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URBAN SPRAWL IN THE STATE OF MISSOURI: 

CURRENT TRENDS, DRIVING FORCES, AND 

FUTURE GROWTH ON MISSOURI’S NATURAL 

LANDSCAPE 

Bo Zhou 

Dr. Hong S. He Dissertation Advisor 

ABSTRACT 

Human population growth and associated sprawl has rapidly converted open lands to 

developed use and affected their distinctive ecological characteristics.  Missouri reflects a 

full range of sprawl characteristics that include large metropolitan centers, which led 

growth in 1980s, and smaller metropolitan and rural areas, which led growth in 1990s.  In 

order to study the historical patterns of sprawl, there is a need to quantitatively and 

geographically depict the extent and density of impervious surface for three time periods 

of 1980, 1990, and 2000 for the entire state of Missouri.  This research goes beyond the 

usual hot spots of metropolitan areas to include rural landscapes where negative impact 

was exerted to the ecosystem due to the low density development and larger affected 

areas.   

 Mapped impervious surface is the best candidate of ancillary data for dasymetric 

mapping of population in several comparison studies.  The current research examines the 

performances of dasymetric mapping of population with imperviousness as ancillary data 

and regression analysis of population using imperviousness as a predictor.  In the context 

of this comparison, this research also examines the performance of imperviousness with 
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road network removed versus imperviousness with road network and certain ranges of 

values removed.  The assessment of approach and ancillary data performance is done by 

comparing estimated population for each block to the original Census block population.  

Results from this work can be aggregated to any geographical unit (hydrologic 

boundaries, administrative boundaries, etc.).  More importantly, the aggregated 

population information will be crucial in the modeling of future urban growth. 

 A pilot future urban growth study for the two decades of 1980s and 1990s was 

done in Missouri.  The historical urban growth of the two decades were analyzed then 

coupled with various predictor variables to investigate the influence of each predictor 

variables towards the process of urban growth.  The knowledge learned from the process 

is then used to build an urban growth simulation model that is GIS-based with open 

framework for ease of management and improvement.  The complexity of urban systems 

is making the holistic modeling approach obsolete.  Because it is impossible for one 

omnipotent model to solve urban growth problems of different locations, in this research, 

we decided to group those problems by different physical and mathematical process to 

tackle them one by one. Correspondingly, we used multiple sub modules each responsible 

for different processes related to urban growth.  The structure of this model ensures each 

individual module can be updated and improved, and more sub modules can be added.  

Pixel level urban growth was simulated for year 2010, 2020 and 2030.  This model 

framework is developed with the ultimate goal of simulating urban growth for the entire 

state of Missouri.



1 
 

Introduction 

1. Research problem 

In the domain of land use policy,  sprawl may be define as “low-density development on 

the edges of cities and towns that is poorly planned, land consumptive, automobile 

dependent and designed without regards to its surroundings” (Freilich, 2003). It is often 

referred to as uncontrolled, scattered suburban development that increases traffic 

problems, depletes local resources, and destroys open space (Peiser, 2001). For larger 

metropolitan areas, urban sprawl tends to be relatively dense affecting a smaller area per 

housing unit; but the number of housing unit also tends to be greater, thus increasing 

local environmental impacts. In contrast, for mid-to small-size cities and towns, rural 

sprawl often occurs at lower densities and affects much larger areas than doe’s urban 

sprawl (Radeloff et al., 2004). In both cases, the effects of sprawl ripple through the 

economic, fiscal, social, government tax revenues, and quantity and quality of public 

services.  Moreover, sprawl has cumulative ecological and environmental effects at large 

scales (e.g. ecoregion), effects which may often occur over long period of time (e.g. 

decades) before they are recognized (Mckinney, 2002; Liu et al., 2003). Such large scale 

effects include land use change, degradation of soil, air and water quality, fragmentation 

and loss of wildlife habitat, and ultimately the decline of the amenities and heritage 

values that enhance the quality of life and bestow a sense of place on regions and 

localities where people live (Knight et al., 1995; Theobald, 2001; Hansen et al., 2002). In 

light of the negative effects of sprawl, understanding sprawl and its spatial and temporal 
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trends is essential to establish scientifically sound conservation policies, as well as to 

raise the public awareness of the dark side of sprawl. 

 Situated in the heartland, Missouri reflects the full range of sprawl reality in the 

U.S. The state has a mixture of large metropolitan centers, namely Kansas City and St. 

Louis, and numerous small to mid size cities and towns, and vast rural agricultural, forest, 

and prairie (Brookings Institution, 2002). Missouri has experienced shifting patterns of 

population growth over the past decades. During the 1980s Kansas City and St. Louis 

metro areas accounted for the largest share of growth in the state (57.5%), followed by 

smaller metropolitan areas (23.6%) and rural areas (18.9%).  In the 1990s the population 

growth in the state’s rural areas has a share of (36.4%) versus smaller metropolitan area 

(23.3%) and metropolitan areas (40.2%) (Brookings Institution, 2002). This increase of 

rural population growth has been fueled by small metropolitan growth with four smaller 

metropolitan areas (Springfield, Joplin, Columbia, and St. Joseph) emerged as the fastest 

growing regions expanding their size into the rural areas at a rate of 18.3%.  

 Besides the shifting pattern of population growth,  more recent urban growth, 

sprawl, has the tendency to consume open land faster and occur more often on distinctive 

or otherwise significant ecological land types (Johnson & Beale, 2002; Schnaiberg et al., 

2002, Barlett et al., 2000; Heimlich & Anderson, 2001). Thus, poses great threat to the 

conservation of natural resources and environment.  

 At the same time of housing development spread out, other basic infrastructure 

and service facilities such as transportation, commercial, and other developments also 

spread out even though population growth is modest compared to the spread of urbanized 

areas. To sum up, the dispersal of population in Missouri required the conversion of 
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435,400 acres of fields, farmland, forests, and green space to “urban” use in the decade of 

80s and 90s combined. The growth is equivalent to 35% increase of the state’s urbanized 

area, given the population growth of only 9.7% during the same period of time yielding 

an actual decrease in population density which is a strong sign of unhealthy urban sprawl 

(Brookings Institution, 2002). These urban growths occurred both at the fringe of urban 

areas and in forested rural amenity areas including southern Missouri. In fact, this 

phenomenon is not unique to the state of Missouri. Previous research have indicated this 

phenomenon to be common in most of U.S. Midwest, and about one-third of the growth 

in the form of housing growth occurred outside non-metropolitan areas in the Midwest 

from 1940 to 2000 (Radeloff et al., 2005).  

 Urban sprawl is gaining more and more recognition from policy makers. 

Although this phenomenon is much discussed though poorly defined, more often it is 

studied qualitatively than quantitatively not even to mention spatially. The negative 

effects of sprawl on the natural landscape are numerous, to name just a few: forest and 

habitat fragmentation and destruction, increased pollution and reliance on fossil fuel, 

decreased water quality and quantity. With such a problem so evident in the state of 

Missouri, it is necessary to study and understand this phenomenon better in order to 

balance economic development and urban land use growth. Such knowledge will ensure 

the set up of a healthy public policy and better decision making for the better future of 

Missouri.  

2. Objectives 

The objectives of my research are to (1) map the extent and density of impervious surface 

for the state of Missouri for three time periods of 1980, 1990, and 2000, (2) develop a 
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mapping approach for per pixel population estimation for the entire state of Missouri, and 

(3) develop and calibrate an urban growth simulation model based on historical urban 

growth to predict future urban growth.  These three objectives correspond to the 

following three chapters in my dissertation. 

3. Chapter outline 

Chapter 1 presented a systematic approach to map impervious surface for 1980, 1990 and 

2000.  Accuracy of the impervious surface mapping is conducted by comparing the sub-

pixel classifier derived percent of impervious versus the ground-truth percent of 

impervious surface derived with air photos.  For the whole state of Missouri over three 

time periods, the assessed RMSE is between 24.89 to 25.75%, SE is between 5.89 to 

8.22%, and MAE is between 14.28 to 14.64%.  Considering the size of the study area, the 

obtained accuracy is satisfactory.  Our results show that during 1980–2000, 129,853 ha of 

land were converted to impervious surface.  While sprawl was prominent on urban fringe 

during 1980s with 23,674 ha of land converted to impervious surface, there was a 

temporal shift in the rural landscapes in the 1990s with 48,079 ha of land converted to 

impervious surface. 

Chapter 2 presented a dasymetric and localized regression mapping approach to model 

per pixel population by imperviousness per pixel and Census population at Census unit 

level for the whole state of Missouri, USA.  Unique relationships were discovered 

between population and imperviousness at pixel level for each census block.  These 

relationships were used to assign the number of people to each individual pixel with the 

presence of impervious surface at Census block level.  The findings inferred from the 

mapping result indicate that over 99% of the population pixels coincide with impervious 
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surface pixels have equal or less than six people.  This mapping approach improves upon 

previous approaches for given flexibility in using Census data of different geographical 

levels and its insensitivity to the location and size of the study area.  The mapping result 

is an improvement over the uniform distribution of population defined and used by U.S. 

Census.  This approach also manages to map per pixel population for a large geographic 

area at a resolution not achieved before. 

Chapter 3 presented an open, rule-based, modulated, GIS model that was developed using 

ModelBuilder in ArcGIS.  Multiple independent variables are identified and analyzed as 

the predictor variables of this model.  Model calibration was done using MCE of 

historical urban growth.  A trial and error approach was used to derive weights for each 

predictor variable in order for the simulated urban growth to be consistent spatially with 

the actual urban growth.  The calibrated model is used to simulate future urban growth 

for 2010, 2020 and 2030 under the historical growth trend during the 1990s. 
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Chapter I. Mapping and analyzing change of impervious surface 

for two decades using multi-temporal Landsat imagery in 

Missouri 

Abstract 

Human population growth and associated sprawl has rapidly converted open lands to 

developed use and affected their distinctive ecological characteristics. Missouri reflects a 

full range of sprawl characteristics that include large metropolitan centers, which led 

growth in 1980s, and smaller metropolitan and rural areas, which led growth in 1990s. In 

order to study the historical patterns of sprawl, there is a need to quantitatively and 

geographically depict the extent and density of impervious surface for three time periods 

of 1980, 1990, and 2000 for the entire state of Missouri. We mapped impervious surface 

using Sub-pixel Classifier
TM

, an add-on module of Erdas Imagine for the three time 

periods, where impervious surface growth was derived as the subtraction of impervious 

surface mapped from the different time periods. Accuracy assessment was performed by 

comparing satellite derived impervious surface images with ground-truth acquired from 

high resolution air photos. Results show that during 1980–2000, 129,853 ha of land were 

converted to impervious surface.  Sprawl was prominent on urban fringe (within the 

urban boundaries) during 1980s with 23,674 ha of land converted to impervious surface 

compared to 22,918 ha in 1990s. There was a temporal shift in the rural landscapes 

(outside the urban boundaries) in the 1990s with 48,079 ha of land converted to 

impervious surface compared to 35,180 ha in 1980s. Major findings based on analysis of 

the impervious surface growth include: i) new growth of impervious surfaces are 

concentrated on areas with 0.5 to 1.0 percent road cover; ii) most new growths are either 
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inside or close to urban watersheds; and iii) most new growths are either inside or close 

to counties with metropolitan cities. This research goes beyond the usual hot spots of 

metropolitan areas to include rural landscapes where negative impact was exerted to the 

ecosystem due to the low density development and larger affected areas. 

Keywords: Impervious surface growth; Sub-pixel classification; Urban and rural sprawl; 

Missouri  
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1. Introduction 

Sprawl can be defined as low-density development on the edge of cities and towns that 

are poorly planned, land consumptive, automobile dependent and designed without 

regards to its surroundings (Freilich, 2003). It is often referred to as uncontrolled, 

scattered suburban development that increases traffic problems, depletes local resources, 

and destroys open space (Peiser, 2001). Thus, by definition, most of the new growth can 

be classified as sprawl (Esch et al., 2009). The effects of sprawl ripple through the 

economic, fiscal, social/cultural, tax revenues, and quantity/quality of public services. 

Moreover, sprawl may have cumulative effects that occur at a very large region (e.g. 

ecoregion) and over a long period of time (e.g. decades) before they were recognized 

(Mckinney, 2002; Liu et al., 2003). Such large scale effects include land use change, 

degradation of soil, air and water quality, increased pollution, fragmentation and loss of 

wildlife habitat, and ultimately the loss of ecological services that sustain local or 

regional communities (Knight et al., 1995; Theobald, 2001; Hansen et al., 2002; Walker 

and Salt, 2006). 

Humans are the dominant factor causing ecosystem degradation, land use change, 

pollution of streams, lakes and other surface waters, and depletion of natural resources. 

Successful management of ecosystems altered by human intervention is best achieved 

through cooperation between local communities, and state and federal agencies using 

reliable information. This requires an understanding of the complex interactions between 

hydrologic processes, climate, land use, water quality, ecology, and human 

socioeconomic considerations. Furthermore, a general lack of analytical tools and 

baseline information about urban and rural sprawl at state levels has lead to a serious lack 
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of progress identifying and prioritizing courses of action. It is therefore understandable 

that intense debates are occurring in communities regarding the nature of sprawl, and 

possible avenues for environmental amelioration (Law et al. 2008). 

Situated in the mid-western portion of the United States, Missouri reflects a full 

range of sprawl characteristics (Brookings Institution 2002) that include large 

metropolitan centers (i.e., Kansas City, St. Louis) and numerous small to mid-size cities 

and towns. Coupled with the spectrum of urban areas are vast landscapes of rural 

agricultural, forest, and prairie environments (Nigh and Schroeder, 2002). Missouri has 

experienced shifting patterns of population growth over the past decades. During the 

1980s, Kansas City and St. Louis metro areas accounted for the largest share of growth in 

the state (57.5%), followed by smaller metropolitan areas (23.6%) and rural areas (18.9%) 

(Brookings Institution, 2002). In the 1990s, the population growth in the state’s rural 

areas had a share of (36.4%) versus smaller metropolitan areas (23.3%) and large 

metropolitan areas (40.2%) (Brookings Institution, 2002). This increase of rural 

population growth has been fueled by small metropolitan growth with four smaller 

metropolitan areas (Springfield, Joplin, Columbia, and St. Joseph) that emerged as the 

fastest growing regions expanding their size into the surrounding rural areas (Brookings 

Institution, 2002). 

Human population growth and associated sprawl has rapidly converted open lands 

to developed uses that consequently affected their distinctive ecological characteristics 

(Johnson and Beale, 2002; Schnaiberg et al., 2002; Barlett et al., 2000; Heimlich and 

Anderson, 2001). In Missouri, this low-density development converted >71,000 ha of 

fields, farmland, forests, and green space to urban use during the 1980s and 1990s. This 
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type of growth was equivalent to a 35% increase of the state’s urbanized area, given the 

population growth of only 9.7% during the same period of time (Brookings Institution, 

2002). The low density growth is not unique to Missouri; For example, within the 

Midwest, about one-third of housing growth occurred outside non-metropolitan areas 

during 1940–2000 (Radeloff et al 2005). Other studies have found shifting trends of 

sprawl from suburban to rural areas throughout United States (Fuguitt, 1985; Johnson and 

Fuguitt, 2000). 

Previous studies have identified various factors that were important in studying 

sprawl. For example, Behan (2008) and Patman (2003) determined that proximity to 

water and roads were highly correlated with sprawl. Also, there appears to be a close 

relationship between sprawl and certain types of land use and land cover (LULC), where 

LULC was used to predict new sprawl (Xian and Homer 2009). Radeloff et al. (2005) 

reported that sprawl was not spatially homogeneous and certain eco-regions were more 

inclined to experience sprawl than others. At the watershed scale, the amount of sprawl 

can serve as an indicator of watershed health (Brabec et al., 2002; Arnold and Gibbons, 

1996). Sprawl is also influenced by municipal or political entities which enact land use 

regulations that ultimately affect lifestyle preferences of people within local jurisdictions 

(Carruthers, 2003).  The objectives of this research are: i) map the extent and density of 

impervious surface for the state of Missouri for three time periods of 1980, 1990, and 

2000, and ii) summarize the growth of impervious surfaces using various datasets with 

different geographical boundaries, and iii) find out whether rural sprawl has become 

more prominent than urban sprawl in the last two decades. 
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2. Approach and method 

2.1. Overview of impervious surface mapping approach 

Previous sprawl research has used housing density as an indicator for urban and rural 

sprawl (Theobald 2001; Radeloff et al., 2005); however, there are limitations when using 

census data to study sprawl. Census blocks were often too coarse and only updated at 

decadal intervals, which is not timely for monitoring purposes (Harris and Longley, 2000; 

Plane and Rogerson, 1994). Census block and block group boundaries change over time 

and this complicates sprawl studies by introducing a spatial mismatch between 

boundaries of different datasets (Hammer et al., 2004). Housing development also does 

not reflect other forms of development such as infrastructure construction. The nonlinear 

variation of the aggregated population density of urban areas as a function of total 

population are due to different measurement scales (i.e. block group) and complicates 

identification of urban sprawl in a uniform spatial context (Sutton, 2002). 

