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ABSTRACT

After more than a decade of active research and development, the peer-to-peer

(P2P) computing model continues to be successful. We have witnessed the deploy-

ment of commercial P2P applications in large, Internet-scale environments. With

the rise and growth of P2P, indexing and querying data stored in large-scale sharing

systems has become increasingly difficult. Computing statistics over data stored in

Internet-scale P2P systems is an important component of query optimization. De-

centralized gossip-based protocols are very popular in networking, and in particular,

in sensor networks. The simplicity and scalability of gossip protocols render them

perfect for quickly computing accurate estimates of aggregates (sums, averages, etc.)

in Internet-scale systems where node and link failures are the norm.

In this thesis, we present the problem of cardinality estimation of XPath

queries over XML data stored in a distributed, Internet-scale environment. We focus

our work on three objectives: implementing gossip in an Internet-scale environment,

conducting a comprehensive performance evaluation in a wide-area network, and an-
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alyzing the experimental results.

We implement two gossip-based algorithms (VanillaXGossip and XGossip)

which, given an XPath query, estimate the number of XML documents in the net-

work that contain a match for the query. XGossip employs a new, divide-and-conquer

strategy for load-balancing and reducing the bandwidth consumption. We conduct a

comprehensive performance evaluation of both gossip algorithms on Amazon Elastic

Compute Cloud (Amazon EC2) web service using a heterogeneous collection of XML

documents. The goal of the performance evaluation is to find if the results we obtain

are consistent with the theoretical analysis of VanillaXGossip and XGossip.
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CHAPTER 1

INTRODUCTION

The peer-to-peer (P2P) computing model has been very successful in the last

decade. Having gained an incredible popularity for file sharing (Kazaa, BitTorrent)

and being widely used in communication networks (Skype) for Internet-scale ap-

plications, P2P has now evolved into more specialized, structured peer-to-peer sys-

tems. Distributed Hash Tables are one example of a widely popular, structured

P2P system. DHTs started primarily as research projects (Chord [82], Pastry [73],

CAN [71], Tapestry [91], Kademlia [51]), but eventually turned into profitable and

heavily used key-value stores like Amazon’s Dynamo [22], Apache Cassandra [47],

and Voldemort [4].

By the time P2P started gaining traction, XML had already been standardized

and was starting to become the data model of choice. Taken together, XML and P2P

provided a new way to implement efficient, large-scale data sharing systems. A lot of

research has been devoted to indexing and query processing over XML data in P2P

networks [45, 30, 9, 21, 68]. The areas of biomedical research and healthcare provide

a unique opportunity for testing the P2P and XML technologies on both a large data

and network scale. The healthcare community has already recognized the benefits of

the P2P architecture in their information-intensive enterprise [81]. Along with that,

the standard for representation and interchange of healthcare data (HL7 version 3)

is XML-based. HL7v3 is instrumental in allowing semantic interoperability across
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different health care systems [53].

An example of a real-world data sharing system is the Cancer Biomedical

Informatics Grid (caBIG) [25, 8]. An initiative of the National Cancer Institute

to accelerate scientific discoveries, caBIG enables researchers to collaborate across

124 participating institutions in the US. In order to be able to integrate divergent

data types, caBIG is implemented using a semantic Service Oriented Architecture

(sSOA) [56]. In addition, caGrid, the underlying network infrastructure of caBIG,

provides a XML Data Service interface for querying and retrieving data from XML

databases [7, 59]. User queries are translated to their corresponding XPath equivalent

and are then executed over the XML database. We believe that a P2P architecture

may enhance the scalability of caGrid for large-scale sharing of distributed XML data.

We define the task of cardinality estimation as it is used in this thesis as

follows.

Given an XPath expression (or query) q, estimate the total number

of XML documents in the network that contain a match for q with

provable guarantee on the quality of the estimate.

We would like to note that even though the above estimate does not provide the

size of the result set of an XPath query, the cardinality estimate of XPath expressions

is useful in XQuery optimization. By knowing what the distribution of the relevant

documents in the network is, a query optimizer can select appropriate query plans.

For example, given the cardinality estimate, the optimizer may determine the most

efficient join ordering. Another useful application of the cardinality estimate is if

researchers would like to figure out if there is a sufficient number of samples for a
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particular study without having to submit a query over distributed data sources.

Ntarmos et al. [58] and Pitoura et al. [60] discuss the problem of computing

statistics over structured data stored in an Internet-scale environment. Neither one,

however, uses the XML data model. In order to apply existing techniques for XML

selectivity estimation [63, 28, 49], all the XML documents have to be collected from

a large number of participating peers. This requirement is not only inefficient, but

also very difficult to implement because peers may join, leave, or fail at any time.

1.1 Thesis Objectives

We focus our work on three objectives: implementing gossip in an Internet-

scale environment, conducting a comprehensive performance evaluation in a wide-area

network, and analyzing the experimental results.

• First, we implement two gossip-based algorithms (VanillaXGossip and XGos-

sip) which, given an XPath query, estimate the number of XML documents

in the network that contain a match for the query. XGossip employs a new,

divide-and-conquer strategy for load-balancing and reducing the bandwidth

consumption.

• Second, we conduct a comprehensive performance evaluation of both gossip

algorithms on Amazon Elastic Compute Cloud (Amazon EC2) web service

using a heterogeneous collection of XML documents.

• Third, we analyze the experimental results with the goal of finding if the

performance evaluation and the analysis of the results we obtain are consistent

with the theoretical analysis of VanillaXGossip and XGossip.
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The rest of the thesis is organized as follows. In Chapter 2, we provide the

background and motivations behind our work. In Chapter 3, we describe the design of

the two gossip algorithms (VanillaXGossip and XGossip). In Chapter 4, we describe

the implementation of VanillaXGossip and XGossip. In Chapter 5, we present a

comprehensive performance evaluation of both VanillaXGossip and XGossip. Finally,

we conclude and present ideas for future work in Chapter 6.
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CHAPTER 2

BACKGROUND AND MOTIVATIONS

2.1 XML and XPath

The Extensible Markup Language (XML) [88] has become the standard data

model for information representation and interchange on the Internet. An XML

document can be represented as an ordered, labeled tree (or a linearization of a tree

structure).

The XML Path language (XPath) [15] is a query language for XML data.

XPath takes advantage of the tree representation of XML documents and selects

nodes from documents based on different criteria specified in the query string. XPath

queries resemble tree-like patterns called twig patterns. Nodes in these twig patterns

represent elements, attributes, and values. Edges represent ancestor-descendent rela-

tionships.

