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On Some Classes or Non-Analytic Functions or a - ------ ... ~ ~ . . ~ ....... -- -

Introduotion. 

In a study of the theory of analytic functions of 

a complex variable, one is at first impressed with the fact 

that postulatinc so little, one proves apparently so much. 

For instance, Professor Goursat in his proof of Cauchy's fund­

amental formula(i), assumes merely the existence of the first 

derivative of fez), and yet he arrives at the result that the 

number of derivatives of this function is unlimited - that is, 

that a derivative of any order not only exists, but 1s con-

tinuous. However, one must bear in mind that this class of 

function, known as analytic, is a very limited and special 

class; for the analytiC functions w = fez), where w = u + vi 

and z = x • 11, are limited to the solutions of the Cauchy-
Jl"l ~v dv __ dyWW • 

Riemann equa tiona, en = dy' OX - Tv 

This fact, namely, that the analytic functions are 

a very limited and special class, with the additional tact 

that there seems to 'be IlC reason !!. priori why many of the 

theor ems concerning analytiC functions oannot be extended to 

analP.gous theorems for non-analytic functions, lead us to 

seek to define other classes of functions of a complex var-

(1) E. Goursat: ~ d'Analyse Mathematique. Vol. II.,p.82. 
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2. 

lable and to attempt to find for the c~asses, thus defined, 

theorems analogous to those for analytic functions. 

Before we attack the problem of defining these new 

classes of funotions, let us first see what meaning has been 

attached to the term, function of a comp~ex variable, and 

what has been the attitude in regard to the comprehenslve-

ness of the theory of analytic functions. 

Since the definitions of a function of a complex 

variable have been extensions of the definitions of functions 

of rea~ variables, it 1s interesting to note the process by 

which we have reached the modern conception of functions of 

a real variable. To the older mathematicians, a function of 

x usually meant nothing more than a power of Xi and certainly - -
their broadest definition of function of ~ would have in-

eluded only explicit functions of ~. Euler extended the 

definition to include implicit functions ot x. And through 

a consideration of trigonometric series, Fourier was lead to 

a definit10n of function which admitted di f ferent analytic 

expressions in different intervals. However, it was D1r-

1c~et, who gave us the broad definition which we have to­

day, namely,% is a Single va~ued function of the variable ~, 

in the continuous interval (a,b), when a definite value of 

l. corresponds to each value of !., such tha t a ~ !. ~ b, no 

matter in what form this correspondence is satlsfied.(i) 

(1) Hobson: ~ct1ons 2! ~ R!!! Variab~~. p. 216. 

Prin·gsheim: Encyklopad1e der mathematischer W1ssen-- . .. - -----......;.~ -----
schaften, II. A 1, pp. 3 - 8. 





Thus we see that the broad definition of a function of a 

real variable which we have today, was the culmination ot 

a slow process. 

In contrast with this, we find among the earliest 

writers on the theory of functions of a complex variable a 

broad definition of functions of a complex variable. How­

ever, we do find, even among some of the modern writers on 

the theory of functions of a complex variable, a narrow def­

inition of funct1on~i) And it seems that in some cases, 

at least, this narrow defini~ion of function is due rather 

to lack of breadth of view or the function theory than to 

a conscious effort to narrow the definition so that it will 

include only analytic functions. 

We have said that the analytic functions of a com­

plex variable are mere~1 those functions which are solutions 

of the Cauchy-Riemann equations. But it is scarcely necea-

aary to state that this limitation of the theory of func­

tions of a complex variable did not come about by the arbi­

trary decision of some one person, . or persons, to study on­

ly the "functions which satisfy these particular differential 

equations. When men first attempted to handle the simple 

functions of a complex variable which they first encountered, 

it was but natural to follOW along the ~ines of the theory 

or functions or a real variable and to demand the existence 

(1) Some ot these definitions of a complex variable w11! 

pe quoted later. 

3. 





of a derivative in the Euclidean plane. It was this de-

mand, and not any arbitrary choice, which lead to the 

CaUChy-Rieman(i) equations. From the present develop-

ment of the function theory, it is easy to see why they 

were lead to the Cauchy-Riemann equations; for the sim­

plest functions are, in general, developable in the Cau-

chy-Taylor series, and all functions which are develop­

able in this series are sOlutions of these equations. 

Strictly speaking, no one person can be said to 

have originated the theory of functions of a complex var­

iable, and yet Cauchy, who first made an attempt to give 

both a rigorous and a genera~ treatment of functions of a 

complex variable, may be regarded as its true founder. 

Cauchy's memoir - Sur lea tonctions ~ variables 

imaginaires(ti) - not only 1s one of the earliest contri­

butions to the theory of functions of a complex variable, 

but it also contains the very essence of the spirit of 

modern analysis; for this reason, it is apparent that no 

better introduction to the theory of functions of a com­

plex variab~e can be given than this mathematical classic:-

"La theorie des fonctions de variables 1maginaires 
pr6sente des questions d~licates qu'il importait de re­
soudre, et qui ont souvent embarrasse les geometres. Ma1s 
toute difficult~ disparaftra, al, en se laissant guider par 
l'analogie, on etend aux fonct1ons de variables imaglna1res 

(1) Riemann's demand 1s that the integral be independent 
of the path. 

(ii) Comptes Rendus: 1851, 2e ~em. p. 160. 
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"les definitions generalement adopt~es pour les fonctions de 
variables r~eles. On arrive ainsi Q des conclusions, sin­
guli~res au premier abord, et n~anmoins tr~s-l~gitjmes, que 
j'indiquerai en peu de mots. 

"Deux variables r6eles sont dites fonctions I'une 
de I'autre, lorsqu'elles varient simultan~ment de telle sobte 
que J.Q valeur de l'une deterJl:ine la valeur de I'autre. Si 
les deux variables sont cenales repr6senter les abscisses 
de deux pOints assujettis a se mouvoir sur une m~me droite, 
la position de l'un des pOints mobiles d~terminera 1a posi­
tion de l'autre, et reciproquement. 

"Ajoutons que le rapp'ort dlfr'rentiel de deux variables 
ree1es est une quantite gifneralement determin'e, et qui ne­
anmoins peut cesser de l'~tre pour certaines valeurs part1-
cu.1i~res des va.riablea. Ainsi, par exemple t Ie rapport dif­
ferentiel de l. 1 x deviendra indetermin6' pour!. : 0, si leon 
suppose Y== X si 11. ~. 

"Concevons maintenant que, x, Z 'tent des variables re­
elles et ind6pendantes l'une de. I'autre, on pose 

Z=X+yl 
i etant une racine carree de -~. z sera ce qU'on nomme une 
variable lmaginaire, Soit .-

U{.-:V+WL 
une autre variable imaginail·e, .y. at !:. 'tant reels. S1 J 

comme on doit naturellement ~e taire, on etend aux variables 
imaginaires l~S d6finitions adopt6es dans le cas ou les var­
iables sont reelles, u devra €tre cense fonction de z, lors­
que la valeur de z d~terminera la valeur de u. Or, iT suf­
tit pour eels que-vet w soient des tonctlone d'ter~1n6es 
de x, ~. A1Q~8 BUBSi, en cons1d6rant les variables rie1es 
~ etz renterm'es dan'~, ou les variables r'elles ~ et ~ 
renferm6es dans ~, commepropres ~ representer les coordon­
nees rectilignes et rectangu1aires, d'un pOint mobile Z ou 
U, on verra 1a pos1tion du pOint mobile Z determiner tou­
jours 1s position du pOint mobile U. 

"S1 d'a111eurs on nomme r 1e rayon vecteur men' de 
1'origine des coordonn6es au pOint mobile Z, et ~ I'angle 
polaire forme par ce rayon vecteur avec ltaxe des x, lee 
coordonn~es po1aires ~ et £, 1j6es a ~, Z par les equations 

X = r c os ~ I Y == r s i I" 'P 
et a z par 18 formule ( 

l =. .,.. e P'-

seront ce qu'on nornrne 1e module et I'argument de 1a variable 
imaginaire z. 

"Ces definitions ~tant adopt6es, et ~ etant une fonction 
quelconque de lao variable imaginaire z, Ie rapport differen-

5. 

. . , 
t~el de B a ~ dependra, en gen6ral non-seulement des variables 
reel1e8~ et y, ou, ce qui rev1ent au meme, de 1a position 
attr1bu~e au pOint mobile Z, mais encore du rapport differen-





tiel de Z a x, ou, en d'autres termes, de la direction de 
tangente a 18 courbe que decr1ra le pOint mobile, lorsq'on 
tera varier z. Ainsi, par example, comme on aura 

dl = dx. 
s1 1e point mobi.1e se meut paraJ.le.l.ement a .1. 'axe des· :A, et 

ell = ~dyl 
si .1e pOint mobile se meut parall~1ement l I'axe des Z' 1e 
rapport differentiel de u a z sera. dans 1a premiere hy-
poth~se, - -

Dx v -t i Dx W, 

et, dans ~a seconde hypothese, 

fJy V +.l D.,vw:=:= LY VV - ~ f!y V. 
L 

Ajoutons que, a1 ces deux v~leurs particu11eres du rapport 
dirf~rentiel ~e u , z sont egales entre elles, ce rapport 
dev1endra 1nd&pendant de la direction 8u1v1e par Ie point 
mobile, et se reduira simplement 4 une fonction des deux 
variables x, y. 

"Dans ce cas particulier, on aura 
Ox v:=: Dy w ) fly V == - /)x VV j 

par cons{quent, 

iJ~V+ 4~V=O) Dx~W-f Dyw:=Oj 

D 2. .1 

. X U -f DaY U. = o. 
et 

6. 

Donc alors la fonction ~ de ~ sera en m~me te~ps une tonction 
de x, y qui v'rifiera une equation aux d~ivees part1elles 
du second ordre, et repr6sentera une int'grale de cette equa­
ti'on. 

