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PART ONE — RECTANGULAR COORDINATES.

CHAPTER I. — SETS OF POINTS.

1. Introduction. - A group or collection of points is said

to form a "set", if some law or criterion is known, whereby we
may determine whether any given point is a member of that group.
An easy and fundamentai illustration of the usefulness
of the idea, exists in the Dedekind-cut definition of an irrat-
ional number. (Figure I) All the rational numbers are divided
into two sets, A and B, so that any element in A is less than
any element of B. It 1s assumed that there exists a number C,
such that any A is less than C and any B 1s greater than C.
This number C, 1is called an irrational number. In the figure |,

ﬁ 2 furnishes the law for the construction of sets A and B.

Set A 1 1.4 1.4l 1.414 . « o« o« .
Set B 2 1.5 1.42 1.415 . « o« o« .

2. Comhtability. - A set of points may be composed of a

finite or an infinite number of elements. The points indicated
in figure 2, form a finite set. If the mid-points of each in-
dicated interval and of each successive interval be added to
this set, the result will be an infinite set of points. Infin-
ite sets are further subdivided intoj (a) those having a count-
able number of elements (a different positive integer may be as-
signed to each element as a sub-script); (b) those having more

than a countable number of elements. FPFigure 3 1llustrates a
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countable set, for the polnts may be arranged as in the follow-
ing table, and the subscripts assigned to the points imn the order

in which they are reached by the connecting line.,

Eventually any element will be reached and a subscript assigned
to it.,

Figure 4 1llustrates a more than countable set of
points, for if A and B are two points to which we desire to as-
slgn successive subscripts - between them lie an infinite num-
ber of points to which no subscript is assignable.

3. Reighborhood.—Limit Point.- The neighborhood of a

given point is comprised of all those polnts of the set, whose
distance from the given point is less than €  (an arbitrarily
small constant). Neighborhoods are one-dimensional, two-dimen-
sional, three-dimensional, n-dimensional, according as the set
of points lies on a line, in an area, a volume ete. Figure &
illustrates the three kinds of neighborhoods which are capable
of graphical construction.

This motion of neighborhood 1s necessary to the defin-
ition of a 1imit-point. A point 1i1s said to be a limit-point of






a set, 1f within 1ts neighborhood, there lie an infinite num-
ber of points of the set. A limit point may or may not be an
element of the set of which 1t is a limit point.

Stronger than a mere limit point is a point of con-

densation, within whose neighborhood there lie, more than a
couhtable number of points of the set. From its definition it
1s evident that a finite setl of points cannot have a limit-point,
nor a countable set, a point of condensation. However a bounded
infinite set of points must have at least one limit point. For
let E be an infinite set of points lying in the interval O L
(Figure 6). Bisect the interval O L and retain the half which
contains an infinite number of points. Repeat this process.
The interval (a;,b;), containing an infinite number of points,
can be made as small as we please., Then this interval will lie
within the neighborhood of somé point 1 - hence 1 1s a lim-
iting point of the set.

In exactly the same manner a bounded set containing
more than a countable number of points, can be shown to have at
least one point of condensation.

4, Derived Sets. - The first derived set of a given set

is the set, composed of the 1limit points of the original set.
The second derived set is the first derived set of the first
derived set etc. The points,(l,%— %— lg- %%—. « o+ « 2), form
the first derived set of the set pictured in figure 3. The
second derived set 1s the single point 2. There are two use-
ful theorems on derived sets, which I shall merely quote here,
with references. (a) Each derived set contains all succeding
derived sets. (b) In passing from one derived set to the next,
at most, a countable number of points is dropped ( Bord's

"Legons sur la Theorse des Fonctions", pp. 35-38),






A closed set of points 1s a set which contains all 1its
first derived set - and hence contains all its derived sets (see
preceeding paragraph). A set of points, which is identical with
its first derivative 1s called a perfect set of points.

6. Properties of Perfect Bets. - As a simple illustration

of a perfect set of points, all the polnts on a line segment of
unit length may be used(Both end-points are included). The in-
terior of an interval may be dropped from this segment without
disturbing the perfect character of the set (Figure 7). To drop
the interiors of a countable number of non-overlapping, non-
abutting intervals from a line segment, is the characteristic
manner in which all perfect sets are formed (For a proof of this
statement see Baere's "Fonctions discontinues" pp.S€->7 ),

An interesting perfect set of points is Cantor's

Ternary Set (Figure 8). The middle third of the interval (0,1)

is dropped from the sté@ght line segment; likewlse the middle
thirds of the remaining subintervals (End-points are always
retained). This process repeated infinitely yields a perfect
set - a line segment with the interiors of a countable number of
intervals removed. This set can be put into one-to-one corres-
pondence with the points on a unit line-segment - a property
called, "the power of contimum". Since this set was formed in
the characteristic manner of a perfect set, and since it 1is no-
where dense, this property may be assigned to any perfect set.
Any perfect set has the power of contimum. (Couplete proofs of
the theorems suggested in this paragraph may be found in Baire's

"Segons sur les Fonctions Discontinues" pp. 54,56).

6. Application to Function Theory. - The fundamental

importance of the polnt set introduction to function theory,lies
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in the new view-point of a function, toc which it leads us. A
function is always defined for certain definite values of the
independent variable., The set of values for which the function
is defined constitutes the first set of points. Each value of
the independent varlable determines one or more values of the
function itself. These values constitute point set number two.
Now between these two sets of points, there is a correspondence
of some sort - the particular function determines the kind.,

7. Single-valyed Functions. The simplest possible cor-

respondence (one-to-one) is illustrated by a monotone increas-
ing function. (Figures ¢ and 10). Here any two corresponding
values have the same relative order in the two sets. Ia order
that a one-to-one correspondence may exist, the function must
be a reciprocally single-valued one. Figures 11 and 12, i1llus-
trate the only possibility other than a monotone function. Here
the relative order is not preserved.

8., Multiple-valued Functions. If we have a double-valued

function defined over the points indicated on the x-axis (Pig-
ure 13), the correspondence would be as indicated. Point C is
an extremum point, hence the one-to-one correspondence at that
pecint. The analogy 1s obvicus when the function is n-valued,
(n being any positive integer). Figure 14, f£(x) - constant, 11-
lustrates the case, when n 1is Infinite.

