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ABSTRACT 

The accurate detection of deception has potential applications in many fields 

including credibility assessment, security screening, homeland security, and counter-

terrorism.  Techniques currently used for deception detection typically capitalize on 

deception-related physiological changes, and include polygraph testing, voice stress 

analysis, brain activity analysis, and thermal scanners.  However, the use of these 

techniques in natural environments is limited as they often require intrusive sensors to be 

attached to the body.  These limitations may be addressed with posturography, which 

involves studying the ground reactions associated with standing balance without the need 
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for intrusive sensors.  Therefore, the objective of the current study was to examine 

deception-related effects on measures of standing posture using a mock security 

screening interview.  We hypothesized that deceptive participants, compared to truthful 

would demonstrate significant differences in ground reactions during the interview. 

Participants were required to pack a backpack with various items.  One group of 

participants had items that were “prohibited”, whereas the other group had equivalent, 

non-prohibited control items.  Both groups were questioned about the contents of the 

backpack.  The group with “prohibited” items was instructed not to reveal that they were 

carrying any prohibited items.   

Results of the study indicated that there was a significant deception-related 

decrease in center of pressure movement.  The deception related decrease in both center 

of pressure pathlength and mean velocity suggests that people “freeze” when they are 

being deceptive.  This notion was supported by increased oscillations in the anterior-

posterior direction. 
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CHAPTER 1 

INTRODUCTION 

Deception is defined as a psychological process by which one person deliberately 

attempts to convince another to accept as being true what the liar knows to be false [1].  

The accurate detection of deception has potential applications in many fields including 

credibility assessment, security screening, homeland security, and counter-terrorism.  

Techniques currently used for deception detection typically capitalize on deception-

related physiological changes, and include polygraph testing, voice stress analysis, brain 

activity analysis, and thermal scanners [2].  However, the use of these techniques in 

natural environments is limited as they often require intrusive sensors to be attached to 

the body.   

Video-based deception detection techniques provide an alternative to those relying on 

physiological measures.  Video-based techniques for deception detection have shown that 

distinctive body movements can be used to differentiate between deceit and truth-telling, 

and that such behavioral indicators can successfully be captured and tracked 

automatically using computer vision techniques [3] [4] [5].  However, video-based 

methods can be insensitive to occluded or small movements, difficult in terms of feature 
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extraction and data reduction, and are prone to image processing errors in real-world 

scenarios. 

The usage of computerized static posturography (CSP) may have the potential to 

augment or overcome the limitations of video-based deception detection.  CSP involves 

analyzing the center of pressure (COP) of a person’s body while standing still.  The COP 

is defined as the point of application on the ground of the body’s net resultant force 

vector [6].  CSP has previously been used in clinical settings to evaluate balance 

deficiencies caused by age-related or by disease-related factors such as peripheral 

neuropathy [7] [8] [9], stroke [10] [11], and Parkinson’s disease [12] [13]. 

CSP has also been used on a limited basis for the classification of human 

movement patterns.  Pattern recognition analyses have been applied to COP-based 

parameters in order to successfully discriminate between fallers and non-fallers [14], 

between people with good and poor postural stability [15], between non-alcoholics and 

alcoholics [16], and between people with and without sleep deprivation [17].  Given the 

previously observed deception-related effects on body kinematics, such classification 

techniques may have potential in the field of deception detection.  However, no 

researchers have successfully used COP-based parameters to discriminate between 

truthful and deceptive persons.   

As a preliminary step in achieving this goal, traditional statistical techniques were 

used to investigate differences in deception-related COP parameters.  A study was 

conducted in which participants took part in a security screening interview.  Participants 

were required to pack a backpack with various items.  One group of participants packed 
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items that were “prohibited”, whereas the other group did not.  Both groups were 

questioned in the interview about the contents of their backpack.  The group with 

“prohibited” items was instructed not to reveal to the interviewer that they were carrying 

any of these prohibited items.  It was hypothesized that truthful participants, compared to 

deceptive participants, would exhibit varied COP patterns when responding to interview 

questions.   
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CHAPTER 2 

BACKGROUND 

Deception 

Deception is defined as a psychological process by which one person deliberately 

attempts to convince another to accept as being true what the liar knows to be false [1].  

