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On Some Classes of Non-Analytic Functions of a

Complex Variable.

Introduction.

In a study of the theory of analytic functions of
a complex variable, one is at first impressed with the fact
that postulating sovlittle, one proves apparently so much.
For instance, Professor Goursat in his proof of Cauchy's fund-
amental formula(i), assumes merely the existence of the first
derivative of f(z), and yet he arrives at the result that the
nunber of derivatives of thié function is uniimited - that is,
that a derivative of any order not only exists, but is con-
tinuous. However, one must bear in mind that this cliass of
function, known as analytic, is a very liimited and special
class; for the analytic functions w = £(z), where w = u + vi
and z = x + yi, are limited to the solutions of the Cauchy-
Riemann equations, g%= %’;L/ , %}‘(l = _%? :

This fact, namely, that the analiytic functions are
a very limited and special class, with the additional fact
that there seems to be no reason a priori why many of the
theorems concerning analytic functions cannot be extended to
analOgous theorems for non-analytic functions, lead us to

seek to define other classes of functions of a compiex var-

(1) E. Goursat: Cours d'Analyse Mathematique. Vol. II.,n.82.






iable and to attempt to find for the ciasses, thus defined,

theorems anaiogous to those for analytic functions.

Before we attack the probiem of defining these new
classes of functions, let us first see what meaning has been
attached to the term, function of a compiex variable, and
what has been the attitude in regard to the comprehensive-

ness of the theory of anaiytic functions.

Since the definitions of a function of a complex
variable have been extensions of the definitions of functions
of rea. variables, it is interesting to note the process by
which we have reached the modern conception of functions of
a real variable. To the oclder mathematicians, a function of
X usually meant nothing more than a power of x; and certainly

their broadest definition of function of x would have in-
ciuded only expliicit functions of x. Euler extended the
definition to include implicit functions of x. And through
a consideration of trigonometric series, Fourier was lead to
a definition of function which admitted different analytic
expressions in different intervals. However, it was Dir-
ichlet, who gave us the broad definition which we have to-
day, namely.y¥ is a single va;ued function of the variable x,
in the continuous interval (a,b), when a definite value of
Y corresponds to esch value of x, such that a< x< b, no

matter in what form this correspondence is satisfied. (1)

(i) Hobson: Functions of a Real Variable. p. 2i86.

Pringsheim: Encyklopadie der mathematischer Wissen-

schaften, II. A 1, pp. 3 - 8.






Thus we see that the broad definition of a function of a
real variable which we have today, was the culmination of
a slow process.

In contrast with this, we find among the eariiest
writers on the theory of fuhctions of a complex variable a
broad definition of functions of a compiex variabie. How-
ever, we do find, even among some of the modern writers on
the theory of functions of a compiex variable, a narrow def-
inition of functiongi) And it seems that in some cases,
at least, this narrow definition of function is due rather
to lack of breadth of view of the function theory than to
a consclous effort to narrow the definition so that it will
include onliy analytic functions.

We have said that the analytic functions of a com-
plex variable are mere.y those functions which are solutions
of the Cauchy-Riemann equations. But it is scarcely neces-
sary to state that this limitation of the theory of func-
tions of a complex variable did not come about by the arbi-
trary decision of some one person, or persons, to study on-.
ly the'functions which satisfy these particuliar differential
equations. When men first attempted to handle the simple
functions of a complex variable which they first encountered,
it was but natural to foliow along the iines of the theory

of functions of a real variabie and to demand the existence

(i) Some of these definitions of a complex variable will
be quoted later.






of a derivative in the Euclidean plane. It was this de-
mand, and not any arbitrary choice, which lead to the
Cauchy-Rieman(i) equations. From the present develop-
ment of the function theory, it is easy to see why they
were lead to the Cauchy-Riemann equations; for the sim-
plest functions are, in general, deveiopable in the Cau-
chy-Taylor series, and all functions which are develop-
ablie in this series are soiutions of these equations.
Strictiy speaking, no one person can be said to
have originated the theory of functions of a complex var-
iable, and yet Cauchy, who first made an attempt to give
both a rigorous and a general treatment of functions of a
compiex variablie, may be regarded as its true founder.

Cauchy's memoir - Sur les fonctions de variables

imqg;naires(ﬁ) - not oniy is one of the earliest contri-

butions to the theory of functions of a complex variable,

but it also contains the very essence of the spirit of

modern analysis; for this reason, it is apparent that no

better introduction to the theory of functions of a com-
pliex variablie can be given than this mathematical classic:-

"La théorie des fonctions de variables imaginaires
présente des questions délicates qu'il importait de ré-
soudre, et qui ont souvent embarrassé les géométres. Mais
toute difficulité disparaitra, si, en se laissant guider par
l'analogie, on étend aux fonctions de variables imaginaires

(1) Riemann's demand is that the integral be independent
of the path. ‘
(ii) Comptes Rendus: 1851, 2% sem. p. 166.






5.

"les definitions generzlement adoptées pour les fonctions de
variables réeles. On arrive ainsi & des conciusions, sin-
guliéres au premier abord, et néanmoins trés-légitimes, que
j'indiquerai en peu de mots.

"Deux variables réeles sont dites fonctions 1l'une
que ia vaieur de l'une détermine la vaieur de l'autre. Si
les deux variables sont censées représenter les abscisses
de deux points assujettis 4 se mouvoir sur une méme droite,
la position de 1'un des points mobiies déterminera la posi-
tion de 1l'autre, et reciproquement.

"Ajoutons que le rapport différentiel de deux variables
réeies est une quantité généralement determinée, et qui né-
anmoins peut cesser de .'€tre pour certaines valeurs parti-

culieres des variables. Ainsi, par exemnple, le rapport dif-
férentiel de Y x deviendra indétermin€ pour x = 0, si l'on
suppose y: Xsin{x—-

"Concevons maintenant que, X, y étant des variables re-
elles et indépendantesig‘une de. 1'autre, on pose
i etant une racine carree déy-L. 2z sera ce qu'on nomme une
variable imaginaire, Soit ‘

W=V+W
une autre variable imaginaire, v et !'é%ant réels. Si,
comme on doit natureliement .ie faire, on €tend aux variables
imaginaires les définitions adoptées dans le cas ol les var-
iables sont réeiles, u devra €tre cens€ fonction de z, lors-
que la valeur de z déterminera la valeur de u. Or, il suf-
fit pour cela que v et w soient des fonctions déterninées
de x, y. Alors jaussi, en considérant les variabies réeles
X et y renfermées dan' z, ou les variables réelles v et w
renfermées dans u, commepropres a representer les coordon-
nées rectilignes et rectangulaires, d'un point mobile Z ou
U, on verra la position du point mobiie Z déterminer tou-
jours la position du point mobile U.

"Si d'ailleurs on nomme r le rayon vecteur mené de
l'origine des coordonnées au point mobile Z, et p l'angle
polaire formé par ce rayon vecteur avec l'axe des x, les
coordonnées polaires r et p, lifes a X, Y par les equations

X=Ycosp, Y=7rsinp
et a z par la formule .
Z=reft

seront ce qu'on nomme le module et l'argument de la variable
imaginaire z. ,
"Ces definitions €tant adoptées, et 4 étant une fonction
quelconque de la variable imaginaire z, le rapport différen-
tiel de u a =z dépendra, en genéral non-seulement des variables

réelles x et y, ou, ce qui revient au meme, de ia position
attribuée au point mobilie Z, mais encore du rapport diffé€ren-







tiel de y a x, ou, en d'autres termes, de la direction de
tangente a la courbe que décrira le point mcbiie, lorsq'on
fera varier z. Ainsi, par exempie, comme on aura

dz = dx,
si le point mobiie se meut paraileiement & l'axe des..x, et
dz = udy,

si ie point mobiie se meut parallélement & 1l'axe des y, le
rapport différentiel de u & z sera, dans la premiére hy-

pothese, _
Dev+iDyw,

et, dans ia seconde hypothese,
v +1 Dyw = w— D
BovsilBow = Qw -

Ajoutons que, si ce¢s deux valeurs particuliéres du rapport
différentiel de ua z sont égales entre elles, ce rapport
deviendra indépendant de la direction suivie par le point
mobiie, et se réduira simplement & une fonction des deux
variables x, y.

"Dans ce cas particulier, on aura

Oyv="Lyw, Dyv=-Bw,
par conséhuent,

¥vi0Q'v=0, Dyw+Dw=o
et 2
Du+biu=o.

Donc alors la fonction u de z sera en méme temps une fonction

de x, y qui vérifiera une equation aux ddriv€es partiellies

s¥ second ordre, et reprééentera une intégrale de cette equa-
‘on‘

"C'est ce qui arriver9 ordinairement, si les variables
imaginaires u et z sont liees entre ellies par l'équation
qu'on obtient en ?kalant & zéro une fonction toujours con-
tinue de ces deux variables.