An interesting correspondence is that, to which the

function - f£(x) = i- when x = %-( m and n are prime) £(x) = 0

otherwise - gilves rise.
To the point f£(x) = 0, there correspond more than a
countable number of x-points, all the irraticnal polnts between

zerc and one (Figure 15). To the points £(x) = 1 and £(x) = 1 ,
2
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there correspond one x-point each. To the points f£(x) = 1
and £(x) = %_, there correspond two x-points each etec. Wba
can always find a point, other than zero, on the f£(x) axis
which corresponds to more than k points on the x-axis (k may
be any positive integer). But f£(x) = 0 1is the only point,
to which there correspond an infinite number of points on the

x-axis.

9. Functions of Several Variables. - The functions Jjust

considered, have been functions of one variable only. Fune-
tions of n-variables can be analogously represented as the cor-
respondence between E_ili_sets of points. PFigure 6 illustrates
the case, when n = 3. The order of procedure is (a) choose
some point on x for which the function is defined, (b) con-
nect with any point on y for which the function i1s defined,
(c) connect with any point on 2z for which the function is
dcfined, (a) the three previous choices determine the corres-

ponding point, or points, on f(x,y,z).
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CHAPTER II. - SERIES.

1. Introduction. - A fundamental assumpticn in the study
of series, which may be taken as an axiom and which we shall call
the telescoped-interval axiom, is the following. Given, the ser-
ies of intervals, a,b,, a,b,, a b, « . . ab . . . . (each in-
tericr to the preceding), there is at least one point cormmon to
all the intervals (Fig.l7). This axiom is assumed in the Ded-
ekind-cut definiticn of an irrational number (Fig. 1), Fronm
this it 1s easy to‘prove that, if the lengths of the intervals
approach zero, there is only one point common to all the inter-

vals. (Borel's "Legons sur la Theorie des Fonctions" p.25).

2. Series of Constant Terms. - Convergence. - The fol-

lowing is the notation used throughout the chapter. Given the
infinite series a,fa, fa,#...., S.= a,, S =

o \
a fa , S,=a fa fa,, etec; that 1s S 1is the sun of
the first n terms of the serles. Thils 1s equivalent to re-
placing the 4infinite series by the infinite sequence S§,, S,,
S, « + ¢« « 5. .. . . Evidently if the sum of the serles,S, ex-

ists, it 1s the limit S, . A series 1s sald to converge if S
=% -

exists, and to diverge otherwise, Cauchy 's test for the conver-
. @ @ g
gence of a series, is that \Sm -sS./ZplE when n > N #.

Figures 18-19 are the characteristie Convergence graphs. In fig-

ure 18, we have a series of intervals S8, S,%, 548, . . . 5,8,
each interior to the preceeding. Since the length of the inter-

val \S“_ S,\/ p\ must approach zero;—by the telescoped interval

.,

f For a proof of this see Goursat-Hedrick Mathematical Analysis,
Vol.I, pp. 330-331.
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axiom there is but one point, namely S common to all the inter-
vals., Hence S 1s the %%%{$ Sﬁ\. Figure 19 represents a con-
vergent series whose terms alternate in sign. The series of tele-
scoped intervals is, $§, -85, , S,;-§ , . ... §-8 ...,
By Cauchy's test, these intervals approach zero. Hence by the ex-
tension of the telescoped interval axiom there is but cne point
conmcn to all these intervals, namely S.

Figures 20 and 21 illustrate tie two types of divergent
series, In 20, the terms have like signs, in 21 they alternate in
sign. In each case the series has been replaced by the sequence,
and an applicaticn of the telescoped interval axiom, combined with

the Cauchy test, 1s all that 1s necessary to prove the existence of

3. Series cf Functions. - A series of functions of a var-

iable x, say £i(x) A £f,(x) £ . « « « £,.(x) £ . . . . may be said to
converge, for a given valwe of x, 1f the seriles of constant terms
formed by substituting the value of x 1n the series converges.

A series of functions is sald to converge in an interval, or on a

set of points, if it converges for every value of x, In the inter-

val or on the set of points. The values to which the series con-
verges correspond to the respective values of the 1Independent var-
lable, hence the series representis or defines a function.

If the terms of the series are functions of more than
one varilable, then the series will define a function of the var-
iables involved for tlose values of the variables for which the ser-
ies converges.

4, Uniform Convergence. - A series, convergent in a given

Q@
interval,( az x<b ) is sald tc converge uniformly if |S - S_|<¢€
when n>%) s for any value of @: in the interval ( 1,2,3, desig-

nate the order of choice) Figures 22 and 23 illustrate the differ-

ence between convergence and uniform convergence. The intervals
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in both cases are the entire infinite plane. Figure 22 represcnts
the series @ =1/x / i?z!/ /314 . « . %/n\ . . . ., which
is uniformly convergent in any finite interval, but not in the
infinite interval. Figure 23 1s the uniformly convergent series
S(x) =Cosx / cos 8x 4 . . .cosnx £ . ..F

Graphica%fy interpreted uggform convergence means the
following proceedure: (1) choose a strip of uniform widthe; (2)

choose n , so large that i1f this strip be laid on § , any suc-

cecding Shﬂffter S, will lie on the surface underlying this strip.

5. The Serics a Functlon of "™u". - The subscript "n" may be

considered as one of the independent variables of the series (the
series,.of course, 1s defined only for positive integral values
of n ). S(x), then becomes = S(x,n) and hence has a three dimen-
sional representation. The advantages of thls metiicd of represen-

tation will become apparent in the following figures. Figure 24

illustrates 1 = 1 £ 1 412 feeoe_ 1 ...

x> -1 x9~ x4 XG X 2m -
in three dimensions., The transformation N = 3 1s made before

n

the series 1s plotted. N takes on only the special values ( 3,
1-1/2, 3/4 . . .), however S(x,N) nmay be defined for all values
of N between O and 3; in general, by connecting successive
curves with straight lines. This would form a contlinuous surface,
and the particular curves which represeant tiie series are the cross

sections of the surface made by N = (3, 1-1/2, 3/4 . . .). Thae

limit curve S(x,0,) forms the boundary of tae surface of the variable.

# For method of determining whether a glven series 1s uniforuly
convergent, see Goursat-Hedrick's Mathematical Analysis,Vol. I,

Pp. 383-364.
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7. A Uniformly Convergent Series of Continuous Functions. - If

each term of a given series 1s continucus, and the series converges

uniformly In a given interval, then the function represented by the

series 1s continuous. In figure 25, S,(x) is a continuous funciion

of x (the sum of a finite number of ccantinuous functions is a con-

tinuous function).