In order to process XML queries efficiently, it is necessary to compute accurate

aggregates. While cardinality/selectivity estimation over XML data in local environ-

ments (e.g., Path trees/Markov tables [10], Correlated subpath tree [20], pH-join [87],

StatiX [29], XPathLearner [48], Bloom Histogram [86], XSKETCH [63], IMAX [64],

XCLUSTER [62], XSEED [89], lossy compression based synopsis [28], sampling based

technique [49]) and over structured distributed data [?] has been well-studied in the

past, no prior work is available on computing statistics over XML data in an Internet-

scale environment.
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<books>

   <book>

     <author>John Doe</author>

     <title>The XYZ of XML</title>

     <year>2012</year>

  </book>

  <book>

     <author>Mary Baker</author>

     <author>Robert Doe</author>

     <title>The XYZ of RDF</title>

     <year>2011</year>

     <edition>3</edition>

     <price>$25.00</price>

   </book>

</books>

(a) XML document d1

/books//price

(b) XPath query

p0

p1

p6
p4

p2

p3 p5

year

book

books

author title priceedition

(c) Structural Summary Graph (SSG) of d1

Figure 1. Examples of XML, XPath, and algebraic signatures
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2.2 Signatures of XML Documents and XPath Queries

The information retrieval community has studied and applied signature schemes

very successfully. Signatures or fingerprints are very attractive because they allow a

significant reduction of bandwidth consumption and a small message size (a require-

ment for gossip-based algorithms [16]). In this thesis, we generate signatures for both

documents and queries based on the method proposed by Rao and Moon [68, 67]. In-

stead of enumerating all possible XPath patterns in each XML document (a computa-

tionally expensive task), peers gossip the summaries of XML documents represented

as signatures. XML documents are summarized and mapped into algebraic signa-

tures. XPath queries (at query time) are also mapped into algebraic signatures. The

signatures are represented as a product of irreducible polynomials. The irreducible

polynomials are assigned to the edges connecting ancestor-descendent nodes in an

XML document. This design helps preserve a document’s structural properties and

content. The signature representation satisfies the following necessary condition (di-

visibility test): if a document contains a match for a query, then the query signature

divides the document signature [68].

2.3 Gossip Algorithms

There are three types of gossip algorithms [16]. Dissemination protocols use

gossip to spread information. This type of gossip protocols either reports events or

disseminates background data associated with the nodes [34, 42, 61, 23, 31, 14]. The

second type is used for repairing replicated data. The third type of gossip protocols

is used to compute aggregates [43, 44, 19, 41, 55]. Most research focuses on infor-

mation spreading and aggregates computation. Gossip algorithms use an iterative
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procedure: each node communicates or exchanges information with a neighbor or a

randomly selected peer on every iteration (round). One attractive feature of gos-

sip protocols is their ”eventual consistency” [58]. Eventual consistency provides a

probabilistic guarantee that despite failures and changes in the P2P environment, the

protocol will eventually converge either by spreading the information to all peers or

by computing the true value of the aggregates. Another strength of gossip protocols

is their simplicity: all nodes run the same code and usually no complex distributed

synchronization is needed. Gossip algorithms can avoid the risk of disruptive load

surges by producing bounded worst-case loads on participating peers [16]. Finally, due

to its decentralized design, gossip exhibits very high-tolerance to temporary network

disruptions.

A number of real-world systems use gossip protocols. Gossip is used in Ama-

zon’s S3 data centers for information spreading of server states [1]. Information

exchange between server nodes is used in Dynamo [22], and Cassandra [47].

2.4 Motivations

No prior is available on XPath cardinality estimation in an Internet-scale en-

vironment. Distributed XQuery optimization can benefit from such cardinality esti-

mates. Unfortunately, Distributed Hash Sketches [58] may not be adapted efficiently

for XML data. In order to use DHS for XML data, each XPath pattern from the XML

document will need to be mapped to one dimensional space. That is, the adaptation

will require the enumeration of all possible XPath patterns. This is a computationally

expensive task due to the hierarchical nature of XML.

Applying gossip algorithms for XML data introduces new challenges. The

8



first one is if gossip should start at query time or if it should run in the background

continuously. If gossip starts at query time, the cardinality estimate will not be

available until after a finite number of rounds. If gossips runs in the background,

it will not be possible to gossip every unique XPath pattern because of the large

number of distinct patterns. As the number of documents and participating peers

grows, scalability may become a challenge. Finally, bandwidth consumption should be

minimal. The total amount of data depends on the number of messages transmitted

(finite) and their size (small-sized).
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CHAPTER 3

THE DESIGN OF VANILLAXGOSSIP AND XGOSSIP

This chapter presents the design of two novel gossip protocols. We draw in-

spiration from the Push-Sum protocol designed by Kempe et al. [44]. The first gossip

algorithm for XPath cardinality estimation we present is called VanillaXGossip. Next,

we introduce an improved version called XGossip. XGossip is a novel, divide-and-

conquer algorithm which does not have the limitations of VanillaXGossip. Table 1

shows the commonly used notation in this thesis.

3.1 Design Requirements

Based on the observations outlined in the Introduction chapter, the key design

requirements for an effective cardinality estimation algorithm are the following:

1. Scalability: the algorithm should be scalable to a large number of peers.

2. Decentralized architecture: the algorithm should have no single point of failure.

3. Bandwidth consumption: the algorithm should consume a minimum amount of

bandwidth.

4. Fault tolerance: the proposed solution should be robust to failures and be able to

function in dynamic networks where node and link failures are the norm.

5. Accuracy: the algorithm should provide provable guarantees on the accuracy of

the cardinality estimates.

Gossip-based protocols and algorithms satisfy all the requirements listed above

for effective cardinality estimation in large-distributed systems. The simplicity and
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scalability of gossip protocols render them perfect for quickly computing accurate

estimates of aggregates (sums, averages, etc.). Gossip algorithms are completely

decentralized: nodes communicate with their neighbors or with randomly selected

peers in a DHT network in an iterative basis. The bandwidth requirements of gossip

protocols are very low. Finally, gossip algorithms are very well suited for Internet-

scale systems where node and link failures are very common and fault-tolerance is

important. However, the nature of the XML data model makes applying gossip

algorithms for cardinality estimation somewhat challenging. We aim to show that it

is possible to design efficient gossip-based algorithms for computing statistics.

3.2 Push-Sum Protocol

Push-Sum is a gossip-based protocol for computing aggregates. In a network

of n peers, each peer pi has a non-negative value xi . Let us estimate the average

of all the values. According to the Push-Sum protocol [44], in each round t , a peer

maintains a sum st and a weight wt . In round 0, each peer pi sends the tuple (xi, 1)

to itself. In every round t > 0, a peer chooses a target uniformly at random and sends

half of its sum and weight to the target peer and half to itself. The peer also computes

the new sum and weight for the round by adding up all the sums and weights of the

received messages. At any round t , the estimate of the average is the ratio of the

sum and the weight (st/wt). Push-Sum employs uniform gossip because a peer can

contact any other peer in the network and all the peers form a complete graph.

