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ABSTRACT

A Statistical change point problem was first studied in the mid-1950s in the

context of quality control in industrial processes. A change point is defined as a point

in the time order when the probability distribution of a sequence of observations differs

before and after that point. The literature of statistical change point has evolved over

time and now includes a significant amount of scholarly work on change point analysis

with many important applications in other disciplines such as economics, geosciences,

medicine, and genetics, to name a few.

This work examines the problem of locating changes in the distribution of a

Compound Poisson Process where the variables being summed are iid normal and the

number of variable follows Poisson. The maximum likelihood ratio for the location of

the change point will be explored as well as an information criterion developed, for

the case of known variance, while a Bayesian approach is used to deal with the case

including change in variance. These results can be applied in any field of study where

an interest in locating changes not only in the parameter of a normally distributed

data set but also in the rate of their occurrence. It has direct application to the
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study of gene expression data in cancer research, where it is known that the distances

between the genes can affect their expression level.
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CHAPTER 1

INTRODUCTION

Motivation

In recent years, there has been considerable effort put into studying the ge-

netic structure of cancer versus normal cells. Researchers are aware that some of

the causes of cancer are mutations in certain genes [28]. These can be the lack of

production (deletions) or the increased production (amplifications). The more infor-

mation researchers have about the location of the amplifications or deletions, called

breakpoints, along the genome, the greater the chance they have for developing treat-

ments and identifying the aggressiveness of a cancer [12]. The identification of these

breakpoints is thus essential to the further understanding and treatment of cancer.

To measure these amplifications or deletions microarray comparative genomic

hybridization (aCGH) is used. These intensities are denoted as R/G and a ratio of

one means there is no change in behavior. By taking log2R/G , zero is now considered

no change and positives represents amplifications while negatives represent deletions.

It should also be noted that the aCGH process creates noise which makes it difficult

to locate changes and makes it necessary to use a statistical tool like statistical change

point analysis [28].

Several different approaches have been applied to this problem including clus-

tering proposed by Segal and Wiemels (2002) [168],which focused on locating Translo-

cation Breakpoints, and Xing et al. (2007) [215] which proposed the use of hierarchical
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clustering to locate copy number variations. Smoothing techniques have also been

proposed by Jong et al. (2004) [99] using an algorithm called aCGH-smooth, while

Bilke et al. (2005) [12] develop a novel algorithm for eliminating systematic noise,

and Hsu (2005) [82] used wavelets. A number of software packages have been de-

veloped for the analysis of breakpoints including one proposed by Daruwala et al.

(2004) [40] which used dynamic programming, ChARM by Myers et al. (2004) [133]

which used an expectation-maximization algorithm, CGHAnalyzer by Margolin et al.

(2005) [128] which offered a number of methods, ChromoScan by Sun et al. (2006)

[185] used a scan statistic, GEAR by Kim et al. (2008) [102] which used functional en-

richment analysis using a prior selected functional gene set and allows for user defined

cut-off values for identification of amplifications and deletions, and CNVDetector by

Chen, Liu, and Chao (2008)[32] which can be used even when the noise is not nor-

mally distributed and provides a measure of the statistical significance. Huang et al.

(2005) [83] proposed the Lasso Method based on a penalized least squares regression,

while Goa and Huang (2010) [53] proposed a LAD regression model with adaptive

fused lasso penalty. The use of Hidden Markov models was proposed by Shah et

al. (2006) [172] using a robust HMM model while Stjernqvist et al. (2007) [184]

used a continuous-index HMM model. Brot and Richardson (2006) [14] proposed the

use of a spatially correlated mixture model with three states unmodified, deleted,

or amplified. Picard et al. (2005) [154] used a penalized Information Criterion. A

circular binary segmentation approached was developed by Olshen and Venkatraman

(2004) [141], by splicing the two ends of the data to form a circle, they introduced a

modification of the binary segmentation process suggested by Vostrikova (1981) [193],
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called circular binary segmentation (CBS), they also suggested the use of a change

point model based on a likelihood test but used a permutation method to calculate

the p-value. Change point models were also used by Minin et al. (2005) [130] sug-

gesting a dual multiple change-point model, Chen and Wang (2006) [28] applied a

Gaussian mean and variance change model (MVCM) using an information criterion

to select the best model, while Liu et al. (2008) [122] used a Bayesian change point

algorithm. Chen and Wang (2009) [29] did a comparison study to test their MVCM

method with Olshen’s CBS method, while Koike et al. (2011)[107], compared five

widely used packages.

Levin et al. (2005) [117] noted that previous methods treated the data as

equally spaced and did not take into account the variation in the distances of the

genes. They focus on identifying either potential amplifications or deletions by the

following a two step method. First, they assumed that multiple samples have been

taken and that each expression level can be normalized using the sample mean and

variance for that location over the multiple samples; then they set a threshold and

cluster the genes into similar expression levels. Using the distances between the genes

and the number of genes sampled in a given distance as a Poison Process, they create

a Compound Poisson Process, where genes above the threshold occur at one rate while

genes below the threshold occur at a different rate. They then looked for a grouping

of genes from the above threshold group that occur at a greater than expected rate.

Once a potential cluster of genes was identified, they used a gamma distribution to

determine the significance of the clustering. Li and Zhu (2007) [119] also tried to

incorporate distances between genes with the use of Fused Quantile Regression. Just
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recently, Chen et al. (2010) [30] used a Compound Poisson Process to model the gene

expression levels and gene position, by applying a Bayesian approach with a uniform

prior for the location of the change.

The distances between the genes play a role in their expression level and should

logically be included in the identification process [117]; the cost of attaining the

expression levels limits the number of repetitions that may be performed making

estimates of the mean and variance for the normalization process impossible to attain

or unreliable. One way of incorporating the distances into the process is by viewing

the expression data as a Compound Poisson Process, where the log2R/G is assumed

normally distributed, and then testing for changes in any of the parameters. As will

be observed in chapter 2, at present identification of change points in Compound

Poisson Processes is an understudied problem.

While the specific application that motivated the focus of this model is from

cancer research, change point analysis has been applied to many application areas

including economics. Bryden and Carlson (1994) [17] used change point analysis to

study disinflation since 1982. Changes in stock prices were studied by both Inclán

(1993) [91] and Chen and Gupta (1997) [24]. Freeman (2005) [50] studied changes in

the growth effects of state banking deregulation using a change point model. Frisén

(2009) [51] discussed the need and use of sequential surveillance, to identify changes

points, in many areas including the monitoring of economic data. Also, in the second

edition of Parametric Statistical Change Point Analysis, Chen, and Gupta (2012) [27],

applications to genetics, medicine, and finance are presented. Thus, the model(s)

developed in this research could be used to evaluate changes in data from any field
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where the variable being measured is assumed normally distributed and there is an

interest in identifying changes in not only the parameters of the distribution but also

the rate at which they occur.

Outline of Remaining Chapters

The remainder of this work is organized as follows, in Chapter 2 a brief history

of existing change point analysis methods will be presented. In Chapter 3, a formal

presentation of the problem will be given as well as outline of the methods to be

used to address the problem. Chapter 4 includes the development of the Likelihood

Method and an Information approach for the case of known variance of the normal

variables. In Chapter 5 a Bayesian approach is developed to include changes in the

variance of the normal variables. Finally, Chapter 6 discusses open problems and

future research goals.



CHAPTER 2

REVIEW OF CHANGE POINT LITERATURE

Introduction to Change Point Analysis

The field of change point analysis began when, Page, published his landmark

articles in 1954 [144] and 1955 [145]. Since then the study of change point analysis

has grown into two distinct areas of study. The first is known as fixed set or off-

line change point analysis. In this area, the data x1, x2, ..., xn is a pre-observed set of

measurements, in the order they were observed. The goal is to identify the index(es) at

which the distributions of the xi s have changed. A comprehensive look at parametric

forms of change point analysis can be found in Chen, and Gupta (2000,2012), [26][27].

The second area of change point analysis is known as sequential or on-line

change point analysis. This area deals with an ongoing process in which repeated

measurements are taken. Examples would be a manufacturing process or monitoring

of a person’s hear rate. Like off-line change point analysis the objective is to locate

a change in distribution, often times mean. The emphasis here though is identifying

the change as soon after it occurs as possible.

The rest of the chapter is organized as follows. Methods that have been de-

veloped for fixed set change point analysis will be presented first, looking at both

parametric and nonparametric methods. Then a brief review of sequential methods

will be given.

6
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A Review of Fixed Set Change Point Methods

Parametric Methods for Change in the Distribution of a Sequence of Nor-

mal Observations

One of the first and most heavily studied problems is the location of a change

in the mean of a normal distribution. It was first given as an example in Page (1957)

[146] using a CUSUM method. Chernoff and Zacks (1964)[35] presented a Bayesian

approach to the problem, as well as estimating the current mean. Their work was

extended by Gardner (1969) [54]. The asymptotic distribution for the maximum

likelihood estimate was derived in Hinkley (1970) [74] as well as the asymptotic dis-

tribution for the likelihood ratio test, but an estimate was used in the calculations of

the values. Then Sen and Srivastava (1975) [170] and [171] did a comparison between

the powers of the Bayesian statistics and the Maximum Likelihood ratio statistics for

different alternative hypothesis. They also derived exact and asymptotic distributions

for some of the Bayesian statistics.

It was not until Hawkins (1977) [72] that the distribution of the Likelihood

Ratio Test Statistic was derived as well as its asymptotic distribution. Like all previ-

ous work mentioned, these results assumed that the variance of the distribution was

known. His article was also significant because he included results for the case of a

fixed variance that was unknown. These results were achieved by the use of a recur-

sive formula. Hawkins’ work for the case of unknown variance was later corrected by

Worsley (1979) [208], in which he found the distribution and asymptotic distribution

by other means.

Because of the complexity of the problem of multiple change points, the pre-
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vious works focused on the assumption that at most one change had occurred. It was

not until Vostrikova (1981) [193] showed the consistency of the binary segmentation

process that multiple change points were considered. Under binary segmentation, the

entire data set is analyzed for a single change point. If one is found and is determined

significant then the data is split into two sets and each is analyzed separately. This

process is continued as long as a significant change point is located in one of the

current segments. With binary segmentation allowing existing methods to be used in

the case of multiple change points, the focus of research shifted to more complex cases

of change in distributions as well as the change in the structure of other distributions.

However, as the use of change point in more fields has accelerated in the last

few years, the case of a change in the mean of a normal distribution has reemerged.

Sofronov (2001) [179] and (2005) [180] construct an asymptotically d-optimal test

of a change point. Fotopoulos, and Jandhyala (2007) [48], refine the estimates used

by Hinkley, while Zhang and Siegmund (2007) [220] a modified BIC was introduced

for the detection of the number and location of the change points. Wang et al.

(2008) [195] used local averages or ”localized information” to detect changes in mean.

Erdman and Emerson (2008) [45] proposed a fast Bayesian change point method for

detecting multiple change points. Chen, Cohen, and Sackrowitz (2011)[31], showed

the consistency of the binary segmentation and maximum residual down methods for

locating multiple change points.

Another problem involving the normal model is finding the location for a shift

in variance assuming a fixed mean. This problem was studied by Hsu (1977) [81]

under the assumption that the initial value of the variance was known. He developed
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two tests one that was locally most powerful and another based on the CUSUMs of

Chi Squared values. The problem was also considered by Inclán (1993) [91], who

developed a Bayesian procedure for detecting multiple change points using posterior

odds, while Inclán and Tiao (1994) [92] proposed using and iterative cumulative sum

of squares algorithm to locate multiple changes. Use of the Schwarz information

criterion (SIC) was proposed by Chen and Gupta (1997) [24] for the location of a

single change point and the asymptotic null distribution of their statistic is presented.

The case for change in both mean and variance of a set of normal observations

was first considered by Horvath (1993) [76]. Horvath developed the asymptotic dis-

tribution of the likelihood ratio statistic. Chen and Gupta (1999) [25] propose a test

based on the (SIC) and develop its asymptotic distribution. The use of a product

partition model (PPM) is proposed for identification of multiple change points first

by Barry and Hartigan (1992) [9], and again by Loschi and Cruz (2002) [124],[125]

and (2005) [126]. An information criterion for testing a single change in parameter is

developed by Chen et al. (2006) [22]. Then a modified information criterion, MIC,

is then developed by Pan and Chen (2006) [147] for testing multiple change points,

where the number of change points is known. The penalty is based on the distance

between change points where a model that evenly splits the data set is given pref-

erence. While the normal model is one of the examples given, the MIC as with all

information criterion may be applied to any regular model.

Other work involving normal models include Menzefricke (1981) [129] who

looked at changes in the precision of normal random variables, which is the inverse

of the variance. In his work he assumed both changes in precision and mean. He
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developed the posterior distribution for the location of a single change as well as the

magnitude of the change. Tourneret et al. (2004) [190] derived the Cramer-Rao lower

bounds for estimators of changes in models with additive and multiplicative noise.

Lavielle (2005) [114], developed a method using penalized contrasts which may be

applied to even non-Gaussian sequences but estimated the change using a Gaussian

log likelihood function.

Parametric Methods for Change in the Distribution of a Sequence of Mul-

tivariate Normal Observations

Like the univariate normal model, early work with sequences for multivari-

ate normal models focused on changes in the means only. The first to consider the

problem was Sen and Srivastava (1973) [169], who assumed at most one change and

proposed a test statistic based on a Bayesian approach as well as its exact and asymp-

totic distribution. A likelihood ratio test statistic for locating a single change was

then introduced by Srivastava and Worsley (1986) [182] and gave an approximation

for the null distribution. Krishnaiah et al. (1990) [110] suggested the use of a local

likelihood method for the case of multiple changes. James et al. (1992) [93] gave

an approximation for the asymptotic distribution of the likelihood ratio test. An

information approach was presented by Gupta and Chen (1996) [61] using the SIC

and presented applications in geology and literature. Rukhin (2002) [167] studied the

asymptotic behavior of posterior distributions of the change point parameter. For the

case of a two dimensional space, Ninomiya (2004) [135] developed an improved ap-

proximation for the likelihood ratio test. Ninomiya (2005) [136] studied the properties

of AIC-type information criterion for the multivariate change point model. Son and
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Kim (2005) [181] presented a Bayesian single change point method for the detection of

change in mean, variance, or mean and variance. Gooijer (2006) [43] developed a test

for change in the sequence of covariance matrices and presented the tests asymptotic

distribution under the null hypothesis. Lastly, Fotopoulos et al. (2009) [49] studied

the asymptotic properties of the MLE for change in both mean vector and covariance

matrix under different alternative hypothesis.

Parametric Methods for Change in a Regression Model

Regression analysis plays an important role in many real world applications.

This makes refinement of regression models critical to the advancement of Statistics.

Part of this refinement is identifying when a model has had a change in parameter.

The problem of change in the parameter of a regression model has been studied by

many authors since Quandt (1958) [157] and Quandt (1960) [158], where the likeli-

hood ratio test for identifying the location of the test and estimating the parameters

were explored. Later, Ferreira (1975) [46] used a Bayesian analysis for a switching

regression model, where the number of changes is known. A Bayesian approach was

also used by Chin Choy and Broemeling (1980) [36] for a changing linear model and

by Smith and Cook (1980) [177] who applied their model to renal transplant data.