©

@
| height of A - height of Pl(% when n>m

m,>
| height of B - height of Ql< % when n»y ?11 >
Because the series is uniformly convergent ' @
Jheight of A - height of B\<% when [a - b)< >

Because Sin (x) is continucus.
A
Combining the three inequalities gilves the result
\neight of P - height of Q<€ when (a - b)< g,

which 1s the definition of continuity.

8. Henkel's Principle. - If all of the terms of a serics

except one, are contlnuous, and the series 1s otherwise uniformly
convergent, then the function which the serles represents, will
have the same discontinuities as that one discontlinuous term.,
Figure 28 illustrates thls principle. If any number of the terms
have discontinuities, but no two of them at the sawe point (lest
they cancel each other), then the limiting curve will have all
these discontinuities. Hamkel's principle 1is an excellent scheme

for building a badly discontinuous functicn, for example the fun-

= : 1gin -1 lgin_ 1
ction F(x) sin —yTs 5 = 175 —— % ° n(x_z/s)
s w W % sin = ]_'“q’ s - S : F(x) 1is ;13_

continuous at every rational point ir the interval zero to one

4 For proofs of the tneorens suggested in thils paragraph see Hauk-
el's Mathematische Annalen, Vol. XX, pp. 77-8l.
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9. Transfinite Numbers. - Let us make the function des-
cribed in the preceding paragraph feriodic in the following man-
ner. Repeat the portion in the (0,1) interval, dinished 1/2 in
size, in the interval (1,1-1/2). The (0,1-1/2) interval is dim-
inished in size and reproduced in the interval (1-1/2, 1-3/4).
This process is repeated infinitely. The set of points at which
the function is discontiﬁuous in the interval (0,2) is represented
in figure 27,

The positive integers may be assigned to the points in
the interval (0,1) as subscripts. That leaves no subscripts for
the rest of tae points, so we give point 1 the subscript\n. To
tlie points in the interval (1,1-1/2) we assign the subscripts
OLL, W2, «ooeeeee OEn, “ e Point 1-1/2 is 2 W,
point 1-3/4 is‘ubl, ete. Point 2 is Ldﬁ»orjfl . These W' are
the transfinite numbers, and as they are more tnan countable in
number, a functicn may have more than a countable number of dis-
continuities in a finite interval. (See Baire's "Lecons sur les
Ponctions Discontinues"pp .43-45).

Figure 28 shows that a merely convergent series of con-

t1inuous functions does rot represent a continuous function.

10. Term-wise Integration. - Without any very detalled krow-

ledge of the subject of integration, (which will be taken up later),
it can be easily shown that a uniformly convergent serles can be
integrated term-wise. However a uniformly convergent series of

continuous terms cannot always be differentiated term-wise. Fig-

ure 29 represents the uniformly convergent series

S(x) = %_/ sin x - (sin x - 8in 2x ) - (sinEZx -8ln 3% ) - . . &

- (sinnx - 8in (n AL)x ) « « & &
n (n /1)













204w

FRL\BG.

g%‘“&'

‘(5;#AA*

// %Mé#

’j g%p\ X .

/
Fig3l
\\Fxn
N X.
———~J¥§iyt

S 50

g,.x';

_~
K}s o
¢y







2=

Figure 30 represents its term-wise integration and figure?ﬁlﬁ*s
term-wise differcentiation. Figure 30 is a uniformly convergent
series, but figure 31 is a divergent series. In order to dif-
ferentiate term-wise, we nus filrst differentiate, then test the
resulting series - - 1f it 1s uniformly convergent the differen-
tiation is valid, otherwise not#.

Other definitions of convergence, than the one I have
adopted here, might be censtructed. For example a series might
be sald to converge 1if }Si“‘ ”5:\+\‘7)§\'r~<6€? Y\>*Ci9\ (This 1s the
well-known "least-squares" approximation). Another definition
and one often used in Calculus of Varilaticns is

\‘@Ax>~gw«>]’~+\:s;m- W<€ LR
If this definition cf convergence were adopted then the Series

described in tlie preceeding paragraph would not converge.

A
;ivvv& ng&q&.‘*
1ll. The Existence of ~:ov Does Not Mean Term-wise

Intepgration. - If a series is integrable term-wise, that means

b3 X

g?iﬂ3v+ = k;@f Swrd. , Paragraph 10 shows this is true in the
X ¢ Ke

case of a uniformly convergent serles of continuous functilons.

I\

Some times the %Hﬁ_y%QA)éQF exists when the series has no in-
tegral or may ncgieven converge and represent a function at all,
Figure 32 illustrates this condition of affairs. S, (x) contains
one triangle of dimensions 4" X 1/2", Sl(x) contains two trian-
gles of dimensions 1" X 1", S (x) contalns 2n triangles of
1/4™* X 2n". The bases of the triangles aprroach the xN plane

¥
as n = o t The lim XOS (x) = 2 sq. in. This series does

MR

£ PFor proofs of these theorems gsee"Goursat-Hedrick's Mathematical
Analysis) pp.364-370.
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not converge at all, hence the integral of the sum of the series
does not exist. Figure 33 shows how the same effect may be ob-
tained in an infinite interval.

12. A Possible Interpretation of an Improper Integral. -

Evaluating the integral of a function in an infinite interval
may be considered graphically, as finding the 1limit of the inte-

gral of the following series as illustrated in Figure 34,
3 LS

oo \ a
%RMA.%’- \‘:\x)é\*ﬂ-g\:\z&)&xﬁ“\-%:\cé\*—\- “ EK)M—\— e e !
0 ° \ ],






=30=

CHAPTER _I1IT1I.

CONTINUITY AND ALLIED CONCEPTS.

1. Definition of Continulty. - The Algebraic definition of

continuity is as follows: given f(x) at the poilnt x = xb'f(x) is
continuous at that point 1f|f( x,/ h) - f(xo)\<< 83 when h <. 9 ,
The geometric analagon is slhiown in figure 35. If € is chosen

as the altitude of the rectangle then it must be possible to
chioose the base of the rectangle small enough (and extending on
both sides of xo), so that the function will remain within the
rectangle. <S is not a function of €¢ , in the strict sense of
the definition of a function, for if € is known, & 18 not
uniquely defined. However, a partlcular value of © does deter-
mine an upper limit ¢f & , and in this sense O depends on€&
A function is said to be continucus 1n a given interval, if it is
continucus at every point within the Interval.

Contiruity at the "point at infinlty", is a slightly
more ccmplex rotion. A rectangle might be constructed having but
three sides, and the approach to the point couid be but from one
side. At present, we will say £(x) is continuous at the "point
at infinity" if the three-sided rectangle in figure 36 can be con-

structed when x7k f.

