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USING PATHWAY CORRELATION PROFILES FOR 
UNDERSTANDING PATHWAY PERTURBATION 

ALLISON TEGGE 

Dr. Dong Xu, Dissertation Supervisor 

ABSTRACT 
 

Identifying perturbed or dysregulated pathways is critical to understanding the 

biological processes that change within an experiment. Previous methods identified 

important pathways that are significantly enriched among differentially expressed genes; 

however, these methods cannot account for small, coordinated changes in gene 

expression that amass across a whole pathway. In order to overcome this limitation, we 

developed a novel computational approach to identify pathway perturbation based on 

pathway correlation profiles. In this approach, we can rank the pathways based on the 

significance of their dysregulation considering al gene-gene pairs. We have shown this 

successfully for differences between two experimental conditions in Escherichia coli and 

changes within time series data in Saccharomyces cerevisiae, as well as two estrogen 

receptor response classes of breast cancer. Overall, our method made significant 

predictions as to the pathway perturbations that are involved in the experimental 

conditions. 

Further, I can use these pathway correlation profiles to better understand pathway 

dynamics and modules of regulation. I have applied this developed method to the 

Ribosome pathway for several model organisms and various tissue types, where I was 

able to isolate alternative regulation patterns for each species and tissue. In addition, I 

have applied these pathway correlation profiles for the MAPK pathway to help 



 
 

x 

characterize the disease progression of colon cancer from normal tissue, through all four 

stages, culminating in final metastasis. The pathway correlation profile method allows for 

more meaningful and biologically significant interpretation of the current data available. 

In short, we developed a novel computational method for identifying pathway 

perturbation. This method is a powerful tool that better utilizes gene expression data 

when studying pathway dynamics in regards to biological processes. Moreover, this 

method provides hypotheses for understanding the mechanisms within meaningful 

pathways, and where the pathway dynamics change across conditions.  
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1 Chapter 1: Introduction 

Understanding biological systems as a whole offers a global perspective, but obtaining 

this view is not trivial, and in many instances not always possible. The current 

experimental data being generated typically provide a single snapshot of a biological 

situation, either experimental condition or disease state, and in many instances this data is 

analyzed on a single entity level, such as individual gene or reaction. Though there has 

been an increase in efforts to try to incorporate multiple data types, most previously 

generated data sets are not structured or organized for the ease of such meta-analyses. In 

many cases, previously developed data sets only assay one data type (e.g., gene 

expression, protein level, etc.) for that specific experiment, and not multiple data types. 

To compensate, more computational method need to be developed that help bridge the 

gap between single modality data sets and a systems biology perspective, while using 

preexisting publically available data sets. 

1.1 High-throughput experiments 

With the current technologies available, it is no longer necessary to interrogate a small set 

of genes. Instead, high-throughput experiments that assay the entire genome are 

commonplace. With this increase in large data sets, there is a high demand for 

computational methods to be able to handle, process and analyze the data. Currently, 

there are numerous relatively straightforward computational methods for handling the 

high-throughput data, e.g., identifying mutations, and differential gene or protein 

expression. Alternatively, and arguably more important, there are few complex 

computational approaches that additionally consider a second level of information, such 
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as gene or protein interactions, or multiple data types. These more complex approaches is 

where an emphasis needs to be made for developing computational models, which take 

into account a systems-wide view of the biological processes. In this dissertation, we try 

to develop a computational method that sets the foundation for these higher-level 

analyses of high throughput genomic data. 

1.2 Gene expression  

Gene expression profiling analysis has successfully been used in identifying causal genes 

for many diseases. However, there are many cases where several genes work together in a 

synergistic fashion, thus resulting in a complex disease. For these situations, standard 

gene expression analysis approaches are not as effective and robust at distinguishing the 

causal genes, thereby missing several conclusions from the data sets. In examples like 

these, more specialized approaches need to be utilized that examine multi-gene effects. 

Such multi-gene effects could be the result tandem differential expression of two genes, 

or even an unstructured expression profile between several genes. For whichever 

processes of multi-gene effects are employed, computational methods need to be 

developed to handle these additional conclusions. We try to develop an advanced 

approach that utilizes gene expression data, but does not rely on absolute expression 

levels from any particular gene. In our approach, we can aim to identify those genes that 

work in either a structured or unstructured manner, resulting in a specific phenotype. 

1.3 Publically available data sets 

Nowadays, experiments are being designed with a meta-analysis in mind. However, with 

the current plethora of data sets available, especially those that are in public repositories, 

it should not be compulsory to run more experiments to gain a new insight on the current 
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research foci and questions. Instead, an interest should be made towards developing 

computational methods that utilize the publically available data in new and novel ways. 

By using this approach, we can gain new perspectives and new knowledge can be 

investigated and learned that was not previously addressed from the data under other 

analytical methods. Moreover, if the publically available data is reanalyzed, especially 

when asking new and more relevant questions, future experiments could be prioritized for 

a more efficient and cost effective future analysis.  

1.4 Dissertation organization 

This dissertation is organized into several parts. Chapter 2 introduces several of the key 

concepts that are the foundation to the pathway correlation profiles. Chapter 3 presents 

the methodology and benchmarking for the novel pathway correlation profile method for 

identifying pathway perturbation. Chapter 4 and 5 discuss applications and the usefulness 

of correlation profiles, as well as the interpretations that can be made thereof. Chapter 6 

will explore the conclusions for the pathway correlation profile method, such as the 

advantages and inherent limitations. Lastly, the dissertation will end with Chapter 7 and 

future areas where pathway correlation profiles could successfully be applied. 
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2 Chapter 2: Literature Review 

Identification of perturbed or dysregulated pathways is important for understanding 

changes in biological processes between two conditions. Microarray technologies are 

essential for identifying differences in gene expression, but there has been limited in-

depth use of microarray data on a pathway level. When it comes to pathways, microarray 

data is typically used to identify pathways enriched with significantly differentially 

expressed genes. Ultimately, these studies try to extrapolate activated/repressed 

pathways, i.e., those pathways that show global increases and decreases in gene 

expression, respectively [1]. Alternatively, microarray data can also be used via co-

expression networks for pathway reconstruction where little to no prior pathway 

knowledge is applied in the co-expression networks. 

2.1 Gene set enrichment analysis methods 

In order to identify pathways of interest, various gene set enrichment (GSE) methods are 

utilized [2,3,4,5]. These methods rank genes by the expression’s signal-to-noise ratios [6] 

or the correlation of expression with the phenotype [2], determine an enrichment score 

for each gene ontology or pathway, and then select a set of gene ontologies or pathways 

based on the significance of their enrichment scores. Keller et al. extended a GSE method 

by utilizing dynamic programming in order to optimize this selection of significant 

signaling pathways [7]. GSE methods, however, require a set of genes in the gene list or 

pathway to be differentially expressed with statistical significance; though this 

requirement is sufficient in many instances, it is not necessary in order for a pathway to 
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be dysregulated. Furthermore, this condition may not accurately reflect globally 

perturbed pathways. There are many biological circumstances where a few differentially 

expressed genes can be identified; yet large pathological differences are observed, such 

as diagnosis-relapse events [8,9]. In order to help reduce this dependency on 

differentially expressed genes, Adewale et al. developed a regression analysis to handle 

pathway data, where they agglomerate a pathway-level test statistic for each individual 

gene in the pathway [10]. Again, though this returns a pathway level result, it still looks 

at each gene individually and not at how the genes coordinate with each other within the 

pathway. Moreover, rich information in microarray data may be underutilized. For 

example, current computational methods generally aggregate the biological replicates 

into a mean or median, thus losing added information from the available data. 

2.2 Gene co-expression analysis 

Microarray data has also been used for gene-gene correlation or the co-expression of 

genes, which has resulted in novel pathway identification [11,12,13,14]. In particular, 

methods for pathway identification often rely on strong correlations between two genes. 

Inversely, those genes that are not co-regulated are assumed not correlated, which 

sometimes may not be the case. Due to these limitations, Childs et al. developed both a 

condition dependent and independent approach for establishing functional annotation 

modules to describe regulatory processes [14]. As an extension of novel pathway 

identification, Novak and Jain used selective gene co-expression in order to confirm valid 

pathways [15]. Allocco et al. also showed that there is a relationship between regulation 

and co-expression [16]. Through these methods, they identified that there is an increase 
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in gene-gene correlation when a common mechanism of regulation is involved with both 

genes, e.g., a common transcription factor. Though these methods utilize gene-gene 

correlation, their goal is to identify pathways or modules that are co-regulated, yet may 

not interrogate general perturbations of known or unknown gene sets that are not revealed 

in the form of co-expression. 

To aid in identifying perturbed pathways, differential gene-gene co-expression has been 

implemented for studying changes between different diseases and biological conditions. 

Lai et al. use gene-gene co-expression to identify genes with similar co-expression 

patterns to those that are already known to be involved in the biological process of 

interest [17]. This method does not rely on differential expression of genes, but relies on 

coordinated gene expression instead; however, it still interrogates the expression data on 

a gene level and does not look at the global differential gene-gene co-expression of the 

pathway. Cho et al. used differential co-expression to identify gene sets (e.g., pathways) 

that have differences in gene expression [18], but again does not look into the changing 

dynamics within a pathway or gene set. More applicably, however, Freudenberg et al. 

used differential co-expression coupled with unsupervised learning in order to identify 

gene sets that are significant under various conditions [19]. While their method does not 

utilize previously defined gene sets, it does show that given significant gene sets, there is 

an increase in gene-gene pair correlations.  There are several disadvantages to these 

methods. They assess the behavior of individual genes to summarize the activity of a 

pathway and/or do not look at the trends of pair-wise interactions between genes within 

an entire predefined pathway. 



 
 

7 

2.3 Gene clustering methods 

Clustering gene expression data attempts to group together genes that have similar 

expression profiles [20]. To accomplish this, several approaches can be used from 

statistical (e.g., k-means, k-medoids) [21], to data mining (e.g., hierarchical clustering, 

trees) [22,23], to machine learning (e.g., self-organizing maps, support vector machines) 

[24,25], to name a few. However, in general each of these methods is a 1-dimensional 

approach where they assess how closely two genes’ expression profiles are to each other, 

and then group them in the same cluster based on this metric.  

This 1-D approach is beneficial to identifying similar behaviors in gene expression 

between genes, but in many experiments, there are additional variables of interest, for 

example condition and sample. To include these additional variables and features, gene 

expression pattern identification has progressed into bi-clustering. Bi-clustering is an 

approach that not only clusters the genes based on gene expression profiles across 

conditions, but also clusters conditions based on gene expression profiles across genes 

[26,27]. These approaches are successful in identifying specific gene expression patterns 

under specific conditions, however they only consider one gene at a time. This single 

gene approach forces each gene into one specific cluster. In several cases, constraining a 

gene into one cluster is sufficient. Biology, however, is not binary; for example, one gene 

might be responsible for the crosstalk between two pathways [28] or a protein could be 

involved in multiple complexes [29]. Situations such as these require alternate clustering 

schemes that will allow a gene in more than one cluster. 

Other clustering methods have been applied to gene expression, especially for temporal 

experiments. Ernst and colleagues developed a method for clustering time series gene 
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expression [30,31]. In this method, they identify sets of genes with common expression 

patterns by correlating genes with model profiles. Several additional studies have 

achieved temporal gene expression clustering by using Bayesian methods [32], hidden 

Markov models [33] and episode mining [34,35].  

All of these methods, however, still consider each gene individually. Though this 

approach is successful for very distinctive clusters, it is not optimal for identifying groups 

of genes that have small changes and moreover rarely looks at all of the biological 

replicates. By considering clustering of gene expression data in an all-together new 

perspective, where genes are no longer forced into one cluster, we can make predictions 

that are more biologically relevant and realistic. 

2.4 Other methods 

To overcome these challenges, we developed a systematic method of using microarray 

gene expression data to identify pathway perturbation based on changes in pathway 

correlation profiles derived from the gene-gene pairs. Given gene sets extracted from 

known pathways, we identify significant pathways based on changes in gene co-

expression. We can identify those pathways that are significantly perturbed in an 

experiment, as well as isolate groups of genes that are known to be strongly involved in a 

pathway’s regulation. In addition, we can identify potential significant genes that may be 

involved in the perturbation of a pathway but are not differentially expressed as defined 

by statistical confidence. Our method no longer relies on single gene involvement as well 

as effectively utilizes the added information gained from biological replicates within an 

experiment to successfully identify and rank significantly perturbed pathways. 
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Further, we can use the pathway correlation profiles to investigate regulative dynamics 

within a pathway. This can be accomplished under a one-state analysis, or multi-state 

analysis by characterizing the gene-gene relationships under various conditions. Through 

this, we can identify differential regulation patterns for a pathway under various 

conditions or time points. This allows us to identify on a more comprehensive level the 

various means in which the pathway is regulated. This additional feature of the pathway 

correlation profile method allows extensive and complete analysis of an experiment from 

gene expression data through pathway identification and interpretation. 
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3 Chapter 3: Pathway correlation profiles 

A general schematic for our pathway correlation profile method is shown in Figure 1. 