THEOREM 3.1 (Push-Sum Protocol [44]). Suppose there are n peers p1, . . . , pn in

a network. Each peer pi has a value xi ≥ 0. With at least probability 1− δ , there is

11



Table 1. Commonly used notations
Notation Description

n number of peers in the network
s, si signature of an XML document
fs frequency of a signature s
D number of distinct document signatures in the network
t a particular round during gossip

f , fi sum maintained by a peer during gossip
w, wi weight maintained by a peer during gossip
⊥ special multiset used by peers in VanillaXGossip
T tuple list maintained by a peer during gossip
∆ number of peers in a team or team size
⊥h special multiset used by peers of a team in XGossip
δ confidence parameter
ε accuracy parameter
k, l tuning parameters for locality sensitive hashing (LSH)

hs vector of values produced by LSH on signature s
α probability that there is at least one team (of peers)

that gossips two given signatures after applying LSH
R set of distinct document signatures that are divisible

by a query signature
r |R|

qmin minimum similarity between a query signature
and a signature in R

pmin minimum similarity between a proxy signature
and a signature in R

a round to = O(log(n) + log(1
ε
) + log(1

δ
)), such that in all rounds t ≥ to , at peer pi ,

the relative error of the estimate of the average value 1
n

∑n
i=1 xi is at most ε .

For the proof of Push-Sum, Kempe et al. rely on an important property which

they call mass conservation: at any round t , the average of all the sums st is the

true average and the sum of all the weights wt is always n [44]. In order to compute
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the sum, instead of the average, at t = 0, one peer p1 starts with w0 = 1 and all the

other peers start with weights equal to 0 [44].

3.3 VanillaXGossip

The Push-Sum protocol is the basis for both novel gossip algorithms we propose

VanillaXGossip and XGossip. Two main reasons make Push-Sum a good model for a

gossip algorithm in DHT-based structured overlay networks. First, because Push-Sum

uses uniform gossip, it assumes that peers are connected in a complete graph. That

is, just like in a DHT, a peer can contact any other peer in O(log(n)) hops. Second,

even though Push-Sum is a synchronous gossip protocol, peers need not follow the

same clock. As long as mass conservation is preserved [44], convergence will hold.

The main difference between VanillaXGossip and XGossip is that instead of ”sum,”

we compute ”average.” The only way to compute the sum is for one peer to start

with weight 1 and all the others with weight 0. This would require a sophisticated

distributed synchronization to take place.

As discussed in Chapter 2, peers gossip signatures of XML documents rather

than XPath patterns. We denote the frequency of a signature s by fs . VanillaXGossip

runs in two consecutive phases. Algorithm 1 in Appendix A shows the pseudo code

for the first one, the initialization phase. In this phase, each peer creates a list of

signatures and their frequencies. Let T denote the tuple list of a peer. Tuples consist

of a signature, its frequency, and its weight: (s, (fs, 1)). Note that it is possible for

the same signature to be generated for two different documents [68]. All the tuples in

T are sorted on the signature s . The last tuple in the list is (⊥, (0, 1)). The symbol

⊥ denotes the special multiset. The special multiset plays the role of a placeholder
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for signatures which are unknown to the peer. In order to preserve the important

property of mass conservation, if a peer receives a gossip message with an unknown

signature, the peer will add the frequency and the weight of that signature to the

special multiset in its tuple list T .

The execution phase follows the initialization phase. Algorithm 2 in Ap-

pendix A shows the pseudo code for this phase. The execution phase starts with

the RunGossip() procedure. Because a peer may receive multiple lists in the same

gossip round, after the round ends, the peer merges all the lists (including the one

it sent to itself). The merging consists in adding up the frequencies fs and weights

ws of each tuple. The peer divides the merged frequencies and weights in half and

sends the list to a randomly selected peer and to itself. We generate a random Chord

identifier and send the list to the successor of that id.

The MergeLists() procedure in Algorithm 2 describes the the merging process

of VanillaXGossip. Merging completes in linear time because the lists are sorted by the

signature in each tuple. We find the tuple with the minimum multiset and compute

the sum and weight across all lists. For lists which do not contain the minimum

multiset, we use the sum and weight of the special multiset ⊥ . The estimate of the

average of the frequency of s in any round is fs
ws

.

THEOREM 3.2 (VanillaXGossip). Given n peers p1, . . . , pn , let a signature s be

published by some m peers with frequencies f1, . . . , fm , where m ≤ n . With at least

probability 1− δ , there is a round to = O(log(n) + log(1
ε
) + log(1

δ
)), such that in all

rounds t ≥ to , at peer pi , the relative error of the estimate of the average frequency

of s , i.e., 1
n

∑m
i=1 fi , is at most ε .
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The proof of Theorem 3.2 is in the technical report [69].

There is an important difference between Push-Sum and VanillaXGossip. If

we used Push-Sum for cardinality estimation of XPath queries, we would have to

start running Push-Sum at query time, when the XPath query was submitted. The

peer which received the query would then compute the cardinality estimate on its

local documents and would start gossiping the estimate to other peers. A number

of rounds later, the average of the estimate would be available. In contrast to Push-

Sum, VanillaXGossip runs in the background continuously. Peers gossip signature

frequencies without any knowledge of future queries. The special multiset in Vanil-

laXGossip guarantees convergence like Push-Sum. At query time, a peer only needs

to compute the cardinality estimate on its local state. This approach minimizes query

time because the query initiator need not wait for a finite number of rounds to receive

the cardinality estimate.

3.4 XGossip: A Divide-and-Conquer Approach

The problem with VanillaXGossip is that when a peer learns about all the

signatures in the network, the tuple list T will get very large. Because peers have

a limited amount of memory to store the lists, VanillaXGossip is not scalable. In

addition, the size of the gossip messages grows large because peers send the whole

tuple list T in one message. As noted earlier, to be efficient, gossip algorithms

require small-sized messages. Next, we present XGossip, a novel divide-and-conquer

algorithm which overcomes the limitations of VanillaXGossip. In XGossip, peers

gossip a provably finite faction of signatures. There are three main improvements

which distinguish XGossip from VanillaXGossip: peers consume less memory, peers
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consume less bandwidth, and convergence requires a fewer number of rounds.

XGossip relies on Locality Sensitive Hashing (LSH) for signature distribution

and load-balancing. The main idea of LSH is that we can map similar items to the

same buckets with high probability by hashing the input items. Since Indyk and

Motwani [40] introduced LSH, the concept has been widely used in many domains:

indexing high dimensional data and similarity searching [12, 50], similarity searching

over web data [38] and P2P networks [38, 36], ranges queries in P2P networks [35], and

so on. LSH is also useful when working with similarity of sets based on the Jaccard

index [38, 12]. Because the signatures of XML documents we use for gossiping are,

in essence, sets of irreducible polynomials, it is possible to use LSH in gossip. There

are two parameters which define how LSH behaves: l , which denotes the number

of groups of hash functions and k , which denotes the number of hash functions per

group. We pick a total of k × l random linear hash functions. Each function is of

the form h(x) = (ax + b) mod p , where p is a prime, and a and b are integers

such that 0 < a < p and 0 ≤ b < p . The output hash value for a signature

s (a set of irreducible polynomials) is g(s) = min({h(x)}). Indyk and Motwani

establish [40] that the probability that the output hash values of two different sets is

equal, is equivalent to the Jaccard index of the sets: Prob(g(s1) = g(s2)) = |s1∩s2|
|s1∪s2| .