Deception is typically performed for the purpose of gaining a personal benefit, or to 

avoid some type of a loss [1].  Deception is present in everyday social and professional 

life [18]. 

Some researchers extend the definition of deception by stating that deception 

must be voluntary, and must occur without forewarning [19].  By this definition, there 

must be no instructions given to the deceiver telling them to be deceptive or exactly when 

they should tell a lie.  However, such instructions are a feature of most deception studies 

found in the literature.  Researchers using the extended view of deception stated above 

would argue that most deception-related studies do not actually measure deception; rather 

they measure complex executive functions that are associated with deception. 

Deception is socially rooted, and the processing of deception is modified by moral 

perception of a situation.  These moral perceptions are typically dependent upon the 

deceiver’s expectation of there being consequences for their actions, whether they are 

positive or negative [19].  Without consequences for their actions, no harm can be done 
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and no gain can occur to the deceiver or the deceived.  It is believed that without 

consequences there cannot be a valid representation of the processes involved in 

deceptive acts.  This has also been a significant limitation of previously performed 

deception studies [19].  

Indicators of Deception 

In response to the need for accurate deception detection, researchers have long 

been trying to decode human behavior in order to discover deceptive cues.  Knowledge of 

such cues allow for the development of methods to detect deception [18].  Such methods 

may have application in fields such as credibility assessment, security screening, 

homeland security, and in counter-terrorism [20].   

Several studies have been conducted with the goal of identifying cues to 

deception.  An extensive literature review was conducted in order to determine known 

cues to deception.  A wide variety of cues were examined; however, an emphasis was 

placed upon examining cues that may manifest themselves as COP variations.  In a study 

conducted by Zuckerman et al. [21], the Four-Factor theory of deception predicted that 

liars typically have four differing characteristics when compared to truth-tellers, 

including (1) increased general arousal, (2) emotions more associated with guilt, (3) more 

complex cognitive activity, and (4) attempts to control verbal and non-verbal behavior to 

avoid getting caught.  All of these characteristics may be exploited in order to obtain 

insight into deception-related cues. 

In a recent study conducted by Dilizan et al. [18], it was determined that deceptive 

behavior cues may be attributed either to over-control or agitation.  When liars are over-
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controlling they exert extra effort in an attempt to hide any deceptive behavioral cues that 

they might otherwise display.  This may be evident in reduced movements of the hands, 

legs, and head.  On the other hand, some liars show signs of agitation, which are triggered 

by nervousness and fear.  This agitation is usually accompanied by speech that tends to 

be faster [18].  Deception is thought to be a dynamic process; liars adjust their behavior 

according to how much they believe they are suspected of being deceitful [18].  This 

makes the task of deception detection very difficult since the cues to deception are not 

always the same for each response, even for a particular individual.  It may not always be 

correct to assume that either over-control or agitation is a definite sign of deceptive 

behavior; rather it is usually more reliable to look for deviations from a person’s normal 

behavior.  It is likely that liars will unintentionally reveal at least some behavioral cues as 

a result of their lie [18]. 

In addition to non-verbal cues, deceptive individuals also exhibit verbal behavior 

suggesting that they are less forthcoming than non-deceptive individuals [22].  For 

example, previous studies have shown reduced response lengths, less detailed responses, 

and less unique words when participants answer questions requiring deception [23] [24] 

[25] [26].  Liars also tend to be hold back in their responses [22], as evidenced by 

blocking access to information [27], increased response latencies, an increased rate of 

speaking [28], and by pressing together their lips [22].   