Initially, gene expression data is processed and normalized. Expression profiles are then 

created for the set of genes involved in each pathway. Using these expression profiles, 

pathway correlation profiles are created for each pathway and pathway perturbation is 

estimated via bootstrapping. These results are then combined to rank the pathways based 

on their perturbation. The details for each step are further explained below.
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Figure 1. Flowchart describing pathway correlation perturbation method for 

analyzing gene expression data on a pathway level. 

Initially, gene expression data is processed and normalized. Expression profiles are then 

created for the set of genes involved in each pathway. Using these expression profiles, 

pathway correlation profiles are created in each condition for each pathway. These results 

are then combined to determine the pathway’s mean difference in gene-gene pair 

correlations, and then ranked based on their significance of perturbation. 

 

3.1 Methodology 

3.1.1 Assumptions 

The pathway correlation profiles method for pathway analysis has the assumption that 

essential genes that are working together are highly correlated; those genes that are non-

essential, and subsequently not working together, will show a background correlation 

profile that is random around zero. To confirm this assumption, we can simulate various 

levels of perturbation on a pathway. Given a pathway correlation profile where the gene-

gene pairs within the pathway show a bias towards positive correlations, we can induce a 

perturbation by adding a random noise variable to each gene. For each gene’s expression, 

ei, within the pathway, we can calculate !i, an error model for gene i under a known 

condition.  

  

! 

" i = N 0,# i
2p2( )  

where p is a perturbation and 

! 

" is the standard deviation of gene i. We can then add this 

error parameter to the original expression data to create our simulated expression profiles, 

! 

ei
*: 
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! 

ei
* = ei +"#  

By applying the perturbation as a random error proportional to standard deviation of the 

gene’s expression, we can still maintain the structure of gene expression within the 

pathway by ensuring that those genes with large standard deviations will still have large 

standard deviations and those with small standard deviations will have small standard 

deviations, respectively.  

Figure 2 shows the effect of simulation different levels of perturbation upon a pathway 

correlation profile. With small levels of perturbation (d=0.1), we can see that there is 

minimal change in the pathway correlation profiles. As the levels of perturbation increase 

(d=0.5, 1, 2), the pathway correlation profiles change drastically, and in fact, migrate 

towards a distribution centered around zero. 
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#

Figure 2. Simulated perturbation of a pathway. 

Black: original pathway correlation profile; Red: simulated pathway correlation profile. 

x-axis: gene-gene pair correlation; y-axis: relative density. 
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3.1.2 Expression data 

E. coli microarray gene expression data were downloaded from the GEO website 

(GSE4511) [36]. The platform for this data set is the Affymetrix E. coli Antisense 

Genome Array. This data set investigated changes in gene expression when E. coli was 

treated with different pH environments: pH 5.0, pH 7.0, and pH 8.7. In total, there were 

five separate samples for each pH. In addition, a S. cerevisiae time series data set was 

also downloaded from the GEO website (GSE1311-4) [37]. This data set utilized the 

Affymetrix Yeast S98 arrays. Singh et al. performed a desiccation in combination with 

rehydration of S. cerevisiae in order to identify transcriptional changes over time. To 

determine changes over the rehydration process, they performed a time series experiment 

with nine samples at each of the following time points:  0 (dry), 15, 45, 90 and 360 

minutes after rehydration. Samples from a control group were also included. To show the 

robustness of this method, a breast cancer data set comparing gene expression between 

positive and negative estrogen receptor (ER-positive and ER-negative) status patients was 

analyzed [38]. Breast cancer gene expression data set was downloaded from the GEO 

website (GSE2034) and is from Affymetrix Human U133a GeneChips with 77 ER-

negative and 209 ER-positive patient samples. 

3.1.3 Pathway data 

Pathway data were collected from the KEGG database [39], including the metabolic 

pathway files for E. coli, and both the metabolic and non-metabolic pathway files for S. 

cerevisiae and breast cancer data sets. Each xml file was parsed using custom scripts, and 

the genes involved in the pathway were identified and used as the pathway genes. Those 
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pathways with fewer than five genes were removed from the analysis to avoid statistical 

insignificance. A total of 64, 88, and 188 E. coli, S. cerevisiae, and H. sapiens pathways 

met this criterion, respectively, and were used in this analysis. 

3.1.4 Expression profiles 

The microarray gene expression data were normalized using the Robust Multi-Array 

average expression measure (RMA) function from the affy package in R [40]. The 

expression profile, Ei, for gene i is represented as: 

   

! 

Ei = {ei,1,…,eim}, 

where eim is the mean expression value of all probe sets for gene i on chip m. Gene 

expression profiles were created for each gene in a pathway, and each expression value 

was the log2 value for the normalized array intensity values. 

In the breast cancer data set, noisy probes were removed. To accomplish this, those 

probes that were above the median of the chip in at least a quarter of the arrays were 

retained for the analysis. RMA was subsequently used to normalize the remaining probes. 

3.1.5 Pathway correlation profiles 

Pathway correlation profiles (e.g., correlation matrix) were created for each pathway in 

the data set. The profiles are calculated for all gene pairs among different chips at a given 

condition using Pearson correlations and are represented as: 

 !1,2{ ,!1,3,…,!i, j,…,!k!1,k } , 
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! 

"i, j =
(eim # µi)(e jm # µ j )m

$
(n #1)% i% j

, 

where k is the number of genes in the pathway, m is the chip index, n is the total number 

of chips in a sample, µi and µj are the mean expression values for gene i and j, 

respectively, and "i and "j are the standard deviations, respectively. The pathway 

correlation profiles were calculated individually for each pH in E. coli, each time point in 

S. cerevisiae, and the ER-positive and ER-negative samples, respectively. Due to sample 

size biases in the breast cancer data set, the gene-gene pair correlations in the ER-positive 

class were estimated by repeatedly sampling 77 chips randomly and taking the final 

average of gene-gene pair correlations. Lastly, to ensure that the gene-gene pair 

correlations have a normal distribution and stable variance, the pathway correlation 

profiles were transformed using the Fisher transformation. 

3.1.6 Pathway ranking 

The derived pathway correlation profiles were used to rank the pathways based on most 

significant perturbation for each condition. In order to quantify the differences in 

correlation of specific gene-gene pairs between two conditions, the pathway perturbation 

was considered the average of these changes in correlation. Initially, a paired t-test was 

performed where each gene-gene pair correlation at one condition was directly compared 

to the corresponding correlation under the other condition. The paired t-test between 

condition (1) and condition (2) follows: 

 d = F(! (1)1,2 )!{ F(! (2)1,2 ),…,F(!
(1)
i, j )!F(!

(2)
i, j ),…,F(!

(1)
k!1,k )!F(!

(2)
k!1,k ) }  
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where d is the paired differences in Fisher transformed gene-gene pair correlations, 

! 

d  is 

the sample mean of the differences in transformed gene-gene pair correlations, 

! 

sd  is the 

standard deviation of d, and n is the number of gene-gene pairs in the pathway. Due to a 

bias towards pathways of larger size, bootstrapping was then implemented separately in 

order to estimate the average change in gene-gene pair correlation for each pathway. For 

this, 100 gene-gene pairs were randomly sampled from each pathway and the average 

change in gene-gene pair correlations was calculated. From these samplings, the mean 

change in gene-gene pair correlations can be estimated using a z-score. We then 

combined the p-values from the Student’s t-test analysis and bootstrapping, correct for 

multiple testing by using a Benjamini correction, and rank the pathways by corrected p-

values. In particular, the p-values from the bootstrapping process remove the biases due 

to sizes of pathways. This method differs from the standard gene expression analysis in 

two ways: (1) we utilize all biological replicates as opposed to assessing the mean 

expression of individual genes, and (2) we calculate the changes in gene-gene correlation 

between conditions rather than calculating a change in expression between conditions.  
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3.2 Result: Rank pathways by significance of perturbation 

3.2.1 Pathway ranking 

Pathways were ranked based on their Benjamini corrected p-values that test if there is a 

significant change in the gene-gene pair correlations between two samples. Those 

pathways with a positive mean difference in correlations show that the gene-gene pair 

correlations from the treatment samples are on average higher than those gene-gene pair 

correlations derived from the normal samples. Conversely, those pathways with a 

negative mean difference show that there is a decrease in the pathway’s correlation 

profile under the treatment conditions. Table 1 and Table 2 show the top ranking 

pathways from the E. coli data set when comparing pH 8.7 to an ideal pH 7, and the 

breast cancer data set when comparing ER-positive to ER-negative, respectively (full 

tables in Supplemental Tables 1-3).  

There are 24 significantly perturbed pathways in the E. coli data set when looking at both 

pH 8.7 and pH 5 compared to the ideal pH 7 (Benjamini corrected p-value <0.01). The S. 

cerevisiae pathway mean difference and adjusted p-values were also calculated for the 

five time points compared to the control group (full results in Supplemental Table 2). 

There are 16, 23, 21, 23, and 19 significantly perturbed pathways when comparing the 

desiccation, at 0 (dry), 15, 45, 90 and 360 minutes, to the control group, respectively 

(Benjamini corrected p-value <0.01). In the breast cancer data set, the pathway 

correlation profile method identified 33 pathways as statistically perturbed when 

comparing ER-positive to ER-negative patient samples (Benjamini corrected p-value 

<0.01). 
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As a comparison, a Gene Set Enrichment (GSE) analysis using DAVID was also 

performed [41] and the most significant KEGG pathways [39] are reported in Table 1 and 

Table 2 for the E. coli and breast cancer data sets. Of the top 15 pathways reported from 

DAVID for the E. coli data, 20% overlapped with those deemed significantly perturbed 

from the pathway correlation profile analysis. This resulted in the pathway correlation 

profile method making numerous novel predictions for perturbed pathways that were not 

previously discovered using GSE methods such as DAVID. For the breast cancer data 

set, no pathways were found in common between the two methods. 



 
 

Table 1. Comparison between DAVID Gene Set Enrichment Analysis and Pathway Correlation Profile analysis of E. coli 

pH data set at pH 8.7 compared to ideal pH 7. 

Pathway Correlation Profile DAVID Gene Set Enrichment 
KEGG 

ID 
Pathway Name Mean 

Difference 
p-value* KEGG 

ID 
Pathway Name p-value* 

ecj00780 Biotin metabolism 0.549 6.46E-20 ecj00230 Purine metabolism 1.27E-07 
ecj00523 Polyketide sugar unit biosynthesis 0.688 3.09E-16 ecj00190 Oxidative phosphorylation 2.05E-07 
ecj01040 Biosynthesis of unsaturated fatty acids 0.590 2.02E-14 ecj00240 Pyrimidine metabolism 1.03E-06 
ecj00230 Purine metabolism 0.186 1.71E-13 ecj00340 Histidine metabolism 3.53E-05 
ecj00790 Folate biosynthesis 0.445 6.28E-07 ecj00020 Citrate cycle (TCA cycle) 1.96E-04 
ecj00632 Benzoate degradation via CoA ligation -0.516 6.89E-06 ecj00620 Pyruvate metabolism 1.99E-04 
ecj00053 Ascorbate and aldar 0.452 5.23E-05 ecj00500 Starch and sucrose metabolism 4.36E-04 
ecj00380 Tryptophan metabolism -0.547 7.69E-05 ecj00670 One carbon pool by folate 2.81E-03 
ecj00900 Terpenoid backbone biosynthesis 0.462 4.54E-04 ecj00650 Butanoate metabolism 4.10E-03 
ecj00471 D-Glutamine and D-glutamate 

metabolism 
0.413 5.35E-04 ecj00040 Pentose and glucuronate 

interconversions 
4.20E-03 

ecj00020 Citrate cycle (TCA cycle) -0.246 5.85E-04 ecj00010 Glycolysis / Gluconeogenesis 6.74E-03 
ecj01053 Biosynthesis of siderophore group 

nonribosomal peptides 
0.460 5.85E-04 ecj00030 Pentose phosphate pathway 7.65E-03 

ecj01110 Biosynthesis of secondary metabolites 0.039 6.64E-04 ecj00052 Galactose metabolism 1.10E-02 
ecj00740 Riboflavin metabolism 0.526 1.05E-03 ecj00632 Benzoate degradation via CoA ligation 2.27E-02 
ecj00450 Selenoamino acid metabolism 0.433 1.12E-03 ecj00250 Alanine, aspartate and glutamate 

metabolism 
3.03E-02 

Pathway rankings based on adjusted p-values. Those pathways with positive mean differences show that the gene-gene pairs on average have a 

higher correlation at a stressed pH, and a lower correlation at an ideal pH. *: Benjamini correction. 