An information approach is proposed by Chen (1998) [23] who suggested the use of

the SIC for both simple and multiple linear regression models. A method to estimate

least squares regression models with multiple changes at unknown points is given by

Bai and Perron (1998) [8], while Charlton and Troskie (1999) [19] used a Bayesian

approach for the case of multiple regression models with autocorrelated errors. The

aymptotics of the maximum likelihood estimator for the case of at most one change
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was studied by Koul and Qian (2002) [109]. Bischoff et al. (2004) [13] studied the

Kolmogorov test for trends of a Brownian bridge and applied their results to the

change point problem in regression models. A set of generalized maximum likelihood

asymptotic power one test for different cases of change in a linear regression model

was given by Gurevich and Vexler (2006) [64]. Wu (2008) [213] used an information

criterion approach to simultaneously locate change points and select variables for

multiple linear regression models.

Other regression models studied include Pons (2002) [156] which considers a

Cox regression model with at most one change. Chiu et al. (2005) [37] suggested the

use of bent-cable regression using the least squares estimates. A MLE approach was

proposed by Gurevich and Vexler (2005) [63] for locating change points in logistic

regression models. The measurement error model was studied by Quintana and Igle-

sias (2005) [159] using a Bayesian approach. Dupuy (2006) [44] studied the problem

of estimating the location of change points in hazard regression models. Nosek and

Szkutnik (2008) [139] studied changes in models of variables that are linearly related

to time. Detection of changes in growth processes was proposed by Ninomiya and

Yoshimoto (2008) [137]. Ciuperca (2009) [38] studied the properties of M-estimation

in the case of multiple change points in nonlinear models.

The basic assumption of most change point models is that a change occurs

abruptly at a fixed point. In many real world applications, it might be more reasonable

to assume that a change occurs gradually over time. Gill and Baron (2004) [55]

considered the case of a gradual change in the distribution of a general regression

model. They constructed the maximum likelihood estimator for the change and
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showed that it is consistent.

Parametric Methods for Change in a Time Series Model

The use of stationary time series models in the study of the financial sector,

as well as other applied areas, makes identification of change points in these models

important. While several models have been considered, most attention has been

placed on the autoregressive model beginning with Wichern et al. (1976) [205] who

studied changes in variance by a two-step method. Other researchers that focused

on the autoregressive model include Picard (1985) [153] who developed a test for

the change in the parameters, Takeuchi and Yamanishi (2006) [188] who presented a

framework for identifying changes in distribution and outliers simultaneously, Olsen

at al. (2008) [142] who focused on changes in mean, variance, and first lag parameter,

and Gombay (2008) [57] who assumed Gaussian white noise and looked for changes

in mean, variance, and all lag parameters. Gombay also considered the case of a

temporary change where after a time the distribution returned to the original one.

Other models studied include the fractionally integrated ARMA model with

Gaussian white noise by Ray and Tsay (2002) [163] who applied a Bayesian approach

to changes in mean and the dependency variables. Hariz and Wylie (2005) [70] used

a CUSUM test to identify change in mean of a stationary process with long-range

dependence. Wang and Wang (2006) [196] considered changes in the dependency

parameter in moving average model. The moving average model was also studied by

Wang (2008) [198] for a change in mean. Reboul and Benjelloun (2005) [164] proposed

a Bayesian fusion approach to change points in a piecewise stationary process, while

Last and Shumway (2008) studied the problem of identifying changes in the power
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spectrum of piecewise locally stationary time series and showed the consistency of

their process. Finally, Davis et al. (2008) [41] considered the case of a multiple changes

in parameter of nonlinear time series models and developed a general algorithm. Jirak

(2012) [98], studied changes in time series where the dimension of the parameter space

may increase with the sample size.

As with most change point problems the above studies focused on abrupt

changes. An exception to that was Wang (2007) [197] who focused on identifying

gradual change in mean in a long memory process. Along with presenting a test

statistic, they also found its limit distribution and proved its rate of consistency.

Parametric Methods for Change in Non-Gaussian Models

Besides the normal distribution, there are a few other well known distribu-

tions which have been studied for change point detection. Changes in a sequence

of binomial random variables was first studied by, Hinkley and Hinkley (1970) [75],

they found an approximation to the asymptotic distribution of the likelihood ratio

test statistic for a single change point. A Bayesian Approach was presented in Smith

(1975) [176], while the CUSUM statistic was presented by Pettitt (1980) [152] and

its asymptotic properties explored. Worsly (1983) [209] did a study of the powers

of both the likelihood ratio and CUSUM tests and determined that the likelihood

ratio is more powerful when the change occurs near the beginning or the end of the

data. A test for multiple changes in a binomial distribution was presented in Fu and

Curnow (1990) [52] using maximum likelihood estimation, Stephens (1994) [183] us-

ing a Bayesian approach, and Albert et al. (2004) [3] in which a penalized likelihood

ratio test was used to determine the number of change points and the location.
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The exponential model is another model which has been studied. Worsley

(1986) [210] explored confidence regions and tests for change in an exponential family

of random variables, which included the exponential variable, using the likelihood

method. Worsley’s article was followed by Haccou et al. (1988) [67], who derived the

likelihood ratio test for exponentially distributed random variable for a single change.

Hoccou and Meelis (1988) [66] considered a test that compares the possibility of n−1

change points to 2 change points, then 2 change points to 1 change point, and then

1 change point to no change points. Gupta, and Ramanayake (2001) [62] studied

changes in the exponential distribution that follow a linear trend rather than an

abrupt change. Karasoy and Kadilar (2007) [100] presented a Bayesian methods, while

Karasoy and Kadilar (2009) [101] presented two alternative methods for estimating

the change point. A related article was Vı́̆sek (2003) [192] in which the likelihood

ratio test statistic for the double exponential model was derived and its asymptotic

properties explored.

Another distribution used in a wide range of applications is the Poisson dis-

tribution. The Poisson distribution has been studied from a Bayesian approach by

Raftery, and Akman (1986) [162], and Carlin et al. (1992) [18] for at most one change,

while Loschi and Cruz (2005) [127], and Tian et al. (2009) [189] considered the case

of multiple changes. Watkins and Yang (2005) [204] used a generalized likelihood

ratio test to identify a single change point and multiple change points were located

by using the method recursively.

Other distributions that have been studied include the Gamma and Chi-

Squared by Jandhuala et al. (2002) who derived a general likelihood ratio test for
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change in variability of a process. Lin (2008) [120] presented a two-stage failure model

for Bayesian change point analysis and applied it to the gamma distribution. The

Bivariate Gamma distribution by Chatelain et al. (2007) [20], and Chatelain et al.

(2008) [21] who used a test based on the maximum likelihood principle. Hušková

and Neuhaus (2004) [89] developed a method for working with censored data, and

Fotopoulos (2009) [47] studied the convergence rates of change point estimators in

general. Ng (2008) [138] used an EM algorithm to estimate the maximum likelihoods

estimators efficiency, the method was then demonstrated using a compound poisson

process, where the variables being summed were exponentially distributed.

Williams and Kim (2011) [207], developed a likelihood ratio test for a contin-

uous monotone hazard function. Iacus and Yoshida (2012) [90] proposed a quasi-

maximum likelihood method for identifying the location of change points in the

volatility of a stochastic differential equation.

Shen and Ghosh (2011) [173] developed a new analogue l BIC method for

exponential family of distributions and showed its approximation error had the same

rate of convergence as the Schwartz BIC. Lai, and Xing (2011) [112] constructed a

Bayesian approach for locating multiple change points in multi parameter exponential

family distributions.

Nonparametric Methods for Locating Changes in Fixed Set Data

As with the parametric methods, the earliest work in nonparametric work in

change point analysis looked for changes in mean of normally distributed variables.

Bhattacharyya and Johnson (1968) [11] developed a locally best invariant test, as-

suming the initial mean was known and applied it to the normal distribution as well
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as the double exponential. Others who considered the problem of change in mean

were, Račkauskas and Suquet (2004) [160] who proposed a Hölder norm test statistic

for the change in mean of Non-Gaussian iid variables, as well as Orasch and Pouliot

(2004) [143] who used Weighted Sup-Norm Functions to locate changes in mean of a

distribution with variance equal to one. Wang et al. (2008) [203] developed a non-

parametric test based on the difference in sample medians, and finally Cheng (2009)

[34] created an efficient algorithm for estimating change in mean, which can also be

adapted to locate changes in variance with constant mean. Oh et al. (2005) [140]

suggested the use of artificial neural networks to identify changes in variance. Meth-

ods for finding changes in mean and variance together were presented in Müller and

Wai (2006) [132] using fluctuations of mutagrams, while Kirch (2007) [103] proposes a

block permutation method for the case of at most one change. A minimally selected p

method for locating single changes in a Binomial Sequence was proposed by Halpern

(1999) [68]. Later a method for locating multiple change points in Binomial Sequence

was proposed in Halpern (2000) [69]. A Nelson–Aalen type estimator was proposed

by Wu et al. (2003) [211] for locating changes in a hazard function.

The following articles deal with changes in non specific distributions. Gombay

and Horváth (2002) [58] studied the convergence rates of U-statistic processes and

their bootstapped versions. Horváth and Hušková (2005) [78] used permutations of

U-statistics to locate change in distribution. Li and Lin (2007) [118] investigated the

location of change in density function where the random sequence was assumed to be

associated using functionals. Horváth and Shao (2007) [79] studied the limit behavior

of permutations of empirical processes and applied it to change point analysis. Finally,
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Antoch et al. (2008) proposed the use of a data driven rank test.

Regression models have also been studied by many authors. Müller (1992)

[131] developed a method for locating location and size of change points in regression

models by comparing one-sided kernel smoothers. Loader (1996) [123] proposed the

use of a one sided nonparametric regression estimates of the mean function, then

Horváth and Kokoszka (2002) [77] expanded upon Loader’s method by using local

polynomial smoothing and showed the consistency of their method is also demon-

strated. Grégoire and Hamrouni (2002) [59] developed two nonparametric tests based

on local smoothing, using kernel smoothing, while Grégoire and Hamrouni (2002) [60]

used local linear smoothing and applied their method to a compound Poisson process

with drift. Local polynomial fits were proposed by Huh and Carrière (2002) [84] to

locate changes in a derivative of a regression function, Huh and Park (2004) [85] for

models when design points were random, and Lin et al. for locating changes in deriva-

tives or the function itself. Yu et al. (2005) [216] developed a method for locating

change points by using Quadratic Programming. Kernel methods are proposed by

Cheng and Raimondo (2008) [33] for the location of changes in the first derivative of

a regression model. Fuzzy multiple objective programming was proposed by Yu and

Tzeng (2009) [217] to find the number and location of change points.

As stated earlier, identification of change points in Time Series models was an

important area of research. There have been several researchers who proposed non-

parametric tests for this purpose including, Rozenholc (2001) [166] who developed

two Kolmogorov-Smirnov type statistics for the identification of changes in the spec-

tral characteristics of Gaussian tapered data. Kumar and Wu (2001) [111] developed
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a test based on fuzzy statistics to identify gradual changes in time series. Hušková

(2003) [86] then developed a serial rank statistic to identify a change in the indepen-

dence of a data set. Lee and Na (2004) [115] proposed a test based on the sequential

kernel estimate to locate changes in the marginal density function of a strong mixing

process. The problem of identifying changes in the marginal density function of a

dependent sequence is then studied by Hariz et al. (2005) [71] who used empirical

measures and semi-norms. Lirch and Steinebach (2006) [105] studied changes, both

abrupt and gradual, in the mean and variance of a strong invariance data set. Con-

fidence intervals for change points in time series are then developed using a block

bootstrapping by Hušková and Kirch (2008) [87]. Bootstrapping was also used by

Hušková et al. (2008) [88] to detect changes in autoregressive time series, Nie et al.

(2009) [134] developed a nonparametric test for changes near the ends of long-range

dependent sequences. Finally, Wang (2008) [199] used a Wilcoxon-type rank statistic

to detect changes in long-memory time series models.

Wavelet Methods for Locating Changes in Fixed Set Data

Since the development of wavelets, the applications in both mathematics and

statistics has been ever increasing. Because of their ability to break data into dif-

ferent band widths, they are useful in the location of breaks in local data. Wang

(1995) [201] introduced a wavelet method for the detection of jumps in data with the

presence of white noise. Wang (1999) [202] suggested the use of wavelets for indirect

data. Antoniadis and Gubels (2002) [4] proposed the use of wavelets in determin-

ing the number and location of changes in a regression model with white Gaussian

noise. Park and Kim (2004) [148] used boundary wavelets to locate a sharp change
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point in a regression function. Ko and Vannucci (2006) [108] developed a Bayesian

wavelet-based method for locating multiple change points in long memory parameters

of various time series models. Jansen (2007) [95] used a wavelet method to locate

multiscale changes in a Poisson count data. Plonka and Ma (2007) [155] studied the

convergence rate of wavelets for denoising piecewise constant images while preserving

discontinuities. Wang and Cai (2010) [200] developed a wavelet method for identifying

change points in random design regression models with long memory errors.

A Review of Sequential Change Point Methods

Since the purpose of sequential change point analysis is the continual moni-

toring of ongoing systems, a vast majority of the literature focuses on the location

of a single change. One of the key elements in the development of sequential sets

for production schemes is the average run length (ARL). The ARL is a measure of

the cost of making a wrong decision, either the cost of stopping production when the

system has not broken down, or the cost of producing poor quality, unusable goods

[144]. Page (1954) [144] introduced the idea of a cumulative sum or CUSUM statis-

tic for identifying a change in the mean of a normal sequence with fixed variance.

Goel and Wu (1971) [56] studied the ARL of CUSUM charts for normal mean. A

related article is Aue and Horváth (2004) [7] which studied the delay time, the time

or number of observations after a change it takes to determine the change has oc-

curred in a weighted CUSUM detection scheme. Wu (2005) [212] proposes a CUSUM

procedure for identifying changes in both mean and variance of a normal sequence.

Wu et al. (2009) [214] proposed an adaptive CUSUM to locate changes in mean of a

normally distributed sequence. Jin et al. (2009) [97] extended the use of a CUSUM
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type statistics to locate changes in the mean of heavy-tailed distributions. Shi et al.

(2009) [174] studied the convergence rate of CUSUM type statistics.

An alternative to the CUSUM control charts was given in Roberts (1959) [165]

based on geometric moving averages; this led to the exponentially weighted moving

average or EWMA control charts. Crowder (1987) [39] proposed a simple method

for calculating the ARL of EWMA charts. Knoth (2003) studied the performance

of EWMA charts for change in the mean of normal observations, where the control

limits were allowed to vary over time. Gut and Steinebach (2004) [65] studied EWMA

charts for changes in the mean of a stochastic process. Jiang et al. (2008) [96] created

an adaptive CUSUM procedure which includes an EWMA-based shift estimator.

Other methods for identifying changes in mean of iid random sequences in-

clude, a nonlinear filtering approach in Vellekoop and Clark (2006) [191], a boot-

strapping method in Kirch (2008) [104], a closed-end fluctuation test in Horváth

et al. (2008) [80], a binary control chart for detecting small jumps in Rafajlowicz

and Steland (2009) [161], and using a hybrid fuzzy-statistical clustering method in

Alaeddini et al. (2009) [2]. A method for identifying multiple changes in mean was

proposed in Arunajadai (2009) [6] using a robust resistant statistical procedure.