Many studies have suggested that impervious surface is a reliable indicator of 

urbanization because it is closely tied to urban and rural development (e.g., Arnold and 

Gibbons, 1996; Powell et al., 2008). Impervious surface has distinct man-made features 

and can be detected and quantified by remote sensing over time to reflect urban and rural 

sprawl (Cronon 1991, Reisner 1993, Alberti et al. 2008, Anderson 2006). Other research 

indicates that remote sensing technology was an effective tool to overcome the 

limitations of census data with per-pixel classification (Chen, et al., 2000; Epstein et al., 

2002; Ji et al., 2001; Lo and Yang, 2002; Ward et al., 2000; Yeh and Li, 2001). However, 

since virtually every pixel represents mixtures of different surface materials (e.g. concrete, 
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asphalt, metal, vegetation or water), numerous developments may be left undetected due 

to the 30m resolution of satellite image (Raup, 1982; Theobald, 2001; Clapham, 2003). 

In order to overcome such limitations, more recent studies have focused on 

deriving and quantifying impervious surface at sub-pixel level using remotely sensed data 

with on-the-ground verification. Civco and Hurd (1997) derived impervious surfaces at 

sub-pixel level with artificial neural network processing. Carlson and Arthur (2000) 

calculated percent of impervious surface per pixel using fractional vegetation derived 

from scaled normalized difference vegetation index (NDVI). Yang et al. (2003) proposed 

a General Classification and Regression Tree (CART) approach that used Landsat 

satellite data derived Tasseled Cap transformed data. Bauer et al. (2007) used regression 

analysis to estimate impervious surface area per pixel. 

Another approach included a vegetation-impervious-soil model that 

parameterized biophysical composition of urban environment (Ridd, 1995), which was 

later improved by Wu and Murray (2003) and Lu and Weng (2006) using four end-

members: high-albedo and low-albedo, coupled with soil and vegetation extracted from 

the image. The impervious surface was extracted by adding the high and low-albedo 

fractions. However, confusion occurs among classification of dry soils that are mixed 

with high-albedo fractions, water, building shadows, vegetation shadows, and dark 

impervious surface materials which over-estimates the extent and density of impervious 

surface. The over-estimated impervious surface was removed by expert rules developed 

from sample plots using high spatial resolution aerial photos (Lu and Weng 2006). Most 

recently, Weng and Lu (2009) used the concept of landscape in the whole study area as a 

continuum by combining the benefits of Vegetation-Impervious Surface-Soil (VIS) and 
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Linear Spectral Mixture Analysis (LSMA) to better characterize and quantify the spatial 

and temporal changes of the urban landscape. 

The majority of previous research has focused on the concept of validation for 

sub-pixel impervious surface mapping within small study areas, such as cities. The more 

recent direction of research in impervious surface densities has focused on larger areas 

with extents at state and country levels. For instance, Bauer et al. (2007) attempted to 

assess changes in impervious surfaces at large spatial (the state of Minnesota) and 

temporal (a decade between 1990 and 2000) scales. Haase et al. (2007) mapped 

impervious surface for the state of Pennsylvania to predict water quality in 42 watersheds. 

The National Land Cover Database (NLCD) project is another example of a large scale 

study that provides impervious surface densities at sub-pixel levels for the entire country 

for 1992 (Vogelmann et al., 2001b) and 2001 (Homer et al., 2002). 

 Although large scale impervious surface mapping have been implemented using 

various approaches with success, the mapping procedures are complicated due to 

inconsistent image quality and scale, where mixed pixels occurs over large geographical 

areas. The pixel unmixing approach is very sensitive to the end-member derivation 

process, which needs to be performed for each image individually (Lu and Weng 2006). 

The regression approach is very sensitive to calibration sites which also require 

individual image processing to ensure good mapping results (Bauer, 2007). Thus, in this 

research, a more efficient approach is chosen. Sub-pixel Classifier
TM

 (SPC), engineered 

by Applied Analysis Inc., is an add-on module to Leica Geosystems’ Erdas Imagine 

software, and was selected due to its applicability and automated signature derivation 

capability. The classified pixel had percentage values of 0-20%, 20-30%, 30-40%, ~ 90-
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100%, a total of 9 classes by default setting of the software, representing the percent of 

impervious surface inside each pixel.  

2.2. Data source and preprocessing 

For impervious surface mapping, 30m Landsat TM and ETM+ imageries were acquired 

from the U.S. Geological Survey (USGS) at decadal intervals (1980, 1990, and 2000) 

(Table 1). A total of 45 images were collected where 15 images represented each date and 

covered the entire state of Missouri. Images were selected based on the following criteria: 

i) winter season images with leaf-off for maximum impervious exposure; ii) image 

acquisition time (month and year) to be within a close range for minimum color 

difference; and iii) low cloud coverage. Compromises were made when good quality 

images were not available. 

High spatial resolution air photos were collected to assist impervious surface 

mapping and provide accuracy assessments. For 1980 and 1990 satellite images, 2m 

resolution National High Altitude Photography (NHAP) black-and-white (B/W) and 1m 

resolution National Aerial Photography Program (NAPP) B/W images were used for 

error checking, respectively. The NHAP/NAPP archives were used because they are an 

invaluable source of high quality, cloud free, quad-based photography that covers the 

conterminous U.S. A total of 200 scenes were downloaded from USGS Global 

Visualization Viewer (GloVis) and were selected based on error checking sampling 

locations. Only NHAP and NAPP photos that were exclusively within the respective 

years (1980 and 1990) were selected for more accurate error checking. For 2000’s 

impervious surface mapping, a total of 115 2m Digital Ortho Quarter Quad tiles (DOQQs) 

National Agriculture Imagery Program (NAIP) color photos were obtained from Missouri 
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Spatial Data Information Service (MSDIS). The selection of 2004 photos was due to the 

high image quality and low cloud cover (Timothy Nigh, personal communication).  

Standard procedures were followed for satellite image preprocessing, which 

included: (a) navigation registration, (b) radiometric normalization, (c) relative 

radiometric calibration (Jensen, 1996), (d) rectification and geo-referencing to the UTM 

projection (NAD 83 datum, Zone 15 North). Navigation registration was performed by 

acquiring coordinate values of the four corners of an image from associated metadata. 

Radiometric normalization was performed for images because scenes were acquired by 

different sensors. To correct for inconsistencies among different sensors, the digital 

number (DN) of Landsat 5 TM was converted to a pseudo Landsat 7 ETM+ DN using 

calibration coefficients derived by Vogelmann et al. (2001a) (Table 2). Relative 

radiometric calibration was performed due to differences between image acquisition 

conditions. One ETM+ image with good quality from 2000 was used as a reference 

image. For all images overlapping with the reference images, pseudo-invariant features 

(PIFs) were selected from inside the overlapped areas. Image normalization was 

performed on those images using the PIF features. The normalized images were then 

treated as new references. This process was repeated until all year 2000 images were 

normalized. Images from the 1980 and 1990 used calibrated 2000 images of the 

corresponding paths and rows as references to perform relative radiometric calibration. 

Georeferencing was performed by selecting ground control points (GCPs) from 

TIGER/Line data from the U.S. Census Bureau in 1992 and 2000. Due to the lack of 

TIGER/Line data in the 1980, the 1992 data was used to georeference 1980 images. 

Coordinate locations, mostly road intersections, were identified by overlaying 
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TIGER/Line data on top of Landsat images. Because the state of Missouri is relatively 

flat, geometric correction was performed with 1
st
 order polynomial and nearest neighbor 

resampling methods. The root-mean-square (RMS) error of the georeferenced images 

were less than 0.5 pixels (15 m). The processed images are then mosaiced and trimmed 

by Missouri state boundary into three state images representing the time periods of 1980, 

1990, and 2000. The preprocessing of air photos included only geometric correction, 

which was performed with the same approach and projection properties used on Landsat 

images. 

2.3. Procedure for mapping percent of impervious surface 

The mapping of impervious surface included a procedure specifically tailored for sub-

pixel classification, a procedure for signature derivation, and a procedure for material of 

interest (MOI) classification. The first procedure is called preprocessing. Preprocessing 

was automated by the software and prepares the images for sub-pixel classification. The 

output of preprocessing is an .aasap file that is an associated file to the image. The 

second procedure of signature derivation was conducted semi-automatically by manually 

creating a training set using areas-of-interest (AOIs) to represent pixels with 100% pure 

impervious surface. In cases where large man-made structures are available, this process 

can be done directly with Landsat images. If large man-made structures are not available, 

air photos were used together with Landsat images to better identify Landsat pixels with 

pure impervious surface. Since most Landsat pixels are mixed with more than one type of 

material, the identification of pure impervious surface pixel is difficult with Landsat 

images alone. To overcome this difficulty, an output signature was created using the 

training set together with the source image and the preprocessing file. During this process, 
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multiple signatures were derived representing different types of impervious surfaces 

(light, medium, and dark) to accommodate for impervious surfaces that were of different 

materials. In the last procedure of MOI classification, three different signatures were used 

to classify light, medium and dark impervious surfaces separately. The three outputs were 

combined together to form one final image that represents the total percent of impervious 

surface for each pixel. 

Classified impervious surface pixels were visually compared with high resolution 

air photos of the same period to ensure consistency throughout the mapping process. 

Based on visual interpretation, bare soils of different color were found to be mixed with 

sub-pixel classified impervious surfaces. The best way to reduce the confusion of soil 

with impervious surface is to use a soil mask. Since new developments usually occurred 

within certain distances to road networks, buffers were created from TIGER/Line data 

and used as a mask to reduce the error in rural areas (Esch et al. 2009). Because only 

1992 and 2000 TIGER/Line data is available in good quality, 1992 TIGER/Line data was 

used on both 1980 and 1990 Landsat images.  

A series of buffer distances were compared by overlaying onto air photos and 

90m was selected as the final buffer distance.  Ninety meters was chosen because it 

generated the best balance between covering most rural impervious surface and excluding 

most bare soil confusion. Urban masks were also created by combining city boundaries of 

all Missouri cities in 1994 (MSDIS, 2010).  A buffer was generated with a distance of 

900 m where most of the new growths of impervious surface from 2000 were within the 

buffer distance. This urban mask was used to correct the confusion between impervious 
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surface and soil for the mapping results of year 2000. The original city boundaries were 

used to reduce the soil confusion for mapping results of years 1980 and 1990. 

2.4. Accuracy assessment 

Accuracy assessment was performed by comparing impervious surface estimated from 

sub-pixel classifier with ground-truth information from high resolution air photos that 

covered state of Missouri. Although previous research on large area sample design 

includes multi-level stratification and random sampling (Stehman et al., 2003; Wulder et 

al. 2006), we found that the traditional geographic stratification does not work well due to 

the uneven distribution of impervious surfaces in Missouri. Thus, a different sampling 

approach based on population density was used with the rationale that impervious surface 

usually coincides with human population (Lu et al. 2006). This design ensured no bias 

toward pixels of different percent of impervious surface and greater number of samples 

was allocated to places where more impervious surface was detected.  

The actual sampling design was set up by dividing the state into five sub-regions: 

high, medium high, medium, medium low and low population density. Forty random 

points were generated in each sub-region and a total of 200 sampling points were used 

statewide (Congalton, 1991). To ensure correct evaluation of mapping results, each 

sample point was converted to pixel blocks of 3 by 3 with 30 m resolution pixel with a 

total area of 8100 m
2
 (Fig. 1) (Xian and Homer, 2009). A total of 1800 pixels were used 

in the accuracy assessment. Corresponding to the sampling blocks, air photos were used 

as ground truth reference for assessing the accuracy of sub-pixel classifier. In each 

sample block, total amount of impervious surface was measured. Percent of impervious 

surface for the same block was then calculated by taking the total amount of impervious 
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surface and dividing by the total area of the block (900 m
2
) and rounded to the closest 

10
th

 percentile to ensure the same format with the sub-pixel classifier output. The ground-

truth results were then compared with sub-pixel classifier mapped results. Three 

statistical measures were used to describe the error: 1) RMSE (Eq. (1), 2) standard error 

(SE) (Eq. (2), and 3) mean absolute error (MAE) (Eq. (3), and defined by the following 

equations, respectively, 
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Where iP  is the true PIS for pixel i, and iP  is the SPC classified PIS for pixel i, and n is 

the total number of pixels being assessed. Mean RMSE, SE and MAE were calculated for 

all sample pixels. 

2.5. Impervious surface growth analysis 

Impervious surface growth (ISG) was determined through the subtraction of impervious 

surfaces mapped from each date. ISG was used to describe urban and rural sprawl 

because most of the growth in the last two decades fall within areas of very low density. 

Urban sprawl was defined as growth inside corresponding urban mask whereas rural 

sprawl was defined as growth outside the urban mask. 

 ISG was derived by subtracting the impervious surface maps of 1990 by 1980, 

and 2000 by 1990. Binary maps were derived from the ISG maps where PIS=0 indicated 
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pixels with no ISG and PIS>0 indicated pixels with ISG. ISG maps were then used to 

calculate the area of absolute impervious surface by multiplying the total number of 

pixels in each PIS category of impervious surface with the PIS value. Resulting binary 

maps geographically depict pixels affected by new growth of impervious surface and 

with approximate area affected by sprawl. 

Sixteen class LULC maps of 1993 and 2005 were acquired from Missouri Spatial 

Data Information Service (MSDIS, 2010) and used in conjunction with impervious 

surface binary maps of 1980s and 1990s to identify land cover that had been converted 

due to sprawl. Spatial pattern of land cover affected by sprawl can be mapped by class 

where total area of land cover affected by sprawl was estimated. To determine the effects 

of sprawl on Missouri landscapes, land type association (LTA) derived from Missouri 

ecological classification system (Nigh and Schroeder 2002) was used. Due to the 

heterogeneity between sizes of LTAs, the ISG maps were weighted by LTA area and ISG. 

Each LTA was then calculated as a percent increase. Similar analyses were conducted for 

10-digit watershed and county boundaries to study the degree affected by impervious 

surface growth at watershed and county levels, respectively. 

3. Results 

3.1. Accuracy assessment 

To illustrate the accuracy of impervious surface mapping, average values of overall 

RMSE, SE, and MAE were calculated for 1980, 1990 and 2000, respectively. The 

averaged RMSE for the whole study area was approximately 25 percent, with a SE of 7%, 

and MAE approximately 14 percent for all three time periods (Table 3). The mean values 

for air photo-derived PIS (PIS-t) are consistently smaller than the mean values for 
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satellite image-derived PIS (PIS-m) for all three time periods, which indicates that the 

sub-pixel classifier overestimates impervious surface by about 8% (Table 3). Results also 

indicate that all statistical measures are very consistent over the three time periods. 

Although the averaged RMSEs, SEs and MAEs are higher for three time periods than 

previous research at smaller scales (Xian and Homer, 2009), the mapping accuracy is 

acceptable considering the size of the study area. 

3.2. Statewide statistics of impervious surface growth 

Within the decade of 1980, a total of 58,855 ha of land were converted to impervious 

surface, whereas the total affected area by sprawl was 131,202 ha. Among the 

conversions, more land was consumed in rural areas representing about 60% of the total 

converted land with an urban/rural ratio of 67.3%. Most impervious surface growth in 

urban areas occurred as a mixture of (approximately 30% to 40%) of impervious surface 

with other land cover classes, such as vegetation, bare soil, and water. Most impervious 

surface growth in rural areas was characterized with 20% to 30% impervious surface 

mixed with other land cover classes. Lower impervious surface percentages in rural areas 

suggest that rural sprawl has lower density of development than urban sprawl (Table 4). 

In the decade of 1990s, a total of 70,998 ha of land were converted to impervious 

surface, whereas the total affected area was 160,377 ha. Among the conversions, about 

68% of land was consumed in rural areas with an urban/rural ratio of 47.7%. Most 

development in urban area occurs in 30% to 40% of impervious surface per pixel. For 

rural areas, the most development occurs in 20% to 30% of impervious surface per pixel. 

The greatest difference between impervious surface growth from the 1980s and 1990s 

was the shift of sprawl from urban to rural areas, where more land was consumed in the 
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latter decade (Table 4). Further, high density developments were more likely to occur 

within urban areas than in rural areas. This phenomenon was confirmed by the increasing 

trend of urban/rural ratio in both 1980s and 1990s (Table 4). 

The small area represented by impervious surface class of 0 to 10% and 10 to 20% 

was caused by limitations of the sub-pixel classifier where pixels with less than 20% of 

impervious surface cannot be identified. The abrupt increase of impervious surface 

between 90 to 100% could be attributed to high density developments within urban areas 

such as shopping centers, plazas, and parking lots or impervious structures (warehouses) 

found within rural areas. Further, the three signatures approach used for mapping 

impervious surface could also lead to a certain degree of overestimation.  