Liars have also been found to tell less compelling versions of events than truth-

tellers [22].  Liars’ responses often make less sense; they are not plausible and their 

version of events may seem internally inconsistent [29].  Liars often appear less 
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engaging, shown by being less verbally expressive, using less eye contact and by the use 

of fewer hand movements [22].  When people are being deceptive they typically give the 

overall impression of being more uncertain, evidenced by several subjective and 

objective measures such as sounding insecure, not being very dominant, and by having 

difficulty when answering some questions [30].  The uncertainty can also be 

accompanied by the deceiver raising their chin and pushing up their lower lip [22].  When 

answering questions liars also have been found to use more word repetitions and phrase 

repetitions [30].   

Liars are generally less positive and pleasant than truth-tellers [22].  Studies have 

shown them to be less cooperative and that they provide more negative statements and 

complaints [31].  Liars have also been shown to have reduced facial pleasantness [22].   

Studies have shown that liars are generally tenser than truth-tellers [22].  Liars 

often seem nervous, and may make body movements associated with their feeling of 

nervousness [30].  Specifically, facial fidgeting such as playing with hair or rubbing of 

the face increases when people are being deceitful [30].  However, object fidgeting such 

as tapping a pencil or playing with something that they are holding decreases when being 

deceitful [32].  Liars typically exhibit more vocal tension [30], and a higher pitched voice 

[33].  When liars become aroused their pupils usually tend to dilate and the rate at which 

they blink tends to increase [22].   

Several studies have demonstrated that lying results in an increased cognitive 

load.  Cognitive processes are often overlooked in research focused on the nature of 

deception, and only consider behavioral cues to deception [34].  Deception is a difficult 
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task; the deceiver must control facial, vocal, and bodily expressions and gestures, and 

thus, executive processes are vital in the formulation of a convincing lie.  Executive 

processes refer to cognitive activities such as working memory, directed attention, 

inhibiting inappropriate responses and activating appropriate ones.  Executive processes 

are important in decision making, planning, problem solving and in various other 

complex cognitive tasks [34].  Results from several studies have shown that lying 

requires greater mental effort than telling the truth [34] [20] [19].  Interpersonal 

Deception Theory, which was proposed by Burgoon et al. [25], describes deception as a 

two way interactive communication.  It also states that deception is a mentally taxing 

process, as the deceiver must construct and maintain the lie while they are monitoring 

their own behavior.  If the deceiver experiences a cognitive overload, then they will 

display leakage in the form of non-verbal cues [25].  This assumption has been used to 

explain deception-related behavioral cues such as longer response latency, pupil dilation, 

speech hesitation, and fewer hand movements [21].   

Studies focused on deception-related increases in cognitive load have revealed, 

via brain scanning techniques, that anterior cingulate and dorsolateral prefrontal cortices 

are particularly more active when people are lying [20] [34] [1] [19].  These areas of the 

brain have been identified as being responsible for performing executive processes [34], 

which supports the idea that deception increases the cognitive load that the deceiver must 

process.   

Behavioral cues that are of particular interest in the current study are 

posturographic measures that are associated with an increased cognitive load.  To the best 
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of our knowledge there have been no posturographic deception-related studies; however, 

since deception is associated with an increased cognitive load, the posturographic 

changes that are associated with an increased cognitive load may also be extended to 

deception.  In a study conducted by Stins et al. [35], COP excursions were found to 

decrease with an increase in cognitive load.  This observation can be explained by 

stiffening of the ankle joint via a co-contraction mechanism.  The increase in stiffness 

may be explained by a heightened level of awareness, and reduced postural automaticity 

[35].  This observation has also been supported by a study conducted by Dault et al. 

which showed a decrease in postural sway during a working memory task [36].  In 

addition to the decrease in COP excursions, the mean COP frequency was found to 

increase.  This result was found in studies conducted by Stins et al. [35], and by Dault et 

al. [36] which had also observed reduced COP excursions.  The increased frequency may 

be explained by changes in ankle stiffness when a co-contraction mechanism is employed 

since it is a more automatic control process.  This more automated control process 

releases cognitive resources for the primary focus of the person.  It can be expected that 

the increased cognitive load required for lying will also result in an increased COP 

frequency.  