Because each group l of hash values can be hashed again, the output for each set

is k hash values. We use SHA-1 for the LSH hash function. This allows us to map

the 160-bit output values onto the Chord DHT ring as an identifier. Applying LSH

on a signature s produces a vector of hash values which we call hs . This vector

defines k different teams for one signature s . We use the hash values to denote the
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ids of each team. Let ∆ denote the size of a team. We can calculate the Chord

identifier for each team (the team id) hsi by performing the following operations:

{hsi, hsi + 1 × 2160

∆
, hsi + 2 × 2160

∆
, . . . , hsi + (∆ − 1) × 2160

∆
} . In other words, we split

the Chord ring in ∆ similar arcs by starting at the team Chord id and assigning

successively the rest of the IDs to the other members of the team. The result will

wrap around the ring.

The members of the team are the successors of the Chord ids which we gener-

ated above. These members only communicate with peers of the teams they belong

to. They gossip only signatures whose LSH output was mapped to their ids. The

goal of applying LSH is for the same team to gossip similar signatures with high

probability. If two signatures have a similarity p , there is at least one team which

gossips both signatures with probability 1− (1− pl)k . The chances of finding all the

signatures required for estimating the cardinality of an XPath query are higher if the

same team gossips all the signatures.

Unlike VanillaXGossip, using a single special multiset (⊥) is not possible in

XGossip. In order for mass conservation to occur, in XGossip, peers need to maintain

a different special multiset for each team they belong to. We denote the special

multiset for a team h by ⊥h .

Like VanillaXGossip, XGossip is comprised of two phases. Algorithm 3 in

Appendix A shows the initialization phase. The goal of this phase is the create the

teams which gossip a subset of signatures. The InitGossipSend() procedure consists

first creating a sorted tuple list T of all the signatures and their frequencies (like in

VanillaXGossip). Then, the peer creates k teams by applying LSH on each tuple’s
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signature. The peer sends the tuple to the successor of that id by picking a random

Chord id from the LSH output. The InitGossipReceive() procedure in Algorithm

3 (Appendix A) handles the received messages based on the type of multiset in the

message. If the peer receives a regular multiset which it knows about (it can find in

the T of the team responsible for gossiping it), the procedure updates the frequency

in the tuple list. We handle the possibility for a peer to not receive a message during

initialization by using a procedure called InformTeam(). In effect, peers inform the

next members of the team by sending them the special multiset of the team. This

lets each member of the team to initialize its special multiset.

The execution phase of XGossip consists of peers gossiping the signatures dis-

tributed during the initialization phase to the other members of the team by randomly

picking a receiver. In a finite number of rounds, all the members of the team will

know about all the signatures their team is responsible for.

THEOREM 3.3 (XGossip). Given n peers p1, . . . , pn in a network, let a signature

s be published by some m peers with frequencies f1, . . . , fm , where m ≤ n . Suppose

pi belongs to a team that gossips s after applying LSH on s . Let ∆ denote the team

size. With at least probability 1−δ , there is a round to = O(log(∆)+log(1
ε
)+log(1

δ
)),

such that in all rounds t ≥ to , at peer pi , the relative error of the estimate of the

average frequency of s , i.e., 1
∆

∑m
i=1 fi , is at most ε .

The proof of Theorem 3.2 is beyond the scope of this thesis and can be found

in the technical report [69].

Table 2 compares VanillaXGossip and XGossip based on different metrics and
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Table 2. Comparison of VanillaXGossip and XGossip
Metric VanillaXGossip XGossip

Accuracy rε rε
Confidence (1− δ) (1− δ)

Convergence O(log(n) + log(1
ε
) O(log(∆) + log(1

ε
)

(# of rounds) +log(1
δ
)) +log( α

α+δ−1
))

Bandwidth O(nD) O(log(n)kD∆)

Messages O(n log(n)) O( log(n)
n
kD∆log(∆))

using the notation in Table 1. Detailed explanation of this comparison is in the

technical report [69].

3.5 Cardinality Estimation of XPath Queries

3.5.1 VanillaXGossip

The cardinality estimation of XPath queries in VanillaXGossip is trivial. A

peer needs only to check its local state to produce an estimate. For example, if a peer

p receives a query q , it searches its merged list Tm to find all tuples (s, (fs, w)) whose

signatures are supersets of q ’s signature. According to Rao [68], the divisibility test

(defined in Chapter 2), is equivalent to testing the superset relationship between a

document and a query signature. To calculate the final cardinality estimate for all

matched tuples, we compute
∑ fs

w
and multiply the sum by the total number of peers

n . We can obtain a good estimate of n by using Push-Sum. (We have to multiply

the ”sum” (of all tuple frequencies) by n because the frequency fs stored in each

tuple is the average, not the sum).
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3.5.2 XGossip

In XGossip, however, a few peers need to be contacted for a successful car-

dinality estimate. If a peer p receives a query q , hq would denote the output of

LSH. We pick a random team member for each team hqi (1 ≤ i ≤ k) to send q ’s

signature and hqi to. The team member which receives the query checks its local

state for a tuple list for team hqi . It returns all tuples (s, (fs, w)) for which s is a

superset of q ’s signature. For tuples with identical signature returned by different

peers, we retain one at random and discard the others. We compute
∑ fs

w
for all the

tuples received from the k peers. The main difference with VanillaXGossip is that

instead of multiplying by n , we multiply by ∆ to produce the cardinality estimate

of q . Because we contact k peers, the number of hops required is O(k log(n)).

The probability that at least one team gossips two different signatures with

similarity p is 1 − (1 − pl)k . If the similarity between a query signature and a

matching document is low, the probability will be low too and we may completely

miss some document signatures. This will lead to a poor quality cardinality estimate.

We propose the idea of a proxy signature. A proxy signature contains the maximum

number of distinct elements and attributes of a DTD or an XML Schema to which

a document conforms to. Instead of applying LSH on a query signature, we apply

it on a proxy signature, but still send the query signature to obtain the cardinality

estimate. The proxy signature is more likely to find the teams which gossip the

documents matching the query signature.
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CHAPTER 4

IMPLEMENTATION OF VANILLAXGOSSIP AND XGOSSIP

We implemented VanillaXGossip and XGossip on top of a peer-to-peer Dis-

tributed Hash Table. DHTs store key-value pairs by assigning them to different peers

in the network based on the key for which the node is responsible. Among others,

DHTs support operations for storing values, assigning keys to nodes, and finding

values associated with given keys. We use the Chord DHT [83] as on overlay net-

work. In Chord, peers are mapped to a 160-bit identifier space which forms a ring.