3.3. Spatial patterns of impervious surface growth 

Mapped impervious surfaces show diverse patterns across the state and multiple instances 

of these patterns are described below; however, due to the large spatial extent of the state, 

not all are listed. A uniform pattern occurred within residential blocks where 

developments appeared homogenous within each block; however, this type of distribution 

did not hold true across neighboring residential blocks. The uniform pattern was best 

illustrated by the historical impervious surface growth found in the city of Springfield 

where within block residential developments were similar in density and spatial 

arrangement (Fig. 2a, b, and c). A radial pattern of urban sprawl existed where residential 

developments illustrated growth trends that sprawled away from urban centers in various 

directions and with various speed and density, which was less organized than the uniform 

pattern seen within individual residential blocks. A good example was illustrated by 

patterns found around Jefferson City, which has various residential densities scattering 
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around its vicinity over time (Fig. 2d, e, and f). Leapfrog development was prevalent 

where new residences are constructed at various distances away from existing urban areas; 

bypassing vacant locations nearby. A good example was illustrated by the city of Blue 

Springs, which has a lower density development than Kansas City but higher density 

development than leap frog development displayed along highway (I-470) (Fig. 3a-c). An 

infill development pattern was prevalent where big undeveloped space was encompassed 

by highways. A good example was illustrated by St. Charles which was in the St. Louis 

metro area where the triangle formed by three sections of highways was filled with 

developments in the last two decades (B and C on Fig. 3d-f). Finally, rural sprawl pattern 

where developments were scattered in open space outside cities and towns and usually 

occurred in a random fashion unlike urban sprawl. Thus, a specific example of rural 

sprawl was not provided. 

3.4. Sprawl affected area in relation to land cover, terrain, and road network 

The most affected land cover types by sprawl in terms of total area were grassland and 

cropland, where both land cover types were close to 1% being affected by impervious 

surface growth in both decades (Table 5). Between the two type of forests evergreen 

seemed to be much less affected by sprawl than deciduous in terms of total area, but 

when we look at the per land cover class percentage the difference was not as pronounced 

and it was very clear that both type of forests were affected to a similar degree in two 

decades. There were also some significant developments happening close to water (Table 

5) which suggests people’s preference on housing locations close to water body for 

recreational purposes with the development intensity increased slightly during 1990s. 
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Histograms were generated for area of total sprawl and summarized by percent of 

road cover.  Histograms depicted the occurrence of sprawl within 0.2-3.5% range of 

percent road cover (Fig. 4). Open land with less than 0.2% of road cover was not suitable 

for sprawl because of travel limitations, whereas land with over 3.5% road cover has 

already been filled with developments and has no space for further sprawl. The road 

cover effect on sprawl was very similar for the last two decades where 80% was in a 

range of 0.5 to 1.0 percent (Fig. 4). Sprawl in the 1990s was claiming more land than in 

the 1980s in the same road density range. 

3.5. Impervious surface growth in relation to LTA, watershed, and county boundaries 

Results from analyzing impervious surface growth by LTA show a shifting pattern from 

1980s to 1990s. In the 1980s, sprawl only affected LTAs that were close to large 

metropolitan areas (i.e St. Louis and Kansas City). A shifting pattern was less apparent in 

most LTAs within the Till Plains (TP) and Mississippi Basin (MB) ecological sections, 

which were the state’s primary agricultural regions (Fig. 5a). Also, LTAs at the core of 

Ozark Highlands (OZ) ecological section, the primary forest region of the state, were not 

affected in 1980s (Fig. 5a). In 1990s, noticeable increases in impervious surface growth 

were shown within LTAs of TP, MB, and OZ sections (Fig. 5b). 

It was very obvious that in 1990s more LTAs were being affected by ISG (Fig. 

5b). While most LTAs have experienced less than 1% ISG in both decades, only few 

LTAs stand out to show that they were under constant pressure. The LTAs were St. 

Charles Co. Prairie, Chesterfield Loess Woodland, Manchester Oak Savanna, Lower 

Meramec Oak/Mixed Hardwood/Forest Hills, Jackson Co. Prairie, and, Platte River 

Loess Prairie. Most of these LTAs were very close to St. Louis and Kansas City metro 
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regions. Despite the fact that ISG has started to affect more eco-regions during the 1990s, 

the most dominant growth hotspots were still close to metropolitan cities. The LTAs 

being affected most were predominantly nearby metros. The most vulnerable ecological 

land type was identified as prairie, which may be attributed to economic or political 

complexities when clearing forests for development. 

The overall impervious surface growth patterns by watershed show that 

watersheds adjacent to metropolitan area were mostly affected (Fig. 5c and d). More 

watersheds were affected by ISG during 1990s than during the 1980s. The unique feature 

illustrated by this result was that the watersheds close to the Lake of the Ozarks were 

affected more by ISG during the decade of the 1980s than 1990s (A on Fig. 5c). 

Sprawl was expressed in terms of change per capita share of impervious surface 

(PCIS). The PCIS increases from 0.133 ha/person in 1980s, to 0.139 ha/person in 1990s, 

and to 0.140 ha/person in 2000s at the state level. Although PCIS increased more in the 

1980s than the 1990s, there was more ISG in the 1990s than the 1980s. The slight 

increase of PCIS for 1990s was due to faster population increase in the 1990s. Most 

counties have an increase in PCIS but the rate often varies (Fig. 6). A few counties show 

slight decreases in PCIS with the exception of Stoddard County, which had a dramatic 

decrease during 1980s. 

 The spatial pattern of impervious surface growth during the 1980s suggests that 

counties with the highest ISG were those that have metropolitan or small metropolitan 

cities inside or adjacent to the metropolitan counties (Fig. 7a). The counties with the 

largest increase of PCIS were mostly rural counties which have very little or even no 

increase in ISG. Such increases were due to loss of population in those rural counties (Fig. 
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7c). Among them, Worth, Mercer, and Pike counties have the highest loss of population; 

thus highest increase in PCIS.  Counties with a slight decrease in PCIS were usually 

metropolitan counties or those nearby, which have some significant increase of ISG (Fig. 

7a). In this case, the cause of decrease in PCIS was due to the increase of population. 

Among them, Stoddard County has the highest increase of population. The spatial pattern 

of ISG during the 1990s shows an expansion pattern of ISG. Many rural counties that do 

not show ISG in the 1980s have significant ISG in 1990s (Fig. 7b). The other very 

distinctive pattern was a collection of adjacent counties, which have significant decreases 

in PCIS (Fig. 7d). These counties share the Lake of the Ozarks and were a hotspot that 

attracted large population of retirees in the 1990s (Swanson, 1993). 

4. Discussion 

4.1. Approach implications 

This paper shows that sub-pixel classifier was able to extract impervious surface at sub-

pixel level for Landsat images for the entire state of Missouri. Sub-pixel classification of 

impervious surface provided more information than traditional land cover classification 

by providing both spatially explicit distribution of impervious surface and accurate 

quantification of impervious surface area at pixel level. Previous assessment of 

impervious surface mapping has concluded that sub-pixel classifier only has a slight 

disadvantage compared to other more complicated approaches, but it does have the 

advantage of being spatially explicit.  Impervious surface density is reported at a per 

pixel level and is very useful for future impervious surface growth modeling (Civco, 

2002). 



28 
 

In this research, three impervious surface signatures were used; however, there is 

a potential issue of overestimation with this approach due to the overlap of impervious 

surface classified by the three signatures. To resolve this issue, we experimented with 

two solutions: i) reduce the classification tolerance of sub-pixel classifier so that few 

pixels in the final image have density over 100%, and ii) increase the classification 

tolerance of sub-pixel classifier and use only one medium impervious surface signature. 

Results indicated that the first approach is superior, indicated by severe underestimation 

of impervious surface in the second solution as compared to overestimation of 

impervious surface in the first solution. Thus, the first solution was used in this research, 

where we forced the remaining pixels with over 100% impervious surface density to 

100%. 

 Sub-pixel classifier has difficulty distinguishing between impervious surfaces and 

bare soil because of their innate similarity, which is compounded by the heterogeneity of 

mixed pixels. There are several ways to address the confusion between impervious 

surface and bare soil. The ideal approach is to use exposed soil maps as masks to reduce 

the confusion with impervious surfaces. However, such datasets are not available for the 

three time periods when impervious surfaces were mapped. Furthermore, it is not cost 

effective to produce such datasets for such a large study area. A second effective 

approach is to derive accurate urban boundaries from high resolution air photos (Yang et 

al., 2003). This approach is not practical for the same reason as the first approach. A third 

approach is to use multi-date imagery to minimize the effects of exposed soil confusion 

(Yang et al. 2003), but additional errors could be introduced due to the amount of satellite 

images used. Urban and road network masks were used in this research as a compromise 
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to the discussed approaches. Although drawbacks and confusions associated with this 

approach exist inside the buffer zones, the accuracy assessment results suggest that the 

mapping results are satisfactory.  

 Sub-pixel classifier is not effective in identifying pixels with less than 20% of 

impervious surface, which is the range of impervious surface density that lakes and 

streams are also sensitive to (Bauer et al., 2007). Impervious surface at this density range 

have some impact on water quality. Thus, the mapping result of this research may not be 

suitable for water quality studies in rural areas where the density of impervious surface 

per pixel are generally very low. The sub-pixel resolution of 20% of a Landsat pixel 

(around 180 m
2
)
 
is sufficient in identifying new housing development and infrastructure 

development associated with impervious surface.  

 Sub-pixel classifier has the ability to classify the state mosaic with a universal 

signature to reduce human interaction and processing time. High quality images and good 

preprocessing to develop high quality mosaic of the whole study area are necessary 

components for modeling.  In this study, an issue was discovered that there are 

differences inside the mosaic caused by image acquisition time and condition. Since only 

pure impervious surface pixels were used as PIFs for radiometric correction, vegetation 

cover on images obtained during different time periods have different reflectance (color) 

and texture (density).  Water bodies also have different reflectance in different conditions 

along with bare soils, which have different reflectance due to differences in moisture 

content. When these materials mix with impervious surface over a large geographic area, 

the mixed pixel problem becomes complicated. Previous impervious surface mapping 

research mostly focused in metropolitan cities with only one or few frames of images 
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involved and theses issues were not pronounced (Lu and Weng, 2006; Wu and Murray, 

2003). Even with one image frame, the classification results can become problematic if 

the study uses images from different dates (Clapham, 2003). Such findings contributed to 

the selection of sub-pixel classifier over other approaches that focus on the interactions 

between different ground materials such as the V-I-S model (Ridd, 1995). The advantage 

with Sub-pixel classifier is the ability to focus the material of interest, such as impervious 

surface.  

 The temporal inconsistency between satellite imagery and air photos is a big 

source of potential error in this research. It is very difficult to acquire images on the 

desired date and time especially when dealing with large study areas. Previous research 

suggests that this issue can be resolved by using estimated conditions on the desired date 

based on available images for earlier or later dates (Foody, 2010). Such an approach 

would only be accurate if the two dates were very close in order to assume no change or 

that the change is linear and can be extrapolated or interpolated. Air photos have random 

acquisition dates for accuracy assessment in 1980 and 1990, for the 2000 accuracy 

assessment, the acquisition date of air photos is 2004. Thus, accuracy assessment 

compromises were made based on the available air photos.  

4.2. Result implications 

The statewide assessment of impervious surface growth for 1980s and 1990s were 

provided in this research. The amount of land converted to impervious surface and 

estimates of the area of land affected by impervious surface growth was reported. 

Compared to the number reported by the Brookings report (Brookings Institution, 2002), 

the estimated total sprawl affected area in this research was larger although the area of 
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pure impervious surface was smaller. The cause of the difference was from the different 

assessment approaches between the two studies. This approach used impervious surface 

per pixel to calculate both impervious surface growth and total area affected. The 

Brookings’ approach used zoning and planning data to estimate only total area affected 

by impervious surface growth. The advantage of this approach is the ability to pick up 

new developments that were not zoned or planned, which leads to a more complete 

estimate of new developments for the last two decades. 

Other advantages exhibited by the mapping results were the ability to estimate 

affected areas and determining the spatial extent as a per pixel density estimate of 

impervious surface. Such results can be overlaid with municipal, political, or natural units 

such as LTA and watershed for more magnified causal-effect studies. For example, 74 

water bodies in Missouri have been identified as impaired or limited for a variety of 

beneficial uses as listed on the 2004/2006 303(d) list (MoDNR 2007). Using the amount 

of impervious surface quantified in this study can be used to explore potential 

correlations with water quality indicators for urban areas and subsequently, create more 

focused management policies. 

Our results also show that fundamental relationships exist between sprawl and 

road infrastructure requirements for 1980s to 1990s. This suggests that people do not 

move to areas with very high road cover (such as city center) or areas with very low road 

cover. Thus, limiting sprawl by avoiding construction of road networks in the sprawl 

prone range (e.g., 0.5-1.0%) should be considered as a way to control sprawl. Cervero 

(2003) argued that the expansion of road networks will induce more sprawl and building 

our way out of sprawl was not a guaranteed solution. More innovation approaches, such 
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as investing in public transportations such as light rail, or adopting in new urbanism 

design to reduce automobile use should be considered with the ultimate goal of 

increasing residential density and reducing sprawl (Handy, 2005). 

 Impervious surface impact analysis at the watershed level shows most of the 

affected watersheds were either inside a city or close to a city where both population 

density and impervious surface density were high. This was reinforced by the low per 

capita impervious surface at metropolitan counties and contributed to the inevitable high 

concentrations of water pollutants confirmed by previous research (Tu et al., 2007). 

Policies devised for watershed protection should focus on reducing water quality 

degradation (brabec, 2002) in urban watersheds. The focus of policy implementation 

should not prevent development, but to avoid low density sprawl and reduce the possible 

impact of sprawl on our natural resources. Possible solutions may include emphasizing 

green development that incorporates watershed protection as priority goals. This type of 

innovation can be accomplished by increasing development density in residential areas or 

using more a scientific design that reduces the impact of runoff to surrounding waterways. 

Other solutions may include encouraging redevelopment of brown-fields or limiting total 

area of impervious surface construction to reduce the collective negative effects of 

impervious surfaces at the concentrated urban watersheds (Berke et al., 2003). 

Impervious surface impact analysis at county level provides a broad comparison 

of all counties in Missouri.  This type of distribution indicates very uneven area of 

impervious surface growth throughout the state.  This may be caused by the uneven 

distribution of cities and associated socio-economic status within the state. Results 

suggest that county wide or city wide sprawl management plans should be comprehensive 
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at broad scales, but rather more local, focused policies that reflect the needs of individual 

counties and cities with the greatest sprawl record or those with the greatest sprawl 

potential. For rural counties and small cites experiencing very little sprawl, implementing 

any anti-sprawl policy may hurt local development and the economy (Anthony, 2004). To 

prevent the fast consumption of flat open land for development at individual city levels, 

policy tools should be implemented that include urban growth boundaries (UGB) and tax 

or impact fees to contain sprawl (Brueckner, 2000). 