Changes in the Poisson Process is another problem which has received much

attention from authors. In the sequential setting, the Poisson Process was studied in

Zacks (1991) [218] which focused on the stopping times for Poisson Processes with

linear boundaries. The optimal stopping time was then explored by both Herberts and

Jensen (2004) [73], and Brown and Zacks (2006) [15]. Zacks (2004) [219] determined

the exact distribution of a one-sided CUSUM procedure for a Poisson Procedure.
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Perry et al. (2007) [149] developed a control chart for monitoring step changes in the

rate parameter of a Poisson Process which adjusts to the magnitude of the change.

A Bayesian method for identifying change when the arrival rates are unknown was

presented in Brown (2008) [16]. Bayraktar and Sezer (2009) [10] also used a Bayesian

method but assumed the prior distribution of the arrival time was known and used a

phase-type prior distribution.



CHAPTER 3

STATEMENT OF THE PROBLEM

The Problem

Suppose an event occurs according to a Poisson Process and that when the

event occurs a measurement, Yi , is taken. Assume Yi ∼ iidN(µ, σ2) for i = 1, 2, ...,M ,

where M is the number of occurrences over a time or distance T . Then M ∼

POI(λT ), where λ is the unit rate of occurrence.

Let [0,T] be divided into ℓ non-overlapping intervals each of length Tj . Then in

each interval there are mj occurrences and mj ∼ POI(λTj). Now let, Mj =
∑j

i=1 mj

and M0 = 0. So, Xtj =
∑Mj

i=Mj−1+1 Yi , for j = 1, 2, · · · , ℓ . Then Xt1 , Xt2 , ..., Xtℓ

forms a Compound Poisson Process dependent on (λ, µ, σ2), and where, given mj ,

Xtj ∼ N(mjµ,mjσ
2) and Xt1 , Xt2 , ..., Xtℓ are independent.

The change point problem can then be expressed as testing the following null

hypothesis:

H0 : Xt1 , Xt2 , ..., Xtℓ form a homogenous Compound Poisson Process depending on

(λ0, µ0, σ
2
0)

versus the alternative hypothesis

H1 : Xt1 , Xt2 , ..., Xtj1
depend on (λ1, µ1, σ

2
1), Xtj1+1, Xtj1+2, ..., Xtj2

depend on (λ2, µ2, σ
2
2),

· · · , Xjtp+1, Xjtp+2, ..., Xtℓ depend on (λp, µp, σ
2
p) with (λ1, µ1, σ

2
1) ̸= (λ2, µ2, σ

2
2) ̸=

· · · ≠ (λp+1, µp+1, σ
2
p+1).

Before developing a test for this multiple change point problem, the following

23
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single change problem will be explored.

H0 : Xt1 , Xt2 , ..., Xtℓ form a homogenous Compound Poisson Process

depending on (λ0, µ0, σ
2
0)

(3.1)

versus the alternative hypothesis

H1 : Xt1 , Xt2 , ..., Xtj depend on (λ1, µ1, σ
2
1) while Xtj+1, Xtj+2, ..., Xtℓ

depend on (λ2, µl, σ
2
2) with (λ1, µ1, σ

2
1) ̸= (λ2, µ2, σ

2
2).

(3.2)

The results will then be extended to the case of multiple changes.

Methods to be Used

For the case of known variance of the normal variables, a likelihood ratio pro-

cedure and information approach will be explored. The consistency of the likelihood

estimators will be proved. For the case including unknown and possible changing

variance in the normal variables, a Bayesian method is developed. Each method is

extensively tested using simulations and then each is applied to the analysis of the

aCGH data.



CHAPTER 4

CHANGE POINTS IN COMPOUND POISSON PROCESSES WITH KNOWN

VARIANCE

Introduction

The methods developed in this chapter will be under the assumption that there

is a known variance σ2 that is constant through out the sample. The case of change

in variance will be discussed in chapter 5 using a Bayesian approach. Unfortunately,

without putting additional restrictions on the parameter space of σ2 the likelihood

function of the compound Poisson process with unknown variance does not possess

the same desirable properties as the model with known variance.

Likelihood Ratio Procedure Method

As can be observed in the literature review, from Chapter 2, the maximum

likelihood ratio procedure plays an essential role in the exploration of many of the

statistical change point problems. It is often explored first because of its importance

in other estimation techniques such as Information criterion, whose distributions are

based on the −2 log(Λ) where Λ is the maximum likelihood ratio. To develop the

maximum likelihood ratio the likelihood function for both the null and alternative

hypothesis must first be found. Then the maximum likelihood estimators, or MLEs,

for each of the parameters can be found. By substituting the MLEs into the likelihood

functions under the null and alternative hypotheses the likelihood ratio can then be

formed.
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The Likelihood Function

Let (X,N) form a compound Poisson process of normal variables with mean

of µ and variance σ2 . Let λ be the unit rate of the Poisson process and T the length

of the interval measured. Then the pdf of (X,N) is as follows:

f(x, n) =


1√

2πnσ2
e

(x−nµ)2

2nσ2 (Tλ)ne−Tλ

n!
if n ̸= 0,

e−Tλ if n = 0.
(4.1)

Let (xt1 ,m1), (xt2 ,m2), . . . , (xtl ,ml) be the sample described in Chapter 3,

define A = {i|mi ̸= 0} and MA as the cardinal number of A . Then the likelihood

function under the null hypothesis (3.1) is given by:

L0(µ, λ) =

∏
i∈A

1√
2πmiσ2

e
−

(xti
−miµ)

2

2miσ
2

( ℓ∏
i=1

(Tiλ)
mie−Tiλ

mi!

)

= (2πσ2)−
MA
2

(∏
i∈A

m
− 1

2
i

)
e
− 1

2σ2

∑
i∈A

(xti
−miµ)

2

mi

·
(

ℓ∏
i=1

Tmi
i

mi!

)
λ
∑ℓ

i=1
mie−λ

∑ℓ

i=1
Ti . (4.2)

For the likelihood function under the alternative hypothesis (3.2), define Aj =

{i|mi ̸= 0 and 1 ≤ i ≤ j} , Aℓ = {i|mi ̸= 0 and j + 1 ≤ i ≤ ℓ} , while MAj
and

MAℓ
the cardinal numbers of Aj and Aℓ respectively. Then the likelihood function

is given by:

L1(µ1, µ2, λ1, λ2) =

∏
i∈Aj

1√
2πmiσ2

e
−

(xti
−miµ1)

2

2miσ
2

 j∏
i=1

(Tiλ1)
mie−Tiλ1

mi!



·

∏
i∈Aℓ

1√
2πmiσ2

e
−

(xti
−miµ2)

2

2miσ
2

 ℓ∏
i=k+1

(Tiλ2)
mie−Tiλ2

mi!


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= (2πσ2)−
MAj

2

∏
i∈Aj

m
− 1

2
i

 e
− 1

2σ2

∑
i∈Aj

(xti
−miµ1)

2

ni

 j∏
i=1

Tmi
i

mi!



·λ
∑j

i=1
mi

1 e−λ1

∑j

i=1
Ti(2πσ2)−

MAℓ
2

∏
i∈Aℓ

m
− 1

2
i

 ℓ∏
i=j+1

Tmi
i

mi!



·e−
1

2σ2

∑
i∈Aℓ

(xti
−miµ2)

2

mi λ

∑ℓ

i=j+1
mi

2 e−λ2

∑ℓ

i=j+1
Ti

= (2πσ2)−
MA
2

(∏
i∈A

m
− 1

2
i

)

·e
− 1

2σ2

[∑
i∈Aj

(xti
−miµ1)

2

mi
+
∑

i∈Aℓ

(xti
−miµ2)

2

mi

] (
ℓ∏

i=1

Tmi
i

mi!

)

·λ
∑j

i=1
mi

1 λ

∑ℓ

i=j+1
mi

2 e−λ1

∑j

i=1
Tie−λ2

∑ℓ

i=j+1
Ti . (4.3)

The Maximum Likelihood Estimators

Under the null hypothesis, H0 the log-likelihood function is,

log(L0) = −MA

2
log(2πσ2)− 1

2

∑
i∈A

log(mi)−
1

2σ2

∑
i∈A

(xti −miµ)
2

mi

+
ℓ∑

i=1

mi log(Ti)−
ℓ∑

i=1

log(mi!) + log(λ)
ℓ∑

i=1

mi − λ
ℓ∑

i=1

Ti. (4.4)

Denote, ℓ0 = log(L0) and take the derivatives with respect to µ and λ the

following system of patrials are derived:

∂ℓ0
∂µ

=
1

σ2

∑
i∈A

(xti −miµ) =
1

σ2

[∑
i∈A

xti − µ
∑
i∈A

mi

]
(4.5)

and

∂ℓ0
∂λ

=

∑ℓ
i=1 mi

λ
−

ℓ∑
i=1

Ti. (4.6)
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Let µ̂ and λ̂ represent the MLEs for µ and λ respectively. Then setting (4.5)

and (4.6) equal to zero and solving, the MLEs are obtained as:

µ̂ =

∑ℓ
i=1 xti∑ℓ
i=1 mi

(4.7)

and

λ̂ =

∑ℓ
i=1 mi∑ℓ
i=1 Ti

. (4.8)

Note: Since mi = 0 and xti = 0 when i /∈ A , their sums over i ∈ A and their

sums from i = 1 to ℓ is the same, thus simplifying the calculation of µ̂ .

Now, under the alternative hypothesis, H1 , the log-likelihood function is given

by,

log(L1) = −MA

2
log(2πσ2)− 1

2

∑
i∈A

log(mi)−
1

2σ2

∑
i∈Aj

(xti −miµ1)
2

mi

+
ℓ∑

i=1

mi log(Ti)−
ℓ∑

i=1

log(mi!) + log(λ1)
j∑

i=1

mi − λ1

j∑
i=1

Ti

− 1

2σ2

∑
i∈Aℓ

(xti −miµ2)
2

mi

+ log(λ2)
ℓ∑

i=j+1

mi − λ2

ℓ∑
i=j+1

Ti (4.9)

Denote ℓ1 = log(L1) and take the partial derivatives of ℓ1 with respect to µ

and λ , the following system of patrials are derived:

∂ℓ1
∂µ1

=
1

σ2

∑
i∈Aj

xti − µ1

∑
i∈Aj

mi

 , (4.10)

∂ℓ1
∂µ2

=
1

σ2

∑
i∈Aℓ

xti − µ2

∑
i∈Aℓ

mi

 , (4.11)
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∂ℓ1
∂λ1

=

∑j
i=1 mi

λ1

−
j∑

i=1

Ti, (4.12)

∂ℓ1
∂λ2

=

∑ℓ
i=j+1 mi

λ2

−
ℓ∑

i=j+1

Ti. (4.13)

Let µ̂1 , µ̂2 , λ̂1 , and λ̂2 represent the MLEs for µ1 , µ2 , λ1 and λ2 respectively.

Then setting equations (4.10) through (4.13) equal to zero and solving, the MLEs are

obtained as:

µ̂1 =

∑j
i=1 xti∑j
i=1 mi

, (4.14)

µ̂2 =

∑ℓ
i=j+1 xti∑ℓ
i=j+1 mi

, (4.15)

λ̂1 =

∑j
i=1 mi∑j
i=1 Ti

, (4.16)

and

λ̂2 =

∑ℓ
i=j+1 mi∑ℓ
i=j+1 Ti

. (4.17)

Consistency of the Maximum Likelihood Estimators

It’s known that under Wald conditions, Wald (1949)[194], the maximum like-

lihood estimators are consistent. Therefore, we shall first prove a set of properties

similar to the Wald conditions for the compound Poisson model. Then we will prove

the consistency of the MLE’s. As part of this development, the cumulative distribu-

tion function will be discussed so it is given below.

Let Φ(z) be the cumulative distribution function of the standard normal dis-

tribution, and (Xti , Nti) form the Compound Poisson process described above. Then

the cumulative distribution function of (Xti , Nti) is,



30

F (xi, ni) =


0 if ni < 0

e−t0λ if ni = 0

e−t0λ +
∑ni

j=1
(tjλ)

je−tjλ

j!
Φ
(
x−jµ
jσ

)
if ni = 1, 2, · · ·

(4.18)

LEMMA 4.1. Let (Xti , Nti) form a Compound Poisson Process with

Xti ∼ N(Ntiµ,Ntiσ
2) and Nti ∼ POI(tiλ). Let f(x,m) be the pdf of the process

and F (x,m) it’s distribution function. Then the following hold:

(i) The probability distribution function f(x,m) is discrete for m = 0 and a

sequence of absolutely continuous functions with a uniform bound for m = 1, 2, · · · , n .

(ii) The cumulative distribution function F (x,m) is discrete for m = 0 and a

sequence of absolutely continuous functions for m = 1, 2, · · · , n .

PROOF. Part(i), consider the case for m = 0. By the definition of f(x,m),

f(y, 0) =


e−Tλ if y = 0

0 otherwise.
(4.19)

Now for m = 1, 2, · · · let f(y,m) = fm(y), then

fm(y) = (2πmσ2)−
1
2 e−

(y−mµ)2

2mσ2
(Tλ)me−Tλ

m!
. (4.20)

Now to find a uniform bound, consider the first and second derivatives of

fm(y).

f ′
m(y) =

−2(y −mµ)

2mσ2(2πmσ2)1/2
e−

(y−mµ)2

2mσ2
(Tλ)me−Tλ

m!
(4.21)

and

f ′′
m(y) =

[
−2

2mσ2(2πmσ2)1/2
+

4(y −mµ)2

4m2σ4(πmσ2)1/2

]
e−

(y−mµ)2

2mσ2
(Tλ)me−Tλ

m!
. (4.22)
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Setting f ′′
m(y) = 0 and dividing off the non-zero terms we have,

− 1

mσ2
+

(y −mµ)2

m2σ4
= 0

−mσ2 + (y −mµ)2 = 0

y = mµ±
√
mσ2. (4.23)

Now,

f ′′
m(y) =

(Tλ)me−Tλ

m!mσ2(2πmσ2)1/2
e−

(y−mµ)2

2mσ2

[
(y −mµ)2

mσ2
− 1

]
. (4.24)

Since the first two terms are positive, f ′′
m(y) is negative only on the interval

(mµ−
√
mσ2,mµ+

√
mσ2) and limy→∞ f ′

m(y) = limy→−∞ f ′
m(y) = 0, fm(y) reaches

its maximum rate of change at mµ −
√
mσ2 and its minimum rate of change at

mµ+
√
mσ2 . Also,

∣∣∣f ′
m(mµ−

√
mσ2)

∣∣∣ = ∣∣∣f ′
m(mµ+

√
mσ2)

∣∣∣ .
Let y∗ = mµ −

√
mσ2 , then for fixed ϵ > 0, find a δ > 0 such that∣∣∣fm(y∗ + δ

2
)− fm(y

∗ − δ
2
)
∣∣∣ < ϵ , which is possible since fm(y) is a continuous func-

tion of y , then δ is the bound for the absolute continuity of the function fm(y).

Now, since 0 < (Tλ)me−Tλ

m!
< 1 for all m , if f(y) is the pdf of N(µ, σ2) then,

f ′
m(y

∗) =
1√

2πmσ2
e−

1
2
(Tλ)me−tλ

m!
<

1√
2πmσ2

e−
1
2 = f ′(µ−

√
σ2) (4.25)

for all m = 1, 2, · · · . Thus, given ϵ > 0, if δ∗ is the bound for the absolute continuity

for f ′(y) it also is the bound for f ′
m(y) for m = 1, 2, · · · , and Part (i) of the theorem

is proved.

