to wear and interact with a 

wide range of applications, and this is also less expensive compared to the Wii-mote.  

Models Used for Recognition: 

Hidden Markov Model: 

This is commonly used in many fields, e.g., Speech Recognition, Pattern recognition and Gesture 

Recognition. HMMs are stochastic models for data that is serial or temporal. The word "hidden" in 

the HMM refers to the hidden states that are mapped to the data. This model is typically used for 

modeling sequences of events. This model is particularly useful when the data is noisy and 

incomplete. It is based on estimating probability distributions and efficient algorithms for learning 

and recognition such as Baum-Welch and Viterbi algorithms [10]. 

Support Vector Machine:  

This technique can also used for the recognition of gestures [11]. It is a supervised linear 

classification method that has a property of maximizing margins between classes. With an 

appropriate choice of kernel functions, it also has nonlinear extensions. By using this method, 3 x 10 
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matrix is transformed into a linear vector with basic statistical elements like minimum, mean and 

length. These values can be used to define the dynamics and direction of a gesture. Z-normalization 

is used to make all the dimensions equal. In the recognition phase, the incoming movement is also 

transformed and is normalized in the same way as the training samples before SVM classifies the 

gesture. 

Fuzzy Rule Based Method for Gesture Recognition: 

Fuzzy Logic is a multivalued logic that allows intermediate values to be defined between 

conventional evaluations like yes or no, true or false, 0 or 1, etc. This is used for the recognition of 

hand gestures acquired from a data glove. An application for the recognition of gestures uses fuzzy 

rule based method in which sets of angles of finger joints are used for the classification of hand 

configurations. The set of all lists of segments of a given set of gestures is able to recognize every 

such gesture [12].  

 

In our application, we have used a light weight process for the recognition of gestures other than 

Hidden Markov Model. The model which is used in our application is discussed in chapter 3. 

 

 

2.2 Chronos Watch 

 

Overview of Chronos Watch Used in Our Application: 

eZ430-Chronos is a highly integrated, wearable wireless development system [9]. It may be used as 

a wireless sensor node for remote data collection. It consists of a three axis accelerometer for motion 

sensitive control. Figure 2.1 shows eZ430-Chronos watch. 
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Figure 2.1: eZChronos Watch 

 

Acceleration Mode – RF : This mode requires the Chronos Control Center PC software. Figure 2.2 

shows the GUI of the Chronos control center. The watch can be placed in the acceleration mode by 

pressing "#" until "ACC" is shown on the LCD. “Acc” mode provides a continuous transmission of 3D 

acceleration from the watch using TI's SimpliciTI protocol stack.  
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Figure 2.2: Chronos Control Center GUI 

 

 

 

eZ430-Chronos RF Access Point: The RF access point is useful to communicate wirelessly with the 

Chronos directly from a PC  so that data can be downloaded, or programs running on a computer 

can be controlled. It is based on the CC1111F32 controller, which features an integrated USB 

controller in addition to a 1-GHz radio. 

 

 

Figure 2.3: Using the eZ430-Chronos Watch With a PC 
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Transmission of Acceleration Data: Acceleration data that is transmitted from the watch to PC can 

be seen in the control center in real time. Watch has to be switched to the acceleration mode, and 

the RF access point has to be connected to the PC.  When “start access point button” is clicked in 

this interface, the watch is connected to the PC and 3D acceleration values are transmitted. Figure 

2.4 displays the acceleration data of the watch for each axis. 

 

 

 

Figure 2.4: Chronos Control Center with Acceleration Data 

 

2.3 Chronos Flying Mouse 

 

 

      The Chronos Flying Mouse is an innovative interface that can act as a high precision mouse or a 

mouse-based joystick for applications that do not support true joystick input [13]. It is designed to 

be a highly accurate, intuitive computer-input device. It has many customization options and offers 
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the abilities of several computer input devices without the position constraints of mounted 

hardware. The primary mouse mode of the Chronos Flying Mouse enables the user to control a 

cursor. This application is useful for presentations featuring interactive content, such as program 

demonstrations or interactive PowerPoint presentations with links. In our application, we have used 

the Chronos Flying Mouse code for data collection. Figure 2.5 shows the user interface of the 

Chronos Flying Mouse. 

 

 

 

 

Figure 2.5: Screenshot of the Chronos Flying Mouse Application 

 

 

 

       This flying mouse has several joystick modes that allow gaming using a wide variety of 

household objects.  This mode allows existing video games to interact with the Chronos without 

special programming and allows the Chronos to interact with a wide variety of applications.  
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Figure 2.6: Chronos Flying Mouse Settings 

 

 

 

Settings of Chronos Flying Mouse: This application offers axis independent sensitivity control and 

inversion. Because of this, a user can wear the watch on either the right or left hand. User can 

calibrate the orientation to any desired angle. Figure 2.6 shows the GUI for Chronos Flying Mouse 

settings. These settings are stored in an editable INI file without any registry modifications. In each 

run of the application, these settings are saved and loaded; the Chronos Flying Mouse can be 

therefore be safely deleted or moved to another computer without a complicated installation or 

uninstallation process. 

Functionality of Chronos Flying Mouse: Accelerometer data collected from the chronos watch is 

sent through an exponential smoothing filter. This is used to remove noise or any unwanted high 

frequency components. A Chebyshev high-pass filter is used to identify snaps, or other sharp 

movements, in order to click. Euclidean angles are calculated from the acceleration from free-fall 

vector returned and various settings are applied to produce the appropriate mouse movement or 

joystick position. The most recent stable mouse position is calculated constantly, so that when a 

click from the high frequency data registers, the mouse is rewound to its stable position for the click. 

This allows for usable mouse clicks despite potential interference from unintentional motion.  
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CHAPTER 3 

MODEL FOR GESTURE RECOGNITION 

 

       An accelerometer is embedded in many devices such as Wii-mote, Chronos watch etc. in order 

to measure triaxial acceleration. This measured acceleration data is used for gesture recognition. In 

our model, recognition is based on principal component analysis and Naïve Bayes classification. 

3.1 Principal Components 

 

 

       The main use of Principal Component Analysis (PCA) is to reduce the dimensionality of a data set 

while retaining as much information as possible. Orthogonal transformation is used in principal 

component analysis to convert a set of values of possibly correlated variables into a set of values of 

linearly uncorrelated variables. The maximum number of principal components is equal to the 

number of original variables. So for the 3-axis acceleration data, the maximum number of principal 

components is equal to three.  

 

 

 

 

Figure 3.1: Visual depiction of the first Principal component 
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These principal components are perpendicular to each other, and the first principal component 

contributes the maximum variability to the data. PCA axis is the line that goes through the centroid 

of the data points and also minimizes the square of the distance of each data point to that line. See 

figure 3.1. 

Thus, any large set of data can be represented as a single vector, the first principal component, 

pointing to the direction in which there is maximum variance in the data. The succeeding 

components have the highest possible variance under the constraint that they must be completely 

uncorrelated which implies that they are orthogonal to each other. Thus, a set of correlated 

variables are transformed into a set of uncorrelated variables which are ordered by reducing 

variability.  

Calculation of Principal Component Coefficients 

For the given set of data, 

1. Covariance matrix has to be calculated. 

2. Then the eigenvector vector of the covariance matrix has to be calculated. 

 

Data =  

 

 

 

 

7 4 3 

 

4 1 8 

 

6 3 5 

 

8 6 1 

 

8 5 7 

 

7 2 9 

 

5 3 3 

 

9 5 8 

 

7 4 5 

 

8 2 2 

Covariance of the data: 
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  Cov(data) = 

  [ 2.3222222222 1.6111111111 -0.4333333333 

    1.6111111111 2.5000000000 -1.2777777778 

  -0.4333333333 -1.2777777778 7.8777777778] 

Eigenvectors Vectors of the covariance matrix: 

[-0.7017274262 -0.6990371198 -0.1375707982 

 0.7074570306 -0.6608891708 -0.2504596851 

 0.0841615661 -0.2730798586 0.9583027818] 

This matrix contains the coefficients for principal components. Columns represent the coefficients 

for principal components. Column 1 represents the first principal component and column 3 

represents the first principal component. Figure 3.2 shows a graph of data together with the first 

and second principal components. 
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Figure 3.2: First Principal Component and Second Principal Component for the Sample Data 

 

 

 

Angles Between Principal Components:  From the above calculations, the first principal component 

vector is represented as, 

 fc = -0.1375707982i -0.2504596851j + 0.9583027818k 

the second principal component vector is given by 

Sc= -0.6990371198i -0.6608891708j -0.2730798586k 

And the third principal component vector is represented as 

tc= -0.7017274262i + 0.7074570306j + 0.0841615661k 

Let v1 and v2 be two vectors. By considering the dot product for the vectors, the angle between any 

two vectors can be calculated by the formula: 

Cos Ɵ = (v1.v2)/(|v1||v2|) 
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Based on the above formula, 

Angle between first principal component and second principal component is 90 degrees 

Angle between second principal component and third principal component is 90 degrees 

Angle between first principal component and third principal component is 90 degrees. 