4.3. Conclusions 

Impervious surface for 1980, 1990 and 2000 were mapped in this research. Accuracy of 

the impervious surface mapping is conducted by comparing the sub-pixel classifier 

derived percent of impervious versus the ground-truth percent of impervious surface 

derived with air photos. For the whole state of Missouri over three time periods, the 

assessed RMSE is between 24.89 to 25.75%, SE is between 5.89 to 8.22%, and MAE is 

between 14.28 to 14.64%. Considering the size of the study area, the obtained accuracy is 

satisfactory. Our results show that during 1980–2000, 129,853 ha of land were converted 

to impervious surface. While sprawl was prominent on urban fringe during 1980s with 

23,674 ha of land converted to impervious surface, there was a temporal shift in the rural 

landscapes in the 1990s with 48,079 ha of land converted to impervious surface. Future 

research could focus on, but not limited to, 1) more efficient and accurate large scale 

impervious surface mapping, 2) associating impervious surface with population data to 

explore the correlation relationship (Lu et al., 2006, Zhou et al. in review) for cities of 

various size, and 3) modeling efforts on prediction of possible future impervious surface 

growth including spatial pattern and density. With the help of prediction models, the 
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effect of the aforementioned policy tools could be tested in the developing stage and 

validated after the implementation stage.  
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Tables 

Table 1. Landsat imagery utilized for impervious surface mapping 

Path Row 
Date 

TM TM ETM+ 

23 34 12 Dec. 1982 29 Nov. 1992 14 Nov. 2001 

23 35 13 Jan. 1983 12 Oct. 1992 22 Mar. 2002 

24 33 17 Nov. 1982 17 Nov. 1991 9 Feb. 2002 

24 34 4 Jan. 1983 27 Feb. 1988 8 Nov. 2002 

24 35 19 Dec. 1982 4 Dec. 1991 8 Nov. 2002 

25 32 5 Nov. 1984 23 Apr. 1994 12 Nov. 2001 

25 33 5 Nov. 1984 24 Sept. 1992 12 Nov. 2001 

25 34 5 Nov. 1984 21 Mar. 1988 12 Nov. 2001 

25 35 5 Nov. 1984 6 Apr. 1988 27 Oct. 2001 

26 32 15 Nov. 1982 23 Mar 1992 19 Nov. 2001 

26 33 15 Nov. 1982 6 Apr. 1991 24 Mar. 2001 

26 34 15 Nov. 1982 23 Mar. 1992 14 Nov. 1999 

26 35 15 Nov. 1982 23 Mar. 1992 23 Feb. 2002 

27 32 6 Nov. 1982 28 Mar. 1991 10 Nov. 2001 

27 33 6 Nov. 1982 14 Mar. 1992 28 Mar. 2000 
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Table 2. Coefficients for conversion of Landsat 5 TM DN to Landsat 7 ETM+ DN 

Band Slope Intercept 

1 0.9398 4.2934 

2 1.7731 4.7289 

3 1.5348 3.9796 

4 1.4239 7.032 

5 0.9828 7.0185 

7 1.3017 7.6568 
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Table 3. Accuracy assessment 

Date  Mean PIS-t Mean PIS-m RMSE SE MAE 

1980 30 38 25.75 8.08 14.28 

1990 31 40 25.57 8.22 14.48 

2000 35 41 24.89 5.89 14.64 

 

Mean PIS-t is the true percent of impervious surface measured from airphotos and 

averaged for all the sampled pixels. Mean PIS-m is the SPC classified percent of 

impervious surface averaged for all the sampled pixels. RMSE is root-mean squared error, 

SE is systematic error, and MAE is mean absolute error.  
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Table 4. Impervious surface growth (ISG) and total area of pixels with ISG in hectare 

PIS (%) 
Urban areas (ha) Rural areas (ha) Urban + Rural (ha) U/R 

(%) Pure 

mpervious 

Pixels with 

impervious 

Pure 

impervious 

Pixels with 

impervious 

Pure 

impervious 

Pixels with 

impervious  

 

1980 - 1990 

0-10 1 5 239 2,388 239 2,393 0.2 

10-20 1 2 170 849 170 851 0.3 

20-30 3,461 11,535 9,972 33,239 13,432 44,774 34.7 

30-40 4,341 10,852 9,527 23,816 13,867 34,669 45.6 

40-50 4,118 8,235 6,587 13,174 10,705 21,409 62.5 

50-60 3,284 5,473 3,146 5,244 6,430 10,716 104.4 

60-70 2,356 3,366 1,513 2,162 3,869 5,528 155.7 

70-80 1,534 1,918 769 962 2,303 2,879 199.4 

80-90 876 973 415 461 1,291 1,434 211.3 

90-100 3,705 3,705 2,844 2,844 6,549 6,549 130.3 

Total 23,675 46,064 35,181 85,138 58,855 131,202 67.3 

 

1990 - 2000 

0-10 1 4 258 2,584 259 2,588 0.2 

10-20 1 2 175 877 176 879 0.2 

20-30 3,675 12,249 13,206 44,020 16,881 56,269 27.8 

30-40 4,287 10,718 13,421 33,551 17,708 44,269 31.9 

40-50 3,744 7,488 9,295 18,590 13,039 26,078 40.3 

50-60 2,931 4,885 4,559 7,597 7,489 12,482 64.3 

60-70 2,023 2,890 2,002 2,860 4,025 5,750 101.0 

70-80 1,231 1,539 850 1,062 2,081 2,601 144.9 

80-90 686 763 404 448 1,090 1,211 170.1 

90-100 4,340 4,340 3,911 3,911 8,251 8,251 111.0 

Total 22,918 44,877 48,080 115,500 70,998 160,377 47.7 

 

Urban and rural area was distinguished by the two urban boundaries for the state of 

Missouri. Total areas of pixels with impervious surface growth were calculated by adding 

up pixels that have impervious surface by the categories of PIS and converted to hectare. 
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Pure impervious surface area was calculated by the Pixels with impervious area 

multiplied by the corresponding PIS, in this case 10% to 100% with 10% increment. The 

column total was the sum of all 10 categories of PIS. U/R stands for urban ISG versus 

rural ISG ratio and was calculated by urban and rural sprawl in each category of PIS as 

well as the total value.  
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Table 5. The amount of land affected by impervious surface growth (ISG) by land cover 

in hectare 

Land cover 1980-1990 (%) 1990-2000 (%) 

Grassland 69564 (1.0) 59673 (0.8) 

Cropland 23229 (0.6) 40816 (1.0) 

Deciduous forest 27728 (0.5) 26281 (0.4) 

Open water 2251 (0.8) 2478 (0.9) 

Barren or sparsely vegetated 579 (2.5) 1811 (7.9) 

Evergreen forest 253 (0.1) 610 (0.2) 

 

% in this table stands for percent of each class being affected compared to the total of that 

class  
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Figure 5. Percent of Impervious surface growth (ISG) summarized by Land type 

association (LTA) in the state of Missouri: a) 1980s; b) 1990s. ISG summarized by 10 

digit watershed of the state of Missouri: c) 1980s; d) 1990s.  
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Figure 7. Impervious surface growth (ISG) by county in hectare: (a) 1980s; (b) 1990s. 

Percent change of per capita share of impervious surface (PCIS) by county: (c) 1980s; (d) 

2000s. 
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Chapter II. A pixel level approach of population estimation from 

Landsat derived impervious surface and Census data for the state 

of Missouri 

Abstract 

Land use and planning decisions, typically made at the municipal level, can be aided by 

the use of high resolution population information.  In this study pixel-level population 

was derived for the state of Missouri using a combined approach that included dasymetric 

mapping and regression analysis.  The predictor variables used to map population 

included Census population and imperviousness, which are strongly correlated.  Mapping 

accuracy was assessed by comparing mapped pixel-level population, aggregated by 

Census block, with the corresponding Census block population.  The level of accuracy 

achieved in this research is comparable to other studies conducted in smaller study areas, 

because its approach combined the benefits of both dasymetric mapping and regression 

analysis.  The resulting pixel-level population data exhibited a realistic spatial pattern that 

was strongly correlated with the distribution of impervious surface.  Results from this 

work can be aggregated to any geographic unit (e.g. hydrologic boundaries, 

administrative boundaries), thus making it possible to incorporate high resolution 

population data in a variety of studies.  The methodology developed in this study can also 

be used to map pixel-level population in other statewide mapping efforts.  

Keywords: Impervious surface; population; pixel-level; GIS  
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1. Introduction 

The fast growing population and rapid expansion of urbanized area has huge impact on 

natural resource conservation, environmental protection and economic growth.  Most of 

the urban sprawl occurred right on the edges of cities and towns in various speed, shape, 

density and direction.  Thus, it is crucial to have accurate spatial information of the extent 

of urbanized area and population density for decision making in natural resource 

management and environmental protection.  Missouri is a Midwestern state containing a 

mixture of highly urbanized metropolitan areas, mid-sized cities, rural communities, and 

considerable agricultural and forested landscapes.  During the 1980s, the Kansas City and 

St. Louis metropolitan areas led the state in terms of population growth, while mid-sized 

cities such as St. Joseph, Joplin, Columbia, and Springfield grew fastest in the 1990s 

(Brookings Institution, 2002).  Decentralized growth, or sprawl, can impair the ability of 

local governments to provide essential services to the general public.  Thus, planning at 

municipal, county, watershed, regional, or statewide scales is critical to ensure that future 

growth not only provides economic benefits but is accompanied by effective use of 

natural resources (Verbesselt et al., 2010).  For planners to make informed decision, 

spatial information of urbanized area and population density are necessary at local, 

regional and state level.  

 In U.S., decadal population information is usually disseminated at census block 

level and subsequently aggregated to each ascending geographic census reporting unit 

(e.g. block group, census tract, and county).  Such polygon-based reporting units are 

often insufficient in representing the true spatial distribution of population density inside 

each unit because their population values are assumed to be uniformly distributed, thus 
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failing to account for within unit population variation (Moon and Farmer, 2001).  An 

additional shortcoming of census reporting units is that they are often arbitrary (i.e. 

having irregular shape) especially in rural areas.  Oftentimes, spatial datasets such as 

hydrologic units and administrative boundaries have different areal units that may not 

conform to census reporting units, rendering integrating census data with other spatial 

data difficult.  Moreover, when the boundaries and/or scale of data aggregation are 

modified during the data integration process, the result of spatial data analysis will be 

greatly affected which is commonly known as the modifiable areal unit problem (MAUP) 

(Openshaw, 1983).  Because of the problems with polygon-based population data, efforts 

to map population as a continuous raster surface are being made (Langford and Unwin, 

1994; Mennis, 2003).  By modeling population as a continuous raster surface, the spatial 

aggregation of population to any predefined boundaries will become a simple process of 

addition, thus alleviating the MAUP problem.  

 Previous population modeling can be categorized into areal interpolation and 

statistical modeling (Wu et al. 2005).  Areal interpolation is the transformation of 

geographic data from one set of boundaries to another.  Areal interpolation can be further 

divided into interpolation based on mathematical functions and ancillary information (Wu 

et al., 2005).  Mathematically based interpolation methods include areal based 

repartitioning (Tobler 1979) and point based interpolation (Martin 1989).  The benefit of 

areal based repartitioning is the mass preserving, or pycnophylactic, property as coined 

by Tobler (1979).  Areal repartitioning is usually based upon areal weighting.  This 

approach requires the assumption that population is evenly distributed inside each census 

reporting unit at which areal repartitioning is performed.  Point based areal interpolation 
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was developed in part to solve the problem of assuming uniform population distribution 

introduced by areal repartitioning.  In point based interpolation, the population of each 

census reporting unit is assigned to centroids, and distance based functions (e.g. inverse 

distance weighting) are used to assign population to pixels (Martin, 1989).  Unlike areal 

based interpolation, point based interpolation assumes that population density decreases 

away from the centroid.  However, in many cases, centroids are not the population center 

in a census reporting unit (Wu and Murray, 2005) and population decay functions are not 

necessarily accurate in describing the actual spatial pattern of population (Martin, 1989).  

Thus, both areal repartitioning and point-based interpolation are not ideal for precise 

population modeling.  

 Areal interpolation based on ancillary information is usually known as dasymetric 

mapping.  The earliest reference to dasymetric mapping is the population map of 

European Russia in 1992 by Russian cartographer Semenov Tian-Shansky (Mennis and 

Hultgren, 2006).  The origin of the method also explains the Russian heritage of the term 

“dasymetric” (Wright, 1936).  Modern cartography textbooks define a dasymetric map as 

one that illustrates the statistical surface of data by partitioning space into zones 

exhaustively which reflect the underlying statistical variation of the data (Dent, 1999; 

Slocum et al., 2003; Mennis and Hultgren, 2006).  The most widely used dasymetric 

mapping variables are derived from remote sensing.  Among all the ancillary datasets 

used for dasymetric mapping of population, remote sensing derived variables such as 

land use/land cover (LULC) data (Mennis, 2003) and statistics such as image spectral and 

textural statistics (Harvey, 2002) are the most widely studied.  The mathematical 

relationship between population data and ancillary datasets can be derived using 
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regression analysis (Wu, 2007 and Mennis, 2003) to support population mapping.  The 

advantage of dasymetric mapping (e.g. LULC based) over areal interpolation is that it 

assumes equal population density within the same LULC classes.  However, dasymetric 

mapping is not without flaws.  For example, Langford et al. (1991) used dasymetric 

mapping with LULC data to redistribute polygon-based population to raster cells based 

on population density.  Langford et al. (1991) later discovered that their approach 

underestimated urban population while overestimating rural population, due to the fact 

that it assumed equal population density for land use classes without differentiation for 

location (e.g. urban vs rural).  To address this shortcoming, Langford and Unwin (1994) 

improved their previous work by classifying satellite images to residential and 

nonresidential areas and assigning census reporting unit population only to residential 

pixels inside each census reporting unit.  The most recent application of dasymetric 

mapping utilized address points as ancillary data (Zandbergen, 2011).  However, this 

application requires high resolution address point datasets which might not be readily 

available.  

 Unlike areal interpolation, statistical modeling infers a regression relationship 

between population and other physical and socioeconomic variables.  There are two 

advantages with statistical modeling: the first is the ability to include multiple variables 

in the regression analysis. For instance, previous studies have used urban areas (Tobler, 

1969), dwelling units (Lo, 1989), land use classes (Lo, 2003), physical and 

socioeconomic characteristics such as slope and road density (Dobson, 2000), and 

spectral features such as greenness and surface temperature (Li and Weng, 2005) as 

predictor variables. The second advantage of statistical modeling is the ability to estimate 
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population without census population data as input, which makes it possible to estimate 

population in regions without census data or to estimate intercensal population (Wu and 

Murray, 2007).  However, statistical modeling approaches may have disadvantages.  For 

instance, by including multiple predictor variables in the regression analysis, the model 

can become overcomplicated and may result in problems of collinearity.  Moreover, such 

regression models do not use census population data as input, thus making it difficult to 

transfer them to other study areas.  Furthermore, the pycnophylactic property of areal 

interpolation is not warranted even within the study area where the regression models are 

developed.  Thus, rescaling of the population mapping result is required (Wu and Murray, 

2005).  

 The choice of ancillary datasets and predictor variables for dasymetric mapping 

and statistical modeling is also very important.  Recent researches suggest that 

imperviousness derived from remotely sensed images can be a promising candidate for 

dasymetric mapping (Wu and Murray, 2005; Morton and Yuan, 2009).  Density, 

distribution, areal extent, and temporal change of impervious surfaces, are representative 

of anthropogenic effects in urban and rural areas (Arnold and Gibbons, 1996; Powell et 

al., 2008).  Impervious surfaces have distinct man-made features that can be detected and 

quantified using remote sensing to reflect anthropogenic development over time (Cronon, 

1991; Reisner, 1993; Alberti et al., 2008; Anderson, 2007).  In residential areas 

impervious surfaces are generally associated with housing, which is a strong indicator of 

population (Theobald, 2001).  Impervious surface also provides information on urban 

morphology (Ji and Jensen, 1999), which can be used to evaluate zoning and planning 
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outcomes.  Imperviousness and population are so strongly correlated that one can be used 

to predict the other (Wu and Murray, 2005) (Chabaeva et al., 2004). 

 Wu and Murry (2005) used a cokriging method and spatial autocorrelation 

between imperviousness and Census population to map pixel level population.  Morton 

and Yuan (2009) used regression analysis to derive a relationship between 

imperviousness and population density to map population at the pixel level.  In a 

comparison study, Wu and Murray (2007) found that imperviousness estimated 

population considerably better than both spectral radiance and LULC by achieving 7% 

less relative error for the entire study area and 30–31% less mean average percentage 

error at the Census block group level. 

 Despite recent successes of using imperviousness in population estimation, there 

are still critical issues that need to be resolved.  For example, a limitation of the 

regression approach is that the relationship between population and imperviousness 

developed in one study area is generally not applicable in another study area.  Morton and 

Yuan (2009) suggested that a single regression relationship is insufficient when the study 

area contains both metropolitan and rural areas.  The insufficiency is due to the varying 

population density pattern that differs by region (Pozzi and Small, 2005).  A limitation 

with the cokriging approach is its assumption that the mapped population raster 

resembles a continuous surface.  In reality, however, population exists primarily in 

developed areas which are represented by impervious surfaces.  The spatial distribution 

of population is not continuous, because urbanized areas such as commercial, industrial 

and infrastructural areas have no population.  Consequently, high density impervious 

surfaces may have low or no population.  Previous researches have shown that excluding 
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high density imperviousness values improves population mapping (Morton and Yuan, 

2009; Zandbergen and Ignizio, 2010).  Morton and Yuan (2009) found impervious 

surface with density smaller than 60% and 75% performed better than impervious surface 

with high density retained.  However, the appropriate thresholds of impervious surface 

density for population mapping may vary by location and study area. 

 The current research will utilize dasymetric mapping and regression analysis to 

map per pixel population using imperviousness and census population for the state of 

Missouri.  Specifically, we intended to: (1) identify the best range of imperviousness for 

statewide population mapping, (2) develop a per pixel population model using 

dasymetrically mapped block population and imperviousness, (3) develop regression 

relationships between population and imperviousness at the census block level, and (4) 

combine dasymetric and regression approaches to map population at the pixel level for 

the entire state.  The benefit of this hybrid model is to combine the benefit of both 

dasymetric mapping and statistical modeling while alleviating the drawbacks introduced 

by both approaches when used separately. 