Part (ii): For m < 1, F (x,m) is clearly discrete, so consider m ≥ 1, since

Φ(z) is the distribution function of a standard normal random variable it is clearly
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absolutely continuous, so F (x,m) is the sum of a finite number of absolutely con-

tinuous functions and is therefore absolutely continuous, and the lemma is proven.

⊔⊓

Note that, if we let the two parameters, µ and λ , in the distribution to be

θ = (µ, λ), then the C.D.F. F (x,m) is also expressed as F (x,m, θ) and pdf f(x,m)

as f(x,m, θ) when needed. Furthermore, for any θ = (µ, λ) and positive number ρ ,

let f(y,m, θ, ρ) be the supremum of f(y,m, θ′) with respect to θ′ where |θ− θ′| ≤ ρ .

For any positive number r , let φ(y,m, r) be the supremum of f(y,m, θ) with respect

to θ when |θ| > r . Furthermore, let

f ∗(y,m, θ, ρ) =


f(y,m, θ, ρ) when f(y, n, θ, ρ) > 1

1 when f(y, n, θ, ρ) ≤ 1
(4.26)

and

φ∗(y,m, r) =


φ(y,m, r) when φ(y,m, r) > 1

1 when φ(y,m, r) ≤ 1
(4.27)

We have the following lemma.

LEMMA 4.2. For sufficiently small ρ and for sufficiently large r the expectation

of log f ∗(y,m, θ, ρ) and logφ∗(y,m, r), given θ0 the true parameter, are finite.

PROOF. First consider the expected value of log f ∗(y,m, θ, ρ), since log f∗(y, 0, θ, ρ) =

0 for all y,

E[log f∗(y,m, θ, ρ)] =
∞∑

m=1

∫ +∞

−∞
log f ∗(y,m, θ, ρ)dF (y,m, θ0), (4.28)



33

where, dF (y,m, θ0) = f(y|µ0,m)f(m|λ0)dy .

So Equation (4.28) can be written as

E[log f∗(y,m, θ, ρ)] =
∞∑

m=1

f(m|λ0)
∫ +∞

−∞
log f ∗(y,m, θ, ρ)f(y|µ0,m)dy. (4.29)

Now if f∗(y,m, θ, ρ) = 1 for all pairs (y,m), then the result is obtained. So

assume there exists an interval of y for which f∗(y,m, θ, ρ) ̸= 1 for at least one m .

Let ϕ(x) be the pdf of a normal variable with mean 0 and variance σ2 , where σ2 is

the same as in the Compound Poisson process. Since, f(y,m, θ) is the product of a

normal pdf, and the pmf of a Poisson random variable which has a value less than

one, f(y,m, θ) < ϕ(0) for all θ and f ∗(y,m, θ, ρ) < ϕ(0) for all pairs (y,m).

Now since the maximum of a normal function decreases as the variance in-

creases, there exists an M < ∞ such that if m = M , f ∗(y,m, θ, ρ) ̸= 1 for some

interval of y and if m > M , there is no such interval. Now for 1 ≤ m ≤ M , let am

and bm be the end points of the interval where f(y,m, θ, ρ) ̸= 1. By the definition

of the pdf, these must be finite. Let a = min1≤m≤M am and b = max1≤m≤M bm and

consider the integral in Equation (4.29).

0 ≤
∫ ∞

−∞
log f ∗(y,m, θ, ρ)f(y|µ0,m)dy

=
∫ bn

an
log f∗(y,m, θ, ρ)f(y|µ0,m)dy

≤
∫ b

a
log ϕ(0)f(y|µ0,m)dy = C < ∞. (4.30)

Using the result from Equation (4.30) and the fact that for m > M ,

logf∗(y,m, θ, ρ) = 0 the Equation (4.29) continues as follows,
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E[log f∗(y,m, θ, ρ)] ≤ C
M∑

m=1

f(m|λ0) < C < ∞. (4.31)

The proof that E[logφ∗(y,m, r)] is finite follows a similar argument, thus the

lemma is proven. ⊔⊓

LEMMA 4.3. If limi→∞ θi = θ , then limi→∞ f(y,m, θi) = f(y,m, θ) for all (y,m).

PROOF. The lemma follows immediately from the fact that f(y,m) is continuous

for both µ and λ over the entire parameter space. ⊔⊓

LEMMA 4.4. If θ1 is a parameter point different from the true parameter point

θ0 , then F (y,m, θ1) ̸= F (y,m, θ0) for at least one value of (y,n).

PROOF. Consider the case where λ1 ̸= λ0 , then F (0, 0, θ1) = e−Tλ1 ̸= e−Tλ0 =

F (0, 0, θ0).

Only the case where λ1 = λ0 = λ and µ1 ̸= µ0 need now be considered. Let

Fy(y|µ,m) be the conditional C.D.F. of y given m, then,for m = 1

F (1, µ1, θ1) =
1

eTλ
+

Tλ

eTλ
Fy(µ1|µ = µ1,m = 1), (4.32)

while

F (1, µ1, θ0) =
1

eTλ
+

Tλ

eTλ
Fy(µ1|µ = µ0,m = 1). (4.33)

But they can’t be equal since,

Fy(µ1|µ = µ1,m = 1) = 0.5 ̸= Fy(µ1|µ = µ0,m = 1). (4.34)

Thus the lemma is proved. ⊔⊓
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LEMMA 4.5. For the true parameter point θ0 we have,

∞∑
m=1

∫ ∞

−∞
| log f(y,m, θ0)|dF (y,m, θ0) < ∞. (4.35)

PROOF. Let θ0 be the true parameter and consider,

E[| log f(y,m, θ0)|] = Tλ0e
−Tλ0 +

∞∑
m=1

(Tλ0)
me−Tλ0

m!

∫ ∞

−∞
| log f(y,m, θ0)|

· 1√
2πmσ2

e−
(y−mµ)2

2mσ2 dy. (4.36)

Since the first term is finite, it need only be shown the sum is also finite. So

begin by simplifying the integral as follows,

∫ ∞

−∞
| log f(y,m, θ0)|

1√
2πmσ2

e−
(y−mµ)2

2mσ2 dy

=
∫∞
−∞

∣∣∣log ( 1√
2πmσ2

)
− (y−mµ0)2

2mσ2 + log
(
(Tλ0)me−Tλ0

m!

)∣∣∣ 1√
2πmσ2

e−
(y−mµ0)

2

2mσ2 dy

≤
∣∣∣log 1√

2πmσ2

∣∣∣ ∫∞−∞
1√

2πmσ2
e−

(y−mµ0)
2

2mσ2 dy + 1√
2πmσ2

∫∞
−∞

(y−mµ0)2

2mσ2 e−
(y−mµ0)

2

2mσ2 dy

+
∣∣∣log ( (Tλ0)me−Tλ0

m!

)∣∣∣ ∫∞−∞
1√

2πmσ2
e−

(y−mµ0)
2

2mσ2 dy. (4.37)

Let X = (y−mµ0)√
2mσ2

, then dX = 1√
2mσ2

dy , by substituting this into the second

term above and integrating the first and third terms Equation (4.37) becomes

=

∣∣∣∣∣log 1√
2πmσ2

∣∣∣∣∣+ 2√
π

∫ ∞

0
X2e−X2

dX +

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣
=

∣∣∣∣∣log 1√
2πmσ2

∣∣∣∣∣+ 2√
π
·
√
π

4
+

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣
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≤
∣∣∣∣∣log 1√

2πσ2

∣∣∣∣∣+
∣∣∣∣12 logm

∣∣∣∣+ 1

2
+

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣
=

1

2
+
∣∣∣∣12 log(2πσ2)

∣∣∣∣+ 1

2
logm+

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣ . (4.38)

Now substituting Equation (4.38) into the sum in Equation (4.36) it need only

be shown that the following sum is finite.

∞∑
m=1

(
1

2
+
∣∣∣∣12 log(2πσ2)

∣∣∣∣+ 1

2
logm+

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣
)
(Tλ0)

me−Tλ0

m!

=
1

2
+
∣∣∣∣12 log(2πσ2)

∣∣∣∣+ 1

2

∞∑
m=1

(Tλ0)
me−Tλ0 logm

m!

+
∞∑

m=1

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣ (Tλ0)
me−Tλ0

m!
(4.39)

As the first two terms of the Equation (4.39) are finite, it need only be shown

that the last two terms are finite. Using the fact that logm
m

< 1, the first of those

terms may be simplified as follows,

1

2

∞∑
m=1

(Tλ0)
me−Tλ0 logm

m!
<

Tλ0

2

∞∑
m=1

(Tλ0)
m−1e−Tλ0

(m− 1)!

=
Tλ0

2
. (4.40)

This leaves only to show that

∞∑
m=1

∣∣∣∣∣log
(
(Tλ0)

me−Tλ0

m!

)∣∣∣∣∣ (Tλ0)
me−Tλ0

m!
(4.41)

is finite.

Using the ratio test for power series consider,
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lim
m→∞

∣∣∣log ( (Tλ0)m+1e−Tλ0

(m+1)!

)∣∣∣ (Tλ0)m+1e−Tλ0

(m+1)!∣∣∣log ( (Tλ0)me−Tλ0

m!

)∣∣∣ (Tλ0)me−Tλ0

m!

= Tλ0 lim
m→∞

m!

(m+ 1)!

∣∣∣∣∣(m+ 1) log(Tλ0)− Tλ0 − log(m+ 1)!

m log(Tλ0)− Tλ0 − logm!

∣∣∣∣∣
= Tλ0 lim

m→∞

1

m+ 1

∣∣∣∣∣∣
(m+1) log(Tλ0)

logm!
− Tλ0

logm!
− log(m+1)!

logm!

m log(Tλ0)
logm!

− Tλ0

logm!
− 1

∣∣∣∣∣∣ (4.42)

Since only the ratio of log(m+1)!
logm!

and 1 do not go to zero in the absolute value

as m goes to infinity. So Equation (4.42),

= Tλ0 lim
m→∞

1

m+ 1

∣∣∣∣∣ log(m+ 1)!

logm!

∣∣∣∣∣
= Tλ0 lim

m→∞

1

m+ 1

∣∣∣∣∣ logm!

logm!
+

log(m+ 1)

logm!

∣∣∣∣∣
= 0. (4.43)

Thus, the sequence converges for all Tλ0 > 0 and the lemma is proved. ⊔⊓

LEMMA 4.6. f(y,m, θ, ρ) is a measurable function of (y,m) for any θ and ρ .

PROOF. Clearly, the domain of (y,m) is measurable and does not change for θ

or ρ . Also, as Lemma (4.3) holds for all pairs (y,m) in the domain, f(y,m, θ, ρ) is

measurable for all θ and ρ . ⊔⊓

LEMMA 4.7. Let δ(θ1, θ2) be the Euclidian distance in real two space and Ω =

{(µ, λ)|(µ, λ) ∈ (−∞,∞)× (0,∞)} , then the following properties hold,

(i) (Ω, δ) form a metric space,

(ii) If θ0 is a fixed point in Ω and limi→∞ δ(θi, θ0) = ∞ , then limi→∞ f(y,m, θi) = 0
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for any (y,m),

(iii) Any closed and bounded subset of Ω is compact.

PROOF. Part (i), clearly by the properties of real numbers, (Ω, δ) form a metric

space.

Part (ii), let θ0 be a fixed point in Ω and θi a sequence of points such that

limi→∞ δ(θi, θ0) = ∞ . Since θ0 is fixed, this implies ∥θi∥ → ∞ so either |µ| → ∞ or

λ → ∞ . But for a fixed point (y,m) if |µ| → ∞ then P (y|m) → 0 and if λ → ∞

then P (m) → 0. Since f(y,m) = P (y|m) · P (m) then limi→∞ f(y,m, θi) → 0 for

each (y,m).

Part (iii), by properties of real two space, any closed and bounded subset of

Ω is compact. ⊔⊓

Through the rest of this section, let θ = (µ, λ), θi = (µi, λi) and θ0 = (µ0, λ0)

the true parameters. E is the expected value with respect to the true θ0 .

LEMMA 4.8. For any θ ̸= θ0 we have,

E log f(X,M, θ) < E log f(X,M, θ0), (4.44)

where (X,M) are a pair of random variables with a Compound Poisson dis-

tribution function F (x,m, θ0).

PROOF. It follows from Lemma (4.2) that the expected values in the lemma exist.

From Lemma (4.5), we have

E| log f(X,M, θ0)| < ∞. (4.45)
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If E log f(X,M, θ) = −∞ , the lemma holds. So consider the case where

E log f(X,M, θ) > −∞ . Then

E| log f(X,M, θ)| < ∞. (4.46)

Let u = log f(X,M, θ) − log f(X,M, θ0). Then because of Equations (4.46)

and (4.47), E|u| < ∞ . It is well known that for any chance variable u for which

E|u| < ∞ ,

Eu < logEeu (4.47)

Note: This is a generalization of the relation between arithmatic and geometric

mean.

Since in our case Eeu = E
(

f(X,M,θ)
f(X,M,θ0)

)
≤ 1 and since u differs from zero on a

set of positive probability due to Lemma (4.4), from Equation (4.47) it is obtained

that,

Eu = E(log f(X,M, θ)− log f(X,M, θ0) < 0. (4.48)

Thus Lemma (4.8) is proven. ⊔⊓

LEMMA 4.9. limρ→0E log f(X,M, θ, ρ) = E log f(X,M, θ).

PROOF. Let,

f≥1(x,m, θ, ρ) =


1 when f(x,m, θ, ρ) < 1

f(x,m, θ, ρ) when f(x,m, θ, ρ) ≥ 1.
(4.49)

Similarly, let

f≥1(x,m, θ) =


1 when f(x,m, θ) < 1

f(x,m, θ) when f(x,m, θ) ≥ 1.
(4.50)
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It follows from Lemma (4.3) that

lim
ρ→0

log f≥1(x,m, θ, ρ) = log f≥1(x,m, θ). (4.51)

Since Ω = (−∞,∞) × (0,∞), {θρ||θρ − θ| ≤ ρ} is a compact set whenever

λ > ρ . Since log f∗(x,m, θ, ρ) is a non-decreasing function of ρ , it follows from

Lemma (4.2) and as ρ → 0, ρ will be less than λ , that

lim
ρ→0

log f≥1(X,M, θ, ρ) = E log f≥1(X,M, θ). (4.52)

Now, let

f≤1(x,m, θ, ρ) =


f(x,m, θ, ρ) when f(x,m, θ, ρ) ≤ 1

1 when f(x,m, θ, ρ) > 1.
(4.53)

Similarly, let

f≤1(x,m, θ) =


f(x,m, θ) when f(x,m, θ) ≤ 1

1 when f(x,m, θ) > 1.
(4.54)

Since f≤1(x,m, θ, ρ) and f≤1(x,m, θ) are both between zero and one and by

the definition of f(x,m, θ, ρ), f(x,m, θ, ρ) ≥ f(x,mxθ),

| log f≤1(x,m, θ, ρ)| ≤ | log f≤1(x,m, θ) (4.55)

and clearly,

lim
ρ→0

log f≤1(x,m, θ, ρ) = log f≤1(x,m, θ) (4.56)

It follows from Equations (4.55) and (4.56) that,

E log f≤1(X,M, θ, ρ) = E log f≤1(X,M, θ), (4.57)
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whether E log f≤1(X,M, θ) is finite or negative infinity. The Lemma follows

directly from Equations (4.52) and (4.57). ⊔⊓

LEMMA 4.10. The equation

lim
r→∞

E logφ(X,M, r) = −∞ holds. (4.58)

PROOF. Let θ0 represent the true parameter, then as r → ∞ , δ(θ0, θn) → ∞ ,

where |θn| > r and n− 1 ≤ r < n . Then Lemma (4.7) part (ii), gives

lim
r→∞

φ(x,m, r) = 0. (4.59)

Which implies that

lim
r→∞

logφ(x,m, r) = −∞. (4.60)

Since according to Lemma (4.2),

E logφ∗(X,M, r) < ∞ (4.61)

and logφ∗(x,m, r) is a decreasing function of r ,

0 ≤ lim
r→∞

logφ∗(X,M, r) < ∞ (4.62)

Since, A(x,m, r) = logφ(x,m, r)− logφ∗(x,m, r) is also a decreasing function

of r, E[A(X,M, r)] is a decreasing function of r and from Equation (4.60),

lim
r→∞

E[A(X,M, r)] = −∞. (4.63)

Then from Equations (4.62) and (4.63) the Lemma is proven. ⊔⊓

THEOREM 4.11. Let ω be any closed subset of the parameter space Ω which does
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not contain the true parameter point θ0 . Then

P

{
lim
n→∞

Supθ∈Ωf(X1,M1, θ)f(X2,M2, θ) · · · f(Xn,Mn, θ)

f(X1,M1, θ0)f(X2,M2, θ0) · · · f(Xn,Mn, θ0)
= 0

}
= 1. (4.64)

PROOF. Let r0 be a positive number chosen such that

E logφ(X,M, r0) < E log f(X,M, θ0). (4.65)

The existence of such a positive number follows from Lemma (4.10). Let

ωr0 = {θ|θ ∈ Ω and ∥θ| ≤ r0} . For each point θ in ωr0 we associate a positive value

|ρθ such that

E log f(X,M, θ, ρθ) < E log f(X,M, θ0). (4.66)

The existence of ρθ follows from Lemmas (4.8) and (4.9). Since the set ωr0 is

compact, their exists a finite number of points θ1, θ2, · · · , θh in ωr0 such that ωr0 ⊆

S(θ1, ρθ1) ∪ S(θ2, ρθ2) ∪ · · · ∪ S(θh, ρθh).