This stiffening response has a close resemblance to the “freezing” behavior 

commonly observed in nature.  Freezing is a common defensive response in animals that 

are threatened by predators [37].  It may be characterized by reduced body motion, and a 

decrease in heart rate [37].  In a study conducted by Roelofs et al., it was shown that 

social threats can also elicit the freezing response in humans.  Participants in that study 
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exhibited a freezing response, as evidenced by reduced COP sway, when they were 

shown images depicting angry faces in comparison to responses observed for happy 

faces.  Freezing may be described as part of an early orienting response, possibly serving 

to aid in the detection of information for a subsequent fight-or-flight response which 

involves whole-body movements [37].  Since social threats elicit a freezing response, it 

follows that the reduction in COP excursions due to an increased cognitive load may be 

the cause of this observed effect.   

Current Deception Detection Techniques 

Several different techniques have been utilized for detecting deception.  The need 

for these techniques has arisen as a result of the inability of humans to detect deception.  

Even after receiving training, humans’ accuracy at detecting deception is just better than 

chance [2].  People typically rely on misconceptions as to which cues are best for 

deception detection.  Many deception detection techniques simultaneously measure 

several different cues, rather than just a single cue to deception [2].  Humans typically 

have difficulty tracking several cues, and may have difficulty tracking some of the more 

subtle cues which may be the best indicators of deception [2].   

Polygraph 

Polygraph testing is the most successful and commonly used system for deception 

detection [2].  Polygraph testing combines both interrogation and physiological 

measurements including heart rate, blood pressure, respiratory rate, and electrical 

conductance at the skin surface [18] [34].   
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Although polygraph testing is widespread, it is not a perfect system.  The use of a 

polygraph requires it to be continuously connected to the subject’s body [18].  This 

means that the subject must be cooperative and must be close to the device.  Invasive 

sensors must be attached to the subject’s body during testing; a blood pressure cuff is 

attached to the arm to determine their blood pressure and heart rate, galvanometers are 

attached to the finger tips to determine the skin’s electrical conductance, and respiratory 

rate is determined by using two pneumographs which are placed at the subject’s chest.  

The use of a polygraph requires accurate calibration of the device at the start of session so 

that a baseline can be established [18].   

Despite the calibration step, the polygraph system may not always provide 

accurate readings if, for example, the subject’s heart rate increases for reasons that are not 

related to deception [18].  Since the polygraph is an overt system people may devise 

techniques to trick the machine.  These techniques include remaining calm, controlling 

the heart rate, or being excited during the calibration phase [18].  

 Polygraph testing requires a trained operator, and the accuracy of the polygraph 

test is dependent upon their skills and abilities.  The operator is also in control of the 

length of the interview, and the operator may sometimes need breaks or may get tired, 

thus affecting the accuracy of the test [18].   

Limitations of the polygraph illustrate a need for a covert system that does not 

require the subject’s cooperation.  There is also a need for a system that does not require 

obstructive sensors to be attached to the subject.  Overcoming these limitations would 
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allow for deception to be measured in natural environments.  There is also a need for a 

system that is automated, thus eliminating the possibility of operator error. 

Voice Stress Analysis 

Vocal stress analysis is another currently-used deception detection technique, 

since vocal stress is present in most instances of deception [38].  Commercial voice 

analysis products have been marketed to security agencies and law enforcement for over 

30 years [38].  Vocal deception detection is a covert technique; the subject can be tested 

without their knowledge or consent.  Voice stress analyzers have many potential 

applications, such as detecting deception in statements made by suspects or by witnesses 

[38].  Voice stress analyzers typically rely on extracting various voice frequency ranges 

of interest, which are believed to be affected to physiological and psychological reactions 

of deception [39] [38].  Mathematical algorithms are used to extract these frequencies and 

to assign meaning to them (i.e. truthful or deceptive) [38].  