2. Method 

2.1. Data  

According to the 2000 US Census, Missouri has an area of 180,472.6 km
2
 and consists of 

4,545 block groups and 241,655 blocks with average sizes of 39.7 km
2 

and 6.8 km
2
, 

respectively.  Geographic census data were acquired from the Missouri Spatial Data 

Information Service (MSDIS). These datasets contained population data at multiple 

spatial scales (tracts, blocks, and block groups).  Fifteen Landsat ETM+ scenes were 

obtained in 2000 from the USGS to perform impervious surface mapping.  ERDAS 
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IMAGINE’s Subpixel Classifier (SPC) was used to derive the per-pixel (30m resolution) 

proportion of imperviousness for the entire state.  The mapping of impervious surface 

included a procedure specifically tailored for sub-pixel classification, a procedure for 

signature derivation, and finally the procedure for material of interest classification.  The 

first procedure was automated by SPC software.  The second procedure was conducted 

semi-automatically using areas-of-interest (AOIs) derived to represent pixels with 100% 

pure impervious surface.  This procedure was assisted by overlaying aerial photos with 

Landsat imageries to better identify Landsat pixels with impervious surface only.  During 

this process, multiple signatures were derived representing different type of impervious 

surfaces: light, medium, and dark.  The three different signatures were then used to 

classify light, medium and dark impervious surfaces separately.  The three outputs were 

combined together to form one final image that represented the total percentage of 

imperviousness for each pixel.  The classification scheme for imperviousness consisted of 

9 classes and preserved a 10% increment between classes, except from the 0 to 20% 

range, which was classified as 0%.  The difference in increment at the beginning of the 

range was due to the limitation of the SPC software that materials covering less than 20% 

of a pixel are unidentifiable.  The remaining imperviousness values were classified with 

10% increments as follows: 30%, 40%… 90%, and 100%.  Since 20% of a pixel is 

equivalent to 180 m
2
, the median and average floor area in new single-family houses are 

183 m
2
 and 202 m

2
 for the Midwest region of U.S. (U.S. Census, 2000).  The floor areas 

together with driveway will most likely have a footprint larger than 180 m
2
.  Thus, such a 

limitation of the software is not going to hurt the accurate mapping of population based 

on impervious surface. 
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 To avoid assigning population values where roads were present, vector based 

TIGER/Line road network data (U.S. Census, 2000) was used to mask out coincident 

impervious surface pixels (Morton and Yuan, 2009).  The preprocessed imperviousness 

per pixel data was then overlaid onto census block group boundaries to 1) illustrate the 

distribution of impervious surface pixels, and 2) define spatial relationships between 

census block group boundaries and impervious surface pixels for Missouri (Fig. 1). 

2.2. Identify the best range of imperviousness for population mapping  

Since the relationship between population and imperviousness varies by location, it was 

necessary to identify the range of imperviousness most directly correlated with 

population for the state of Missouri.  We also want to gain a more comprehensive 

understanding of the performance of various types of imperviousness in population 

estimation accuracy.  To accomplish this, four datasets with varying ranges of 

imperviousness were prepared (Figure 2) to identify the most accurate candidate for 

population mapping.  First, total imperviousness was used to illustrate the overall spatial 

pattern of impervious surface (Fig. 2A).  Second, cells with imperviousness greater than 

80 percent removed (Fig. 2B).  Third, cells with imperviousness greater than 70 percent 

removed (Fig. 2C).  Fourth, cells with imperviousness greater than 60 percent removed 

(Fig. 2D).  The performance of each dataset was determined by using block group level 

populations to estimate block level populations so that they could be directly compared 

with Census block level population data.  Since statewide accuracy assessments are 

excessively time-consuming, subsets were taken from each of the four datasets in order to 

determine the optimal threshold range of imperviousness for population mapping.  We 

randomly picked 1,500 out of the 4,545 block groups in the state of Missouri which 
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contained 21,145 blocks.  After both dasymetric mapping and regression analysis were 

applied to estimate block population based on the selected block group population and 

the four types of imperviousness.  The estimated values were compared with the known 

block population.  An error analysis was performed based on similar studies (Zandbergen 

and Ignizio, 2010; Zandbergen, 2011).  For each block, the following error metrics were 

determined: (1) the number of people placed incorrectly determined by the sum of the 

absolute values of the difference between estimated and known population counts for 

each block, divided by two, (2) the median of the absolute value of the percent error for 

each block group, using the known population for each block as the denominator, (3) the 

R-squared value of the correlation between estimated and known population counts for 

each block.  These error metrics were determined for each of the approach and ancillary 

datasets combination (Table 1).  Based on Table 1, it is apparent that pixels with 

imperviousness values greater than 70% removed performed the best across the board 

regardless of the approach used.  Between the two approaches, dasymetric mapping 

performed consistently better than regression.  Thus, it is appropriate to use dasymetric 

approach using pixels with imperviousness values greater than 70% removed to estimate 

block population from block group population in the state of Missouri.  We have also 

calculated the percent area of the removed impervious surface pixels which turned out to 

be 0.27% of the total study area.  Thus, the removal of imperviousness greater than 70% 

will have very little impact on the final population mapping. 

2.3. Regression relationship between population and imperviousness  

The imperviousness raster with values greater than 70% removed was used to estimate 

the total amount of impervious area for each block group and block.  To redistribute the 
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population from block group to block, the total amount of imperviousness for each block 

were used as weight factors to assign portions of the block group population to each 

block.  In order to further disseminate the block population to finer spatial units such as a 

raster grid with resolution equivalent to the imperviousness raster, we need to study the 

relationship between population and imperviousness at the pixel level.  Since there is no 

raster population data with resolution comparable to the imperviousness raster used in 

this research, validating the mapping result is difficult.  However, strong relationships 

between imperviousness and population exist, and utilizing these relationships for 

population assignment is warranted because the true spatial distribution of population is 

not uniform.  Since the relationship between imperviousness and population can vary 

among Census blocks, multiple scenarios should be considered when mapping population 

based on imperviousness.  Common scenarios include: 1) Census block polygons 

containing only single-family residential units, where the spatial distribution of 

population  coincides with each housing unit and is also spatially correlated with low 

density  impervious surface, 2) Census block polygons containing both single-family 

residential units and apartment complexes,  where the spatial distribution of population 

coincides with both types of structures and is spatially correlated with low to medium 

density impervious surface, 3) Census block polygons containing both residential and 

commercial areas, where the spatial distribution of population coincides only with the 

residential areas although the commercial areas might have higher density impervious 

surface. 

 With the aforementioned scenarios in mind, three assumptions were made in order 

to study the relationship between imperviousness and population.  The first assumption 
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was that population was entirely associated with pixel level imperviousness (i.e. 0% 

imperviousness corresponds to 0 population).  The second assumption was that pixels 

with low density impervious surfaces have low population.  That is, pixels in rural areas 

and low density residential neighborhoods with low densities of imperviousness will have 

low population values.  The third assumption was that high density imperviousness can 

be associated with either low or high population values, a problem partially ameliorated 

by removing imperviousness values greater than 70%.  However, this approach does risk 

excluding high density residential areas (e.g. high-rise) which contain large populations 

and are typically located in large urban centers. 

 Based on the three assumptions, it is appropriate to assign population only to 

pixels that spatially coincide with imperviousness greater than zero inside each census 

block.  This census block based average population per pixel can be used together with an 

error term to model the actual population for each pixel.  The average population for each 

impervious surface pixel was determined from the following formula (Eq. [1]): 

     
    

  
        

 
             (1) 

Where PPPi is population per pixel in block i, POPi is population for block i, Ni is the 

number of impervious surface pixels in block i, and nij is the number of impervious 

surface pixels with percent of impervious surface j, where j = 0, 20, 30… 100, in block i.  

A GIS model was created to calculate the average population estimation (Fig. 3).  The 

following equation was used to quantify the actual population for each pixel inside block 

i (Eq. [2]): 

     
                      

   
 
         (2) 
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Where PPP
*

ij is the actual population per pixel in block i with percent of impervious 

surface j and εij as the error term with percent of impervious surface j in block i.  Similar 

to population for each pixel, percent of impervious surface for each pixel also has 

estimation errors and was expressed using the following formula (Eq. [3]): 

    
                                      (3) 

Where PIS
*

j is the actual percent of impervious surface for pixels classified j percent of 

impervious surface.  Since both the predictor variable PIS
*

j and dependent variable PPP
*

ij 

are modeled with an asymptotic value plus an error term.  Thus, the regression problem 

between PPP
*

ij and PIS
*

j per pixel for all blocks i or any subsets of all the blocks belong 

to the errors–in–variables regression problem. 

 Before running the regression analysis between population and impervious 

surface at the pixel level, it is necessary to solve the spatial autocorrelation problem 

which violates the independence assumption in standard regression models (Wu et al., 

2006).  Every city inside the state can be viewed at as a cluster of population.  The best 

way to resolve the spatial autocorrelation problem is to break the clusters into several 

subsets by classifying them into various population density (PD) categories (Morton and 

Yuan, 2009).  In this study, however, clustering is not alleviated after classifying the 

census blocks into five evenly distributed PD classes (Fig. 4).  Thus, in this investigation, 

a different density measurement of population called adjusted population density (APD) 

was proposed.  Instead of using the total area for each Census block, the total area of 

impervious surface inside each Census block was used as the denominator in the density 

measurement.  The following equation was used to calculate the APD of the 

corresponding Census block (Eq. [4]): 
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        (4) 

Where APDi is adjusted population density per square kilometer for block i, POPi is 

population for block i, A is the area of each pixel (900 m
2
), PISj is percent of impervious 

surface, and nij is the number of pixels for percent of impervious surface j in block i.  

 The APD was used because the traditional PD can introduce bias at the pixel scale, 

particularly in rural areas.  This is due to the fact that the majority of land cover in rural 

Census blocks was classified as non-urban (i.e. forest, agriculture, pasture, bare soil, and 

water), consequently diluting the PD for areas with population.  Therefore using the 

adjusted density equation helped to avoid underestimating the actual PD within areas that 

were considered developed land within rural Census blocks. 

 To reduce the problem of spatial clustering of population, the blocks were 

classified into five categories based on quantile rules using APD per square kilometer: (1) 

low density (≤ 1500), (2) medium – low (1501 – 4000), (3) medium (4001 – 8000), (4) 

medium – high (8001 – 13500), and (5) high (> 13500).  The reclassified census blocks 

significantly reduced spatial clustering compared to the classification based on PD (Fig. 

5).  Moran’s I statistics were also calculated to quantify the degree of clustering of 

Census block level population.  A Moran’s I value near +1.0 indicates clustering, a value 

near -1.0 indicates dispersion, and a value close to zero indicates a random pattern.  The 

Moran’s I values were summarized for both the five PD categories as well as for the five 

APD categories in Table 2. The overall Moran’s I for all the census blocks based on PD 

is 0.153, indicating classifying census blocks based on APD instead of PD is more 

effective in reducing spatial autocorrelation between census block PD. 
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 The sample sizes for each adjusted population density categories were very large 

(about 50,000 census blocks for each density category) and the estimation errors for all 

population pixels summed to zero (Eq. [2]).  That is, the sample size was large enough to 

assume that the average of independent observations will be approximately normally 

distributed, as described by the Central Limit Theorem (Billingsley, 1995).  Thus, it is 

reasonable to assume that the summarized mean population would be the same based on 

either the actual population for each pixel PPP
*

ij or the averaged population for each 

pixel PPPi.  For the sake of simplicity, PPPi values are summarized for each percent of 

impervious surface category as well as for the five density categories of Census blocks 

with mean and standard deviations (Table 3).  Raster cells with population values equal 

to zero can be associated with either zero percent impervious surface pixels (undeveloped) 

or very high percent impervious surface pixels (industrial and commercial areas).  Thus, 

only non-zero population and impervious surface pixels are included in the analysis to 

reduce confusion. 

 We plotted the distributions of population against imperviousness classes in each 

APD category based on the mean and standard deviation of population in Table 3 (Fig. 6).  

We noticed the mean values of population indicated by the hollowed dots have linear 

increasing trends (Fig. 6).  Thus, we ran regression analysis between sampled population 

and percent of impervious surface based on the mean values for the five APD categories.  

Accordingly, five regression lines are generated based on the five APD categories (Fig. 

7).  The R
2
 statistics were not reported with the regression equations because these 

regression lines were based on mean population values for percent of impervious surface 

categories instead of actual populations for each pixel. 
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 The slopes of the five regression relationships follow an increasing trend with the 

increase of APD (Fig. 7).  Thus, it is reasonable to believe that the slope of the regression 

relationship is correlated with the adjusted population density.  In order to find out if such 

an assumption is valid, the average adjusted population density is calculated for each 

APD category.  After comparing the five slopes of the regression relationships with the 

average APD of each category, we were able to confirm the positive correlation.  

2.4. Estimating per pixel population  

A population mapping model can be established based on the regression relationships 

derived between population and imperviousness together with the two correlation 

relationships with APD.  The first regression relationship takes the form (Eq. [5]): 

                      (5) 

Where POPIj is the population for pixel with density j in subset of Census blocks I, 

coefficient αI is the slope of the regression relationship between population and percent of 

impervious surface per pixel for subsets of Census blocks I, PISj is the percent of 

impervious surface density.  There is no intercept for this regression relationship due to 

the assumption that zero population is associated with zero imperviousness.  The 

regression relationship between the slope of the first regression relationship and the 

adjusted population density takes the form (Eq. [6]): 

                    (6) 

Where coefficient γ is the slope of this relationship between the slope of the first 

regression relationship αI and APDI which is the adjusted population density for subset of 

Census blocks I.  Coefficient θ is the intercept of this relationship.   
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By substituting αI into the first regression relationship, the following equation results (Eq. 

[7]): 

                             (7) 

Note that the subset of Census blocks I can be any subset of all Census blocks.  Thus, i 

may be substituted for I, which corresponds to the subset of each individual Census block 

and gives the following equation (Eq. [8]): 

                            (8) 

The above equation is the regression relationship between populations and percent of 

impervious surfaces at the pixel level where APDi is the dasymetric component (or 

geographically weighted component) and PISj is the regression component.  This 

regression relationship may be applied to study areas of various sizes and in different 

locations to calculate population per pixel based on any Census population units and the 

percent of impervious surface information therein. 

 Unlike areal interpolation, this regression approach does not have the 

pycnophylactic property.  Thus, a rescaling approach is used to preserve the total number 

of population for each Census polygon (Wu and Murray, 2005).  The equation used for 

rescaling takes the form (Eq. [9]): 

     
       

    

      
 
   

        (9) 

Where POP
*

ij is the rescaled mass preserved population for pixels with percent of 

impervious surface j in Census polygon i, POPij  is the population estimation obtained 

through the regression equation (Eq. [8]), and POPi is the dasymetricly mapped 

population for Census polygon i and       
 
   , which is the sum of POPij  for Census 

polygon i. 
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 A GIS model was developed to implement the aforementioned procedures and to 

map populations at pixel level (Fig. 8).  The required inputs for this GIS model include 

the following: Census population, percent of impervious surface, and two regression 

relationship coefficients: γ, θ, which are site specific and need to be derived for each 

individual study area.  To address the problem of associating high density imperviousness 

with either high density or low density population, a procedure was added to remove 

Census blocks that overlapped areas with high density impervious surface.  For simplicity, 

we assigned uniform population based on the estimated block population and the 

presence of impervious surface pixels.  It is not feasible to assess pixel level accuracy 

because there was no accurate pre-existing population information available at the pixel 

level for the state of Missouri. 

3. Results 

3.1. Results validation 

The block population estimation based on block group population is summarized in Table 

1.  The best performance combination is dasymetric mapping using imperviousness with 

road network data and pixels with imperviousness values less than 70%.  The percent of 

people placed incorrectly is 19.5% with a median absolute percent error of 27.7 and R-

squared value of 0.787 using the actual block population for comparison.  This result is 

consistent with previous research.  If we subject the per pixel population estimation to the 

block level population validation, the accuracy will be very similar to the best accuracy 

reported in Table 1.  However, without the availability of statewide population at pixel 

level, we are not capable of reporting the pixel level population estimation accuracy. 
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3.2. Pixel-based regression model 

This study has derived unique deterministic relationships for each census block based on 

their adjusted population density.  Thus, the errors are minimized in the modeling process.  

The model used for the state of Missouri takes the following form (Eq. [10]): 

                                       (10) 

Where POPij is the population per pixel in block i for percent of impervious density j.   

This regression model was specifically derived for the state of Missouri.  Thus, to 

implement this approach in study areas other than Missouri, it is necessary to derive 

model coefficients specific to the study area in question. 

3.3. Map results 

Due to the large extent of the study area, not all areas can be presented and described.  