Here S(θ, ρ) denotes the circle with center at θ and radius ρ . Clearly

0 ≤ Supθ∈ωf(x1,m1, θ) · · · f(xn,mn, θ) ≤
h∑

i=1

f(x1,m1, θi, ρθ1)

· · · f(xn,mn, θi, ρθ1) + φ(x1,m1, r0) · · ·φ(x1,m1, r0). (4.67)

Hence, Theorem (4.11) is proved if we can show that

P

{
lim
n→∞

f(X1,M1, θi, ρθi) · · · f(Xn,Mn, θi, ρθi)

f(X1,M1, θ0) · · · f(Xn,Mn, θ0)
= 0

}
= 1. (4.68)

for i = 1, 2, · · · , h and,

P

{
lim
n→∞

φ(X1,M1, r0) · · ·φ(Xn,Mn, r0)

f(X1,M1, θ0) · · · f(Xn,Mn, θ0)
= 0

}
= 1. (4.69)

The above equations can be written as,
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P

 lim
n→∞

n∑
j=1

[log f(Xj,Mj, θi, ρθi)− log f(Xj,Mj, θ0)] = −∞

 = 1 (4.70)

for i = 1, 2, · · · , h and,

P

 lim
n→∞

n∑
j=1

[logφ(Xj,Mj, r0)− log f(Xj,Mj, θ0)] = −∞

 = 1 (4.71)

But these follow directly from Equations (4.65) and (4.66) and the strong law

of large numbers. Thus the Theorem (4.11) is proved. ⊔⊓

THEOREM 4.12. Let θ̃n = g ((x1,m1), (x2,m2), · · · , (xn,mn)) be a function of the

observations (x1,m1), (x2,m2), · · · , (xn,mn) such that

f(x1,m1, θ̃n) · · · f(xn,mn, θ̃n)

f(x1,m1, θ0) · · · f(xn,mn, θ0)
≥ C > 0 (4.72)

for all n and for all (x1,m1), (x2,m2), · · · , (xn,mn). Then

P
(
lim
n→∞

θ̃n = θ0

)
= 1. (4.73)

PROOF. It is sufficient to prove that for any ϵ > 0 the probability is one that all

limit points θ̃ of the sequence {θ̃n} satisfy the inequality |θ̃ − θ0| ≤ ϵ .

Now, suppose there exists a limit point θ̃ of the sequence {θ̃n} such that

|θ̃ − θ0| > ϵ , then

Sup|θ̃−θ0|≥ϵf(x1,m1, θ) · · · f(xn,mn, θ) ≥ f(x1,m1, θ̃n) · · · f(xn,mn, θ̃n) (4.74)

for infinitely many n . But then,

Sup|θ̃−θ0|≥ϵf(x1,m1, θ) · · · f(xn,mn, θ)

f(x1,m1, θ̃0) · · · f(xn,mn, θ̃0)
≥ ϵ > 0 (4.75)

for infinitely many n. But according to Theorem (4.11), the probability of this
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event is zero, thus Theorem (4.12) is proven. ⊔⊓

Since, the MLEs, θ̂n satisfies Theorem (4.12) for C = 1, thus the consistency

of the MLEs are established for the case of known variance of the normal model.

Maximum Likelihood Procedure

Like with all change–point problems, the generalized likelihood ratio test is

not appropriate and only the likelihood ratio procedure test, Lehmann (1986) [116],

will be used. The test is based on,

Λ =
L0(µ̂, λ̂)

max1≤ȷ≤ℓ−1 L1(µ̂1, µ̂2, λ̂1, λ̂2)
= min

1≤ȷ≤ℓ−1

L0(µ̂, λ̂)

L1(µ̂1, µ̂2, λ̂1, λ̂2)
(4.76)

By canceling the common terms in Equations (4.2) and (4.3) the following

equation is established,

Λ = min
1≤ȷ≤ℓ−1

e
− 1

2σ2

∑
i∈A

(xti
−miµ̂)

2

mi

e
− 1

2σ2

(∑
i∈Aj

(xti
−miµ̂1)

2

mi
+
∑

i∈Aℓ

(xti
−miµ̂2)

2

mi

)

· e−λ̂
∑ℓ

i=1
Tiλ̂
∑ℓ

i=1
mi

e
−
(
λ̂1

∑j

i=1
Ti+λ̂2

∑ℓ

i=j+1
Ti

)
λ̂1

∑j

i=1
mi · λ̂2

∑ℓ

i=j+1
mi

= min
1≤ȷ≤ℓ−1

exp
− 1

2σ2

∑
i∈A

(xti −miµ̂)
2

mi

−
∑
i∈Aj

(xti −miµ̂1)
2

mi

−
∑
i∈Aℓ

(xti −miµ̂2)
2

mi


· exp

−
λ̂ ℓ∑

i=1

Ti − λ̂1

j∑
i=1

Ti − λ̂2

ℓ∑
i=j+1

Ti


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· λ̂
∑ℓ

i=1
mi

λ̂1

∑j

i=1
mi · λ̂2

∑ℓ

i=j+1
mi

 . (4.77)

Since,

λ̂
ℓ∑

i=1

Ti =
ℓ∑

i=1

mi, λ̂1

j∑
i=1

Ti =
j∑

i=1

mi, and λ̂2

ℓ∑
i=j+1

Ti =
ℓ∑

i=j+1

mi,

so exp

−
λ̂ ℓ∑

i=1

Ti − λ̂1

j∑
i=1

Ti − λ̂2

ℓ∑
i=j+1

Ti

 = e0 = 1, (4.78)

and Λ is given by the expression

Λ = min
1≤ȷ≤ℓ−1

exp
− 1

2σ2

∑
i∈A

(xti −miµ̂)
2

mi

−
∑
i∈Aj

(xti −miµ̂1)
2

mi

−
∑
i∈Aℓ

(xti −miµ̂2)
2

mi

 · λ̂
∑ℓ

i=1
mi

λ̂1

∑j

i=1
mi · λ̂2

∑ℓ

i=j+1
mi

 . (4.79)

For purposes of a search criteria for locating the position of the change point,

the −2 log(Λ) was used.

−2 log(Λ)

= max
1≤ȷ≤ℓ−1

 1

σ2

∑
i∈A

(xti −miµ̂)
2

mi

−
∑
i∈Aj

(xti −miµ̂1)
2

mi

−
∑
i∈Aℓ

(xti −miµ̂2)
2

mi



−2 log(λ̂)
ℓ∑

i=1

mi + 2 log(λ̂1)
j∑

i=1

mi + 2 log(λ̂2)
ℓ∑

i=j+1

mi

 . (4.80)

Now, let S be the sums from the normal distribution, then

S =
∑
i∈A

(xti −miµ̂)
2

mi

−
∑
i∈Aj

(xti −miµ̂1)
2

mi

−
∑
i∈Aℓ

(xti −miµ̂2)
2

mi

=
∑
i∈A

(
x2
ti

mi

− 2xtiµ̂+miµ̂
2

)
−
∑
i∈Aj

(
x2
ti

mi

− 2xtiµ̂1 +miµ̂
2
1

)
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−
∑
i∈Aℓ

(
x2
ti

mi

− 2xtiµ̂2 +miµ̂
2
2

)
. (4.81)

Now since A = Aj
∪
Aℓ the first terms of each term cancel each other out,

leaving

S =
∑
i∈A

(
−2xtiµ̂+miµ̂

2
)
−
∑
i∈Aj

(
−2xtiµ̂1 +miµ̂

2
1

)
−
∑
i∈Aℓ

(
−2xtiµ̂2 +miµ̂

2
2

)

= −2µ̂
∑
i∈A

xti + µ̂2
∑
i∈A

mi + 2µ̂1

∑
i∈Aj

xti − µ̂2
1

∑
i∈Aj

mi + 2µ̂2

∑
i∈Aℓ

xti − µ̂2
2

∑
i∈Aℓ

mi

= −µ̂2
∑
i∈A

mi + µ̂2
1

∑
i∈Aj

mi + µ̂2
2

∑
i∈Aℓ

mi. (4.82)

Substituting Equation (4.82) into Equation (4.80), the test statistic for the

location of the change–point is,

−2 log(Λ) = max
1≤ȷ≤ℓ−1

 1

σ2

−µ̂2
∑
i∈A

mi + µ̂2
1

∑
i∈Aj

mi + µ̂2
2

∑
i∈Aℓ

mi.



−2 log(λ̂)
ℓ∑

i=1

mi + 2 log(λ̂1)
j∑

i=1

mi + 2 log(λ̂2)
ℓ∑

i=j+1

mi

 .(4.83)

This was initially done with the hope that a p-value for the test could be

derived, but to date it remains elusive. The −2 log(Λ) is also important in the

information approach developed in the next section.

Information Approach

Information Criterion have been used for model selection problems for many

years. Its primary purpose is to aid in the selection of competing models when the

models are of different complexities. The complexity is typically measured be the

number of parameters being estimated in the model. Let θ be the parameters in the
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model to be estimated, and the idea is to penalize a more complex model, meaning

that to add more parameters to the model, it must produce an improvement in the

negative two log maximum likelihood function, denoted −2 logL(θ̂), that exceed some

threshold. As an example the Akaike information criterion, Akailke (1973)[1], and

Swartz information criterion, Swartz (1978)[187] for non change point models are

defined as

AIC = −2 logL(θ̂) + 2dim(θ̂)

SIC = −2 logL(θ̂) + dim(θ̂) log(n), (4.84)

where θ̂ is the maximum point of logL(θ). The model with the lowest AIC or BIC

is then the model selected.

While both these methods have been applied to the change point problem

successfully, in the case where the number of change points is fixed, the role the

penalty plays is in reducing the false positive rate by creating a higher threshold for

improvement than a method based solely on the likelihood function would require.

This is evident in the fact that for a fixed number of change points n , the competing

models for the locations all have the same number of parameters. Since the estimated

position is based on the location with the minimum, AIC or SIC, that is based solely

on the behavior of the likelihood function. Meaning, if the location is estimated by

finding the position which maximizes the likelihood function, that same location will

minimize both the AIC and SIC.

In Chen et al. (2006)[22], it is suggested that the complexity of the model for

change point should include a measure of the proximity of the change points to each
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other or the ends of the sequence. They propose the following Modified information

criterion MIC:

MIC(j) = −2 log(θ̂1, θ̂2, j) +

2dim(θ) +

(
2k

n
− 1

)2
 log(n). (4.85)

Under their model, the additional penalty is eliminated for a change point at

k = n
2
and increases as the location moves to the ends of the sequence.

In the case of the compound Poisson model, the rate at which the events occur

is of keen interest. This is especially the case in analyzing aCGH data as indicated

by Levin et al. (2005)[117]. For that reason, a new modified information criterion

for compound Poisson data, CPIC, is proposed. Under the proposed criterion, the

penalty on each location is reduced for positions which create changes in λ . The

proposed complexity is given as:2dim(θ) +
1

1 +
∑2

i=1

∣∣∣λ̂− λ̂i

∣∣∣
 log(n). (4.86)

Under H0 , the hypothesis of no change, the CPIC(n) is calculated by:

CPIC(n) = −2 logL0(µ̂, λ̂) + 2 log n,

= MA log(2πσ2) +
∑
i∈A

log(mi) +
1

σ2

∑
i∈A

(xti −miµ̂)
2

mi

−2
ℓ∑

i=1

mi log(Ti) + 2
ℓ∑

i=1

log(mi!)− 2 log(λ̂)
ℓ∑

i=1

mi

+2λ̂
ℓ∑

i=1

Ti + 2 log(n), (4.87)

where µ̂ and λ̂ are the mle’s of µ and λ respectively and found to be:
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µ̂ =

∑ℓ
i=1 xti∑ℓ
i=1 mi

, and λ̂ =

∑ℓ
i=1 mi∑ℓ
i=1 Ti

. (4.88)

Under H1 , the hypothesis of one change point, the CPIC , is denoted as

CPIC(j) for j = 1, 2, · · · , ℓ− 1 is calculated by:

CPIC(j) = −2 logL1(µ̂1, µ̂2, λ̂1, λ̂2) +

2dim(θ) +
1

1 +
∑2

i=1

∣∣∣λ̂− λ̂i

∣∣∣
 log(n),

so,

CPIC(j) = MA log(2πσ2) +
∑
i∈A

log(mi) +
1

σ2

∑
i∈Aj

(xti −miµ̂1)
2

mi

−2
ℓ∑

i=1

mi log(Ti) + 2
ℓ∑

i=1

log(mi!)− 2 log(λ̂1)
j∑

i=1

mi

+2λ̂1

j∑
i=1

Ti +
1

σ2

∑
i∈Aℓ

(xti −miµ̂2)
2

mi

− 2 log(λ̂2)
ℓ∑

i=j+1

mi

+2λ̂2

ℓ∑
i=j+1

Ti +

2dim(θ) +
1

1 +
∑2

i=1

∣∣∣λ̂− λ̂i

∣∣∣
 log(n). (4.89)

where µ̂1 , µ̂2 , λ̂1 and λ̂2 are the mle’s of µ1 , µ2 , λ2 , and λ2 respectively and found

to be:

µ̂1 =

∑j
i=1 xti∑j
i=1 mi

, µ̂2 =

∑ℓ
i=j+1 xti∑ℓ
i=j+1 mi

,

λ̂1 =

∑j
i=1 mi∑j
i=1 Ti

, λ̂2 =

∑ℓ
i=j+1 mi∑ℓ
i=j+1 Ti

. (4.90)

The test for change is then to reject H0 if

CPIC(n) > min
1≤j≤ℓ−1

CPIC(j), (4.91)

and fail to reject H0 if
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CPIC(n) ≤ min
1≤j≤ℓ−1

CPIC(j). (4.92)

If H0 is rejected, the estimated change point location is

CPIC(ĵ) = min
1≤j≤ℓ−1

CPIC(j). (4.93)

Simulation Study

To demonstrate the usefulness of the estimation methods for locating changes

in the Compound Poisson model, an extensive simulation study was performed for

both the Likelihood Method and the CPIC. The simulation was run for two types of

data. The first would simulate a general case of the Compound Poisson process that

is a normal random variable paired with a Poisson random variable. To construct

this type of data, the Poisson random numbers are generated first and then the

normal random variables are generated using the conditional distribution, based on

the Poisson variable. This would be indicative of data collected at uniform periods; in

the simulation it was assumed to be a length of one. The second type of data models

the aCGH data introduced in previous chapters. In this case, both the measurement

of the normal variable and the distance between occurrences is collected. Under this

situation, the Poisson variable is equal to one for each interval, so all the normal

variables under the null hypothesis are identically distributed; while the distances

between occurrences are distributed exponentially. So the second type of data is a

normal, exponential pair.

