NEONATAL ALLOIMMUNE THROMBOCYTOPENIA

Background

- 1. Definition¹
 - Neonatal Thrombocytopenia: Platelet count $<150 \times 10^9/L$
 - Severe Neonatal Thrombocytopenia: Platelet count $<50 \times 10^9/L$
- 2. General Information
 - Fetal/neonatal alloimmune thrombocytopenia (FNAIT) most common and important cause of severe neonatal thrombocytopenia²

Pathophysiology

- 1. Pathology of Disease
 - Maternal antiplatelet IgG antibodies cross placenta and attack fetal platelets at 14-16 weeks gestation³
 - Human platelet antigens (HPA) must be absent in mother and present in fetus (due to inheritance from father)³
 - \circ By 18 weeks gestation, platelet antigens seen in fetus³
 - Transfer of antibodies increases as gestation progresses until maximum level is reached in late 3rd trimester¹
 - Severity depends on¹:
 - Concentration and subclass of maternal IgG allo-antibodies
 - Antigen density on fetal platelets
 - Phagocyte activity in fetal reticuloendothelial system.
 - Ability of fetal bone marrow to compensate for accelerated platelet destruction
- 2. Incidence, Prevalence¹
 - HPA-1a found in 98% of Caucasian population
 - 2% of Caucasian pregnant women are HPA-1a negative and likely to carry a HPA-1a positive fetus
 - In Asians, HPA-4 most common cause of FNAIT
 - FNAIT Incidence: 1/600-1/5000
 - Anti-HPA-1a sensitization occurs only if mother's Human Leukocyte Antibody (HLA) type is DR52a.

Page 1 of 6

- 3. Risk Factors
 - HPA incompatibility between father and mother³
- 4. Morbidity / Mortality¹
 - Antenatal intracranial hemorrhage (ICH) in 10-30% of severe FNAIT
 - Death in 10% of ICH
 - Neurological sequelae in 10%-20% of ICH
 - $\circ~~1/3$ of infants with FNAIT and ICH die 3

Diagnostics

- 1. History¹
 - Previous pregnancy of FNAIT
- 2. Physical Examination
 - Healthy appearing newborn born to healthy mother with normal maternal platelet count and uneventful pregnancy¹
 - Within minutes to hours of newborn's life: petechiae, bruising, excessive bleeding, and mucocutaneous purpura appear³
 - ICH presentation: can vary from asymptomatic to seizures, retinal hemorrhage, lethargy, tense fontanel, altered consciousness, apnea, and bradycardia³
- 3. Diagnostic Testing
 - Diagnosis made after birth for first pregnancy³
 - CBC usually normal except for thrombocytopenia and anemia if excessive blood loss (always confirm true thrombocytopenia with second sample)³
 - \circ Platelet count <20,000/ml when symptoms appear³
 - Must rule out infection, disseminated intravascular coagulation, bleeding disorders and maternal immune thrombocytopenia (ITP)¹
 - \circ Confirmatory test: presence of antiplatelet antibodies in maternal blood sample + maternal-paternal antigen incompatibility¹
 - Mother and father should be screened for HPA-1, HPA-3, HPA-5 [+ HPA-4 if Asian]³
 - Maternal antiplatelet antibody testing accomplished via:
 - Monoclonal antibody-specific immobilization of platelet antigen test (MAIPA)
 - Platelet immunofloursecence test (PIFT)
 - Antigen-specific particle assay (ASPA)
 - Serologic testing for FNAIT recommended in following scenarios:¹
 - severe thrombocytopenia (even when other causes of neonatal thrombocytopenia present)
 - ICH with significant thrombocytopenia
 - Family history of any transient neonatal thrombocytopenia
 - Diagnostic Testing in multiparous women with confirmed previous FNAIT
 - PCR from amniocytes or chorionic villi at 18 weeks gestation to determine fetal platelet type¹
 - Fetal Blood Sampling to determine severity⁴
 - Use diminished because of significant risks
 - 1.3% fetal loss rate per procedure⁴
 - 5.5% loss rate per affected pregnancy⁴
- 4. Laboratory evaluation⁵
 - Commercial enzyme-linked immunosorbent antibody kits for initial screen followed by monoclonal antibody specific immobilization of platelet antigen assays and radioimmunoprecipitation assay for further antibody testing
- 5. Diagnostic imaging³
 - All neonates with confirmed FNAIT should be screened for ICH via cerebral ultrasound, CT, or nuclear magnetic resonance scan