Figure 9 shows the mapped population density for each pixel in four panels representing 

four different cities in Missouri.  Results show the spatial distribution, actual location, 

and spatial variations of population in detail unattainable with Census population data 

alone (Fig. 9).  For example, it is shown that residential neighborhoods in Springfield 

have relatively uniform population densities within each neighborhood but large 

variances among different neighborhoods.  The downtown core areas are generally 

without population (A on Springfield panel in Fig. 9).  The railway hub is also without 

population (B on Springfield panel in Fig. 9).  In the park or forested area, there is low 

and scattered population (C on Springfield panel in Fig. 9).  The general population 

distribution pattern outside the downtown core area is an increase followed by a decrease 

in population radiating out from the city center. 
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The city of Columbia has a gradual trend in decreasing population radiating out 

from the inner city.  In the inner city of Columbia, there is a concentration of population 

near the University Hospital Center (A on Columbia panel in Fig. 9).  In the outer city of 

Columbia, there exists a scattered pattern in spatial distribution of residential 

neighborhood (B and C on Columbia panel in Fig. 9).  Kansas City exhibits both the 

patchy relationships of Springfield and the gradual decreasing trend of the city of 

Columbia.  Plus, there is many rural population scattering between Kansas City and the 

leapfrog developments (A on Kansas City panel in Fig. 9).  St. Louis, on the other hand, 

is more uniform in distribution of population density in residential areas of various 

densities.  The core of downtown area (A on St. Louis panel in Fig. 9) as well as the 

Forest Park area (B on St. Louis Panel in Fig. 9) is without any population.  In general, 

the per-pixel population map has a very similar spatial pattern to the imperviousness map, 

which is due to the assumption that population will coincide with the presence of 

impervious surface.  Moreover, the map result ensures a reasonable estimate of 

population density, which is highly correlated to impervious surface.  The mapping 

results also ensure that spatial allocation of population is consistent with block level 

Census population data. 

 A histogram showing the frequency of pixel level population values for the entire 

study area can be seen in Figure 10; pixels with no population values were not included 

in the analysis.  Results indicate that for pixels with population over 99% will contain 6 

or less persons (Fig. 10). 
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4. Discussion 

4.1. Approach implications 

This approach avoided several problems at the data preprocessing stage encountered by 

previous studies.  For example, the cokriging approach (Wu and Murray, 2005) where 

point population is necessary, assumptions must be made to convert U.S. Census 

population data to point population data.  In this study, block population was first 

estimated by a well-established dasymetric mapping technique and then disseminated to 

each pixel based on the presence of impervious surface, which is more accurate than 

assigning the entire population to an arbitrary or geometrically derived point.  Instead of 

using a single linear regression relationship for the entire study area (Morton and Yuan, 

2009), five initial regression relationships were derived between adjusted population 

density and imperviousness per pixel, a concept unique to this research.  Since the five 

regression relationships derived from the five subsets of data were not spatially clustered, 

it can be concluded that they were independent of one another.  Thus, it was possible to 

expand these regression relationships to ensure that each Census block has its own 

regression relationship based on the locally calculated adjusted population density.  

Another example is the approach by Wu and Murray (2005) where residential area was 

derived with conventional image classification.  This approach requires separate 

procedures to derive residential area which might introduce more errors due to issues of 

error propagation.  Moreover, this type of approach might risk the exclusion of areas with 

low density population (e.g. exurban areas and some high density urban centers).  In this 

study, the assignment of population to non-residential area is reduced by excluding areas 

such as census blocks with no population, pixels with no impervious surface, and 
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impervious surface overlapped with all road networks.  Last but not least, previous 

studies generate continuous surfaces of population density (Wu and Murray, 2005).  In 

reality, population distribution is not always continuous over the landscape.  Although 

GIS masks were used to filter unrealistic population pixels, the use of masks after 

assigning population to each pixel will reduce the total predicted population, thereby 

requiring further adjustment (Wu and Murray, 2005). 

 There are two advantages associated with the methodology presented in this study.  

First, this approach assumes a strong correlative relationship between imperviousness and 

population at the pixel level.  The strong relationships ensure the use of different 

deterministic relationships tailored to each census unit.  These relationships are then used 

to map population at the pixel level rather than using a single universal regression model 

for the entire study area (Morton and Yuan, 2009).  By modeling population versus 

impervious surface at each census block, population variation due to location is 

considered and incorporated into the mapping model by introducing the local population 

density measure of adjusted population density.  The second advantage of using this 

approach is only impervious surface mapped population is strongly associated with the 

presence of impervious surface.  This is different from interpolation models used in other 

studies where population is assigned to the entire study area with varying densities (Wu 

and Murray, 2005). 

4.2. Data implications 

There are three major limitations with the dataset used in this study.  First, per pixel 

population information is not available for error checking.  The only population 

information available was aggregated population for each Census block.  For the same 
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reason, the relationship between imperviousness and population at the pixel level cannot 

be established directly.  Several assumptions have to be made in order to study the 

relationship between population and imperviousness.  Second, population in Missouri has 

a high degree of spatial variability.  Thus, it is necessary to analyze population at smaller 

scales, such as by Census block or block group.  Third, imperviousness, which is 

obtained from subpixel classification of Landsat images, is subject to mapping accuracy 

which can lead to error propagation in the population mapping process. 

4.3. Result implications 

We have presented a method for mapping statewide pixel level population that achieved 

similar or better accuracy compared to previous population estimates based on Census 

block group data (Wu and Murray, 2005 and 2007; Wu et al., 2005 and 2006; Morton and 

Yuan, 2009; Zandbergen and Ignizio, 2010).  More importantly, this study showed that it 

was possible to map pixel level population for the entire state of Missouri.  Using pixel 

level population data has many advantages relative to U.S. Census population data. For 

example, pixel based population data can be easily associated with all other spatial 

datasets (e.g. watershed boundaries, ecological units, and elevation data), avoids 

problems with boundary discrepancies caused by the irregular shape and size of Census 

polygons, and can be easily plugged into raster based models with minimal adjustment.  

Moreover, traditional estimations of population density only give a per area average of 

population distribution, whereas pixel based population data provides a more detailed 

illustration of the spatial distribution of population.  The results of this study also confirm 

Sutton’s (2009) theory regarding the population holding capacity (~ 6 persons/900 m
2
 in 

this study) of a given area of impervious surface and establish a correlation between 
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imperviousness and population, thus suggesting that pixel based population estimates are 

possible when predicated on coincident areas of imperviousness (Fig. 10).  The 

population estimation method presented here also makes it possible to infer population 

based on imperviousness derived from remotely sensed imagery or model predictions 

without relying on decadal Census population data (Fig. 10).  Pixel based population data 

is also useful in numerous ways, such as: location analyses for health-care centers and 

public libraries, integration of demographic and socioeconomic characteristics for risk 

and impact assessments, and emergency planning and management, consequence 

assessment, mitigation planning, and implementation. 

5. Conclusions 

A dasymetric mapping with localized regression approach was presented here to model 

per pixel population using per-pixel imperviousness and Census population at Census 

unit level for the state of Missouri.  Unique relationships were discovered between 

population and imperviousness at the pixel level for each census block.  These 

relationships were used to assign Census block level population values to each pixel in 

accordance with the presence of imperviousness.  The findings inferred from the mapping 

result indicated that over 99% of the pixel population values in Missouri contained 

between one and six people.  This population mapping approach improves upon previous 

methods because it allows for the use of Census data at various scales (e.g. block, block 

group, tract) and is insensitive to the size and location of the study area.  The mapping 

result is an improvement over the uniform distribution of population as defined by U.S. 

Census geographic data.  This approach also manages to map per pixel population for a 

large geographic area at a high spatial resolution. 
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The major limitation of the approach reported in this study includes the inability of the 

procedure to perform accuracy assessment at the pixel level due to lack of accurate high 

resolution raster population data.  This issue could be alleviated by acquiring ground-

truth data, which was beyond the scope of this investigation, but provides impetus for 

future investigations.  Another limitation is the somewhat diminished model efficiency 

resulting from the large size of the study area.  Future studies using large spatial extents 

will need to be separated into several subsets in order for the model to more accurately 

produce population at the pixel level without exceeding the limit of the computer’s 

physical memory.  An additional limitation is associated with the use of imperviousness 

data in this study, due to the fact that high density imperviousness may imply either high 

density population or no population.  The removal of high density imperviousness values 

may improve the overall accuracy of population estimation; however, it should again be 

noted that this approach operates on the assumption that areas with high density 

imperviousness (e.g. >70%) are considered to have no population.  This assumption was 

made due to the fact that the occurrence of both high density imperviousness and high 

density population is extremely rare compared to the coincidence of high density 

imperviousness with little or no population.  Thus, it would be beneficial to more deeply 

explore the relationship between very high density imperviousness and population in 

future studies.  
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Tables 

Table 1. Performance metrics of regression analysis versus dasymetric mapping, 

comparison is made upon four different types of imperviousness datasets all of which 

have road network imperviousness removed. 

Imperviousness 
People Placed Incorrectly Median Abs. % Error R-squared 

Count Percentage Rank 

Regression      

Imperviousness 1074783 29.8 4 35.1 0.470 

Imperviousness < 80% 946892 26.2 2 34.8 0.599 

Imperviousness < 70% 930774 25.8 1 35.9 0.641 

Imperviousness < 60% 962284 26.7 3 38.7 0.628 

Dasymetric      

Imperviousness 820982 22.8 4 32.2 0.716 

Imperviousness < 80% 728489 20.2 3 28.5 0.772 

Imperviousness < 70% 703457 19.5 1 27.7 0.787 

Imperviousness < 60% 709271 19.7 2 28.2 0.786 
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Table 2. Moran’s I values calculated for the census blocks population density classified 

based on the five population density categories and the five adjusted population density 

categories. 

Moran’s I Population density categories Adjusted population density categories 

Low 0.546 0.029 

Med-Low 0.985 0.028 

Medium 0.770 0.017 

Med-Hi 0.743 0.019 

High 0.497 0.021 
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Table 3. Average and standard deviation of population for the pixels classified by both 

percent of impervious surfaces and adjusted population density (APD).  Pixels with either 

zero population or zero percent impervious surfaces are not included to reduce confusion 

between the population and imperviousness relationship. 

Imperviousness 

Low APD Med-low APD Medium APD Med-Hi APD High APD 

Mean STD Mean STD Mean STD Mean STD Mean STD 

20 0.12 0.19 0.51 0.50 1.29 1.29 2.30 3.81 4.46 5.21 

30 0.15 0.27 0.68 1.45 1.59 1.14 2.78 1.05 5.50 4.71 

40 0.18 0.38 0.84 1.12 1.83 1.14 3.24 2.22 6.58 5.56 

50 0.20 0.52 0.94 0.57 2.02 1.06 3.68 3.24 7.98 7.32 

60 0.22 0.45 1.00 0.66 2.17 0.83 4.18 1.41 9.46 7.69 

70 0.23 0.35 1.06 0.88 2.29 0.91 4.60 1.68 10.57 7.04 
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Figures 

 
Figure 1. Study area in Missouri, USA with preprocessed impervious surface data 

overlaid with Census block boundaries. A small area is magnified to show details.  
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Figure 2. Four different versions of preprocessed imperviousness: a) imperviousness with 

road network removed; b) imperviousness with road network and values larger than 80% 

removed; c) imperviousness with road network and values larger than 70% removed; d) 

imperviousness with road network and values larger than 60% removed.  
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Figure 6. The distributions of population against percent of impervious surface class in 

each adjusted population density category based on the mean and standard deviation of 

population in Table 1.  
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Figure 9. Per-pixel population for Missouri, USA with four panels magnified for detail 

with the open space indicating no population and darker color indicating more population.  
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Chapter III. A pixel-level approach of GIS simulation of urban 

growth from historical impervious surface and population in 

Jackson County, Missouri 

Abstract 

This research analyzes the historical urban growth for the two decades of 1980s and 

1990s in three Missouri counties: Jackson, Greene and Boone.  Historical urban growth 

was coupled with various predictor variables to investigate their influences on urban 

growth processes.  The knowledge derived from the analysis was then used to design a 

GIS-based urban growth model.  A holistic modeling approach is often inadequate for 

characterizing the complex nature of urban systems.  To address this issue, a flexible 

modeling approach was developed using modules to represent different components of 

urban growth processes.  The model’s structure ensured that each individual module 

could be updated and modified independently, and allowed for the addition of new 

modules.  The model’s primary module for urban growth simulation was built using a 

rule-based framework that incorporated multi-criteria evaluation (MCE).  This module 

was designed to be calibrated using historical urban growth in order to simulate future 

urban growth which is represented by pixel level imperviousness.  After analyzing 

historical urban growth in the selected counties, the model was used to simulate pixel 

level imperviousness for the years 2010, 2020 and 2030.  The modeling framework 

presented in this study is not reliant on long term historical datasets, and is thus 

transferrable to other study areas. 

Keywords: Impervious surface; urban growth simulation; GIS  
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1. Introduction 

Urban development in the United States since the 1950s has been dominated by the shift 

of residential, commercial, and industrial land uses to the urban fringe which stimulates 

the conversion of rural landscape near major metropolitan areas into low-density 

residential subdivisions together with strip commercial developments (Radeloff, 2005).  

Situated in the Midwestern portion of the United States, Missouri reflects a full range of 

urban and rural sprawl characteristics that include large metropolitan centers (Kansas 

City, St. Louis) and numerous small to mid-sized cities and towns (Zhou et al., 2012).  

The rapid pace, broad scope, and complex spatial dynamics of urban growth challenge 

city planners, resource managers and decision makers to address the cumulative effect of 

ecosystem degradation (Fang et al., 2005; Lathop et al., 2007).  Common questions 

researchers and decision-makers face are: How quickly will urbanization occur?  What 

will be the spatial extent and density of future urban growth?  Unfortunately, there are no 

definitive answers to these questions.  Without the ability to simulate urban growth with 

reasonable accuracy, developing future urban growth and land use policies is difficult.  

By making robust urban growth predictions available to decision makers, they can better 

understand the dynamics of urban systems to make informed policy decisions. 

 Land use change modeling and urban growth prediction dates back to 1950s, 

however the utility of early models was limited.  It was not until the advent of modern 

computers in the 1990s and advances in geographic information systems (GIS) that urban 

growth modeling was rigorously revived (Wegener 1994).  During recent years, land use 

change and urban growth models have become a very important tool for city planners, 

economists, ecologists and resource managers to support decision making.  There are two 
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approaches towards land use change studies.  The first approach focuses on the specific 

mechanisms that drive land use change and urban growth in a particular city or region.  

The site specific approach often uses statistical methods such as logistic regression, with 

coefficients derived for a given study area (Huang et al., 2009).  In the second approach 

transferrable land use change models that can be calibrated in a variety of study areas are 

developed.  Examples of transferrable land use change models include: Land Use Change 

Analysis System (LUCAS) (Berry et al., 1996), Land Transformation Model (LTM) 

(Pijanowski et al., 1997; Pijanowski et al., 2000, Pijanowski et al., 2002), Urban 

SIMulation (UrbanSIM) (Waddell, 1998), Slope, Land use, Exclusion, Urban extent, 

Transportation, Hillside (SLEUTH) model (Clarke and Gaydos, 1998), and California 

Urban Future (CUF) (Landis 1995).  While these approaches differ in terms of 

transferability, both may contain aspects of certain widely used model algorithms such as: 

multi-criteria evaluation (MCE) (Jiang and Eastman, 1999), cellular automata (Wu, 1996; 

Clarke et al., 1997), and Markov Chain (Zhang, 2011). 

 Many land use change models emphasize on rigorous model calibration, are 

heavily study area and data dependent, and may require deep mathematical and statistical 

understanding in order to be used.  Such a high technical threshold is impractical for city 

planners, resource managers and decision makers to overcome.  Thus, these approaches 

are still mostly restricted to academia (Allen and Lu, 2003).  The MCE approach, on the 

other hand, is much easier to understand and implement; it simply evaluates the influence 

of each predictor variable independently and assesses their impact on urban growth.  

Predictor variables can then be weighted accordingly to predict future urban growth.  
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Such an approach can fit different study areas easily which ensures the transferability of 

the model. 