Four sets of simulations were one for each combination of data type and method

used. Two sets of simulation data was constructed, one for each type of data. Each

set contained a change in location, in one of three locations at the n/4th, n/2th, or
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3n/4th position. The initial value of the parameters for all sets was (µ0, λ0) = (0, 1)

and the standard deviation of the normal model equal to one. Three levels of change

were considered, (µ2, λ2) = (2, 2), (3, 3), and (3.5, 4), and sample sizes used were n

= 40, 75, 100, 125, and 200. For each combination of data type, location of change,

level of change, and sample size, 1000 data sets were generated. For each case, the

frequency of selecting the correct location, the average location of change identified

and the MSE of the location are given. A summary of the results can be found in

Tables 1 to 6, located at the end of this section.

While no theoretical p-value has been derived for either test, trials performed

during this simulation with the Chi Squared distribution with 2 degrees of freedom

showed it was too sensitive for the test, when run on sets with no change, it gave a

50% to 80% false positive rate. For the Likelihood method, an empirical p-value was

approximated using a weighted mixed model where the square root of the sum of the

squared deviations for the normal variables were assigned a p-value using a Gumbel

distribution and the exponential or Poisson portion was given a p-value using a Chi

Squared distribution with 1 degree of freedom. The p-value was calculated by using

0.5 times their sum. This method reduced the false positive rate to below 1% and

gave a reasonable p-value for the tests with change. For the CPIC, a p-value was

approximated using a Gumbel distribution of the form used in Chen and Gupta

(1997)[24]. The Information Criterion did have the advantage that even without

assigning a p-value it had no false positives in the null data sets.

The results of the simulation study showed that both the Likelihood Method

and Information Criterion worked equally well. For the normal/exponential data,
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each method found between 63.5% and 67.6% of small changes, between 86.3% and

89.3% of medium changes, and between 92.0% and 94.6% of large changes. For

the normal/Poisson data, each method found between 53.1% and 59.4% of small

changes, between 80.4% and 85.4% of medium changes, and between 89.7% and

93.8% of large changes. Some of the decreased performance of the methods with the

normal/Poisson data is with a choice of lambda equal to one there are many cases of

ni = 0 and they take away from the points used to estimate µ .

Both tests worked equally well with all three change positions and, as would

be expected, increased in efficiency as the level of change increased. What was some-

what surprising is that neither test increased greatly in their efficiency at locating

changes, for a fixed level of change, as the sample size increased. For instance, in the

normal/exponential results for (µ2, λ2) = (3,3) with the change at the n/2th position,

using the likelihood method, f=0.886, when n=40 and f=.892, when n=200.

Looking at the average location identified they are close to the actual location

with the exception of the normal/Poisson model with n=40, (µ2, λ2) = (2,2), and

the loci at 10, where it is off by 0.859 and 0.846 for the Likelihood method and the

CPIC respectively. For both data types the average gets closer to the actual value

as the level of change increases but not necessarily with the number of observations.

For all levels and position of change and sample size, the models produce averages

that are closer to the actual values for the normal/exponential data. The results for

the MSE are much the same as with the averages. The better performance with the

normal/exponential data can clearly be seen in the MSEs. The one thing that is

notable about the MSEs as compared to the other results which have been discussed
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is in the improved values of the MSEs as the sample size increases for low level of

changes. This is also evident for the medium level of change but not apparent in the

large level of change.
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Table 1. Normal/Poisson Data with (µ2, λ2) = (2, 2)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.531 0.567 0.545 0.532 0.570 0.547

n=40 Mean 10.859 20.492 29.985 10.846 20.528 30.082

MSE 11.571 5.274 6.061 10.356 5.284 5.796

f 0.555 0.557 0.556 0.556 0.555 0.550

n=75 Mean 19.356 38.344 56.171 19.359 38.380 56.203

MSE 4.654 4.800 3.917 4.641 4.724 4.139

f 0.567 0.557 0.534 0.569 0.557 0.545

n=100 Mean 25.284 50.315 75.181 25.294 50.320 75.208

MSE 3.762 3.559 3.927 3.718 3.566 3.780

f 0.552 0.582 0.569 0.554 0.583 0.569

n=125 Mean 31.377 63.293 94.284 31.362 63.291 94.293

MSE 3.801 4.087 3.156 3.844 4.091 3.141

f 0.562 0.594 0.575 0.561 0.594 0.576

n=200 Mean 50.362 100.256 150.214 50.369 100.263 150.229

MSE 3.800 3.234 2.996 3.721 3.199 3.075
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Table 2. Normal/Poisson Data with (µ2, λ2) = (3, 3)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.806 0.843 0.820 0.806 0.844 0.821

n=40 Mean 10.212 20.122 30.052 10.212 20.124 30.064

MSE 1.230 0.606 0.494 1.230 0.620 0.474

f 0.829 0.834 0.815 0.830 0.834 0.816

n=75 Mean 19.155 38.126 56.115 19.154 38.126 56.119

MSE 0.419 0.322 0.479 0.418 0.322 0.463

f 0.805 0.818 0.844 0.804 0.818 0.845

n=100 Mean 25.125 50.105 75.100 25.124 50.105 75.107

MSE 0.489 0.467 0.430 0.490 0.467 0.413

f 0.830 0.816 0.854 0.830 0.816 0.854

n=125 Mean 31.088 63.086 94.031 31.088 63.086 94.031

MSE 0.382 0.500 0.341 0.382 0.500 0.341

f 0.843 0.840 0.838 0.843 0.840 0.840

n=200 Mean 50.082 100.105 150.119 50.082 100.105 150.122

MSE 0.302 0.329 0.301 0.302 0.329 0.304
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Table 3. Normal/Poisson Data with (µ2, λ2) = (3.5, 4)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.897 0.917 0.934 0.897 0.919 0.934

n=40 Mean 10.097 20.040 30.022 10.097 20.036 30.022

MSE 0.271 0.164 0.096 0.271 0.154 0.096

f 0.938 0.928 0.911 0.938 0.928 0.912

n=75 Mean 19.046 38.035 56.038 19.046 38.035 56.039

MSE 0.164 0.113 0.134 0.164 0.113 0.133

f 0.935 0.923 0.926 0.935 0.923 0.926

n=100 Mean 25.026 50.031 75.040 25.026 50.031 75.042

MSE 0.140 0.133 0.104 0.140 0.133 0.104

f 0.914 0.921 0.925 0.914 0.921 0.924

n=125 Mean 31.033 63.044 94.040 31.033 63.044 94.041

MSE 0.133 0.106 0.116 0.133 0.106 0.117

f 0.920 0.916 0.928 0.920 0.916 0.928

n=200 Mean 50.044 100.040 150.046 50.044 100.040 150.046

MSE 0.140 0.128 0.138 0.140 0.128 0.138
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Table 4. Normal/Exponential Data with (µ2, λ2) = (2, 2)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.656 0.662 0.639 0.663 0.662 0.635

n=40 Mean 10.147 20.056 29.857 10.135 20.060 29.899

MSE 1.879 2.046 3.573 1.769 2.094 3.443

f 0.664 0.674 0.661 0.662 0.675 0.659

n=75 Mean 19.106 37.979 55.990 19.131 37.983 56.004

MSE 1.536 1.419 1.544 2.581 1.305 1.582

f 0.650 0.664 0.641 0.652 0.663 0.643

n=100 Mean 25.092 49.988 74.995 25.106 49.997 75.032

MSE 1.938 1.118 1.931 1.844 1.207 1.596

f 0.646 0.664 0.639 0.646 0.664 0.640

n=125 Mean 30.972 62.995 93.947 30.965 62.992 93.952

MSE 1.478 1.245 1.413 1.483 1.242 1.406

f 0.652 0.663 0.675 0.649 0.661 0.676

n=200 Mean 50.026 99.985 149.985 50.031 99.984 149.983

MSE 1.618 1.463 1.179 1.623 1.468 1.175
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Table 5. Normal/Exponential Data with (µ2, λ2) = (3, 3)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.866 0.855 0.881 0.863 0.884 0.874

n=40 Mean 10.003 20.020 29.986 10.006 20.018 29.986

MSE 0.195 0.228 0.264 0.198 0.246 0.282

f 0.891 0.876 0.892 0.893 0.874 0.890

n=75 Mean 19.016 38.009 55.980 19.011 38.005 55.982

MSE 0.194 0.213 0.166 0.181 0.221 0.168

f 0.884 0.865 0.884 0.884 0.864 0.885

n=100 Mean 25.010 49.996 75.000 25.010 49.994 75.000

MSE 0.152 0.238 0.186 0.152 0.242 0.188

f 0.864 0.878 0.887 0.863 0.882 0.887

n=125 Mean 30.978 62.969 93.993 30.979 62.974 93.995

MSE 0.254 0.183 0.193 0.255 0.176 0.193

f 0.888 0.892 0.889 0.888 0.892 0.889

n=200 Mean 49.990 99.989 149.970 49.990 99.989 149.970

MSE 0.160 0.193 0.172 0.160 0.193 0.172
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Table 6. Normal/Exponential Data with (µ2, λ2) = (3.5, 4)

LRT Method CPIC Method

Change Position Change Position

Sample Size n/4 n/2 3n/4 n/4 n/2 3n/4

f 0.931 0.920 0.942 0.931 0.920 0.941

n=40 Mean 10.007 19.995 30.015 10.007 19.995 30.016

MSE 0.101 0.115 0.105 0.101 0.115 0.106

f 0.939 0.932 0.939 0.927 0.933 0.940

n=75 Mean 18.990 38.002 56.001 18.990 38.004 56.004

MSE 0.082 0.088 0.081 0.082 0.084 0.080

f 0.927 0.926 0.940 0.927 0.926 0.939

n=100 Mean 25.092 49.988 74.995 25.106 49.997 75.032

MSE 0.091 0.105 0.084 0.091 0.105 0.085

f 0.946 0.923 0.938 0.946 0.923 0.937

n=125 Mean 30.994 63.011 93.987 30.994 63.011 93.988

MSE 0.084 0.103 0.071 0.084 0.103 0.072

f 0.938 0.929 0.932 0.938 0.929 0.932

n=200 Mean 49.971 100.002 149.985 49.971 100.002 149.987

MSE 0.103 0.106 0.089 0.103 0.106 0.089
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Application to aCGH Data

Both the likelihood and information methods developed in this section were

applied to aCGH data of nine Fibroblast Cell lines with known changes in at least one

chromosome. The data sets were part of a set of 15 Fibroblast Cell lines that have

been extensively experimented on and the position of the copy number alterations

were verified by karyotyping in Snijders et al. (2001)[178]. The results are available

at http://nature.com/ng/journal/v29/n3/full/ng754.html. Because of the extensive

verification done on these data sets, they are used as a benchmark for studying new

methods as in Chen et al. (2010)[30].

The data from each cell line was prepared by first removing data points with

missing log2(Ti/Gi) values or missing gene position. The data sets included the

genome order along the DNA strand, as a marker of the genes location, the chromo-

some number of each gene, it’s log2(Ti/Gi), the distances between the gene and the

previous gene on the chromosome were calculated using the gene’s position on the

chromosome, and the number of genes in each interval. The intervals were set up

with one gene per interval except for locations with multiple genes, in these cases the

log2(Ti/Gi)’s for the points were combined and the number of genes combined was

recorded. Each method was then used to process the data using R. The cell lines were,

searched one chromosome at time for possible copy number variations, and a possible

location of change for each chromosome was reported. For the likelihood method,

a report was generated with a location of possible change, using the genome order

data, for each chromosome along with a p-value based on the mixed model, a Chi

squared with two degrees of freedom, and a Gumbel distribution. For the information
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criterion, a report including the possible location of the change for each chromosome

if one was indicated by the CPIC. If no change was indicated on the chromosome

then No Change was output. In Figure 1 one can see the results of Chromosome 3 of

cell line GM03563, which contains one change point. In the figures, the Log2(Ti, Gi)

are graphed against the position along the gene, with the change point located by

both methods denoted with a red circle.

Figure 1. GM03563 Chromosome 3

The results for known copy number locations are given in Table 7. As can be

seen, both methods are efficient in finding the location of change, even in the presence

of multiple change points. While both methods worked equally as well in locating

changes, the CPIC did find the location near the beginning of Chromosome 16 cell

line GM04435 as noted by the red diamond in Figure 2, which was missed by the

likelihood method. Figure 3 shows the results from cell line GM01524 Chromosome

6, a chromosome with two change points, where one of the two locations were found
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by both methods. Figure 4 on the other hand shows were both methods failed to

find a change on Chromosome 8 of cell line GM03134. It should be noted, that the

location found was adjacent to an outlier, which may have confounded the methods.

Figure 2. GM04435 Chromosome 16

Figure 3. GM01524 Chromosome 6
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Figure 4. GM013134 Chromosome 8

Of major concern with all applications is the false positive rate. Using the

mixed model to calculate a p-value for the likelihood function had a low false positive

rate of about 3% for a 10% level of significance and no false positives for the 5% level

of significance. However, since the mixed model measures changes in both the µ and

λ if the change only occurs in one of the parameters, it also failed to find the correct

location a significant change over half the time, even at the 10% level of significance.

The information criterion on the other hand indicated change on all known change

locations but had over a 50% false positive rate. Clearly the false positive rate on

the information criterion could be reduced if a distribution for its test statistic could

be found.
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Table 7. Outcome for Known Locations of Change α = 0.1

Method

Likelihood CPIC

Cell Line Gene Chrom. Found Sign. Found Sign.