"C'est ce qui arriver, ordinairement, s1 les variables 
imaginaires u et z sont l1ees entre elles par l'6quation 
qu'on obtienr-en egalant a z6ro une fonction toujours con­
tinue de ces deux variables. 

Les pr1nc1.pes que je viens d 'exposer confirment ce que 
j 'ai di t ail·leurs sur la n'cessi t6 d~ mentionner 1a d6rl v6e 
d'une fonction de A, dans Ie th6orem~ qui ind1que les con­
ditions sous 1esquelles cetter tonctlon peut ~tre develop­
pee en une serie ordonn&e suivant les puissances ascendantes 
de~. C'est, au reste, ce que jtexpliquerai plus en d~tail 
dans un autre article, ou je d6dulral des principes dont 11 
s·agit les proprietes dive~ses des fonctions d'une variable 
imag1naire et de leurs integrales d6finles. tt 

It seems that the spirit ot modern analysis - by 

which 1s meant a certain open-mindedness and breadth of view -





a realization not only ot the present li~itations of the 

function theory, but also of the possibility of its exten­

sion - is shown in Cauchy's broad detinition of function of 
'--

a complex variable, and 1n his .realization ot the very !1m-

ited nature of the class of functions with which he is deal-

ing. 

As we previously mentioned, this broad definition 

has not been accepted by all the later writers on function 

theory. Harnack applied the term function of a complex var-

1able to w = tez), when ~ is produced by ~eans of any finite 

number of arithmetical operations on z!i) Professor For-

8yth, alao, regards ~ as a function of ~, when ~ 'can be 

constructed by definite operationa(AA)z regarded as an ir-

7. 

resoluble magnitude. ,(iii) Durege, who certainly is willing 

in general to give to the term function its broadest inter­

pretation, feels that when we pass to the domain of complex 

numbers we must limit our term function; hence, he applies 

the term function of a complex variable only to those tunc-

(1) Harnack: Introduction ~ Calculu!. p. 128. 
(1i) A conception or function which is not very clear, 
since one cannot be certain just what Prof. Forsyth means 
by definite operations. It might, also, be noted that 
Harnack's definition would inc ~ude infinite series, and 
whereas, a uniformly convergent series of "analytic" func­
tions is an "analytic" function; it is not in general true 
that a convergent series of "analytic" functions is an 
"analytic· tunction:- hence, Harnack's definition, strict~y 
accept~d, would really include more than he intends, i.e., 
more than the class of -analytic" tunctions, and his the­
orems wo 14 not strictly follow. The same conclusions 
apply to Prot. Forsythts definition, if it be refined suf­
ficiently 80 as to express a perfectly definite class of o­
perations. 
(11i) Forsyth: The~r~ Of Functions. p.7. 





tions where ~ and Z occur in the combination x ~ yl. Be, 

too, then demands 'hat in a tunction or A, ~ appear 8S an 

irresoluble qUantlty~1) Howeyer, he does recognize that 

this demand gives him a very limited class or function, 

and those functions which he excludes trom his consider-

ations he cal~s complex functions, not functions of a com-

plex Yariable. Professor Osgood does not deviate trom 

Cauchy's statement when he -defines function as follows -

-Eine Funktion fez) einer complexen Verlnder11chen ent­

steht dadurch, dass man Jadem Punkta ~ eines Bere1ches T 

der Komplexen Za~enebene eine Zahl 

w= u +V/ -=- f(l} 

.nach einem bestimmeten Gesetze zuordnet-!il) Professor 

Osgood certainly rea11zes the existence of functions of a 

complex yarlable other than the ana~ytic functions, and he 

proves theorems about tunctlons on whlch he has not placed 

the restriction that they be analytic. 

Whether we accept the broad definition ot a func­

tion ot a complex variable given by Cauchy, or with Dur~ge 

oonsider all non-analytic functions, not as functions ot a 

complex va.riable, but as comp!ex functions; we must realize 

that besides the ana~yt1c functions of a com~lex variable, 

there 1s an infin1ty ot classes of functions, each class of 

which 1s coextensive in totality with the ana~7tic functions 

(1) Dur&ge: Elements ot ~eory ot Functions. p.27 • . 
(i1) Osgood: Lehrbuch ~er Funkti~nen Theorie. p. 180. 

s. 





and about which the ordinary function theory postulates 

nothing, proves nothing. 

In speaking of the deve~opment of the theory of 

functions of a comp~ex variable, it was said that those 

simple functions of a comp~ex Yariable which were first 

encountered were analytic; but, whi~e this is ture, it 

must not be inferred that analytic functions inc~ude all 

those which are most simple and most useful, and non-ana-

lytic functions only those which are difficult and use~ess. 

The division in~ ana~ytic and .1 non-ana~ytic functions 1s 

made on the basis neither of simplicity nor of usefulness. 

And what Professor Osgood says of ane~ytic and non-ana~y-

tic functions of a real variable applies equally wel~ to 

ana~ytic and non-analytic functions of a complex variable.-

9. 

WDemgemass entspricht die E1nteilung der Funkt10nen 1n ana­

lyt1sche und nicht-analyt1sche nicht der Natur der SaChe.n(i) 

Therefore in an extension of the theory of functions of a 

complex yariable to inc~ude non-ana~ytic functions, we are 

not necessarl~y considering functions which are ~ess sim-

ple or less useful. 

(1) Osgood: Ope cit., p. 95. 





Sect'fon r. 
1. Geometrical Interpretation of Functions of a Oomplex 

Variable. 

In the development ot the function theory, pro-

bably nothing has proved to be more helpful than the vis­

ualization of the dependence of the one variable upon the 

other. 

rbe geometrical interpretation of tunctions of 

a complex variable otfers tar greater difficulty than that 

ot functions of a 'real variabl~, because gi ven • = f(z), 

where w : U ~ v1 and z = x + 71, we have four variables, 

and hence a geometrical repr&sentat1on of functions .of a 

complex variable, analogous to that tor tunctions of a real 

variable, would necessitate tour dimensions. 

There have been several sUggestions(i) offered 

as to possible geometrical interpretations of functions ot 

10. 

a complex variable. The one which has been most frequently 

used is to consider w = fez) as a transformation ot the z­

plane upon the~. It can be shown that a~l the theory or 
analytic functions of a complex variable can be interpreted 

as a conformal transtormation of a plane upon itself. 

2. A unique derivative 1n the Euc~1dean plane. 

Let w = ~(z) be a single-valued continuous func­

tion ot z, where 
, , ' . 

Z ,~ X + yL I 

I 

vv-:=: U. +Vt. 

Let us consider this function w : r(z) as defining a trans-

(1) Whittaker: Moderp Analysis. p. 41. 





torm.'ion of ~ upon the ~ plane. TO every point of ~ in the 

z-plane w111 correspond a point in the w-plane. 

~w 
w. 

w- f>la h.~ . 

Fig. 1. 

Take any' two pOints z· and Zo in the z-plane, and there will 

correspond two pOints wand woin the w-plane. Let the 

-

l~. 

pOint z approach the pOint Zo along any path whate~er, then 

the point w will approach Wo along the w-plane. The de-

mand tor the existence ot a unique derivative is that the 

limit or the ratio ~~ be independent ot the path along 

which z approaches Zoe 

multiplying through by 

L1 U. + t1 V l' 1 

Ll)( -f.4 Y t' 

L1 X - ,1y.1 
this becomes L1 X -.4 l 

, 

LlLLAX +AVLlXl -LlULdVL +L1VAY, 
(21 X )l-+(jJy)~ tI 

Dividing both numerator and denominator by[LJX)~ we have, 





Passin! to the limit, we haye 

(if) d w = ~ + ~; - ~1fR-)~' + fi (jf) '-. 
a -£ /+(df)~ 

Now if the derivatiye &~ is to be unique, the .bove ratio 

must be independent ot 1f ,hence it this condition be 

fulfilled, we have 

Equatina real and imaginary parts, we haYe 

dU _ r)Y 
dx-ry , d\l =: _ $ , 

dx oJ 

which are the Cauchy-Riemann equations. If we make the 

demand that the 1ntegr,1 from ~ to £ ot fez) be independent 

of the path, we are lead to the same differential equations. 

These Cauchy-Riemann equations sive us not on~y a conformal, 

but also an isosonal transformation of the plane upon 1t­

self~1) 

(1) For these and turther proof of theorems about analytic 
functions S8e any standard work on Function Theory; for ex­
ample, Goursat: CO~8 d'Analya8. Vol. II. 

12. 





Section II. 

Other Classes ot Functions - Fundamenta~ Considerations 

1. Geometrical Representation. 

In order to obtain other classes of functions ot 

a complex variable which are readily studied, we shall ac-

oept the broad definition of a function, that is, that w 

is a function of r~l) it, whenever ~ Is given, ~ is de­

tined; but we shall make dlfferent demands from those maAe 

upon the analytic functions. One conceivabl.e method of 

placing different restrictions upon the functions 1s this -

Consider the function w = w(r) as a transformation of a 

surface(ii) upon itself, and then work along lines anal­

agous to those followed in the theory of analytic tunctions. 

(1) 

2. Differentiation. 

Let the surface l. be defined by the equations .. 

x = f (fJ, 'f) , 

J~f{p''fJ, 

1, tfLp,tf} , 

and also let us choose the function 

(7) 

(i) For the sake of notatlon, since we use z in the equa­
tions which define the surface, we shall use-. = w(r), where 
w : U + Vi, and r ~ p + q1, instead ot w = t(z). 
(11) Every essentially dIfferent class of surfaces defines 
a different class of functions. The function ot each class 
are as "numerous· i • . the sense of the theory of assemblages 
as the analytic functions. 

