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PART ONE -- RECTANGULAR COORDINATES. 

CHAPTER I. - SETS OF POI~TTS. 

1. Introduction. - A group or collection of points is said 

to form a 'set", if some law or criterion is known, whereby w. 
may determine whether any given point is a member of that group. 

An easy wld fundamental illustration of the usefu1ness 

of the idea, exists in the De.de-klnd-cut definition of an irrat­

ional number. (Figure I) All the rational numbers are divided 

into tV/O sets, A and B, so that any (I,lement in A is less than 

any e·lement of B. It is assumed that there exists a number C, 

such that any A is less than C and any B 1s greater than C. 

This number C, 1s called an irrational number. In the figure' I 

~ furnish~s the law for the construction of sets A and B. 

Se,t A 

Set B 

1 

2 

1.4 

1.5 

1.41 

1.42 

1.414 

1.415 • 

• • • • 

• • • 

2. CoSi1\tability. - A set of points may be composed of' a 

r1n1te or an infinite number of elements. The points indlcat~d 

in figure 2, form a finite set. If the mid-points of each in­

dicated interval and of each successive interval be added to 

this set, the result will be an infinite set of points. Infin­

ite sots are further subdivided into, (a) those having a count­

able number of elements (a different positive integer may be as­

Signed to each element as a sub-script), (b) those having more 

than a countable number of e1ements. Figure 3 illustrates a 
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countable set, for the points may be arranged as in the ~o11ow­

ins table, and the subscripts assigned to the points 1n the order 

in wllich they are reached by the connecting l1nQ. 

, • • • • 

• • • • • • 

• • • • • • 

• • • • • •• 

• • • • • • 

• • • • • 

• • • • 

Eventually any element will be reached and a subscript assigned 

to it. 

Figure 4 illustrates a more than countable set of 

points, for if A and B are two points to which we desire to as­

sign success1v~, subscripts - between them lie an infinite num­

ber of points to which no subscript is assignable. 

3. Beighborhood.:-Lim1t Point.- The neighborhood of a 

given point is comprised of all those points of the set, whose: 

distance from the given point is less than €., (an arbitrarily 

small constant). Neighborhoods are one-dimensional, two-dimen­

s1ona1, three-dimensional, ~-dimensional, accor.1ng as the set 

of points lies on a line, in an area, a volume etc. Pigure 5 

illustrates t.he three kinds of neighborhoods which are capable 

of graphical construction. 

This Ilot.lon of neighborhood 1s necessary to the derln-

1tlon of a I1m1t-po1nt.. A point 1s said to be a limit-point ot 
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a set, if within its neighborhood, there lie an infinite num­

ber of points of the se t • A limi t point mayor may no t be an 

element of the set of which it is a limit point. 

Stronger than a mere limit point is a point of con­

d$'nsat1on, within whose neighborhood there lie, more than a 

co~table number of pOints of the set. From its definition it 

is evident that a finite set of points cannot have a limit-point, 

nor a countable set, a point of condensation. Howev~r a bounded 

in~inlte set of points must have at least one limit point. For 

let E be an infinite set of points ly.ing in the 1nterva1 0 L 

(Figure 8). Bisect the interval. 0 L and retain the half which 

contains an infinite number of points. Repeat this process. 

TIle interval (a;tb:), containing an infinite number of pOints, 

can be made as small as we please. Then this interval will lie: 

within the neighborhood of SODe point 1 - hence 1 is a lim­

iting point of the set. 

In exactly the same manner a bounded set containing 

more than a countable number of points, can be shown to have at 

least one point of condensation. 

4. Derived Sets. - nle first derived set of a given set 

1s the set, composed of the limit points of the original set. 

The second derived set is the first derived set of the first 

( 3 7 15 31 
derived set $'tc. The points, 1'"2 4 8 ~8 • • • 2), :form 

the first dQ-rived set of the set pictured in figure 3. The 

second derived set 1s the single point 2. There are two use-

fu1 theorems on derived sets, which I shall merely quote here, 

with references. (a) Each derived set contains all succeding 

derived sets. (b) In passing from one derived set to the next, 

at most, a countable number of points is dropped ( Bor~'s 

ilL_sons sur la Theor._ de-s Fonc tions ", pp. 35-36). 
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A closed set of points is a set which contains all its 

first derived set - and hence contains all its derived sets (see 

preceeding paragraph), A set of points, which is identical with 

its first derivative is called a perfect set of points. 

5. Properties of P8~fect Sets. - As a simple illustration 

of a per~ect set of points, all the points on a line segment or 
unit length may be used'Both end-points are included). TIle in­

terior of an interval may be dropped from this segment without 

disturbing the perfect character of the set (FlgD~e 7). To drop 

t~e interiors of a countable number of non-overlapping, non-

abutting intervals from a line segment, 1s the characteristic 

manner in which all perfect sets are formed (For a proof of this 

statement see Ba&re's "Fonctions discontinues" pp.s~-~1 ). 

An interesting perfect set of points is Cantor's 

Ternary Set (Figure 8). The middle third of the interval. (0,1) 
a-

is dropped from the str~ght line segment; likewise the middle 

thirds of the remaining subintervals (End-points are always 

retained). This process repeated infinitely yields a perfect 

set - a line segment with the interiors of a countable number of 

intervals removed. This set can be put into one-to-one corres-

pondence with the points on a unit line-segment - a property 

called, "the power of cont~", Since this set was formed in 

the characteristic manner of a perfect set, and since it is no-

where dense, this property may be assigned to any p.rtect set. 

kJ.y perfect set has the power of conti-.um. (Complete proofs of 

the the:orems suggested in this paragraph may be found in Baire's 

-Seq-ons sur les Fonctlons Discontinues" pp. 54,55). 

8. Application to Pamction Theorr' - The fundamental 

importance of the point set introduction to function t.heory,lies 
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in the new view-point of a function, to which it leads us. A 

runction is always defined for certain definite values of the 

independent variable. The set of values for which the f'unction 

1s defined constitutes the first set of points. Each value of 

the independent variable determines one or more values of the 

function itself. These values constitute point set number two. 

Now between these two sets of points, the-re is a correspondence 

of some sort - the particular function determines the kind. 

7. Single-valyed Functions. The simplest possible cor­

respondence (one-to-one) is illustrated by a monotone increas­

ing runction. (Flgures 9 and 10). Here any two corresponding 

values have the same relative order in the two sets. In order 

that a one-to-one correspondence may exist, the function must 

b~; a reciprocally single-valued one. Figures 11 and 12, illus­

trate the only possibility other than a monoto~e function. Here 

the re.lative order is not preserved. 

8. Multipl~-valued Functions. If we have a double-valued 

f'unction defined over the points indicated on the x-axis (Fig­

ure 13), the correspondence would be as indicated. Point C is 

an extremum point, hence the one-to-one correspondence at that 

pOint. The analogy is obvious when the function is !!.-valued, 

(!!.. being any positive integer). Figure 14. rex) = constant, 11-

1ustrates the case, when ~ 1s infinite. 

1m interesting correspondence is that, to which the 

function - rex) : ~ whe-n 
n 

otherwise - g1ves rise. 

x = : ( In and n are prime) rex) = 0 

To the point :rex) : 0, there correspond more than a 

countable number of x-pOints, all the irrational pOints between 

zero and one (F1gure 15). To the points rex) = 1 and rex) = ~ • 
2 
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there correspond one x-point each. To the pOints ~(x) = ~ 
3 

and ~(x) = 1 • there correspond two x-points each etc. W. 
:( 

can always find a point, other than zero, on the rex) axis 

which correspon4s to mor~ than k poInts on the x-axis (k may 

be ~ positive integer). But rex) = 0 1s the only pOint, 

to which there correspond an int'in1te number of points on the 

x-axis. 