!
"
#



 
 

Table 2. Comparison between DAVID Gene Set Enrichment analysis and Pathway Correlation Profile analysis of the 

human breast cancer data set. 

Pathway Correlation Profile DAVID Gene Set Enrichment 
KEGG 

ID Pathway Name 
Mean 

Difference p-value* 
KEGG 

ID Pathway Name p-value* 
hsa03040 Spliceosome -0.0412 5.83E-30 hsa05219 Bladder cancer 0.004 

hsa04080 
Neuroactive ligand-receptor 
interaction -0.0367 6.48E-22 hsa05200 Pathways in cancer 0.024 

hsa03010 Ribosome 0.0382 2.74E-17 hsa04110 Cell cycle 0.069 
hsa04514 Cell adhesion molecules (CAMs) 0.0298 1.63E-12 hsa04062 Chemokine signaling pathway 0.076 
hsa00061 Fatty acid biosynthesis -0.1712 3.32E-12 hsa04115 p53 signaling pathway 0.075 
hsa00982 Drug metabolism - cytochrome P450 -0.058 4.79E-09 hsa00380 Tryptophan metabolism 0.063 
hsa00140 Steroid hormone biosynthesis -0.088 4.49E-08 hsa05215 Prostate cancer 0.058 
hsa04060 Cytokine-cytokine receptor interaction 0.0152 5.41E-07 hsa05222 Small cell lung cancer 0.087 
hsa05330 Allograft rejection -0.0452 7.69E-07 hsa00010 Glycolysis / Gluconeogenesis 0.400 

hsa00980 
Metabolism of xenobiotics by 
cytochrome P450 -0.059 8.55E-07 hsa04144 Endocytosis 0.387 

hsa03050 Proteasome -0.0451 9.40E-07 hsa04512 ECM-receptor interaction 0.365 
hsa00232 Caffeine metabolism -0.1427 1.32E-06 hsa04114 Oocyte meiosis 0.375 
hsa04740 Olfactory transduction 0.0395 1.50E-06 hsa04510 Focal adhesion 0.362 

hsa05322 Systemic lupus erythematosus 0.0171 3.46E-06 hsa04960 
Aldosterone-regulated sodium 
reabsorption 0.349 

hsa04142 Lysosome -0.0174 2.86E-05 hsa00330 
Arginine and proline 
metabolism 0.360 

Pathway rankings based on adjusted p-values. Those pathways with positive mean differences show that the gene-gene pairs on average have a 

higher correlation in ER-positive patient samples and a lower correlation in ER-negative patient samples for that pathway. *: Benjamini 

correction.

21 
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3.2.2 Pathways perturbed in E. coli 

After our pathway correlation profile analysis, the E. coli metabolic pathways were 

ranked by p-values (the top 15 significant pathways shown in Table 1; full pathway 

results provided in Supplemental Table 1). Those pathways with a mean difference 

greater than zero show an increase in gene-gene pair correlations under the stressed pH 

8.7 when compared to an ideal pH 7. 

When comparing E. coli at pH 8.7 against the ideal pH 7, a majority of the significant 

pathways (19 out of 24) show an increase in gene-gene correlations during the basic 

environment (p-value < 0.01). Similarly, when comparing pH 5 to the ideal pH 7, only 18 

pathways out of the 24 significantly perturbed pathways show this increase in gene-gene 

correlations under these conditions. In fact, only 14 pathways in common are significant 

under both stressed conditions, when compared to the ideal pH.  

The Biotin Metabolism pathway (ecj00780) was the top ranked pathway based on 

perturbation when comparing the samples at pH 8.7 with those at pH 7. The kernel 

smoothed density graphs of the pathway correlation profiles at pH 5, pH 7, and pH 8.7 

from the Biotin Metabolism pathway are shown in Figure 3a. The pathway correlation 

profile at pH 8.7 (in blue) shows an overall increase in untransformed gene-gene pair 

correlations within the pathway, suggesting a convergence towards a more consistent 

profile of the pathway during this stress. There is minimal difference between the 

pathway correlation profiles for this pathway at pH 5 and pH 7, also supported by the 

non-significant p-value. In the analysis, the Fisher transformed pathway correlation 
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profiles for the Biotin Metabolism pathway under each condition were directly compared 

(Figure 3b). 

 

Figure 3. Pathway correlation profiles for Biotin Metabolism Pathway (ecj00780) in 

E. coli. 

(a) Pathway correlation profile kernel density smoothed graphs before fisher 

transformation of the Biotin Metabolism Pathway. (b) Pathway correlation profile 

kernel density smoothed graphs after fisher transformation of the Biotin Metabolism 

Pathway. (pH 8.7: blue, pH 7: black, and pH 5: red). 

 

3.2.3 Pathways perturbed in S. cerevisiae 

Our pathway correlation profile method compared the S. cerevisiae treatments 

(desiccated and four rehydration time points) to the control samples. Both the metabolic 

and non-metabolic pathways were ranked based on Benjamini corrected p-values. 

Complete final pathway results are in Supplemental Table 2. When looking at the time 

series data, a few trends can be identified. Three pathways show a statistically significant 
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increase in correlation while desiccated, and no significant changes in gene-gene 

correlation throughout rehydration. Six pathways show the most significant decreases in 

gene-gene correlation after 360 minutes of rehydration, and less significant decreases in 

pathway correlation at all other time points. These pathways, including the DNA 

replication and mRNA Surveillance pathway, show a trend towards an uncorrelated state 

as the rehydration process progresses (i.e. more negative mean difference). Seven 

pathways show significant perturbation at all time points when compared to the control 

sample. Of these, only the Ribosome pathway shows a convergence towards a more 

correlated state during all the time points. The untransformed pathway correlation 

profiles for the Ribosome pathway (sce03010) are shown in Figure 4b. The profile for 

the control sample shows a more random distribution of correlations; whereas the profiles 

for all the time points of rehydration and the desiccated sample show a strong skew 

towards a highly correlated state. Figure 4c demonstrates the pathway correlation profile 

distributions approaching normal after the Fisher transformation. 

3.2.4 Pathways perturbed in Breast Cancer 

Our pathway correlation profile analysis was performed on the ER-positive/ER-negative 

breast cancer data set and both the metabolic and non-metabolic pathways were ranked 

by adjusted p-values (top 15 significant pathways shown in Table 2; full pathway results 

provided in Supplemental Table 3). In total, 33 out of 188 pathways were ranked as 

significantly perturbed (Benjamini corrected p-value < 0.01) and 70% of these pathways 

show increases in gene-gene correlation in the ER-negative patient samples when 

compared to those from ER-positive patient samples. 
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!

Figure 4. Pathway correlation profiles for Ribosome Pathway (sce03010) in S. 

cerevisiae. 

(a) Gene expression level plots of the Ribosome Pathway (b) Pathway correlation profile 

kernel density smoothed graphs before fisher transformation of the Ribosome Pathway. 

(c) Pathway correlation profile kernel density smoothed graphs after fisher transformation 

of the Ribosome Pathway. (Control: black, 0 minutes: red, 15 minutes: blue, 45 minutes: 

green, 90 minutes: yellow, and 360 minutes: magenta). 

!

The Spliceosome pathway (hsa03040) and the Neuroactive Ligand-Receptor Interaction 

pathway (hsa04080) were ranked as most perturbed when comparing the receptor status 

groups. Both of these pathways show an average decrease in gene-gene pair correlations 

when comparing ER-positive to ER-negative patient samples. Due to the larger variations 

among patients in cancer data sets than those in single-cell microbes (E. coli and S. 
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cerevisiae), the gene-gene pair correlations are smaller in magnitude. Thus, the mean 

difference of the pathway is smaller, when compared to more controlled data sets of E. 

coli and S. cerevisiae.  

3.3 Discussion 

Our pathway correlation profile method relies on the assumption that non-significant 

genes/pathways have a random correlation as their background “noise.” To show that a 

pathway is perturbed (i.e. activated or repressed), we need to show that the pathway no 

longer maintains a random gene-gene correlation profile but rather takes on a more 

convergent profile. This convergence could be either towards a coherently regulated 

state, as indicated by positive changes in correlations, or a dysregulated state, as indicated 

by negative changes in correlations. Final interpretations of the correlation profiles are 

likely to depend on the gene expression trends within the pathway. 

A majority of the top 15 most significant E. coli pathways under basic conditions, when 

ranked by p-value, show an increase in correlation under the extreme conditions. This 

increase in correlation suggests that those pathways have a more consistently regulated 

system under these conditions when compared to normal; hence these pathways are likely 

to be universally activated or repressed in a highly coordinated manner. As for the acidic 

conditions, a majority of the 24 significant pathways show an increase in pathway 

correlation profiles, suggesting many pathways require activation/coordination of their 

expression under stressful conditions. 
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The increase in gene-gene pair correlations of the Biotin Metabolism pathway in E. coli 

at a pH of 8.7 (Figure 3), when compared to the ideal pH 7, suggests this pathway is 

activated at pH 8.7 and converges to a more correlated state. Biotin is a relatively 

unstable molecule in alkaline conditions [42], and in E. coli the majority of the genes in 

the Biotin Metabolism pathway are part of the bio-operon [43]. With a decrease in the 

stability, and presumably therefore the abundance of biotin under alkaline conditions, 

there is increased expression of the bio-operon. Since these genes are organized as an 

operon, increase in expression of one gene results in a coordinated increase in expression 

of the other genes, which can be quantified through increases in gene-gene correlations. 

This is confirmed by the results from the pathway correlation profile method which show 

an increase in gene-gene pair correlations at pH 8.7 compared to pH 7 (Figure 3a,b, 

Figure 6). Moreover, there is an increase in gene expression at pH 8.7, when compared 

to the other pHs (Figure 5). 

 In the S. cerevisiae data set, there were varying changes in pathway correlation profiles 

throughout the time points within the experiment. At the time of desiccation, 16 pathways 

had significantly different pathway correlation profiles from those in the control 

(corrected p-value < 0.01). Of these, eight pathways have a decrease in gene-gene 

correlations, and eight show an increase in gene-gene correlations, including the 

Ribosome pathway (sce03010) and Cell Cycle in Yeast (sce04111). Of these eight 

pathways, only two show this significant increase in pathway correlation profiles at the 

time of desiccation and no significant changes during rehydration (Cell Cycle in Yeast 

and Nucleotide Excision Repair). These two pathways, in essence, show increases in 

consistency of regulation at the time of desiccation with subsequent non-regulation 
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during rehydration. This suggests that these pathways were necessary for cell survival at 

the time of desiccation but were not necessary throughout the rehydration process. 

!

Figure 5. Heatmap of the gene expression for those genes in the Biotin Pathway 

(ecj00780) in E. coli under three pH conditions. 

Heatmap and clustering of genes are based on gene expression signal. Rows are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; red: negative z-normalized expression level) 
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!

!

Figure 6. Heatmap of pathway correlation profiles for Biotin Metabolism Pathway 

(ecj00780) in E. coli under each of the three pH conditions, respectively. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

and columns represent genes. (Yellow: higher correlation values; red: lower correlation 

values. Note: the red-yellow range is relative to each individual heatmap. See Figure 3 for 

reference on ranges of correlation values.) 
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A significant increase in pathway correlation suggests: 

1. the cells in the sample taken are a more homogeneous set of cells than those in the 

control sample; and/or  

2. the pathway shows a more stable and consistent expression profile among the 

genes involved in this pathway, such as a regulated pathway. 

These hypotheses can be shown through the Yeast Cell Cycle and the Ribosome 

pathways, respectively. 