 Each of the land use change models mentioned above has its own merits, but they 

also have drawbacks that precluded their applicability in this research.  The LUCAS 

model is very desirable due to its modular structure and the fact it uses open source GIS 

software (GRASS).  The modular structure ensures that different physical processes 

related to land use change and urban growth are modeled separately, thus making the 

processes easier for users to understand.  Another benefit of the modular structure is 

expandability; new modules can be added as better understanding of the system is 

achieved.  However, LUCAS employs a patch-based simulation which is not realistic 

compared to actual land use change and urban growth.  The LTM model is GIS based and 

relies on artificial neural network (ANN) routines and a MCE approach to identify 

influential land use change factors and weight them accordingly.  However, the demand 

on specific datasets such as high-quality vantage points is difficult to acquire especially 

for model applications in large areas (Agarwal, 2002).  The UrbanSIM model excels in 

the incorporation of public policies in the modeling process which considers the human 

aspects, the behavior of policy makers, planners and the general public.  However, this 

model relies on vector-based datasets, which can be difficult to obtain for certain study 

areas.  The SLEUTH model is unique in that it captures urban patterns through the 

application of four urban land use change types: spontaneous growth, new spreading 

center growth, edge growth, and road-influenced growth.  These four growth types are 

applied sequentially during each growth cycle, and are controlled by the interactions of 

five growth coefficients: dispersion, breed, spread, road gravity and slope.  However, 
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SLEUTH lacks drivers of urban growth such as population and economic growth.  The 

CUF model utilizes population projections for new parcel allocation and incorporates 

incentives for adjacent development by annexation.  However, this model is also vector 

based which has the similar drawbacks with census data such as change of boundaries 

over time and the modifiable areal unit problem (Openshaw, 1983).  Last but not least, 

the aforementioned models use a black-box approach which prevents the user from 

making changes to the model other than parameter modifications.  Since decision makers 

require higher model flexibility for practical application purposes, a more open model 

framework is desired.  Moreover, most land use change models cannot be executed on 

standard GIS platforms (e.g. ArcGIS) which are widely used in academia, government, 

and industry.  Thus, it would be beneficial to develop land use change and urban growth 

models that can be deployed on widely used geospatial platforms, such as ArcGIS. 

 When majority of the attention was paid to the test of different approach and land 

use change model development, relatively less was done to polish the datasets used for 

land use change and urban growth studies.  One of the problems with model inputs is the 

lack of consistent methodology to measure sprawl due to the differences in defining this 

phenomenon (Batisani and Yarnal, 2009).  This lack of understanding in the pattern and 

processes of urban growth in a landscape is stemmed from the inconsistent definition of 

urbanized areas (Tsai, 2005).  Census bureau has four different definitions related to 

urbanized areas: Census Designated Place, Consolidated City, Incorporated Place, and 

Urbanized Areas.  All of them are vector datasets delineating urbanized areas with 

polygon based on different criteria.  They are all representing cities with different spatial 

extent for different research purpose.  However, none of them is capable of describing the 
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spatial distribution and density of urbanized areas.  A very important feature of urban 

sprawl is the low density growth of residential areas.  However, most urban models are 

not capable of illustrating the density of growth.  Without the density information, the 

urban model is not getting detailed urbanization information as input.  Thus, the outputs 

of the urban models are going to be less useful for decision makers who are more 

interested with the density rather than the extent of urban growth.  In light of this problem, 

a more consistent measure of urbanized area is necessary.  Recently, impervious surface 

derived from Landsat ETM+ imageries emerged to be a promising candidate.  The 

density, distribution, areal extent and temporal change of impervious surface, is 

considered emblematic of human-related effects in both urban and rural areas (Arnold 

and Gibbons, 1996; Powell et al., 2008).  Impervious surface has distinct man-made 

features and can be detected and quantified by remote sensing to reflect anthropogenic 

development over time (Alberti et al., 2008, Zhou et al. 2012).  Impervious surface also 

provides information on urban morphology (Ji and Jensen, 1999) and urban morphology 

information assists with evaluating outcomes of zoning and planning. 

 This research builds upon previous research to develop a new land use change and 

urban growth model that is open, modulated, and GIS based.  This model platform 

utilizes pixels as basic modeling unit suitable for universal application in vastly different 

areas.  The driver identified in this model is population growth induced impervious 

surface growth.  Other predictor variables used are commonly available pixel based 

datasets (e.g. elevation, slope, road network, and water body).  There are four major 

objectives in this research.  The first objective is to build several GIS analysis modules 

(terrain analysis, distance analysis, demand analysis, suitability analysis and urban 
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growth).  The second objective is to study the relationship between the explanatory 

drivers of urban growth with historical urban growth through MCE to determine the 

influence of each explanatory driver.  The third objective is to calibrate the urban growth 

model using weights derived from MCE as well as human interaction until the simulated 

historical growth is consistent with actual historical growth.  The fourth objective is to 

generate future urban growth with the calibrated model. 

2. Methodology 

2.1. Study area 

This study utilized three counties: Jackson, Greene and Boone each contained a large 

metropolitan, medium metropolitan and a small city respectively to proof the 

effectiveness of the model on cities of various sizes.  Jackson County encompasses the 

majority of Kansas City metropolitan area in the Missouri part of the city.  Jackson 

County has a total area of 1595.77 km
2
, inside which Kansas City was ranked high 

among the sprawl-threatened metropolitan areas in the United States (Ewing et al., 2002).  

Jackson County has witnessed significant urban growth in the last few decades mostly 

from the growth of Kansas City.  Impervious surface has increase 6.99 km
2
 with an 

impact area of 14.59 km
2
 in the 1980s and 18.53 km

2
 with an impact area of 38.51 km

2
 in 

the 1990s (Zhou et al., 2012).  In the mean time the total population for Jackson County 

has decreased from 668,893 in 1980 to 633,151 in 1990 and recovered to 654,856 in 2000 

(U.S. Census Bureau).  As a very typical county of the state of Missouri, Jackson County 

is generally characterized by rolling hills and open plains.  Because of the 

suburbanization, the county has experienced significant alteration of its natural landscape 

into urban buildup in the form of impervious surface.  Greene County encompassed the 
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city of Springfield which is identified as one of the four medium metropolitan cities in 

the state of Missouri that fueled the rapid urban growth in the 1990s (Brookings 

Institution, 2002).  Greene County has a total area of 1,754.13 km
2
.  Impervious surface 

has increased 3.41 km
2
 with an impact area of 6.37 km

2
 in the 1980s and 18.94 km

2
 with 

an impact area of 35.25 km
2
 in the 1990s (Zhou et al., 2012).  In the mean time the total 

population for Greene County has maintained an increasing trend from 185,302 in 1980 

to 207,949 in 1990 and to 240,391 in 2000 (U.S. Census Bureau).  Situated on the 

Springfield plateau, Greene County is generally very flat with no significant resistance 

towards urban growth.  Thus, we have witnessed some tremendous growth in the last two 

decades.  Boone County encompassed the city of Columbia which is one of the fastest 

growing small cities in the state of Missouri (Brookings Institution, 2002).  Boone 

County has a total area of 1789.22 km
2
.  Impervious surface has increased 3.19 km

2
 with 

an impact area of 6.13 km
2
 in the 1980s and 4.30 km

2
 with an impact area of 8.14 km

2
 in 

the 1990s (Zhou et al., 2012).  In the mean time the total population for Boone County 

also maintained a growing trend from 100,376 in 1980 to 112,379 in 1990 and to 135,454 

in 2000 (U.S. Census Bureau).  The study of these three counties may provide a 

framework for other counties in the state of Missouri to examine the interaction between 

the natural landscape and driving forces for urbanization. 

2.2. Data preparation 

Impervious surface is the primary modeling component in this research.  Sub-pixel 

classifier (SPC) in ERDAS IMAGINE software was used to derive 30 m by 30 m 

resolution imperviousness per pixel using Landsat Thematic Mapper (TM) imagery.  The 

classification scheme for imperviousness consisted of 9 classes and preserved a 10% 
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increment between classes except from the 0 to 20% range, where 0–20% was classified 

as 0%, and 90 – 100%, which was classified as 100%.  The difference in increment at the 

beginning and end of the range was due to the software limitation of the SPC that it 

cannot identify material covers less than 20% of a pixel.  The remaining classes followed 

10% increments where 20–30% classified as 30% up to 80–90% classified as 90%.  Since 

20% of a pixel is equivalent to 180 m
2
, most single family houses plus driveway will 

have a footprint larger than 180 m
2
.  Thus, such a limitation of the software is not going 

to hurt the accurate mapping of population based on impervious surface.  In a preliminary 

research, imperviousness per pixel has been derived for the whole state of Missouri for 

the year 1980, 1990 and 2000 (Zhou et al., 2012). 

 Beside the primary modeling unit, there are many predictor (independent) 

variables.  Since this research is precursor and foundation to a statewide study, the 

availability of statewide dataset is a crucial criterion in choosing the candidates.  

Considering the data availability and previous research, elevation, slope, waterbody, road 

network, urban center and historical impervious surface growth are chosen as the 

predictor variables in this research (Poelmans and Van Rompaey, 2009).  More predictor 

variables can be easily added as model input once available.  Elevation data is obtained 

from Missouri Spatial Data Information Service (MSDIS) in the format of 30m resolution 

raster (hereafter referred to as ‘DEM’).  Slope data is calculated from the elevation data 

using Slope function in ArcGIS while retaining the same resolution (hereafter referred to 

as ‘slope’).  Waterbody is obtained from MSDIS as the overall hydrology combining 

rivers, streams, lakes and ponds (hereafter referred to as ‘water’).  An alternative 
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waterbody data is obtained by extracting major rivers from the hydrology dataset 

(hereafter referred to as ‘major water’). 

Road network data from 1992 and 2000 were obtained from U.S. Census website 

in the topologically integrated geographic encoding and referencing (TIGER) road 

centerline format.  The TIGER road centerline data consist of polylines at a scale of 

1:100,000 with codes for road types.  Each road type can be assigned a weight in the 

modeling process to imply their level of importance towards urban growth (Clarke and 

Gaydos, 1998).  However, due to the empirical nature of weights for different road types, 

equal weights were used in one road network data (hereafter referred to as ‘road’).  And 

major roads were extracted as anther road network data to provide an alternative 

(hereafter referred to as ‘major road’). 

Urban center is a very important variable for urban modeling, which is used in 

almost all urban modeling endeavors.  However, it is by far the most difficult predictor 

variable to obtain.  Because it is not readily available and the entire collection of Census 

defined urban boundaries are not satisfactory in generating urban centers for satellite 

cities and leapfrog development surrounding metropolitans.  Thus, a morphological 

operation was used on impervious surface to achieve core urban areas through dilation 

and erosion.  The urban cores are then subject to a geometric mean center operation 

which outputs the centroids of the urban core polygons which are used as a predictor 

variable in this research (hereafter referred to as centroid).  A graphic illustration is also 

provided to show the derivation of core urban areas using impervious surface in the study 

area of Jackson County (Fig. 1).  To illustrate the superiority of urban core in terms of 

centroids derivation, Census designated place (CDP), a very popular urban boundary 
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definition (Butzler et al., 2011), as well as Census designated urbanized area, another 

common urban boundary definition, are included for comparison.  Census designated 

places (CDPs) are delineated for each decennial Census as the statistical counterparts of 

incorporated places (U.S. Census Bureau).  An urbanized area (UA) consists of densely 

settled territory that contains 50,000 or more people (U.S. Census Bureau).  According to 

the definitions, both urban boundaries are defined based on population but with different 

purposes.  The urban boundaries derived by impervious surface are used in this research 

because not only of its association with population, but also of its actual spatial 

distribution and density that is geographically more accurate in defining the actual 

urbanized area.  Figure 1 also illustrates that the centroids generated by urban core are 

located right in the middle of all sizable developments.  On the other hand, centroids 

derived by both Census designated place and urbanized area are either too numerous or 

too clustered to show the actual growth center (Fig. 1). 

Historical impervious surface growth is obtained by subtracting 1980 

imperviousness by 1990 imperviousness and 1990 imperviousness by 2000 

imperviousness.  All the feature datasets are then converted to 30m by 30m resolution 

raster through feature to raster tool in ArcGIS.  The use of 30m by 30m resolution for all 

the analysis dataset is on one hand determined by the resolution of satellite image derived 

imperviousness and on the other hand the recent trend of using finer grids for urban 

growth modeling and the availability of more powerful computers.  Although previous 

researches have outlined the benefit of different modeling units such as parcels (Landis, 

1994).  The benefit of using raster based modeling approach far outweighs the use of 

parcels.  For one thing, parcel data is not available for most States; another issue is parcel 
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boundaries may change overtime.  Thus, more recent researches chose to use 30m by 

30m raster as basic modeling unit (Deal and Schunk, 2004; Fang et al., 2005; Batisani 

and Yarnal, 2009; Jokar Arsanjani et al., 2012).  Moreover, raster data can be easily 

aggregated to any geographical unit (hydrologic boundaries, administrative boundaries 

and even parcels) allowing higher flexibility in model output utility. 

 Given the fact that not all predictor variables are created for this particular study, 

data preprocessing is necessary to ensure they are spatially and temporally consistent.   

Elevation, slope and waterbody do not change dramatically over time.  Thus, no further 

preprocessing is necessary.  For source data collected in years other than the three 

baseline years of 1980, 1990 and 2000, a linear interpolation is necessary to estimate the 

values for the desired year provided the availability of multiple road network datasets 

(Allen and Lu, 2003).  However, since the TIGER data is in vector format, thus the 

interpolation is not very convenient compounded by the reality that TIGER data prior to 

1992 is not available.  So imperfect data is still used in this research considering road 

network is very important predictor variable for urban growth models. 

2.3. Model design 

The design principle is to build a simulation model instead of a forecasting model.  The 

simulation unit of the model is each county in the state of Missouri.  In this pilot study, 

only a few Counties are illustrated.  The rationale to have county boundaries as the basic 

modeling unit is that decision making is usually made at the political boundary level.  

City boundaries are not used because a broader extent such as county provides the spatial 

extent to which the urban area expands. 
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A rule-based model is used instead of the more popular logistic regression model, 

because the latter relies entirely on historical data for calibration and simulation.  For 

example, the logistic regression approach is not capable of incorporating other factors, 

new growth policies such as growth boundaries, which will have a bearing on the future 

urban growth but are not responsible for the spatial pattern of historical urban growth.  In 

a rule-based model, these factors can be easily incorporated.  Moreover, the effectiveness 

of logistic regression approach is not very stable with a success rate ranging from less 

than 30% to more than 90% depending on the study area (Allen and Lu, 2003).  Another 

very important feature of rule-based model is less computational intensive than a logistic 

regression model.  Thus, it will be more accessible to decision-makers who are less 

familiar with the technical and statistical aspect of more complicated models such as 

logistic regression, cellular automata or Markov Chain models.  Finally, a rule-based 

model is very easy and convenient to implement in the ModelBuilder environment of 

ArcGIS. 

 This study used an open and modulated modeling approach, integrating several 

individually developed modules to accomplish the urban growth simulation task at pixel 

level.  The rationale to take this specific approach is to make maintenance, update, and 

expansion of simulation model easier than a holistic model.  The justifications to use 

multiple modules instead of a big model include: first, limited understanding of the urban 

systems; second, individual processes related to urban growth may follow different 

mathematical or physical processes that can be analyzed more effectively individually 

(Landis, 1994); third, the modules can be easily modified and improved to meet future 
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needs, and new modules can be added to incorporate more aspect of urban systems upon 

acquisition of new knowledge or expert input.   

 As shown in figure 2, the conceptual model framework involves five sub modules.  

Distance Analysis Module calculates the Euclidean distance between all the undeveloped 

pixels on the landscape against all distance based predictor variables (in raster format) 

and then performs an overlay analysis between historical impervious surface growth and 

distance based predictor variables.  Terrain Analysis Module performs an overlay 

analysis of historical impervious surface growth and its relationship to terrain based 

predictor variable.  Transition Probability Module combines together the output of 

distance analysis and terrain analysis module to analyze the effect of various predictor 

variables on historical urban growth.  It then assigns weight to each predictor variable 

and then combines them together to form the final raster transition probability surface 

which contains the probability of each non-impervious surface pixels being converted to 

impervious surface.  Demand and Scenario Module determines the total urban growth 

demand based on historical population growth as well as specified urban growth 

scenarios.  Urban Growth Simulation Module utilizes the output of transition probability 

module and demand and scenarios module to simulate urban growth through calibration 

and prediction.  Calibration is done by comparing simulated historical growth with actual 

historical growth.  If the calibration failed to pass the ROC criteria, the transition 

probability surface will be regenerated with different weights.  Once the calibration is 

passed, the same weights will be used to generate a new transition probability surface for 

future urban growth prediction. 

2.4. Model structure 
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Both distance and terrain analysis module will perform normalization to all the predictor 

variables changing their value range to between 0 and 100 following the formula (Eq. 

[2]):  

N = INT[100(V - Vmin)/(Vmax - Vmin)]              (1) 

Where N is the normalized value, V is absolute value, Vmin is minimum value and Vmax is 

maximum value and the function INT convert all decimal to integer.  The purpose of 

normalization is to ensure the model outputs of different study areas can be compared in 

terms the underlying characteristics instead of the absolute values. 

 Transition probability module utilizes a rule-based modeling approach which uses 

MCE derived statistical results to reclassify normalized predictor variables into transition 

probability surface with higher value meaning more likely to transition into urbanized 

pixel.  The transition probability surfaces are then combined with weights determined by 

expert inputs to determine the overall transition probability for the study area.  The final 

transition probability surface is then generated by applying a mask of unsuitable areas for 

urbanization (Fig. 3). 