Q. FUnctions of Several Variables. - The tunctions Just 

conSidered, have been functions of one variable only. FUnc­

tions of n-varlables can be analogously represented as the cor­

respondence between n +~ sets of points. Pigure 8 illustrates 

the cass, when n;: 3. The order of procedure is (a) choose 

some point on x for which the function 1s defined, (b) con­

nect with any point on y for which the function is defined, 

(c) connect with ~point on z ~or which the function is 

4~finedt (4) the three. previous choices determine the corres­

pon41ng point, or pOints, on t(x,y,z). 
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CHAPTER II. - SERIES. 

1. Introduction. - A fundam~ntal assumption in th8 study 

of serie S J which may be taken as an axiom and which we shall call 

the telescoped-interval axiom. is the following. Given, the aer-

ies of intervals, alb,. a~bl' a~b3' ••• a~b~ _ ••• (each in­

terior to the preceding), the~e 1s at least one point common to 

all the intervals (Fig.17). This axiom is assumed in the Ded­

ekind-cut definition of an i~~ational number (Fig. 1), From 

this it is easy to prov.e that; ir the lengths of the intervals 
\ 

approach zero, there is only .Q.lliL point common to all the inter­

vals. (Borelts ·~9onG sur In Theorie des Fonct1ons" p.25). 

2. Serie s of Cons tan t Terms. - Convergence. - The· fol­

lowing 1s the notation used tJ:Jroughout the chapter. Given the 

infinite series &0 I a, f &'J.f • • • • , So = a~ , 51 = 

a I a, , S'l. .. a f a ,L a", , etc; that 1s S'"Y\. is the sum of 
0 0 \ 

the first n terms of the series. This 1s equivalent to re-

placing the tn:rinl te series by the infinite sequence So, S, , 

Sl.' • • • • S"Y\, • • • • Evidently if the sum of the series,~ ex-

Ists, it 1s the l:Jr~t S"l\. A sories 1s said to converge if S 

eXists, and to diverge Otherwis£t. Cauchyts test for the conver­

gence of a series, is that. \ S'" - s'" I p 1< ~ when n"7 i' I, . 

Figures 18-19 are the characteristlc Convergence graphs. In f1g-

ure 18, we have a series of intervals Sit, S2~1 S.~ S, • • • Sl'I S, 

each interior to the preceedlng. Since the length of" the inter­

val \ Sl\- S't\ I p\ must approach zero;-by the telescoped interval. 

I For a proof of this see Goursat-He.dr1ckllathematlcal Anal.ys1s, 
Vol.I, pp. 330-331. 
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axiom there is but one point, naffiely S con~lon to all tho inter-

vals. Hence S is the limit S • Figure 19 represents a con-
"'. -:It ~ 

vergent series whose terms alternate in sign. The series o~ tele-

scoped intervals is, S I - S"').. , S3 - S~ , • • • • S .... - S •••• 
., 'Y\-+o I 

By Cauchy's test, these intervals approach ze:ro. Hence by the ex­

tension or the telescoped interval axiom there is but. one point 

COmlX'lCn to all these intervals, namely S. 

Figures 20 and 21 illustrate tl-.I.~ two t~lpe_s of divergent 

series. In 20, the terms have like signs, in 21 they alternate in 

sign. In each case the series has been l"leplaced by the sequence, 

and an application of the telescoped interval axiom, combined with 

the Cauchy test, is all that 1s necessary to prove the existence of S 

3. Series c~ Functions. - A series of functions of a var-

1able x, say ~(x) I f~(x) I • • • • f"(\ (x) I . . • • may be said to 

converge, for a gIven val~ of x, if tl"~e s(~rles of constant terms 

formed by substituting the value of x in the series converges. 

A series of functions is said to converge in ~ interval, or on a 

~ of points, if it converges f'or every val~e of x, in the 1nt~r-

valor on the set of" points. The values to which the series con-

verges correspond to the respective values of the independent var-

iable, hence the series rilpresents or d~f1nes a f'unction. 

If tho terms of the series are fUnctions of more than 

one val~1able, then the serie swill defino a fune tlon of t:1C var­

iables involved ror tllose values of the variables for which the SEl%,,-

les converges. 

4. Uniform Convergence. - A series, convergent in a giVEHl 
CD 

interval, ( a;: x ~b ) is said to converge unI:formly if \ S - S"J<.~ 
® @ 

when n>N, :ror an~r value of' x in the interval ( 1,2,3, desig-

nate the order of choice) Figures 22 and 23 illustrate the differ­

ence between convergence and uniform convergence. The intervals 
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in both cases are the entire infinite plana. Figure 22 represents 

the. series aX = 1 I x .;. x'l2! I x13! I I ' • • • x n. • • • • • which 

is uniformly convergent in any f'inite lnterval., but not in the 

infinite interval. Figure 23 is the uniformly convergent series 

Sex) = Cos x I cos 2x I . . . cos nx I . . .' 
2 l n t 

Graphically interpreted uniform convergence means the 

following proceedurez (1) choose a strip of uniform wldth€; (2) 

choose n , so large that if this strip be laid on S, any suc-

ce eding S 't+-:f ter S"h, will lie on the surf ace underlying this strip. 

5. Tl1.e Series a ItU.nction of "n". - The subscript "n" may be 

considered as one of t he independent variable s of the series (the 

series, of course, is defined only for positive integral values 

of n). Sex), then becomes S(x,n) and hence has a three dimen-

sional representation. The advantages of this method of represen­

tat10n will become apparent in t he following fiBures. Figure 24 

illustrates ~ • 
xl. -1 

in trwee dimensions. 

1 I 1 1 . 1 I .. 
x~ x<l ~ 

. . __ 1_~~ •••• 
x'l.'t\.-~ 

The transformation N = 3 is made before 
n 

the series 1s plotted. N takes on only the special values ( 3, 

1-1/2, 3/4 • • .), however S(x,N) rnay be defined for all values 

of N between 0 and 3. in general, by connecting successive 

curves with straight lines. This would form a continuous surface. 

and the particular curves which represent t he s~ries are the' cross 

sections of the sur~ace made by N = (3, 1-1/2, 3/4 • • . ) . The 

11~t curve seX,Ot) torms the boundary of the surface of t he variable. 

, For method of determining whether a given series is uniformly 
convergent, see Goursat-Hedrick's Mathematical Analysis,Vol. I, 

pp. 363-364. 
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7. A Uniformly Converg61nt Series of Continuous Functions. - If 

each term of !! given series is con tinuous, and t:le series converges 

uniformly in a given interval, then the function represented ~ the 

series is continuous. In figure 25, Sh(X) is a continuous function 

of x (the sum of a finite number of continuous ~~ctlons 1s a con-

tinuous function). 
CD 

, height of A - height of P 1< € 
3 

when 

, height of B - height of Q,\ <. G 
~ 

when 

Because the series 1s uniform~y convergent 

Jhei8ht of A - height of B\< 1 when 

Because S~(x) is continuous. 
:l.. 