13. 





which gives rise to the equations 

u. = Ut P I <f ) 
v= Vlp.",), 

in such a way that 

(9) d~t2 -f dv t
- II. (E eLp" + 2 r dfdf + G d't:l ) 

where A. is a function of rand t a~one. (i) and E, F, and 

G mean the following: 

(/0) 

Let 
If) I" 

W ' = '-II ( r) -= LL + V l, 

be arbi trary function or!.; since vv ~ u ' + v ~' g1 ves 

rise to the equations 

l,t I :: /III { LL I V);:; IV' ( u. ( p, C; ), Y (Pi cr) ) -= A II J C;) 

y ~ AI ( tl, v) = /II ( l-U f' <f J, Vir, tf J) ~ !? (f' l' J J 

W '=. It I -+ V L' == A ( P, Cf J + B ( f I 1') 1' " 

\Iv '::; /v1 ( u , V) + N ( Ul,)/ J i ' ~ f{ vv) . 

(1) This is the condition that the function w = U + Yi de­

fine a conformal transformation of the surface z= upon the 

u,y-plane Cf. E.Plcard: Traite dtAnalyse. Vol. I. p. 477. 

(i1) For the derivation ot these equations and the expres­

slon tor the square of the linear element see E. Picard; OPe 

cit. vol. I. p. 445, or Darboux: ~1l! ~ !! senera~ 

Theorie surface. vol. I., p. 14. 

14. 





Let us consider w':. (j)lY") :: u.' -l y't as a transformation 

of the surface L upon itself, and let us assume tha t the 

functions u. v L\.' Vi 
I I " 

'I, y, , and Z admit first partial deriv-

atives with respect to p and q. 

/ 

L::
' " 

f>.. "V vV 
~ 
w~ 

u '--____ u. 

Fig. II. 

If we take any two pOints f' and f~ in the p,q­

plane, and any path joining these points, then we have two 

corresponding pOints wand vVo wi th a corresponding path 

jOining them, in the u,v-plane; and in the u',v'-plane cor-

responding pOints w',VVo', with a corresponding path joining 

them. On the surface 1: there wi~l be two sets of pOints 

w ,Wo , and w', 'IV J corresponding to f • and flo 

~ connected by paths corresponding to the path foP. (We 

have made two representations of the surface L , in order 

that the geometr1cal ~meaningof the work following may be 

more easily seen. However, we may think of the second 

15. 





representation as being a transparent surface p~ 8 ced directiy 

over the first representation of L: ·w and vv 

merely define a different parameter representation of the 

surface.) 

The most natural demand to make upon this function 

\IV ::. Fl wl is tha t 1 t have a unique, def'ini te deri va ti ve. 

The demand for a unique, definite derivative of vv'with 

respect to vv is the same as the demand that the limit of 

Ll w' the ratio. XVv ,as Vy approaches Wb , be independent of the 

path of approach, that is, be independent of the manner in 

which p approache4 to 
In this case, as in the case of ana~ytic functions, 

we shall consider the vee tor differences A vv and Ll vv 

We have 

L1 \.X' '~ (Ll '- Lt;) -I- l v ~ v,')~ = 
A W nL - 'LL,) ~ (v - YII ) i. 

dividing through by Af and passing to the limit, the above 

equation becomes 

1//) d vv I: 1 i,"'l 4.J1(1 = Af + Aqj-f -r (~IJ f B"Ji) l' 

U'1i! i 
Ap~o 

) 

cL vv 4 w "l,tJ' + 
"'f so -I- (\I',.7 -I Vo/~) l' 

dp 

In order that */ be independent of the path, 
vv 

ratio must be independent of ~ 
dp 

J hence 

(/:2 ) Ap + I, I3p Ar -f l' 131 I ':. 

PI' + I. vp UC( -i " v tf 

which reduces to the two equations, 

( 19) tL /J A l' vr ~1 
4" E r -+ v p A" 

= Ll1/./fJ - VCJ /Bp, 
:: u r f3p + Y'I AfJ . 

the above 

• 

16. 





These equations for the olasses of functions which we are 

to consider are the analogons of the Cauchy-Riemann equa-

tions for the analytic functions. These equations may be 

written in the form 

(I4 ) 
ILl f l..A cy I 
Ap Acy 

\Aqr I " 

B'f 

or, if we make use of the equations 
;z. :1. 

~£ - '-tf -+ Vp 

). r == U~'U'f' 1- vp V<f 

A G \.\~ -t ~~ 

and solve tor Ap and A r ' we have 

~ £1{ -F# 
PfG-F~ 

- F~-G¥e 
rEe - F:l 

(IS) 

which are known as the Beltrami equations. 

(i) 

It has been 

pOinted out b, Professor Picard that the equations (15) may 

be regarded as a generalization of the equations (6), and 

that the equation of the seoond order derived trom them 

~(G~ - F~) 
P VE:C- - r~ 

--1- r)(£JB - rdA)_ 
J do 'tCf p - (j. 

cy VEG - T:L 

(i) These come directly from equatlon(9). 

17. 





is on the surface L: the analogon of the Laplace equation 

·~n· the plane ~ 1 ) 

3. ~nteua tl0.~. 

We now pass to a consideration ot integration for 

this class or functions. 

18. 

Let us consider, as in the case ot differentiation, 

that we have a surface L defined by the equations, 

' X ~ flPllf) 

Y ~ qu P, q) 
z ~ Y; 'PI q), 

and also let us choose W= 1.-1 -tVl ~ llL",q) + V{f,cr J i. in 

suoh a way that 

d 1. ~ u -tdv 

where A is a tunction of f and 

Let us take 

I 

~------x 
1----\.\ 

Fig. III. 

(il) 
cr· 

Xi) E. Picard: op.clt., p. 8. The method by which Beltrami 

reaches these 1s entirely different trom the one used here. 

(11) See toot-notes, page 14. 





As in the case ot analytic functions, we wish to 

tind the condition that 

I hWJdw 
a 

be independent of the path. 

Now 
L1 YV :: .4 LL -f it V l 

cI VV ~ ellA + cL ·" l' 

and also 

then 

d Ll = U F cl P + '\ACf d '1' 

dv = vpdp + vcyd.9'J 

but by hypot~esis 

d \,l 1 + cb,.'- = ) lEd; + 2 F df d. r + G d i ) 
whence, factoring these two, we have 

(d u + elv j' )(d~.f'd vi) =- {~+ ri } (7- fil tffdp tFr;!ld'f Jlm,,-r F-,j!J-4.cr)· 
therefore, 

where 

and also from (16) we have 

(l[" + l VI" ) d P +[Uq + i Vcr JcL cy :{~ + td (ffdj> t 1f!l dr)j 

equating real and imaginary parts, we have 

U r d p t U l' cLcy "" ~ IT df i r f il JJ d r 
/1 J) 

V p cl p + Vcr d'1 : r /1£ d f + tf fit !/ d cr 

19. 





20. 

Equa ting the coefficients of d f and ot d cr ' we obtain 

Vp = r f£ 
( 19) uq Vcr t EYf-t f/ 

If we replace clw under the Integra~ sign by its value ob­

tained in (17) and replace ~/V) by A,?, ~r) -I' A{p, cy) t' , 

we have 

{:to) I' b j{vv} dw .: 1b[ A {p,cy J t B If, 0( J ;} 17 f r n( /fdp fFJ! d Cf) 
'cl ,1 

.::: fr (7 A If. '7 J ff - f R If, rdf ) d f 

!l + (7 Ar' r'iff -f A {p, 4" * -fair- rrJ!i= - 71J,,~ 'f'1i Nr } 

+ ;{[ (r !/Il' q'1 If f l B'f' r' fEJd p . 
(1 

F · Jc A (f' r' ft f- 1 Blf' C{' ff 
+ f Alf,'fJir - f By), tfJ j;) dq f 

In order that the integral be independent of the 

path it 1s necessary that each ot the abOY8 integra~be in­

dependent ot the path, hence the necessary conditions that 

. f Fiw) dw be independent of the path are that the following 

equations hold 
- . ~ F /3 F fJ/JI _'Iii/I) 

~hAtr-fBff) ~ dpt,A7t-f g- IE t Ii 

(:tl) _ J !3 f -I-f A H -j B i:! ) 
Jl ,(;A if + r R If) '" rp (~ A ~ +? It !l If 
tJq ) 





In partially carrying out the differentiation indicated, we 

obtain 

and 

21. 

Now since U and V are continuous functions of p and qt , 

and 
"PCf -=- Yt(P 

By taking this fact into account and making use of equa-

tions (~9), equations (22) and (23) become 





22. 

Eliminating first 4fr • then # we obtain, 

-=. I_I d!L -J J::- cJ B 
tJ P -;;-p , 

fJ ,4,4 J j ) /3 , F rp - r. (]fi 

which may be put in the form 

# : r~ - Fell3 
Tp 

(~ 7) H 

~ ::. [JE - C~. Tci 
R 

We see that the conditions that the integral 

if ( )IV) dw 
'd 

be independent of the path are that the Beltrami equations 

be satisfied. Hence, in the classes of functions as in 

the case of the ana~ytic functions, the conditions that the 

derivative be unique and definite and condition that the in­

tegral depend only on the limits of integration are the 

same. 

If we define the function 

F{ JlV J ::. (9, r-) = A (PI t{) f 13 ( PI Cf) ,,' 

as an "analytic· function upon the surface 1: , whenever it 

satisfies the Beltrami equations for this surface (E, F, 

and G in the Beltrami equations depend upon the particular 

surface in question), we may state the following theorem: 

Given ~ function ~(rj defined £l ~ given surface and 

"analyti c" 2!! ~ surface. !.!:!!. intesral J8tH dwo-J !.!!. 
d 

independent of !b! path. 





3 . Conformal Transformation ot ~ Surface £U Itse~t. 

