<u>URINE DRUG SCREENING</u> IN CHRONIC PAIN MANAGEMENT

Background

- 1. Definitions
 - Chronic non-malignant pain syndrome
 - Persistent pain not related to life-threatening condition
 - Opioid misuse
 - Not taking opioids as prescribed:
 - Diversion or selling of opioids
 - Concomitant use of undisclosed controlled or illicit drugs^{1,2}
 - Urine drug screen (UDS)
 - Rapid test for detection of metabolites from common drugs of abuse
- 2. General Information
 - American Pain Society and American Academy of Pain Medicine recognize UDS ispotential tool for monitoring chronic opioid therapy^{3,4}
 - Purposes^{1,2,5}
 - Evaluating appropriate use of prescribed opiates
 - Screening for use of undisclosed controlled drugs
 - Identifying illicit drug abuse
 - Allows primary care providers to risk stratify patients
 - Referral to pain specialists
 - Referral to drug rehabilitation programs
 - Benefits^{1,3}
 - Ease of use
 - Low cost
 - Rapid availability of results
 - Ability to detect recent usage of multiple drug classes
 - Limitations
 - Historically utilized for testing high risk patients in addiction treatment setting^{1,6}
 - Varying thresholds for drug detection
 - Affected by individual's absorption, nutrition status, body composition, dosage, duration of use, protein binding, and concentration thresholds of immunoassay^{4,7}
 - Many false positives and false negatives
 - No evidence that regular use of UDS acts as deterrent
 - o 2010 systematic review of 11 observational studies
 - practices routinely utilized the UDS
 - \circ resulted in non-statistically significant decrease in opioid misuse³

Pathophysiology

- 1. Pathology
 - Opioids and drugs of abuse metabolized to products that can be detected in urine
- 2. Incidence, Prevalence
 - \circ 1 in 4 chronic pain patients misuse opioids or abuse illicit drugs⁴
 - Prescription medications are second most commonly abused drug category after marijuana⁴
 - Prescription drug abuse surpasses cocaine, heroin, and hallucinogen use combined⁴
 - Retrospective studies found
 - 10-24% of patients on chronic opioid therapy were using illicit drugs a
 - Determined by combination of screening and confirmatory tests^{1,2,8,9}
 - Most commonly used illicit drugs include marijuana, cocaine, and ecstasy^{1,2,6,9}
 - Prevalence higher than general population⁹
- 3. Risk Factors for Aberrancy
 - Illicit drug use^{6,9}
 - Younger patients
 - Workman's compensation recipients
 - Chronic pain secondary to motor vehicle crashes
 - Opioid misuse⁵
 - Young men
 - History of drug or alcohol abuse
 - History of criminal convictions
- 4. Morbidity / Mortality
 - Development of addiction
 - Opioid overdose may be lethal secondary to cardiac and respiratory effects
 - Risk for fatality compounded by illicit drug use

Diagnostics

- 1. History
 - Risk stratification
 - Review prescription drug monitoring programs
- 2. Urine Drug Screening: Enzyme Immunoassay (EIA)
 - Point of care "dipstick" test most commonly used initial screen
 - Test should be compliant with Clinical Laboratory Improvement Advisory Committee (CLIAC) assurances¹
 - \circ Suggested panel includes testing for opiates, marijuana, cocaine, amphetamine, and methadone^{1,9}
 - Utilizes enzyme-labeled antibodies to detect particular substance
 - Presence of drug metabolites results in formation of antigen-antibody complexes measured by enzymatic reactions
 - Detects only drug classes rather than specific opiates²
 - Many false positives and false negatives

- False positives
 - Due to structural similarities and cross-reactivity between drugs
 - Amphetamines and methamphetamines have the highest rate for false positives on urine drug testing
 - Also common for phencyclidine (PCP), benzodiazepines, and propoxyphene^{3,10}
 - Tested substances and potential sources of false positives^{1,3,5}
 - Alcohol
 - Isopropyl alcohol, asthma inhalers (rare)
 - Amphetamines/Methamphetamines
 - Amantadine, brompheniramine, bupropion, chlorpromazine, desipramine, ephedrine, fluoxetine, Lmethamphetamine (in nasal decongestants), labetalol, methylphenidate, phentermine, phenylephrine, phenylpropanolamine, promethazine, pseudoephedrine, ranitidine, selegiline, thioridazine, trazodone, trimethobenzamide, trimipramine
 - Barbiturates
 - NSAIDs
 - Benzodiazepines
 - Oxaprozin, sertraline, some herbal agents
 - Cannabinoids
 - o Dronabinol (Marinol), NSAIDs, pantoprazole
 - Cocaine
 - Topical anesthetics containing cocaine
 - Methadone
 - Clomipramine, chlorpromazine, diphenhydramine, doxylamine, quetiapine, thioridazine, verapamil
 - Opioids
 - Dextromethorphan, diphenhydramine, fluoroquinolones, poppy seeds, quinine, rifampin, verapamil
 - Phencyclidine
 - Chlorpromazine, dextromethorphan, diphenhydramine, doxylamine, ibuprofen, imipramine, ketamine, meperidine, thioridazine, tramadol, venlafaxine
- False negatives
 - Poor sensitivity to synthetic and semi-synthetic opioids⁴
 - Natural opioids: morphine, codeine
 - Semi-synthetic opioids: hydrocodone, hydromorphone, oxycodone
 - Synthetic opioids: fentanyl, meperidine, methadone, propoxyphene
 - Varying drug metabolite detection thresholds and detection times on UDS¹
 - Opioids
 - o Morphine
 - Detection threshold 300 ng/mL
 - Detection time 3-4 days