Differential Diagnosis

- 1. Key Differential Diagnoses³
 - FNAIT seen in healthy newborns versus thrombocytopenia seen in a sick newborn. Newborn thrombocytopenia seen in the following:
 - Maternal Idiopathic Thrombocytopenia purpura (2nd most common cause of neonatal thrombocytopenia)
 - Neonatal Drug Exposure: Heparin, Quinine
 - Thrombocytopenia absent radius syndrome
 - Congenital Amegakaryocytic Thrombocytopenia
 - Maternal Factors:
 - Penicillin, Dioxin, Phenytoin, Indomethacin, Phenytoin, Heparin exposure;
 - History Pregnancy Induced-Hypertension
 - Chromosomal abnormalities: Trisomy 18, 13, 21, Turner's
 - Wisckott-Aldrich Syndrome
 - Fanconi's anemia
 - Kasabach-Merritt syndrome
 - Cardiac anomalies
 - Placental insufficiency
- 2. Extensive Differential Diagnoses¹
 - Congenital infections: CMV, Syphilis, Toxoplasmosis, Rubella, HIV, Parvovirus B19
 - Severe Rhesus disease
 - Disseminated intravascular coagulation
 - o Perinatal infection: GBS, E.coli, Listeria

Therapeutics

- 1. Acute Treatment in Neonate
 - \circ Treat based on newborn's condition¹
 - Asymptomatic with mild to moderate thrombocytopenia¹
 - No treatment necessary
 - Neonatal Bleeding or Severe Thrombocytopenia
 - First Line Therapy: Transfusion of HPA compatible platelets ASAP¹
 - $\circ~$ Transfusion of 1 dose (10 mL/kg) usually increases platelet count by 100 X 10⁹/ L within 1 hour
 - If HPA compatible platelets not available, then either ¹
 - Transfusion of HPA-1a-negative and HPA-5a-negative platelets or
 - Transfusion of maternal platelets
 - Need gamma-irradiated and washed to minimize transfer of maternal antibodies.
 - Until matched platelets available, acceptable to give unmatched platelet concentrates¹
 - IVIG and/or steroids when severe thrombocytopenia and/or hemorrhage persists¹

- Therapeutic effect of platelet count delayed for 24-48 hrs; neonate remains at risk for ICH
- Fresh Frozen Plasma³
 - Contains 1 international unit of clotting factors for every 10-15 mL/kg
 - Dose: 10-20 mL/kg to prevent bleeding with severe thrombocytopenia of unknown origin
- 2. Antenatal Treatment in history of FNAIT sibling
 - Recommend non-invasive management over invasive¹
 - Non-Invasive Management
 - Weekly maternal gamma globulin infusion IVIG (1 g/kg/wk) with or without steroids $(0.5 \text{ mg/kg/d})^1$
 - Gamma globulin has following actions:
 - suppresses platelet antibody synthesis
 - blocks antiplatelet antibody transfer
 - competitively inhibits platelet binding to maternal antibodies and/or interferes with phagocytemediated immune clearance by reticulo-endothelial system¹
 - Peak maternal IgG level decreases by 50% after 72 hrs¹
 - IVIG prevents ICH and increases platelets in 55%-85% of cases¹
 - Side effects: Aseptic meningitis, acute renal failure, thrombosis, anaphylaxis, headaches, febrile reactions, nausea, malaise, and myalgia¹
 - Side effects minimized by slowing infusion rate¹
 - Optimal management with IVIG alone or IVIG plus steroids remains unclear.²
 - Steroids as sole treatmentcontroversial¹
 - Efficacy variable, and chronic steroid therapy associated with oligohydraminos
 - Mechanism of action: suppression of Fc receptor function of macrophages and possible interference with antibody synthesis
 - Invasive Management²
 - Fetal blood sampling and intrauterine platelet transfusion
 - Previous initial approach but no longer commonly used because of the increased risk of fetal death
 - Only used as an option when mother does not respond to noninvasive management
 - \circ Mode of Delivery¹
 - Delivery plan based on patient's risk category, response to treatment, and most recent fetal platelet count.
 - Cordocentesis, to determine fetal platelet count as delivery considered, not associated with fetal bleeding
 - Appropriate gestation age for delivery has not been determined