 

3.2 Principal Components for Gesture Recognition 

 

 

       An accelerometer provides a set of 3D data that represents the acceleration of a limb 

performing the gesture. Figure 3.3 represents 3D acceleration for a gesture G1 measured by using 

an accelerometer: 

 

 

 

                                                                       

 

 

 

 

                                 Figure 3.3: 3D Acceleration Readings Measured from an Accelerometer 
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By looking at the acceleration data we can say that the gesture is performed mainly in the x-z plane 

as there is a low magnitude of accelerations along the y-axis. We can calculate the first principal 

component for this data and then represent this whole data as a single vector.  

First Principal component vector is   0.8825i    -0.2702j      0.3850k  

 

 

 

 
Figure 3.4: Representation of the First Principal Component of the Acceleration Data 
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Figure 3.5 represents 3D acceleration for another gesture G2 measured by using an accelerometer: 

 

 

 

 

 

 

 

 

 

Figure 3.5: Acceleration Measure for Gesture G2 

 

 

 

The first Principal component vector is    0.8256i +  0.3017j +    0.4768k. Figure 3.6 represents the 

first principal component of the acceleration data for gesture G2   
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Figure 3.6: First Principal Component of the Acceleration Data for Gesture G2 

 

 

 

Gesture Recognition by Considering Angles: When a gesture G1 or G2 is repeated as a test, we will 

get another set of acceleration data. For example if gesture G2 is performed again, the acceleration 

data is similar to the acceleration data we already obtained for G2 gesture.  Figure 3.7 represents 

the acceleration for the test gesture: 
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Figure 3.7: Acceleration for the Test Gesture 

 

 

 

The first principal component vector for this test gesture if given by   

0.3853i +    0.5948j  +   0.7055k 

Figure 3.8 represents the first principal components of G1, G2 and the test gesture superimposed in 

the same graph. The red line represents the test gesture. In order to classify this as G1 or G2 we can 

simply find the angle between  

1. Test gesture and G1 

2. Test gesture and G2 

We can classify the test gesture as G1 or G2 based on the smaller of the two angles 
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Figure 3.8: First Principal Components of G1, G2 and Test Gesture 

 

 

 

1. Angle between Test gesture and G1 is 63.1968 

2. Angle between Test gesture and G2  is 33.4925 

AS the minimum angle is 33.4925, which is between test gesture and G2 we can say that the 

test gesture is classified as G2. 

This is how we can recognize a gesture using principal components. 

Limitation of Principal Component Analysis Method for Gesture Recognition: If two or more 

gestures are done in the same plane, in some cases there is a high probability of principal 

component vectors pointing in almost same direction as the maximum variance of the data may be 

in the same direction. 
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In such cases,  we can consider another parameter along with principal components to classify the 

gesture. We consider magnitudes of the acceleration data. 

 

3.3 Naïve Bayes Classifier and Multivariate Gaussian Distribution Probability Densities 

 

 

The Naïve Bayes classifier is a statistical classifier. It can predict probabilities such as the probability 

that a given sample belongs to a particular class. This is based on the Bayes theorem formulation of 

conditional probabilities. In Bayesian interpretation, probability measures a degree of belief. The 

Bayes theorem links the degree of belief in a proposition before and after accounting for data or 

evidence. Let A is the proposition and B is the evidence. 

Bayes theorem gives the relation between the probabilities of A and B, P(A) and P(B) and the 

conditional probabilities  of A given B and B given A, P(A|B) and P(B|A) respectively. 

For proposition A and evidence B, 

• P(A), the prior is the initial degree of belief in A. 

• P(A | B), the posterior is the degree of belief having accounted for B. 

• P(B | A) / P(B) represents the support B provides for A. 

  

P(A| B) = P(B | A)P(A) 

                         P(B) 
  

Example: Suppose a customer visits a shop and leaves. Generally speaking, the probability that a 

customer is female is 50%. Someone tells the shop owner that the customer had long hair. 

Intuitively, there is now a higher chance that the customer was female. 

To calculate the probability that the customer is female, assume that 

F represents the event that the person who came to the shop was female 

L represents the event that the customer has long hair. 

P(F), the prior, the initial degree of belief in F = 0.5 (assume 50% of persons are females) 
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Let’s say that 60% of the females have long hair. 

P(L|F), the probability of L given F is 0.6 

Let’s say that 30% of the males have long hair. 

P(L|M), the probability of L given M is 0.3. 

Then P(F|L) = P(L | F)P(F) 

                              P(M) 

 

=           P(L|F)P(F) 

P(L|F)P(F) + P(L|M)P(M) 

 

So the probability that the customer is female is obtained as 66.66% 

The Bayesian Classifier is capable of calculating the most probable output depending on the input. It 

is possible to add new raw data at runtime and have a better probabilistic classifier. A naive Bayes 

classifier assumes that the presence of a particular feature of a class is unrelated to the presence of 

any other feature, given the class variable. Even if the features depend on each other or upon the 

existence of other features, a Naive Bayes classifier considers all of these properties to 

independently contribute to the probability. For features that are real numbers (rather than discrete 

values), probability densities can be used instead of probability mass functions. The Gaussian 

multivariate probability density is given by the formula below: 

Probability density =  

 

 

   where k = number of dimensions. 

     ∑ - covariance matrix of the multivariate normal distribution 

     |∑ |-  Determinant of the covariance matrix 

     µ -  Mean 
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      X-  Test data 

Example 2: The problem is to classify whether a given person is male or female based on features 

Body Mass Index and foot size. 

We need training data for the classification of persons. Table 1 shows a training set for person 

classification. 

 

Table 1: Training Set for Naive Bayes Classification 

 

 

Sex 

 

Body Mass Index 

(BMI) 

Foot Size 

Male 

 

21 11 

Male 

 

23 12 

Male 

 

20 10 

Male 

 

26 12 

Female 

 

18 6 

Female 

 

20 8 

Female 

 

21 9 

Female 

 

19 7 

 

 

 

Based on the probability density formula, we have to calculate mean and variance for Body Mass 

Index and foot size data. Table 2 shows the mean and variance for Body Mass Index and foot size 

data for male and female. 
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Table 2: Calculated Parameters for the Training Set of Classification Example 

 

 Male Female 

Mean (BMI) 22.5 19.5 

Variance (BMI) 7 1.6667 

Mean (foot size) 11.25 7.5 

Variance (foot size) 9.1667e-01 1.6667e+00 

 

 

Consider a test sample to be classified as male or female. 

Sex Body Mass Index Foot Size (inches) 

Sample 23 8 

 

 

 

Based on the probability density formula we have to calculate, 

P(BMI|male), Probability density of height  in males 

P(Foot size male), Probability density of  male foot size 

P(BMI|female), Probability density of  female when height is considered 

P(Foot size|female), Probability density of  female when foot size is considered. 

Probability of male, 

 P(male) =  P(BMI|male) * P(Foot size|male) 

Probability of female, 

 P(female) =  P(height|female)  * P(Foot size|female) 
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p(BMI |male)  is calculated by substituting  the parameters in the probability density equation.  In 

this case μ is 22.5 and σ2 is 7. See Table 2. Here, we get a value which is greater than 1. As this is a 

probability density it can have a value greater than 1. 

Similarly, the remaining parameters are also calculated by using the training set and mean and 

variance values shown in Table 2. 

p( BMI | male) = 0.14811736 

p(foot size | male) = 0.00131124 

P(male) = 0.14811736 * 0.00131124 = 0.000194218 

Similarly, P(female) can also be calculated. 

p(BMI | female) = 0.00783395 

p(foot size | female) = 0.28668838 

P(female) = 0.00783395 * 0.28668838 = 0.002246 

As in this case P(female) > P(male), we can say that the given sample is female 
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3.4 Naïve Bayes Classification for Gesture Recognition 

 

      The Naive Bayes classifier can be used for the recognition of gestures. With the help of an 

accelerometer, we can get a set of 3D data which represents the acceleration of our hands 

performing the gesture. In section 3.2, we have seen that Principal components can be used for 

gesture classification. We can therefore calculate the Probability density of a gesture by considering 

Principal components, Ppca, as one of the features. 

      Suppose if we have two gestures performed in the same plane and a major part of those 

gestures are performed in the same direction, then we will have the greatest variance in the same 

direction. Thus, we may have the first principal components of the two gestures in the same 

direction. In this case, Principal components alone may not be useful for the classification of 

gestures. So we have to consider another factor along with the principal components for 

classification. Magnitude of the acceleration values can be considered as another factor. The 

probability density of a gesture can be calculated by considering the average magnitude of x, y, z 

components of acceleration Pmag as follows: 

Probability density of a gesture = Ppca   * Pmag 

Training Set: In order to make a training set for each gesture, a gesture has to be repeated a few 

times. If a gesture is repeated 3 times then we will get three samples of the gesture. With the help 

of an accelerometer,  we will get several 3D acceleration datapoints for each sample. 

Let’s say a gesture G1 is repeated three times. We have to find the principal components and 

average magnitudes of x y z acceleration values. A training set is developed on these two features 

and based on that gesture classification will be done. Figure 3.9 shows three samples of gesture G1. 

First principal components and average magnitudes for x y and z axis are calculated for each sample. 