In our studY of analytic functions, we found that 
I 

the demand for the existence of the derivative forced upon 

us both conformal and isogonal transformation. And in an 

examination of the proposition in which we demanded that the 

transformation be either conformal or isogonal we were lead 

to the result that the function be analytic, - that is, that 
(i) 

the Cauchy-Riemann equations hold. In these oJ-asses of 

functions which we are studying we should like to see if the 

same thing holds true, - that is, if the demand for the ex-

istence of a derivative on the surface will force upon us 

both conformality and lsogona~ity. We shall attack the , 

other prob~e., however, and see if the conformal or 1so-

gonal transformation If a surface upon itself leads to the 

same condItions that the demand for the existence ot a der-

1vatlve does. Or stated in other words, if the transform-

ation of a surface upon 1tself be lsogona~, do the Beltrami 

equations hold? In order to study this prob~em it Is ne-

cessary to find the conditions which must be satisfied in 

order that the angles be conserved in the transformation. 

Let us first consider the g6neral case of a transformation 
I 

of one surface 1: upon another L . 

(1) See any work on Analysis. Goursat: op. cit. ~ at ale 

23. 





Let XI Y J Z be the rectangular coordinates of 

any pOint on tahe surface L. We shall suppose that the 

six coordinates X'yIZ j x: y; Z are expressed as func­

tions of two variable parameters P, r ill such a way that 

the corresponding points of the two surfaces correspond to 

the same system of values of the parameters P' Cf • 

We Cldm1 t, moreoYer, tha t the func ti ons fl f' l/; f: if: if / w1 th 

their first derivativ"es are continuous. Let us recall the 

/.zf) 

through a point m of this surface, C' and D' the corres-

ponding curves of the surface ~ 
, 

, passing through the 

pOint mt; along the curve 0, the parameters are functions 

of a 81ng~e auxiliary yariable t, and we designate the 

differentials by d f and d r • In the same way along 

24. 

the curve D the parameters are functions of another Yari­

able t', and we' designate the differentials by ~ and ~r . 
In the same general way, we distinguish by the letters d 

and tf the dl fferentials wi th respect to a displacement 

upon the curve 0 and upon the curve D. 





I 

L , 

? a , 

JIL' b' e 
c' 

Fig. IY. 

The direction parameters of the tangent to the curve Care 

respectively 

dx = '# df' + ~ dr, dy= h-df dlq-d'f I dz = #; cit -t fl dq I 

likewise the directions parameters of the tangent to the 

curve D are respectively 

r:fx • 1ft J? f #- Ir ) Jr if fp + 4 l r } Jl = Sf, Jf ,. #- 1'1. 

Let w be the angle made by the tangents to the two curves 

C and Dj cos ~ is then given by the formula 

CDS CAl = t.fx + ri'l/1. + cLz f:t . 
rlx& +df tdr fix ~ If I }; 

which may be written, by taking into account equations (29) 

In the same way,~' being the angle between the tangents of 

the curves C' and ~'; 

25. 





In order that the transformation considered may not change 

the value of the angle, 1 t is necessary tha t Co~ u:>:. c,oS {)V' 

wha 'ever the yalues of d f' I c/ r I /P 1 )OJ 

bers of the equation 
Co S 1. tv = to <J % w' 

.; The two mem-

are rational functions of the two ratios Irt' If J dq,. elI' 

26. 

and ought to be equal whatever the value of the two ratios. 

In order that this be true it is necessary that the corre­

sponding coefficients of the two fractions be proportional, 

that is '0 say that 

(3.2) £1 
:= £' -=- C' 

= 
)2 

r r &-
where A- is a r <t function of f' q • These conditions are 

eyidently sufficient, because cosw is a homogeneous func-

tion of zero degree of E. F, G. 

The conditions (32) may be replaced by the single 

relation , whence 

(J3) ds':: ).ds, 

which expresses that the ratio ot the two infinite~y small 

corresponding a.es tends toward a limit independent of d? 

and ot do/ ' when these a~e8 are diminished indefinitely. 

This condition m~kes the result almost intuitive. In proof, 

let us take upon the first surface an infinitely small tri­

angie abc, and let a'b'c' be the corresponding triangle on 

the second surface. Let us cons1der these triangles abc 

and a·b'c· as rectilinear triangles: since the ratio a'b':ab, 





a'c': ac, and b'c t : bc approach the same limit 

in the limit the triangles abc and atb'c' are similar and 

the corresponding angles are equal. 

One sees that the two infinite~y sma~l parts of 

the surface can be considered as similar, since the lengths 

of arcs are proportional and the angles are equal. It 1s 

for this reason that one often gives the name of conformal 

transformation to a transformation which conserves the 

angles~i) 

Let us now return to our problem of the trans­
(11) 

formation of a surface L upon itself, and see .if 

the Beltrami equations are satisfied when the transform-

ation is isogonal. 

We have g1 ven the surface L defined by the 

following equations: 

{ 3tJJ 

x ~ f ( P' cr) 
y~ f{f, 0/) 

1:: If' {f, q) 

Xi) The above on the transformation of one surface upon 
another is a free translation from Goursat: OPe Cit., Vol. 
II., pp. 47 - 49. (A slight change in the notation has been 
made in order to be consistent with our other notation.) 
(1i) This case that we are considering 1s not the one for 
which Professor Goursat finds the conditions that the trans­
formation be isogonal, but it is evident, if the correspond­
ing triangles abc, a'b'c' on the surface L are to be sim-
ilar, the t ~ r' must equal ~ cO • 

27, 





where 
f~ ptf) 

q ~ q {fJ 

Let us take the function on the surface L 
where 

(3 ~"'J 

such that 

t-l: A ( P' Cf J 

v:. Btp,o/) 
lJt ':. e, I ) V ~ c,. 

defines a network of isothermal lines~ithen it follows that 

(3(,) dUL'uLv'-/(Fdj f2Fdf dtf + Gdc, J 

whe~e f is a function of f and r al.one and ""na~ E , F, 

and G are defined by equations (10). 

Now let us transform the surface upon itself such 

that this system of isothermal lines goes into another 

system of isothermal lines isospnally. 

Le t \A' ~ j(, J Vi:. 1(.1.. 

this second 

(31) 

system of isotherma~ 

u' ~ Plp, qJ 

V'=- Qlf,C(J 

lines, where 

Since this transformation 1s to be isogonal, 

(31) 

define 

(i) Any function that belongs to these classes must ful-
fil this condition, since we have always assumed that the 
function satisfies equations (36). 

28, 





From equations (35), we have 

139) 
d. u ~ Af dp -+ Aq ci cr 
dv -= ~cLf + Rqflr, 

and from equations (37) 

(tfO) dl~1 = /jdp + R,dr 
d v 1= Qpdf + Q,dCf. 

If we substl tute the values of d'Lt and d v obtained· from 

(36) and the values of cLu I and d v 'obtained from (40) in 

equation (38), it becomes 

and since the transformation is isogonal,th1s is true what­

ever the values of dJ and dr, hence we have 

= 

From which we obtain, 

29. 

Taking the square root of both sides of the equation, we have 





where I):: ~ 
or 

If we take 

E _ F 
'ilL + Q; ~ 10/ -f Q, Qr 

and solve first for 

(lfJ) 

and 

From (42) we have 

and 

Per ' and then for 

11 ( rq, t )11;) 
FPp -r- /-IQp 

Off ( r Ii - f/ Qp ) 
FQr I f II ~ 

we have 

substi tutlng the value of Pq in (43) and the value or Q::r 
I 

30. 





in (44), and simplifying, equations (43) and (44) become 

respectively, 

and 
r Qf -f /-1 I} J 

r Ii - flQp, 

which are the Beltrami equations. 

31. 

Hence we see that the demand that the transformation 

of a surface upon itself such that isothermal lines go into 

~1sothermal lines be isogonal forces upon us the Beltrami 

equ~tlons. 

This demand, namely, the demand that the trans-

formation which carries isotherma~ lines into isotherma~ 

lines be isogonal, is exactly the same demand that we made 

in the isogonal transformation of the plane upon itself; the~, 

too, we demanded that isothermal lines go into isothermal 

lines by means of the isogona~ transformation. 

In order to make the above work of the transform-

ation of a surface upon itself less forrna~, .l.et us state 

just what transformations we have considered, and what has 

been the nature of each. We have given the surface 

defined by equations (34), and the parameter plane - the 

p,q - plane. 





Vi ~ lJ , " 

~~ 
L...------f 

Fig. V. 

and we had defined some transformation 

\.\. ~ A"p.q' 

y = (3 ( PI or) 

v 

(which may be regarded as a non-contorma~ transformation ot 

the p,q-plane upon the u,v-plane) such that and 

form a network of isothermal 11nes; and we demand 

that the isogonal transtormation of the surface upon itself 

be such that 

'\,l I ~ R P' r J = /f, 

V -:. Q ( p, q) ~ I(J.. 

give rise to another system of isothermal A.lines on the 

surface °L. (The equa ti ons ~\.' -:. It /"1 q J , V ':. Q l JO. r ) 
may aleo be regarded as detining a non-conformal transform­

ation ot the plane upon itself.) 

32. 

This transformation, considered as a transformation 

of the u,v-plane upon the u',v'-plane, is the ordinary con-

formal transformation of a plane upon itself. Hence 
I, 

W '-:. 1,1,' -f V l is an ordinary analytic function ot vv -:. l..t.-I V 4 , 

however, we must bear in mind that the u,v-p~ane and the 

u',v'-plane are not parameter planes, but planes which are 





stretched and distorted until they fit upon the surface z: 
It is for this reason that the transformation given above 

defines a conformal transformation of the surface 

upon Itse~f. 

33. 





Sectio'!, ill-

Cauchy's Theorems, Taylor's and Laurent's Series, and other 

Theorems. 

1. Continuous Functions. 

Let us assume, as in the preceding work, that we 

have a surface L defined by the equations, 

X=. f{ pIer) 

y = r L P, qJ 

t.. = if ( 1', 11 I 

and , that we have a function W lr) of the class (1) that we 

are considering, where 

and such that 

dL/+dv=: A {[" d} f ,lFdfdtf f Cdr), 

then it , and vv = VV{ rJ) 

34. 