To retrieve a key, Chord supports a lookup operation. To store key-value pairs, the

insert operation is available. Chord utilizes consistent hashing for assigning nodes

and keys an m-bit identifier called a chordID. The function used for base hashing is

SHA-1 [27]. Identifiers for nodes and keys are generated by using a peer’s IP address

or a key’s value respectively. A node is a successor of a key if that key’s identifier is

equal to or precedes the identifier of the node.

Because we build our gossip algorithm on top of the Chord DHT, we can take

advantage of many of the attractive features it provides. For example, all the nodes

in Chord form a complete graph. In a network with N nodes, a peer is able to

contact any other peer (not just its neighbors) in O(log(n)) hops. That is, the DHT

provides a very efficient routing mechanism for gossip messages. Peers participating in

uniform gossip (VanillaXGossip and XGossip) require connectivity to random nodes

in each iteration (round) of gossiping. The gossip algorithm only need to perform
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an insert operation on a key and that message will get routed to the successor of

that key quickly and efficiently. In order for VanillaXGossip and XGossip to not be

susceptible to the dynamism of the network on which are they built, the overlay itself

has to be fault-tolerant. Chord provides a highly fault tolerant environment which is

ideal for Internet-scale distributed data sharing. Even in the presence of churn, the

DHT is able to stabilize (reassign identifiers for keys and nodes which have changed

due to nodes joining and leaving the network).

Each peer in the Chord DHT owns a set of XML documents. The peer pub-

lishes these documents in order to share them with other peers in the network.

Because locating publisher’s of a particular document based on the content of the

document is the goal of cardinality estimation, peers gossip information about the

documents. Per the gossip protocols described in Chapter 3, peers gossip the fre-

quency and weight of the signatures which correspond to the XML documents the

peers publish.

4.1 System Architecture

We implemented VanillaXGossip and XGossip in C++. We relied heavily on

the Standard Template Library (STL) in C++, and in particular, on the containers

it provides. We also used an asynchronous library called libasync. Libasync allowed

us to respond to events through callbacks. The Chord DHT uses libasync (in the

form of sfslite) [76] to associate function callbacks with readability and writability

conditions on sockets.

Each peer involved in gossip runs separate Chord and gossip processes. Fig-

ures 2 and 3 show in details the system architecture of VanillaXGossip and XGossip.
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Figure 2. System Architecture of VanillaXGossip

The main process is lsd. It communicates over UNIX sockets with adbd (asynchronous

database), and syncd. Only one gossip process runs which is called gpsi. The gossip

algorithm (gpsi) and Chord communicate using a UNIX socket. Even though gpsi is

a single-threaded program, because of libasync, gpsi is able to both listen for gossip

messages and insert key-value pairs in Chord at the same time. Before the initial-

ization phase begins in both VanillaXGossip and XGossip, the gpsi process reads

the signatures of XML documents stored locally. The distribution of documents is

described in Chapter 5. To minimize I/O, gpsi does not write anything to disk, all
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Figure 3. System Architecture of XGossip

signatures and data structures are stored in memory throughout gossip. Only a log

file is written to disk. We changed the amount of data logged depending on the need

(minimal logging when not debugging). The main containers we used from STL were

maps, multi maps, and vectors. VanillaXGossip required a significantly simpler set

of data structures. We only had to keep track of the signatures and their frequen-

cies and weights. We stored them in a vector of maps. Because peers could receive

multiple messages in a particular round, we had to store each set of lists received in

the same round in a separate map. We merged all lists before a new round began.
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XGossip required a much more complex set of containers. In addition to keeping

track of the signatures, we had to keep track of the teams to which a peer belonged

and associate the signatures with the corresponding team. To store this information,

we used a vector of a vector of maps. We also maintained a team index with point-

ers to the right lists, and multiple other maps for associating chordIDs, teamIDs,

signatures, DTDs, etc. Because at any time, any peer may perform the task of car-

dinality estimation on an XPath query, we built it algorithms and data structures

for query processing. The heavy use of data structures did not affect adversely the

performance of VanillaXGossip and XGossip because the containers we used are very

efficient. Vectors allow contestant random access. The asymptotic complexity of all

map and multimap operations in STL is O(log(n)).

4.2 Challenges

In VanillaXGossip, after a peer learns about all the distinct signatures in the

network, the peer starts gossiping messages which contain all those signatures. The

size of the message, even when the message is compressed, can increase substantially.

Gossip messages contain additional information as well (frequencies, weights, team

identifier, etc.). While running VanillaXGossip with the larger dataset D2 described

in Chapter 5, we ran into a limitation of the Chord DHT which we could not overcome.

When the message size surpassed 1MB in size, Chord refused to route the message.

We were not able to find where the maximum message size was defined. While we

initially thought that the limitation was enforced by the operating system in the

form of a kernel/system variable, running gossip on different machines and/or Linux

distributions did not change the behavior described above. Because the interprocess
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communication is performed by sfslite (libasync), most likely, the message size is

defined there. We did not investigate this problem further because exchanging large-

size messages using gossip is not recommended [16].

Defining and working with multiple complex data structures posed difficulties.

Even though we made an effort to anticipate future requirements of the software, we

did reorganize some of the main containers halfway through the project. Because

only one type of data type may be associated with a key in STL maps, we had to

use creative ways to map different data types and to use vectors and indices to other

containers.

Working with libasync proved difficult because of the lack of detailed docu-

mentation and support. While libasync is very powerful, it’s API is not very intuitive

and programming with callbacks in general takes time to get used to. We had to

read a lot of the Chord source code in order to understand how to correctly use the

library.

Running gossip algorithms in a distributed environment requires a great deal of

scripting. While cloud services like Amazon EC2 are orders of magnitude more reliable

than research-run networks like PlanetLab (which we used in the NetDB paper [80]),

automating the deployment of code, datasets, and queries was a challenge.

We analyzed large amounts of data in order to evaluate the gossip algorithms in

this study. This analysis required that we perform some tasks on the peers themselves,

after gossip was done. Because the log files grew very large, we made some of the

computations in a distributed manner and collected the results from each peer.

Finally, debugging code which runs in a distributed environment required a
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lot of time because certain problems arose only when the code was scaled to more

peers or when the data was scaled. Replicating the peer-to-peer network in a local

environment was not always possible and forced us to rely more on verifying code by

re-reading it rather than by working with a debugger.
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CHAPTER 5

EVALUATION

We conducted a comprehensive evaluation of both VanillaXGossip and XGos-

sip and report the results in this section. We ran the evaluation on the Amazon

Elastic Compute Cloud (EC2) [11] using 20 instances. (By default, EC2 allows at

most 20 instances per user.) Each instance was a medium instance (2 virtual cores,

1.7GB memory). We ran all instances in the same region (US East - N. Virginia),

but we did not favor any particular availability zone.