Q;) 
n:> Il 

Q) 
n)m", 

Combining the tfwee inequalities gives the result 

m'l. ) nt 

\ he 19h t G f P - he igh t 0 f Q.I < f: whe n (a - b) < ~ • 
which is the definition of continuity. 

8. Ha~elts Princ1p1~. - If all of t he terms of a serius 

except one, are continuous, and the series is otherwise uniformly 

conv&rg~nt, t hen the function which the series represents, will 

have the same discontinuities as that one discontinuous term. 

Figure 26 illustrates t~1 is principle. If any number of t he terms 

have discontinuities, but no two of t~lem at the same point (lest 

t hey cancel each other), then the limiting curve will have all 

.these discontinuities. HaMe1.'s principle is an excellent scheme 

for building a badly discontinuous function, for example the fun-

etion F(x) = sin 1 --I- .h sin 1 ;- 1 sin 1 
(x - 1/2) 2~ (x - 1/3) 3i (x-2/3) 

-I- 1 sin 1 -I- • . • • • • F(x) is dis-• • • • n ~~~ x - r'"'&'<:' i.o ..... · 
one'. continuous at e.very rational. point in the interval. zero to 

I For proofs of the theorems suggested in this paragraph ses. Hauk­
al's Kathematische Annalen, Vol. XX, pp. 77-81. 
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g. Transfinite Numb~rs. - Let us make the function des-

cribed in the preceding paragraph p&l'iodic in the following man­

ner. Repeat the portion in the (0.1) interval, dinished 1/2 in 

size, in the interval (1,1-1/2). T.he (0,1-1/2) interval is dim­

inished in size and reproduced 1n the interval (1-1/2. 1-3/4). 

This process is repeated infinitely. The set of points at which 

the function is discontinuous in the interval (0,2) is represented 

in figure 2!7. 

The posi tive integers may be assigned to t:le points in 

the interval (0,1) as subscripts. That leaves no subscripts for 

the re s t of tile poln ts, so we gl ve point 1- the subscrip t \.,.A). To 

the points in the 1nterva1 (1,1-1/2) W~ assign the subscripts 

J.) I 1, wi 2, • • • • • . . wi n • • • • Poin t 1-1/2 is ~ vJ. 
~. 

/ 
• ,,\'2. point 1-3 4 Is uu , atc. 

\,)l \ 

Point 2 1s UJ orn. These W~ are 

the transfinite numbers, and as they are more than countable in 

nWhba;r, a :f"unc tion may. have more than a coun table, number of dis­

continuities in a finite interval. (Se~ Baire's "Lecona sur les 

Fonctlons Discontinues·pp.43-45). 

Figure 28 shows that a merely convergent series of con-

t1nuous functions does not represent a continuous function. 

10. Term-wise In tegra tion. - WI thou t an~r very de taile d know­

ledr,e of the SUbject of integration, (which will be taken up later). 

it can be easily ,shown that a uniformly convergent s~ries can b$ 

integratod term-wise. However a uniformly convergent series or 
continuous terms cannot always be dif~erentlated terIu-wise. F1g­

ure 29 represents the uniformly convergont series 

Sex) = 1 I sin x - (sin x - sin 2x ) - (sin 2x - sin 3x ) - ••• 
x 223 

- ( sin nx - sin en !l)x ) • • • • 
n (n 7 1) 
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Pigure 30 represents its term-wise integration and f1gure~L~*~ 

term-wise differentiation. Figure 30 is a uniform1y convergent 

series. but figure 31 is a divergent series. In order to dif-

ferent1ate term-wise, we must first differentiate, then test the 

resulting series - - if it is uniform1y convergent the differen­

tiation is valid, otherwisa notl. 

Other definitions of convergence, than the one I have 

adopted here, might be constructed. For examp1e a series might 
\~ " :2. 'l. ~. CD @ 

be said to convorge if" 'J ~ S",\)(."\ .- S'V\1" \X,1 ) ~ <e "Y\. '/ rY\ (T'nis is the 

well-known "least-squares" approximation). Another definition 

and one often used in Calculus of Variations is 

\~S.'PO _s~ .. \\X)r-+[S~Ix) -S'~~~r-J.,.. <..~ -"y, > ~ . 

If this definition of convergence were adopted then the Series 

described in the precee.ding paragraph would not converge. 
n 

11. 
~~ \ S"l\~)~ 

The his tence of -n:: OCI J Ik>e s No t Mean Term-wise 

Integration. - I:f a series is integrable term-wise, that means 

r"s.,.14 = ~.';,::- \ \',,\)<14 . Paragraph 10 shows this is true in the 
J,x f I<..Q 

case of a un1form1y convergent series of continuous functions. 

Sometimes the ~1:m"," \c;,,,,I.<.) 4 exists when the series has no 1n­

tegra1 or may no t even converge and r·epre sen t a func tion at aJ.l. 

Figure 32 illustrates this condition of affairs. S.(x) contains 

one triangle of d1nlensions 4" X 1/2". Sl (x) contains two trian­

gles of dimensions 1" X 1". S~(x) contains 2n triangles or 
1/4n

-1. X 2n". The bases of the triangles apFroach the xB plane 

as n = oL- I The 11m \ ~ S (x) = 2 sq. in. This series does 'Y\~QK.. )0 

, Por proofs of these theorems see·Goursat-Hedrlck's Mathematical 
Analysis: pp.364-370. 
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not converge at all, hence the integral of the sum of the series 

does not exist. Figure 33 shows how the same Qffect may be ob­

tained in an infinite interval. 

12. A Possible Interpretation of ~ Improper Integral. -

Evaluating the integral of a function in an infinite interval 

may be , conSidered graphically, as finding the limit .of the inte­

gral of the following series as illustrated in Figure 34. 

~ ~~Id,.P \ \\~l~ + \~'" ~ + ~ ~x4+ ... \~:)4+ ... · · 
~o a \\ ~ 
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C01ITINUITY AND ALLIED CONCEPTS. 

1. Definition of Continuity. - The Algebraic definition of 

continuity is as followsl given rex) at the point x = ~ rex) is 
G) r ® 

continuous at that point if \f( 1':01 h) - r(x a ) \ <. f.: when h ~ d • 

The geomittric analagon is shown in figure 35. If' ~ is chosen 

as the altitude of the rectangle then it must be possible to 

choose the base of the rectangle small enough (aud extending on 

both sides of xo), so that the function will remain within the 

rectangle. & is not a function of €. , in the strict sense of 

the definition of a function, for if € is known, ~ is not 

uniquely defined. However, a particular' value of ~ does deter­

mine an upper limi t of S , and in this sense 'S depends on ~ 

A function 1s said to be continuous in a eiven interval, if it is 

continuous at every point within the interval. 

Continuity at the ·point at inf1nityft, is a slightly 

more complex ~.ot101'1. A rectangle might be constructed having but 

three sides, and the approach to the point could be but from one 

side. At preflent, we will ovy rex) is continuous at the "point 

at infinity· if the three-sided recte:a.r..gle 1n figure 36 can be con-

X ') k I. structed when / 

, A graphical representation which t::rows the infinite portion ot' 
the plar.e into the finite portion, makes this perfectly tangi­
ble, hence a further discussion will be reserved till later, 
when we take up other than rectangular coordir.ates • 
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If the function is defined over a set of points, the 

defirlition of continuity is necessarily different as is shown in 

rigure 37. TI1e rectangle definition will hold for the limit 

points, but at an isolated point, we must adopt the convention, 

that the rectangle around the lsol.ated point contains no other 

values of the function, hence the function is continuous at every 

isolated point. 