WLrJ will be sa1d to be a continuous function of r If the 

moduiu8 of the d1fference w( rfh) - w{ rJ approaches zero 

as the Ilodulus of It approaches zero, that Is, if 

/ vv ( r- + h. ) - vv, r-) I <. f. 
) 

whenever /h/~ ~ 

where <e 1s chosen first. 

(1) Professor Picard cal~s these classes of functions -
"functions complexes de seconde espece". Cf. Picard: OPe 
cit., vol. II., p. 541. 





2. Resular Functions. 

A function vv(rJ will be said to be regular in a 

region A on the surface ~ , if it satisfies the to~~owlng 

conditions: 

1) For every pOint r of the region A, there corres­

ponds a detini te nJ.ue w (rJ 

i8 a continuous function of r • 

35. 

2) 

3) 

WlrJ 

WlrJ admits of a uniquely determined derivative(i) 

at every pOint of the region A. 

3. !h! Inte~al taken along a Contour - Cauchy'! Fundamen­

tal Formula. 

Let 8tH and VV(Y') be functions ot the classes 

that we are studying and regular within the region A, 

where 

and 

Bt)'") ::: ALI'I 1') -I- Il{?, rl 2' 

W(r) = lAirlf) -t \I(P),!!J,: 

Let us now consider the integral 

j8 t ,-' d\Nc)--l = j 8trJdvv(y-J + 1 (}o-Jdw/rJ 

dbc.bd d~c: '4b'tt 

( ilJ 

(i) By derivative here we mean derivative in the sense in 
which we have been using it in regard to these classes ot 
functions, i.e., dw'/cLvv J where w"{rJ is another 
function of the same class. 

(11) f 9lrldwnJ is really f @md rJ ,if we lie an by ell' 

in these integrals, not d p -I- dtf z' , but ()J-ItiJl!JJ,-I h~/I drY. 
t ff 





36. 

/ F1g.1l[· = J(AfB;)(7 f f l ) (t£Jf f !ft!/dr) 
Ilbe 

But we round(1) that the condition that the integral 

be 1ndependent of the path is that the Beltrami equations be 

satisfied, therefore, since BtrJ o Ail'r} -I- Bit/If} t' is 

a tunction of the class that we have defined, the following 

equations are satisfied 

~~ F#-C# 
I r H ' 

, 

(1) ct. Sec. II., 3 . 





and hence 

J IlllfJ'')(}Jj,)(/Td, J F~/-I ofr) 
doe 

therefore 

Hence in these classes of functions, as in the analytic 

functions, the integral. of a regular function taken ar.ound 

a closed path equal zero, and therefore for these classes 

of functions we have the fol~owing 

Theorem: ll1h! functionl!. 8o··'!.!!!! WlrJ!l:!.. "!!!!.-

lytic" .2ll 1h! surface L !.!!!!!.!:! regular .2!l1h! 

contour C, and within !h! resio~ bound~~ Ez !h! 

contour, .th! integral J QJlj..) d vv{r) taken alons ~ 

contour !! equal ~ ~. 

4. Caucqz'~ Integral Theorem. 

37. 

Again take & .. J and WIN regular functions with-

in the region A on the surface L , then the function 

is regular within the region A except at that 

pOint on the surface ~ which corresponds to the point 

in the ·F' l' -plane. 





Let us now consider the integral 16*: ... ) dWlr-J 
c w(rJ- ~' 

where the contour C lies entirely in the region A. 

@lr) 1s continuous in the region A, 

Since 

eo·) By) f- G 

where € depends on r ' the radius of the circle C' 

corresponding in the t.t7 v- plane to the contour C·· on the 

surfaee L , 

Therefore, 

38. 

e~dwo·J 
wlri-WPl 1 (ldw{t') 

-+ w(r)- WrJ 
ell 

The integral 

Let 

L 8,1-) dwaJ 

WI,..) - wy J 
can be easily calculated. 

cLwt tI 

J { c~ ~ 8 f L' s;" (l) 
r(- f':hlJ + L'C~1&JdlJ 

Substituting these values in the integral above, we have 

1 ffdw(rJ 

and (!" WIH-?J 

:-

is independent of the radius ! 





hence, since&lr'is continuous, we can by choosing f as 

small as we please, make B as small as we p~ea8e, thera-

fore 1 G clJlv( 'r) 

~ I' VV(rJ - wyJ 
must equal zero. 

Hence, we have 

L 
.:1. ITt 1 ~t. rJ d wi to1 , 

(; /, WO-J - YVjb-J 

If we connect C and C' by the path K and consider the 

integral taken along C, K, and C", since the function is 

regular within the region bounded by this curve, the in­

tegral by Cauchy's fundamenta~ formula equals zero. Hence, 

since the two integrations across K are in the opposite 

direction and annul each other, the integral along C" 

equals the integral along C, therefore we have 

39. 

~1s 1s the analogon of the Cauchy integral formula for the 

analytic funotions, and it expresses the value of the func­

tion S( 'r) at any interior pOint /- ' in terms of the values 

of the function along the contour C. 

be stated as follows: 

The above result may 

Theorem: .!! lh! functions B{.-I ~ vv(rJ be "ana1y­
, 

ti..Q." .QIl. .t.ru!. 8urfag§ L ,!.D5l.u: ~ pe regular wi thi n the 





region A .2!l lh! surface L , ~ 

where C 1!! contour whic~ ~ who~ly within ~ region 

A....!l!.!! which encloses the point wy). 

5. Express10ns ~ in! Deri.at1ves. 

Let /- +~ be a point very near to~ , 

such that the point on the surface corresponding to 

.. " Wiil be within the contour C' 

have then by the preceding equation (ft) 

8yx-+~) = L,1 ~r}d.w'r) 
;ll/l. C vvlrJ- vvy-t-;-UJ 

and 

( Fi g. va ), we 

divid:lng through by WyfyJ - 7 J !i) we have 

8,p- -I-AAJ -8,pl :: / l..!:::GJ...:...I.:...~)~'d~w~':..-!r-.!...J ____ --
<NY';YJ- wY' :fIn r:. [vvtr-J- WYJ]cvvtrJ-wy.,.YJJ 

(1) dB is the only kind of derivative that we have 
otw 

assumed to exist for these functions. 

40. 





Taking the limit, we have 

cL 81 ':' 
d w !i<. 

/ 

I J h J /I W Bt r) d w l r ) == ---- . C7{}-J civil' "I Z a_ 
", lit . -f ~ h~.L . lWll--J _ .}y"Ip/I~ Wi y) - W/ !/.C i.4,RO J 

.,4 ~LW(rJ - 7JJ1- ~ ... () un t. .v/ JL 

We wish to find 

Let 1~ be the upper lim1 t of (j)L'ri along the pa th C, and f 
, 

the shortest distance of the pOint ~) from the contour 

C I then 

hence 

) 

and in general that 

cl!!£1 ~ GJ;U) ~ 
d ·w" / 

~ 

41. 





We see then tha t if 8t t"J and V"'{ t"J are "analyti c 

functions~of the surface ~ ,and regular within the 

region A, that the number of successive derivatives is 

unlimited. Hence, we see that for these classes of func-

tions, as wel~ as for the ordinary analytic functions, the 

existence and continuity of the first derivative forces 

the existence and continuity of a~l the other derivative. 

6. TaYlor'~ Series. 

. Theorem: 1!.1 (9l rJ ~ wlt)M analytic functions 2! 
~ "" ~ surface L... , ~ regular ~ .!:h! contour C ~ 

I' If in !h! region bounded by ~ contour !l!h center !l 

W(o{) (i); ~ ~ value ~ ~ function at ~ 
It 

point W~) taken wi thin the 'cont0U!: C is equal to 

~ of the convergent series; 

87 ) ~ Bld.J + 8~1"-) I wJI- wu..J] T B.,,'/t.J cw,'1.~- WU-Jj" 

f--- ----
__ . _ _ -+ B;t-"J l YJ?UJ- WItJ,J]N + __ _ 

I,' .. -- N. 

In order to proTe this ~et us suppose that e'~J and VVlr) are 

1\ II 

regular on the contour and 1n the region bounded by it. 

From Cauchy's integral theorem we have: 

(1) The expression 'region bounded by a "contour"C with 
center at VVlJ..., 'means a region bounded by a "contour· C on 
the surface L which corresponds to a region 1n the lA, v -
plane bounded by a circle C' with center at VV{~). In the 
following theoremswe shall use this same expression with 
the same meaning. --------

42. 





(9 1-1 ff;()A-) = 
/ ..lIT/, ~ 

Fig.W. 

at ~ J cL wi r-J 
Wi t-J - V"}u' 

• vvlc( 

.~J 

Now let us write J in the following form: 

I / ~ / ( W~I- VVI.I.I ) w' )-J- VV{ AJ I - W{ 1-1 - vvlC/.J 

Expanding the above expression for / , we have 
W(H-~J , 

I + Wir) - vv(r;J.) 
''Wf.fl} - w toll + 
l '{ 1-J - W { tl.J:r So 

- IV 

- --- --- -f 1~0J -wltl.Jl 
?' rNt/ lVV ( )-oj - vv' { J J 

/Vi" 

-f I VV f;t< J - wl;'J J NI-l 

Ivy ( j4 ... ~!l vv{ 1'-J- vv '~)J 

In the above expression for B~J , replacing ~ 
wtrJ-wyJ 

by this value, we have 

43 





44. 

"-
III-f) By..} = J. rf J. cIIVYJ-wtJ.J} + ~ [v;}uJ- W(d)] ~ 

. _ _ _ _ __ _ ~ Jv I W)uJ -Wi ttJ 1N -I Rv I 

where the coefficients ~,J" -_ ... - Jv and RN haTe 

the following values: 

Jo . I 1 (J, 1-1 d w{ rJ 
- ~ITI ' C W/}"-) - WIrJ.J ) J, -:. 