5.1 Datasets and Queries

We used two different datasets in the evaluation of VanillaXGossip and XGos-

sip. We generated the datasets using the IBM synthetic XML data generator and

DTDs published on the Internet [84, 85, 88]. Dataset D1 contained documents from

11 DTDs, the average number of documents per DTD was 190,809 and the total

number of documents was 2,098,900 (Table 3). Dataset D2 contained documents

from 13 DTDs with an average number of 192,223 documents per DTD and a total

of 2,498,900 documents. The average size of a document signature was 114 and 127

bytes respectively. The reason for using two different datasets was a limitation of

the underlying DHT: Chord did not allow us to transmit the large messages which

VanillaXGossip generated during the final rounds. First, we used dataset D1 to com-

pare VanillaXGossip and XGossip. Then, we used the bigger dataset D2 to evaulate

XGossip by modifying the parameters specified in the Evaluation Metrics section.
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Table 3. Datasets
Dataset # of DTDs Avg. # of Total # of Avg. document

documents per DTD documents signature size

D1 11 190,809 2,098,900 114 bytes
D2 13 192,223 2,498,900 127 bytes

Table 4 shows the network setup and distribution of documents. We ran an

equal number of peers on each of the 20 Amazon EC2 instances: 25/instance for 500

peers, 50/instance for 1000 peers, and 100/instance for 2000 peers (Figure 4). We

distributed the initial set of documents across the peers running on each instance.

This distribution resulted in the frequency of each document to be scaled by the

number of instances (20). In order for each peer to start gossiping with approximately

equal number of documents, we distributed the documents from each DTD uniformly

to a fixed number of peers depending on the total number of peers running. For

example, when we ran gossip on a total of 1000 peers, we randomly picked 25 peers

for each DTD and distributed the documents for that DTD equally across those peers.

When using 500 and 2000 peers, we distributed the documents across 13 and 50 peers

respectively. The average number of DTDs per host was 6.

We generated XPath queries for each DTD by using the XPath generator from

the YFilter project [24]. The queries contained wildcards ‘*’ and ‘//’ axis. From this

generated query set, we selected a subset with a qmin ≥ 0.3. This selection resulted

in a total of 753 queries. We further split the queries in 6 different subsets based on

their pmin value as shown in Table 5.

During both VanillaXGossip and XGossip, each peer followed its local clock.

The length of each successive gossip round in all experiments was 120 seconds.
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Figure 4. Amazon EC2

Table 4. Network setup and distribution of documents
Total # # of peers # of peers # of documents
of peers per EC2 picked published by
in the instance per DTD a peer

network (z) D1 D2

(n) (µ, σ) (µ, σ)

500 25 250 n/a 4997.8, 257.7
1000 50 500 2098.9, 99.1 2498.9, 99.1
2000 100 1000 n/a 1249.5, 49

5.2 Evaluation Metrics

To compare VanillaXGossip and XGossip, we measured (a) the accuracy of

cardinality estimation, (b) the signature convergence speed, and (c) the bandwidth
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Table 5. Query Sets
Query Set Value of pmin # of queries

Q0 [0, 0.5) 101
Q1 [0.5, 1] 652
Q2 [0.6, 1] 356
Q3 [0.7, 1] 300
Q4 [0.8, 1] 277
Q5 [0.9, 1] 26

consumption.

To calculate the accuracy of cardinality estimation, we computed the mean

absolute relative error of the returned query results compared to the true results for

each query. For the signature convergence speed, we calculated the mean absolute

relative error of the gossiped frequency estimates compared to the true frequency of

each signature. For VanillaXGossip only, we measured the diffusion speed of signa-

tures for each peer (how long it takes for each peer to learn about all the unique

signatures in the network). Measuring the diffusion speed of signatures for XGossip

is not meaningful in comparison to VanillaXGossip because each peer may belong to

multiple teams and be responsible for a different number of signatures.

To achieve high accuracy of cardinality estimation and to reduce the bandwidth

consumption, we ran XGossip with different values of the LSH parameter k , and

different team sizes (∆). In addition to showing the accuracy of cardinality estimation

for all queries, we measured the accuracy for different query subsets based on their

pmin value (Table 5).

We measured the effectiveness of locality sensitive hashing in reducing the

bandwidth by calculating the amount of data transmitted. We measured the signature
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Table 6. Time taken to contact k peers during cardinality estimation
LSH parameter Team size Average time

k (∆) to contact k peers (ms)

4 8 28.04
4 16 28.31
8 8 53.33
8 16 56.36

distribution of XGossip per team and per peer.

We increased the total number of peers to evaluate the effects of scaling XGos-

sip. For each peer, we measured the average number of teams, signatures, and message

size. In addition, we calculated the total number of messages across all rounds. We

measured the amount of transmitted data for each set of peers. To evaluate the

benefits of compression, we measured the bandwidth consumption with and without

compression.

5.3 Comparison of VanillaXGossip and XGossip on Dataset D1

Figure 5 shows the diffusion speed of signatures in VanillaXGossip. We observe

that by round 11, all 3 peers have learned about all the signatures in the network.

Note that the fraction of unique signatures is different from the true frequency of a

signature. Since different (but similar) documents may generate the same signature,

signature frequencies are usually greater than 1. It is possible for a peer to know about

all the unique signatures (the fraction of unique signatures to be equal to 1), but for

the peer to still have high mean absolute relative error of the frequency estimates.

This scenario may occur in the beginning of gossip when the frequency estimates of
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individual signatures are still inaccurate.
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Figure 5. Diffusion speed of signatures in VanillaXGossip, n = 1000

Figure 6(a) shows the convergence speed of VanillaXGossip for three randomly

selected peers p1, p2, and p3. Beyond round 10, the mean absolute relative error

of the average frequency estimate on a subset of signatures remains below 10%. We

observe that even though the convergence speed for each peer varies (the error for

peers p1 and p2 drops sharply as early as round 6 while the error for peer p3 stays high

until round 9), eventually, all peers have high accuracy of their signature frequency

estimates.

Figure 6(b) shows the convergence speed of XGossip for three randomly se-

lected peers which belong to three different teams. We observe that beyond round 5,

the mean absolute relative error for all three peers remains below 10%. If one runs an

XPath query at round 5, XGossip will return an accurate cardinality estimate, while

VanillaXGossip will not. After looking at the convergence speed of all the peers, we
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Figure 6. Comparison of the convergence speed of VanillaXGossip and XGossip,
n = 1000

observered that, on average, it takes half as many rounds for XGossip to converge

than VanillaXGossip. Given this data, we can conclude that XGossip converges faster

than VanillaXGossip.