- Codeine
 - Detection threshold 300 ng/mL
 - Detection time 1-3 days
- o Hydrocodone
 - Detection threshold 300 ng/mL
 - Detection time 1-2 days
- Oxycodone
 - Detection threshold 100 ng/mL
 - Detection time 1-3 days
- Methadone
 - Detection threshold 300 ng/mL
 - Detection time 2-4 days
- Benzodiazepines
 - Detection threshold 200 ng/mL
 - Detection time up to 30 days
- Cocaine
 - Detection threshold 300 ng/mL
 - Detection time 1-3 days
- Marijuana
 - Detection threshold 50 ng/mL
 - Detection time up to 1-3 days for casual use; up to 30 days for chronic use
- Amphetamine
 - Detection threshold 1,000 ng/mL
 - Detection time 2-4 days
- Methamphetamine
 - Detection threshold 1,000 ng/mL
 - Detection time 2-4 days
- Heroin
 - Detection threshold 10 ng/mL
 - Detection time 1-3 days
- Phencyclidine
 - Detection threshold 25 ng/mL
 - Detection time 2-7 days for casual use; up to 30 days for chronic use
- Specimen Tampering
 - Common strategies to elude abnormal drug screen⁹
 - Volume loading to reduce drug metabolites below screening thresholds
 - Using urine concentrate to which water is added
 - Substituting with clean specimen
 - Adding adulterant products
 - Methods to reduce specimen tampering⁵
 - Same-sex observation of collection

- Analysis of sample
 - Findings suggestive of tampered sample
 - Temperature $< 90^{\circ}$ F or $> 100^{\circ}$ F
 - Unusual appearance (e.g., bubbly, cloudy, clear, dark)
 - pH <4.5 or >8.5
 - Nitrite concentration >500 mg/dL (4.2 mmol/L)
 - Specific gravity ≤ 1.0010 or ≥ 1.0200
- 3. Confirmatory Testing
 - Recommended if patient denies cause for discrepancy
 - Positive screening for opioids may optionally be sent for confirmatory testing to establish specific opioid metabolites present⁷
 - $\circ~20\text{-}32\%$ of urine drug screens produce unexpected result requiring follow-up confirmatory testing $^{\rm I}$
 - May be performed on urine or serum; however, urine testing frequently utilized due to higher drug metabolite concentration of and longer detection times compared to serum¹
 - Order as panel for metabolites of specific drug
 - Up to 10% of patients known to be taking opioids have negative confirmatory testing, likely related to factors in drug metabolism and testing thresholds^{9,11}
 - Methods
 - Gas chromatography with mass spectrometry (GC/MS)

 Considered gold standard⁷
 - Liquid chromatography tandem mass spectrometry (LC/MS/MS)
 - High performance liquid chromatography (HPLC)
 - Some drugs may cause multiple positive results due to production of metabolites¹²
 - Hydrocodone
 - Hydromorphone, dihydrocodeine, normorphine, norhydrocodone, hydrocodol
 - Oxycodone
 - Oxymorphone, noroxycodone, oxycodols and their respective oxide
 - Morphine
 - Hydromorphone (minor), morphine-3-glucuronide, morphine-6-glucuronide, normorphine
 - Methadone
 - 2-Ethylidene-1, 5-dimethyl-3, 3-diphenylpyrrolidine, 2-ethyl-5methyl-3, 3-diphenylpyrrolidine
 - Hydromorphone
 - Dihydromorphine, hydromorphone-3-glucuronide
 - Oxymorphone
 - Oxymorphone-3-glucuronide, oxymorphol
 - Codeine
 - Hydrocodone (minor), norcodeine, morphine
 - Propoxyphene
 - Norpropoxyphene