I 1 BO-I .iwi t-l 
:ihi t [Wi ... ' - VV{t/..J1

2 

(S()) 
I 

J.. 1 (9IH dw( 1-1 ,y,J R/V 
J;h J - 1'/4,1) J"-II ,tf}",dwM, 

~ .1.. J /Vd wi rJ "'7J : 

~ ~lrl' LWI r) - wi,,!'] 
, '/Ti [yV( H - IN(;') 

( 
r.. 

II 

We should now like to show that when n increases inderin1tel~ 

tR loAl approaches zero, that is, that the above series is 

convergent. Let M be the maximua nlue of / Bt 'rJ J 

the path 0, P the maximum distance of \IV 1Pi.) trom the 

tour, or the radius of the oorresponding circle in the 

plane, and r = I wY' - W (,l..J J , then /\lvl',-) - wyl 1:= p- r 
and L the integral It cL WI rJ , therefore 

JR j L LI'1-) If-!/ M L 
N J.h P . p- r 

~ ./L {L (/' 
p- r P 

along 

con-

t.t, v -

where K 1s some constant. Since the factor fjp tends 

toward zero, when n is increased indefinitely, ~ . approaches 

zero, therefore 

6J J«1 :-- ,J(r f J, (Vvyl - VV{ ot) 0_- - - - - - + J,1:y'- *1,/.,1 ':_-_ 





Comparing the coefficients JIJ J J 1 " • . • - - . V/V 
with the expressions in equations (¥7) and (ijJ) we see that 

- -- -- - - - - --- -
IV /1/ 

_ I- Q.t~) [ W ~I - W/~)1 + 
I.f._- N 

Hence our theorem is proved. 

The ana~ogon of this 1n the analytic functions 

has been ca~~ed the Cauchy-Taylor development of a function 

of a complex variable. The circle of convergence in the 

case ot analytic functions extended until it touched the 

singular point of the function. We shall discuss ~ater, 

under the topiC - Region ~ Convergen~e, the region with­

in which the series just discussed converges. 

7. Laurent'~ Series: 

Laurent made a very important extension of the 

Cauchy-TaY..I..or deveJ.opment of analytic functions withtn re­

gions for which the Cauchy-Taylor deve~opment does not hOld. 

Let us see if we can make an analo~ous extension of the 

Cauchy-Tay~or development for these classes of functions 

with which we are interested. 

Let C and C' be two"concentric contours"{i) 

(1) These "concentric contours" on the surface ~ corre­
spond to two concentric circles in the tlrV -plane with 
their center at ,,"tol) 
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on the surface ~ with center at vv/~J and let C' be the 
,I " 

inner of these contours. Take the functions @l"" and r • . 

Vv(rJ which are regu~ar throughout the region included be­

tween these~contours'and a~so on the 'contoursPC and ct. 

The function 

Fig. Jr. 

(0, r) 
VV{~)-v"Y) 

1s regular within the inc~uded 

region, except at the pOint W~) 

(Choose V~J so that it 11es with­

in the region bounded by the "con­

tours"O and 0'). If we surround 

by a slIall 'contour I, Y (whioh 

corresponds to a circle in the 

U,V -plane with center at vV~) ) and draw lines K and K' 

connecting Y to C and C' repectively, the tunction 

Sit!-
W(~-W~J within the shaded part or the figure 1s 

eyerywhere regular and the Cauchy fundamental formula holds, 

hence 
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1 B I J-)dwt'" J 

+ WlrJ - ~J 
/-< I 

9 t t-J cl wtrJ 
w l t-J - WjM-l 

e:-

J (if ( t-J d w( t-J 

-f w( rJ _ IN~) 
v: ' 
.-/1 

= o. 





The two integrals across K , since they are in the opposite 

direction, annul each other, and also, for the same reason, 

the integrals across K' annul each other, and the Cauchy 

integral formula applies to the integral around Y , hence 

we have 

the integrals C and C' now being taken in the same sense. 

We see that the Cauchy Taylor development applies to the 

first integra~, and we have 

L J 8,,·-, d wI tJ ::. 
,. h (, WI t-J - Wyl 

where ;fo, J, ~ -- have the same va!ues 

which they had in the preceding paragraph. 

Now we wish to find the value of the integral 

.J.. . J B, .... ) d J/Y{ ..-J 
;1/71. I VvyJ - Wi r J 

C. 

In order to do this let us replace in the 
~J- w( rJ 

above integral by the following expression: 

~ I 
~)_ vvl rJ 

I (\/vlt-J-VVIJ,J ) 

7'- w(I-) ,-~I - w/JI 
:: / -f vY( ~) - wi tiJ 

WYI- wi eJ.) l7'- wll-I::! ~ 
= 

-I- - - -- - -
N- I /1/ 

+ [wI r) - wiJ) J + [Wi'r) - wtrl-J J 
L "'J'-I - Wi JJ :1 IV ~) _ W ( rJ Jt: Vj"1 _ w t"'!] IV • 
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We then have 

~ .1 8tH dw/rt 
;2 /It e ' ~I - l/V ( ~J 

= /(, + 1(, -I 
~/- lIV(tl-J [l.A;r'- WIJ.J.J t. 

I 

where 
Ii' = -'- . i [Wl,.) - WloL]" e( r) d wi r). 

1 "ITI (,' 

We wish to show that the integral of the remainder term 

appro~ches zero as n increases inderinite~y. 

Let M'be the maximum absolute va~ue of ~l~)along the 

path C', R' the radius of the circ~e 1n the ~t,V-plane cor-

" " responding to the contour , C' J and '! = J~) - yv(c/.) / , 

then R' < r 
less than 

The absolute value of the integral is 

LV) 1 £ I {If I) IV 

'r-R' ) 

but since R' < r , the factor l1'J N 

approaches zero as 

n increases indefinitely, therefore the integral of the 

remainder term approacaes zero as ~ becomes indefinitely 

large, and hence the series 

If, + !b- -f 
~J- Wlti.) I ~/- W/~J ] 2-

converges, and 

.-1 I(N 

rWYJ-wtlJ IN 
~ _. -
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Therefore we can state the analogon or Laurent's theorem 

tor this class of functions as follows: 

Theorem: If vv£rJ be any point in the region bounded 
-...,.. 

!2z the "contours" c!!!!!! c' :!.!J1! ~tre tl yY (~) 

within which 

whe:f~ 

J. = _I j GOo) eI. W( 'rl 0 I 

/ :tIT, C L YV( ~ J - IIV (d.J J 1-1-

I i r v v ( ,., - //v I tI J J 1 -~ cL 
... - . c!:y {J-' vv ( r-) . 

2:17 J ~ 

8. Liouville's Theorem. 

Theorem: A function B(.!-) which II regular for ill 

fin! te values of r !!!!!! which is everywpere lim! ted 

is !. consta.nt. 

If GJ( r} is regular for all fini te values of ~ , 

it is developable in the Cauchy-Taylor expansion. Any 
AI 

coeffici en t aN of the term Ivvc rJ - YV(d.JJ is gi ven by the 

following expression: 

Jdw(~J 
:. 

J - vv{ -.i]'V-f1 
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Fig. x. 
thesis @lrJ 

Now let us draw "contours" 

(circles jn the u,v-plane) 

of vari ous "radi i" about W/,i.) 

as a center. 

where NU"J is the maximum 

value of the func ti on (8, r) 

along the "contour" of "radius" 

r , and J the maximum value 

or I v v (r) - v v ( of..) J and 

J.., ~ I d vv ( ". J 
c 

By hypo-

is always less than If , hence 

Therefore by increasing r ' (,1.,1/ can be made as small as we 

please. But (.L,v is a defini te integral, therefore, if 

IV.?: / Hence @l r) is a constant aa 

Liouvi~~e's theorem may also be stated as rol~ows: 

! function Olt.J which is resu~ar everywhere, including 

!h! pOint !l infinity, is ~ constant. 

9. !b! singularities £! single-valued functions. 

Let us consider a function t9(rJ which is regular 

at all pOints in the region A of the surface L, except at 
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the pOint wto() , so that the point wv(,,() is a singularity 

.0/.. J 
Fig. XI. 

of the function €9(rJ 

Let us draw a "contour n 

( ' about vv(,{l as 
II 

center with a radius ~. 

Then the function @( r) 

is regular in the region 

bounded by the two "con­

tours" C and C 

where C is a "contour" 

with a larger "radius"; 

and the Laurent expansion 

holds, Hence 

The terms in the ~ast line of this expansion are 

those whi cl\tell us of the na ture of the singulari ty of VV(",). 

It is evident that if none of these terms eXist, that there 

is no singularity at the paint. 

If the number of terms of the last line is unlirr.­

i ted, that is, if the terms wi th the /(; far coefficients 

form an infinite series, the paint ~ in the p,q-plane, or 

the corresponding point vvt"') on the surface r 1s said to 

be an essentially singular pOint for the functi (In St r J 
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On the other hand, if these terms are finite in 

number, and if at least one ot these eXists, that is, if 

all the l<, are not zero, the point 0<. in the p,q-plane, 

~ or the corresponding pOint W(~J on the surface, is said to 

be a poJ.e. If all the /(s , except /(, , equal zero, 

the point VV(~J is said to be a simpl~ pole. 

the highest /( which does not equal zero, W(o(J is said to 

be a pole of order ~. If the singularity 1s a pale or order 
JV' 

n, the function Ivv, .. J - vv(~}J ()( rJ is regular throughout the 

region A. 