2. Uniform Continuity. - A function, f(x), 1s said to b~ 
<- @ 

uniformly continuous in an interval a II:: x ~ b, i:r\ t(Xl)-f'(x o )\<..6. 
@ ~cr; '-

when lx, - xo\ < ~ , a = x, = b • Figure 42 illustrates the 

propert~r of uniform con tinui ty. The sma1l~st t.:::.x;. is chosen as the 

value of S. Any runction, continuous in a closed interval, is 

uniformly continuous in that interval (Goursat-Hedrickts·Mathe­

matical AnalysiS·, Vol. I, pp. 143-144). 

3. Intermediate Property. - Closely akin to the property o~ 

continuity is the -intermediate property·. Its AlgQ,bra1c defini­

tion is as followSI if f(xc ) = A and t(x,) • B, then tee) • k 

where 
.:::.. G:.-

and Xo = C = x, • The difference between con-

t1nuity and this last named property is clearly demonstrated in 

figure 38. In the interval (a,b) the function ~ the intermediate 

property, but it is not continuous in the interval, as it has a 

vibratory discontinuity at the point x = c. 

Any derivative function has the intermediate property, 

for let F{x) be a continuous fUnction wh.ose derivative exists at 

( .<: L ) IC ) e..very point in the interval a = x • b. Suppose Fa· A and 
I I 4 .:- " -

F (b) = B. Then F (c) = k when A = k = B and a = c = b. 

Proof' I I\(x, h) = V{x#- h) - F(x) 
b 

Choose ho so small that 1\ ( a , h o ) l1es between A and k and 
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I\(~, h o ) lies between B and k. Since f\ is a continuous function 

of x, when h is finite, this choice is poss1~~e 

!\ (a J , ho ) < k and ( q, h ) > k c 

... 1\ (xoh o ) = k (A con tlnuous func tion has the in terme dia te 

property) • 

• 
• • pC Xo I h 0) - F( x Q ) = 

ho 

k and by the law of the mean, 

F'(e) = F(xo Iho} - F(x~) 
ho 

- k (Figure 39 belongs with 

this proof, due to Lebesque). 

From this propert~i of a derivative function it is very 

evident that such a function, can have only vibratory dlscontin-

uitias. TIle kind of discontinuity illustrated in figure 40 would 

ce impossible for a derivative function. If it has any discon­

tinuities at all, they must be of the nature illustrated in rigure 41.
1 

4. Circle-fitting. - Some of the figures I have dravm 

(:r1gures 28,32,33) have a great many sharp-corners. These corners 

are not discontinuit1es of the function itself but they do repre­

sent d1scont:1.nuities of the first derivative of the function. Now 

without altering the nature of these curves, or their particular 

propert1es which interested us at the time, these sharp corners 

may be smoothed off and the first derivative made continuous. Fig­

ure 4t shows one of these corners before the circle is f1tted into 

1t.( f. (x)) and also after the circle has been fitted inlf'.l..(x)). The 

socond derivative may also be made cont:1.nuous by graphing the first 

derivative, fitting circles into its corners and adding the area 

between the two curves to the original funct1.on (figure 42). In 

th1s manner t these rectilinear figures rnq be replaced by, so-called 

"analytiC funct~on8ttt and that without the loss of any of the char-

acteristic properties of the curves. 
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Polynomial Approximation. - ~J a very 1mportan t theorem 

due to Weierstrass (Goursat-Hedrlck's "Mathematical Analysis"p.422) 

any continuous curve can be approaclled uniformly by polynomials, so 

that the error is less than any preassigned quanti ty. Hence tl.l.8 

Algebraic analogon to any of these curves can be obtained and the 

result is a finite polynomial, the simplest of all functions. 

5 • 'l'he Extrema in ~ Interval. - The maximum of a func tion 

in a given interval (a,b) 1s the highest value which tl:e function 

~ssurncs in that interval. The minimum in a given interval is the 

lowest value which the function assumes in that interval. T!:.e 

maximum or minimum may be an end-point or it may be some interior 

point (fieure 439--,po1nts J( and m respectively). The function 

may not even assume its maximum and minimum values in the ir.l.terval 

as in the interval a -; x 1- h, where the Inaximum of the interval 1s 

reb). The function may assume its maximum or minimum values more 

than once in an in terval as It in f igura 44a-. 

8. The Extrema at.!. Given Point. - The maximum in a g1 ven 

interval is the upper limit of the function in that interval. If 

the end-points of the interval be made to approach each other, the 

value of the maximum either remains flx~d or dillinishes. Simi-

larljt since the minimum is the lower I1mi t of the function in a 

given interval, as the end-points approach each "other the minimum 

either increases or remains fixed. 

Suppose that the interval (a,b) is made to shrink onto 

t~e point c, so as to obtain a series of-telescoped intervals­

whose width approaches zero. The limit, which the maximum of rex). 
1n these intervals, approacr~es is called the maximum va1ue of the 

runction at the point c. ~lat is the maximum value of rex) at 

x • c is the lower limit maximum value of rex) in the interval 
~~; 0 
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(c ;..~ x c 
) 

.j.'d X ) and we denote it by M(x) • Analgously the mini-

mum value of f(x) at the point c is the u2I2er· limi t of the mini-
0 )(. ;.. 0 

mum value of f(x) in the interval (c +- 2;~), and it is denoted 

by m(x). 

7. Oscillation. - Oscillation is the difference between the 

maximwn va lue of the function and t he minimum value of t he function. 

It is oscillation and its clos e connection with continuity which 

binds t he ~uestions of ma~ima dn~ ~inima, and continuity toge ther 

and makes it logically possible for the two to be trea ted in the 

same cr.ap ter • 

If the oscillation of a function is greater than zero a. -\J 

(x = c ) , t hat means the construction of the continuity rectanBl e is 

imposstble (Figure 48). The set of points at which the oscillation 

of a function 1s great er than zero , t hen, is identical with the 

set of points at which t he func tion is discontinuous. 

8. Ex tremum Points of ~ Function. - A function t{x) is said 

to r_ave a maximum at the point x = c , if fCc) ; f(c .;. Sx ). It 1s 

said to have a minimum at a given point x = h, -if f(b) i" r(b .;. 6", ). 

If the equality sign holds at the point in question, then that 

maximut1 or minimum is called weak. If the equality siBn is un-

necessary t hen t he opposite adjectiv~ strong is applied to it. A 

compar i son of figure 4 (a s trong maximum) and figure 4~ (a weak 

m~~lmum) illustra tes the difference between these two kinds of ex-

treruurn poin ts • 

9. Semi-continuity. - ~ comparing figures 43,46 and 47, it 

is evid nt t hat if a function has a maximum at a given poir.:.t, t l-.!.at 

value is also the max i mum value of t he function at that point. The 

converse is rarely over true. 

A f unc tion may assume its max imum value at a given point 

or it may assume its minimum value or any intermediate value . 
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It. at a given point, it assumes its maximum value that is if 

P(x) = .(x) it 1s said to be semi-continuous above. If it as­

sumes its' minimum value it is said to be semi-continuous below. 

The function, P(x) = l./n when m/n"AX and F(x) = 0 

otherwise; (figure 4~) illustrates a function which is continuous 

above at ~very rational poin,t and continuous at every irrational 

point. 
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CHAPTER I V • 

. MEASURE, CO~TTENT and INTEGRABILITY. 