Les principes que je viens d'exposer confirment ce que
j'ai dit ailleurs sur la nécessit€ de mentionner ia dérivée
d'une fonction de z, dans 1le théoremi qui indique les con-
ditions sous iesquelies cetter fonction peut €tre dévelop-
pee en une série ordonnée suivant lies pulssances ascendantes
de z. C'est, au reste, ce que ,j'expliquerai plus en détail
dans un autre articie, ou je déduirai des principes dont il
s'agit les propri€tés diverses des fonctions d'une variable
imaginaire et de lieurs intégraies définies."

It seems that the spirit of modern analysis - by

wvhich is meant a certain open-mindedness and breadth of view -






a realization not only of the present limitations of the
function theory, but also of the possibility of its exten-
sion - is shown in Cauchy's broad definiticn of function of
a complex variable, and in his reaiization of the very lim-
ited nature of the class of functions with which he is deal-
ing.

As we previously menticned, this broad definition
has not been accepted by all the later writers on function
theory. Harnack applied the term function of a complex var-

iable to w = f(z), when w is produced by means of any finite

(1)

number of arithmetical operations on 2. Professor For-
syth, also, regards w as a functicn of z, when w ‘'can be

constructed by definite Operations(gﬁ)z regarded as an ir-

(1id)

resoluble magnitude. Durege, who certainly is willing

in general to give to the term function its broadest inter-
pretation, feels that when we pass to the domain of complex
numbers we must limit our term function; hence, he applies

the term functicn of a compiex variable only to thcse func-

(i) Harnack: Introduction to Calculus. p. 128.

(ii) A conception of function which is not very clear,
since one cannot be certain just what Prof. Forsyth means
by definite operations. It might, also, be noted that
Harnack's defirition would inc.ude infinite series, and
whereas, a uniformly convergent series of "anaiytic" func-
tions is an "analytic unction; it is not in generai true
that a convergent series of "analytic" functions is an
"analytic® function:- hence, Harnack's definition, strictiy
accepted, would really inciude more than he intends, i.e.,
more than the class of "anaiytic™ functions, and his the-
oremg wo 1d not strictly follow. The same conciusions
apply to Prof. Forsyth's definition, if it be refined suf-
ficiently so as to express a perfectly definite class of o-
perations.

(iii) Forsyth: Theory of Functions. p.7.






tions where x and y occur in the combination x + yi. He,
too, then demands that in a function of g, z appear as an

irresoliuble quantityfi)

However, he does recognize that
this demand gives him a very limited cliass of function,
and those functions which he excludes from his consider-
ations he calis complex functions, not functions of a com-
plex variable. Professor 0sgood does not deviate from
Cauchy's statement when he -defines function as follows -
"Eine Funktion f(z) einer complexen Ver#nderlichen ent-
steht dadurch, dass man jedem Punkte £ eines Bereiches T
der Kdmplexen Zahlenebene eine Zahl

W=u +vi= ()
-nach einem bestimmeten Gesetze zuordnet'sii) Professor
Osgood certainiy realizes the existence of functions of a
complex variable other than the anaiytic functions, and he
proves theorems about funcﬁions on which he has not placed
the restriction that they be analytic.

Thether we accept the broad definition of a func-
tion of a complex variable given by Cauchy, or with Durédge
congsider all non-analytic functions, not as functions of a
complex variable, but as compiex functions; we must realize
that besides the anaiytic functions of a complex variable,

there is an infinity of classes of functions, each class of

which is coextensive in totality with the ana.ytic functions

(1) Durbge: Eiements of Theory of Functions. p.27.

(i1) Osgood: Lehrbuch der Funktionen Theorie. p. 180.







and about which the ordinary function theory postulates
nothing, proves nothing.

In speaking of the deveiopment of the theory of
functions of a compiex variabie, it was said that those
simple functions of a compiex variable which were first
encountered were anaiytic; but, whiie this is ture, it
must not be inferred that analytic functions inciude aii
those which are most simpie and most useful, and non-ana-
iytic functions oniy those which are difficuit and use.iess.
The division ingc ana.ytic and. non-anaiytic functicns is
made on the basis neither of simplicity nor of usefulness.
And what Professor Osgocd says of aneiytic and non-anaiy-
tic functions of a reai variab.e applies equalliy weii to
anaiytic and non-analiytic functions of a complex variable;-
"Demgemass entspricht die Einteiiung der Funktionen in ana-
iytische und nicht-analytische nicht der Natur der Sache."
Therefore in an extension of the theory of functions of a
complex variable tc inciude non-anaiytic functions, we are
not necessari.y considering functions which are iess sim-

ple or iess useful.

(i) Osgood: op. cit., p. 95.

(i

)






10.

Section I.

1. Geometrical Interpretation of Functions of a Complex

Variable.

In the development of the function theory, pro-
bably nothing has proved to be more helpful than the vis-
ualization of the dependence of the one variable upon the
other.

The geometrical interpretation of functions of
a complex variabie offers far greater difficuity than that
of functions of a real variasbie, because given w = f(z),
where w = u + vl and 2z = x + yi, we have four variables,
and hence a geometrical representation of functions of a
complex variable, anaiogous to that for functions of a real
variable, would necessitate four dimensions.

There have been several suggestions(i) offered
as to possible geometrical interpretations of functions of
a complex variable. The one which has been most frequently
used is to consider w = f(2z) as a transformation of the z-
plane upon the w. It can be shown that ail the theory of
analytic functions of a complex variable can be interpreted
as a conformali transformaticn of a plane upon itself.

2. A unique derivative in the Euclidean piane.

Let w = f(z) be a single-valued continuous func-
tion of 2z, where _ '
Z=2Xtyt,
W= 0 +Vt.
Let us consider this function w = f(z) as defining a trans-

(1) Wnittaker: Modern Anaiysis. p. 41.







11.

formasion of 2z upon the w plane. To every point of z in the

z-plane will correspond a point in the w-plane.

W, 7
* A

,f v

W-plane. E-plane

Fig. 1.
Take any two points z' and Z, in the z-plane, and there will
correspond two points w and wyin the w-plane. Let the
point z approach the Sbint z, along any path whatever, then
the point w will approach w, along the w-plane. The de-
mand for the existence of a unique derivative is that the

limit of the ratio A‘N be independent of the path along

which z approaches z,.

v AUWAX FAVAXE ~AUAVL +AVAY .
ayle (AX)*+y)* Y

Dividing both numerator and denominator byLdX)f we have

, AV /Ay \?
(3) M: lim Aé')? + A Au{ ) + {Z\.‘%XB .
dz 4%

”/f%






12.

Passing to the limit, we have

wodw - 9% s 51‘714%!)1'" + %’@‘ﬂi
d =z 1+@¥%)*

Now if the derivative‘ggy is to be unique, the gbove ratio

must be independent of 34 , hence if this condition be

fulfilled, we have
u Y ' u v
(5 P _dyiegy
/ /

Equating real and imaginary parts, we have

(é) au___é)_x J\/ - __QQ
ox ~dy 7 Jx oy’
which are the Cauchy-Riemann equations. If we make the

demand that the intezrgl from a to b of f(z) be independent
of the path, we are lead to the same differential equations.
These Cauchy-Riemann equations give us not oniy a conformal,
but also an isogonal transformation of the plane upon it-

selffi)

i) For these and further proof of theoremsz about analytic
unctions see any standard work on Function Theory; for ex-
ample, Goursat: Cours d'Analiyse. Vol. II.







Section II.

Other Classes of Functions - Fundamental Considerations

l. Geometrical Representation.

In order to obtain other classes of functions of
a complex variable which are readily studied, we shall ac-
cept the broad definition of a function, that is, that w
is a function of ggi) if, whenever r is given, w is de-
fined; but we shall make different demands from those made
upon the anaiytic functions. One conceivabie method of
placing different restrictions upon the functions is this -
Consider the function w = w(r) as a transformation of a

(11) upon itself, and then work along iines anal-

surface
agous to those followed in the theory of analytic functions.

2. Differentiation.

Let the surfaceAZ: be defined by the equations,

(7 X=flp.g),
Y= lpig s
Z-yihg),

and also let us choose the function

() W-Wir) = U+tVL,

(1) For the sake of notation, since we use z in the equa-

tions which define the surface, we shall use w = w(r), where

W>u<+vi, and r = p +qi, instead of w = f(2).

(i1) Every essentially different class of surfaces defines
a different class of functions. The function of each class
are as "numerous" im the sense of the theory of assemblages
as the analytic functions.

13.






which gives rise to the equations

u=ulp.q)
v= V(p.g),

in such a way that
7 du’sdyi= A(Edp'+ 2F dpdg + G dlg™)
where /1 is a function of Io and Cf* alOne,(i) and E, F, and

G mean the following:

E:(%%)’H%l)’#@i)‘
91‘132
i F - %% ?% IpIY
G- ($5)+55)" +(58)"
Let
w'= <D“")= uw+ve
be arbitrary function of w; since W=u'+ve gives
rise to the equations
Wa=Mow,v)= Mluip.g), Vip, Q))’:A(/b, )
v Nlu, V) = /V(Ll(/:),?), Vi 7»)) @(/b, g9),

\

w=uvi=Apgr +Bip gy,
\/vl= Mu,v) + Nowvl o = f/vw.