# A graphical representation which trrows the infinite portion of
the plare into the finite portion, makes thils perfectly tangi-
ble, hence a further discussion will be reserved till later,
when we take up other than rectangular coordirates .,
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If the function is defined over a set of points, the
definition of continuity is necessarily different as is shown in
figure 37. The rectangle definition will hold for the limit
points, but at an isclated point, we must adopt the convention,
that the rectangle around the isolated point contains no other
values of the function, hence the function is continuocus at every
isolated point.

2., Uniform Continuity. - A function, f(x), is sald to be

uniformly continuous in an interval a TxTb, if\f(xo-f(xo)y<%§
when |x, - x,l<> , a= g? = b . Figure 42 illustrates the
property of uniform continuity. The smallest AX{ is chosen as the
value cof S . Any function, continuous in a closed interval, is
uniformly continuous In that interval (Goursat-Hedrick's™Mathe-
matical Analysis", Vol. I, pp. 143-144).

3. Intermediate Property. - Closely akin to the property of

continuity is the "intermediate property®™. Its Algebraic defini-
tion is as follows: if f(x,) = A and f(x,) = B, then f(e¢) = k
= [

where ASk B and x, = ¢ = X, The difference between con-

tinuity and this last named property 1s clearly demonstrated in

figure 38. 1In the interval (a,b) the function has the intermediate

property, but it is not continuous in the interval, as it has a

vibratory discontinuity at the point x = c.

Any derivative function has the intermediate property,
for let F(x) be a continuous function whose derivative exists at
every point in the interval (a S x T ). Suppose F'(a) = A and

—

¢c = b,

HA

F'(b) =B, Then F'(¢) =k when AS k=B and a
Proof: A(x, n) = F(xF h) - F(x)

Choose h, so small that /\( a, h,) lies between A and k¥ and







? 6\3 =,
1







/ﬂ(q, h,) lies between B and k. Since /\ is a contlnuous function
of x, when h is finite, this choice is possible
A(a,,b,)<k  anda  (b,h )>k ¢
T /\(Xoho) = k (A continuocus function has the intermediate
property).

' F(xo £ ho) - F(xs) = k and by the law of the mean,
ho

F'(c) = F(xo /ho) - P(x,) =k (Figure 39 belongs with

o

this proof, due to Lebesque).
From this property of a derivative function it is very

evident that such a function, can have only vibratory discontin-

uities. The kind of discontinuity illustrated in figure 40 would
te impossible for a derivative functicn. If 1t has any discon-
tinuities at all, they must be of the nature illustrated in figure 41.

4, Circle-fitting. - Some of the figures I have drawn

(figures 28,32,33) have a great many sharp-corners, These corners
are not discontinuities of the function itself but they do repre-
sent discontinuities of the first derivative of the function. Now
without altering the nature of these curves, or their particular
properties which interested us at the time, these sharp corners

may be smoothed off and the first derivative made continuocus. Fig-
ure 4% shows one of these corners before the circle is fitted into
14 ( f,(x)) and also after the circle has been fitted in(fi(x)l The
second derivative may also be made contlnuous by graphing the first
derivative, fitting circles Iinto 1its corners and adding the area
between the two curves to the original function (figure 42)., In
this manner , these rectilinear figures nay be replaced by, so-called

"enalytic functions", and that without the loss of any of the char-

acteristic properties of the curves.
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Polynomial Approximation. - By a very important theorem

due to Weierstrass (Goursat-Hedrick's "Mathematical Analysis"p.422)
any contlnuous curve can be approaclied uniformiy by polynomials, so
that the error i1s less than any preassigned quantity. Hence the
Algebraic analogon to any of these curves can be obtalned and the
result i1s a finite polynomial, the simplest of all functions.

6. The Extrema in an Interval. - The maximum of a function

in a given interval (a,b) is the highest value which the function
assumes in that interval. The minimum in a given interval is ﬁhe
lowest value which the function assumes in that interval. The
maximum or minimum may be an end-point'or i1t may be some interior
point (figure 43¢.,points M and m respectively). The functiocn

may not even assure 1ts maximum and minimum values in the interval

as in the interval a = x € b, where the maximum of the interval is
£(b). The function may assume its maximum or minimum values more
than once in an interval as M in figure 44q..

6. The Extrema at a Given Point. - The maximum in a given

interval is the upper 1limit of the function in that interval., If
the end-points of the interval ke made to approach each other, the
value of the maximum either remains fixed or diminishes., Simi-
larly since the minimum is the lower 1imit of the function in a
given intervel, as the exnd-points approach each other the minimum
either irncreases or remains fixed.

Suppose that the interval (a,b) 1s made to shrink onto

the point ¢, so as to obtaln a serles of'"telescoped intervals®

whose width approaches zero. The limit, which the maximum of f(x),
in these intervals, approaches 1s called the maximum value of the
function at the point c¢. That is the maximum value of f(x) at

x = ¢ 1is the lower limit maximum value of £(x) in the interval
AX = O













-

(e =5x, ¢ /9%) and we denote it by M(x). Analgously the mini-

mum value of f(x) at the point ¢ 1s the upper limit of the mini-
Qx = ©
mun value of £(x) in the interval (¢ ¥ Ox ), and it is denoted

by‘ m(x).

7. Oscillation. - Oscillation is the difference hetween the

maximum value of the function and the minimum value of the function.
It 1s osclllation and its close ccnnection with continuity which
binds the guestions of maxima @&nd mirima, and continuity together
and makes it loglcally pcssible for the two to be treated in the
same chapter.

If the oscillation of a function is greater than zeroab
(x = e) that means the construction of the continuity rectangle is
impossible (Figure 46). The set of points at which the oscillation
of a function 1is greater than zerc, then, 1s identical with the
set of points at which the furnction 1s discontinuous.

8. Extremum Points of a Function. - A function f(x) is said

tc Lave a maximum at the point x = ¢, 1if f(ec) Z (e £ Sx). It is
sald to have a minimum at a given point x = b, if £(b) s (b £Sx).,
If the equality sign holds at the point 1in question, then that
maximum or minimum is called weak. If the equality sign is un-
necessary then the oppesite adjective strong is applied to it. A
compariscn of figure 4f (a strong maximum) and figure 4% (a weak
maximum) 1llustrates the difference between these two kinds of ex-
tremurm points.

9. Semi-continuity. - By comparing figures 43,48 and 47, it

is evident that if a function has a maximum at a given poilnt, that
value is also the meximum value cf the function at that point. The
converse is rarely cver true.