“Fc” represents the first principal component, and “Mag” represents the vector of average 

magnitude of x, y, z components of acceleration in our explanation.  
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Mag is given by, 

Mag=[Avg(Xaxis), Avg(yaxis), Avg(zaxis)] 

 

  

Fc= 0.593i -0.095j + 0.799k                  Fc= 0.623i -0.138j + 0.769k             Fc= 0.560i -0.1075j + 0.821k 

Mag = [-16.88  -12.16  6.6]                   Mag = [0.4   -24.95  12.5]              Mag = [-13.48  -16.70  20.48] 

Figure 3.9: Three Samples for Gesture G1 
  

 

 

Now let’s say gesture G2 is also performed three times to form the training set. Figure 3.10 

represents three samples of gesture G2, their first principal components and vector of average 

magnitudes of x, y and z components. 

 

 

 

X axis Y axis Z axis 

-50 -26 1 

-60 -25 10 

-97 -10 4 

-128 2 -33 

-128 -5 -36 

-128 1 -67 

-128 -19 -78 

-114 -35 -80 

-79 -44 -99 

-51 -51 -102 

-39 -45 -104 

-53 -75 -82 

-8 -75 -84 

-25 -80 -63 

-22 -82 -41 

-19 -81 -36 

-26 -76 -4 

-6 -61 -2 

X axis Y axis Z axis 

-50 -30 1 

-77 -28 11 

-128 -9 -10 

-128 -28 -31 

-128 -4 -91 

-128 -39 -99 

-128 -57 -110 

-109 -65 -122 

-74 -70 -121 

-52 -82 -107 

-21 -81 -109 

-19 -83 -94 

-3 -88 -85 

-21 -84 -51 

-24 -70 -23 

3 -61 -25 

-37 -69 11 

-18 -61 49 

X axis Y axis Z axis 

-46 -27 -16 

-61 -25 -12 

-79 -19 -5 

-128 -15 -16 

-128 -13 -24 

-128 11 -40 

-128 -15 -61 

-128 -37 -75 

-124 -45 -85 

-92 -48 -93 

-65 -68 -102 

-58 -92 -108 

-38 -114 -113 

-43 -103 -88 

-40 -97 -49 

8 -80 -44 

-38 -70 -7 

-1 -68 26 
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Fc= 0.152i 0.723 j + 0.673k                Fc= 0.202i 0.706j + 0.678k                   Fc= 0.104 i 0.680 j + 0.725k 

Mag = [-48.75  -4.931  -15.56]             Mag = [-48.11  6.67  12.22]                Mag = [-48.5  7.44  12.88] 

Figure 3.10: Three samples for Gesture G2 

 

                                                

 

  

 

 

X axis Y axis Z axis 

-73 14 -30 

-38 29 -33 

-44 23 -23 

-42 18 -16 

-54 7 12 

-58 -3 5 

-59 9 -27 

-53 1 -23 

-64 -6 -25 

-83 5 -61 

-15 56 -25 

-33 21 44 

-37 39 40 

-105 111 61 

-26 118 84 

-17 79 83 

-14 62 27 

10 30 -3 

-21 -57 -74 

-51 -128 -128 

-128 -97 -31 

32 0 -9 

17 14 -8 

X axis Y axis Z axis 

-48 18 -37 

-43 17 -15 

-71 -4 16 

-59 -1 -3 

-45 8 -15 

-48 9 -11 

-74 11 -76 

-63 29 15 

7 3 48 

-31 62 69 

-67 52 60 

3 86 42 

-8 30 6 

30 -14 -37 

-128 -128 -101 

25 22 -23 

-86 64 -62 

-20 -7 -10 

10 -21 -10 

-66 1 -21 

-87 0 -24 

-66 0 -7 

-56 10 -7 

X axis Y axis Z axis 

       -63 25 -21 

-50 24 -61 

-55 20 -11 

-43 5 -28 

-87 -23 7 

-27 19 13 

-51 70 8 

-70 87 64 

-26 111 87 

-29 103 74 

1 78 46 

4 34 2 

-12 -32 -93 

-96 -125 -128 

-128 -125 -85 

58 -47 21 

-35 31 -22 

38 -41 14 

-11 -13 -18 

-93 6 -41 

-76 -8 -24 

-50 -11 -23 

-52 1 -18 
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A set of classification models can be formed. Table 3 shows the models for gesture 

classification. 

 

Table 3: Models used for Gesture Classification 

Gesture Principal component matrix Magnitudes matrix 

G1 [0.593 -0.095  0.799 

0.623 -0.138 0.769 

0.560 -0.1075 0.821] 

[-16.88  -12.16  6.6] 

0.4   -24.95  12.5 

-48.5  7.44  12.88] 

 

G2 

[0.152 0.723   0.673 

0.202   0.706   0.678k 

0.104   0.680   0.725k] 

[-48.75  -4.931  -15.56 

-48.11  6.67  12.22 

-48.5  7.44  12.88] 

 

 

 

Consider a test gesture GT. It has to be classified as G1 or G2.  

Probability density of a gesture for a given class = Ppca   * Pmag 

Calculation of Probability Density of a Gesture G1: 

Probability density =  

Where K=3(3 Dimension) 

     ∑ - covariance matrix of the multivariate normal distribution 

     |∑ |-  Determinant of the covariance matrix 

     µ -  Mean 

      x-  Test data 
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For the calculation of Ppca, the   principal component matrix for G1 is taken from the training set 

 

Principal component matrix = [0.593 -0.095 0.799 

                                          0.623 -0.138 0.769 

                                                     0.560 -0.1075 0.821] 

  ∑   =      1.0e-03 * [0.9930   -0.4665   -0.8170 

                                 -0.4665    0.4893    0.4335 

                                 -0.8170    0.4335    0.6813] 

|∑ | =  -1.2722e-26 

∑-1  =  1.0e+19 *           [ -1.3916    0.3476   -1.8898 

                 0.3476   -0.0868    0.4721 

               -1.8898    0.4721   -2.5665] 

µ = [(0.593+0.623+0.560)/3 (-0.095-0.138-0.1075)/3  (0.799+0.769+0.821)/3] 

µ  =  [0.592      -0.1135     0.796] 

For the test gesture GT, the principal component is [0.170 0.747 0.6416] 

So x = [0.170 0.747 0.6416] 

By substituting all these values in the probability density formula we get, 

 Ppca   = 0   

Similarly, Pmag is also calculated by taking magnitude matrix for G1 from the training set. 

Pmag = 3.080328002979498E-49 

Probability density of G1 = Ppca * Pmag  

                                             = 0 * 3.080328002979498E-49 

   = 0 
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Calculation of Probability of Gesture G2: 

Ppca is calculated by taking the principal component matrix from the training set, and is obtained as 

Ppca = 225.03729944998364 

Pmag is calculated by taking magnitude matrix from the training set, and it is obtained as 

Pmag = 9.524782203457256E-6 

Probability density of gesture G2 = Ppca  * Pmag 

                                                           = 225.03729944998364 *  9.524782203457256E-6 

                                                           = 0.0021434312649152854 

The test gesture is classified as the gesture that has the highest class-dependent probability density. 

As the probability density of gesture G2 is greater than the probability density of gesture G1, we can 

say that the test gesture is G2. 
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                                                                              CHAPTER 4 

APPLICATION 

4.1 Application Architecture 

 

 

       In Gestural Human Computer Interface for Smart Health, the user wears the Chronos Watch and 

performs a set of predefined gestures for common activities in e-mail. Activities include composing 

an email, sending an email, deleting an email, forwarding an email, searching for emails in the Inbox, 

opening an attachment, scrolling up and scrolling down. The Chronos watch has an ultra-small size, 

low power 3D accelerometer that measures acceleration relative to free-fall. The RF access point 

allows it to wirelessly communicate with the Chronos directly from the PC. Figure 4.1 shows the 

application architecture. The acceleration values are written to a text file by using the Chronos 

Flying Mouse application. As the Chronos watch continuously senses the acceleration of the hands, 

some undesired values are also written into the file, corresponding to  accidental hand movements. 

The file is parsed to filter undesired acceleration values. The filtering is based upon the difference 

between two consecutive 3D acceleration values, which are referred to as delta values. As the idea 

of the application is to perform heavy gestures, only heavy movements of the hands should be 

considered. When the user performs a heavy gesture, the magnitudes of the acceleration values will 

be high but will be low and almost constant if he moves hands slowly. Thus only the acceleration 

values that correspond to the actual heavy gesture will be considered, with the remaining unwanted 

values being discarded. The filtered data corresponding to one heavy gesture is considered as one 

segment. The log file into which the sensed acceleration values are written is monitored 

continuously and divided into segments. Each segment is sent to the Recognition algorithm. 