1. Measure. - The definition of measure, as applied to 

a set of pOints, corresponds to our general intuitive notion ot 

measurement. 

(a). If ~ given set _of pOints E" . completely fills 

.!!. line segment, its measure is Hthe length of that segment. 

(b). If.!!. given set E, whose measure is S , contains 

.!!!! the points of a se cond set E.) then the measure of E , 1s -;- s . 

In figure 50, E, is composed of all the points on the line - -

segment (A, B), and E is the set indicated. Then by (a) and (b), 

the measure of E:=- length AB. The converse 1s also true. If E 

is .!!. set of points, whose measure is S, and which is completely 

contained in E" then the measure of E, ~ S. In figure 51, E is 

the set of points composing the line segment (A B), E, 1s the set 

composing the line segment (A C). The measure of E, ~ the measure 

of E. Also the measure of the set LE. - EJ= measure of E , - meas­

~of E • 

(c). The measure of the set formed Ez uniting ~ count­

tibIa number of mutually exclusive sets of points t whose measux1es 

~ respectively (_S~,~,_S~~~,_S~3~' __ • _________ • __ ~~' ___ • ___ ·_. ___ .) is 

• • • S""l'\ ...... ~ • • ) • 

2. Existence of Measure. - Hot all sets of points are 

measurable, for example th1sset, cited by Van Vleck in the -Trans­

actions of the American Mathematical SOCiety·, volume Q. All the 

point.s in the interval ze,%'o to one, are separated into three sets 
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s, C, and K. ~ is a member of S and y • 1 - x, a member of c. 
With each x 1s associated the countable set . lX + 

m/2"1 and 

correspondingly with each y. tl. - (x -t m/2 ...... ~ • These two 

sets are dist1nct except where x = m/2"'- • _ The~e points are 

assigned to K ( they are countable in number). FUrther when x 

1s assigned to S, the pOints x/2, x/4, x/s • • • • • are 

also assigned to S and conve~sely. This distribution will give 

rise to a conflict in S and C if and only if -x is rational. 

Hence all the rational points are assigned to K. 

S ;: ~ t ;"t ! ~1 ., c. : I\I -~\t\" '!: -r;~ ~ -rn;n,xo = 0,1 .').,~ •••. 

S can be easily shown to have 1 as an upper limit to 

1ts measure, and since C is merely a ~eflection of S, 1 is the 

upper ltmit of l.ts measure. K, being countable, has the measur~ 

zero. Clearly C and S are not measurable for they violate that 

part of the definition of measure which saysl "the measure of a 

set formed by uniting two or more sets equals the sum of their 

respective measures". This set is hard to illustrate grap~cally 

but f1gure 52 shows its construction in so tar as that is possibl ... 

g countable set has measure zero • Por, let, 

• • be a countable set of points (~igure 63) • 

Dr-aw an interval of width w around a" an interval of width ~ 
u..J 

around a~, an interval of width ';l""-' around ~. Then a, ",- a ~- • • • 

a~- • • • • are enclosed in a series of interval whose total width 

(since vJ 1s arbitrary) can be made as small as we please. ay (b) 

of definition of measure, the measure of &.+ a~~ ••• 1s less 

than the sum of the intervals. Hence the measure of the set < ~W, 
and therefore equal to zero. F1gure 64 shows the measure of the 

rational numbers from 0 to 1, equals zero. 
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The measure of a - perfect set of pOints a1ways exists. 

Tht: perfect set of points, P, in figure 55, is formed in the 

characteristic manner, by the removal of the interiors of non­

abutting intervals from a line segment. The rematning PQrtion of 

the line segment comprises the complementary set C(P). C(P) is 

composed of a countable number of sets whose measures are h l. a- ,J ~J 

i.,3' • • • • 1.'1\. ;. Then the measure of C(P) 1s ( L I J -+ 1.. ~ .. l.it 

• • . ) - endp9ints (B.1 part (c) of definition of measure) • 

The .n4~points form a countable set, hence their measure is zero. 

~emeasure of P = length of the line segment -- the measure of 

C(P), by part (b) of the definition of measure. Therefore the 

measure ot P exists ~d equals AB - (lL," l..;a. ..... • • . . .). 

3. . Content. - Content is also a scheme for the measurement 

of a set of points, but right there its analogy to "measure" ends. 

Content 18 based upon the Riemann subdivision of an 1nterva1. 

As illustrated +n f~gure 56 an interval A B +s divided 

into subintervals finite ~ number, but whose maximum length ap­

proaches zero. Let E be a set of points partially filling the 

line segment A B. Divide this interval by the Riemann method 

into subintervals. These intervals will than fall into three 

classes 

This 

~~= ~ (intervals full of points in E.). 

J[e= ~ (intervals empty of points in E). 

"let- ~ (intervals partially filled). 

Upper Content is defined as 

lower limit [T~ + Tetl · (Figure 57) • 
b.'f.: 0 

is also equal to the lower limit ( AB - Ie). The 

con ten t of a se t of points is the upper 11m1 t of -' t' 
lower 
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lower limi t ( I e. + T er ) . The se t is said to have 

content, if both its upper and lower content exist and equal 

each other. 

Successive Riemann divisions tend to increase ~t_ and 

Ie and to decreaseT e.¥. Henc" the first two will have ~­
per limits, and the last named a lower limit. 

,Figure 58 illustrates the condition of affairs, when 

~ set has content. L and U represent the lower and upper content. 

Figure 69 represents the case when the set has both upper and 

lower content and yet has no content. 

kl examination of thedefinitions ' of upper and lower 

content shows that, whether a given set has content depends upon 

the value of lower limi t of I et. If the "lower limi t of \ e{ 

e-quals zero, the set will evidently have content, and otherwise not. 

4. Comparison of Content and Measure.- A countable set of 

points does not necessarily have content zero, for take as an ex­

ample the rational numbers between zero and one. Successive 

Riemann divisions give us always an JLef ~qual to the entire line 

segment. Hence the content of this set does not exist at all. 

Its measure however is zero, for the measure of any countable set 

is zero. 

The content of a perfect set of points always exists. 

For in the characteristic method of forming a perfect set, the in-

tervals dropped form ..lee. Any given portion of the line segment, 

eventually remainsund1sturbed forevermore, or else never reaches 

the undisturbed condition. ' In the first case, these undisturbed 

portions belong to-lt • In the second case, the disturbed portion 
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must decrease and approach zero. Hence the only opportunity for 

members belonging 1;,0 -,I~et to be formed, is in this portion which 

~ppro~ches zero. Therefore a per.fec1;, '-set ,-of points .has both 

measure (proved previously) and content (Figure 60). 

5. Analogy of Content and Integrability. - An integral of 

a function taken over a set of pOints, or an interval is defined 

as follows. The interval is divided -into Riemann divisions and 

Phe two sums S and s are formed (Figure 60). 

Tne u:p:~:t::r:~1K~+ ~~ . de:~:d~:S the lower limit of S, and 

the lower integral ~ 
is said t~ exist, if the 

as_ the upper limit of ' s. The integral 

r = i . and to equal either one of 
them. Both concepts are based on the Riemann aubdivision scheme 

and the correspondence between the definitions of content and in­

tegration is very close. 

e. Proper Integrals. - To begin with, we shall consider the 

function as bounded and the limits of integration as finite -

that is we will consider only proper integrals. This insures us 

the e,xistence of !. and ~ and thus simplifies to a considerable 

degree the question of integrability. 