 Demand and scenario module utilizes different scenarios other than the default as 

specified by historical trend.  Growth scenarios are very important for simulation models 

because the actual future urban growth is not predictable.  But we could use different 

scenarios for decision making purpose in order to prevent the fruition of undesirable 

development outcomes.  Growth scenarios could also be expressed as policy constraints, 

growth rules, growth rates, or even to set up growth boundaries (Allen and Lu, 2003).  

Different growth ratios will be used to determine the scenarios for future urban growth.  

Growth ratio is also called sprawl index or sprawl scatter index and is defined as the ratio 
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of urban population growth versus urban area growth measured as the total 

imperviousness growth.  It can be defined using the following formula (Eq. [2]): 

r = [(P1 – P0) / P0] / [(I1 – I0) / I0]               (2) 

Where r is the growth ratio; P0 is the starting population; P1 is the ending population; I0 is 

the starting total imperviousness; and I1 is the ending total imperviousness.  The 

simulated total imperviousness growth is determined by the formula (Eq. [3]): 

ΔI = I1 – I0 = I0(A1 – A0) / rA0               (3) 

Different growth ratios were chosen to implement different growth scenarios for two 

reasons. First, previous researches have indicated population growth to be the 

fundamental driving force for future urban growth (Barlett et al., 2000; Heimlich and 

Anderson, 2001; Johnson and Beale, 2002; Schnaiberg et al., 2002).  Second, the 

relationship between population and imperviousness has been researched in a precedent 

study (Zhou et al., under reivew) 

2.5. Model calibration 

The calibration of the transition probability module is done by combining the output of 

the Transition probability module and historical urban growth in a model simulation run 

in the urban growth simulation module.  The simulated historical urban growth is then 

compared with the actual urban growth to evaluate the output of transition probability 

module.  There are quantification errors and locations errors for the simulated urban 

growth pixels.  Due to the design of this simulation model, quantification errors can be 

ignored.  So the accuracy assessment will focus on the location errors.  The ROC method 

will be used to assess the performance of the transition probability as compared to a 

random decision surface (Pontius and Schneider, 2001).  Two raster maps are needed to 
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calculate the ROC curve: (1) the suitability map that illustrate the relative likelihood of 

each pixel undergoing a transition from undeveloped to developed, and (2) a map of 

actual urban growth for the same timeframe of the simulation.  The suitability map is the 

most appropriate candidate to calculate a ROC curve, because it is the easiest to 

understand that suitability map shows the priority in which pixels are selected to 

transition from undeveloped to developed.  The ROC curves work the best with binary 

maps (i.e. developed and undeveloped).  If more than two land-cover types are present, 

then a ROC curve can be created for each land-cover type (i.e. one land-type versus the 

rest).  The first step in creating a ROC curve is to first slicing the suitability map into 

several percentile groups.  One common slicing scheme is to assign 10% of pixels for 

each percentile group.  Therefore, each of the 10 groups contains 10% of the pixels in the 

study area.  An increase in number of groups increases accuracy of estimated ROC, but 

increases also the calculation complexity.  If the evaluation result does not pass the 

standard established by the user, the weight factor for each predictor variables need to be 

changed.  The default weights for each predictor variables are ones.  It is preferable to 

have expert input on the weight factors.  However, in case expert inputs are not available, 

a trial and error approach is used until the predetermined standard is reached.  This 

process can be done interactively by overlaying historical urban growth with each 

predictor variable to find the ones with higher impact factor. 

2.6. Model simulation 

Urban growth simulation module serves two purposes: (1) for calibration runs, the 

random component is deactivated in order to have the highest validation accuracy (Fig. 4); 

(2) for simulation runs, the random component is turned on in order to capture the more 
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or less random aspect of the future urban growth.  This module utilizes iterations to turn 

undeveloped pixel into urbanized pixel.  At the end of each model iteration the module 

uses a Boolean logic to determine if more iteration is necessary based on the demand and 

scenarios module output of total urban growth.  This density of each impervious surface 

pixel is determined by the historical relationship with elevation and slope.  If only 

location information is desired, the final output of this module can be reclassified into a 

binary raster with 1 indicating urban and 0 indicating non-urban.  Regardless of the 

format, the final output of this module and the whole model can be used for land use 

decision making, urban growth policy testing, public education of the negative effect of 

urban sprawl and etc. 

 All of the modules described above are capable of processing raster datasets of 

various resolutions.  These modules were developed using ESRI’s ModelBuilder, an 

ArcGIS application.  In ModelBuilder, the model is represented by a flux diagram in a 

graphic user interface that facilitates the creation, visualization, editing, and execution of 

geoprocessing workflows which can be shared, modified and reused in different 

geographic areas (Allen, 2011).  A flowchart is presented here to illustrate all the major 

procedures in a model simulation run (Fig. 5). 

3. Results 

3.1. Pattern of historical impervious surface growth 

Figure 6 shows the distance analysis module and terrain analysis module output maps.  

The impervious surface growths for two decades were compared against these maps to 

generate the statistical results.  The general pattern of impervious surface growth versus 
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terrain is similar between 1980s and 1990s (Fig. 7).  More land was consumed in the 

decade of 1990s compared to the 1980s.  Moreover, impervious surface growth in the 

1990s has consumed more high elevation land (Fig. 7A) as well as high slope land (Fig. 

7B).  Although a strong trend of slope resistance is preventing impervious surface growth 

encroaching into even higher sloped areas (Fig. 7B).  The peaks for impervious surface 

growth occurred at similar ranges for both elevation (Fig. 7A) and slope (Fig. 7B).  

Similarly, distance measures were analyzed using historical impervious surface growth.  

The two distance measure of normalized distance to road and water are not used because 

of their high density distribution which leads to the impervious surface growths 

concentrated in a narrow band of values.  Figure 8A has the most complicated trend of 

distribution due to the spatially uneven distributed centroids.  Figure 8B is very intuitive 

in that it shows new urban growth are usually very close to the road network.  In other 

words, undeveloped pixels that are close to the major highways are more likely to turn 

into developments.  Figure 8C is even more extreme than 8B in that it shows majority of 

developments are very close to the most recent developments.  More explicitly speaking, 

impervious surface increments in the 1980s are more closely related to the impervious 

surface of 1980 and impervious surface increments in the 1990s are more closely related 

to the impervious surface of 1990.  Figure 8D is showing a slow but affirmative decrease 

in development as distance to major water increases.  In other words, although the 

influence of water on impervious surface growth is not as immediate as historical 

impervious surface or road network, the influence is still clear enough that it can’t be 

ignored. 

3.2. Model calibration 
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Based on the statistic results of figure 7 and 8, all of the predictor variables were 

reclassified using the frequency of impervious surface growth.  These reclassified 

transition probability surfaces for the decade of 1980s (Fig. 9) and 1990s (Fig. 10) are 

showing areas with high impervious surface growth in red and low growth area in green.  

These transition probability surfaces are summed with default weight to generate the total 

transition probability surfaces (Fig. 11).  The default weights were chosen so that each 

transition probability surfaces is exerting similar amount of influence towards the total 

transition probability surface.  Two total transition probability surfaces for the decades of 

1980s and 1990s with historical impervious surface removed are produced for calibration 

using Jackson County as example (Fig. 11).  Similar steps were taken for both Greene 

and Boone County with two more sets of total transition probability surfaces produced 

for comparison purpose.  For calibration purpose, the historical growth scenarios are used 

for the decade of 1980s and 1990s to generate the suitability maps for three counties.  

These suitability maps are compared with the actual urban growth for two decades in 

these three counties to validate the effectiveness of the simulation model.  Six ROC 

curves are generated based on the simulated historical growth (Fig. 12).  The areas under 

the six ROC curves are ranged from 0.68 to 0.85 with a short span.  In both decades, the 

ROC has an increasing trend from large metropolitan county (Jackson) to medium 

metropolitan county (Greene) to small city county (Boone) with the decade of 1990s’ 

ROC having slightly higher values (Fig. 12).  Statistically, ROC above 50% is better than 

random.  Similar research has reported ROCs ranging from 65 to 70% in a different study 

area (Pontius and Schneider, 2001) which proved the performance of the simulation 
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model satisfactory.  Thus, the same approach can be applied to predict future urban 

growth under the same scenario of historical urban growth. 

3.3. Future impervious surface growth prediction 

For large metropolitan area (Jackson County in this study), potential urban development 

mostly circled around the leap-frog development from the satellite cities of Kansas City 

metropolitan area with a high likelihood to merge with the core Kansas City urban area to 

form an even bigger metro (Fig. 13).  According to this simulation, the total population 

for Jackson County will increase by 21,705 for every time step of 10 years with a net 

growth of 65,115.  The total population of Jackson County will reach 719,971 in the year 

2030 based on historical population growth trend.  Similarly, the urban growth for each 

decade is measured at 18.53 km
2 in terms of impervious surface growth with a potential 

impact area of 38.51 km
2.  By 2030, the total urbanized area of Jackson County will reach 

250 km
2 in total impervious surface with a potential to impact about 500 km

2 of land 

which is near a third of the total land area of Jackson County.  If the growth rate 

continues, the entire area of Jackson County will be developed in less than 250 years 

considering areas that are not suitable for development.  All of the above projections are 

based on the same growth rate during the decade of 1990s.  In light of the fact that urban 

growth is considerably faster in the 1990s than the 1980s, a possible exponential growth 

trend will consume the open land in Jackson County even faster. 

 In medium sized metropolitan cities (Greene County in this study), potential 

urban development concentrated around the urban fringe of the city of Springfield and 

along the major highways (Fig. 14).  According to this simulation, the total population for 

Greene County will increase by 32,442 for every time step of 10 years with a net growth 
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of 97,326.  The total population of Greene County will reach 337,717 in the year 2030 

based on historical population growth trend.  Similarly, the urban growth for each decade 

is measured at 18.60 km
2 in terms of impervious surface growth with a potential impact 

area of 35.20 km
2.  By 2030, the total urbanized area of Greene County will reach 160 

km
2 in total impervious surface with a potential to impact about 300 km

2 of land which is 

near a sixth of the total land area of Greene County. 

 In small cities (Boone County), potential urban development concentrated mostly 

in the northwest and west region and scattered around southwest, southeast and northeast 

regions of the city of Columbia.  Some rural urban growth can also be spotted in the 

northeast and southeast corner as well as west side of Boone County (Fig. 15).  

According to this simulation, the total population for Boone County will increase by 

23,075 for every time step of 10 years with a net growth of 69,225.  The total population 

of Boone County will reach 204,679 in the year 2030 based on historical population 

growth trend.  Similarly, the urban growth for each decade is measured at 4.23 km
2 in 

terms of impervious surface growth with a potential impact area of 8.10 km
2.  By 2030, 

the total urbanized area of Boone County will reach 55 km
2 in total impervious surface 

with a potential to impact about 100 km
2 of land. 

4. Discussion 

The ultimate purpose of building a simulation model is to apply it towards decision 

making.  A useful urban growth simulation model should eventually be used by urban 

planners and policy makers.  The biggest reason that urban growth simulation models are 

rarely used by policy makers and urban planners and only circulated in the field of 

academia is because most models are too complicated to use.  Take the very population 
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logistic regression approach as an example which was implemented in most urban growth 

models, the derivation of model coefficients are too time-consuming and statistically 

demanding.  One misstep in the data collection or preprocessing stage will lead to the 

coefficients that are against common sense and even ridiculous in certain cases.  Distance 

to urban centers, elevation, distance to roads and distance to streams are considered very 

important predictor variable as a consensus among urban growth modelers.  However, the 

coefficients of these predictor variables, according to a recent research, are so small that 

the effects of these predictor variables are negligible (Jokar Arsanjani et al., 2012).  

Another very important reason to explain the unflattering popularity of urban growth 

model is that most model frameworks focused more on model structure design but 

neglected the importance of data preprocessing which might be more important than the 

model structure.  As illustrated in this research the derivation of growth centroids is a 

very good example of outlining the procedures to prepare predictor variable s that are 

more likely to generate more meaningful results. 

 It may be argued that a rule-based model is less scientific than a more rigorous 

deterministic model with statistics derived coefficients.  However, people like policy 

makers and urban planners may have more “knowledge” of the urban systems than any 

outgoing urban growth models.  Plus, knowledge from the experts could be used to guide 

smarter growth through a more environmental and ecological friendly way of urban 

development (Freilich, 2003).  Moreover, humans have the tendencies to not follow the 

established common sense on building new urban areas.  Thus, many new growths can 

only be linked to personal preference rather than the rules deducted from predictor 

variable evaluation.  After all, humans are the underlying driving forces for all urban 
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growths and there is a certain stochastic components related to people’s preference and 

decision making.  Thus, a stochastic component is added to the urban growth simulation 

module to at least partly explain the stochastic nature of individual’s decision making in 

terms of urban growth preference. 

 This research establishes a solid framework for future urban growth research as 

well as providing a preliminary tool for decision making in terms of future urban growth.  

However, it still has constraints and limitations.  The biggest limitation is the absence of 

a macro-economic module that can better predict future population demographics by 

inferencing the supporting capacity of local economy in order to more scientifically 

calculate the fluctuation of population instead of using the historical trend.  Another 

limitation of this modeling approach is the inability to link growth scenarios to actual 

growth policies.  In this research, the historical development density is used in absence of 

the knowledge of future growth density.  Default scenarios could be used to give a range 

of variability for decision making purpose.  However, unless the physical meaning of 

development density is defined, this issue will always be a limitation for urban growth 

models.  Other minor limitations include but are not limited to predictor variable 

accuracy including spatial and temporal consistencies.  The most important model input 

in this research is the historical impervious surface which is derived by satellite image 

and will subject to classification accuracy.  Due to the time frame chosen by this research, 

some predictor variables may not be available at certain fixed time steps.  Either data 

interpolation is used to alleviate the problem, or the less than perfect data will be used 

when interpolation is not feasible. 
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 Finally, it is very important to work with decision makers and urban planner such 

as state and city agencies in charge of growth management to further develop this model 

provided with their expertise stemmed from previous management experience on urban 

growth.  At the end of the day, a model has to be used to show its value.  And only 

through practical applications can a theoretical models be updated regularly and 

improved. 

5. Conclusion 

In this research, an open, rule-based, modulated, GIS model was developed using 

ModelBuilder in ArcGIS.  Multiple independent variables are identified and analyzed as 

the predictor variables of this model.  Model calibration was done using MCE of 

historical urban growth.  A trial and error approach was used to derive weights for each 

predictor variable in order for the simulated urban growth to be consistent spatially with 

the actual urban growth.  The calibrated model is used to simulate future urban growth 

for 2010, 2020 and 2030 under the historical growth trend during the 1990s. 

 Urban growth simulation is a very complicated physical process that imposes a 

huge challenge to researchers who are trying to model and simulate future urban growth.  

With the help of a GIS model, the urban growth process can be quantified, analyzed and 

replicated to simulate future urban growth.  The model framework and analysis 

workflows can have a huge impact on future urban growth management.  Even under the 

conservative historical growth trend, it is still projected that a third of the land area of 

Jackson County will be developed by 2030.  This model simulation result can be used to 

education citizens the negative effects of low density urban growth through statistics 

reporting and visual demonstration.  More importantly, the simulated results can urge the 
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policy makers and urban planners to take a different route in urban growth management 

before everything get out of control.  It is very imperative for researchers and policy 

makers to work together to link urban growth policies with actual model simulation 

output in order to build a more practical model that can be used in real life application.  
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Tables 

Table 1. Model simulation validation for the decade of 1980s and 1990s presented as (%) 

error. 

Model validation 1980s 1990s 

Omission error 

Low 

  

Urban (simulated as non-urban) 57.55 51.23 

Non-urban (simulated as urban) 0.95 2.75 

Commission error   

Urban (simulated as non-urban) 54.96 50.61 

Non-urban (simulated as urban) 1.06 2.82 

Overall error 1.97 5.27 
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Figure 12. ROC curves for model simulation of impervious surface growth calibration in 

1980s (upper) and 1990s (lower) for Jackson, Greene, and Boone Counties compared 

with random growth of impervious surface.  
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Figure 13. Model simulation for future urban growth in the form of impervious surface 

growth for Jackson County for 2010, 2020 and 2030 with historical impervious surface 

extent of 2000 for reference and an inset to illustrate the exact location of the simulation 

in the spatial context of Missouri.  
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Figure 14. Model simulation for future urban growth in the form of impervious surface 

growth for Greene County for 2010, 2020 and 2030 with historical impervious surface 

extent of 2000 for reference and an inset to illustrate the exact location of the simulation 

in the spatial context of Missouri.  
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Figure 15. Model simulation for future urban growth in the form of impervious surface 

growth for Boone County for 2010, 2020 and 2030 with historical impervious surface 

extent of 2000 for reference and an inset to illustrate the exact location of the simulation 

in the spatial context of Missouri.  
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