GM01524 CTD-2009co6 6 Yes Yes Yes Yes

GM01524 RP11-139o22 6 No No

GM01535 PR11-88j19 5 Yes No Yes Yes

GM01535 RP11-81G12 12 Yes No Yes Yes

GM01750 RP11-33o15 9 Yes No Yes Yes

GM01750 RP11-125a05 14 Yes Yes Yes Yes

GM03134 RP11-117N14 8 No No

GM03134 RP11-102K07 8 No No

GM03563 RP11-146e16 3 Yes Yes Yes Yes

GM03563 RP11-28n06 9 Yes No Yes Yes

GM04435 GS1-31J3 5 No No

GM04435 CDT-2371a5 16 No Yes Yes

GM04435 PAC 191p24 16 No No

GM05296 RP11-237j07 10 Yes No Yes Yes

GM05296 RP11-46g13 10 No No

GM05296 RP11-127K23 11 No No

GM05296 RP11-18B09 11 Yes Yes Yes Yes

GM07081 RP110251—15 7 Yes Yes Yes Yes

GM13330 RP11-234m03 1 Yes No Yes Yes

GM13330 RP11-272o03 4 Yes Yes Yes Yes



CHAPTER 5

CHANGE POINTS IN COMPOUND POISSON PROCESSES WITH VARIANCE

UNKNOWN

The Problem

In chapter 4, the case of an abrupt change in mean and lambda which occurred

after time j was considered. In this chapter a slightly different problem will be

investigated. First, is the possibility of a change in the variance of the normal model

σ2 . Second, in the previous problem the interval j was the last interval before the

change occurred, in this chapter the change point, interval j , may be distributed

differently from all the other intervals in the sequence. This is an important feature

of the method developed because, as is noted in Levin et al. (2005)[117], there may

be a short abrupt change before the new state is achieved. For instance, in the stock

market, there may be an event which causes an initial shock in the price of a stock and

after that, the stock may settle on a new growth path. In the case of gene expression

data, as discussed in Levin et al. (2005)[117], changes in the expression level of a

particular DNA sequence can effect the expression level of neighboring gene. Thus,

if a region of the DNA sequence has a changed expression level, it may be that the

end of effected sequence may only show a slight change. The model for this case may

be expressed as:

Assume that a sequence of observations y1, y2, . . . , yn , are distributed yi ∼

N(µi, σ
2
i ), and occur during a time or distance T. Let T be subdivided into ℓ intervals

65
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with t1, t2, . . . , tℓ be the lengths of each interval and Nti the number of occurrences

of y in segment i . Suppose that Ntj ∼ Poisson(λiti), and let Xtj =
∑Ntj

i=1 yi , then

Xt1 , Xt2 , . . . , Xtℓ form a Compound Poisson Process, and the model for this change

point problems can be expressed as:

Xti ∼ N(Ntiµ1, Ntiσ
2
1), given Nti , for (i = 1, 2, · · · , j − 1),

Xtj ∼ N(Ntjδ,Ntjσ
2), given Ntj

Xti ∼ N(Ntiµ2, Ntiσ
2
2), given Nti , for (i = j + 1, j + 2, ·, ℓ),

Nti ∼ Poisson(λ1ti) for (i = 1, 2, · · · , j − 1),

Nti ∼ Poisson(λti) for (i = j),

Nti ∼ Poisson(λ2ti) for (i = j + 1, j + 2, · · · , ℓ).

The decision of whether the sequence Xt1 , Xt2 , . . . , Xtℓ form a Homogenous

Compound Poisson Process against the alternative that a change point exists at an

unknown interval j ,can be expressed in the following hypothesis test.

H0 : (µi, σ
2
i , λi) = (µ, σ2, λ) for i = 1, 2, · · · , ℓ) (5.1)

versus the alternative that,

H1 : (µi, σ
2
i , λi) =


(µ1, σ

2
1, λ1) for i = 1, 2, · · · , j − 1

(δ, σ2, λ) for i = j

(µ2, σ
2
2, λ2) for i = j + 1, j + 2, · · · , ℓ

(5.2)

While a likelihood ratio and information approach were proposed for the case

of known variance, due to difficulties in the properties of the likelihood function, in

the case of variance change, a Bayesian approach is proposed for this model. In Jie

Chen, et al. (2010)[30], a Bayesian approach was shown to be effective in a similar
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case where the variance of the normal variables was assumed to remain constant.

A Bayesian Approach

Bayesian methods for change point analysis have been widely and effectively

used for many different problems. Some examples are Sen and Srivastava (1975) [170]

and Erdman and Emerson (2008) [45] who worked with changes in the mean of normal

models. Ferreira (1975) [46] and Charlton and Troskie (1999) [19] who worked with

Regression models. While Ray and Tsay (2002) [163], and Reboul and Benjelloun

(2005) [164] proposed Bayesian models for time series data.

For the change point model defined by equation (5.2) the following change

point model is proposed. Do to the inclusion of the gamma function in calculating

the posterior distribution of the change location, the change point will be confined to

2 ≤ j ≤ ℓ− 1. The prior distribution of the change location is assumed to be,

π0(j) =


1

ℓ−2
if 2 ≤ j ≤ ℓ− 1

0 otherwise.
(5.3)

The prior of the variances, σ2
1, σ

2
2, σ

2 , are assumed to be,

π0(σ
2
1, σ

2
2, σ

2|j) ∝ 1

σ2
1σ

2
2σ

2
(5.4)

and the prior for the means of the normal distributions, µ1, µ2, δ , are assumed

to be,

π0(µ1, µ2, δ|σ2
1, σ

2
2, σ

2, j) ∝ 1√
2πσ1

e
− 1

2σ2
1

µ2
1 1√

2πσ
e−

1
2σ2 δ

2 1√
2πσ2

e
− 1

2σ2
2

µ2
2
. (5.5)

The following theorem states the main result.

THEOREM 5.1. For the change-point problem specified by Equation (5.2), un-
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der the normality assumption of the random sample xi , the Poisson assumption of

Nti , and the non-informative priors (5.3), (5.4), and (5.5), the posterior probability

distribution function of the change point location j is given by,

π∗
1(j) =

π′
1(j)∑ℓ−1

i=2 π
′
1(i)

for j = 2, 3, . . . , ℓ− 1, (5.6)

where

π′
1(j) =

a
−j+1

2 b
j−ℓ
2 c−

1
2Γ
(
j−1
2

)
Γ
(
ℓ−j
2

)
√
1 +

∑j−1
i=1 mi

√
1 +mj

√
1 +

∑ℓ
i=j+1 mi

×
(∑j−1

i=1 mi∑j−1
i=1 ti

)∑j−1

i=1
mi (

mj

tj

)mj
(∑ℓ

i=j+1 mi∑ℓ
i=j+1 ti

)∑ℓ

i=j+1
mi

, (5.7)

and the constants a, b, c are calculated as

a =
j−1∑
i=1

x2
ti

mi

−

(∑j−1
i=1 mi

)2
1 +

∑j−1
i=1 mi

(5.8)

b =
ℓ∑

i=j+1

x2
ti

mi

−

(∑ℓ
i=j+1 mi

)2
1 +

∑ℓ
i=j+1 mi

(5.9)

c =
x2
tj

mj(1 +mj)
. (5.10)

PROOF. Under the normality assumption of the random sample Xi and the Pois-

son assumption of Nti , the likelihood function of the sample under the alternative

hypothesis (5.2) can be found as

L(µ1, µ2, δ, σ1, σ2, σ, j) = L(µ1, µ2, δ, σ1, σ2, σ, j,Xti|Nti , i = 1, 2, · · · , ℓ)

·P (Nti = mi, i = 1, 2, · · · , ℓ)
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∝ 1

(σ2
1)

j−1
2

exp
{
− 1

2σ2
1

∑j−1
i=1

(
xti−miµ1√

mi

)2}
1

(σ2)
1
2
exp

{
− 1

2σ2

(
xtj−mjδ
√
mj

)2
}

· 1

(σ2
2)

ℓ−j
2

exp
{
− 1

2σ2
2

∑ℓ
i=j+1

(
xti−miµ2√

mi

)2}
· P (Nti = mi, i = 1, 2, · · · , ℓ). (5.11)

The joint posterior distribution of the parameters µ1, µ2, δ, σ1, σ2, σ and j can

be expressed as proportional to,

π′
1(µ1, µ2, δ, σ1, σ2, σ, j) ∝ L(µ1, µ2, δ, σ1, σ2, σ, j,Xti|Nti , i = 1, 2, · · · , ℓ)

·P (Nti = mi, i = 1, 2, · · · , ℓ) · π0(µ1, µ2, δ|σ2
1, σ

2
2, σ

2, j)

·π0(σ
2
1, σ

2
2, σ

2|j) · π0(j)
.
= π1(µ1, µ2, δ, σ1, σ2, σ). (5.12)

Where π0(·) are the priors for the parameters as defined above. Now, from

priors (5.3)-(5.5) and (5.12), the posterior distribution of j is then proportional to,

π1(j) ∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π1(µ1, µ2, δ, σ1, σ2, σ)dµ1dµ2dδdσ

2
1dσ

2
2dσ

2. (5.13)

Now, as the function π1(µ1, µ2, δ, σ1, σ2, σ) is separable in the integration vari-

able, the integration is given in parts below, beginning with the integration with

respect to µ1 . From Equation (5.11),

∫ ∞

−∞
π1(j)dµ1 ∝

∫ ∞

−∞

1

(σ2
1)

j−1
2

e

{
− 1

2σ2
1

∑j−1

i=1

(
xti

−miµ1√
mi

)2
}

1√
2πσ1

e

{
− 1

2σ2
1

µ2
1

}
dµ1. (5.14)

Now, let A equal the exponent in Equation (5.14) that is,

A = − 1

2σ2
1


j−1∑
i=1

(
xti −miµ1√

mi

)2

+ µ2
1


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= − 1

2σ2
1


j−1∑
i=1

x2
ti

mi

−

(∑j−1
i=1 xti

)2
1 +

∑j−1
i=1 mi


− 1 +

∑j−1
i=1 mi

2σ2
1

{
µ1 −

∑j−1
i=1 xti

1 +
∑j−1

i=1 mi

}2

. (5.15)

By substituting a into the equation as defined by Equation (5.8), Equation

(5.15) becomes,

A = − a

2σ2
1

− 1 +
∑j−1

i=1 mi

2σ2
1

{
µ1 −

∑j−1
i=1 xti

1 +
∑j−1

i=1 mi

}2

. (5.16)

Now, by substituting A back into Equation (5.14) and multiplying in the right

constant,

∫ ∞

−∞
π1(j)dµ1 ∝

(
1

σ2
1

) j−1
2

e
− a

2σ2
1

1√
1 +

∑j−1
i=1 mi

·
∫ ∞

−∞

√
1 +

∑j−1
i=1 mi√

2πσ1

· e
−

1+
∑j−1

i=1
mi

2σ2
1

{
µ1−

∑j−1

i=1
xti

1+
∑j−1

i=1
mi

}2

dµ1

=

(
1

σ2
1

) j−1
2

e
− a

2σ2
1

1√
1 +

∑j−1
i=1 mi

. (5.17)

Note: The integra is the integral of a normal variable over its entire domain

and thus equals one.

Now, for the integration with respect to µ2 , from Equation (5.11),

∫ ∞

−∞
π1(j)dµ2 ∝

∫ ∞

−∞

1

(σ2
1)

ℓ−j
2

e

{
− 1

2σ2
2

∑ℓ

i=j+1

(
xti

−miµ2√
mi

)2
}

1√
2πσ2

e

{
− 1

2σ2
2

µ2
2

}
dµ2. (5.18)

Similar to the process for µ1 , let B equal the exponent in Equation (5.18) and

it becomes,
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B = − 1

2σ2
2


ℓ∑

i=j+1

x2
ti

mi

−

(∑ℓ
i=j+1 xti

)2
1 +

∑ℓ
i=j+1 mi


−

1 +
∑ℓ

i=j+1 mi

2σ2
1

{
µ2 −

∑ℓ
i=j+1 xti

1 +
∑ℓ

i=j+1 mi

}2

. (5.19)

.

By substituting b into the above equation as defined by Equation (5.9), Equa-

tion (5.19) becomes,

B = − b

2σ2
2

−
1 +

∑ℓ
i=j+1 mi

2σ2
2

{
µ2 −

∑ℓ
i=j+1 xti

1 +
∑ℓ

i=j+1 mi

}2

. (5.20)

By substituting B back into Equation (5.18) and multiplying in the right

constant,

∫ ∞

−∞
π1(j)dµ2 ∝

(
1

σ2
2

) ℓ−j
2

e
− b

2σ2
2

1√
1 +

∑ℓ
i=j+1 mi

·
∫ ∞

−∞

√
1 +

∑ℓ
i=j+1 mi√

2πσ2

·e
−

1+
∑ℓ

i=j+1
mi

2σ2
2

{
µ2−

∑ℓ

i=j+1
xti

1+
∑ℓ

i=j+1
mi

}2

dµ2

=

(
1

σ2
2

) j−1
2

e
− b

2σ2
2

1√
1 +

∑ℓ
i=j+1 mi

. (5.21)

Step 3, the integration with respect to δ , from Equation (5.11),

∫ ∞

−∞
π1(j)dδ ∝

∫ ∞

−∞

1

(σ2)
1
2

· exp

− 1

2σ2

(
xtj −mjδ

)2
mj

 · 1√
2πσ

e{−
1

2σ2 δ
2}dδ. (5.22)

Letting C be the exponential portion of the integrand and,

C = − 1

2σ2

(
xtj −mjδ

)2
mj

− 1

2σ2
δ2
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= − 1

2σ2

x2
tj

mj(1 +mj)
− 1 +mj

2σ2

[
δ −

xtj

1 +mj

]2
. (5.23)

Now, substitute c from Equation (5.10) and C becomes,

C = − c

2σ2
− 1 +mj

2σ2

[
δ −

xtj

1 +mj

]2
. (5.24)

By substituting C back into Equation (5.22) and multiplying in the right

constant,

∫ ∞

−∞
π1(j)dδ ∝ 1

(σ2)
1
2

· e−
c

2σ2
1√

1 +mj

·
∫ ∞

−∞

√
1 +mj√
2πσ

e
−

1+mj

2σ2

[
δ−

xtj
1+mj

]2
dδ

=
1

(σ2)
1
2

· e−
c

2σ2
1√

1 +mj

. (5.25)

Now of the three previous results, only the result from integrating µ1 contained

σ2
1 , so beginning with Equation (5.17),

∫ ∞

0
π1(j)dσ

2
1 ∝

∫ ∞

0

(
1

σ2
1

) j−1
2 1√

1 +
∑j−1

i=1 mi

e
− a

2σ2
1
1

σ2
1

dσ2
1

=
∫ ∞

0

1√
1 +

∑j−1
i=1 mi

(
σ2
1

)−j−1
2 e

− a

2σ2
1 dσ2

1

=
1√

1 +
∑j−1
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Let a
2σ2

1
= u , then dσ2

1 = − a
2u2du , substituting into the equation above,

=
1√

1 +
∑j−1

i=1 mi

[
−
∫ 0

∞

(
a

2u

)−j−1
2

e−u a

2u2
du

]
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, (5.27)

provided j−1
2

> 0, or j > 1.

Similar to the integration for σ2
1 , σ

2
2 was confined to Equation (5.21) so,

∫ ∞
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π1(j)dσ

2
2 ∝
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)
, (5.28)

provided ℓ−j
2

> 0, or j < ℓ .

