Rocky Mountain Spotted Fever

Background

- 1. General information¹
 - o Febrile tick-borne illness characterized by non-specific symptoms
 - Under-recognized by healthcare providers
 - Deadly if antibiotic therapy initiated too late

Pathophysiology

- 1. Infection by *Rickettsia ricketsii*: obligate intracellular gram-negative coccobacillus¹
 - Zoonosis (tick-borne)
 - Salivary inoculation by tick feeding 2-20 hours, incubation 2-14 days.²
 - Vectors
 - American dog tick (Dermacentor variabilis) eastern, central, and Pacific coastal U.S.
 - Rocky Mountain wood tick (Dermacentor andersoni) in western U.S.
 - Brown dog tick (Rhipicephalus sanguineus) in Mexico (isolated cases in Arizona)
 - Cayenne tick (Amblyomma cajennense) species in Central and South America (extends into Texas)
 - \circ Case reports of transmission through blood vectors in healthcare setting, and in aerosolized form in a lab¹
 - Spread through lymphatic vessels from portal of entry to regional lymph nodes.³
 - Cell entry
 - Receptor-mediated adhesion to outer surface of endothelial cells, induction of phagocytosis
 - Escape from phagosome and replication within cytoplasm of endothelial cell or macrophage
 - Cell-to-cell intracellular spread via induction of filopdium using host-cell actin polymerization
 - Small-vessel vasculitis
 - Production of reactive oxygen species (ROS), lipid peroxidation of endothelial membrane
 - Release of cytokines from infected endothelium, CD8-mediated cell destruction
 - Prothrombotic state, diffuse endothelial injury, increase in endothelial permeability
 - Multi-organ damage⁴
 - No small vessel lymphatic drainage in brain and lungs; leads to life-threatening edema
 - Hypovolemia and endothelial damage leads to poor perfusion of kidneys and other organs

- 2. Incidence, Prevalence²
 - Annual incidence, 2.2 cases per million persons, most commonly fatal rickettsial disease in the U.S.
 - 56% from North Carolina, South Carolina, Tennessee, Oklahoma, and Arkansas
 - Few cases in Rocky Mountain area
 - 90%–93% of reported cases April September
 - Males at higher risk due to increased exposure.
 - Highest incidence in children aged <10 years, with another peak in 40–64 year-old adults
 - Incidence higher in whites¹
 - Incidence likely underestimated due to inaccurate diagnosis or empiric treatment with no confirmatory test.¹
- 3. Risk Factors²
 - Living in endemic areas
 - Frequent visits to woody or grassy area/poor protective practices
- 4. Morbidity / Mortality
 - \circ Mortality 5% treated and 20% untreated²
 - Factors associated with increased morbidity/mortality⁵
 - Increased serum Cr
 - Increased age
 - Presence of neurologic involvement
 - Increased AST
 - Increased bilirubin
 - Decreased serum sodium
 - Decreased platelet count
 - Male sex
 - Morbidity is case related, correlates with disease severity
 - Complications⁶:
 - Skin necrosis/gangrene
 - Neurologic deficit
 - Acute respiratory distress syndrome (ARDS)
 - Myocarditis
 - Acute tubular necrosis
 - Disseminated intravascular coagulation (DIC) [rare]
 - 14% of children in one study⁷ suffered long-term neurologic defects (speech/swallowing dysfunction, global encephalopathy, gait disturbance, cortical blindness)
 - 2% suffered digital necrosis

Diagnostics

- 1. History
 - Classic historical findings
 - History of tick bite or exposure, present in 60% of cases.²
 - Often patients report an erythematous or pruritic lesion of unknown origin
 - Recent travel to endemic area²
 - Similar illness in family members
 - Presenting signs and symptoms
 - Classic symptoms, 5-7 days after tick bite, present in only 5% of cases in first 3 days, up to 60-70% by week 2¹
 - Sudden onset of headache, fever, and chills accompanied by rash beginning peripherally on palms, soles, ankles and forearms, then spreading centripitally.¹
 - A study in children⁷ demonstrated presence of fever (98% of patients), rash (97%), nausea and/or vomiting (73%), and headache (61%).
 - Other symptoms⁸
 - Generalized malaise
 - Myalgias (especially in the back and leg muscles)
 - Nonproductive cough
 - Sore throat
 - Pleuritic chest pain
 - Abdominal pain
 - Symptoms associated with delayed diagnosis⁷
 - No history tick bite
 - No rash
 - No headache
 - Outside peak months of tick activity
 - Complaints other than fever, rash, headache
 - Presentation to healthcare provider early in disease (i.e. before onset of rash)
- 2. Physical Examination¹
 - Skin initially blanching pink macules progressing to maculopapular then petechial rash. Classically centripetally spreading.
 - May be confused with drug reaction if beta-lactams given for other presumed illness
 - 10% have no rash, or may be difficult to detect in dark-skinned individuals
 - HEENT- Rarely retinal flame hemorrhage, papilledema, or conjunctivitis
 - Neuro focal deficits, mental status change, coma, vision loss, hearing loss, seizures, meningeal signs
 - GI abdominal pain and tenderness (occasionally confused with acute abdomen or cholecystitis)
 - Cardiopulmonary- nonspecific findings, when present, confused with pneumonia, pericarditis, or arterial occlusion