(i) This is the condition that the function w = u + vi de-

fine a conformal transformation of the surface Z upon the

u,v-plane Cf. E.Picard: Traite d'Analyse. Vol. I. p. 477.

(ii) For the derivation of these equations and the expres-

sion for the square of the linear eiement see E. Picard; op.

cit. vol. I. p. 445, or Darboux: Lecons sur la general

Theorie surface. vol. I., p. 74.
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Let us consider w'= szr):'uf+ V't as a transformation
of the surface Z: upon itseif, and let us assume that the
functions v, v u' v/ Y, ¥, o and Z admit first partial deriv-

atives with respect to p and q.

* Fig. II.

If we take any two points p and p in the p,q-
plane, and any path joining these points, then we have two
corresponding points w and w, with a corresponding path
joining them, in the u,v-plane; and in the u',v'-plane cor-
responding points w',w,', with a corresponding path joining
them. On the surface Z: there wiii be two sets of points

W s w, » and w’', w/ corresponding to J and p,
.connected by paths corresﬁonding to the path Pop (We
have made two representations of the surface Z: , in order
that the geometricali.meaningof the work foliowing may be

more easily seen. However, we may think of the second






representation as being a transparent surface pizced directuiy
over the first representation of Z: . w and w
merely define a different parameter representation of the
surface.)

The most naturai demand to make upon this function
w' = Fiw) is that it have a unique, definite derivative.
The demand for a unique, definite derivative of vv “with

respect to ,, 1is the same as the demand that the limit of

the ratio g%% ,as vy approaches yv, , be independent of the
rath of approach, that is, be independent of the manner in
which p approached Po -

In this case, as in the case of anaiytic functions,
we shall consider the vector differences 4w and aw’ |

We have

Aw' 0 v) NI gt Agag + SagtBypg) .
AW (- +V- V)i Wp AP+ Vgdy 4 Wpap+ Vagag)l

dividing through by 4p and passing to the limit, the above

equation becomes

d .
U dw's lim aw’ - % tAGSE B 4 BydE),
1%% j;’,; 4 w Up ¢ uqc%% + (e + V‘Y}—f—/ F

In order that g%g’ be independent of the path, the above

ratio must be independent of'g%q » hence
P

AP+‘/3P /49 + ‘-_-B—i-v

(/2) : .
Ap +Vp Ug ~+ v vq

which reduces to the two equations,

vy Y Ag v By = ngde mvg By
Yp /97‘ +vp Ag = LL7'BP +Y7/4/¢,,
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These equations for the classes of functions which we are
to consider are the analogons of the Cauchy-Riemann equa-
tions for the analytic functions. These equations may be

written in the form

U? \J\o{ \/P Vq,

Ap A = B
(1%) P B P9

Up \’lq‘ _ VP V‘:Y

or, if we make use of the equations

AE = wf o v

AF = uugr Yy
AG = wg+ Wy (1)
and solve for AF and 4 , we have
4. L‘%B- F3;
EG-—
(15) %A (gﬁ) C;gL‘
EG - F“

which are known as the Beltrami equations. It has been
pointed out by Professor Picard that the equations (15) may
be regarded as a generalization of the equations (8), and

that the equation of the second order derived from them

LB 3) + A )

[Ec - F* VEG

(i) These comé directly from equation(9).
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is on the surface QZ: the analogon of the Laplace equation
6n the planegi)

3. Integration.

We now pass to a consideration of integration for
this class of functions.
Let us consider, as in the case of differentiation,

that we have a surface 22: defined by the equations,

X ={p,q)
y=9%¢9)
Z = W(/D'q),

and also let us choose W - LITVI': (g, q) + V(F'CY);' in
such a way that
du*vdv = AEdp + 2Fdpdg 1Gd g)

where /l is a function of P and q'.(ii)

Let us take ) .

WII—‘ ul‘l-\/ll"—'i FEVV) = A(P,C}r) 7"/3(10,67)1: @(V_),

V\

3 '\\ A

<& 4 v q
z_’ |

1

- X P
§f/ Fig. III.

{i) E. Picard: op.cit., p. 8. The method by which Beltrami

reaches these is entireliy different from the one used here.

(i1) See foot-notes, page 14.
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As in the case of anaiytic functions, we wish to
find the condition that

j)-TW)dW |

be independent of the path.

Now .
4y = 40 + AV
C’vv = C/ Lt + CL Ve

and also
du = updp +Uqdyg

dv = Vpdp + Vgdq,
then

(/6) Cl_ul-#d,\li =(U.F +V[:1’)Cl.f-7z 'f-Z(blpbloy +Vlqu)de<¥ +ﬁ4;+vqfldqz,
but by hypothesis

du*+ dv?: )/EC/; + —ZFCZIqu' + Gdcf)
whence, factoring these two, we have

(du +dvi)(du+dvi) =0y +fi)(7-fi) //A_:c/,o fﬁrg/dq)/@f&é_ﬁc},q),

therefore,

dw=du+dvi= by + §)IE dp + F2iH dey)
(17) w=du+dv ?+? p + 2% g,

where

H: /E&‘FJ,

and also from (18) we have

(LlP + ivp)dp +Mg t i\/a/)dcy =()Z+/1H')[//Z::d/a f_/_z';ifé;/fd?)j

equating real and imaginary parts, we have

Updp qud,q = ?Z/I-Fd/o 7‘%%&/(17
"y Vpdp + Vqdg = f&:c{/: +7[7£_:?_L’/c/7.
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Equating the coefficients of d/o and of dqf , we obtain

lP:)Z/{_L: , VP :i’/ﬁ_.:

/3
If we replace J/w under the integral sign by its value ob-

~

tained in (17) and replace Few) by /](p, o/) -+ B(p,cy“' :

we have

(20) fbﬁw)dw = jbIA[p,q’) + B(f,qh'f{7+fi)//fdp +%d¢)

d 2
f{/y/)z/aq)/— f/S’zp q/;/’—)df)

+/7Atlbqlﬁ f/’//sff’jﬁ ?fo‘jz/aqlf_ 7/9/7’[:/)[/7}

+z'j} {(f//(/o,q////;:f? Bl/o,ql/7¢7f/o
F

+/7/4{F7/}H -/—7 SIF q/!////__

+f/4¢/o,zy)£ fﬁ‘/’ i )dcff

In order that the integral be independent of the
prath it is necessary that each of the above integrals be in-
dependent of the path, hence the necessary conditions that
J‘F(w) dw be independent of the path are that the foliowing

equations hold

= F_4AH _»RY
Lo ) - oAt )

- RE +4AH 4 BH
S U T S M

(21)
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In partially carrying out the differentiation indicated, we

obtain
VEH 4R AT BT
(221*7;5'4 f//i%% f}i’# 7HJB

) ) H
4405 Py G- P

and

TLRRTE REE SARe
252 7,52)/ 7’5%F fr% /b%%’é

gL+ Be MG~ P51

Now since U and V are continuous functions of p and g ,

Wpg = Vgp

Veg - V4P
By taking this fact into account and making use of equa-

and

tions (19), equations (22) and (23) become
- | 5.
(2y) 7//?%-?/1?%75:(7%—/ %A’ /fF+7 5]'

and

f ff’ +/7,’i‘_7é’-'///d~—

(25)7/5% Y Z
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\

Eliminating first ‘;)7,/;’ ,» then % we obtain,

) d4 —J 5
(2¢6) B
L4 - Fgg- "5
which may be put in the form
. E4dB - FIB3
gh . E4f - 1ol
(27) — H

%’M

We see that the conditicns that the integral

b
j/:()/v) dw

('
be independent of the path are that the Beltrami equations

be satisfied. Hence, in the classes of functions as in
the case of the anaiytic functions, the conditions that the
derivative be unique and definite and condition that the in-
tegral depend oniy on the limits of integration are the
same .

If we define the function
Fem) = Our) = Acp o) + Bip, g

as an "analytic®™ function upon the surface Z: , whenever it
satisfies the Beltrami equations for this surface (E, F,
and G in the Beltrami equations depend upon the particular
surface in question), we may state the following theorem:

Given a function (]‘r, defined by a given surface and

"anaiytic" on that surface, the integrai J?)n)dwuri is
d
independent of the path.







3. Conformal Transformation of a Surface on Itse.if.

——— e —————— St

In our study of analytic functions, we found that
the demand for the existence of the derivative forced upon
us both conformal and isogonai transformation. And in an
examination of the provnosition in which we demanded that the
transformation be either conformal cr isogonal we were lead
to the result that the function be analytic, - that is, that
the Cauchy-Riemann equations holdfi) In these ciasses of
functions which we are étudying we should like to see if the
same thing holds true, - that is, if the demand for the ex-
istence of a derivative on the surface wiil force upon us
both conformality and isogonaiity. We shaii attack the
other probiem, however, and see if the conformel or iso-
gonal transformation 6f a surface upon itself leads to the
same conditions that the demand for the existence of a der-
ivative does. Or stated in other words, if the transform-
ation of a surface upon itself be isogonai, do the Beltrami
equations hold? In order to study this probiem it is ne-
cessary to find the conditions which must be satisfied in
order that the angles be conserved in the transformation.
Let us first consider the géneral case of a transformation

/
of one surface Z: upon another Zj .