A more homogenous population of cells will reduce the biological variation in gene 

expression from positive signals, i.e., there is a stronger relationship between gene 

expression and phenotype [44]. According to Singh et al. the cells remained in the G0/G1 

phase, or in a “holding pattern” at the time of desiccation and throughout the rehydration 

process [45]. The increase shown in the Cell Cycle pathway correlation at the time of 

desiccation suggests that there is an increase in pathway regulation stemming from a 

decrease in gene expression variation within this pathway. These results, together with 

the coincidence in cell cycle timing, suggest a more homogeneous population of cells. 

Genes that are working together show increases in gene co-expression and coalesce into a 

more synchronous pathway [46]. The Cell Cycle pathway shows this more stable and 

consistent pathway correlation profile among the genes involved in this pathway. Besides 

showing a significant increase in correlation while desiccated, this pathway shows no 

significant changes at the onset of rehydration; however, it then shows a progressive 

move towards convergence to a more correlated state as the rehydration processes 
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progressed, though still not significant. During this “holding pattern” time from 

desiccation through rehydration, the Cell Cycle pathway may not need to be orchestrated 

since the cells do not progress through the cell cycle. Instead, these genes show a more 

random background profile as would be expected from an unregulated pathway.  

In contrast to the increase in pathway correlation of the Cell Cycle pathway, the DNA 

Replication pathway (sce03030) shows a significant decrease in gene-gene correlations at 

desiccation and at subsequent rehydration time points. Given that the cell population at 

these time points is held in the G0/G1 phase and not the S phase, there is no DNA 

replication occurring. All of this taken together suggests that the DNA Replication 

pathway is not essential for cell survival during the desiccation and rehydration, and is 

therefore dysregulated. 

The Ribosome pathway (sce03010), on the other hand, shows an increase in pathway 

correlation profile at all time points compared to the control. These positive correlation 

changes suggest that the pathway is regulated at all time points. This regulation 

(deactivation) can be shown through the strong, and nearly universal, decreases in gene 

expression within this pathway (Figure 4a). For all time points, including desiccation and 

throughout rehydration, the 132 genes in this pathway show a decrease in expression, 

averaging greater than 4-fold change when compared to the control sample’s expression 

profile. Given this pathway is regulated at all time points, identifying modules/clusters of 

genes that are coordinately regulated at each time point is important in understanding the 

pathway dynamics. Using a heatmap of the gene-gene pair correlations (Figure 7), we 

can cluster the genes at each time point. Through these heatmaps, we can show that there 
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are strong and dynamic clusters of genes that co-express together at each particular time 

point suggesting varying modules of regulation that are differentially activated at each 

time point. 
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!!

Figure 7. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(sce03010) in S. cerevisiae under each of the three pH conditions, respectively. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

and columns represent genes. (Yellow: positive correlation; red: negative correlation) 
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Just over half of the S. cerevisiae pathways, however, showed no significant changes in 

pathway correlation profiles throughout the desiccation and rehydration process (based 

on corrected p-values). These pathways, including many metabolic pathways, are likely 

to have not changed in functional regulation or are not essential for the cell’s survival 

during these times. It follows that the metabolic pathways are necessary to function while 

the cell is still alive, and drastic changes in these pathways could result in cellular death.  

In contrast, 7 out of 88 pathways (8%) show a significant change in gene-gene correlation 

during all time points of the experiment when compared to the control sample. All of 

these pathways, except the Ribosome pathway, show a decrease in gene-gene correlation 

throughout the desiccation and rehydration process. This decrease in gene-gene pair 

correlations could infer that these pathways are necessary for cell survival and/or 

proliferation under normal conditions, but once stresses are induced, these pathways are 

no longer required to be regulated during duress.  

In comparing our method to the well accepted DAVID gene set enrichment method [41], 

there was some concordance between results on the E. coli pH 8.7 data. With 20% of the 

top 15 pathways in common, our method identifies not only significant pathways that 

would have been previously discovered given these experimental conditions, but also 

uncovers 12 additional pathways that would not previously have been investigated. The 

gene-gene pair correlations allow for an alternative perspective on pathway perturbation 

and the utilization of biological replicates independently, therefore identify significant 

pathways through different assumptions. The folate biosynthesis pathway (ecj00790), one 

of these 12 novel predictions, shows an increase in gene-gene pair correlations when 
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comparing pH 8.7 to the control pH for E. coli (Figure 8,Figure 9). Within this pathway, 

a majority of the genes show small increases in gene expression under the basic 

conditions. Due to none of these increases in gene expression being statistically 

significant, this pathway was not reported in DAVID, a standard GSE method. It has 

been shown in selected species of lactic acid bacteria that higher pHs allow for increases 

in folate levels, suggesting more efficient folate biosynthesis under these conditions [47]. 

Similar explanations about folate biosynthesis could be inferred for E. coli under basic 

conditions. By exploring the data through a different perspective, i.e., our pathway 

correlation profiles, we can identify new pathways that have the potential to be involved 

in the condition and further add insight into explaining the biological mechanisms that 

occur within the cell when stressed at pH 8.7. 

!

Figure 8. Pathway correlation profiles for the Folate Biosynthesis Pathway 

(ecj00790) in E. coli. 

Pathway correlation profile kernel density smoothed graphs before fisher transformation 

of the Folate Biosynthesis Pathway. (pH 8.7: blue, pH 7: black, and pH 5: red). 
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!

Figure 9. Heatmap of pathway correlation profiles for the Folate Biosynthesis 

Pathway (ecj00790) in E. coli under each of the three pH conditions, respectively. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

and columns represent genes. (Yellow: higher correlation values; red: lower correlation 

values. Note: the red-yellow range is relative to each individual heatmap. See Figure 8 

for reference on ranges of correlation values.) 

!

The pathway correlation profile method was used to analyze a breast cancer estrogen 

receptor data set. When comparing the results from our method with those from the 

DAVID gene set enrichment method, no pathways were found in common. In fact, only 
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two pathways were deemed significant when using DAVID (Benjamini adjusted p-value 

< 0.01). The discordance in predictions between our method and the DAVID method is 

due to the different assumptions regarding pathway perturbation as well as the DAVID 

method having a bias towards larger pathways, whereas our method tries to reduce 

pathway size biases. As a result, we can make predictions of perturbation that are 

independent of size.  

Wang et al. reported that their gene signature for differentiating ER-positive from ER-

negative patients included pathways involved in cell death, cell cycle and proliferation, 

DNA replication and repair, and immune response [38]. The pathway correlation profile 

did in fact find perturbation in the DNA Replication pathway and the Cell Cycle pathway 

(p-value <0.05; Supplemental Table 3), and so did DAVID. The pathway correlation 

profile method found the Neuroactive Ligand-Receptor Interaction pathway (hsa04080) 

perturbed in breast cancer, but DAVID found this pathway non-significant. Within this 

pathway, PTGER3 is involved in many of the largest changes in gene-gene correlations. 

Though PTGER3 has minimal change in gene expression, the average change in Fisher 

transformed gene-gene correlations between this gene and all other genes in the pathway 

is 0.34, with increases in gene-gene pair correlations in ER-negative patient samples. 

Further validation is needed to show the relation between PTGER3 and estrogen receptor 

status in breast cancer. 

Here, we have used a pathway correlation profile method to identify perturbed pathways 

in E. coli, S. cerevisiae, and a human breast cancer data set. Our method takes a global 

approach to analyzing gene expression data for identifying pathway perturbation. First, 
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we take advantage of the prior knowledge of pathway members and use this to efficiently 

and effectively analyze the data. Second, we no longer rely on single gene involvement to 

identify significant pathways; rather, we look at the overall relationship between genes 

within a pathway and determine the level of perturbation based on changes in gene-gene 

relations, regardless of a specific gene’s expression profile. Third, our method exploits 

the biological repeats of gene expression data, while existing methods often take an 

average of the repeats without using the data explicitly. Lastly, our method is more robust 

and less influenced by the inherent noise that comes from microarrays. This method can 

also be adapted for additional pathway databases, such as Reactome [48], TRANSPATH 

[49], and pre-defined gene ontologies, as well as alternate data platforms, such as RNA-

seq [50].   
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4 Chapter 4: Ribosome Pathway 

4.1 Introduction 

The Ribosome is essential to cell survival; this protein complex is responsible for the 

translation process from RNA to protein [51]. For all species, this complex is made up of 

two subcomponents, a large and small subunit. In the ribosomal complex, there are three 

binding sites that facilitate protein translation: the aminoacyl, peptidyl, and exit [52]. 

Through these sites, the ribosome, mRNA and tRNA work together to accurately 

translate the protein as well as assist in the protein translocation. When comparing 

prokaryotes and eukaryotes, the structure of the ribosome complex have minimal 

structural differences [51]. Exploiting these small deviations between species-specific 

ribosomes provide weaknesses ideal for targeted therapeutics, for example antibiotics 

[53,54,55].  

By gaining a more global understanding for the regulation of the Ribosome genes, we can 

learn new insights into possible mechanisms of cell survival. With these insights, we can 

approach disease understanding from a new perspective, identify potential targets for 

therapeutics, and decipher how some samples/species survive under selective conditions 

while others do not. 

It is not a new concept to consider pathways evolving in concordance with species 

evolution, especially with respect to metabolic pathways [56,57,58,59,60]. Similar 

studies have also looked at signaling pathway adaption over time [61]. In most instances, 

these pathways evolve in a modular fashion. Maintaining groups of genes that evolve 

together allows for a more coordinated method of regulation. By expanding the idea of 
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pathway evolution via this modular structure, we can utilize these units of regulation as a 

means to explain pathway dynamics for different tissues and experimental conditions. 

Moreover, we can use our pathway correlation profiles to help identify these modules, or 

sub-pathway structures throughout various tissues and experimental conditions. 

Here, we used the developed pathway correlation profiles in order to characterize the 

Ribosome pathway under various normal tissues followed by experimental conditions in 

E. coli. We hypothesize that there is tissue/condition specific regulation of the Ribosome 

Pathway, thereby resulting in a module structure of regulation to the pathway. It is not an 

unfamiliar concept to consider tissue specific regulation of the Ribosome complex, as 

previously identified by Ramagopal and Ennis [62]. This approach results in the 

identification of sub-pathways which can better explain the adaptations of the Ribosome 

complex in differential tissues and conditions. 

4.2 Data 

To better understand the Ribosome Pathway, we have used data from two species, human 

and E. coli. Six human data sets of normal tissue types were downloaded from the GEO 

website and used in a meta-analysis to characterize the human Ribosome Pathway: skin 

[63], breast [64], brain [65], b-cell [66], ovary [67] and kidney [68]. The skin data set had 

13 samples and the experiment investigated differences between normal skin tissue and 

psoriatic plaques. The breast data set looked into changes in gene expression patterns of 

normal tissue samples taken from tumor patients and cancer-free prophylactic 

mastectomy patients, and the 18 normal samples from the cancer-free prophylactic 

mastectomy patients were used. For the brain tissue data set, 31 samples were collected 
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post mortem. Lastly, the b-cell, ovary and kidney had 11, 4, 5 samples, respectively, and 

were each from experiments that interrogated their corresponding cancers. 

All these data sets used the Affymetrix HG-U133A platform, and were analyzed 

independently of each other. Each data set was individually processed using RMA to 

normalize the gene expression and resulted in log expression values. The expression data 

was then used to derive the pathway correlation profiles for each of the KEGG pathways. 

4.3 Results and Discussion 

Understanding a pathway starts with looking at the gene expression of those genes within 

the pathway. A heatmap of the gene expression for the Ribosome Pathway is shown in 

Figure 10. When completing the hierarchical clustering on tissue types, all the samples 

from one tissue type cluster together, with the exception of one kidney sample that 

clusters with brain. On average, the skin samples have higher expression levels of all 

Ribosomal genes than any other tissue type. This increase in skin ribosomal gene 

expression, when compared to the other tissue types, could be a result of the increased 

turnover rate of skin cells. Since skin is a constantly renewing organ, these cells will 

consistently need to transcribe and translate genes, hence the increase in expression of the 

Ribosomal genes throughout cell growth and differentiation. 

 In contrast, the brain samples have decreased gene expression of most all of the 

Ribosomal genes, when compared to the other tissues. In the experiment for the normal 

brain tissue, samples were taken post mortem. As a result, these samples are very likely 

to be inactive cells that have minimal to no signaling occurring within. If there is minimal 

cellular activity, there will also be decreases in gene expression and translation. Thereby, 
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an increase in the expression of the Ribosomal genes is not necessary, since no new 

Ribosome complexes need to be established. 

However, the ovary, b-cell, and breast samples show varying up and down regulated 

genes within the Ribosome Pathway. Based on the sample hierarchical clustering, there is 

a tissue specific expression profile for those genes involved in the Ribosome pathway. 