A function may assume 1ts maximum value at a given point

or it may assumeé its minimum value or any intermediate value.
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If, at a given point, it assumes its maximum value that is if
F(x) = M(x) 1t is said to be semi-continuous above. If it as-

sumes its minimum value i1t 1s sald to be semi-continuous below.
The function, F(x) = 1/n when m/n*Xand F(x) = ©

otherwise; (figure 49) illustrates a function which is continuous

above at every rational point and continuous at every irrational

point.,
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CHAPTER 1Vv.,

MEASURE, CONTENT and INTEGRABILITY.

l. Measure. - The definition of measure, as applied to
a set of points, corresponds to our general intultive notion of
measurement.

(a). If a given set of points E,, completely fills

a line segment, its measure is the length of that segment.

(b)., If a given set E, whose measure 1s S , contains

all the points of a second set E, then the measure of E, 18 T g .
In figure 50, E, is composed of all the points on the line - -
segment (A,B), and E 1s the set indicated. Then by (a) and (b),
the measure of E = length AB. The converse is also true. If E

1s a set of points, whose measure is S, and which is completely

contained in E,, then the measure of E, Z S. In figure 51, E is

the set of points composing the line segment (A B), E, is the set

composing the line segment (A C). The measure of E, & the measure

of E, Also the measure of the set[E, - E]= measure of E - meas-
ure of E .

(¢). The measure of the set formed by uniting a count-

uble number of mutually exclusive sets of points, whose measures

are r’espectiveljl (s‘ ’81’83’ . . L) L S‘T\’ L] e« 0 .) _1_8.

(Sa + S’, + S3 + 84 + . . . . S’y\ +..+..).

2. Existence of Measure. - Not all sets of points are

measurable, for example this set, cited by Van Vleck in the "Trans-
actions of the American Mathematical Socilety", volume 9. All the

points in the interval zero to one, are separated into three sets
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S, C, and K. x 1is a member of S and y = 1 - x, a member of C.
With each x 1s associated the countable set !x * m/241 and
correspondingly with each y, %1 - (x=* m/z"‘;g . These two
sets are distinct except where x = m/zh'. ‘These points are
assigned to K ( they are countable in number). Further when x
is assigned to S, the points x/2, x/4, x/8 . . . . . are
also assigned to S and conversely. This distribution will give
rise to a conflict in S and C if and only if x 1is rational.

Hence all the rational points are assigned to K.

R e T S U T

S can be easlly shown to have 1 as an upper limit to
its measure, and since C 1s merely a feflection of S, 1 is the
upper limit of its measure. K, being countable, has the measure
zero., Clearly C and S are not measurable for they violate that
part of the definition of measure which says: "the measure of a
set formed by uniting two or more sets equals the sum of their
respective measures". This set is hard to illustrate graphically
but figure 52 shows 1ts construction in so far as that 1s possible.

Any countable set has measure zero. For, let

a,,a, « « o« 8,. . be acountable set of points (figure 63).

Draw an interval of width w5 around a,, an interval of width %?

around a,, an interval of width 3% around a,. Then a,; &, . . .
a,- « « « o are enclosed in a series of interval whose total width
(since w> 1is arbitrary) can be made as small as we please. By (b)
of definition of measure, the measure of a,+ a,+ . . . 1s less
than the sum of the intervals. Hence the measure of the set <2Ww,
and therefore equal to zero. Flgure 54 shows the measure of the

rational numbers from O to 1, equals zero.






The measure of a perfect set of points always exists.

The perfect set of points, P, in figure 55, is formed in the
characteristic manner, by the removal of the interiors of non-
abutting intervals from a line segment. The remaining portion of
the line segment comprises the complementary set C(P). C(P) 1is
composed of a countable number of sets whose measures are L , L1,
L,, . .. .L,, 5 . Then the measure of C(P) is ( L,, 4+ L + L+
"L+ « + + o o) - endpoints (By part (c) of definition of measure).
The end-points form a countable set, hence thelr measure is zero.
The measure of P = length of the line segment — the measure of
C(P), by part (b) of the definition of measure. Therefore the
measure of P exists and equals AB - (0, + L+ « ¢« « « . &+ o).
3. Content. - Content is also a scheme for the measurement
of a set of polnts, but right there its analogy to "measure" ends.
Content i1s based upon the Riemann subdivision of an interval.

As 1llustrated in figure 56 an interval A B 1s divided

into subintervals finite in number, but whose maximum length ap-

proaches zero. Let E be a set of polnts partially filling the
line segment A B . Divide this interval by tie Riemann method
into subintervals. These intervals will than fall into three
classes

tL$= pa (intervals full of points in E.),.

];3= < (intervals empty of points in E).

Ie;,- S (intervals partially filled).

Upper Content is defined as

13::: zimit [i[¥-+:[eF] ' (Figure 67).

This 1s also equal to the lower limit ( AB - lc). The lower

content of a set of points 1s the upper limit of _l_$'
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Aﬁﬂ'l4; A B - 1lower limit (]:e_+:£e¥). The set 1s said to have
content, 1f both its upper and lower content exist and equal
each other,

Successive Riemann divisions tend to increase :IQand
];2 and to decreaséj:eﬁf. Hence the first two will have up-

per limits, and the last named a lower limit.

Figure 58 1llustrates the condition of affairs, when
a set has content. L and U represent the lower and upper content.
Figure b9 represents the case when the set has both upper and
lower content and yet has no content.

An examination of the definitions of upper and lower
content shows that, whether a given set has content depends ﬁpon
the value of lower limit ofi]reg « If the lower limit ofi£E§’

equals zero, the set will evidently have content, and otherwise not.

4. Comparison of Content and Measure. - A countable set of

points does not necessarily have content zero, for take as an ex-

ample the rational numbers between zero and one. Successive
Riemann divislions give us always an’]:eﬁ equal to the entire line
segment. Hence the content of this set does not exist at all.
Its measure however is zero, for the measure of any countable set
is zero.

The content of a perfect set of points always exists.
For in the characteristic method of forming a perfect set, the in-
tervals dropped form :Ie_. Any given portion cf the line segment,
eventually remains undisturbed forevermore, or else never reaches
the undisturbed condition. In the first case, these undisturbed

portions belong to:I£ . In the second case, the disturbed portion
|
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must decrease and approach zero. Hence the only opportunity for

—

members belonging toj_e%to be formed, 1s in this portion which
approaches zero. Therefore a perfect-set of points has both

measure (proved previously) and content (Figure 60).