(1) See any work on Anaiysis. Goursat: op. cit.. et al.

23.
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Let X,y, Z be the rectangular coordinates of
any point on the surface Z . Ve shall suppose that the
six coordinates X, Y.Z; X, Yy, Z are expressed as func-
tions of twc variable parameters Ib g ia such a way that
the corresponding points of the two surfaces correspond to

the same system of vaiues of the parameters P9 -

X=fLpap) X-fp )
/J,Y) Z Y=9lp. 9 Z 7//0, 7’J
zZ. vip z- 9Py

Ve admit, moreover, that the functions f % Y; )(j y’, ¢ ‘with
their first derivatives are continuous. Let us recail the
notation prevyiousliy used. |
F. 5957 £~ Sy
Foosedp  F- SO
G. Siky G- St # #

dgl: E’df, f-Z/c-CZ/Ddf-/'K[{?’

= Fudp + .Z/'&Z,ody + C—'c/y

Let C and D be two curves on the surface Z » Dassing

Lf)

through a point m of this surface, C' and D' the corres-
ponding curves of the surface Z’ » passing through the
point m'; along the curve C, the parameters are functions
of a singie auxiiiary varieble t, and we designate the
differentials by dp and dg . In the same way along
the curve D the parameters are functions of another vari-
ablie t', and we designate the differentials by d;o and /7 .
In the same general way, we distinguish by the letters d
and J the differentials with respect to a displacement

upon the curve C and upon the curve D.
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Fig. IV.

The direction parameters of the tangent to the curve C are
respectively

a&:% d/°+§;}'a'7, dy:%%c//a %%dq , di- %fc[,o fg%o’q :
likewise the directions vnarameters of the tangent to the
curve D are respectively

/x%);o +§z’;—f7 ) /]=51/ng3 +§)—%ch, VER %{,& # %/q«
Let w be the angle made by the tangents to the two curves

C and D; cosw 1is then given by the formula

Cosw=dydx +dyly +dz/z .
‘dx’w’y‘fiig VX 77172
which may be written, by taking into account equations (29)

(30 cosw = Ldplp+Fldpdy + fody) + Gy iy
JEdp+27dpdy s6d5 VE G5~ + 27079 + 877

In the same way, «° being the angle between the tangents of

the curves C' and D';

(71 cosw'~ E. dply +Fi‘{gg§/§4z) 1Cdg Iy,
@/; *;27_;7/’—0’7 +5'a/; 5%1,4‘2/—&/7 %6”/7
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In order that the transformation cocnsidered may not change
the value of the angle, it is necessary that CoSw = coSw’ ,
whatever the values of dp, 5/7 , ///3, /q < The two mem-
bers of the equation
Cos*w = Cog*w’

are rational functions of the two ratios J7 /f’ , d‘f:‘ df’
and ought to be equal whatever the vaiue of the two ratios.
In order that this be true it is necessary that the corre-
sponding coefficients of the two fractions be proportional,
that is t%o say that
(32) E'. £ . G - 17

E r &
where A is ar ' function of p, 4 . These conditions are
evidently sufficient, because cosw 1is a homogeneous func-
tion of zero degree of E, F, G.

The conditions (32) may be replaced by the single

2

reiation ol¢’ = A%d¢* , whence

(33) ds' - Ads,

which expresses that the ratio of the two infinite.y small
corresponding ares tends toward a limit independent of d/o
and of a[q , when these axes are diminished indefinitely.
This condition mékes the result aimost intuitive. In proof,
let us take upon the first surface an infinitely small tri-
angle abc, and let a’b'c’' be the corresponding triangie on
the second surface. Let us consider these triangles abc

and a'b'c' as rectilinear triangles: since the ratio a'b‘:ab,






a'c': ac, and b'c': bc approach the same limit }(/qu) y
in the limit the triangles abc and a'b’'c' are similar and
the corresponding angles are equal.

One sees that the two infiniteiy smail parts of
the surface can be considered as similar, since the lengths
of arcs are proportional and the angles are equal. It is
for this reason that one often gives the name of conformal

transformation to a transformation which conserves the

anglesgi)
Let us now return to our problem of the trans-
i
formation of a surface ) upon itselffi ) and see if

the Beltrami equations are satisfied when the transform-
ation is isogonal.
We have given the surface Zi: defined by the

following equations:

X:f{p,é)’)
(3Y) y-9ipq
Z . yip g)
11) The above on the transformation of one surface upon

another is a free translation from Goursat: op. cit., Vol.
11., pp. 47 - 49. (A slight change in the notation has been
made in order to be consistent with our other notation.)
(11) This case that we =re considering is not the one for
which Professor Goursat finds the conditions that the trans-
formation be isogonai, but it is evident, if the correspond-
ing triangles abc, a'b'c' on the surface ¥ are to be sim-
ilar, that oJs must equal A os .

27.
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where P: P(%)
g - q(f)
Let us take the function W =W+ V v on the surface ya
where
Ll = Aljm q)
(551 Ve Bp gl

such that W==¢, , V= Ca
defines a network of isothermal linesfiahen it follows that
3¢) dble‘L’].V,_://[;C{/% f.Z/—d/anquv“G&’[éJ
where /a is a function of ©» and 4 alone and what-E, F,
and G are defined by equations (10).

Now let us transform the surface upon itself such
that this system of isothermal lines goes into another

system of isothermal lines isogonally.

Let W=/ , V'=/t, define

this second system of isothermai lines, where

u'- Ppgl
37 , |

v'-Qepegl -
Since this transformation is to be isogonal,
(39) Adusdy = X,

clw ™+l 9

(i) Any function that belongs to these ciasses must ful-

fil this condition, since we have always assumed that the
function satisfies equations (36).
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From equations (35), we have
dbl = /IFGZP —qudq
dV = dep + Bqd?,

and from equations (37)

39)

(40) dw = %,?O'p + /qu?’
: /
dv ' = QPO’/a + quq.
If we substitute the values of /v; and v obtained from
(36) and the values of /. and 4 v obtained from (40) in

equation (38), it becomes

Edd+ 2fchdg +6ds ] -0
/@2+ @2)0102-/' ‘2//;)/2+QDQ7)Q/P(/77‘/437LQ71]¢/73 /77

and since the transformation is isogonal,this is true what-
ever the values of dp and C/QV, hence we have

) E - F - _ 10

z —

Ry BRGCy  pq, A

From which we obtain,

E_:é_'_[l = /qu— Qp&)
9

2

7

2 A 7
FiooBy @
Taking the square root of both sides of the equation, we have

Ho- LG -Gk
S Rz + G @

2






where //: /£i§'/rz

or

W ARG+ QQp = FiLQy -G, A)

If we take

£ _ F
B+ Qp pl2+@Cg

and solve first for fg, , and then for C?q , we have

wo  FR . AR -EQQ

P

and

(44 E(Qq - FLR Q@ -ER /4
F

From (42) we have

Q. - A L+ Hp)
FP, - H3p

and
/27 = QG/F/Q-/L/QP)
FQ, "+ KA

substituting the value of /2 in (43) and the vaiue of(97

30.
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in (44), and simpiifying, equations (43) and (44) become

respectively,

E—;Qq' = /q(;> 7t A//ﬁ,
E/%“ 2/:1/’?-/40/0,

which are the Beltrami equations.

and

Hence we see that the demand that the transformation
of a surface upon itself such that isothermal lines go into
sisothermal lines be isogonal forces upon us the Beltrami
equations.

This demand, namely, the demand that the trans-
formation which carries isothermai lines into isotherﬁa;
lines be isogonal, is exactiy the same demand that we made
in the isogonali transformation of the plane upon itself; therr,
too, we demanded that isothermal lines go into isothermai
iines by means of the isogonal transformation.

In order to make the above work of the transform-
ation of a surface upon itself less formai, iet us state
just what transformations we have considered, and what has
been the nature of each. We have given the surface Zz:
defined by equations (34), and the parameter plane - the

P,q - piane.
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v, v 9
Y w & '
| i
o uhe “e ! w=e
1 i P L
Fig. V.
and we had defined some transformation
S ALP,q)
V= f3(F,ql

(which may be regarded as a non-conforma. transformation of
the p,q-plane upon the u,v-plane) such that w = ¢ . and

Y= C, form a network of isothermal lines; and we demand
that the isogonal transformation of the surface upon itself
be such that

v Req)- A

v- Qg m
give rise to another system of isothermal.iines on the
surface 7 . (The equations w' - /?p,qi, v Cl‘r.qj
may also be regarded as defining a non-conformal transform-
ation of the piane upon itself.)