For these tissue types, selective genes are up-regulated and down-regulated in each tissue, 

when compared across all tissue types. This is different from the skin tissue that was 

universally up-regulated and the brain tissue that was universally down regulated. Due to 

the varying direction of the gene expression, this possibly suggests that there is a tissue 

specific control over the expression of these genes. Alternatively, tissue specific genes 

could exist in the Ribosome pathway. 

Having tissue specific gene expression is not novel, as shown by "#$%&'()#*!+,-!'. [69], 

where they identified specificity of gene expression for various tissues due to a regulation 

of ribosomal proteins. The tissue specific expression patterns seen in the ovary, b-cell and 

breast tissue help to support the concept that ribosomal proteins are regulated, in order to 

impose additional post-transcriptional regulation on the system. When looking at the gene 

expression levels individually, we are able to determine that each tissue has its own 

expression pattern, but how and why these expression patterns change between tissues is 

still elusive. Moreover, gene expression alone is not responsible for pathway regulation, 

and in many instances a clear gene expression pattern for a pathway cannot be identified 

even for different tissues. An alternate perspective would be to assess the profiles of the 

gene-gene pair correlations for a given tissue type. 



 
 

44 

 

 

Figure 10. Heatmap of the gene expression for those genes in the Ribosome Pathway 

(hsa03010) in humans for various normal tissue data sets. 

Heatmap and clustering of genes are based on gene expression signal. Rows are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; red: negative z-normalized expression level) 
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By looking at the heatmaps for the pathway correlation profile of each of the normal 

tissues (Figure 11), several conclusions can be inferred. In addition to each tissue having 

a distinct expression profile, each tissue has its own correlation profile. The kidney 

samples have mostly positive gene-gene pair correlations and a few select genes that are 

negatively correlated with all the other genes except themselves. A pattern like this could 

suggest (1) those few select genes that are negatively correlated with majority of the 

pathway are part of a repressive complex that acts on the entire pathway, or (2) those few 

select genes are not expressed in the kidney tissue, and as a result have a negative gene-

gene pair correlation with the rest of the Ribosomal genes that are expressed in the 

kidney tissue. Either of the two options suggests that there is a specific type of Ribosomal 

regulation for the kidney tissue, which is different from any of the other tissues analyzed.  

The ovary pathway correlation heatmap, however, shows a strong checkerboard 

patterning. This suggests that there are more numerous groups of genes that work tightly 

in sync with each other; yet, these genes oppose other tight groups of genes which is 

shown through the off diagonal regions of negative correlation. This strongly alludes to 

this modular regulation pattern, where some genes are tightly regulated with each other, 

and other genes are not. In addition, this also supports the notion that by looking at the 

gene-gene pair correlation within a pathway, we can potentially extrapolate sub-pathways 

that are activated in this specific tissue. 
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Figure 11. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(hsa03010) in humans for each of the normal tissue data sets. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

and columns represent genes. (Yellow: positive correlations; red: negative correlations.) 

(a) Heatmap for normal B-cell. (b) Heatmap for normal brain. (c) Heatmap for normal 

breast. (d) Heatmap for normal skin. (e) Heatmap for normal ovary. (f) Heatmap for 

normal kidney. 
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In contrast, the skin, b-cell, brain and breast gene-gene pair correlation heatmaps show 

plaid patterns, where there are no strong groupings of genes within the profiles. This 

could be due to several reasons. These data sets had more samples, and as a result, the 

expected correlation values tended to decrease in magnitude due to an increase in 

variation of the gene’s expression. Because of these more muted correlation values, 

identifying a strong signal from the pattern is more challenging. Another possible reason 

for this lapse in a strong modular signal from these tissue types is that there is not a 

strong regulative control over this pathway in these tissues. The Ribosome is essential for 

cell survival, but the extent of the coordinated expression of these genes to ensure cell 

survival is unclear. Assuming the Ribosome is a non-essential pathway for cell survival, 

i.e. lacking a strong regulative control, a strongly regulated correlation pattern would not 

be expected. 

Clustering the genes based on gene-gene pair correlations for a given tissue type allows 

for identification of tissue specific correlation patterns. This shows which genes are 

working in tandem, and which genes are working against each other (i.e., repressive) for 

that tissue. However, this does not allow for a more global understanding of the pathway, 

with regards to multiple conditions or tissues. Alternatively to overcome this limitation, 

we can cluster the gene-gene pairs for each tissue type. From this approach, we now 

allow for the identification of pathway specific modules of regulation, as opposed to 

tissue specific modules of regulation. Via this approach, we can now see changes in the 

regulation of a pathway for different tissue types and potentially better understand how 

the pathway regulates itself.  
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Figure 12 shows the gene-gene pairs clustered for each of the six tissue types. Most 

notably, the kidney and ovary gene-gene pair correlations have a distinct profile, and in 

three clusters these two tissue types have opposite correlation values (i.e., when kidney 

has positive gene-gene pair correlations, the ovary has negative gene-gene pair 

correlations). A contradictory gene-gene pair correlation structure as that from the kidney 

and ovary could suggest tissue specific genes are involved in the ribosome. Knowing that 

previous studies have identified condition or developmental differences in expression of 

ribosomal genes [70], it can be interpolated that the same arises for different tissues, too.  

There are still tissue specific correlation biases in the other 4 tissues, though not as 

prevalent likely due to reasons previously noted. Interestingly, the gene-gene pair 

correlation heatmap of the brain tissue in Figure 11 shows two clusters of genes with 

correlated expression values. The same tissue type shows no distinct modules of 

regulation when viewed in Figure 12. In contrast, the skin tissue heatmap for the gene-

gene pair correlations Figure 11 does not show strong correlation clusters, but in Figure 

12, modules of regulation are revealed. By clustering the gene-gene pair correlations 

across all the tissue types, we can gain information from one tissue type about its 

regulation structure, and then infer that structure onto other tissue types that might not 

have as clear of a pattern for regulation. Overall, these tissue specific correlation profiles 

suggest that the pathway has a modular pattern of regulation, and as such, certain 

attributes of the pathway work in a coordinated manner in one tissue and an alternate 

fashion in other tissues. Further, by clustering the gene-gene pair correlations, as 

completed in Figure 12, we now have the ability for extracting potential sub-pathways 

within the Ribosome pathway itself. 
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Figure 12. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(hsa03010) in humans for each of the normal tissue data sets. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

represent normal tissue type and columns represent gene-gene pairs. (Yellow: positive 

correlations; red: negative correlations, cyan: actual correlation value.) 
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Figure 13. Venn diagram for select clusters of gene-gene pairs from the Ribosome 

Pathway (hsa03010) in humans. 

Venn diagram showing the number of genes present in each of three select clusters from 

the clustering of gene-gene pairs (See Figure 12). 

 

By clustering the gene-gene pair correlations across tissues, as opposed to clustering the 

gene expression values across tissues, we no longer force a gene into one cluster. This 

allows more flexiblity when trying to explain the dynamics of a pathway, besides the 

notion of being more consistent with biology. For example, it is possible for one gene to 

be involved in two different parts of a pathway or a member of two different protein 

complexes. When this gene is forced into one cluster, it no longer can be associated with 

all of its interaction partners, thereby missing potential and critical information. When we 

cluster with the pathway correlation profiles instead of the gene expression profiles, we 

can now assign a gene into a more proper number of clusters, and further identify all 

potential interaction partners from the data.  
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From the analysis done in Figure 12, we were able to identify three clusters of gene-gene 

pairs that have differential correlation patterns, especially in reference to the kidney and 

ovary tissue types. For each of these clusters, we isolated the set of genes that is inolved 

in the cluster of gene-gene pairs and found the overlap of genes within each of these three 

clusters (Figure 13). A majority of the genes from these three clusters (53 total) were 

present in each cluster, respectively. When considering the biology, these 53 genes 

present in each cluster are possibly the core proteins that constitute the ribosome 

complex, and the genes exclusive to particular clusters potentially could be the genes 

responsible for the tissue specific expression of the ribosomal proteins. 

However, more interesting are the genes that are present in just one of these clusters. 

From Cluster 1, RPS18 and RPS20 are present in this cluster and none of the other two 

clusters while RPL18A and RPS24 are present in only Cluster 4. These genes are likely 

to be the driver genes that establish these distinct pathway correlation profiles for each 

tissue and the 53 other genes that are present. An alternative view of this is that there is 

minimal intra-correlation between these 53 genes, and strong inter correlation between 

each of these 53 genes and those present in just one or two of the clusters. 

Understanding the pathway dynamics and regulation for a complex species like humans 

is difficult. Many pathways, especially the Ribosome Pathway, are present in simpler 

organisims, such as bacteria. It is in these species that we can really start to understand 

the modular design of pathways and how this relates to their regulation. In bacteria, many 

genes are organised in the genome by operons, or sets of genes that are transcribed in one 

transcript and subsequently processed into their individual genes post-transcriptionally. If 

a set of genes are truly part of the same module, then it is likely that these genes are part 
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of the same operon in the more primitive species. To determine the importance and 

revelance, we have applied the same approach to the E. coli pH data set previously used.

 

Figure 14. Heatmap of the gene expression for those genes in the Ribosome Pathway 

(ecj03010) in E. coli for three pH conditions, respectively. 

Heatmap and clustering of genes are based on gene expression signal. Rows are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; Red: negative z-normalized expression level) 

Row color bar: Black—pH7, Blue—pH8.7, Red—pH5) Column color bar: identify 

operons. 
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Figure 15. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(ecj03010) in E. coli for each of the three pH conditions, respectively. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

and columns represent genes. (Yellow: positive correlations; red: negative correlations; 

Row bar represents operon.) (a) Heatmap for pH7. (b) Heatmap for pH8.7. (c) Heatmap 

for pH5. 

 

The Ribosome Pathway in E. coli is tightly regulated to make only enough of each 

protein that it needs and have no excess. To accomplish this, many of the ribosomal 

genes are clustered into large operons, or sets of genes that are transcribed in one 

transcript. By being in the same regulation cluster, the intra-correlation of these genes 

should be high, when compared to genes that are not apart of this cluster. Moreover, these 
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gene clusters and operons should be a first insight into these modules of regulation from 

an evolutionary perspective.  

We classified each gene into an operon based on its relative location and direction of 

transcription in the E. coli genome. With this additional data, we plotted a heatmap of the 

gene expression levels for each of the Ribosomal genes under the three separate pH 

samples (Figure 14). From this, we can see that those samples from pH7 (denoted by 

black) cluster together with similar expression profiles and the samples from the pH8.7 

(blue) and pH5 (red) cluster within each other. This suggests that the Ribosome pathway 

has an expression pattern for normal conditions, and an alternate expression pattern for 

abnormal environmental stimuli, in this case a change in pH. In the case of the Ribosome 

Pathway, the type of stimuli seems not to have a huge effect on the expression profile, 

rather the presence of the stimuli is more important. 

When clustering the genes based on their expression profiles for each of the conditions, 

many of the genes from one of the largest operons (denoted in magenta) clustered 

together. This substantiates that the inclusion in an operon has a correspondence with the 

levels of gene expression. One gene, the SRA gene, did not cluster with any of the other 

genes. This gene, the Stationary-phase-induced ribosome-associated protein, is expressed 

only when the cells are in stationary phase, i.e., not replicating. The SRA gene is one of 

the few that are universally down-regulated in the normal pH7 and up-regulated under the 

stressed pHs. During these alternate pH conditions, the cell’s primary goal is survival and 

not replication. As such, the E. coli cells will remain in stationary phase, thereby 

expressing the SRA gene at greater levels. 
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Gene expression alone does not give us a good understanding about the dynamics of 

pathway regulation. A second dimensional analysis using the pathway correlation 

analysis is shown in Figure 15. Here, the pathway correlation profile for pH7 showed 

strong positive correlations with everything except the SRA gene. This once again 

confirms that the SRA gene has a negative correlation with all other genes under normal 

conditions, since these cells are not in stationary phase. At pH8.7, three distinct partitions 

arise, two of which have strong inter-partition negative correlations. This suggests that 

there are two groups of genes that work together, but have negative influences on each 

other. Interestingly, there is no strong operon bias towards these clusters in any of the 

three pH conditions. A possible reason that the correlation profiles do not align well with 

the operon profiles could be due to post-transcriptional processing rates, degradation rates 

as well as functional usage rates, especially in regards to the rRNA genes. 