- 3. Diagnostic Testing¹
 - Serologic testing
 - Indirect fluorescent antibody (IFA) testing widely available and best method
 - Sensitivity low <10 days of symptoms, but increases to 94% from days 14-21, making this a confirmatory test.
 - Baseline seroprevalence of antibody titers >1:64 estimated around 12%.⁷
 - Enzyme immunoassay, complement fixation, and latex agglutination tests are also used
 - Weil-Felix not recommended
 - Blood culture highly specific and sensitive, but need special laboratory
- 4. Laboratory evaluation²
 - CBC: thrombocytopenia, normal WBC
 - CMP: hyponatremia, mildly elevated liver transaminases
 - CSF: lymphocytic pleocytosis, normal glucose, and mildly elevated protein
 - Peripheral blood smear: normal (rule out Human Granulocytic Ehrlichiosis)
 - Coag Panel: rule out DIC
- 5. Diagnostic imaging¹
 - CXR: rule out pneumonia, ARDS
- 6. Other studies¹
 - Direct immunofluorescence or immunoperoxidase tests on biopsy of tissue 70% sensitive, 100% specific: vasculitis with distinctive, unique perivascular lymphocytic infiltrate
- 7. Diagnostic "Criteria"
 - Diagnosis based on high clinical suspicion: fever + headache in endemic area suggestive; rash, thrombocytopenia, and hyponatremia presumptive.⁸
 - Serology confirmatory test of choice, but high prevalence in asymptomatic population; not specific.¹
 - Biopsy only 100% specific test

Differential Diagnosis²

- 1. Key Differential Diagnoses
 - Meningococcemia (can occur simultaneously)
 - Staphylococcus aureus bacteremia
 - Other tickborne illness
 - Ehrlichiosis (very similar)
 - Lyme disease
 - Babesiosis
 - Tularemia
 - Colorado tick fever
 - o Typhus
 - Viral illness (EBV, HSV-6, parvo B-19, Coxsackie, dengue fever)
 - Drug reaction

- 2. Extensive Differential Diagnoses
 - Disseminated gonnoccoccal infection
 - Mycoplasma pneumoniae infection
 - leptospirosis
 - Secondary syphilis
 - Vasculitis
 - o TTP
 - Rheumatic fever
 - Toxic shock syndrome
 - o Erythema multiforme; Stevens-Johnsons syndrome

Therapeutics

- 1. Acute Treatment
 - \circ At least 50% of patients will need hospitalization for supportive care²
 - Patients with signs of organ dysfunction, severe thrombocytopenia, mental status changes, or need for supportive therapy
 - May need admission to ICU, bolus fluids, transfusion, oxygen therapy, mechanical ventilation, hemodialysis, etc.
 - \circ Appropriate antibiotic therapy should be initiated immediately when suspicion of Rocky Mountain spotted fever, ehrlichiosis, or relapsing fever rather than waiting for laboratory confirmation. (SOR: C)⁸
 - Adverse outcomes increase with delays in diagnosis
 - \circ Treatment with doxycycline or tetracycline is recommended for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. (SOR: C)⁸
 - Minimum 5-7 days of treatment, or 3 days after resolution of fever.²
 - <u>Doxycycline</u> 100mg PO/IV BID
 - Alternative: chloramphenicol 500mg IV QID
 - If Meningococcal disease cannot be ruled out, add intramuscular ceftriaxone.²
- 2. Further Management $(1-5 \text{ days})^2$
 - Fulminant cases lead to death within 5 days of symptoms; common in G6PD deficiency
 - Monitor for prolonged fever, renal failure, myocarditis, meningoencephalitis, hypotension, ARDS, multiple organ failure.
 - Report disease to public health department