5. Analogy of Content and Integrability. - An integral of

a function taken over a set of points, or an interval 1s defined
as follows. The interval is divided into Riemann divisions and

phe two sums S and 8 are formed (Figure 60).
S =MA/(‘+‘ M&AA;_T‘ o0 N\MD.\X'\«.

N . X
8 .’mIAXl.*.’W\L[}_&g:&—‘l- 'm'y\b N

The upper integral g is defined as the lower limit of S, and

the lower integral g as the upper 1limit of 8 . The integral

—

18 sald to exist, 1f the S = % s and to equal either one of
them. Both concepts are based on the Riemann subdivision scheme
and the correspondence between the definitions of content and in-

tegration 1s very close.

6. Proper Integrals. - To begin with, we shall consider the

function as bounded and the limits of integration as finite - - -

that is we will consider only proper integrals. This insures us

the existence of M and m and thus simplifies to a considerable
degree the question of integrabllity.
Sufficient conditions for integration are easily found,

and I shall give these; gradually broadening them until the neces-

sary and sufficient conditlon appears.

A function F(x), continuous in an interval (a,b) is
integrable (Figure 61). Since the function is continuous at every

point, M and m approach the same limit, hence S and 8 ap-
proach the same limit and the integral exists (Figure 62).






49

§ s5..0.89

N <
e\
N RN : 1o
) \| i o







Figure 83 shows that the integral of a function hav-
ing one discontinuity exists and may be evaluated by dividing
the interval at the discontinuous point and evaluating the two
integrals separately.

In an exactly analagous manner a function having a
finite number of discontinuities is integrable. Extending the
sarne reasoning a little farther, a function having a countable
infinity of discontinuous points 1s integrable.

7. A Function whose Total Variation is Bounded. - If a

function is defined in an interval (a,b), and this interval div-
ided into partial intervals in any manner whatever, and the sum of
the oscillation in these intervals 1s calculated - - tlie function
1s sald to have bounded total variation if this sum has an upper
limit. |

A function of bounded total variation i1s integrable.
(Lebesgue's "Lecons sur 1' Integration™ page 50). The function
£(x) = x sin 7M/x in the interval ( -1, -1 ) is an illustration
(Figure 64). This 1s the last of the sufficient condition and
leads us to the necessary and sufficient condition, of du Boils
Reynond, of which these preceeding examples are readily seen to
be speclal cases.

8. Du Bois-Reymond Theorems. - Du Bois Reymond developed

the following necessary and sufficient condition for integrabil-

i1ty that whatever €>0 may be, the points where the oscillation

is greater than € form an integrable set. An asserblage of points

situated on a straight line form an integrable set, if they can

be enclosed in intervals whose total length may be made as small

as we please.

This theorem has been revised into the more convenient






form: In order that a bounded function f(x) be integrable, it

1s necessary and sufficient that its points of discontinuvity form

a set whose measure is zero. The developments and proofs of these

du Bois-Reymond theorems are given in Lebesgue's "Lecons sur 1'
Integration et la Recherche des Fonctions Primitives" pp.23-30..
" Riemann's statement of the same theorem is: In order

that a bounded function-be integrable in (a;b), it is necessary

and sufficient that (a,b) may be-divided into partial intervals,

so that the sum of the lengths of the-intervais in which the oscil-

lation of the function is greater than € (€ is any number greater

than zero) is as small as we please. A comparison of this state-

yent with the preceeding brings out the équivalence of discontin-

uity at a point, and osciilation greater than zero at a point.

Figure 685 illustrates the function f(x) = 1/n when
x = m/n, where m 1s less than n and prime to 1t. f£(x) =0
for all other values of x. This function is discontinuous at
every rational point but continuous at every irrational point. Its
discontinuities then, form a set whose measure 1s zero., Hence the

function 1s integrable in the interval 0 = x = 1 .






PART II. - Representations on Cylinder and

Anchor-ring.

CHAPTER V.

1. Introduction. - Part I, which confined itself to

ordinary rectangulaf co-ordinates, slighted several points,
which I shall take up more fully in this Chapter. The ques-
tion of tne extension of the "rectangle definition" of

Continuity to the point at infinity; graphical representation

of transfinite numbers; and improper integrals;—all these

demand some more adequate scheme of representation than the
ordinary co-ordinate systems. The difficulty lies in the

fact that the "infinite portion of the plane" is not repre-
sented at all, by these elementary methods. Projection of

the entire infinite plane onto some finite surface i1s nec-

esaary to make the"point at infinity" somethiing tangible
and capable of graphical representation.

In what 1s to follow, I shall suggest a very
simple scheme for doing this and develope it far enough so

that 1ts characterisiics and advantages become apparent.

2. Transformation of the Entire Plane onto a Finlte

Square. - By means of the equations of transformation,
1 - 1

- (x=°°. y =
x a-m a+m (n = a A 3
- 1 == 1 - = =0












b=

the entire infinite plane becomes a square of dimension 2a.
Figure 66 ililustrates this transformation. The function
y = £(x) 1s graphed on ghe square.

3. Continuity on the Square. - The rectangle defin-

ition of Continuity, given in Chapter 3 of Part I, holds
for any voilnt on the interior of this square. Consider the
continuity at a point on the boundary, for example - 1is
(b(m) continuous at the point m = a ? (Figure 86). Evid-
ently the continuity rectangle cannot be constructed around

this point, for the function 1s not defined to the right of

m a .

4, Cylindrical Representation. - The problem is now,

to so arrange the representation scheme, that the function
is defined both to the right and left of the lire m = a,
Figure 67 i1llustrates the mechanical means of accomplishing
this result. In order to simplify computations, I shall
take the dimension of the square equal to 27T. The radius
of a circular corss-secticn of the cylinder 1s one unit. The

transformation equations are
| \ \ \

TT\"TV\ N4+
5. Continulty on the Cylinder. - Figures 68 and 69

x =

show that the rectangle definition of continuity is appli-
cable to all points lying on the cylinder except those points
op the circles S=*T1. The reason 1s that the rectangle
could not extend on all four sides of points lying on these
circles. Figure 70 illustrates the metlhod of overcoming this

difficulty.
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6. Representation on the Anchor-ring. - This method

is referred to as the anchor-ring method - the reason 1s
obvious. On this surface the rectangle test of Continuity

can be applied to any point whatever.

To determine whether a given function is con-

tinuous at the point at infinlty it must be graphed on the
anchor;ring and the rectangle-test applied to'it. This means
that a definition of continuity can be given which will apply
equally well to all points finite and infinite.