Considering a third dimensional perspective, clustering on the gene-gene pair correlations 

for each of the three pHs, we can identify clusters of differential correlation patterns 

between each of the conditions (Figure 16). At pH7 there is not a strong negative 

correlation presence, likely due to the SRA gene. However, pH8.7 and pH5 have 

complimentary correlation patterns in several prominent partitions. This alternating 

correlation pattern, not seen at the gene expression level, suggests that there is a global 

Ribosomal response under stressing pHs, and each pH has its own, independent 

regulation pattern. This also confirms modules of regulation that were not present from a 

gene expression analysis. 
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Figure 16. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(ecj03010) in E. coli for each of the three pH conditions, respectively. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Columns 

represent normal tissue type, rows represent gene-gene pairs, and row bar represents 

operon. (Yellow: positive correlations; red: negative correlations) 
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4.4 Conclusion 

Through the pathway correlation profile analysis, we can now better characterize the 

pathway dynamics of the Ribosome pathway (03010). From our novel clustering 

approach, we no longer force one gene into one cluster, thereby establishing a clustering 

protocol that is more in line with the biology of pathway dynamics. Furthermore, we can 

now identify module specific genes that are most likely responsible for the different 

gene-gene pair correlation profiles, and therefore the regulation of that module. 

We further investigated the use of operons as a justification for the modules of regulation, 

i.e., sub-pathways. Though initially, there was no strong correspondence between 

operons and groups of genes working together, we cannot all together exclude the notion 

that operons are an initial framework for modules of regulation. A cross species 

comparison could be used to help confirm the connection between operons and modules 

of regulation, especially when comparing prokaryotes and eukaryotes. Preliminarily, 

when comparing sequence alone, alignments of select human ribosomal genes against the 

E. coli genome produce some strong sequence alignments. These toy alignments, 

however, did not align human ribosomal genes to E. coli ribosomal genes, rather to 

predicted genes. Nonetheless, showing a sequence conservation in few genes opens the 

door for an analysis that investigates the conservation of ribosomal function and 

regulation throughout the evolution of species. 

The additional uses shown here of the pathway correlation profiles, besides identifying 

and ranking pathways based on the significance of their perturbations, allow for more 

comprehensive studies of the biological context. The added perspectives that the 

approach gains have the potential for many important and relevant applications. With 



 
 

61 

more systematic approaches to studying pathways, i.e., a meta-analysis type approach, 

global understandings of pathways can result, as opposed to condition or disease specific 

views.  
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5 Chapter 5: Applications to colorectal cancer 

5.1 Introduction 

Understanding cancer as a disease and its progression is not trivial. In many instances, 

there is not one mishap, but a calamity of errors that ultimately results in cancer [71]. 

Moreover, as cancer progresses each stage takes on its own phenotype, especially as 

demonstrated by the trend towards personalized medicine [72]. In some instances, the 

stage can be determined morphologically, but more relevant is genotypic staging, since in 

the end it is the genotypic and expression behavior that dictate treatment, prognosis and 

outcomes. Due to the importance of genotypic staging, developing computational 

protocols that can better interpret the gene expression data already available is essential. 

Here, we complete a case example using colorectal data and focusing on the MAPK 

Pathway. 

The mitogen-activated protein kinase (MAPK) Pathway (hsa04010) is a signal 

transduction pathway that plays an important role in cell proliferation, differentiation, 

apoptosis, angiogenesis, and metastases. Due to its involvement in such vital cellular 

processes, it is essential that the entire system is in balance in order to prevent 

oncogenesis. In addition to being involved in these processes, the MAPK pathway also 

contains several known onco- and proto-oncogenes, including but not limited to c-myc, c-

fos, c-jun, Raf, and Ras [73,74]. The MAPK Pathway has been linked to colorectal 

cancer and therefore studied more extensively[73,75,76]. Due to this linkage between the 

MAPK pathway and cancer, we will focus our study on trying to identify regulative 

aberrations of the MAPK Pathway with respect to colorectal cancer.  
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We believe that as cancers progress from early stages to later stages, pathway regulation 

evolves and rewires. In addition, it has been shown previously that different cancers 

rewire pathways in different ways throughout oncogenesis [77]. Here, we utilize the 

pathway correlation profile method as a tool to try to characterize and understand the 

Ribosome and MAPK pathways through the progression of colorectal cancer from 

normal tissue, to polyps, through the four stages and finally ending with distant 

metastasis. From this approach, we can look into the dynamics of these two pathways for 

normal tissues, and see how and where the pathway correlations change during the 

disease progression. Lastly, we will end by showing how pathway correlation profiles can 

be used as a potential tool for identifying disease related network biomarkers. 

5.2 Data 

When studying disease progression, it is essential to use a data set with distinct disease 

states during the progression from normal to advanced disease. To accomplish this, we 

have used colorectal cancer for this case study [78]. Colorectal cancer has distinct stages 

morphologically [79] and large genomic changes throughout tumorigenesis [78,80]. Due 

to the distinct classification of patients, and the progressive changes throughout the 

disease progression, this data set is an ideal choice for a systematic pathway regulative 

dynamics analysis. 

Here, we have used a colorectal data set downloaded from GEO database (GSE41258) 

[78]. This study thoroughly investigates the progression of colorectal cancer, including 

normal colon tissue, samples from polyps, stage I, stage II, stage III, stage IV, metastasis 

to the liver and lungs, as well as normal liver and lung tissue for comparison. In total, the 

data set has 390 samples, with disease stage specific totals in Table 3. The cell line and 
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select other arrays were not used in this analysis. Once the gene expression data was 

obtained, RMA was used on each condition for normalization and background correction, 

and the pathway correlation method was used for each condition to make profiles for the 

Ribosome (hsa03010) and MAPK (hsa04010) Pathways as seen in Figure 17 and Figure 

18 respectively. 

Table 3. Allocation of samples for colorectal cancer data set. 

Condition No. of Samples 
Normal Colon 54 
Normal Liver 13 
Normal Lung 7 

Polyp 48 
Stage I 28 
Stage II 48 
Stage III 49 
Stage IV 57 

Liver Metastasis 47 
Lung Metastasis 20 

Cell Lines 12 
Others 7 
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Figure 17. Pathway correlation profiles for Ribosome Pathway (hsa03010) in 

humans for normal liver, lung and colon, polyp, stages I-IV of colorectal cancer, and 

metastasis to lung and liver data set. 

 

Figure 18. Pathway correlation profiles for MAPK Pathway (hsa04010) in humans 

for normal liver, lung and colon, polyp, stages I-IV of colorectal cancer, and 

metastasis to lung and liver data set. 
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5.3 Results and Discussion 

Completing microarray and gene expression analysis on cancer data sets is difficult due 

to the limitations on number of samples, increased variance within data types, 

combinatorial amounts of abnormalities that could cause the disease, and even incorrect 

classification of disease state. By reducing the number of variables, e.g., looking at a 

single pathway at a time, we can attempt to overcome these challenges in a systematic 

way. For this dissertation, I look into the regulative pathway dynamics of the Ribosome 

(hsa03010) and the MAPK (hsa04010) Pathways and how these dynamics change 

throughout the tumorigenesis of colorectal cancer. 

The Ribosome is essential for translation activities, and increased Ribosomal activity is 

expected in cancer cells due to increased cellular actions and differentiations [81]. Figure 

19 shows the relative gene expression levels for those genes in the Ribosome Pathway 

across all conditioned samples. Many of the normal colon, liver and lung samples show 

decreases in expression of the Ribosome genes, relative to the various stages of colorectal 

cancer. Alternatively, the polyp and four stages of colorectal cancer show universal 

increases in gene expression of the Ribosomal genes, relative to the normal tissue 

samples. Interestingly, however, numerous samples from the lung and liver metastasis 

samples show decreases in gene expression of this pathway. This observation is not 

consistent with the expectation for increased Ribosomal activity in all cancer cells. 

However, these results do suggest that there could be regulative changes during the 

process of metastasis, which result in less of a need for ribosomal expression.  

When considering the sample clustering completed in Figure 19, strong clusters of one 

condition type are not present, with the exception of two disjoint normal colon, normal 
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liver and liver metastasis clusters. This lack of strong stage and condition clustering 

suggests that the gene expression of the Ribosome Pathway does not differentiate the 

samples successfully, thereby not necessarily being a good predictor of staging for 

colorectal cancer.  

 

Figure 19. Heatmap of the gene expression for those genes in the Ribosome Pathway 

(hsa03010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 
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Heatmap and clustering of genes are based on gene expression signal. Columns are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; Red: negative z-normalized expression level) 

Row color bar: identify tissue type. 

 

The gene expression profiles for the genes in the Ribosome Pathway had minimal 

information, and were not successful in differentiating out the various stages of the 

cancer. By using the pathway correlation profiles for each stage, instead of the gene 

expression profile, then clustering based on the gene-gene pair correlations, we can use 

the data in a new and novel way (Figure 20). First, we look at the disease progression 

clustering of the columns in Figure 20, where we can see that all four stages of colorectal 

cancer cluster together, followed by the lung and liver metastasis. Metastasized cancer 

samples result after cells from the original tumor migrate to a new location, thereby 

maintaining many of the same genomic properties of the primary tumor, and not the same 

properties as the location of the metastasis’ normal tissue. This notion is supported in this 

data set; after clustering based on gene-gene correlations, the two metastatic samples 

clustered with the primary tumor samples. In addition, these two samples do not cluster 

with their respective normal tissue at the site of metastasis, i.e., lung and liver, further 

supporting the fact that metastatic samples are cells with genetic properties of the original 

tumor.  

Moreover, the hierarchical clustering shows that the normal colon and polyp samples’ 

gene-gene pair correlation profiles are most closely related. Studies have suggested that 

polyps are a precursor to colorectal cancer, without being cancer themselves. Having 

normal colon and polyp conditions cluster together show that the polyp resembles a 
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regulation profile closer to that of normal than to the cancer stages, thus supporting that 

the polyp is not cancerous and substantiating the colorectal cancer pre-cursor suggestions. 

Considering the clustering of the gene-gene pair correlation profiles across all the 

conditions, a majority of the gene-gene pairs have positive correlations, which has been 

seen numerous times for the Ribosome Pathway genes. This is likely due to the fact that 

this pathway encodes for a complex, in which the majority of the genes need to be 

expressed at similar levels, thus resulting in positive gene-gene pair correlations. 

Moreover, there are not as distinct of partitions as seen in the E. coli and human normal 

tissue samples from the previous chapter. Overall, the cancer samples have gene-gene 

pair correlations that are lower in magnitude. This muted nature of the pathway 

correlation profile for each stage is likely due to the increased variance of the patient 

samples, which is frequently seen in oncogenic data sets. However, several conclusions 

can still be made. The gene-gene pair correlation profiles of the normal lung and liver 

tissues are distinct, and in several clusters, there are opposite correlation profiles for the 

same gene-gene pairs, which is in accordance with previous results that suggest tissue 

specific regulation of pathways. The colon tissue derived profiles (i.e., normal colon, 

polyp, stages I-IV, and metastases) show similar correlation profiles, although each 

condition has its own distinct feature.  

Next, we divided the data into three partitions and isolated the genes involved in each 

partition so we can identify potential gene specific partitions (Figure 21). There were a 

total of 76 genes in the Ribosome Pathway, and 50 of these genes were present in each of 

the three partitions. Seeing 50 genes present in each of the partitions again suggests these 
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50 genes are more likely to be members of the core set of proteins for the ribosomal 

complex, i.e., expressed and present under all tissue types and conditions.  

 

Figure 20. Heatmap of pathway correlation profiles for the Ribosome Pathway 

(hsa03010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

represent gene-gene pairs and columns represent patient tissue types (from left: normal 
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lung, normal liver, polyp, normal colon, metastasis to lung, metastasis to liver, stage 1, 

stage 2, stage 3, stage 4). (Yellow: positive correlations; red: negative correlations, cyan: 

actual correlation value.) 

 

 

Figure 21. Venn diagram for select clusters of gene-gene pairs from the Ribosome 

Pathway (hsa03010) in humans for normal liver, lung and colon, polyp, stages I-IV 

of colorectal cancer, and metastasis to lung and liver data set. 

Venn diagram showing the number of genes present in each of three select clusters from 

the clustering of gene-gene pairs (See Figure 20). 