- Cesarean Delivery alone not effective in preventing antenatal or perinatal hemorrhage
- Vaginal Delivery¹
 - Reasonable if fetal platelet > 50×10^9 /L
 - If platelets $<50 \times 10^9$ /L, platelet intrauterine transfusion can protect against bleeding (must weigh risks of transfusion)
 - No evidence to suggest increased risk of ICH in vaginal deliveries with platelets <50 X10⁹ /L
 - Avoid instrumental vaginal delivery, fetal scalp electrodes, and fetal scalp blood samples
 - Neonatal care team should be present and compatible platelets prepared by blood bank
- 3. Further Management (24 hrs)
 - Observe and follow platelet counts daily⁵
 - Maternal antibodies start to leave infant's circulation at 48 hours of age³
 - Resolution of FNAIT usually occurs by 2 weeks of age with complete normalizing of platelet count by 4 weeks³
 - Platelet count should be kept > 100×10^9 /L if bleeding occurred and maintained at >50 X 10⁹/L for 1 to 2 weeks⁵
- 4. Recommended Antenatal Therapy:¹
 - Weekly maternal IVIG infusions (1 g/kg/wk) with or without oral steroids (0.5 mg/kg/d)
 - Begin treatment 4 to 6 weeks earlier than when ICH or severe thrombocytopenia occurred in previous pregnancy
 - If information unavailable begin therapy at 30 weeks

Follow-Up³

- 1. Outpatient follow-up includes platelet levels for rare but possible thrombocytopenia recurrence
- 2. Developmental/neurological follow-up is necessary if ICH occurred
- 3. Close maternal follow-up with high risk obstetrics and early prenatal care if history of confirmed FNAIT pregnancy

Prognosis

- 1. FNAIT occurs earlier and is more severe in subsequent pregnancies¹
- 2. Recent studies show that high 3rd semester antibody titers (>1:32) and high IgG3 subclass titers may predict severe thrombocytopenia. This has yet to be confirmed.⁶
- 3. Best noninvasive predictor = in utero ICH in sibling¹
 - 70-80% recurrence rate of ICH if prior sibling affected¹
- 4. Quick and proper treatment reduces the risks of death and long-term disabilities³

Patient Education¹

- 1. Must provide preconceptional counseling for patients with history of pregnancy with FNAIT
- 2. http://naitbabies.org/

References

- 1. Serranrens-Janssen VML, Semmerkrot BA, et al. Fetal/Neonatal Allo-Immune Thrombocytopenia (FNAIT): Past, Present, Future. Lippincott Williams & Wilkins. Obstetrical and Gynecological Survey 2008; 63:4
- 2. Rayment R, Brunskill SJ, et al. Antenatal interventions for fetomaternal alloimune thrombocytopenia (Review). The Cochrane Collaboration. The Cochrane Library 2011; 5
- 3. Beachy J, Nash P. Neonatal Alloimmune Thrombocytopenia: A Case Study. Neonatal Network 2011; 30:6
- 4. McQuilten ZK, Wood EM, et al. A Review of Pathophysiology and Current Treatment for Neonatal Alloimmune Thrombocytopenia (NAIT) and Introducing the Australian NAIT Registry. Australian and New Zealand Journal of Obstetrics and Gynecology 2011; 51: 191-198.
- Symington A, Paes B. Fetal and Neonatal Alloimmune Thrombocytopenia: Harvesting the Evidence to Develop a Clinical Approach to Management. Am J Perinatol 2011; 28:137-144
- 6. Bussel JB, Primiani A. Fetal and Neonatal Alloimmune Thrombocytopenia: Progress and Ongoing Debates. Blood Reviews 2008; 22:33-52

Author: Sneha Kemkar, MSIII, & James Hynes, MD, University of TN COM

Editor: Robert Marshall, MD, MPH, MISM, CMIO, Madigan Army Medical Center, Tacoma, WA