Despite their potential, commercial voice analysis products that are currently 

available have not been widely utilized for deception detection.  This is largely due to 

several significant limitations that have not yet been overcome.  In a study that was 

conducted by Harnsberger et al. [38], trained operators of a layered voice stress analysis 

system were only able to achieve true positive rates of 42-56%, and false positive rates 

were as high as 40-65% [38].  These rates are at about chance levels of detection, and 

thus results obtained using these systems are often viewed skeptically.  The National 

Research Council’s 2003 literature review concluded that voice stress analyzers offer 
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little to no scientific justification for their use over the more successful polygraph test 

[40].   

Manufacturers of voice stress analyzers claim that their systems are able to detect 

a wide variety of emotional and cognitive states, such as stress due to traumatic 

experiences, fatigue, intoxication, degree of concentration, and sexual arousal [38].  

However, high false positive rates are at odds with this claim, suggesting that current 

systems are not yet able to achieve these claims.  Shortcomings of voice stress analyzers 

may in part be explained by most of the current research being performed on simulated 

field studies which attempt to mimic natural environments.  Lab studies may not elicit the 

same stress levels that may be present in real-world settings [38].  The accuracy of the 

test is also dependent upon both the skill of the operator and the skill of the interrogator.  

Further research between the operator and the equipment needs to be carried out to fully 

understand the importance of using a well-trained operator [38].  In addition, currently 

used systems are not able to automatically discriminate between truthful and deceptive 

responses [39] [38].  

 Researchers have cited the need for a greater fundamental understanding of the 

relationship between psychological stress, deception and how speech is articulated [38].  

Further research also needs to be conducted to determine the applicability of voice stress 

analyzers to different languages.  Currently there are no voice stress analyzers that are 

designed for multiple languages, and their applicability to different languages is not 

currently known [38].  
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Video-Based Techniques 

Recently developed video-based deception detection techniques have been used 

for the automatic extraction of behavioral indicators of deception.  Video-based 

techniques typically involve collecting high quality digital video, which is processed 

using algorithms that perform facial and hand recognition by differentiating among colors 

present in the video [2].  Based upon the analysis of hand and head locations inferences 

have been made in previous studies about levels of involvement, dominance, tenseness, 

and arousal [2].  These levels are then used to assign a deceptive rating to a subject’s 

response [2].  Other studies have furthered these techniques by also including the tracking 

of micro-expressions during testing [18]. 

Video-based methods are very complex to successfully implement.  Researchers 

involved in video-based deception detection have admitted that there needs to be progress 

made in the precision of the feature extraction methods that are used [2].  Currently used 

methods suffer from misclassification of body parts due to occlusion and body parts 

leaving the frame [2].  It is usually necessary to use several high-quality digital video 

cameras in order to collect all of the necessary data [18].  This may be difficult to 

implement in natural environments.  Researchers working in this field have stated that 

current video-based techniques to date have not yet succeeded in explaining all of the 

factors which are necessary to fully explain deception [2].  Additional factors that have 

been suggested include motivation to succeed in deception, individual characteristics, 

cultural factors, and the interviewing style of the individual interviewer [2].  Video-based 

techniques which have employed subject-specific models have achieved classification 
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rates as high as 81.6%, which significantly outperformed similar non-subject specific 

models achieving classification rates of only 60% [18].   

Brain Activity Analysis 

Brain activity scanning techniques offer another option for deception detection.  

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are 

two scanning modalities that have been recently implemented, both of which have 

demonstrated reliable measurement of brain activity associated with thoughts, feelings, 

and behavior.   

EEG measures signals known as event related potentials (ERP) [41].  ERP signals 

are measured by using multiple sensors attached to the scalp of the subject.  ERP signals 

can be measured from the scalp 300-500ms after the subject has been exposed to a 

stimulus [41].  By using this technique researchers have been able to determine whether 

the subject is familiar with a particular claim.  EEG deception detection tests have 

achieved correct rates of 75-85% [41].  EEG has the advantage of being relatively small, 

inexpensive, and portable when compared to other deception detection techniques [41].   