Recognition is based on the magnitudes of the 3D acceleration values and the first principal 

component of the segment. The matching algorithm interprets the gesture performed by the user 

and maps it to the corresponding activity in the email. 
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Figure 4.1: Architecture of Gestural Human Computer Interface for Smart Health  

 

 

 

4.2 Acceleration Data Collection from Chronos Watch 

 

 

       In our application, we have used Chronos Flying Mouse application source code in order to 

collect three dimensional acceleration data measured by Chronos watch. User has to tie the watch 

and switch it to acceleration mode. The action is started by clicking on the start button on the 

Chronos Flying Mouse window. The RF access point allows one to wirelessly communicate with the 

Chronos directly from the PC. The code snippet that is used to check whether the RF access point is 

connected correctly to the PC is reproduced below. 

             int start_com() 

       { 

  if (is_com) return 0; 

 

Recognition Algorithm (PCA, 
Naïve Bayes Classification) 
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  is_com = BM_GetCOM(com_port); 

  is_com = BM_OpenCOM(com_port, 115200, 30, false, false); 

  if (!is_com) 

  { 

   set_status("Plug in RF point"); 

   return -1; 

  } 

 

  if (is_ppjoy) 

   set_status("RF point and PPJoy found"); 

  else 

   set_status("RF point found; no PPJoy found"); 

 

  return 0; 

       } 

 

       During that communication, the raw accelerometer data is passed through an exponential 

smoothing filter for the smooth cursor movement in the flying mouse application. While passing the 

raw accelerometer data to its own filter we capture the acceleration data and write it to a text file 

called “log.txt.” The data from the file is then passed to a filter to discard unwanted acceleration 

values which correspond to involuntary small hand movements that do not constitute the heavy 

gesture. The code used to collect 3D acceleration into our “log.txt” file is given below and the 

number of values recorded per second is 30. 

Code Snippet for Acceleration Data Collection from Chronos Flying Mouse Application: 

Void transform(DWORD spldata, of stream raw data)  // function used to collect 3D acceleration 

values 

 { 

             vector3  vdata = tovector3(spldata);                // Our Edited code . vector3 is a class          

                                                                                                          //contains x y z public data members

                 ifstream fin("path\filename.txt"); 

  while(!fin.eof()) 

  fin>>d1>>x1>> y1>> z1; 
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  fin.close(); 

                             fopen_s(&mydatalog1,"path /filename.txt","a"); 

               count++; 

               sprintf(mycount, "%d ", count);  

                            sprintf(myx, "%f ",  vdata.x ); 

               sprintf(myy, "%f ", vdata.y); 

                            sprintf(myz, "%f\n ", vdata.z); 

              fprintf(mydatalog1,mycount);             //writing  3D acceleration values to a file 

                            fprintf(mydatalog1,myx); 

               fprintf(mydatalog1,myy); 

               fprintf(mydatalog1,myz); 

   } 

This code writes the stream of 3D acceleration values into the log file. Figure 4.2 shows these values 
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Figure 4.2: Log File with 3D Acceleration Values 
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4.3 Filtering of the Acceleration Data 

 

Filtering:  Acceleration data is passed through our own filter in addition to the exponential 

smoothing filter of the Chronos Flying Mouse application. This filter is used in order to distinguish 

the actual heavy gesture from the normal hand movements of the user and incomplete gestures. 

Filtering is done based on the absolute difference between consecutive 3D acceleration values 

which are referred to as delta values. As the user has to perform a heavy gesture to perform an 

email activity, the 3D acceleration values have to be large by definition. When user is at rest, the  

acceleration will almost be zero in x and y axis, and a value of 1g in the z axis. This is because the 

accelerometer of the Chronos watch measures acceleration in units of gravity. Figure 4.3 shows an 

excerpt of 3D acceleration values from the log file when the user is at rest: 

       

                                                                    

 

 

 

Figure 4.3: Log File of 3D Acceleration Values when User is at Rest 
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When the user is moving hands normally, the velocity will almost be constant. Hence the 

acceleration is very low or almost zero in x and y axes and 2g in the z axis. Figure 4.5 shows the log 

file of 3D acceleration values when the user moves hands slowly: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Log file of 3D Acceleration Values When the User Moves Hands Slowly 
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will be high in those planes.  Figure 4.6 shows the log file of 3D acceleration values when the user 

performs a heavy gesture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: 3D Acceleration Values when a Heavy Gesture is performed by the User. 
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All the acceleration values with high delta values are retained while values with low delta values are 

discarded with the help of the filter. Figure 4.7 shows the log file of the filtered data: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Log File Representing Filtered Data 
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4.4 Segmentation of Acceleration Data 

 

 

 The user typically sets the watch in acceleration mode and clicks on the start button only once, 

followed by a sequence of gestures. The accelerometer continuously senses the acceleration of the 

hand and 3D acceleration values are continuously written into the log file. This log file contains data 

corresponding to heavy gestures,  as well as rest and normal hand movements. This large file ideally 

needs to be divided into segments, where each segment corresponds to one heavy gesture; data 

corresponding to unwanted activities must be discarded. We keep polling the log file, and whenever 

certain consecutive constant delta values are observed, these are discarded. Each set of values 

delimited by (relatively) constant values is sent to a text file  named “current time stamp.txt”. Each 

such file represents a gesture. We continue polling the data in the log file, and if we observe 

consecutive delta values with greater magnitude, we again send those values to another file named 

“current time stamp.txt.” The data in each file forwarded to the recognition algorithm. 

The code snippet below is used for filtering and segmentation of the data: 

Pseudo Code: 

 

Void Segment(DWORD spldata, ofstream& rawdata) 

{ 

 if(abs(x1-vdata.x)<9 && abs(y1-vdata.y)<9 && abs(z1-vdata.z)<9)         //finding the 

difference  

                                                                                                             //between consecutive acceleration 

values 

 { 

      

     if(f_count1!=0 && abs(count-f_count1)==1 ) 

                  { 

         filtercount++; 

    } 

         f_count1=count; 

              } 

 

 if(filtercount<3)                              // This condition indicates valid data to be sent for 

recognition 

 { 
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  writeit.open("path/filt.txt",ios::app); 

                writeit<<count<<<<" "<<vdata.x<<" "<<vdata.y<<" "<<vdata.z<<"\n"; 

 writeit.close(); 

 } 

 if(filtercount>=3)                           // This condition  is to discard unnecessary values 

 { 

    if(count>13)                                    

    { 

                   the_date[0] = '\0';                      // After discarding unnecessary values send them to  

     // timestamp.txt 

 

                    now = time(NULL); 

 

       if (now != -1) 

        { 

 

                           strftime(the_date, MAX_DATE, "%Y-%m-%d+%H-%M-%S.txt", gmtime(&now)) 

                       } 

                    string datetime = "C:/Users/sowmya/Downloads/"; 

                    datetime = datetime+ the_date; 

                    ifstream myReadFile; 

                    ofstream mywritefile1; 

                    mywritefile1.open(datetime,ios::app); 

                    myReadFile.open("C:/Users/sowmya/Downloads/msp430_005/Debug/filt.txt"); 

                    if (myReadFile.is_open()) { 

                    while (!myReadFile.eof()) {                             //Placing the necessary values in 

timestamp.txt 

                    myReadFile>>output1>>output2>>output3>>output4; 

                   mywritefile1<<output2<<" "<<output3<<" "<<output4; 

     mywritefile1<<"\n"; 

                     } 

                  } 

                     myReadFile.close(); 

                     mywritefile1.close(); 

    }  

 ct++;                                                                        //Resetting all the variables for the next 

segment 

              count=0; 

 f_count1=0; 

 f_count2=0; 

 filtercount=0; 

 x1=0,y1=0,z1=0,d1=0; 

 DeleteFile("C:/Users/sowmya/Downloads/msp430_005/Debug/filt.txt"); 

  

               } 

      } 
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Consider the following hypothetical sequence of interactions with an e-mail program. The user 

searches for a particular email message in his Inbox and then deletes it. During the process, every 

movement is recorded by the watch. The log file contains the data corresponding to the gesture for 

search, data corresponding to normal hand movement or when the hand is at rest, and data 

corresponding to the action for delete. Filtering and segmentation code is used to filter the data 

corresponding to normal hand movements and dividing the data into two segments in this case. 

Figure 4.8 shows the corresponding log file. It contains data corresponding to the first gesture, data 

corresponding to normal hand movement during a delay between the first gesture and second 

gesture, and data corresponding to the second gesture. The file is filtered and divided into two 

segments by filtering and segmentation algorithms. In the log file, each heavy gesture which can be 

done in a second, is expected to have at least 10 lines of 3D acceleration values. Apart from the lines 

corresponding gestures remaining all lines will be filtered. Thus, filtering and segmentation is 

performed.   
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Line Number X axis Y axis Z axis 

1 -55 -16 -38 

2 -50 -16 -40 

3 -48 -18 -38 

4 -67 -12 -32 

5 -80 0 -21 

6 -44 18 1 

7 -106 48 46 

8 -77 58 15 

9 -30 -14 -56 

10 -127 -128 -78 

11 -31 -94 -20 

12 -24 -76 -34 

13 -7 -17 -16 

14 -37 -16 -6 

15 -58 -9 -11 

16 -59 -16 -14 

17 -69 -10 -8 

18 -75 -6 -3 

19 -65 -9 -6 

20 -61 -11 -12 

21 -54 -14 -13 

22 -51 -13 -12 

1 -58 -9 -10 

2 -55 -10 -7 

3 -56 -10 -12 

4 -49 -10 -4 

5 -53 -11 -4 

1 -53 -9 -3 

2 -51 -5 -2 

3 -47 -6 1 

4 -48 -6 1 

1 -36 -14 18 

2 -38 -12 20 

3 -37 -14 22 

4 -37 -13 21 

1 -39 -14 20 

2 -39 -15 20 

3 -35 -17 20 

4 -37 -19 19 

1 -38 -23 16 

2 -38 -23 15 

3 -38 -23 16 

4 -35 -22 16 

1 -35 -24 17 

2 -35 -23 17 

3 -36 -24 16 

4 -36 -24 16 

1 -36 -24 17 

2 -34 -23 17 

3 -35 -23 18 

4 -35 -23 18 

1 -34 -23 18 

2 -34 -23 18 

3 -35 -22 18 

4 -35 -23 18 

1 -35 -22 18 

2 -34 -22 18 

3 -35 -23 17 

4 -34 -22 18 
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Figure 4.8: Log File and Graph for a sequence of Two Gestures performed continuously 
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Figures 4.9 and 4.10 show two files and graphs after segmentation of the log file shown in figure 4.8. 