Finally, σ2 was contained in Equation (5.25) and,

∫ ∞
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π1(j)dσ
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∫ ∞

0

(
1

σ2

) 1
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1 +mj

e−
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(
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1
2

√
1 +mj

. (5.29)

Combining Equations (5.27),(5.28), and (5.29),
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π1(j) ∝ (a)
1−j
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1+
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1
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)
· P (Nti = mi, i = 1, 2, · · · , ℓ) . (5.30)

Further, as

Nti ∼ Poisson(λ1ti) for (i = 1, 2, · · · , j − 1)

Nti ∼ Poisson(λti) for (i = j)

Nti ∼ Poisson(λ2ti) for (i = j + 1, j + 2, · · · , ℓ),

P (Nti = mi, i = 1, 2, · · · , ℓ) =
ℓ∏

i=1

P (Nti = mi) (5.31)
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In order to calculate the probability we need to find the MLE’s of the lambda’s

this can easily be done an shall not be reproduced as the details are similar to those

in Chapter 4. The estimators are,

λ̂1 =

∑j−1
i=1 mi∑j−1
i=1 ti

, λ̂1 =
mj

tj
, λ̂2 =

∑ℓ
i=j+1 mi∑ℓ
i=j+1 ti

. (5.33)

Substituting them into Equation (5.32), the estimated P (Nti = mi, i = 1, 2, · · · , ℓ)
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is,

=

∏ℓ
i=1 t

mi
i∏ℓ

i=1 mi!
· e−
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mi
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. (5.34)

As the first two factors of (5.34) are constant for all j , we only include the

last three factors in π1(j). Substitution the last three factors of (5.34) into (5.30)

and the proof of Theorem 5.1 is complete. ⊔⊓

A Bayesian approach to locating a single change point, j . is given by ĵ such

that,

π∗
1 ĵ = max

2≤j≤ℓ−1
π1(j). (5.35)

Simulation Study

As with the methods in Chapter 4, once the Bayesian method was developed,

an extensive simulation study was performed using R. The simulation was run on data

with change in both mean, µ , and variance, σ2 of the normal variable along with

a change in the mean parameter of the Poisson λ . For purposes of simulation, the

number of observations in each interval, mi , was set equal to one, and the distances,

ti ’s were generated using the exponential distribution.

In the study, three sets of simulations were run for different levels of change.

In each of the three sets, µ1 = δ = 0, σ2
1 = σ2 = 1, and λ1 = λ = 1. The low level

of change was µ2 = 3, σ2
2 = 1.5, and λ2 = 2, while the medium level of change was

µ2 = 5, σ2
2 = 2, and λ2 = 3, and the large level of change was µ2 = 7, σ2

2 = 2.5, and

λ2 = 5. For each level of change, the sample sizes were set as n = 40, 75, 100, 125,

and 200, and the location of the change was placed at the n
4
th , n

2
th, and 3n

4
th
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Table 8. Bayesian Simulation with n=40

(µ2, σ2, λ2) Position f j̄∗ MSE(j∗)

10 0.655 9.918 2.022

(3, 1.5, 2) 20 0.660 19.892 1.098

30 0.595 29.635 2.439

10 0.842 10.020 0.196

(5, 1, 3) 20 0.859 20.004 0.216

30 0.791 29.910 0.480

10 0.927 10.049 0.073

(7, 2.5, 5) 20 0.926 20.046 0.074

30 0.901 30.011 0.139

positions in the sequence. For each combination of level of change, change location,

and sample size, 1000 repetitions were performed and the frequency of selecting the

correct location j was recorded along with the estimated mean square error, denoted

MSE(j∗), of the position of change and the average of the estimated change location,

denoted j̄∗ . The results are given in Table 8 through Table 12.
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Table 9. Bayesian Simulation with n=75

(µ2, σ2, λ2) Position f j̄∗ MSE(j∗)

19 0.686 18.973 0.875

(3, 1.5, 2) 38 0.666 37.998 0.802

56 0.595 55.903 0.883

19 0.864 19.067 0.157

(5, 1, 3) 38 0.878 38.018 0.140

56 0.861 56.018 0.186

19 0.935 19.057 0.065

(7, 2.5, 5) 38 0.923 38.063 0.077

56 0.922 56.049 0.087

The simulations show that the method is effective in locating the position of the

change even at the low level of change. As would be expected, at the low and middle

levels of change, method improved in finding the location of the change as the sample

sized increases.This improvement is not seen in the case of a large level of change. At

the lower level of change, the method successfully located the change 65% to 70%,

while finding 84% to 88% of the time for the medium level of change, and 91.5% to

93.6% for the large level of change. The MSE(j∗)’s for all cases would indicate that

the method is proficient at locating the position of change with the values being less

than one, except for the case of low level of change with sample size 40, in which case
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Table 10. Bayesian Simulation with n=100

(µ2, σ2, λ2) Position f j̄∗ MSE(j∗)

25 0.704 24.978 0.838

(3, 1.5, 2) 50 0.696 49.970 0.832

75 0.676 74.932 0.960

25 0.874 25.073 0.155

(5, 1, 3) 50 0.863 50.063 0.137

75 0.866 75.034 0.184

25 0.914 25.083 0.089

(7, 2.5, 5) 50 0.920 50.070 0.086

75 0.922 75.049 0.081

the MSE(j∗)’s ranged from 2.5 and 1.1. The Average estimated location also suggest

a good estimation as they are all within two tenths of a unit of the actual position. It

should be noted that the level of change in the variance is smaller than in the other

variables. While the model is supposed to identify changes in variance, large changes

in variance on the same magnitude as the changes in the other variables, seems to

confound the process and the percentage of location of change drops significantly.

In addition to the data sets described above, null sets, with no change were

simulated for n = 40 and 200. The value of the parameters were based on the values

found in aCGH data from the next section. One question that must be addressed in
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Table 11. Bayesian Simulation with n=125

(µ2, σ2, λ2) Position f j̄∗ MSE(j∗)

31 0.709 31.000 0.624

(3, 1.5, 2) 63 0.674 62.937 0.733

94 0.661 93.936 0.864

31 0.878 31.084 0.140

(5, 1, 3) 63 0.880 63.062 0.132

94 0.850 94.060 0.164

31 0.916 31.078 0.084

(7, 2.5, 5) 63 0.936 63.052 0.064

94 0.922 94.043 0.081

applying this Bayesian method is what threshold should be used to determine that

a change has taken place. Simulations indicate that a high threshold of, 0.8 or 0.9,

should be set as indicated by the results in Table 13.
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Table 12. Bayesian Simulation with n=200

(µ2, σ2, λ2) Position f j̄∗ MSE(j∗)

50 0.704 50.012 0.606

(3, 1.5, 2) 100 0.709 100.025 0.731

150 0.668 2149.946 0.900

50 0.873 50.100 0.136

(5, 1, 3) 100 0.879 100.0844 0.138

150 0.874 150.047 0.153

50 0.923 50.077 0.077

(7, 2.5, 5) 100 0.931 100.059 0.069

150 0.915 150.071 0.091

Table 13. False Positive Rates

Sample Size

Threshold 40 200

0.5 0.335 0.264

0.6 0.229 0.176

0.7 0.151 0.118

0.8 0.084 0.074

0.9 0.042 0.046
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Application to aCGH Data

The Bayesian method developed was applied to the same nine cell lines de-

scribed in the previous chapter. One thing that was not noted in the description of

the data preparation in the previous chapter was the combining of intervals with a

Log2(Gi/Ti) = 0 with the previous interval. This is necessary because the power of c

is negative, which causes a division by zero. Another technical issue with this method

is the number of intervals to be tested. Due to the presence of the gamma function in

the calculation of the posterior distribution the sample cannot exceed 300 intervals.

Therefore, for the single change point model to be applied to an entire cell line data

points must be combined.

While the Bayesian method developed is for a single change point, unlike the

application of the two previous methods, a sliding window approach for identifying

multiple changes in location will be presented, and applied to five chromosomes.

This is an important feature as one can see from the earlier applications that the

occurrence of multiple change points on a chromosome can be common. There is also

another application for the multiple change point models, which is the case where

the copy number variation occurs across an entire chromosome. This later case will

be demonstrated with cell line GM00143, in which the multiple change procedure is

used.

With a sliding window there are a few technical issues that must be worked

out. The first is the problem with edge effect, where the posterior distribution can not

be calculated for the first and last positions. The need to overlap the windows by a

point or two is well documented in, Sun et al. (2006) [186], and Chen et al.(2010)[30].
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Figure 5. GM05296 Chromosome 10

In this case it requires two points of overlap to insure that posterior probability is

calculated for each interior point. Another issue is what window size to use. In Sun

et al. (2006)[186] a range of 3 to 10 consecutive markers was recommended, while in

Chen et al.(2010)[30] used a range of window sizes from 12 to 35. In this application

a range of window sized from 10 to 25 are used for a chromosome. As indicated

in the simulation study, the threshold for the test needs to be high, in the range of

0.8 to 0.9. The method proposed is modeled after that in Chen et al. (2010)[30].

Another issue is what to do with the end of the data set. For the last window, the

size may be larger or smaller than the set size. If the last window size would be

less than .3 of the window size, the points will be combined with, what would have

been the next to last window, which will be slightly larger than the set size, and if

larger than .3 times the window size the points will be evaluated in their own window.

This is numerically necessary as the minimum number of points must be greater than

three. These extremely small data sets may also artificially create a point with a

high posterior probability. In this application, a heuristic threshold of 0.5 for the
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maximum posterior probabilities was used.

The steps to the algorithm are as follows.

1. If a chromosome has only one suspected change location, then apply the

single change point model proposed, calculate the posterior probabilities for

each location by Equation 5.7 and applying Theorem 5.1, then use Equation

5.35 to find the estimated location of change.

2. If multiple changes in a chromosome are suspected, break the chromosome

into windows starting with size 10, with two points overlapping each window.

3. For each window, calculate the posterior probability using Equation 5.7 and

applying Theorem 5.1, then use Equation 5.35 to find the estimated location

of change.

4. Record the location of change in each window along with its posterior prob-

ability.

5. Repeat steps 2 - 4 for window sizes 11, 12, · · · , J, where J is the window size

in which the posterior probabilities and positions seem to stabilize.

6. Determine from the last results which of the maximum posterior probabilities

exceed the threshold and are deemed actual change points.

The results of the application indicate that the maximum posterior does a good

job at identifying the location of change in an interval where one exists. However,

since some of the intervals have extremely small or large lengths, in intervals with no

change in the copy number the clustering of points are enough to sway the posterior

probability. In other words, the method does what it is supposed to by being sensitive

to extreme changes in λ as well as µ . This problem seemed to diminish with the



84

Figure 6. GM01524 Chromosome 6

implementation of the sliding window. However, due to the fact that many of the first

genes at the beginning of the chromosome were in the zero position and given a length

of one, this leads to the posterior probability of position two on the chromosome to be

extremely high, in the first window. The results presented here have dismissed these

false positive as an error in setting up the data. Figure 5, shows Chromosome 10 of

cell line GM05296, the red rings indicate the identified change points throughout the

graphs in this section.

In Table 14, the results of the sliding window method are given. As a compar-

ison, Table 15 shows the results of some of the chromosomes with one change point.

As can be seen, the maximum posterior probabilities are what we would expect using

the sliding window, and lower than we would expect for the single change model.

Also, the false positive rate is greatly improved using the sliding window algorithm.

The graphs of the data for the rest of the two change cases are listed through-

out this section for review. It is worth noting that one of the false positives from
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Figure 7. GM03134 Chromosome 8

Chromosome 8 of cell line GM03134 as well as the one from Chromosome 6 of cell

line GM01524 are outliers, see Figures 6 and 7. Chromosome 11 of cell line GM05296

was the chromosome the method performed the worst on. Note in In Figure 9, the

red square indicates a known change point which was missed as well as three false

positives. While the missed location was chosen for smaller window sizes, the poste-

rior probability for each actual change location was low, see Table 14 Gene Marker

CTD-2208j5. To try and improve the results for this chromosome, a second analysis

was completed. This time, adjacent data points were combined to achieve a minimum

interval length of 100 kb; however, the results were not significantly improved. In the

second run, the posterior probability increased for the missed change points; however

it still failed to exceed the threshold of 0.5, while the false positives increased to 7.

Due to time restrictions, no further analysis of this chromosome was performed.

While the single change point model seems inconsistent in its performance

with aCGH data, the sliding window method seems to be a viable method for finding

the location of copy number variations in aCGH data.
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Table 14. Results for Chromosomes with Two Copy Number Changes

Window

Cell Line Chromosome Gene Marker π1(ĵ) size FP

GM01524 6 CTD-2009c06 0.82283 21 1

6 RP11-139o22 0.72919 21

GM03134 8 RP11-107F03 0.81935 25 2

8 RP11-102K07 0.67581 25

GM05296 10 RP11-14i14 0.78348 25 0

10 RP11-46g13 0.68266 25

GM05296 11 CTD-2208j5 0.27164 13 3

11 RP11-18B09 0.70956 13

GM13031 17 RP5-1071i14 0.7161 21 2

17 RP11-670E13 0.91776 21

Figure 8. GM13031 Chromosome 17
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Figure 9. GM05296 Chromosome 11

Table 15. Results for Chromosomes with One Copy Number Changes

Cell Line Chromosome Gene Marker π1(ĵ) FP

GM01535 12 RP11-81g12 0.711908 8

GM01750 9 RP11-85J05 0.82191 9

14 RP11-48l01 0.59438

GM03563 3 CTD-2014B13 0.907387 5

9 RP11-28n06 0.994078
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CHAPTER 6

FUTURE WORK

While the Bayesian model presented in Chapter 5, meets the goal that was

set in chapter 3, to identify multiples changes in all three model parameters, there is

clearly much more that can be done. It has become evident that the more a problem

is studied and the more one learns about a topic, the more they understand how

little they truly know. Each of the three methods presented can use refinement in

one aspect or another.

1. For the Likelihood method to be useful, the null distribution must be derived.

This is clearly the most challenging and likely to be a long-term goal, as the

normal and Poisson variables cannot be separated.

2. The likelihood method could be extended to include change in variance.

3. The completion of one will also provide the possibility for deriving a test

statistic for the information criterion, which could lead to a p=value for the

test.

4. Until 3 can be done, the method could be extended to test for multiple

changes.

5. More extensive work can be done to refine the slide window algorithm and

improve its performance. This would include further analysis of Chromosome

11 of GM05296.

6. The Bayesian method can be refined to reduce the false positive rate.

88
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Of these the last is the goal for the near future, while the first could take a

lifetime of work, as the exact null distribution for a change point problem under any

distribution is still unknown in the literature. Finally, as a future work, I would like

to apply this or a similar method in a study of the stock market to determine if there

have been structural changes in the growth of the market due to changing the nature

of investing.
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7. Alexander Aue, and Lojos Horváth, Delay time in sequenctial detection of

change, Statistics & Probablility Letters 67 (2004), 221–231.

8. Jushan Bai, and Pierre Perron, Estimating and testing linear models with multiple

structural changes, Econometrica 66 (1998), 47–78.

9. Daniel Barry, and J.A. Hartigan, Product partition models for change point prob-

90



91

lems, The Annals of Statistics 20 (1992), 260–279.

10. Erhan Bayraktar, and Semith Sezer, Online change deteection for a Poisson

process with a phase-type change-time prior distribution, Sequential Analysis 28

(2009), 218–250.

11. G.K. Bhattacharyya, and Richard A. Johnson, Nonparametric tests for shift at

an unknown time point, The Annals of Mathematical Statistics 39 (1968), 1731–

1743.

12. Sven Bilke, Qing-Rong Chen, Craig C. Whiteford, and Javed Khan, Detection

of low level genomic alterations by comparative genomic hybridization based on

cDNA micro-arrays, Bioinformatics 21 (2005), 1138–1145.

13. Wolfgang Bischoff, Enkelejd Hashorva, Jürg Hüsler, and Frank Miller, On the
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