This transformation, considered as a transformation
of the u,v-plane upon the u',v'-plane, is the ordinary con-
formal'transformation of a plane upon»itself. Hence
w'= LL'+V2' is an ordinary analytic function of -VV-:lL+V" ,

however, we must bear in mind that the u,v-piane and the

u',v'-plane are not parameter planes, but planes which are
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stretched and distorted until they fit upon the surface Zi: s
It is for this reason that the transformation given above

defines a conformali transformation of the surface

upon itseuif.
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Section III.

Cauchy's Theorems, Taylor's and Laurent's Series, and other
Theorems.

l. Continuous Functions.

Let us assume, as in the preceding work, that we

have a surface ZZ' defined by the equations,

X= flp,q}
y-gtp g
1-Ylp. gl

and. that we have a function w/(r) of the class(i) that we
are considering, where
Wz U +VL = uip, gq) + V‘P”’f“'
and such that
d,u1+d,v1= /2 (Ec{/az f.J/Cc{/aa,/q e 6:&/71/,

then if Y- P+ a,t' , and W = w(rl,

W(¥r) will be said to be a continuous function of T if the
modusus of the difference wi(r+h) — w(r) approaches zero
as the modulus of h approaches zero, that is, if

[wersh) - wer) < e,

whenever [h] < y

where € 1is chosen first.

(1) Professor Picard calis these classes of functions -
"functions compiexes de seconde espece". Cf. Picard: op.
¢it., voi. II., p. 541l.
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2. Regular Functions.

A function \W(y) will be said to be regular in a
region A on the surface Z , 1f it satisfies the foiiowing

conditions:
1) For every point r of the region A, there corres-
ponds a definite value w«y) .
2) WI(r) 18 a continuous function of r .
3) W(r) admits of a uniqueliy determined derivative(i)

at every point of the region A.

3. The Integral taken along a Contour - Cauchy's Fundamen-

tali Formula.

Let @m and W«(Y) be functions of the classes
that we are studying and regular within the region A,

where
(4 57) o) )

and wir)

Atp.qp + Bepog
wip.q) + Vipg)d

\\

Let us now consider the integral

J@(r)dw(k) = j@(rldwzri + J@zr)c{wuﬂ (ﬂ)
d

beba Lbe 2 b'd

(1) By derivative here we mean derivative in the sense in
which we have been using it in regard to these classes of

functions, i.e., AW oy , where Vv«r) is another
function of the same class.
(ii) faf'“’"’"” is really f@mdr) , if we mean by dr

in these integrals, not o[P 46/7’ & # but(7,¢fi)/@¢f/—_g_//c{7),
=
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beba 4be as'e.

J @tr') dwvir) = J @zr)o/m ri- jélr)alwm
A ;

= J{A 4 /?L'Jblum’w') —_ J/A 1 /QL.)Hu ;Jw'}
a

be abe
g ) Fig. 7. — J/AfB‘) /7#f‘) //—E/J/J ¢ /"L;IZZ"Z/J?)
abe

...jdb/? 7‘/34')/7¢ft')//2:0/f ¢ %/o’7j

But we found(i) that the condition that the integral

be independent of the path is that the Beltrami equations be
satisfied, therefore, since @lr) =/4[l/o,¢’/ + /J>//0/ 7’/ ¢ is
a function of the ciass that we have defined, the following

equations are satisfied

B . E£4 - F¢f
B - Ly F
%ﬁz r;,g;/cg ,

(i) cf. sec. 1I., 3.






and hence

. ¢ +68)( L o /Ct// )’
__j“//)f/?)l7f) /Zﬁp+~z/}jaz¢

£

tnherefore
/L/A) 9(“ dW(H = @l"l dwir — (9;()‘1 dwitr = o0 .
Qbeba dbe abe

Henqe in these classes of functions, as in the analytic
functions, the integral of a regular function taken arléund
a closed path equal zero, and therefore for these classes
of functions we have the foiiowing

Theorem: If the functions @¢r and w«¢r) are "ana-

lytic" on the surface Z and are regular on the

contour C, and within the region bounded by the

contour, the integral j@“.)dw”.) taken along this

contour is equal to zero.

4. Cauchy's Integral Theorem.

37.

Again take @G/») and w/r) reguiar functions with-

in the region A on the surface Z; » then the function

Or is regular within the region A except at that

wnrj-w//aJ
point on the surface Z which corresponds to the point

Y"-./u in the ~F,cy~plane.
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ber d )
Let us now consider the integral l W’r—,_—;fv"//%

where the contour C lies entirely in the region A. Since
&(r) is continuous in the region A,

Gur) = Ol 1e
where  depends on f , the radius of the circie C'
corresponding in the u, y- plane to the contour C'' on the

surface Z:, ,

yooo .

e e

Therefore,

Gumdwor = [ ©ugdwen | edmm)
wir - Wil Wit - wiu) C”w/r}- Wikl
¢’ c”

_ Biry dwih)
The integral m, can be easily calculated.
cl
Let wiy) - W%) = [CUS'H #i¢3sinb)

dwir) g(- sind + Vcos é)c/g

Substituting these values in the integrali above, we have

ar

J@,m_dwm @//MJ Vpleosd 4+ Csind) o 8 - 24 B

WeR - w ) T(e,,ca 108ind)

e dwiH
and ,/, I;/H’_M’mr,?, is independent of the radius /{ "
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hence, since ¥ is continuous, we can by choosing f as

small as we please, make & as small as we piease, there-

fore .[ ¢ dwir)

W(r) - Wi
G
must equal zero.

Hence, we have

.2/7‘ n w("‘J-VV/(a‘I

“7) Ow - L / Br dwir
4 e

If we connect C and C' by the path K and consider the
integral taken along C, K, and C'', since the function is
regular within the region bounded by this curve, the in-
tegral by Cauchy's fundamenta.i formula equals zero. Hence,
since the two integrations across K are in the opposite
direction and annul each other, the integral along C''

equals the integral along C, therefore we have

ﬁ/mz = J.,/ Gindwir) L bir o
.-

wiT) - V%I 2m /> wv(iF) - vv//a;

This is the anaiogon of the Cauchy integral formula for the
analytic functions, and it expresses the value of the func-
tion Or) at any interior point « , in terms of the values
of the function along the contour C. The above resuit may
be stated as foliows:

Theorem: If the functions )y and . be "analiy-

-
tic" on the surface / , and if they be reguisr within the







region A on the surface Z » then

@}«)—- J—./ Ecri dyvir).
277¢ e th‘)-vv//al

where C is & contour which lies whoily within the region

A and which encloses the point W) .

5. Expressions for the Derivatives.

Let /ﬂ 44/« be a point very near tO/ 3
sgch that the point on the surface corresnonding to
2wy wiil be within the 'fcontour"C' (Fig.VZ), we
have then by the preceding equation (4/)

@yua/u) = L | Gridwer)

a7 c vv(r')_vv/(am )

and

@/(afﬂ )-@/M:L Giridwers L {Qindwirt

Va - n” ) - W)
2 CW/V‘J V%/A ;o2 wir) Vju

dividing through by w}a f}a} - VV) Si) we have

@aw,a)—@g_d _ _/,.] e’ d wer
@;;}Ta}— W'/{b(/ aAm e EVV(”' VV//k‘JEW{m"W}#fy)]

_ 1 @ r / Bir [W/I,ﬂ-/d,a)- Wl/d]d wiH
= g CWWJJZ * s 2wtr Wi T¥T win- \%,}w

(1) %’@ is the only kind of derivative that we have
w
assumed to exist for these functions.
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Taking the limit, we have

CL@_] = Z;'m @//ﬂ *//t‘)—@/u}
d wlu e Wi ém _ vﬁw

S

= -—/~. 9(/-/ o/er
277

L

Aw(@lr‘)oéwzr) .
Cder 1o
cIwir - w//w] %-.o vnc

v - 11 wir) - Wik s T
Iwl W 32 o

We wish to find

Li 5 Lw s ég/—VV/&UL@“’] elwer)
A/a:a %Y )IE Y wir) -V ,A/a;]

(e +
(P)-V\ya

Let M be the upper limit of &.r) along the path C, and J

the shortest distance of the point vv//u) from the contour

C, then
Lim lw(/HA,aPW/ﬁf O r) dyer)
4/4<.=o C[Jvﬁ)-{v//wj’/fwzﬂ-w%,ym
& T MLiaw = o
y:o 33
hence

GindwiP

Gl o e Jew gl

We can in the same way show that

: ‘ L2 | Omdwir
(i §) g.vﬁ‘ = @y" = it A M{r;-\/t/}u)]s

Yo
and in general that
!

»
M] " @,u) - N v dwver) el
o 'w"/, /

a4 " qu-)—vv//ulf







We see then that if B and vvir)are ‘analytic
functions"of the surface 2:' ,and regular within the
region A, that the number of successive derivatives is

uniimited. Hence, we see that for these classes of func-

tions, as wel. as for the ordinary analytic functions, the
existence and continuity of the first derivative forces

the existence and continuity of ail the other derivative.