 

 

 

 

 

 

                                                                                         

 

 

 

 

 

 

 

Figure 4.9: Segmented File and Graph for First Heavy Gesture 
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Figure 4.10: Segmented File and Graph for Second Heavy Gesture 
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4.5 Description of Gestures 

 

 

Table 4: Description of Gestures and Corresponding Email Activities 

 

SNO Email Action  Conventional 

method 

Gesture  Description of Gesture 

 

1 

 

Deleting an email 

 

Clicking the delete 

option  

 

Delete 

 

Imagine that you have a blackboard 

in front of you (parallel to the screen 

of your computer). Draw a big ‘Z’ on 

that board.(This is just like you are 

rubbing the blackboard with a 

duster) 

 

 

2 

 

Sending an email 

 

Clicking the send 

Button  

 

 

Send 

 

Imagine that you have a blackboard 

in front of you (parallel to the screen 

of your computer). Draw a big ‘Tick 

mark’ on that board. 

 

 

3 

 

See  recent mails 

in the current page 

of Inbox 

 

Scroll up the scroll 

bar to see the 

recent mails 

 

 

 

 

Turn Right 

 

Imagine that you have a big book on 

your keyboard. Turn a page of that 

book to the right to see the previous 

page. Place your hand on the 

bottom left corner of the keyboard 

and turn the page to right making a 

big arc. 

 

 

4 

 

See older mails in 

the current page of 

Inbox 

 

Scroll down the 

scroll bar 

to see older mails 

 

 

Turn Left 

 

Imagine that you have a big book on 

your keyboard. Turn a page of that 

book to the left to see the next 

page. Place your hand on the 

bottom right corner of the keyboard 

and turn the page to left making a 

big arc. 

 

 

5 

 

Forwarding an 

email 

 

Clicking the 

‘Forward to’ button 

 

 

Forward 

 

Join your palms with the fingers 

pointing away from you and lock 

your fingers. Move your locked hand 

away from you 
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Table 4: -- Description of gestures and the corresponding email activities 

 

SNO Email Action  Conventional method Gesture  Description of Gesture 

 

6 

 

Compose an 

email 

 

 

Clicking compose or 

New button 

 

 

Compose 

 

Imagine that some nuts are scattered 

on the table over a small area. 

Gather all of them at once and toss 

upwards. 

 

7 

 

Searching for a 

mail in Inbox 

 

 

Clicking the Search 

Button  

 

Search 

 

Imagine that there is a book on the 

keyboard and a magnifying glass in 

your hand. Place your hand at the 

bottom center of the keyboard and 

rotate your hand clockwise. Make a 

circle and semicircle with your hand. 

 

 

8 

 

Opening an 

attachment 

 

 

Clicking the open 

Button in the pop-up 

window after 

downloading 

 

 

Open 

 

Place your hands at your shoulders 

with palms facing the screen of the 

computer. Then make fists and 

slowly raise your hands up as if you 

are opening  the shutter of a store. 
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Table 5: Description and Images of Gestures 

 

Description of Gesture Image Showing How to do the Gesture Graph Showing Acceleration Values 

of a Sample 

 

Delete: 

 

Imagine that you have 

a blackboard in front 

of you (parallel to the 

screen of your 

computer). Draw a big 

‘Z’ on that board.(This 

is just like you are 

rubbing the 

blackboard with a 

duster) 

 

 

 

 

Send: 

 

Imagine that you have 

a blackboard in front 

of you (parallel to the 

screen of your 

computer). Draw a big 

‘Tick mark’ on that 

board. 
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Table 5: -- Description and Images of Gestures 

 

Description of 

Gesture 

Image Showing How to do the Gesture Graph Showing Acceleration Values of a 

Sample 

 

Turn: 

 

Imagine that you 

have a big book 

on your 

keyboard. Turn a 

page of that 

book to the left 

to see the next 

page. Place your 

hand on the 

bottom right 

corner of the 

keyboard and 

turn the page to 

left making a big 

arc. 

 

 

 

 

 

 

Turn from left to 

right: 

 

Imagine that you 

have a big book 

on your 

keyboard. Turn a 

page of that 

book to the right 

to see the 

previous page. 

Place  your hand 

on the bottom 

left corner of the 

keyboard and 

turn the page to 

right making a 

big arc. 
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Table 5: -- Description and images of gestures 

 

Description of 

Gesture 

Image Showing How to do the Gesture Graph Showing Acceleration Values of a 

Sample 

 

Search: 

 

Imagine that 

there is a book 

on the keyboard 

and a 

magnifying glass 

in your hand. 

Place your hand 

at the bottom 

center of the 

keyboard and 

rotate your 

hand clockwise. 

Make a circle 

and semicircle 

with your hand. 

 

 

 

 

 

 

 

 

Open: 

 

Place your 

hands at your 

shoulders with 

palms facing the 

screen of the 

computer. Then 

make fists and 

slowly raise your 

hands up as if 

you are opening  

the shutter of a 

store. 
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Table 5: -- Description and images of gestures 

 

Description of 

Gesture 

Image Showing How to do the Gesture Graph Showing Acceleration Values of a 

Sample 

 

 

Punch: Join your 

palms with the 

fingers pointing 

away from you 

and lock your 

fingers. Quickly 

Move your 

locked hand 

away from you 
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CHAPTER 5 

IMPLEMENTATION 

5.1 Overview of Implementation 

 

 

       The previous chapters focused on the methodology that makes it possible to recognize a set of 

gestures based on acceleration values. This chapter discusses  the implementation of training and 

recognition. Users can train the application with as many gestures they want from the pool of the 

gestures defined to map to email activities. Each gesture needs to be repeated eight times to create 

a training set. Once all gestures are presented, training is completed by mapping to a multivariate 

Gaussian model. The application is then ready to recognize the gestures. 

In the implementation of this application, we use the modified .exe file of the Chronos Flying Mouse 

application which is recompiled after adding our source code. This .exe file is invoked from the 

training and recognition module. 

Code Snippet Corresponding to Training and Recognition: 

class NewThread extends MatlabSyntax implements Runnable  

 { 

 Thread t; 

       // Training and Recognition code 

} 

 

public class trainreco  

{ 

  public static void main(String[] args)  

   { 

     new NewThread();  

         

     Process p = rt.exec("Filepath/Chronosflyingmouse.exe"); 

  

  

    } 

} 
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In our application, we run the Chronos Flying Mouse .exe file in the main thread and the training and 

recognition code in the child thread. Since both the threads run simultaneously, training and 

recognition can occur in real time. 

 

 

5.2 Training of Gestures 

 

 

       As discussed in section 3.4, we have a set of eight gestures, each used to perform an email 

activity. Each gesture has to be trained eight times and the user can train as many gestures as he 

wants. When the user does a gesture eight times, eight .txt files are generated, each corresponding 

to one sample of the gesture. These text files contain the acceleration data that are written by our 

data collection algorithm in the Chronos Flying Mouse application code. As discussed in section 5.1, 

the Chronos Flying Mouse application and code corresponding to the training and recognition run 

simultaneously. The acceleration data is continuously written into .txt Files and the training code 

reads the files generated to do calculations for PCA and probability densities in real time for 

practical purposes.  

               For proper concurrency control, the main thread locks each file while writing it and unlocks 

it as soon as it is done. The child thread opens the files sequentially for training and recognition. 

Code Snippet Showing How Files are Searched in the Target Directory 

class myfilesearch { 

 public File[] finder(String dirName){ 

   

   

   

        File dir = new File(dirName); 

           

        return dir.listFiles(new FilenameFilter() {  

                 public boolean accept(File dir, String filename) 

                     { return filename.endsWith(".txt")    ; } 

        } ); 

 

    } 

} 
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The files are indexed in a file array that is sorted by modification time, such that the first element in 

the file array is the oldest file created and the last element in the array is the newest file. 