Sufficient conditions for integration are easily found, 

and I shall give these; gradually broadening them until the neces­

saryand sufficient condition appears. 

A function F(x), continuous in an interval (a,b) 1s 

integrable (Figure 81). Since the function is continuous at every 

point, K and m approach the same limit, hence S and ~ ap­

proach the same limit and the integral exists (Figure 82). 
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Figure 83 shows that the integral of a function hav­

ing one discontinuity exists and may be evaluated by dividing 

the interval at the discontinuous point and evaluating the two 

integrals separately. 

In an exactly analagous manner a function having a 

finite number of discontinuities is integrable. Extending the 

same reasoning a little farther, a function having a countable 

infinity Qf discontinuous points ,is integrable. 

7. A Function whose Total Variation is Bounded. - If a 

function is defined in an interval (a, b), and this interval div­

ided into partial intervals in any manner whatever, and the sum of 

the oscillation in these intervals is calculated - - the function 

is said to have bounded total variation if this sum has an upper 

limit. 

A function of bounded total variation is integrable. 

(Lebesgue's "Lacons sur l' In tegra tion" page 5,0). The function 

rex) = x sin ~/x in the interval ( -1, -1 ) is an illustration 

(Figure 64). This is the last of the sufficient condition and 

leads us to the necessary and sufficient condition, of du Bois 

Reymond, of which these preceeding exrunples are readily seen to 

be special cases. 

8. Du Bois-Raymond Theorems. - Du Bois Raymond developed 

the followIng necessary and sufficient conditIon for inte8rabil-

1ty that whatever ~> 0 may be, the points where the oscillation 

is greater than ~ form ~ integrable set. An asser{~blage of points 

s1 tuated on a straight line forzr. an integrable set, if they can 

be enclosed in intervals whose total length may be made as small 

as we please. 

This theorem has been revised into the more convenient 
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form: In orde~ that a bounded function' rex) be integrable, it 

1s necessary and sufficient that its points of discontinuity form 

~~ whose measure1s ze~o. The developments and 'proofs of these 

du Bois-Reynlond theorems are given in L.besgue fa "Lecons sur 1 t 

In teg~a tion e t 1a Recherche des Fone tions Primi tl va s" pp .!?3 ~~ 9. _ 

.. _ .. _. ~~m~~~s~at~me~t " of' · ~11~ sarne ~ theorem 1~ t ~ In order 

that ~ bounded tune tion " be .·in tegrable r 1!!. ~ (s, b) • .. 1 t .. 1s nace s sary 

and . sufficient _ that (a, b) ~ may ~ be ~ ' d1v1ded -- lnto :partlal intervals, . . 

~. t~~~ .~.~· of . the lengths :of' the .~ interval8 in , which the _oscil­

lation .. of .. the function 1s greater than g (§. .!!!. .any number greater 

than zero) .!!!..!!. small.!!!. '!!!-please. A comparison of this state­

T4L8nt wi th the preceedlng brl~gs : : ou~ '- ~~~ .• qul"a+el].~e of discontin­

uity at a point, and oscillation greater than zero _at a point. 

Figure 65 illustrates the function r(x). lIn when 

x = aln •. where m 1s less than n and prime to it. rex) = 0 

to~ all other values of x. This function is discontinuous at 

avery rational point but continuous at every ~rrational point. Its 

discontinuities then, form a set whose measure is zero. Hence the 

. function is integrable in the interval 0 ~ x ~ 1 • 
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PAR TIl. - Representations ~ cylinder and 

Anchor-ring. 

1. Introduction. - Part I, which confined itself to 

o~dln~ rectangular co-ordinates, slighted several .points, 

which I shall take up more fully in this Chapter. The ques­

~lon of t~e extens~on of th~ ftrec tangle .defln1tton" of 

Continuity to ~ th~polnt at infinity; graphical representation 

of transfinite numbers; and improper integralsr-al1 these 

demand some more adequate, schem~ of representatIon than the 

ordinary co-ordinate systems. The difficulty lies in the 

fact that the "infinite portion of the plane" is not repre­

sented at all, by these elementary methods. Projection at 

the entire infinite plane onto some finite surface 1s -nec­

essary to make the "point at infinity" sometl1ing tangible 

and capable of graphical representation. 

In what is to follow, I shall suggest a very 

slmp:).e scheme for doing ' this and develope it far enough so 

that its characterisf,1cs and advantages become apparent. 

2. Transformation of ~ Entire Plane onto .!!. Finite 

Square. - B,r means of the equations of t~ansrormatlon, 

1 1 (x =00 '1 = :~ x • 
; 

a - 1m a +111 (n = a 8 = 
'7 - 1 1 

~: -
_0. Y = _04 ) - I -

a - 8 a + S = -a • - -a ) -
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the e~tlre infinite plane becomes a square of d~ension 2a. 

Figure 6e illustrates this transformation. The function 

y = t(x) is graphed on ~he square. 

3. Continuity on the Square. - The rectangle defin­

ition of ~ntlnuity, given in Ch.apter 3 of Part I, holds 

for a~y point on the Intel"lor of this square. Consider the 

can titlu!1 ty at a po1.n t on the boundary, for eX:aLlple - is 

cpCm) continuous at the point m ~ a ? (Figure 68). ~1d-

antly tl'le continuity rectangle cannot be constructed around 

this pOint, for the function is not defined to the right of 

m = a • 

4. QYlindrlcal Representation. The problem is now, 

to so ar~wnge the representation scheme, that the function 

is defined both to the r1~ht and left of the line m = a. 

Figure e7 illustrates the mechanical means of accomplishing 

this ~esult. In order to simplify computations, I shall 

take the d1mens1on of' the square e qual to 2\T. The radius 

of a ci~~ular carss-section of the cylinder is one unit. The 

trunsfo~mat1on equations are , 
x= -~--

Tl - ""'{Y\ 1\ + rf\ 
and Y = \T- S -rr+s 

5. Continuity ~ the Cylinder. - Figures 88 and eg 

show tnat the rectangle definition of continuity is appli­

cable to all points lying on the cylinder except those points 

QP the ci~~les S = !.IT • . The reason is that the rectangle 

could not extend on all four sides of points lying on these 

circles. Figure 70 illustrates the method of overcoming this 

diff'icu~ty. 
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e • Repre sen ta tion .2.!!. the Anchor-ring. - This me thod 

is referred to as the anchor-ring method - the reason is 

obvious. On this surface the rectangle test of Continuity 

can be applied to any point whatever. 

To determine whether a given function is con­

tinuous at the point at infinity it must be graphed on the 

anchor-ring and the rectangle-test applied to it. This means 

that a definition of continuity can be given which will apply 

equally well to all points finite and infinite. 

7. Continuity at the Point at Infinity. - Continuity 

at the point at infinity admits of the three following defin-

itions, 

1. A f.unction may be said to 'be continuous 

at the point at infinity if the rectangle illustrated in 

figure 66 can be constructed. ~lis means 
CD @ 

,rex,) - r(x').) \ <..E. when x \ and x'l. / K. 

2. A function may be said to be continuous 

at the point at infinity if the rectangle on the cylinder, 

as in fleure 68, can be constructed. This means the function 

1s bounded as x approaclles infinity, and, in addition, the 

lim1 ts of :r( x) as x approaches + 00 and - CXJ are the same. 