6. Taylor's Series.

Theorem: Let (9(v) and yymbe analytic functions of

the surface J. , and reguiar on the ‘contour C and

in the region bounded by this”contour with center at

(1)

.

W{K) ; then the vaiue of this function at any

point yyj.) taken within the contour C is equal t0

sum of the convergent series;

Ol - Ora) + O I Wi - weasJ + &k EWr%u) - weki]
- N

+ + @NIAJ L wiui- W/ﬂUJN.‘. —_
Tt T T - T T T 7.2, . .

In order to prove this let us suppose that C%r)and wi(r) are

regular on the contour and in the region bounded by it.

From Cauchy's integral theorem we have:

(i) The expression 'region bounded by a “contour C with
center at w/4 'means a region bounded by a "contour C on
the surface  which corresponds to a region in the W vV -
plane bounded by a circle C' with center at v

. In the
foliowing theoremswe shall use this same expression with
the same meaning.

42.
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Grr) o wir)

A
@7‘) T2l o Twir - V\yu

§
Y/

Ly

Fig.vr.
Now let us write / in the following form:
Vthqul
/

i F— = / = ___1_.__. Wiwl- WIL)
Wi r)- W) W)= VW (d) = L W) - Wil wip-w | 1~ ﬁrv—m—q
Expanding the above expression for Y » We have

w(hH - vv//al

/ . B / I + \N//‘}-W[al/ — _— - - .
WU‘)—\/)/_/M) W(F) - vv(d) [MH - WidT
V2

1.%
S ep— VTPV Y D MY N TRV IO
Wik -w ) 377 [vvll[hl/}(a]l v FI-wWidY

'z

In the above expression for @(/‘41 » replecing /

w( Y] - Wi

by this value, we have






(4 9) @//u) Y - Q/,'rv%u-vw,u] + o [vyu;-wm]f_-
4 Q],,[w//u/-wz.u_‘/”-f /0, ,

where the coefficients J‘,, J, - J,, and /‘?N have
the follcwing vadlues:

_ F)
. v oo wer N i Ocp dwitd
t/A ',‘;,'Lg———( Lol ) “]1 77 [wu-l-Wl»UI

W) - wid)

44.

(5 0) / @1 pdwa)

‘ v bl -vid) T

@l") dW‘l‘" ¥ 4l ﬁ - L . —L/ 7/ (H—'/“I
‘ -] W
Q-z—v o Jm WJ]J J v T am C[yvu-

We should now like to show that when n increases indefinitely,

tR‘/v approéches zerc, that is, that the above series is

convergent. Let M be the maximum value of /(91 H/ along
the path C, P the maximum distance of w«() from the con-
tour, or the radius of the ocorresponding circle in the w,v-
plane, and Y: /w//ul- w /(4! , then /\/v/P')-VV//ul/f P— f

and L the integral de‘ ¥l therefore

IR)e S5 = g g )"

where K is some constant. Since the factor )'//_7 tends

toward zero, when n is increased indefiniteiy, Ev approaches

zero, therefore

@}“' = o '*J"[VWP MG s \—»‘Q]/v/”//‘/-w/xﬂf,-_






Comparing the coefficients ‘L' ;L s s ww - le
with the expressions in equations (#7) and (#/) we see that

/ p 2
(pu -~ Oty + X7 Ll = W) ]+ gy ) Z\/t///al-vv/ﬂf
4 /. 2

w N
4 e e e Qo r gl

Hence our theorem is proved.

The anaiogon of this in the analytic functions
has been caiied the Cauchy-Taylor deveiopment of a function
of a compniex variable. The circle of convergence in the
case of analytic functions extended until it touched the
singuiar point of the function. Ve shail discuss .iater,

under the topic - Region of Convergence, the region with-

in which the series just discussed converges.

7. Laurent's Series:

Laurent made a very important extension of the
Cauchy-Tay.ior deveiopment of anaiytic functions within re-
gions for which the Cauchy-Taylor deveiopment does not hoid.
Let us see if we can make an anaiogous extension of the
Cauchy-Tayior deveiopment for these classes of functions
with which we are interested.

Let C and C' be two"concentric contours"(i)

(1) These "concentric contours" on the surface A corre-

spond to two concentric circles in the u sV -plane with
their center at wi«) .
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on the swurface Z with center at wr«) and let C' be the
inner of these “cont.ours". Take the functions @ and '
w(y) which are regu.ar throughout the region included be-
tween these ‘contours and aiso on the ‘contours C and C'.
The function
. @1 )

Z_ W”‘"V‘y‘-)

is regular within the inciuded

region, except at the point vyu)

in the region bounded by the ‘con-

tours“C and C'). If we surround

/ by a small contour Y (which

Fig. IX. corresponds to a circle in the

W,v -plane with center at w/«) ) and draw lines K and K'

connecting Y to C and C' repectively, the function

Oy

m» within the shaded part of the figure is

(Choose vya: so that it lies with-

46.

everywhere regular and the Cauchy fundamental formula holds,

hence

WY - viu)

— Wi
,th‘ Vy«l

J @ivi dwer) & j@_{rM + @M +j@m¢wm
/

wir) - Wil Wi Wiw)
¢ K Iid /u

& < = <

n j Gcvi dwir + Gen dwie 4 j@ﬂ_dﬂﬂ - 0

WiY) - wii) ; Wl -wiw) W(Y‘)-M///a/
2 e, e T
=P
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The twe integrals across K , since they are in the opposite
direction, annul each other, and also, for the same reason,
the integrals across K' annul each other, and the Cauchy
integrel formula applies to the integral around Y , hence

we have

@/({/.) - L, @lHdw(H 2 A @(HCZW{V‘)
2/¢ wer) - Wi 2/t ¢ Wi - W(F)
€, e et VA

the integrals C and C' now being taken in the same sense.

We see that the Cauchy Taylor development applies to the

first integrai, and we have

ya /@Md@ . 8 ¥ gl [wy/-wz,u]’h/:,[u/w-wzii —_—
27¢ wirl - W/I«J
where Jo J, Jg - JV have the same values

which they had in the preceding paragraph.

Now we wish to find the vaiue of the integral

/. 2y (2] cwer)
27¢ . Wu) - wiF)
o
In order to do this let us replace /- in the
\,1//&,4,}_ w(lr)
above integral by the folliowing expression;
Y S
_wir)-wlid )
‘-—‘L— = MT’/TT";?‘} ( W}_w{.{) / + M} 2
Wiw) - W) / W'_Mp“ z;’/«/_wm:(
nv-1 N
y T — # Z[%é{v + Iwvier) - weas T
) -

n}w Wl T JLvgar- Wi v






We then have

(57) A Ein dwir)

N T + I 4 -
C'%/' WV (L)

/T,
yya/- WLL) l_—v\ypt J-wipJ E

+ L [ pweriowia ] 6er dverd

s=ae o
z%‘/_wulj” 2/m c/[u}/u-th][w )~k

] I

’

vheTe . L [ Lwirs- widd? Gerrdwirs,
(s

We wish to show that the integral of the remainder term
approaches zero as n increases indefiniteiy.

Let M'be the maximum absolute vaiue of @lf')along the

path C', R' the radivs of the circle in the L,,V-plane cor-

responding to the ‘contour C' , and J s /W}- wiol) ] .
then R' <r . The absolute value of the integral is
less than
‘ ’ ’ / N
Lyg) M 2 R )
2rls /) s p Y- *}
V.

but since R' < r , the factor Zf) approaches zero as

n increases indefinitely, therefore the integrai of the
remainder term approaches zero as n becomes indefinitely

large, and hence the series

—/)i—- -/'Z_tl-—- + S5 e {/I’N 5 e
V}/«/-ww I Ws-wid) 3 [w/lm—n/w]”

converges, and






Or, changing our notation, we have
0545 4om ]

&2) Eir - Q‘fj'; win-w ]l + LK}‘[wm-w(,uJ,

Therefore we can state the analogon of Laurent's theorem

for this class of functions as follows:

Theorem: If \v(r) be any point in the region bounded

by the"contours™ ¢ and c¢' with centre at 4 («)

within which @( y) and «r are regular, then

sty

Q(_H can be expanded in the form:
0544 4om 1£4'¢

O - J] Cw(r)- W/a(JJ/'T /_ /)}'[w/<r)~ week J

4
whefe

Joo L [@rdwen

{
7L ks = e 7

/

/
/1:/ Lo [Tvveks WMJ]-@( Wdwer) .

8. Liouville's Theoren.

Theorem: A function @¢ ) which is reguler for ali

finite values of y and which is everywhere limited

is a constant.
If @(r) is regular for all finite vaiues of v ,
it is developable in the Cauchy-Taylor expansion. Any
coefficient a4, of the term )Jvv/r) —wiei 7Y i given by the

foliiowing expression:

4 _ / //dwu—l
Moo T api ) g) - wial]V !
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Now let us draw "contours"

/l \ (circles in the u,v-plane)

ﬁ \ : of various "radii" about wwu
&
as a center.
Ay =layl = L wMn L
277 IN"‘/

where WM((pr) is the maximum

value of the function @(r)

- o along the "contour" of "radius"
7,
]
( @ : Y , and ‘r the maximum valiue
L of [vwig) - vv (L)) and
Fig. X. Losf dwer - By hypo-
c

thesis @¢r  is always less than /T , hence

N

Lowm ek
Te N4/

ef,
r;,/ ! 1/

Therefore by increasing T ay can be made as small as we
please. But a4, 1is a definite integrali, therefore, if
N2 1 s an =0 . Hence Ocr) 1is a constant a,

Liouviilie's theorem may also be stated as foliows:

A function @ () which is reguiar everywhere, including

the point at infinity, is a constant.