Code Snippet Showing How Files are Sorted According to Modified Time. 

class sortfiles  

{ 

 public File[] getallfiles(){ 

  File temp; 

  Scanner sc2 = null; 

 myfilesearch sh = new myfilesearch(); 

 File[] f=sh.finder("C:/Users/sowmya/Downloads"); 

 

 //System.out.println(f.length); 

 for(int j=0;j<(f.length)-2;j++) 

 { 

 for(int i=0; i<(f.length)-1 ; i++) 

 { 

 if( f[i].lastModified() > f[i+1].lastModified()) 

 { 

  temp = f[i]; 

  f[i] = f[i+1]; 

  f[i+1] = temp; 

 } 

 

 } 

 } 

  return f; 

 } 

Ex: 

C:\Users\sowmya\Downloads\2012-11-09+04-12-20.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-14-25.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-15-25.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-16-39.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-16-41.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-16-43.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-17-02.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-17-59.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-19-15.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-20-38.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-20-41.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-20-48.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-21-13.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-21-17.txt 

C:\Users\sowmya\Downloads\2012-11-09+04-21-28.txt 

Each file is read, and a matrix is constructed from the file.  

Code Snippet Shows How the Matrix is constructed from a File. 
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FileInputStream fstream = new FileInputStream(f[i]); 

  String sr = f[i].toString(); 

  sc2 = new Scanner(new File(sr)); 

  DataInputStream in = new DataInputStream(fstream); 

   BufferedReader br = new BufferedReader(new InputStreamReader(in)); 

   String str; 

    

   while ((str = br.readLine()) != null) { 

    System.out.println("str is"+ str); 

  count++; 

      

  } 

   in.close(); 

   //count = count-2; 

   m=count; 

   System.out.println("count is"+ m); 

   Matrix B = normRnd(0,1,m,3) ; 

   while (sc2.hasNextLine()) { 

       Scanner s2 = new Scanner(sc2.nextLine()); 

        

   boolean b; 

    

   while (b = s2.hasNext()) { 

   int threecount=1; 

    while(threecount<4) 

    { 

       String s = s2.next(); 

       double cond = Double.parseDouble(s); 

       int convertint = (int) cond; 

        set(B,matrixindex,threecount,convertint); 

    

    threecount++; 

    } 

    

    matrixindex++; 

   } 

  } 

   

 

In Figure 5.1, the file on the left contains the acceleration data, while the one on the right side 

shows the matrix that is constructed from  the data. 
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Figure 5.1: A Matrix Constructed from a Text File 

 

 

 

Based on the matrix, variances and covariances are calculated, and Eigenvectors are calculated in 

turn for the transformation corresponding to the covariance matrix. As discussed in section 3.1., the 

principal component corresponds to the Eigenvector with the highest variance, which is used for 

gesture training and recognition. 

 

Code Snippet Showing How the Principal Component is Calculated from the Constructed Matrix 

Matrix covariance = cov(B); 

Matrix eigenVectors = eig_V(covariance); 

Matrix eigenValues = eig_D(covariance); 

System.out.println("eigen Vectors are"); 

disp(eigenVectors); 
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Vector<Double> v = new Vector<Double>(); 

v.add(get(eigenVectors, 1, 3)); 

 v.add(get(eigenVectors, 2, 3)); 

 v.add(get(eigenVectors, 3, 3)); 

  Eigen vectors for the covariance of the matrix shown in fig: by using the above code 

  [0.8741   -0.4760   -0.0965 

   -0.2283   -0.5781    0.7834 

    0.4287    0.6628    0.6140] 

The first principal component calculated based on the code and matrix above is 

[0.8741  -0.2283    0.4287]  

For each sample, the principal component and average magnitude is calculated as discussed above. 

Thus we get eight principal components for the eight samples, and then find the average principal 

component. 

The average principal component vector of the eight samples for the gesture delete is shown in 

Figure 5.2 and represented as 0.8899i + -0.2730j + 0.3611k 
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Figure 5.2: Average Principal Vector for Delete Gesture 

 

 

 

Similarly, the average principal component vector for eight samples of the send gesture is shown in 

figure 5.3 and represented as 0.2373 i + 0.715j + 0.6372125k. 
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Figure 5.3: Average Principal Vector for Send Gesture 

 

 

 

The average principal component vector of the eight samples of the scroll down gesture is shown in 

Figure 5.4, represented as -0.4821375i  -0.0086125j + 0.87165k. 

 

 

 

 

 



  

 

63 

 

 

Figure 5.4: Average Principal Vector for Scroll Down Gesture 

 

 

 

The average principal component vector of the eight samples of the scroll up gesture is shown in 

Figure 5.5, represented as 0.1351375i  -0.0643875j + 0.9763k. 
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Figure 5.5: Average Principal Vector for Scroll Up Gesture 

 

 

 

The average principal component vector of the eight samples of the punch gesture is shown in 

Figure 5.6 and is represented as 0.20200388i + 0.713218536j + 0.654672013k. 
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Figure 5.6: Average Principal Vector for Punch Gesture 

 

 

 

The average principal component vector of the eight samples of the launch gesture is shown in 

Figure 5.7 and is represented as 0.7915i + 0.3174875j + 0.50325k. 
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Figure 5.7: Average Principal Vector for Launch Gesture 

 

 

 

The average principal component vector of the eight samples of the search gesture is shown in 

Figure 5.8 and is represented as -0.4482i  + 0.8723j -0.1212k. 
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Figure 5.8: Average Principal Vector for Search Gesture 

 

 

 

The average principal component vector of the eight samples of the open gesture is shown in Figure 

5.9 and is represented as -0.192809669i  -0.951398035j + 0.213508419k. 
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Figure 5.9: Average Principal Vector for Open Gesture 

 

 

5.3 Recognition of Gestures 

 

 

Consider a test gesture and let’s say its principal component vector is 0.87i -0.22 j + 0.42k 

Once the principal component is calculated for the test gesture, angles between the test gesture 

and the average principal component of each gesture are calculated. Figure 5.10 shows the first 

principal component of all the predefined gestures and the test gesture. 
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Figure 5.10: Graph Showing First Principal Component of all Gesture Models with Test Gesture. 

 

 

 

Angles are calculated by using the dot product of two vectors as discussed earlier. 

Angle between test gesture and delete gesture stereotype principal components = 4.68 

Angle between test gesture and send gesture stereotype principal components = 71.30 

Angle between test gesture and scroll down gesture stereotype principal components = 92.74 

Angle between test gesture and scroll up gesture stereotype principal components = 56.15 

Angle between test gesture and punch gesture stereotype principal components = 72.75 

Angle between test gesture and launch gesture stereotype principal components = 32.53 

Angle between test gesture and search gesture stereotype principal components = 49.33 

Angle between test gesture and open gesture stereotype principal components = 81.95 
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The smallest angle (1.74 degrees) is between the test gesture and the delete gesture model. The 

test gesture is therefore recognized as delete. 

Figure 5.11 is a screen shot of the application’s output for gesture recognition. 

 

 

 

Figure 5.11: Application Output for Gesture Recognition 

 

 

 

For the second method of gesture recognition,  we take into account the probability densities of 

both the principal component and the magnitude; the average x, y, and z accelerations are also 

taken into account. The joint probability density of a gesture is given by the product of these two 

probability densities.  

The average magnitudes are calculated as follows. For the matrix shown in Figure 5.12, parsed from 

the stream file, we take the averages of the first, second and third columns, which represent the 

acceleration values in x, y and z dimensions. 

Code Snippet Showing How to Calculate the Average Values of the Matrix: 

              double sum1=0; 

   double sum2=0; 

   double sum3=0; 
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   for(int row=1; row<matrixindex;row++) 

   { 

    

   sum1 = sum1+ get(B,row,1); 

    

   } 

   for(int row=1; row< matrixindex;row++) 

   { 

   sum2 = sum2+ get(B,row,2); 

    

   } 

   for(int row=1; row< matrixindex; row++) 

   { 

   sum3 = sum3+ get(B,row,3); 

    

   } 

   double avg1 = sum1/(m-1); 

   double avg2=sum2/(m-1); 

   double avg3= sum3/(m-1); 

 

 

Figure 5.12 : Matrix used to Compute Average Values  
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Avg(x) = -13.8182 

Avg(y)=3.5 

Avg(z) = 29.22727 

The first principal component and average x y z accelerations are thus calculated for a file 

representing one gesture sample. As discussed in section 3.4, a training set for gesture classification 

is created based on these two features.  

 

Code Snippet Showing How Principal Component Matrix and Magnitude Matrix are constructed 

from the Training Set: 

public void gettrainsets(int p, Matrix traineigenset,Matrix trainmagset,Matrix 

eigenVectors,Matrix tmag) 

 { 

  int q=1; 

  System.out.println("p is " +p + "q is "+q); 

   set(traineigenset,p,q,get(eigenVectors, 1, 3)); 

   set(trainmagset,p,q,get(tmag, 1, 1)); 

   q++; 

   System.out.println("p is " +p + "q is "+q); 

   set(traineigenset,p,q,get(eigenVectors, 2, 3)); 

   set(trainmagset,p,q,get(tmag, 2, 1)); 

   q++; 

   System.out.println("p is " +p + "q is "+q); 

   set(traineigenset,p,q,get(eigenVectors, 3, 3)); 

   set(trainmagset,p,q,get(tmag, 3, 1)); 

   

   disp(traineigenset); 

 } 

Once the training set is created with the help of the above code, the likelihood for each gesture 

model is calculated as follows. 