To compare how the accuracy of cardinality estimation changes at different

rounds, we ran VanillaXGossip and XGossip for an increasing number of rounds

(5, 10, and 20). After all the peers had finished gossiping for the set number of

rounds, we ran all 753 XPath queries (0 ≤ pmin < 1). Figure 7(a) compares the

accuracy of cardinality estimation for VanillaXGossip and XGossip. The figure shows

the percentage of queries with mean absolute relative error below 20% (rε ≤ 0.2)

for rounds 5, 10, and 20. We observe that at round 5, the accuracy of XGossip is

much higher than the accuracy of VanillaXGossip (84.6% vs. 70.2%). By round

10, VanillaXGossip has surpassed XGossip and by round 20, both have reached the

highest accuracy they can achieve: 99.5% for XGossip and 92.2% for XGossip. We ran
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both methods for more than 20 rounds, but could not achieve higher accuracy of the

cardinality estimation. Figure 7(b) shows the distribution of queries with accuracy

above 20% (rε ≥ 0.2) after 20 rounds of gossiping.
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Figure 7. Accuracy of cardinality estimation by VanillaXGossip and XGossip, n =
1000, ∆ = 8, k = 8, l = 10

Finally, we discuss the bandwidth consumption of VanillaXGossip and XGos-

sip. Figure 8 shows the amount of data transmitted for each of the 20 rounds. Even

though we ran both VanillaXGossip and XGossip with compression enabled, by round

20, VanillaXGossip had reached 731 MB per round, while XGossip was using only

25 MB per round (almost 30 times less). The total amount of data transmitted by

VanillaXGossip for the duration of 20 rounds was 10,309 MB. XGossip consumed 484

MB across all rounds.
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# of peers Avg. # of Avg. # of Avg. # of
teams/peer signatures/peer signatures/team

500 88.40 4024.25 45.52
1000 44.83 2040.81 45.52
2000 23.09 1051.2 45.52

Table 7. Teams and signatures

# of peers Avg. Total # of
message size/peer messages

(bytes)

500 1,160.18 440,240
1000 1,265.64 440,240
2000 1,244.91 441,750

Table 8. Message complexity

5.4 Evaluation of XGossip on Dataset D2

The convergence speed of XGossip on the bigger dataset (D2 ) showed similar

results as on dataset D1 . Figure 9 shows that after round 5, the mean absolute
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relative error for all 3 peers remains below 10%.
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Figure 9. Convergence speed of XGossip, n = 1000, ∆ = 16, k = 4, l = 10

In order to achieve high accuracy, we ran XGossip for different values of the

LSH parameter k , and the team size ∆ (Figure 10). We let XGossip run for 30

rounds and then ran all the 753 XPath queries with 0 ≤ pmin < 1. First, we set k

to 4 and l to 10 and doubled the team size from 8 to 16. After running XGossip

for 20 rounds, the accuracy for both values of ∆ was the same: 70.8% of the queries

had a relative error below 20%. However, the amount of data transmitted per round

had doubled from 30.9 MB to 61.8 MB (Figure 11). Then, we doubled k from 4

to 8 and ran XGossip with ∆ set to 8 and 16. Compared to k = 4, the accuracy

increased significantly (from 70.8% to 92.3%), but it did not change when the team

size increased. Again, we observed an increase in the bandwidth consumption for

higher values of either k or ∆. We saw the highest bandwidth usage per round

(123.9 MB) for k = 8 and ∆ = 16 (Figure 11).
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Figure 11. Bandwidth consumption of XGossip for different values of k and ∆,
n = 1000

Next, we calculated the accuracy of cardinality estimation achieved by XGossip

for the five different query sets Q1 through Q5 from Table 5. That is, we excluded

the 101 queries with minimum similarity between a proxy signature and a signature

in the set of signatures which match a query (pmin < 0.5). Figure 12(a) and (b) show

the results for k = 4 and ∆ equal to 8 and 16. We see relatively high accuracy (84.6%
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of the queries have relative error below 10%) only for Q5 (pmin ≥ 0.9). Figure 12(c)

and (d) show the results for k = 8 and ∆ equal to 8 and 16. In contrast to k = 4,

we observe that only the accuracy for 0.5 ≤ pmin < 0.6 is poor. For pmin ≥ 0.6, the

accuracy is 96.9%. And for Q3 , Q4 , and Q5 , 100% of the queries had accuracy under

10%.
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Figure 12. Accuracy of cardinality estimation achieved by XGossip for different val-
ues of k and ∆, n = 1000
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We conclude that lower values of k consume less bandwidth, but give lower

accuracy and vice versa. Higher values of ∆ only increase the amount of data, but

do not improve the accuracy after convergence. In order to achieve high accuracy

and to consume less bandwidth, we set ∆ to 8, k to 8, and l to 10 for the rest of the

experiments.

We measured how the accuracy of cardinality estimation improved with in-

creasing the number of rounds for 1000 peers, ∆ = 8, and k = 8 (Figure 13). At

round 5, 83.5% of the queries had a relative error below 20%. The accuracy increased

to 88.8% at round 10 and 92.3% at round 20.
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Figure 13. Improvement in the accuracy of cardinality estimation with increasing #
of rounds, n = 1000, ∆ = 8, k = 8, l = 10

Next, we scaled the number of peers gossiping. We ran XGossip with 500,

1000, and 2000 peers. Figure 14 shows the accuracy of cardinality estimation at

different rounds for a varying number of peers. At round 5, we observe the highest

accuracy (89.9%) for 2000 peers. The accuracy for 500 and 1000 peers is almost the
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same (approximately 84%). By round 10, the difference between 2000 peers and the

rest is smaller: 92% vs. 88.8%. And at round 20, all sets of peers reach approximately

92%.
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Figure 14. Accuracy of cardinality estimation by varying the # of peers, rε ≤ 0.2,
∆ = 8, k = 8, l = 10

Next, we look at the accuracy of each query set from Table 5 for a varying

number of peers at different rounds. Figure 15 shows the accuracy of cardinality

estimation of query set Q3 (pmin ≥ 0.7) for 500, 1000, and 2000 peers. The percentage

of queries with relative error below 10% was highest for 1000 peers throughout all the

rounds: 91.67% at round 5, 97.67% at round 10, and 100% at round 20. The accuracy

for all 3 sets of peers reached 100% at the last round. Figures 18, 19, and 20 show

the individual percentages for each pmin value. The accuracy for all peers and query

sets showed similar trends. After 20 rounds of gossiping, all 3 sets of peers achieved

high accuracy for Q3 , Q4 , and Q5 (100%) and Q2 (approximately 96%) and average

accuracy for Q1 (approximately 60%).
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Figure 15. Accuracy of cardinality estimation of query set Q3 (pmin ≥ 0.7) by
varying the # of peers, rε ≤ 0.1, n = 1000, ∆ = 8, k = 8

The bandwidth consumption of XGossip for a different number of peers (but

the same k and ∆) is almost identical. Figure 16 shows the amount of data transmit-

ted for 500, 1000, and 2000 peers. The only difference is that the amount of data for

500 peers in the first 9 rounds is lower than for 1000 and 2000. In order to explain the

similar bandwidth consumption, we measured the average message size per peer for

the 3 sets of peers (Table 8). The average message sizes for all 3 are very close, but

for 500 peers, the message size is the smallest (1,160.18 bytes). The smaller message

size for 500 peers explains why the amount of data transmitted in the first 9 rounds

is smaller. We also measured the total number of messages across the 20 rounds (Ta-

ble 8). The number of messages is almost identical (440,240). The amount of data

transmitted is the product of these two numbers (the average message size per peer

and total number of messages) which explains why the bandwidth consumption is so

similar.