7. Continulty at the Point at Infinity. - Continuity

at the point at infinity admits of the three following defin-
itions,
l. A function may be said to be continuous
at the point at infinity if the rectangle illustrated in
figure 66.can be constructed. This means
|£(x,) - f(xl)\/\% when x, and x, > %.
2. A function may be sald to be continuous
at the point at infinity if the rectangle on the cylinder,
as in figure 68, can be constructed. This means the function
is bounded as x approachés infinity, and, in addition, the
limits of f£(x) as x approaches + == and - oo are the same.
3. A function may be said to be continuous
at the point at infinity, 1f the rectangle on the anchor-ring
can be constructed. This-means the functlon may become infin-

ite as x becomes infinite, but i1t must become infinite as x

approaches both+ > and ~ =< , as shown in figure 71.
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8. An Essential Discontinuity.. - A function, continé

uous on the cylinder will also be continuous on the anchior-
ring and 1n addition, other functions whose cecntinulty on the
cylinder 1s not apparent, are continuous on the anchor-ring.
A function which 1s not continuous, even on the anchor-ring,
at the point x = o , might be said to have an essential

discontinuity. This 1s illustrated in figure 72.

9. The Relationship of Certiain Functions Empliasized

when those Functions are Represented on the Cylinder. - Fig-

ures 73 and 74 are the functions Yy = x"and y = 1/x*. The
second 1s merely the first, rotated througih an angle of 1809,
What happens to the first function in the neighboriicod of

x = == , happens to the second function in the neighborhood
of x = 0, and conversely. These two are then essentially'

the same function. The same is true of f(x) = 1/x2 and

£(x) = x®, and in general f£(x) = x" and £(x) = 1/x™

That is the transformation x = 1/x means, on the cylinder,

a rotation through an angle of 180°,

10, Uniformity on the Anchor-ring. - Any function,

continuous over a bounded interval 1s uniformly continuous,

On the Anchor-ring the entire plane is a bounded 1lnterval,

hence any function continuous over the entire plane is unl-
formly continuous. From previous experience we know this
last statement is 1incorrect. Figure 71 shows that uniform
continuity must be differently defined on the Anchor-ring
from 1its definition in ordinary coordinates.

By means of the transformation equations, 1

shall set up the exact analogon, on the anchor-ring, of
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uniformity in its ordinary interpretation. The definition

of uniform continuity is: given y = F(x), in the interval
S

G‘ 2
b and|F(x,) - F(x,) | << when | x, - x1\<5,

LT
np

a X

when a §<§‘§ b.

\ _ \ gl =\ _ o\ \_
- T 4+ y T-S T+S

Substituting{ x =

in y = F(x) and solving for S in terms of m gives the equat-
ion S = P(m). (This can be done when F(x) is continuous

and the transformation equations are continuous .¥#) The trans-.
formation equations are continuous in any interval |

- <™ <+Tvand -7 <S <+,

I - e < e
\ Rxn _.F\m\=\;v—‘:;>—<m‘\‘ T o) TT- O T EmY \

Clearing of fractions and simplifying the above condition re-

®
duces to | &'“1 +¢\¢1B (?\“@m\\ < G\« when
\m’l+m|w~) (’YY\\-‘YV\.,_\\C 'Q ® " W\Q_é_’w\i %m\r
! \ \
o= — - | , /\’__ . N ,

TT-"Ma T 4+Ma TT -y T+

In the definition of uniformity on the anchor-
ring developed in the preceeding paragraph, the product
7 2+ 3.0 P - ) takes the place of the dif-
ference (F, - F,). That 1s an element of area (represented by
the product) replaces the element of length (represented by the
difference). The product just mentioned might also be consid-
ered not as an area, but (to keep the analogy with what 1s to

follow, complete) as a line with varying demnsity. If the area

is compressed into a single line, 1its second dimension becowes

density.

# Goursat-Hedrick "Mathematical Analysis", page #38.






The quantity (7T 4 ¢, &, ) has an upper limit

2T hence 1t can be treated as a constant and ¢ (m) is

uniformly continuous in the interval - 1< & ="M sl +TT
ifl172(¢\—¢*)\ <8 when \ T 2(m -\
and a= ms b, Therefore the definition of uniformity on

the anchor-ring 1s essentially (except for a constant multi-

ple) the same, in any rectangle on the anchor-ring, as in

ordinary rectangular co-ordinates. Figure 75 illustrates a
serles of such rectangles., Uniform continulty over the en-
tire anchor-ring is as yet undefined. A function might be
said to be uniformly continuous over the entire anchor-ring
if, being given € , it is possible to choose a S  which

will do for any one of these rectangles.

11. Integration on the Anchor-ring. - The definition

of a simple integral on the anchor-ring as tue area under the
curve, will surély not hold, for then there would be no im-
proper integral which could not be evaluated. In the next
few paragraphs I shall construct as graphlcally as possible
thie definitions of simple and double integrals on the anchor-
ring. For convenience and clearness I shall picture the
anchor-ring in the Munrolled" form, assuning that the reader
will roll it up for himself.

12, A Simple Integral on the Anchor-ping. - Let us

construct the analogon of a simple integral on the anchor-ring.
In figure 76 an element of area under £(x) goes over into an

_ | \ ,
element of area under $omy. [ G = fxy when x S —T?mj

Consider Sg\m&x not as the area under f£(x) but as the vol-

O

o
ume of a solid unit helght whose upper face 1s the area under

£(x) as in figure 7€. This solld when transformed onto the












anchor-ring has 1ts base diminished in size, hence 1ts height
must be increased 1n order to maintain the equivalence of

volume. From figures 77 and 78 we get the equations, -

Ax-%zou-:l_r Mmooy ) -Fm = Qoo vol b = vol . ', hence
\r\o_ = 0X , and passing to the limit as Ax and AWM
am = X
approach zero, = e .

Compress the solld, whose base is d(m) and
helght g_x s back Into the (Sw)plane. Its height beconmes
8 44N
the density of the area under ¢ (m) and we obtaln the equation -

- A .
\S}\xx A x = \ CD\%\ é‘r:/\&m ’
o b
In rectangular coordinates, the simple integral
represents an area, whose density is equal to one. On the
anchor-ring a simple integral represents an area of variable
density, and in evaluating the area, it must be multiplied

by the density at each point. The density i1s a function of m,
dx . 2lmaomd
I GT-m)2 ()

13. The Region of Validity of the Preceding Result. -

namely

Assuming that F(x,y) 1s everywhere integrable, the result ob-

tained in the preceding paragraph 1s valid for any interval

N x

within which dx is continuousf. is continuous in an

o ‘ A ¥
reglon -7V <« x <+« If the region of iIntegration 1s extended
to include the end-points LY s which correspond to x =+ o

we no longer have a proper intlegral.