- Fentanyl
 - Norfentanyl
- Tramadol
 - O-desmethyl-tramadol
- Butorphanol
 - Hydroxylbutorphanol, norbutorphanol
- Buprenorphine
 - Norbuprenorphine, norbuprenorphine-3-glucuronide, buprenorphine-3-glucuronide
- Heroin
 - Morphine, codeine (contaminant), 6-monoacetylmorphine (latter metabolite only detected for 6 hours)
- 4. Recommendations
 - Inform patients about random UDS upon initiation of chronic opioid therapy (SOR:C)⁴
 - \circ Consider random UDS for both high and low risk patients (SOR:C)⁴
 - Enzyme immunoassay recommended as initial urine drug screening test (SOR:C)⁵
 - Exercise caution in UDS interpretation as it cannot reliably detect all opioids (SOR:C)⁴
 - $\circ~$ Abnormal immunoassay results should be followed by confirmatory testing with GC/MS or HPLC (SOR:C)^5 ~
 - Appropriate collection techniques and tests of urine integrity may reduce risk of tampering (SOR:C)⁵

Follow-Up

- 1. Universal approach recommended
 - Decreases stigma of testing
 - Less than 50% of chronic pain patients misusing opioids display clear signs of aberrancy⁵
- 2. Algorithm proposed by Christo et al^1
 - Obtain baseline UDS at onset of therapy
 - Repeat UDS in 1-3 months
 - Appropriate or explained results on UDS
 - Repeat every 6-12 months
 - Inappropriate or unexplained results on UDS
 - Confirmatory testing
 - Appropriate results
 - Repeat UDS in 1-3 months
 - Follow appropriate result algorithm
 - Inappropriate results
 - Consider continued monitoring
 - Education with continued opioid therapy
 - Or discontinue opioid therapy

- \circ Other indications for repeating UDS⁵
 - Decline in function
 - Concerning behavior patterns or aberrancies⁵
 - Taking controlled substance for long period of time (new patients)
 - Refusing permission to obtain old records or communicate with previous physicians
 - Reluctance to undergo comprehensive history, physical examination, or diagnostic testing
 - Requesting specific drug (often because of the higher resale value of a brand name)
 - Professing multiple allergies to recommended medications
 - Resisting other treatment options
 - Issuing threats or displaying anger
 - Targeting appointments at end of day or during off hours (nights or weekends)
 - Giving excessive flattery
 - Calling and visiting physician's associates
 - Repeatedly losing prescriptions
 - Requesting dose escalation
 - Demonstrating noncompliance with prescription instructions
 - Demonstrating other evidence of alcohol or illicit drug misuse
 - Prior to dose increase
 - Upon referral to a pain specialist

References

- 1. Christo PJ, Manchikanti L, Ruan X, et al. Urine drug testing in chronic pain. Pain Physician. 2011; 14(2):123-43.
- 2. Pergolizzi J, Pappagallo M, Stauffer J, et al. The role of urine drug testing for patients on opioid therapy. Pain Pract. 2010; 10(6):497-507.
- 3. Markway EC, Baker SN. A review of the methods, interpretation, and limitations of the urine drug screen. Orthopedics. 2011; 34(11):877-81.
- 4. McBane S, Weigle N. Is it time to drug test your chronic pain patient? J Fam Pract. 2010; 59(11): 628-33.
- 5. Standridge JB, Adams SM, Zotos AP. Urine drug screening: a valuable office procedure. Am Fam Physician. 2010; 81(5):635-40.
- 6. Katz N, Sherburne S, Beach M, et al. Behavioral monitoring and urine toxicology testing in patients receiving long-term opioid therapy. Anesth Analg. 2003; 97:1097-102.
- 7. Katz N, Fanciullo GJ. Role of urine toxicology testing in the management of chronic opioid therapy. Clin J Pain. 2002; 18(4 Suppl):S76-82.
- 8. Tenore PL. Advanced urine toxicology testing. J Addict Dis. 2010; 29(4):436-48.
- 9. Compton P. The role of urine toxicology in chronic opioid analgesic therapy. Pain Manag Nurs. 2007; 8(4):166-72.
- Melanson SE, Kredlow MI, Jarolim P. Analysis and interpretation of drug testing results from patients on chronic pain therapy: a clinical laboratory perspective. Clin Chem Lab Med. 2009; 47(8):971-6.

- 11. Manchikanti L, Malla Y, Wargo BW, Fellows B. Comparative evaluation of the accuracy of immunoassay with liquid chromatography tandem mass spectrometry (LC/MS/MS) of urine drug testing (UDT) opioids and illicit drugs in chronic pain patients. Pain Physician. 2011; 14:175-187.
- 12. Manchikanti L, et al. Protocol for accuracy of point of care (POC) or in-office urine drug testing (Immunoassay) in chronic pain patients: A prospective analysis of immunoassay and liquid chromatography tandem mass spectrometry (LC/MS/MS). Pain Physician. 2010; 13:E1-E22.

Authors: Lisa M. Sandvig, MD, Jeremy R. Orr, MD, MPH, & Brian S. Bacak, MD, FAAFP, Rose FMR, CO

Editor: Carol Scott, MD, University of Nevada Reno FPRP