Probability density =  

Where 

 ∑ - covariance matrix of the multivariate normal distribution 
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|∑ |-  Determinant of the covariance matrix, 

∑-1  - Inverse of the covariance matrix 

 µ -  Mean  

Code Snippet for the Calculation of the Required Parameters 

 double sum1=0; 

    double sum2=0; 

    double sum3=0; 

        

    for(int row=1; row<9;row++) 

    { 

      sum1 = sum1+ get(traineigenset,row,1); 

     

    } 

    for(int row=1; row< 9;row++) 

    { 

      sum2 = sum2+ get(traineigenset,row,2); 

       

 } 

    for(int row=1; row< 9; row++) 

    { 

       sum3 = sum3+ get(traineigenset,row,3); 

     

    } 

    double ag1 = sum1/(8); 

    double ag2=sum2/(8); 

    double ag3= sum3/(8); 

     

    Matrix meaneigenset = normRnd(0,1,3,1); 

    set(meaneigenset,1,1,ag1); 

    set(meaneigenset,2,1,ag2); 

    set(meaneigenset,3,1,ag3); 

     

    double s1=0; 

    double s2=0; 

    double s3=0; 

     

     

    for(int row=1; row<9;row++) 

    { 

       s1 = s1+ get(trainmagset,row,1); 

        

                     } 

    for(int row=1; row< 9;row++) 

    { 

    s2 = s2+ get(trainmagset,row,2); 

    } 

    for(int row=1; row< 9; row++) 

    { 

    s3 = s3+ get(trainmagset,row,3); 

    } 
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    double a1 = s1/(8); 

    double a2=s2/(8); 

    double a3= s3/(8); 

     

    Matrix meanmagset = normRnd(0,1,3,1); 

    set(meanmagset,1,1,a1); 

    set(meanmagset,2,1,a2); 

    set(meanmagset,3,1,a3); 

     

   meaneigenmatrices.add(meaneigenset); 

   Matrix coveigenset= cov(traineigenset); 

   Matrix invcoveigenset = inv(coveigenset); 

   inveigenmatrices.add(invcoveigenset); 

   double detcoveigenset = det(coveigenset); 

   eigendets.add(detcoveigenset); 

    

   meanmagmatrices.add(meanmagset); 

   Matrix covmagset = cov(trainmagset); 

   Matrix invcovmagset = inv(covmagset); 

   invmagmatrices.add(invcovmagset); 

   double detcovmagset = det(covmagset); 

   magdets.add(detcovmagset); 

The probability of a gesture when Principal component is taken into account is calculated as follows: 

for( probcnt =0; probcnt<meaneigenmatrices.size(); probcnt++) 

     { 

  Matrix mdiff = minus(tpca,(Matrix)meaneigenmatrices.get(probcnt)); 

     Matrix mtrans = t(mdiff); 

Matrix interpca = 

times(mtrans,(Matrix)inveigenmatrices.get(probcnt)); 

     Matrix finalpca = times(interpca,mdiff); 

     double expower=-get(finalpca,1,1)/2; 

double probpca = 

(1/(Math.sqrt(Math.pow(2*3.14159,3)*(double)eigendets.get(probcnt)))

)*Math.exp(expower); 

        System.out.println("prob pca is"); 

    System.out.println(probpca); 

} 

     

        

The probability density of a gesture when average magnitudes of x, y, z components of acceleration 

are considered is calculated as follows: 

for( probcnt =0; probcnt<meaneigenmatrices.size(); probcnt++) 

  { 

 

         Matrix magdiff = minus(tmag,(Matrix)meanmagmatrices.get(probcnt)); 

   Matrix magtrans = t(magdiff); 

   Matrix intermag = times(magtrans,(Matrix)invmagmatrices.get(probcnt)); 

   Matrix finalmag = times(intermag,magdiff); 

   double magexpower=-get(finalmag,1,1)/2; 

         double probmag =  
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(1/(Math.sqrt(Math.pow(2*3.14159,3)*(double)magdets.get(probcnt))))*

Math.exp(magexpower);   

     

    System.out.println("prob mag is"); 

    System.out.println(probmag); 

         

    } 

The joint probability density of a gesture is the product of the two probability densities. 

probdensity=(probpca*probmag); 

 totprob.add(probpca*probmag); 

The recognized gesture is the gesture with highest likelihood or probability density. 
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CHAPTER 6 

EVALUATION OF GESTURAL HUMAN COMPTER INTERFACE FOR SMART HEALTH 

6.1 Instructions to Use the Application 

 

 

Tie the Chronos watch to your right hand 

1. Run the application 

2. You will see “Enter your option” message in the console. Enter “1” to train your gesture. 

       

3. When you press 1, the Chronos Flying Mouse window will pop up. 

 

 

4.  Click on “start/stop” button on the Chronos Flying Mouse window 

5.  Press the button on the watch that is on the bottom right of the watch. If everything is 

performed correctly, the cursor will move on the screen if you slowly move your hand. 
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6.  Perform the gesture you want to train. After completing it go to the C:\\ drive to see if text file 

with the current time stamp is generated. That file will be generated only if you do heavy gesture 

with reasonable force. Gestures of very short duration will not be recorded. 

7.  Repeat the same gesture seven more times, leaving a gap of 3-4 seconds between gestures. 

Check the C:// drive to confirm that a total of eight .txt files are generated corresponding to each 

gesture. 

8. Once eight txt files are generated, close the Chronos Flying  Mouse window and press 3 in the 

console where you see "Enter 3 when finished training". 

 

9. Once you have done that you will see “Enter your option” in the console. 

      

 If you wish to train another gesture then repeat steps 3 to 8.  

 10.  Once you are done with training different gestures, enter “2” in the console. 
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 11.  The Chronos Flying Mouse Window will pop up again. Click on the start button and perform any 

gesture from the set of gestures you have trained. Confirm that a new file corresponding to the 

gesture has appeared in  C://.  

12. Once you see the new .txt file that corresponds to the test gesture, enter “ 1” in the console.  

 

13. The application will display the recognized gesture (See Figure 5.12). 

 14. Repeat steps 10 to 13 to test the recognition as many times as you want. 

 15. Once you are done, enter “2” in the console to exit the application.  
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6.2 Evaluation 

 

 

              We have eight predefined gestures that map to email activities. In order to track the 

performance, we conducted an evaluation with a volunteer group consisting of two men and 13 

women aged between 22 and 30 years. We performed two kinds of evaluation – volunteer 

independent and volunteer dependent. In volunteer independent evaluation, we pretrained all the 

eight gestures to be recognized and asked each volunteer to randomly choose and execute any five 

gestures out of the eight. In volunteer training dependent evaluation, each volunteer trained two to 

three gestures to the application and then tested the ability to recognize the same gestures. If 

misrecognition of gestures occurred during volunteer training independent evaluation, then the 

volunteer was asked to create a volunteer dependent model of the misrecognized gestures and test 

the accuracy of recognition. 

Evaluation Setup: Each volunteer was requested to wear the watch and connect the eZ430-Chronos 

RF Access Point to the PC for receiving acceleration data. An overview of the application and its uses 

was given. We then explained all the eight gestures, how to do perform them and their purpose. The 

operating instructions for the watch were explained to the volunteers. The volunteers then used our 

application to train and/or execute the gestures. 

Volunteer Training Independent Evaluation:  For this evaluation, we used gesture models based on 

a pre-existing training set for all the fifteen volunteers to test gesture recognition. Each volunteer 

was asked to choose any five gestures out of the eight predefined gestures and repeat each 5 times. 

Thus, each volunteer executed 5*5 = 25 gestures, the recognition of which was measured. 

Example of Volunteer Training Independent Evaluation: Since a pre-existing set of gesture models 

is used, we test the recognition of gestures performed by a volunteer. A volunteer chooses send, 

open, punch, launch and search gestures to test recognition. She repeats each gesture 5 times and 
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tests its recognition, i.e., send is tested five times; open is tested five times and so on. Figure 6.1 

shows the recognition accuracy for each gesture performed by that volunteer. 

 

 

 

 

Figure 6.1: Recognition of User Gestures Based upon Predefined Training 

 

Open, punch and search are recognized 100% of the time. Send and launch are recognized four 

times out of five. 

Volunteer Training Dependent Evaluation: The rationale for this type of evaluation is to 

accommodate user preferences and allow for the fact that different users may perform the same 

gesture in a slightly different way. For this evaluation, each volunteer chooses two to three gestures 

from the set of eight gestures and performs training. For training a gesture, volunteer has to repeat 

it eight times. Once the training is completed for the selected gestures, the same gestures are 

performed once again, and prediction accuracy is noted.  

Example of Volunteer Training Dependent Evaluation: In this evaluation, a volunteer chooses 

delete, scroll down and scroll up gestures. She repeats the delete gesture eight times for training. 
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Similarly, she trains the system with scroll down and scroll up gestures. When training is completed, 

she tests the recognition of each gesture. Figure 6.2 shows the recognition rate for the gestures she 

selected and trained. 

 

 

 

 

Figure 6.2: Recognition of Gestures After User Training 

 

We observed that the accuracy increased when the volunteer has trained their gestures. 

On the whole, for user independent training evaluation, 278 gestures were performed by 15 

volunteers of which 240 of them were recognized correctly. Figure 6.3 shows the average 

recognition accuracy for all 15 volunteers. 
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Figure 6.3: Average Recognition Rate for All 15 Volunteers on Pretrained Models 

 

 

 

Overall accuracy of the gestures is given by 240/278 ( 86.33%). 