Follow-Up²

- 1. Return to Office
 - If being managed as outpatient, follow-up closely to establish treatment success
 - Follow up as appropriate with PCP for long term deficits and complications after hospital admission
- 2. Consult intensivist or infectious disease subspecialist if:
 - diagnosis unclear
 - severe disease: hypotension requiring aggressive fluid management and pressors, renal failure, pulmonary infiltrates, seizures, or cardiac arrhythmia

- 3. Admit to Hospital
 - Signs of organ dysfunction, severe thrombocytopenia, mental status changes, need for supportive therapy, or patient unlikely to be compliant with oral antibiotics

Prognosis¹

- 1. Untreated: 80% survival; Treated: 95% survival
 - Worse prognosis:
 - Children under 4 years,
 - Patients older than 40,
 - Lack of tick bite in history,
 - Delayed onset of rash,
 - Prolonged interval between symptom onset and effective antibiotic therapy,
 - G6PD deficiency,
 - Presence of hepatomegaly, jaundice, neurologic deficits,
 - Laboratory evidence of renal impairment.

Prevention

- 1. Avoidance of tick-infested areas
- 2. Wearing long pants and tucking the pant legs into socks
- 3. Applying *N*,*N*-diethyl-*m*-toluamide (DEET) insect repellents
- 4. Use of bed nets when camping
- 5. Carefully inspecting oneself frequently while in an at-risk area. $(SOR: C)^8$
 - Remove attached ticks promptly (longer attachment increases chances for infection)
 - Grasp body of tick (preferably with blunt, medium-tipped, angled forceps), and apply vertical traction until detachment.
 - Improper removal can lead to detachment of parts of tick proboscis in skin, leading to infection.⁸

Patient Education

- 1. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001677/
- 2. http://www.cdc.gov/rmsf/

References

- Chen LF, Sexton DJ. "What's New in Rocky Mountain Spotted Fever?" Infectious Disease Clinics of North America - Volume 22, Issue 3 (September 2008) DOI: 10.1016/j.idc.2008.03.008 <u>http://www.mdconsult.com/das/article/body/346690007-</u> 203/jorg=clinics&source=MI&sp=20955224&sid=1334953547/N/657840/1.html?issn=0 891-5520
- Chapman AS, Bakken JS, et al. "Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever, Ehrlichioses, and Anaplasmosis — United States: A Practical Guide for Physicians and Other Health-Care and Public Health Professionals." *MMRW Morbidity and Mortality Weekly Report*. Centers for Disease Control and Prevention, 31 Mar. 2006. Web. 22 July 2012. http://www.uphs.upenn.edu/bugdrug/antibiotic manual/tickborneguidecdcmar06.pdf

- Walker DH. "Rickettsiae and rickettsial infections: the current state of knowledge." Clin Infect Dis 2007; 45 Suppl 1:S39. http://cid.oxfordjournals.org/content/45/Supplement_1/S39.long
- Walker DH, Valbuena GA, Olano JP. "Pathogenic mechanisms of diseases caused by Rickettsia." Ann N Y Acad Sci 2003; 990:1. http://www.ncbi.nlm.nih.gov/pubmed/12860594
- Conlon PJ, Procop GW, Fowler V, Eloubeidi MA, Smith SR, Sexton DJ. "Predictors of prognosis and risk of acute renal failure in patients with Rocky Mountain spotted fever." Am J Med. 1996;101:621–6. doi: 10.1016/S0002-9343(96)00332-4. <u>http://www.ncbi.nlm.nih.gov/pubmed/9003109</u>
- Sexton DJ, Walker DH. "Spotted fever group rickettsioses." In: Guerrant RL, Walker DH, Weller PF, eds. Tropical infectious diseases: principles, pathogens, and practice. Philadelphia, PA: Churchill Livingstone; 2006:539–47. <u>http://studfier.com/docs/books/Biology/Microbio/Guerrant%20TIDs/Guerrant%20TIDs%20050.pdf</u>
- Buckingham SC, Marshall GS, et al. "Clinical and Laboratory Features, Hospital Course, and Outcome of Rocky Mountain Spotted Fever in Children." Journal of Pediatrics -Volume 150, Issue 2 (February 2007) DOI: 10.1016/j.jpeds.2006.11.02. <u>http://www.ncbi.nlm.nih.gov/pubmed/17236897</u>
- 8. Bratton RL, Ralph CG. "Tick-Borne Disease." *Am Fam Physician*. 2005 Jun 15; 71(12):2323-2330. <u>http://www.aafp.org/afp/2005/0615/p2323.html</u>
- Authors: Joshua B. Wasmund, MSIII, & James Haynes, MD, University of TN COM

Editor: Robert Marshall, MD, MPH, MISM, CMIO, Madigan Army Medical Center, Tacoma, WA