 

Two genes, however, were only present in one partition: ribosomal protein S21 (RPS21) 

and ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52). Ubiquitin is 

essential in directing proteins to the proteosome for destruction [51]. Abnormal ubiquitin 

signaling has been linked to several cancers, including colorectal cancer [82]. Due to this 

link with oncogenesis, ubiquitin and the ubiquitin networks have also been considered a 

target for many cancer therapy studies [83,84,85]. By identifying the ubiquitin related 
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gene as a member of just one cluster, this demonstrates that there is a tissue/condition 

specific regulation of this gene, with respect to the entire ribosomal complex, in 

colorectal cancer. As a result, this again could be a potentially targeted mechanism when 

considering alternative therapeutics for the treatment of colon cancer. 

Understanding the Ribosome Pathway is important because of its relatation to post 

transcriptional regulation and protein translation, both necessary steps for cellular 

survival. However, the MAPK pathway has also been linked to colorectal cancer and 

therefore studied more extensively [73,75,76]. Moreover, the MAPK Pathway is a signal 

transduction pathway known to be perturbed in many cancer types. By being a signal 

transduction pathway, as opposed to a protein complex driven pathway like the 

Ribosome, we have an added dimension when considering the biological implications of 

the results obtained. By using the pathway correlation profile as a tool to analyze the 

MAPK pathway, we can potentially identify alterations and abberations in the signaling 

of this pathway, thereby offering an additional perspective on the data and results. 

 



 
 

73 

 

Figure 22. Heatmap of the gene expression for those genes in the MAPK Pathway 

(hsa04010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 

Heatmap and clustering of genes are based on gene expression signal. Columns are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; Red: negative z-normalized expression level) 

Row color bar: identify tissue type. 
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Traditional gene expression analysis considers individual gene expression values for each 

of the samples. Figure 22 shows the gene expression for those genes in the MAPK 

pathway and for each sample in the colorectal cancer data set. The samples were 

clustered via hierarchical clustering based on their gene expression profiles as well as the 

genes. Each gene was z-normalized, whereby a green cell means that sample has higher 

expression levels of the gene compared to the rest of the samples, and the converse for 

red cells. Overall, there are not extreme changes in gene expression for those genes 

involved in the MAPK pathway. Even so, gene expression levels alone do not infer 

dysregulation of a pathway. 

However, more significantly is the clustering of the samples for the MAPK genes. 

Previously, when clustering the samples based on the genes from the Ribosome Pathway, 

there were few clear clustering of stages or tissue samples, with the normal colon being 

the most decisive. The MAPK Pathway shows strong groupings of normal colon (black), 

normal lung (brown), normal liver (grey), polyp (green), liver metastasis (teal), and lung 

metastasis (magenta). These tissue/condition related groupings suggest that the MAPK 

genes do have different expression profiles for each condition, and minimal differences 

within one data type. Additionally, the differential expression profile also encourages the 

use of the MAPK pathway as a discriminator of the stages of colorectal cancer. 
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Figure 23. Heatmap of pathway correlation profiles for the MAPK Pathway 

(hsa04010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 

Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows 

represent gene-gene pairs and columns represent patient tissue types (from left: normal 

lung, normal liver, polyp, normal colon, metastasis to lung, metastasis to liver, stage 1, 

stage 2, stage 3, stage 4). (Yellow: positive correlations; red: negative correlations, cyan: 

actual correlation value.) 
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Figure 24. Venn diagram for select clusters of gene-gene pairs from the MAPK 

Pathway (hsa04010) in humans for normal liver, lung and colon, polyp, stages I-IV 

of colorectal cancer, and metastasis to lung and liver data set. 

Venn diagram showing the number of genes present in each of three select clusters from 

the clustering of gene-gene pairs (See Figure 23). 

 

An alternative perspective on the MAPK Pathway considers the gene-gene correlations, 

and how these correlations change throughout the tumorigenesis. Figure 23 shows the 

clustering for the MAPK pathway based on gene-gene pair correlations over all tissues 

and conditions.  Like the clustering in Figure 20, the normal lung and liver tissues do not 

cluster with the result. However, the rest of the samples do not cluster as expected like in 

the Ribosome Pathway. For example, it is surprising that the polyp correlation profile 

cluster closer to stages II-IV, and not adjacent to the normal colon or even stage I. Again, 
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this confirms that under each stage, there exists a differential regulation profile for the 

MAPK pathway. 

In regards to the clustering of the gene-gene pairs in Figure 23, there are some strong 

partitions that aid in the differentiation of the tissue and condition correlation profiles. To 

better understand the gene-gene pair clustering, we partitioned the gene-gene pairs into 

six subdivisions, and selected four clusters from these partitions. When we decompose 

the genes involved in each cluster, we can see the overlap of genes present in each of 

these four clusters (Figure 24). Three out of the four clusters each independently contain 

one gene: neurofibromin 1 (NF1); nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 4 (NFATC4); and transforming growth factor, beta 1 (TGFB1). By 

being a strong influence in only one cluster, and not present in the others, these genes are 

likely to be strong regulative drivers for the MAPK Pathway at a specific disease stage 

time point. In fact, the NFAT family of transcription factors has been linked to several 

cancers and their progressions [86] and mutations in NF1 predisposes one to certain 

malignancies [87], due to its role in regulating RAS. There were also two sets of pairs 

that were present in only 2 clusters: MAP3K1 and MYC; FOS and SRF. Of these, both 

MYC and FOS are known oncogenes [73], MAP3K1 has been linked with breast cancer 

[88], and SRF is a transcription factor where increased expression has been seen in liver 

metastasis [89]. Recognizing these select genes that are strongly involved in just one or 

two clusters allows us to pinpoint potential genes that drive the abnormal signaling of the 

MAPK pathway at different stages of colorectal cancer. On top of that, seeing the 

involvement of these genes in other cancers buttresses our prediction that they are also 

involved in the progression of colorectal cancer. 
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If we look closer at the gene expression of these seven genes (Figure 25), we can find 

some interesting patterns. Firstly, when looking at SRF, we find decreased gene 

expression levels in the liver and lung metastasis, which is not consistent with what was 

reported by Choi et al [89]. A reason for this difference could have resulted because their 

experiment was assaying the protein expression, whereas this data is gene expression 

data. There is a marked decrease in expression of MYC for the normal samples, which is 

consistent given the oncogenic status of MYC. There is an increase in gene expression of 

NFATC4 in the later stages of colorectal cancer, but a sharp decrease in expression of 

this gene once metastasis has occurred. This increase in expression during the later stages 

is partially expected due to the role of NFAT with metastasis [90], however the decrease 

in expression once metastasis has occurred is not as expected. Lastly, NF1 shows 

decreased expression in the liver and lung metastasis samples. Taken together, these 

genes are again likely drivers of tumorigenesis and metastasis of colon cancer. 

The last group of interest in Figure 24 is a group of 12 genes that are only present in two 

of the four clusters: RPS6KA2, ELK4, TRAF6, MAPKAPK, PRKX, FGF13, H-RAS, 

PTPN7, MAP2K6, NTRK2, IL1B, TP53. Of these, the most notable are H-RAS and 

TP53, an oncogene and a tumor suppressor gene, respectively. If we consider their gene 

expression (Figure 26), we notice a general decrease in most all the gene’s expression in 

the lung metastasis samples. Also, we see increases in the gene expression of NTRK2, a 

tyrosine kinase receptor, and IL1B, a signaling protein, in normal colon and lung 

samples, but not normal liver. Further, we notice a decrease in TP53 in lung metastasis, 

however no strong change in gene expression in most all other samples. Alterations to the 

expression of signaling proteins and tyrosine kinase receptors can alter the signaling of 
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the MAPK pathway, as well as changes in oncogene and tumor suppressor genes will 

reinforce the aberrant signaling of this pathway. Taken together, these genes have the 

potential to be additional regulators of the MAPK pathway with respect to colon cancer. 

 

Figure 25. Heatmap of the gene expression for select genes in the MAPK Pathway 

(hsa04010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 
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Heatmap and clustering of genes are based on gene expression signal. Columns are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; Red: negative z-normalized expression level) 

Row color bar: identify tissue type. 

 

Figure 26. Heatmap of the gene expression for select genes in the MAPK Pathway 

(hsa04010) in humans for normal liver, lung and colon, polyp, stages I-IV of 

colorectal cancer, and metastasis to lung and liver data set. 
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Heatmap and clustering of genes are based on gene expression signal. Columns are 

normalized to show a more relative expression level compared to other samples. (Green: 

positive z-normalized expression level; Red: negative z-normalized expression level) 

Row color bar: identify tissue type. 

 

Further, we can look into the connectivity of the genes within each partition of the gene-

gene pair correlation clustering heatmap. When the hierarchical clustering of the gene-

gene pairs is divided into six partitions, five out of the size partitions each contain just 

one connected component, when considering each gene as a node and each gene-gene 

pair correlation as an edge. The sixth partition, however, contains seven connected sub-

components (Figure 27, Figure 28 and Figure 29). 

!

Figure 27. Network drawing of largest component from partition. 

Each node represents a gene and each edge represents a gene-gene pair correlation. 
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Figure 27 shows the largest component from this cluster of gene-gene pairs. Overall, 

there is a large group of genes that are correlated with each other, possibly suggesting a 

set of essential genes for the MAPK pathway. Expanding from the main cluster in this 

sub-component, there are some auxiliary genes that are correlated with just one or two 

other genes in the network. These auxiliary genes are not likely to be strong drivers of the 

pathway, rather passenger genes for the pathway. 

!

Figure 28. Network drawing of five component from partition. 

Each node represents a gene and each edge represents a gene-gene pair correlation. 
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601#&,'$7+-!E#4+*+&3!(6$7+!,)+(+!9+$+(!#$.2!1'6&!#55!46,)!#$+!#,)+&!9+$+3!'$%!$#,!
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Table 4. Table of genes involved in the five subcomponents from Figure 28. 

Gene Symbol Full Gene Name 

FGFR3 56@&#@.'(,!9&#4,)!5'7,#&!&+7+1,#&!H 

FGFR4 56@&#@.'(,!9&#4,)!5'7,#&!&+7+1,#&!I 

MAP3K11 06,#9+$:'7,6*',+%!1&#,+6$!?6$'(+!?6$'(+!?6$'(+!JJ 

MKNK2 BCD!?6$'(+!6$,+&'7,6$9!(+&6$+K,)&+#$6$+!?6$'(+!L 

CACNB2 7'.7680!7)'$$+.3!*#.,'9+:%+1+$%+$,3!@+,'!L!(8@8$6, 

RPS6KA5 &6@#(#0'.!1&#,+6$!MN!?6$'(+3!OP?Q'3!1#.21+1,6%+!R 

PLA2G12A 1)#(1)#.61'(+!CL3!9&#81!STTC 

EGF +16%+&0'.!9&#4,)!5'7,#& 

TAOK3 =C>!?6$'(+!H 

RAC1 &'(:&+.',+%!/H!@#,8.6$80!,#G6$!(8@(,&',+!J 
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!

Figure 29. Network drawing of one component from partition. 

Each node represents a gene and each edge represents a gene-gene pair correlation. 

 

The last partition, seen in Figure 29, shows a group of eight genes that are connected with 

each other, and not connected to the other genes in the cluster, based on gene-gene pair 

correlations. The list of these genes is present in Table 5. From these genes, we can see 

there are several protein kinases and onco- and proto-oncogenes. The MAP kinases are 

essential for the signaling of the MAPK pathway, and interestingly are not connected to 

eachother, rather transiently connected via JUND, a proto-oncogene. This transient 

connetion between the two MAP kinases shows that they are more consistently regulated 

with JUND than each other, potentially showing that the regulation of these kinases is 

more dependent on the expression of JUND. Also, by having three oncogenes in this sub-

component, there is added confidence that this set of genes is likely to be indicative for 

the tumorigenesis of colorectal cancer. As such, we propose that this set of eight genes 
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could potentially be used as a network biomarker for staging and predicting colorectal 

cancer. The correlation of these genes is distinct and separate from all other genes in the 

MAPK pathway, and by reducing the sample space to these eight genes, future 

experiments can be prioritized, and as a consequence performed more efficiently. 

Table 5. Table of genes involved in the subcomponent from Figure 29. 