£ The result obtained coincides with the ordinary interpretut-
ion of transformation under the integral sign, and hence is
valid under the same conditions. Goursat-Hedrick "Mathe-
matical Analysis) Volume I, page 2986,
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14. Improper Integrals. - A simple integral is called

an improper integral 1f either the independent or dependent

variable become infinite within the interval of integration.

I shall consider the type | % *1)39+
If two variables are

ov ‘ “ | % )‘
SS\X\A&: %\L:v:‘ %3\:&;&)‘“ = %.A"_\'_\An \wib::'“)%‘w&m
, b\ .
%Y‘: if\\)?m %—:v\ém ) \ Q‘W’}‘&WXQW)}{ A

™ o ™M 1 M

constantly equal, their
lirnits, if they exist

AN NINESN NN

are also equal.

) @ @
bN
1r \Kf"‘“‘ gi'&”“\ <€ when | T-w | < O , then

the improper integral may be evaluated.

The fact that the integrand approaches zero
18 neither a necessary nor a sufficient condition. If\fig-
ure 33 an example 1s given of an improper integral, which can
be evaluated, yet the value of the 1lntegrand 1ncréases be-
yond all 1limit as x = o . It is evident, however, that the

following 1s a necessary condition: in order that an lmproper

integral may be evaluated 1t 1s necessary that € , being
chosen first, it 1s possible to choose k, so large that

\£(x) - 0\<e¢ when x 3 k , with the possible exception

of a set of points whose measure 1s zero.

1is necessary condition in the anchor-ring

co-ordinates means, P (m) X must approach zero as m

o

approaches 17 , except for a set of points of measure zero.

B O+ oy 2T M),

A (W_W\“‘(\T‘*-WY\)L






Let m approach TT through positive values, then

1im 23w _ 47 1
=1 S =, -
m = O+ ™™ 4 T &
Therefore & (m) . . Dust approach zero as m =11 .
\TT -m)
That is Q(m) must be an infinitesimal of higher order than

the second with respect to (77 - m) in the neighborhood of

m =TT ,

If m approaches - 17 through negative values
an exactly analagous process gives us the result that P (m)
must be an infinitesimal of higher than the second order with
respect to (M+m) = (77 -(-m)).

A sufficient condition for the existence of
an Improper integral 1s that the function in question even-
tually lies under the curve y = x" '(with the possible ex-
ception of a set of points, whose measure 1s zero). <0 7,
That means on the anchor-ring that QXWﬁ%%hmust 1ie under the
curve, y = x/ "' or its analogon on the anchor-ring

B ow — (T\‘l"w")yv‘—*— N7 Lam\""“ﬂ_&vim‘)l’”pa
\?l‘m)*""

15. Double Integrals. - The construction on the anchor-

ring of an equivalent to the double intégral is somewhat ana-
lagous ts }he construction of the simple integral. In figure
78, the& f(x y) dy dx 1s the volume of the solid lying under

the surfa'ce £(x,y). That is the usual interpretation of the

of the double integral. I would like tc take a slightly

§ Goursat-Hedrick "Mathematical Analysis", page 177.
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different one here. The‘[]o f(x y) dy dx = the mass of the
iggicated solld, the density being equal to unity. Or the
gTX;(x y) dy dx 1s the mass of a solid whose height is
i;:;éigx_and whose density 1s f£(x,y). Figure 30.
Transforming this last volume onto tne anchor-
ring, the base of figure ¥0 is diminished in size hence, to
preserve the equivalence of mass (hence of volume), the
height of the transformed solid must be increased. The ratio

of 1ncrease is given by the formula: : <$='X'i%-ww W™
f DLQW’)Q& AV \ \
f(x y) ax dy = QGP‘\’) YO R A S S

U %1 o (T3 wd)  2(rsd _#rimdfrss =
v, V) \ ) —_— cw =0 S?-) tﬂ —’Y\-\»)z(-n Sz)s.
ds ‘?ﬁ%

U|7_~__ W)a

The determinant used in the preceding para-
graph is the well-known "Jacobian". It represents the ratio
in height of the two sollds we are considering.

The double integral, on the anchor-ring, rep-
resents, the mass of a solid whose density 1s a varilable, a
function of the m and s co-ordinates,- namely the product

of the partial derivatives of x(with respect to m) and of

y(with respect to 8).

f See Goursat-Hedrick "Mathematical Analysis", Vol. 1, p.302.
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For conditions under which, and limits within
which, these results are valid, see Goursat-Hedrick "Mathe-
matical Analysis", page 301.

l6. General Remarks. - The advantage of this anchor-

ring method of representation of 1nfinite points lies - not
so much in the value of any especial formulae which may arise
from 1t - but rather from the fact that the™oint at infinity"

1s brought within reach, where it can be graphed, tested and

treated exactly as any finite pecint - with certain limitations.
We are thus, given the very vivid graphic point of view of

the characteristic properties of the "point at infinity", as
opposed to the rather hazy unreal cne derived fronr a merely
formal treatment, from an Algebralc standpoint.

17. A Possible Graphical Representation of Transfin-

ite Numbers. - For definitions and a complete treatment of

the subject of transfinite numbers, see Baire's "Lecons sur
les Fonctions Discontinues", pages 43-45., 1 am, Lere, merely
golng to suggest a possible graphic interpretation of trans-
finite numters or what miglit ke termed transfinite space.

In figure 80 the entire infinite plane 1s rep-
resented in the innermost square. The boundary lines of the
square are x =fTwand y =% wW. The transfinite numbers
from { O\ to\% w, are represented in the "frame" immediately
surrounding this square. In the next largest frare all num-
bers from .2 w\ to . " are represented. The next in order,

takes in all numbers from w”)to \u3 .. The last frame con-

tains all numbers from3¢$”\to\udf‘l= QL
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Thus inside thils largest squere we have repre-
sented all the transfinite numbers, and ilelr negative an-

alogons.

18, Conclusion. - In Part I of thils paper, I have
dealt with only well-known properties of functions - treating
them from the graphic standpoint entirely and referring the
reader, to the hest authorities I could find, for the Alge-
brailc treatrent. |

In Part II, 1 have referred to standard works
for feormuleae, conditions, existence theorems ete., but I
found 1t necessary to develope the Algebraic side. in some-
what greater detail, because of the fact that the view-point

adopted 1s slightly different from the ordinary one.
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