3. A function may be said to be continuous 

at the point at infinity, if the rectangle on the anchor-ring 

can be constructed. This-means the function may become infin­

ite as x becomes infinite, but it must become infinite as x 

approache s bo th + 0<) and ..., c:>oG ~ as shown in figure 71. 
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8. An Essential D1scont1nuity • . - A function, contin­

uous on the cylinder will also be cont1n~ous on the anchor­

ring and in addition, other functions whose continuity on the 

cylinder is not apparent, are continuous on the anchor-ring. 

A func tion whl ch is no t continuous, even on the anchol"-rlng, 

at the point x = au , might be said to have an essential 

discontinuity. This is illustrated in figure 72. 

Q. The Relationship of Certain Functions Emphasized 

when those Functions ~ Represented ~ the Cylinder. - Fig­

ures 73 and 74 are the functions y = xt. and y = l/x~. The 

second is merely the first, rotated through an angle of 1800 • 

What happens to the first function in the neighborhood of 

x • ~ , happens to the second function in the neighborhood 

of x = 0, and conve,rsely. These two are then essentially 

the same functioll. The sarne is truo of rex) = l/x"! and 

:rex) = x ~ , arlu in eeneral rex) = x -n. and f(x) = l/x~ 
That is the transformation x = l/x means, ~ the cylinder, 

!!. ro ta tion through .ill!. angle of 1800 • 

10. Uniformity on , the Anchor-ring. - Any function, 

continuous over a bounded interval is uniformly continuous. 

On the Anchor-rin~ tLe entire plane is a bounded interval, 

hence any function continuous over the entire pl.ane is uni­

formly continuous. From previous experience we know this 

last statement is incorrect. Fieure 71 shows that uniform 

continuity must be differently defined on the Anchor-ring 

from its definition in ordinary coordinates. 

~ means of the transformation equations, I 

shall set up the exact analogon. on the anchor-ring, of 
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uniformity in Its ordinary interpretation. The definition 

of uniform continuity lSI given y = P(x),in the interval 
(jj' ~ 

a ~ x <:. b and I F( x ,) - F( x:2) I <. € when, x,. - X -J.' <.. ~ , 

when a ~ <i, ~ b. 

Substitutingt, x = --- and y • l _ \ ) 
"IT- 'f'Y\ 'Tr +Tf"\. ~-~ IT+''S -

in y = F(x) and solving for S in terms of m. elves the equat-

ion S • ¢(m) • (This can be done when F(x) is continuous 

and the transformation equations are continuous .') The trans- . 

formation equations are continuous in any interval 

Clearing of fractions and simplifying the above condition re-
8 

duces to \ l \1 'l. + G>, ~";I..) \.~\ - ~~)\ <.. G· \'" 

\ trr '1 + 'YY\ ,"yY\ ~) (t'Y\ \ _"Y'I\ 'l.) \ <:.. ~. e . " 'YVl 0- ~ l"Y\, ~ 'YY\. \r 

when 

\ 

In the deflni tion of uniformi ty on the anchor-' 

ring developed in tho preceeding paragraph, the product 

\-n ~+ ~I¢~)(~'- ~ .. ) takes the place of the dif-

ference (P, - F~). That is an element of area (represented by 

the product) replaces the element of length (represented by the 

difference). ~le product Just mentioned might also be consid­

ered not as an area, but (to keep the analogy with what 1s to 

follow, complete) as a line with varying density. If the area 

1s compressed into a single line. its second dimension becomes 

densi ty. 

, Goursat-Hedr1ck ·Mathematical Analysis·, page 138. 





The quanti ty (TT.:l.+ cp, <p~) has an upper limi t 

2-":2.. hence it can be treated as a constant and cp (m) is 
.:::.. .::::.. \ -

uniformly con tinuous in the interval -" c::::. 0.. -=- l'"Y\ -:... Lr <.. + 1\ 

if l ~---II "(<1>.- cp ... )\ <. ~ when \ ~Ti ~(-yn '-"""Ll\~ ~ 
and 

.::::..... @ <- . 
a • m

l
_ b, ~1erefore the definition of uniformity on 

the anchor-ring is essentially (~xcept for a constant multi­

ple) the same, in any rectangle .Q.!!. the anchor-ring, as in 

ordinary rectanBular co-ordinates, Figure 75 illustrates a 

series of such rectangles, Uniform continuity over the en-

tire anchor-ring is as yet undefined. A function might be 

said to be uniformly continuous over the entire anchor-ring 

if, being given ~ , it is possible to choose a S which 

will do for anyone of these rectangles. 

11. Integration on the Anchor-ring, - ~1e definition 

of a Simple in tegral on the anchor-ring as t:ne ar'ea under the 

curve, will surely not hold, for then ther~ would be no im-

p~oper integral which could not be evaluated. In the next 

few paragraphs I shall construct as graphically as possible 

the definitions of simple and double inteBrals on the anchor-

ring. For convenience and clearness I shall picture the 

anchor-ring in the "unrolled" form, ' assuming that the reader 

will roll it up for himself. 

12. A Simple InteBral .Q.£ the Anchor-r.1ng. - Let us 

construct the analogon of a simple integral on the anchor-ring. 

In figure 76 an element of area under rex) goe-s' over into an 

element of area under ~, . [4>\'"'(Y\) -:. ~~\ \.N"e~ 'I( = - '- - _ I -1· 
~ T-~ ~+~ 

Consider \ \-\~)~)(. not as the area under :rex) but as the vol-
L of 

ume of a so11d/\unit height whose upper face is the area under 

r(x) as in figure 7e. This solid when transformed onto the 
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anchor-ring has its base diminished in size, hence its height 

must be increased in order to maintall1 the equivalence of 

volume. From figures 77 and 78 we get the equations, -

~ ",. ~l.x.) • .:1. =- b,."""¢'YY'. h. ':l.. : tlX) =: c\l\"YYl) ; \.TUr ~ : \f0\ '"L', hence 

~?- -= D.. x J and pas sing to the limi t as ~ A and 6. M 
6. Yn dX 

approach zero J h. ?- = dYY\ ' 

Compress the solid, whose base is ~(m) and 

height dX , back into the "S,'Yn)plane. Its height becomes 
dm 

the density of the area under ¢ (m) and we obtain the ~quation -

\~3IKl h: \:~\~\ ¥W'c\~ . 
In rectangular coordinates, the simple integral 

represents an area, whose density is equal to~. On the 

anchor-ring a simple integral represents an area of variable 

density, and in evaluating the area, it must be multiplied 

by the dens i ty ate ach pain t • The densi tjt is a fune tion of m, 
~ 0'\ (IT ':t-t -m ,) 

namely ~~ ~ ~\ ~ 
~ tIT-~)~ C-n\-'YY\) 

13 • The Region of Validi ty of the Preceding ,~ Resul t. -

Assuming that F(x,y) is everyWhere integrable, the result ob-

talYled in the preceding paragraph is valid for any interval 

within which ~~ is continuousl. ~~ is continuous in any 

region -\"\ ' C x c:.. +11. If' the region of integration 1s extended 

to include the end~poin ts !: -" , which correspond to x :: -t =<.J , 

we no lonBer have a proper integral. 

If The result obtained coincides with the ordinary interpretut­
ion of transformation under the inteBral sign, and hence is 
valid under the same conditions. Goursat-Hedrlck "Mathe­
matical Analysis: Voluoe I, page 296. 
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14. Improper Integrals. - A simple integral 1s called 

an improper integral if either the independent or dependent 

variable become infinite within the interval of integration. 