When the volunteers trained their own gestures, essentially all the gestures were recognized 

correctly. Figure 6.4 shows the percentage of recognition when each volunteer trained selected 

gestures prior to testing recognition. 
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Figure 6.4: Recognition of Gestures by Volunteer Dependent Training 
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Figure 6.5 shows the average accuracy of each gesture when 15 volunteers tested the recognition of 

gestures in volunteer training independent evaluation. 

 

 

 

 

Figure 6.5: Accuracy of All Gestures 

 

 

 

The overall accuracy of the gestures is 86.33%. 
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Figure 6.6: Error Bar Chart Representing both Training Dependent and Independent Evaluation 

 

 

 

Continuous Evaluation: 

We also evaluated the Gestural Human Computer Interface for Smart Health while performing 

continuous gestures to simulate real world use. We picked pairs of gestures and performed them 

continuously. We chose pairs of gestures that make sense in an email session. The pairs of gestures 

we chose for this type of evaluation are: launch-send, scroll up-scroll down, forward-send and 

search-delete. We thus evaluate filtering and segmentation modules along with the accuracy of 

gesture recognition. Figure 6.7 shows the accuracy of pairs of gestures performed continuously. 

Scroll Up and scroll down gestures when performed together got less accuracy percentage. This is 

because every time when the user performs scroll up gesture and after finishing it, one has to move 

hand downwards immediately in order to perform scroll down gesture. So that unwanted 

movement may not be segmented properly as, it is also done with enough force. 
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Figure 6.7: Accuracy of Pairs of Gestures Performed Continuously 

 

 

 

Our Model Versus HMM: 

We also compared our performance against published HMM models for gesture recognition with a 

Wii controller [10]. Gestures used by the group for tests and evaluations are shown in figure 6.8. 

 

and 1 to 9 digits 

Figure 6.8: Gestures Used for Evaluation of HMM Model using Wii-mote 

 

 

 

Figure 6.9 shows the average recognition rate for each of the five gestures by using HMM model 

[10]. 
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Figure 6.9: Average Recognition Accuracy of Gestures Using HMM Model 

 

To compare the PCA/magnitude model versus HMM, we repeated the same gestures shown in 

Figure 6.8 and measured the accuracy. Note that principal components by definition can’t 

distinguish between symmetrical closed loop gestures like square and circle as the variance is 

symmetric. So we restricted the comparative evaluation to the remaining three gestures from the 

reference gestures. Figure 6.10 shows the average recognition accuracy for the three gestures using 

our model. 
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Figure 6.10: Graph Comparing Gesture Recognition Accuracy of our Model Versus HMM  

 

 

 

Based on the above comparison, our model yields an average accuracy of 73.78% while the HMM 

model has an average accuracy of 70.26%. 

Run Time of the Application: 

Run time was tested on a PC with Intel Core i3 2.40 GHz processor and 4 GB memory. To calculate 

the run time of the application, a gesture was repeated eight times to train the application. This was 

followed by a test gesture. 

Run Time of File Searching Algorithm: 

The time taken by the program to search for eight training samples in a specific folder is 30 ms. 

Run Time for Training: 

The time taken to build the training set for a gesture based on eight training samples is 142.5 ms. 
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Run Time for Recognition: 

The time taken for the recognition of a gesture when the application is trained by five gestures, each 

repeated eight times, is 22 ms. 

Thus, the total runtime of the program is approximately 194.5 ms. This time doesn’t include the 

time taken by the user to perform a gesture. 

 

 

Figure 6.11: Run Times for Different Modules in Application 

 

Run Time of Gesture recognition using Wii-mote: 

In order to calculate run time for this application, a gesture is trained and then tested for 

recognition. We have calculated total run time of Gesture recognition using Wii-mote and it is 19415 

ms. This includes the time taken by the user to train a simple gesture “moving hand left to right” 

once and testing it for recognition. 

In the paper on HMM based recognition [11], run time analysis is calculated for their application. 

They trained 5 gestures, with the time taken for the recognition of each gesture being 52 ms (Table 

6).. 
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Table 6: Comparison of Run Times of Models 

 

 Our Model HMM Model 

# of gestures trained 5 5 

Recognition time 22 ms 52 ms 

 

 

Evaluation of Application in Terms of Energy Expenditure: 

We also evaluated “Gestural Human Computer Interface for Smart Health” in terms of energy 

expenditure. For this, we used “Beurer Heart Rate Monitor.” [14] With the help of this device, we 

can record the heart rate for a desired duration. We recorded the heart rate of a user in three 

situations - at rest, during an email session using a traditional interface, and while performing the 

same set of activities by performing heavy gestures. We conducted t-tests to compare the three sets 

of heart rate readings. Table 7 shows the heart rate of a user at rest. Mean of that data is 74 and 

standard deviation is 5.11. Table 8 shows the heart rate of a user during a conventional email 

session. Mean of that data is 70.63 and standard deviation is 3.32. Table 9 shows the heart rate of a 

user performing heavy gestures during an email session. Mean of that data is 86.81 and standard 

deviation is 8.02 
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  Table 7: Heart Rate of User while at Rest 

 

Minutes Heart Rate 

1 73 

2 79 

3 78 

4 70 

5 63 

6 69 

7 78 

8 79 

9 77 

10 76 

11 72 

 

 

Table 8: Heart Rate during Conventional Email Session for 8 min 

 

Minutes Heart Rate 

1 73 

2 74 

3 71 

4 68 

5 62 

6 70 

7 72 

8 72 

9 72 

10 70 

11 73 
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Table 9: Heart Rate during Heavy Gestures for 10 min 

 

Minutes Heart Rate 

1 74 

2 74 

3 81 

4 84 

5 88 

6 90 

7 88 

8 90 

9 93 

10 100 

11 93 

 

  

 

Figure 6.12: Graph Showing User Heart Rate in Three Different Situations 

 

Results of t-test conducted for ‘Heart rate while doing gestures’ data versus ‘Heart rate during Rest’ 

data: 

For One-tailed distribution and Two sample unequal variance: 
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p-value :  0.0001. There is a significant difference between two groups. 

Results of t-test conducted for ‘Heart rate while doing gestures’ data versus ‘Heart rate while doing 

conventional actions’ data: 

For One-tailed distribution and Two sample unequal variance: 

p-value :  0.000058 which is less than 0.05. So there is a significant difference between two groups. 

t-test conducted for ‘Heart rate while doing conventional actions’ data and ‘Heart rate during rest’ 

data: 

For One-tailed distribution and Two sample unequal variance: 

p-value:  0.11 which is greater than 0.05. So there is no significant difference between two groups. 

The comparative results show that the heart rate increased significantly when the user performed 

heavy gestures compared with a conventional email session. The results demonstrate that energy 

expenditure is higher when “Gestural Human Computer Interface for Smart Health” is used for 

routine activities. 
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CHAPTER 7 

CONCUSION AND FUTURE WORK 

              In this section, the contribution of this thesis is summarized. Some thoughts on refining the 

project and possible directions for future work are presented. 

 

7.1 Conclusion 

 

 

       We proposed the principle of working out while working to achieve potential health benefits 

without dedicated exercise sessions. We implemented this idea in the form of a Gestural Human 

Computer Interface for Smart Health where users can control computer applications by performing 

heavy gestures. We used cost effective off the shelf hardware, the Chronos watch by Texas 

Instruments, which measures the acceleration generated by heavy gestures. We developed an 

application for training and recognition of gestures performed by a user. For the recognition, 

lightweight algorithms based on principal component analysis and Naïve Bayes Classification are 

used. We showed that the gestures can be successfully customized to accommodate user variation. 

We observed a significant increase in the heart rate when using the Gestural Human Computer 

Interface for Smart Health. The successful implementation of the Gestural Human Computer 

Interface for Smart Health confirms that the application is feasible and effective in raising the heart 

rate. 

 

7.2 Future Work 

 

We discuss some of the limitations of the project and scope for enhancement in this final section. 

Since the acceleration data is reduced to the principal component, it cannot distinguish between 

temporal profiles that are different but with identical time independent distributions. For example, 

an action consisting of acceleration followed by deceleration cannot be distinguished from 
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deceleration followed by acceleration if they contain the same 3D acceleration values, although in a 

different order. For example, the current approach can’t recognize the distinction between turning a 

page from left to right and turning a page from right to left. This could potentially be resolved by 

breaking down each action in multiple temporal windows, with a principal component for each sub 

segment. 

Since the recognition algorithm is essentially a maximum likelihood classification approach, any 

gesture (not previously used in training) will be classified to a gesture. This can be resolved by a 

secondary algorithm that takes the temporal pattern into account, especially in those cases where 

there is ambiguity with regard to classification. 

Though our approach compares favorably with HMM, the platforms used for comparison were not 

identical – TI Chronos and Wii-mote respectively. This can affect both accuracy and processing time. 

The ideal comparison should use identical gestures on the same hardware. 

The interface can potentially be highly personalized in allowing users to create and use any gestures 

of choice to control any aspect of human computer interaction. Using such active interfaces for even 

short periods of time during the workday could alleviate boredom and counteract the effects of a 

sedentary lifestyle. 
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