The function has an essentially singular 

point at W(~)/Y,o. In order to see this, let us recall the 

expansion of e x 
x e = 

.,1 

I f X -JJ.x -t 

from this we see that 
I e Wtr) I + L 

}1li rJ 

I 2-

f i:LVV' Y"J 1 t 

10. Function~ with no essential singular point. 

Theorem: J.I.!. single-valueS. function at. rJ ~ !!.2. 

singularities, other !h!n poles, over !h! entire 

surrace, including in! point at infinitYJ in! function 

!!. !. ra tional function. 1.!l vv {rJ • 

Let us suppose that the poles are at the pOints 
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rA"c;(a.--- d L ' in the p,q-plane, or at the corresponding 





points vv fd..,) I VV(rJ..:L J I wtctl.) on the surface, then the 

Laurent expansion at the polelNb<L') , where N/.· is the order 

of the pole, is 

+ /(,,'~ t--

[WI. rJ - w'r;(~) JZ 

If the pOint be a pole of order N , the Laurent 

expansion will be 

% 
d., Wi rJ + a~ Lw( rJJ ~ 

The function 
~f e L ~ '1-' (r) - . \lV( "'J- w( 14.,) 

l:: ( 

/(1'#;' 
f lvv( to) - W(ti,.JJ~: 

f.. 
_ [d I vvo·J + d~ I 'N( r--J J -4 +dlYlw ( r)]N J 

since it 1s regular over the entire surface is, by Liou-

vi~le's theorem, equal to s eme constant ~o • 

the function 8lri may be written 

8, r-J = a () + ti. I 'tV, r) -f a" Lw i. r) J:i + _ _ _ 
L: 1 

oJ. I.. J(,' I + /r, 1. - - -

l::.1 vvfrJ-vvfO<,:J LWfr) -W(<<,)!% 

Therefore, 

and hance, since 8l~) 1s expressed as a rational function 

in WIN, the theorem is proved. 

11. Corollary: A function which _is single-valued !.!!£. ~f! 
..... . 

n2 sisgularities ~ the entire surface, other !b!n 

!. pole !1 ~ Eoint !U Jnfinity,J..§. !. po..lynomia.l !~ 

Vy( raj 
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If the only singularity is a pole at infinity, 

all the /( $ in the above expansion of at r) equal zero, 

%. 

therefore 

GJl r) :. cLu ~ (/., W(/") -f dzlYv{rJJ"'--

and hence the corollary is proved. 

12. L08arithmi~ Residues. 

Let wU) be a pole of order m, or an isolated 

essential singular pOint of the function ~(r) , and 

w,rJ a regular function within the neighborhood of the 

pOint VV{~J The Laurent expansion of the function 

(), rJ about the point W(o() is 

+- /(/~-I 
Ivvu"J - VV{I-' J~-I 

where ~£r) 1s regular within the neighborhood of the pOint 

Let C' be a "contour" with center at vv(~l on 

the surface L 

Now 1 fOol d wOo):. 0 ,s i nc e £II ~J 
to' 

is regular within the 

"contour" C' and the Cauchy integral formula app~ies, and 

except when f =- I , because the func-

takes on the same value after it has 





described a closed path. On the other hand, 

J ctw,"J 
C' WO"J -\lVI;'J :: ~ 171 as was proved in Sec. I I., 4. 

Therefore, 

1 80" d W("') -= I~ :z 171 

e' 

The coefficient Jr,' 1s cal~ed the residue of the function 

8l r) wi th respect to the singular pOint W(A.' Let 

us consider now a closed contour ~ , which has in its 

interior a fini te number of singuJ.ar pOints d, h, ~ __ • -( Let 

A I 13, f. - - - -- ~, be the corresponding residues. 

v 

·--------u 

Fig. XII. 

If we surround each of these pOints by "contours" (circles 

in the u,v-plane) with very small "radii", the integra~ 

taken around r is equal to the integral. taken around 

the small "contours", their sense being the same, hence we 

have 

fr en! 4. WI rJ '" :J. Ird A .f fi ~ e,.. - - - + /... ) 

which we may state as follows: 
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, 
sense, is equal !Q. ~ product.2.! ,,1,UI, &!h!. ~ .2! 

!h!. residues relative 1£ !b! singular ROints ~ 

enclosed B.l !M closed path 

13. Multiple-valued funotions. - Branch pOints. 

In all our previous work, we have supposed that all 

the functions that we considered were sin!J.e-valued funct.ions 

or r ; however, t here, as in the case of analytic functions, 

there may exist functions which are many-valued functions of 

r ,i.e., which have more than one value oorrespondin! to 

each value of r 

The p.ints and curves for whioh the values of the 

funotions of different branches coincide are called branch 

pOints and branch curves. 

In the case of analytic functions, we found that there 

were no branch curves, but only branch pOints. Let us 

investigate the classes of functions that w' are study1n~ 

and see if it is possible to have branch ourves. 

For these branch points or branch curves, the 

Jacobian ot transformation(i) vanishes - hence, if we have 

the funct ion WI rJ = U £,', '1 J -I- \' { p. '1' ,: J a t the branch point, 

or branch curves, the determinant 

( 1 ) ct. Gours at; op. c 1 t ., vo 1. I., p. . 52. 





vanishes. 

If we replace ~ and ~ by their values obtained 

from the Beltrami equations, we have the quadratic form 

which is always definite unless 
dl.l _ ,d U • (J 

op - ~ -

{IJ 

In the same way by replacing in the determinant the values 

and ~q obtained from the Beltrami equations, we 

have -the quadratic form 

which is always definite un~es s 

dY _ d v _ A 

TP-Jij-v 

Hence the condition that the determinant vanish is that 
~w :. ~u ; f;-~ %; : 0 
lJr rq ~ 6J 

which expresses the condition that there be on~y branch 

pOint.s, and not branch curves, therefore, in general, ~ 

have branch pOints. 

14. ExamRle 2! many-valued functions. 

Let us consider the well known transformation 
\,l:: ? (! 0 f 'f 
Y::: p 9iIV '1' 

(1) cf. Darboux: OPe cit., vol. III, p. 194. 
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The function \N-:.U+VI.' is a non-analytic 

function. It, however, is a function which belongs to 

the classes we hnve defined, and we are in a position to 

study it. The function \IV -:. Ll. f V L belongs to the sur-

face ~ whose linear element is defined by 

d~~:: 1- d p -I ! d'fJ. 
f 

which is mapped upon the u,v-plane by a conformal trans-

formation, hence we can study the above transformation 

best by drawing the Riemann surfaces for the transformation 

of the p,q-plane upon the u,v-plane. 

Fig. XIII. 

The Jacobian of transformation is f ; therefore when 

we have the branch ~oint, or branch curves; in the u,v­

plane it 1s a pOint, namely, the origin - in the p,q­

plane a line, namely, the q-axis. 

There will be an infinite number of sheets in 

the u,v-plane, corresponding to the one sheet over the 

" 
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p,q-plane. Corresponding to any geometrical pOint P. in 

the shaded part of the u,v-plane there w111 be an infinite 

number of geometri ca 1 poi n ts in the p, q -plane, P: p ~ ?:" - -­
one in the shaded portion of each of the strips of width ;lIT • 

The infinite number of sheets over the u,v-plCl ne w111 hang 

together at the origin. 

If we consider the function W ': W ~ J we know 

that, since w' is an ordinary analytic function of VI/ J it 
~ 

belongs to the same surface L to which -w belongs. The 

function 

where 

I , , . .t 
W ::. 1.,L + V l ~ YV 

11.' ... p~eo~!'Ley 

V'~ f'J-t~N.1q. 

The Riemann surface for these functions wl~l be just as the 

above, except that the strips will be of width v , and 

there will be a compression in toward the cr -axis, as 

indicated in the figure. 

Fig. XIV. 

15. Resion of Convergence. 

In the foregoing proof of the Cauchy -Taylor. And 





Laurent series, we made no statement about the maximum !!!! 

of the region of convergence. If we are thinking ot the 

function as a function in the u,v-plane we may speak ot the 

circle of convergence, which will as in thecase of analytic 

functions bend until it touches some singularity or branch 

pOint. On the other hand, if we are thinking of the func-

tion as a function on the surface ~ or on the p,q-plane, 

the region of convergence is no longer a circle, but some 

~contour" which corresponds to the circle on the u,v-plane. 

This "contour" will extend until it touches some singu~ar­

ity; and it will shrink up on the pOint vY{~J as the corre­

sponding circle shrinks up on its center W{~, 
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Section !.I. 

1. Examples or ~ of these functlon~. 

As we have before stated, these functions which 

we are studying are merely the solutions or the Beltrami 

differential equations 

~v r-~ _F~ 
dr 

:. 

H 
~ F~ - ~ ~ 
"if 

:: p 

H 

In order to find some function satisfying these 

differential equations let us take definite surfaces. 

a) Let us consider the sphere which is defined by the 

equations, 

x:. R ~iN f Cdg r 
J: R'l,'Nt' il'N'I 

:l: R ,fie r 
then the square of the ~inear element on the sphere is given 

by the equation 

d 2 D 1 _1 .2 R .2 2 "-
S ~ II a f + S"/V t dr . 

Hence, in this case, the Beltrami equations become 





c1v Rt.d ll 

TP = ;q 
R!l . flllVp ' 

Jy : 
R t. I ~ !iN? P 

Tif Ii 'g,'N f' 

Now we wiah to rind one particular solution of these equa-

tiona. Let us assume that V 1s a function of f alone, 

and that U is a function 'f alone, then the second ot the 

equations is satisfied and the ~irs~.,·i. becomes 

1s a solution. 

Therefore the function w _. u + vi = q ~ l lili Ii- is one 

of the functions that we are seeking. Any ordinary analy­

tic function of w is also a function of this class!i) 

b) The linear element of the pseudo-sphere .is given 

by the equation 
j ;" d ~ (-) ~ 1 P _J ' ) a. = c/''p-f...e ""'I . , 

where the pseudo-sphere 1s senerated by the revolution of 

the tractrix, 

T ~ iI. g,IV 1 ' 
about its base~ii) 

In this case 

f ~ ,. ~p 

~ 0 " .. d e . J 

(i") See E. Picard: OPe ci t., vol. II. t p. 54~ - 2. 