~ "' )~ Ir two variables are 
I~",Shall consid\e~ the type: ~~~) ~ . ( 

~\X, ~ ~ 1~'M. ~\X) 4 = ~ ~t ct>\'m) ~ ~m (( 
d ' J ~\ n ~ oc; ().. \1.. Q ~TI ~\'fY\" ","!VI (cons tan tly equal. the ir 

}..~-yY\ A, \ \ th ~ ~ ~ \ \ (liv.l ts, if' the y axis t 
~ ~-rr I..f~) ~ C:km -=. ,-¥\yy\) ~~:m4- ~tM) o.~ d\'YY\ " ( 

1l\... d-"('(\ 1"t".o..~"'('(\ t ~'"fy'\ C are also equal. 

® 
when IlT - ""YY\ \ <.. 2) 

the improper integral may be evaluated. 

, then 

The fact that the integrand approaches zero 

is neither a necessary nor a sufficient condition. Ii' fig­

ure 33 an example is given of an improper integral, which can 

be evaluated, yet the value of the integrand increases be-

yond all limit as 
, 

x=oo It is evident, however, that the 

following 1s a necessarycondit1on& in order that an improper 

integral may be evaluated it is necess~y that b t being 

chosen first, it is possible to choose k, so large that 

\ rex) - 0 \ c:.. E. when x '; k , wi th the possible exception 

of a set , of points whose measure 1s zero. 

This necessary condition in the anchor-ring 

co-ordinates means, ¢ (m) ~ must approach zero as m 

approaches \T , except for a set ' of points of measure zero. 

(~\ ';;l.. r TT" '1._~ YY\ .~,\ 
'+' \"YY\) ~ : c?\'YV\) \. II.. L ').. 

0.,,, en-_ "YY'\ ) 'l.. ( " '+ IY\ ) 
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Let .. approach"""TT through posi tive values, then 

lim :l. ( 1T ;t + IY\ 1.) = 1- II .l. = 
It ;n 1. 

'Cf\ T '"YY\ ) ~ 4- 1T:t 

Therefore ~ (m), ' ~ must approach zero as m :'-1-1 • 
\ --n- - ""YY'\ ) 

That is ¢(m) must be an infinitesimal. of higher order than 

the second with respect to (IT - m) in ~ neighborhood of 

m = 11 • 

If m approaches - \T through negat1ve values 

an exactly analagous process gives us t.he result that cP (m) 

must be an infinitesimal of higher than the second order with 

re sp ec t to (IT+- m) : (-n - ( -m) ) • 

A sufficient condition for the existence of 

an improper integral is that the function in question even­

tually lies under the curve y ~ xf-- I (wi th the possiblo ex­

ception of a se t of points J whose measure 1s zero). tv <. 0 I. 

That means on the anchor-ring that q.,..yY\)~"f>'I must 1ie under the 
J.A.- , 

curve, y = X l or its analogon on the anchor-ring 

S :; - (,,?:~!I-))J'- \ -+- ~ -n '"l. l"l. 'In \~f"--~ \. \T ~ "Y-A '\.)?.t-'- :l. 

~ c;)..1Y\ )~- \ 

15. Double IntegralS. - The construction on the anchor­

ring of an equivalent to the double integral is somewhat ana­

lagous to }he construction of the simple integral. In figure 

7B, the \)x~(X y) ely dx is the volume of the solid lying under 

the surface :t(x,y). That 1s the usual interpretation of the 

or the double integral. I would like to take a slightly 

I Goursat-Hedrlck -Mathematical Analysis-, page 177. 
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d~fferent one here. 
r~)\~ 

The ~J).. r(x y) dy dx = the mass of the 
, 

, indicated solid. the density being equal to unity. Or the 

rr~(x y) ely dx is the !!!!!!!!. of a solid whose height 
Y, XI 

1s 

is unity and whose density is r(x,y). Figure t9. 

Transforming this last volume onto the anchor-

ring, the base of figure '0 is diminished in size hence, to 

preserve the equivalence of mass (hence of volume), the 

height of the transformed solid must be increased. The ratio 
\ \ 

of increase is given by the formula I . \ q> =- " = ~ - ""'-f\'\ 

') \ rex y) dx ely • \ \ht? ,'\I) ~ ~:,~~ .,).. "'-~" LV" Y ;- 'i, - TI\+ '5 

[)~~~) =\d)<' \~~) _ ~\1T~W\~ . ';2..(1T'2+s2)-=-4(rr~m'l.)(TT~51)U = m 
,C""\ ( v) ckc"'l'\ o-m - ...... 2..\).. -z. \'~(. Co z\"-
hJ I.A. \ 0'1<." ~) ~ ( l\""":- s) r 11 - Y\'\ "I \n - s) V = S 

- \ d~ trr ~ "YY\ \. \. 
O~ dS." 

The determinant used in the preceding para­

graph is the well-known ftJacobian". It represents the ratio 

in height of the two solids we are considering. 

The double integral, on the anchor-ring, 1'&,-

resents, the mass of a solid whose density is a variable, a 

function of the m ands co-ordinates,- namely the product 

of the partial derivatives or x(w1th respect to .) and of 

y(with respect to s). 

I See Goursat-Hedrick -Mathematical Analysis" J Vol. ,1, J .302. 
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For conditions under which, and limits within 

which, these llesul ts are valid, see Goursat-Hedrick "Mathe­

matical Analysis·, page 301. 

18. General Remarks. - The advantage of this anchor­

ring method of representation of infinite points 11es - not 

so much in the value of any especial formulae which may arise 

from it - but rather from the fact that the "point at infinity" 

1s brought within reach, where it can be graphed, tested and 

treated exactly as any finite point - with certain limitations. 

We are thus, given the very vivid graphic point of view of 

the characteristic properties of the "point at infinity", as 

opposed to the rather hazy unreal one derived frore a merely 

formal treatment, from an AlgebraiC standpoint. 

17. A Poss1ble Graphical Representation of Transfin­

ite Numbers. - For defin1tions and a complete treatment of 

t:he subject of transfinite numbers, see Baire's "Lecons sur 

les Fonctions Discontinues", pages 43-45. I am, here, merely 

going to suggest a. possible graphiC interpretation of trans-

fin1 te numbers or what mieht be tern~ed transf:!.ni te srace-. 

In figure 80 the entire infinite plane 1s rep-

resented in the i nnermost square. The boundary .lines of the 

square are x ="!:" lJ..) and y ="!: u..J. The transfini te numbers 

from ,...u\ to \ %W-, are represented in the "frame" imn"ledlately 

surrounding this square. In the next largest frame all nUD1-

\ 
~ \ 

bers trom . 2 J..) to. -J...) \ are represen ted. The next in order, 

. ~ \ \ v.) \ take s in all numbers from w to ~ u...') . • The last frame con-
>,JJ' 

ta1ns all numbers from \\A:)I..U\ to \ wI» ,= ~ . 
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Thus inside this largest square we have repre­

sented all the transfinite numbers, and their negative an­

alogons. 

18. Conclusion. - In Part I of this paper, I have 

dealt with only well-known properties of functions - treating 

them from the graphic standpoint entirely and referring the 

re~dert to the hest authorities I could find, for the Alge­

braic treatment. 

In Part II, I have referred to standard works 

for formulae, conditions, existence theorems etc., but I 

found it necessary to develope the Algebraic side . in some­

what greater detail, because of the fact that the view-point 

adopted 1s s11gctly different from the ordinary one. 
