9. The singularities of single-valued functions.

Let us consider a function @(r' which is regular

at all points in the region A of the surface Z: 3 except,’at.
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the point Ww¢x) , so that the point wM&J is a singuliarity
of the function @¢r/
Let us draw a "contour"
C’ about wvvk) as
center with a radius " r .
Then the function &@cr)

is regular in the region

bounded by the two "con-
4
tours" (6 ana C
where C is a "contour"
with a larger "radius";

and the Laurent expansion

hoids, Hence

/Y, Y, A +

2
RSV B ST wa)J

The terms in the iast iine of this expansion are
those whicﬁ\tell us of the nature of the singularity of vvcx)
It is evident that if none of these terms exist, that there
is no singularity at the point.

If the number of terms of the liast line is unlim-
ited, that is, if the terms with the /Ys far coefficients
form an infinite series, the point « in the p,q-plane, or

the corresponding point vvi(£) on the surface Z is said to

be an essentially singular point for the functicn @( r)
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On the other hand, if these terms are finite in
number, and if at least one of these exists, that is, if
all the /Y3 are not zeroc, the point « in the p,q-plane,
“or the corresponding point w¢) on the surface, is said to
be a po.e. If all the /rs , except /Y, , equal zero,

the point wvw) is said to be a simple pole. I1f /7 is

the highest /T which does not equal zero, ) is said to
be a pole of order n. If the singularity is a pdale of order

N
n, the function Jwr - wias] Bcr) is regular throughout the
region A.

The function C"‘é‘" has an essentially singular

point at w¢r), ¥Ys0. In order to see this, let us recall the

expansion of cx .

X
e' = 1+ x +Ix7
g

from this we see that

s / 2 / .4
e™r - | + L sirwir] - ~ ZTwnr—

wir

10. Functions with no essential singular point.

Theorem: _If a single-vaiued function &.r) has no

singularities, other than poles, over the entire

surface, inciuding the point at infinity, the function

is a rational function in (v .

Let us suppose that the poies are at the points

A, Ay-.- of,in the p,q-plane, or at the corresponding
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points wx,), wid,), _ . . . wik;)on the surface, then the
Laurent expansion at the polew{,), where 4, is the order

of the pole, is

L’iiJ.__ + /)/.,’g: s e g o S e + /'(L'M‘ .
W -wa,) Iwer) -wix;) J* Jwer vk I
If the point ¥ oo be a pole of order ~ , the Laurent

expansion will be

a4, wir) +aQ, tweby o R "d/vA’VIrJ]‘(
The func tion
. 7 /s i i
+ A S RARY/75 y
@H" T 4o, win-wesy) Lwver)- wit)J* g Iwr) -wik )™
- Ed‘VVlr’-fdz ZM/(V‘/]’-.‘ -- - - *d’YZW(r)]”]

since it is regular over the entire surface is, by Liou-
viile's theorem, equai to scme constant a. . Therefore,

the function Ecr may be written

s
Oury - a, +a, wir) 4 a,wen]* e . . _edrd
i=1 P
Jify + AATY e e y Lin .
"LZ:/ wWiH-wW(X ) Jwierl-w )T ® Lwwer)-wikisJ ™

and hsnce, since Bcr) is expressed as a rationali function

in w(r) , the theorem is proved.

11. Coroliary: A function which is singie-valued and has

no siggglarities over the entire surface, other than

a pole at the point at infinity, is a poiynomiai in

vwir) -
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If the only singularity is a pole at infinity,
all the /7/.(:' in the above expansion of Ocr) equal zero,

therefore

2
Oue) = a, + d,wir + a,w(r+ -

and hence the corollary is proved.

i2. Logarithmic Residues.

Let w(£) be a pole of order m, or an isolated

essential singular point of the function O r) , and
w¢r) @ regular function within the neighborhood of the
point WL The Laurent expansion of the function

O(r) about the point wd&) is

/{M + /\//\A_I - - - - + /T,l s + (//'( r)
- wid) I @ (r -\Wik
Twir) - wik)J Iwir-wia) J* w

where W(ry is reguler within the neighborhood of the point

W) .

/
Let C be a "contour" with center at VvV on

the surface Z : Then we have

o edwen)
f @(r) dw( r = I Ivvi( H-w(.c/]/ * sp( 7] dW( r
C/ C‘ /,,4 c ’

Now /¢’m odwitizo 9 since (b is regular within the
cl

"contour” (  and the Cauchy integral formula appiies, and

dwir) . .
L Jwers-wid]f = ¢ except when 7= / » because the func-

Y S— ool
tion Iwri-wawijd takes on the same value after it has






described a closed path. On the other hand,
j ol wer)

WP —widy =37¢ as was proved in Sec. 1., 4.

Therefore,
f Ocr dwery = 1T are
The coefficientﬂ /f; 1s called the residue of the function
Ocry  with respect to the singular point wdk,) . Let
us consider now a closed contour 77 , Which has in its
interior a finite number of singular points a, 4, c..7 Let

A 7130 - L, be the corresponding residues.

Fig. XII.
If we surround each of these points by "contours"™ (circles
in the u,v-plane) with very small "radii", the integrai
taken around /~7 is equal to the integrali taken around
the small "contours", their sense being the same, hence we

have
j@l\")c[wtr‘) = 1”6.(A+/3r‘£l'- - - — +L)
r

which we may state as follows:

55.
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The integral f@tr)c{w(ﬂtaken aiong [ in the direct

sense, is equal to the product of _zﬁv'gz the sum of

the residues relative to the singular points of

enclosed by the closed path .

13. Multiple-vaiued functions. -~ Branch points.

In ail our previous work, we have supposed that alil
the functions that we considered were singie-vaiued functions
of y ; however, there, as in the case of analytic functions,
there may exist functions which are many-valued functions of

r , i.6., which have more than one value corresponding to
each value of r .

The peints and curves for which the vaiues of the
functions of different branches coincide are cailed branch
points and branch curves.

In the case of analytic functions, ie found that there
were no branch curves, but onliy branch points. Let us
investigate the classes of functions that wé are studying
and see if it is possible to have branch curves.

For these branch points or branch curves, the
Jacobian of transformation(i) vanishes - hence, if we have

the function wir) = uc¢p, g+ v(p,q;[ at the branch point,

J

or branch curves, the determinant

Ju p)

[ 23
50 5y
v , dy
S

(1) c¢f. Goursat; op. cit., vol. I., p. 52.
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vanishes.

If we repiace gf and %f by their values obtained
from the Beltrami equations, we have the quadratic form
which is always definite unless

%:e : %L% .o
In the same way by replacing in the determinant the values
of ?f and §%~ obtained from the Beltrami equations, we
have the quadratic form

i 2 6’ Z
75;@;) L ¢ 1gr)

-/ P

which is always definite un.ess

QV . V. o

Hence the condition that the determinant venish is that
ou _ Ju . V=_)V -0
op B %ET f%: j?

which expresses the condition that there be on.y branch

points, and not branch curves, therefore,in general, we

have branch points.

14. Example of many-valued functions.

Let us consider the weli known transformation

LU = pPeosyg
y - pehvy,

(i) ecf. Darboux: op. cit., vol. III, p. 194.
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The function W-=U +V. is a non-analytic
function. It, however, is a function which belongs to
the classes we have defined, and we are in a position to
study it. The function w-: n+v: belongs to the sur-
face )  whose linear element is defined by

ds?- Ldp s pdg’
which is mapped upon the u,v-plane by a conformal trans-

formation, hence we can study the above transformation

of the p,q-plane upon the u,v-plane.

best by drawing the Riemann surfaces for the transformation
v/

//4////‘%%/// %/

I ~eut
/ /W S hresch poia,
S— // 3 . 7 7‘,
W
Fig. XIII.

The Jacobian of transformation is p ; therefore when

we have the branch point, or branch curves; in the u,v-
plane it is a point, namely, the origin - in the p,q-
plane a line, namely, the q-axis.

There wili be an infinite number of sheets in

the u,v-piane, corresponding to the one sheet over the

A%
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P,q-plane. Corresponding to any geometricald point R in
the shaded part of the u,v-plane there will be an infinite
numnber of geometrical points in the p,q-plane, P: f): /)jt =
one in the shaded portion of each of the strips of width 27 .,
The infinite number of sheets over the u,v-plane will hang
together at the origin.