(i1) Darboux: OPe oit., vol. III. , p. 394. 
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Hence the Beltl-ami equations become 

* ;: a~~ 
tf-

cl~el' 

if 
a.' e ~,~w 

': - Tr 
d 'Le , 

Let us as in the foregoing example assume that 

V is a function or , alone, and u. or r alone, then we 

rind tha t the above equa tions will be sa ti sri.ed by 

V = - e. -f u.:. q 

Therefore any analytic function ot V" :: U -fV, is a 

function of the second kind. 

c) Let us now take the torus which is given by the 

equations 

x ~ 'R - 1 eo s ,) c ()' r 
y= lR- reo.:,) !I:"''f 

t :. r g.,." 

where f is the radius ot the generating circl.e and R 

the distance of its center from the axis. 

The linear element of the surtace 1s 

defined by the equation 
L L ~ ~ 

d~ :: rt.df of l/f- fC()St) "'1 
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Hence, ):.-: r ~ F:. t:)1 &. ~ (/?- .r c p ~1 ) :L 

therefore the Beltrami equations become 





If we assume again that ~t is a function of F 

alone, and " ot 01 alone, we see tha tone solut i on of the 

above is 

Here we have as one solution vV';. U + V l , a 

function which is uniform upon the torus and which 1s a 

doubly-periodic function with the periods .2/T and 

The above exampJ.es of functions of these classes 

64. 

are the well-known functions which define a conformal trans-

formation of the particular surface to which each belongs 

upon a p.&.ane. But, whi~e it is evident by the restriction 

we have placed upon u and v , that all the functions which 

belong to the classes that we have defined, wi~~ give a con-

forma~ transformation of ~ surface upon the plane, we 

have here reached our functions in a way very different from 

the way in which these functions are ordinarily reached, 

namely in seeking a solution for the Beltrami equations. 

(1) cf. E. Picard: Ope cit., vol. II., p. 544. 
For Riemann surfaces of th'S 0 function0 see 
Klein: O~ ~_emann'~ Theo~ 2r Fuqctio~, p. 46. 





And we can obtain functions that belon~ to this class by 

finding merely the solutions of the Beltrami equations, 

where E, F, and G are any arbitrary functions of p and q. 

2. Interpretation of ~ work ~ the u,v-p~ane. 

The surf.ce L: which plays such an important part 

in ,11 this work is not e8sentia~ to theory, but is rather 

an aid to our intuition and a help in the anticipation ot 

results. The u,v-plane is essentially the plane in which 

we are working. In order to interpret this work in the 

u,v-plane, in the case of differentiation and inte~ation 

it is necessary mere~y to make new definitions - namely, by 
dw' 

der1 va ti ve we shall mean dW , and by the integral ot fj( rJ 

from!. to b, we shall mean t BiHlrtd(ffrLp f F;;."lIrirJ 

However, if we attempt to interpret the isogonal transtorm-

ation, we are forced into a nen-Euclidean geometry in the 

u,v-plane. A !eometry about which very little can be said 

until we know the surface to which the functions belong, or 

the E, F, and G ~ich occur in the Beltrami equations. In 

all cases the geometry in the u,v-plane will be one in 

which extremals are perjendicular to transversalsf i ) 

(i) Stromquist: Op geometries in which circles ~ the 
the shortest lines. 

Transactions of the American Mathematical Society, 
vol. II., No.2, p. 181. 
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If we take a particular surface, we can make further 

statements about the ~eometry. In the case of the pseudo­

sphere, which we gave above (l,b) the geometry is Lobatchew­

skian, that is, a geometry in which circles are the shortest 

distances and extremals are perpendicular to their transvers-

1 
(i) 

a s. 

(i) Stromquist: OPe cit. 
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Conclusion 

It is interestin~ to note some of the problems in 

which the Beltrami equations occur. In a brief statement of 

a few of these prob~ems, it is impossible to give a treatment 

comprehensive and rigorous enou!h to give a clear idea of 

what has been done; therefore, the attempt here will be to 

indicate mere~y the !eneral lines of the work. 

Professor Picard obtains these equations by equatin~ 

one of the conjugate factors of 
z. 

-I- Ii. y to the cor-

responding factor of ).( 1: d~ f ~f-d?tl1 f G- d1 J , and in 

his chapter on Theoremes Generaux ~ ~ Surface de Riemann(i) 

he proves a few theorems about functions that satisfy the 

Beltrami equations. However, he turns from the consideration 

of these functions with litt~e more than the sug&estion 'hat, 

since any function belon~lng to a surface is an ord.inary ana-

lytic function of any other function of this same surface, all 

functions of a surface may be treated as analyt1c functions of 

some one function of this surface. 

Professor Darboux, following Beltrami, proves sever-

a1 very interesting theorems about these functions in h1s 

work on the surface theory. Amon~ these is a theorem for 

(1) Picard: Ope cit., vo.!.. II, p. 541. 
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(i) 
the surface analo~ous to the Green theorem for the plane. 

Professor Klein in his work On R1emann'~ Theory 2! Funct~o~ 

interpretes these functions that satisfy the Be~traroi equa­

tions of the second order as steady streamin~ along the 

surfece. In this very interestin~ work he gives examples 

of the stream lines for severa~ different surfaces. His 

treatment 1s from the geometrical rather than the functional 

standpoint. 

In speaking of an extension of the theory of func-

tions of a complex variable to include non-analytic functions, 

we said tha t non-analytic functions need not be necessarily 

useless or difficult; and the functions which this extension 

has lead us to conaider, as 1s obvious from the examples glv-

en in the precedin~ paragraph, are n21 useless and difficult, 

but the well-known functions which arise in the theory of 

surfaces. While the extension of the theory of functions 

of a comp~ex variable that we have made is ~ the most gen-

era~ one - name~y, one in which we will n21 be forced to 

consider the functions belongin! to each different surface 

as forming a separate class, and in which, even when thus 

considered, we will n21 have to make such frequent use of a 

(i) Darboux: op. cit., vol. III., p. 198, et sq. 
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standard function of that class,- yet it does enab~e us to 

make a more thorough and accurate study of the functions than 

we could otherwise. As an illustration of this take the 

method indicated by Professor Picard ( OPe cit., vol. II, 

p. 541). His definition of a pole is essentially the same 

as the one we adopted, and yet in following out his sugges­

tions ( lac. cit.), we should scarcely be lead to consider 

whether the standard function \IV (~J (or which we are to 

consider all of functions at rJ as an ordinary analytic func­

tion) 1s double-valued or not. 

Moreover, this extension wi11 lead us to many func-

tiona which wou~d not be encountered in the surface theory, 

because we are in the ,osition to study any functions which 

are the solutions of the Beltrami equations, 

F k _ 1-1 J~ ~ 
oq of Tp 

F~ -t H~. 

where H -= lEG - F2 I and where E, F, and G are any arbi-

trary functions of p and q, and it is not necessary to know 

anythin~ about the surface other than the values of E, F, and 

G. 

Finis 





1. 

BIBLIOGRAPHY 

Burkhardt, Heinrich. Funktionentheorishe Vorlesungen. 

Cauchy, Augustin. ~ !!! fonctions ~ yarlablea imaginaires. 

Co.ptes Rendus: 1851, ler sem., p. 160. 

Sur I 'application ~ !! nouvelle theorie 

~ imaglnaires ~ dlverses branches ~ 

sCiences mathematiques. 

Comptes Rendus: 1847: 1847, 28 sem., p. 129. 

Darboux, Gas'on. Lecons sur 1a Theor1e Generale des Surfaces. 
--- -- (Volumes 1, 2, and 3.) 

Gauthier-V111iers et Fils, Paris, 1894. 

Durege, H. Elements of the Theory of Functions. 
(Transla-ed from the German by G. E. Fisher 
and I. ~. SChwatt.) 

J. S. Cushing & Company, Norwood, Mass. 1896. 

Forsyth, A. R. Theory 2! Functions 2! ~ Complex Variable. 

The University Press, Cambridge. 1900 . 

Goursat, Edouard. Cours ~'Ana1yse Mathematique. Vol. II. 

Gautier-Villars, Paris. 1905. 

Harkness and Morley. Introduction ~ Analytic Functions. 

Macmillan & Company, London. 1898. 

Harnack, Alex. Introduction to Ca1cu~u8. 
(Translated from-rhe German by George L. 
Cathcart. ) 

Williams & Norg.ate, Convent Garden, London. 1891. 

Hobson, E. W. The Theory ~ Functions of ~ Rea~ Variable. 

The University Press, Cambridge. 1907. 

Humbert, G. COUI!S d'Ana.lyse. Vola. 1., 2. 

Gauthier-Villars, Paris. 1882. 





Jordan, C. Coure d'Analyse. Vola. 1, 2. 

Gauthier-Villars, Paris. 1882. 

Klein, Felix. On Riellann's Theory ~ F'unctlons. 
(Translated fro. the German by Frances Hard­
castle.) 

Macmillan & Bowes, Cambridge. 1893. 

OsgOOd, W. F. Lehrbuch ~ Funktionen Theories. 

B. G. Teubner, Leipzig and Berlin. 1905. 

Picard, Emile. Tra1te ~·Ana~yse. Vols. 1, 2. 

Gauthier-Vi~lars, Paris. 1905. 

ii. 

Pringsheim, Alfred. Grundlagen ~ Allgemeinen ;unktion~ehre. 

Encyclopldie der Mathematischen Wissensehaften. Il.A 1 

Stromquist, Car~ Eben. On Geometries in which circles !£! 

!b! shortest lines. 

Transactions of the American Mathematical Society. 
Vol. 7, No.2, pp. 175 - 183. April, 1906. 

Thomae, J. ~entare 1lleorie 2!n analyt1schen Funktionen. 

Halle, a. a., Verlag von Louis Nebart. 1898. 

Val.son, C. A. 

Gauth1er-Vl~lars, Paris. 1868. 

Whittaker, E. T. A Course of Modern Anallsis. 

The University Press, Cambridge. 1902. 













318.1M1l 
XW4\ 

IIII~ IIIJI~'IIIWI~I~iil~jillll~I~I~illllll 
010-100965467 