Gene Symbol Full Gene Name 

RELA *:&+.!&+,678.#+$%#,)+.6#(6(!*6&'.!#$7#9+$+!)#0#.#9!C!;'*6'$< 

JUND U8$!Q!1&#,#:#$7#9+$+ 

MAP2K3 06,#9+$:'7,6*',+%!1&#,+6$!?6$'(+!?6$'(+!H 

MAP2K2 06,#9+$:'7,6*',+%!1&#,+6$!?6$'(+!?6$'(+!L 

ECSIT V/MT=!)#0#.#9!;Q&#(#1)6.'<!;+*#.8,6#$'&6.2!7#$(+&*+%!
(69$'.6$9!6$,+&0+%6',+!6$!=#..!1',)4'2(< 

NR4A1 $87.+'&!&+7+1,#&!(8@5'06.2!I3!9&#81!C3!0+0@+&!J 

FOS WXY!08&6$+!#(,+#('&7#0'!*6&'.!#$7#9+$+!)#0#.#9 

DUSP1 %8'.!(1+765676,2!1)#(1)','(+!J 

 

 

5.4 Conclusions 

During oncogenesis and tumorigenesis, many abnormalities arise within a cell, and the 

number of combinations of mutations and changes could potentially be innumerable. 

Such anomalies could consist of changes in gene expression, SNPs, protein mutations, 

fusion proteins, etc. Therefore, the identification of a specific aberration to associate to a 

disease stage and progression is no longer trivial. Alternatively, we look at a pathway 

level analysis, and by using the pathway correlation profiles, we can get a more general 

view of where in the pathways the dysregulation is occurring, regardless of the cause of 
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that dysregulation. From this approach, we can prioritize sets of genes as being 

responsible for the aberration of the pathway which will help prioritize future 

experiments for validation. 

Here we looked into the Ribosome and MAPK Pathways with respect to the progression 

of colorectal cancer. We have been able to systematically isolate several oncogenes and 

tumor suppressor genes that have previously been implicated with colorectal and other 

cancers, both in diagnosis and metastasis. Also, we were able to make some novel 

predictions towards potential network biomarkers for identifying the stages of colon 

cancer. By not forcing genes into one cluster, like many previous methods do, we were 

able to computationally predict sets of genes that are responsible and involved in the 

pregression of this cancer, and these sets of genes better align with the underlying 

biology of these pathways. From this analysis, we feel we have shown the advantages to 

considering an alternative view of the data by using the pathway correlation profiles as an 

input for clustering, instead of the standard gene expression profiles that are frequently 

used. 

As a result, using our method allows us to identify and prioritize gene targets of interest 

as related to colorectal cancer. We do note that not all our results were consistent with 

previously published studies. For example, finding decreased expression of SRF at 

metastasis. One potential reason for this is that we analyze the gene expression data, 

which does not always correlate with the functional data within a cell (i.e. metabolite 

levels, functional mutations, protein levels). Due to this limitation of our approach 

presented here, further experiments would need to be performed for validation of the 

accuracy of a predicted gene as well as identification of the reason for its involvement. 
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The approach presented here presents genes and gene sets that are likely to be involved in 

the disease progression (or experimental conditions). Regardless of the predictions and 

prioritizations derived from using the pathway correlation profiles as an input for 

clustering gene-gene pairs, further analysis and interpretation is essential for 

understanding why these genes were distinguished, and others were not. 
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6 Chapter 6: Discussion and conclusion 

6.1 Summary 

In this dissertation, I have presented the novel pathway correlation profile method for 

identifying and ranking pathways based on their perturbations. Many previous methods 

utilize a single gene approach, as well as an aggregate statistic for each gene. These 

previous methods fail to utilize all the biological data available, i.e., replicates, and 

potential added information gained from the interplay between genes, thereby taking a 

conservative view on pathway analysis. Our newly developed method looks into this 

orchestration between two genes across an entire pathway, does not depend on 

differential expression of any individual gene, utilizes biological replicates and is robust 

to the inherent noise of microarrays. Through this method, I can accumulate small 

perturbations in regulation over an entire pathway, subsequently ranking the pathways 

based on the significance of their perturbations. This method can make more biologically 

relevant predictions for pathway rankings that do not depend on a significant differential 

expression level, as well as accounts for pathway size, thus reducing the biases towards 

larger sized pathways. 

Unlike many other gene set enrichment methods, the advantages to the pathway 

correlation profile method do not stop at ranking and identifying significantly perturbed 

pathways. Using the calculated correlation profile for each pathway, we can now identify 

specific gene-gene pairs that are responsible for the perturbation of the pathway, thereby 

extrapolating genes and pairs of genes that are likely to be driving the perturbation within 

a pathway. Through this method, we can better understand on a level of pathway 
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dynamics what is occurring in a pathway for a given condition and differential gene-gene 

pair correlations over multiple conditions or tissues. Moreover, we have extended the 

application of this method to consider temporal and disease progression data. When using 

this approach, we were able to look at the changes in gene-gene pair correlations through 

progression of a disease, colorectal cancer. Taken all together, the pathway correlation 

profile method not only prioritizes pathways based on the significance of perturbation, 

but also allows for the identification of causal reasons for the perturbation. 

6.2 Advantages to analysis using pathway correlation profiles 

Like other pathway analysis methods, the pathway correlation profile approach also ranks 

pathways based on their significance. However, our method has several advantages 

compared to the previously existing methods. This method utilizes the biological 

replications that are present in so many datasets.  

Many existing methods frequently use just the sufficient statistics from the data (i.e., 

mean and variance), and calculate the significance of a gene based on these values. By 

only looking at the summary statistics for each gene, you are losing all the added 

information you gain from the biological replications.  

6.3 Method limitations 

Our pathway correlation profile method also has some limitations. Like other 

computational approaches based on gene expression analysis only, our method does not 

include regulatory mechanisms that may not be reflected in gene expression data, such as 

protein translational control, post-translational modifications and kinetic control of 

biochemical reactions. These are real limitations of our approach, and as a result we 
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could potentially make false negative predictions of false positive predictions. For 

example, if a protein needs to be phosphorylated for proper function, it is not relevant to 

consider the gene expression since even high expression levels of this gene would not 

correspond to activity if the phosphorylation were not occurring. Conversely, if a protein 

was not properly being degraded, then low levels of expression does not correspond to 

low protein levels as well. These are just two examples in which this approach could 

make false predictions.  

These issues of false predictions may be addressed by incorporating other types of data in 

the analysis. By including protein expression or metabolomic data, we would have a 

better understanding of the active molecules in the pathway. Though obtaining this data is 

difficult and expensive, it would allow for a stronger analysis of the pathway and result in 

more accurate predictions. In addition to addition additional data sources, we also plan to 

develop a general software tool or plugin for users to apply our method easily. 
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7 Chapter 7: Future directions 

7.1 Incorporate multiple data sources 

In the perspective of systems biology, considering more than one type of information 

about the cell is essential [91]. Many methods have integrated gene expression data with 

protein-protein interaction (PPI) networks, e.g., to identify functional modules [92,93,94]. 

Using one data type in lieu of another, for example gene expression levels as a proxy for 

protein expression, has been commonplace [95,96]. Methods for using multiple data 

sources in tandem are still not very advanced, consequently there are still more room for 

improvement from computational methods and predictions. 

Combining sequence level, gene expression, protein expression, metabolomic and 

epigenomic data to make more comprehensive predictions will allow for a better 

understanding of the biological context. A possible way to accomplish this systems 

approach could possibly be to create pathway correlation profiles for each data type 

individually, and then merging the results in the end. There are deficiencies with this 

approach, however, in that the results will miss interactions across data sets. For example, 

metabolites and proteins work in tandem to perform signaling. Alternatively, epigenomic 

modifications, such as DNA methylation, impede gene expression. Thus data sets need to 

be considered in tandem. To overcome these dependencies between the data types, 

calculating a pathway correlation profile that takes into account all pair-wise correlations 

(gene-gene, gene-protein, protein-epigenomic, etc.) could identify all true relations. A 

general limitation, however, is a global lack of data being available for a comprehensive 

analysis such as this.  



 
 

92 

7.2 Explore temporal changes 

Pathway and network type analyses frequently look at single state models, or a difference 

between two states. To better understand the dynamics of pathways and signaling within 

a cell, it is essential to identify the perturbations in regulation for different tissue types, 

under varying treatments and conditions, and especially over time [97,98,99]. In many 

instances, complex diseases are not acute; rather, they are progressive. Identifying these 

temporal changes through the disease progression by developing computational and 

statistical methods to model temporal pathway dynamics will allow for a more complete 

understanding of the disease progression. In this dissertation, we looked at changes in 

select pathways in the progression of colorectal cancer, but more analytical and 

methodical approaches need to be developed to fully optimize the potential available 

from using pathway correlation profiles. Also, these methods can be used to better 

understand aging, embryogenesis, development, growth and many other aspects of 

physiology and pathology. This approach offers many opportunities for alternate 

therapeutics and treatments for diseases and many other avenues of implementation. 

7.3 Classify genes based on regulation type 

Currently, the pathway correlation profile method presented here utilizes all gene-gene 

pair combinations within a pathway. We ignore the structure of the pathway because that 

limits the potential for novel discoveries present in the data. In addition, we do not 

classify gene-gene pairs into groups, such as highly correlated, not correlated or 

negatively correlated, all of which carry their own biological significance. For example, 

if two genes have a high correlation, this suggests that there is a common mechanism of 

regulation between these two genes. This mechanism could be direct (e.g., gene A 
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activates gene B), indirect (e.g., gene A and gene B could be controlled by the same 

transcription factor), or another unidentified mean of regulation. Also, if two genes have 

no correlation, then they are assumed to be a background pair of genes (See Figure 30 for 

an example). 

 

Figure 30. Example of a correlation profile classified by potential modes of gene 

regulation. 

 

As shown in Figure 30, we can expect a correlation profile to be a mixture model of up to 

three normal distributions. Through this, we could potentially use statistical methods to 

model the correlation profile accordingly. After a model is developed, we can classify 

gene-gene pairs into their respective mode of regulation. Once we classify the gene-gene 

pairs, we can ask several questions: How many gene-gene pairs change mode of 

regulation? Is there a selective set of genes that maintain one mode of regulation? Do our 

predictions change when we remove background or uncorrelated gene-gene pairs? 

Through this approach, we can target different and more specific biological questions 

about the mode of regulation within a pathway, than we could through previous methods. 
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7.4 Pathway rewiring and driver mutations 

Many cancers are thought to be driven by select mutations and potentially resulting in 

pathway rewiring to induce oncogenic signaling [77,100]. Alternatively, cancers undergo 

many mutations, some of which are necessary and implicated in cancer development 

(driver mutations) and some somatic mutations that have no known contribution to 

oncogenesis [101]. These abnormalities are hard to deduce from all the noise available in 

cancer data. Using this approach, we can help to tease out potential targets that could be 

driver mutations associated with oncogeneisis through significant changes in the 

correlation profile via a specific or few target genes. Additionally, mapping locations of 

perturbation back onto the pathway map could potentially spot loci of pathway rewiring. 

Both of these predictions can then be further analyzed in the wet lab. Being able to 

prioritize targets responsible for a phenotype will allow for more efficient, effective and 

systematic validation through wet lab experiments. 

7.5 Network biomarkers for disease diagnosis 

Establishing biomarkers for a disease is not a new concept [102]. Many methods have 

focused on identifying mutations [103], altered gene expression [104], microRNA 

expression [105], and aberrant DNA methylation [106] as biomarkers for a specific 

disease. Oftentimes, not solely one gene can identify a disease; to overcome this problem, 

studies have moved towards using several genes in combination as a network biomarker 

for diseases [107]. 

Using the pathway correlation profiles, we have the potential to identify network 

biomarkers. To accomplish this, we can select a set of significant genes that are most 
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responsible, and temporally discriminating, for the perturbation of a pathway. The 

combination of these genes, and their coordinated behavior, could not only identify a 

disease, but also determine the stage of the disease. These biomarkers can be robust to 

staging of diseases, and also try to model the pivotal biochemical changes through the 

progression of a disease. 

7.6 Develop tool and plug-in 

Creating new computational methods is necessary for advancing predictions. Developing 

a tool that will allow others to use your method is essential for general adaptation of the 

pathway correlation profile approach. For this, an R-package [108] or Cytoscape plug-in 

[109] can be developed and available for the general use. Through these tools, a naïve 

gene expression analysis would be performed and a pathway correlation profile analysis 

would be completed, resulting in a ranking of significant pathways. The database of 

pathways could be selected from an available list, such as KEGG [39], Reactome [48], 

TRANSPATH [49], Gene Ontology [110], etc., or the user could predefine the pathway 

database. Moreover, additional features in this tool could include additional analysis 

within a pathway, such as the temporal clustering presented here. Having a tool available 

would allow for this novel gene-gene pair correlation approach to really be accepted and 

utilized to its full potential. 
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