If we consider the function W'- w?® | we know
that, since w' is an ordinary analytic function of W , it
belongs to the same surface Zj to which w belongs. The
function wihu+vy: w?

where

/

w - Pieac zq
vis [a"g.'/v 24 .

The Riemann surface for these functions wiil be just as the
above, except that the strips will be of width 7 , and
there willi be a compression in toward the g -axis, as

indicated in the figure.

k2 Lf/ - //////

V2 T~ e
G ez

Fig. XIV.

45. Region of Convergence.

In the foregoing proof of the Cauchy-Taylor and






Laurent series, we made no statement about the maximum size

of the region of convergence. If we are thinking of the
function as a function in the u,v-plane we may speak of the
circle of convergence, which will as in thecase of analytic
functions bend until it touches some singularity or branch

point. On the other hand, if we are thinking of the func-
tion as a function on the surface Zi- or on the p,q-plane,
the region of convergence is no longer a circlie, but some
"contour" which corresponds to the circlie on the u,v-plane.
This "contour" will extend until it touches some singuiar-

ity; and it wili shrink up on the point wdwu as the corre-

sponding circle shrinks up on its center wwi .

60.
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Section 1V.

1. Examples of some of these functions.

As we have before stated, these functions which
we are studying are mereiy the solutions of the Beltrami

differential equations

S . Eds - Fa
t s

v . F -6
dq o

SF

- |&

In order to find some function satisfying these
differential equations let us take definite surfaces.
a) Let us consider the sphere which is defined by the

equations,
X = '?%i/vla cos g
J- /l’s.'u/: 8ivg
z: [Peosp
then the square of the iinear element on the sphere is given
by the equation
dsts Rdp + RPoinpdy.

Hence, in this case, the Beltrami equations become






dv . [T
T

r v p
‘;V S - [?’.g[”’ﬂ %'L/:
ﬁ /?'gl'lvf’

Now we wish to find one particular solution of these equa-
tions. Let us assume that V is a function of p alone,
and that “ is a function g alone, then the second of the
equations is satisfied and the first. becomes

: v . du

of which V= log ; , =49 is a solution.
Therefore the function w.u+vi . q +ilog§. is one
of the functions that we are seeking. Any ordinary analy-
tic function of w is also a function of this classgi)

b) The linear element of the-pseudo-sphere is given
by the equation

de - a'ldp+ e™dy),

where the pseudo-sphere is generated by the revolution of

the tractrix,
y=¢29"”‘fz Z:lo?(‘fd/v_f + Co¢ §)
2
(11)

about its base.

In this case

E: d‘, F:o 5=‘d&e,‘{,

(1) See E. Picard: op. cit., vol. II., p. 541 - 2.

(11) Darboux: op. cit., vol. I1I., p. 394.

62.
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Hence the Beltrami equations become

gy
P T

;]
pra ~ategt
9 2 e P

Let us as in the foregoing example assume that
V is a function of P alone, and " of g alone, then we
find that the above equations willi be satisfied by
P u- g

Therefore any analytic function of W =u+Vvi ig a

V: —e

function of the second kind.
c) Let us now take the torus which is given by the

equations

x = (R- f"”l’)“"ﬁ'

Y- (R- feosp) sing

Z = [ S¥p
where f is the radius of the generating circie and s
the distance of its center from the axis.
The iinear eiement of the surface is
defined by the equation

b dﬂ’l . rtd; 4 (J7- rcol’/‘”‘dc;

Hence,£—=ff F:o C=(ﬁzf6097/z

therefore the Beitrami equatiocns become






gk

1R geoig

%Z : _(/?--rco('ﬁ)"-‘;—;‘
q f(/?_reo:f)

Ny

If we assume again that w is a function of p

alone, and v of g alone, we see that one solution of the

above is
? od
bl, = j‘}_ﬁ“ V} y: 7
, - peosr
Here we have as one solution w=Uu+ve , @

function which is uniform upon the torus and which is a

doubly-periodic function with the periods ./ and

A (1)
[ #%.,

The above examp.ies of functions of these classes

64.

are the well-known functions which define a conformali trans-

formation of the particuiar surface to which each belongs

upon a p.ane. But, whiie it is evident by the restriction

we have placed upon © and v , that all the functions which

belong to the classes that we have defined, wiii give a con-

formali transformation of some surface upon the plane, we

have here reached our functions in a way very different from

the way in which these functions are ordinariiy reached,
namely in seeking a solution for the Beltrami eguations.
(i) e¢f. E. Picard: op. cit., vol. II., p. 544.

For Riemann surfaces of this¢ functioni see
Klein: On Riemann's Theory of Functions, p. 486.
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And we can obtain functions that beliong to this class by
finding merely the solutions of the Beltrami equations,

where E, F, and G are any arbitrary functions of p and q.

2. Interpretation of this work in the u,v-plane.

The surface Z: which plays such an important part
in gll1 this work is not essentia. to theory, but is rather
an aid to our intuition and a help in the anticipation of
resuits. The u,v-plane is essentially the plane in which
we are working. In order to interpret this work in the
ﬁ,v-plane,in the case of differentiation and integration
it is necessary merei.y to make new definitions - namely, by

Aw’
derivative we shall mean s vw , and by the integral of Ecr

b
from a to b, we shall mean j @1:—)(74/{)//?2[/0 r £1s //a(A/'

“ JE
However, if we attempt to interpret the isogonal transform-
ation, we are forced into a ncn-Euclidean geometry in the
u,v-plane, A geometry about which very little can be said
until we know the surface to which the functions belicng, or
the E, F, and G shich occur in the Beltrami equations. 1In
all cases the geometry in the u,v-plane wiil be one in

(1)

which extremalis are perpendicuiar to transversals.

(i) Stromquist: On geometries in which circlies are the
the shortest lines.
Transactions of the American Mathematical Society,
vol. II., No. 2, p. 18l.
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If we take a particular surface, we can make further
statements about the geometry. In the case of the pseudo-
sphere, which we gave above (1,b) the geometry is Lobatchew-
skian, that is, a geometry in which circles are the shortest
distances and extremals are perpendicular to their transvers-

(1)

als.

(1) Stromquist: op. cit.
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Conclusion

It is interesting to note some of the ﬁroblems in
which the Beltrami equations occur. In a brief statement of
a few of these probiems, it is impossible to give a treatment
comprehensive and rigorous enough to give a clear idea of
what has been done; therefore, the attempt here wiii be to
indicate mereiy the general lines of the work.

Professor Picard obtains these equations by equating
one of the conjugate factors of ciﬁ + d ; to the cor-
responding factor of l/faffo + 2Fdp dy + & o/?‘) , and in
(1)

his chapter on Theoremes Generaux sur une Surface de Riemann

he proves a few theorems about functions that satisfy the
Beltrami equations. However, he turns from the consideration
of these functions with littie more than the suggestion that,
since any function belonging to a surface is an ordinary ana-
lytic function of any other function of this same surface, all
functions of a surface may be treated as anaiytic functions of
some one function of this surface.

Professor Darboux, following Beltrami, proves sever-
al very interesting theorems about these functicns in his

work on the surface theory. Among these is a theorem for

(i) Picard: op. cit., voi. 1I, p. 54i.
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(i)

the surface analogous to the Green theorem for the plane.

Professor Klein in his work On Riemann's Theory of Functions

interpretes these functions that satisfy the Beitrami equa-
tions of the second order as steady streaming aiong the
surfece. In this very interesting work he gives examples
of the stream lines for severa. different surfaces. His
treatment is from the geometricai rather than the functional
standpoint.

In speaking of an extension of the theory of func-
tions of a complex variable to include non-anaiytic functions,
we said that non-analytic functions need not be necessarily
useless or difficuit; and the functions which this extension
has lead us to congider, as is obvious from the examples giv-
en in the preceding paragraph, are not useless and difficult,
'but the well-known functions which arise in the theory of
surfaces. While the extension of the theory of functions
of a compiex variable that we have made is not the most gen-
era. one - nameliy, one in which we will not be forced to
consider the functions belonging to each different surface
as forming a separate class, and in which, even when thus

considered, we will not have to make such frequent use of a

(i) Darboux: op. cit., vol. III., p. 198, et sq.
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standard function of that class,- yet it does enable us to

make a more thorough and accurate study of the functions than
we could otherwise. As an illustration of this take the
method indicated by Professor Picard ( op. cit., voi. II,
p. 541). His definition of a pole is essentially the same
as the one we adopted, and yet in following out his sugges-
tions ( ioc. cit.), we should scarcely be iead to consider
whether the standard function w«¢&) (of which we are to
consider alli of functions @(r) as an ordinary analilytic func-
tion) 1is double-valued or not.

Moreover, this extension will lead us to many func-
tions which wouid not be encountered in the surface theory,
because we are in the position to study any functions which

are the soiutions of the Beltrami equations,

A'-t - )L
0y * P 4%

%% - Fé%'+ f/%f—-

where H = JEG - Fz, and where E, F, and G are any arbi-

trary functions of p and q, and it is not necessary to know
anything about the surface other than the values of E, F, and

G.

Finis
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