Finally, we look at the bandwidth savings in XGossip through signature com-
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Figure 17. Bandwidth savings in XGossip through signature compression, n = 1000,
∆ = 8, k = 8, l = 10

pression. Figure 17 compares the amount of data tranmistted by XGossip with iden-

tical settings (k , l , ∆, and total number of peers) when run with and without com-

pression. The maximum amount of data per round transmitted without compression

was 340.4 MB. When run with compression, XGossip used more than 5 times less data

per round (61.97 MB). This difference is even more significant for the total amount
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of data across all rounds. XGossip without compression consumed 9,874.2 MB for 20

rounds. With compression, XGossip transmitted only 1,805.9 MB.
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Figure 18. Accuracy of cardinality estimation achieved by XGossip for 500 peers
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Figure 19. Accuracy of cardinality estimation achieved by XGossip for 1000 peers
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Figure 20. Accuracy of cardinality estimation achieved by XGossip for 2000 peers

47



CHAPTER 6

CONCLUSION AND FUTURE WORK

We implemented two novel gossip-based algorithms (VanillaXGossip and XGos-

sip) which, given an XPath query, estimate the number of XML documents in the

network that contain a match for the query. We conducted a comprehensive perfor-

mance evaluation of both algorithms on Amazon EC2 using a heterogeneous collection

of XML documents. Finally, we analyzed the experimental results. The results we

obtained were consistent with the theoretical analysis of VanillaXGossip and XGos-

sip. For future work, we plan to extend the XPath query grammar we support to

allow the use of value predicates.
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APPENDIX A

ALGORITHMS



Algorithm 1: Initialization phase in VanillaXGossip

global: T - sorted tuple list
proc InitGossip(p)
1 Let s1, ..., sn denote the distinct signatures published by peer p
2 Compute the frequency fi of each si published by p
3 foreach si do
4 Insert (si, (fi, 1)) into T

end
5 Insert (⊥, (0, 1)) into T
end
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Algorithm 2: Execution phase of VanillaXGossip

proc RunGossip(p)
1 Let T1, T2, ..., TR denote the lists received in the current round by peer p
2 Tm ←MergeLists(T1, T2, ..., TR)
3 Send Tm to a random peer pr and the participating peer p
end

proc MergeLists(T1, T2, ..., TR )
4 Tm ← ∅
5 for r=1 to R do
6 cr ← Tr.begin()

end
7 while end of every list is not reached do
8 smin ← min{c1.s, ..., cR.s}
9 sumf ← 0; sumw ← 0;

10 for r=1 to R do
11 if cr.s = smin then
12 sumf ← sumf + cr.f
13 sumw ← sumw + cr.w
14 cr ← Tr.next()

else
15 sumf ← sumf + Tr[⊥].f
16 sumw ← sumw + Tr[⊥].w

end

end
17 Insert (smin, (

sumf

2
, sumw

2
)) into Tm

end
18 return Tm
end
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Algorithm 3: Initialization phase of XGossip

global: T - tuple list
proc InitGossipSend(p)
1 Let T be initialized as in VanillaXGossip
2 foreach c ∈ T and c.s 6=⊥ do

3 hs ← LSH(c.s)

4 foreach hsi ∈ hs do
5 Create a team hsi and pick one id say q for the team at random and

send (c.s, (c.f, c.w)) and hsi to the peer responsible for q according to
the DHT protocol

end

end
end

proc InitGossipReceive(p , (s, (f, w)), h)
/* Keep one tuple list per team while receiving */
/* p is the peer that receives the message */

6 if Th does not exists then create Th
7 if s is a regular multiset and Th[s] exists then
8 Update the frequency in the tuple by adding f

end
else if s is a regular multiset and Th[s] does not exist then

9 Insert (s, (f, w)) into Th
10 if ⊥h does not exist in Th then
11 Insert (⊥h, (0, 1)) into Th ;
12 InformTeam(p,⊥h)

end

end
13 else if Th[s] does not exist then
14 Insert (s, (f, w)) into Th ;
15 InformTeam(p, s)

end
end
proc InformTeam(p , ⊥h1 )

/* p is the peer executing InitGossipReceive */
16 Suppose h2, · · · , h∆ denote the other Chord ids for the team h1

17 Let peer p be the successor of hi
18 Send (⊥h1 , (0, 1)) to the successor of h(i mod ∆)+1

end
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Algorithm 4: Execution phase of XGossip

proc RunGossip(p)
1 Let T1, T2, ..., TR denote the lists received in the current round by peer p
2 Group the lists based on their teams by checking their special multisets.

Suppose each group is denoted by Gi .
3 foreach group Gi do
4 Merge the lists in Gi according to MergeLists(·)
5 Let Tm denote the merged list
6 Compact Tm to save bandwidth /* Optimization */
7 Let h1, · · · , h∆ denote the Chord ids of the team
8 Pick an index j ∈ [1,∆] at random such that p is not the successor of hj
9 Send Tm to the peer that is the successor of hj and to p

end
end
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Algorithm 5: Compression of signatures

Input: list of signatures; each signature is sorted
Output: A compressed signature

proc CompressSignatures(< s1, . . . , sW >)
1 j ← 1
2 for i = 1 to W do
3 idx[i]← 0

end
4 while end of every signature is not reached do
5 minV al ← min{s1[idx[1]], ..., sn[idx[W ]]}
6 uj ← minV al
7 for i = 1 to W do
8 if si[idx[i]] = minV al then
9 Set the ith bit of Bj to 1

10 idx[i]← idx[i] + 1

else
11 Set the ith bit of Bj to 0

end

end
12 j ← j + 1

end
13 return {(u1, B1), . . . , (uj−1, Bj−1)}
end
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Algorithm 6: Decompression of signatures

Input: a compressed signature
Output: original uncompressed signatures

proc DecompressSignatures({(u1, B1), . . . , (uℵ, Bℵ)})
1 for i = 1 to W do
2 si ← ∅

end
3 for i = 1 to ℵ do
4 for j = 1 to W do
5 if jth bit of Bi equals 1 then
6 Append ui to the end of sj so that sj is sorted

end

end

end
7 return < s1, . . . , sW >
end
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APPENDIX B

XPATH GRAMMAR



locationPath := step locationPath | step

step := ’//’nodetest | ’/’nodetest

| step[pred]

pred := @nodetest op1 "nval"

| pstep op1 "nval"

| @nodetest op2 "tval"

| pstep op2 "tval"

pstep := nodetest | nodetest//pstep

| nodetest/pstep

nodetest := string | *

op1 := = | < | > | <= | >=

op2 := =

nval := number

tval := string
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