EEG deception detection has shown promise as an alternative system to the more 

commonly used polygraph.  However, there are limitations of using EEG.  One of the 

more common techniques, called brain fingerprinting, relies on proprietary methods of 

analysis due to the inventor attempting to commercially develop the product [41].  This 

has stopped researchers from independently validating the technique [41].  A 

considerable amount of work must be done in order to standardize the technique before it 

could be ready for routine use in real-world deception detection applications.    
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Blood oxygenated level-dependent fMRI studies also show promise for deception 

detection, and a greater amount of research has been devoted to its development than to 

EEG based methods [42].  Brain fMRI is performed by placing the head into the bore of 

an MRI scanner.  The scanner is built around a powerful electrical magnet, which 

generates two magnetic fields [42].  The main field is perpendicular to the plane of the 

central bore, and the weaker gradient field is at an angle to the main field [42].  The rapid 

switching from on to off of the gradients causes hydrogen nuclei in the body water to 

resonate and emit radiofrequency signals that can be reconstructed into three-dimensional 

images [42].  fMRI has a spatial resolution of 1-3mm, and a temporal resolution of 2-3 

seconds [42].  When the local oxygen demand in the brain rises in response to an 

increased amount of metabolism and electrical activity, the inflow of oxygenated 

hemoglobin causes the fMRI signal emanating from the tissues supplied by a particular 

blood vessel to increase [42].  fMRI relies on cognitive subtraction, which involves 

calculating the difference between a target and a control stimuli; thus selection of an 

appropriate baseline is critical [42]. 

The reliability, safety, and availability of fMRI have made it an attractive system 

to use for the purpose of deception detection.  The development of fMRI-based 

techniques has been fueled by the inability of currently used techniques to detect 

deception reliably and accurately.  fMRI techniques also have the advantage of being 

highly repeatable due to automated data processing techniques that have been developed 

[42].  fMRI studies have been successful in achieving correct rates from 76-90% [42].  

There is a significant existing amount of work that has been done which correlates 
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specific areas of brain activity with basic cognitive functions such as response inhibition, 

cognitive conflict, and attention.  These studies provided direction for initial deception 

studies.  

fMRI studies have identified several different areas of the human brain that are 

thought to be more active when people are being deceptive, including the dorsolateral 

prefrontal cortex and the adjacent cingulated cortex [19] [1] [42].  Results from these 

studies have associated the dorsolateral prefrontal cortex with executive processes that 

are involved in deception, regardless of whether or not there is any emotional 

involvement [1].  Studies have found the dorsolateral prefrontal cortex to be used for 

inhibition, decisions relating to social interactions involving competition, cooperation, 

and in reputation management [19].  The adjacent cingulate cortex is thought to be used 

in decision making, relating actions to consequences, problem solving, motivation, and in 

anticipation [19].  fMRI deception detection largely relies on detecting activity in these 

areas of the brain that have been found to be active when a person is lying [42] [19] [41].  

However, it is important to note that just because these areas are active; it does not 

necessarily mean that a person is being deceptive [19].  The currently existing body of 

research on this topic has yet to find an area of the brain or cognitive process that is 

unique to deception [19].   

There are several limitations that are common to both EEG and fMRI methods for 

deception detection.  Both techniques typically are making inferences about individuals 

based upon group studies.  Studies using other techniques, such as video-based methods 

have shown there to be subject-specific factors, which if included will improve 
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classification rates [18].  Both brain scanning techniques are limited by their applicability 

in natural environments.  EEG testing requires several sensors to be attached to the 

subject’s scalp, and fMRI requires the subject to place their head inside of an MRI 

machine.  Since both are overt systems subjects must be cooperative.  Countermeasures 

to beat the tests have not yet been studied in detail for either technique [41].  There is also 

an ethical concern for the possible misuse of data that is collected for purpose of “mind 

reading”.  As brain scanning techniques continue to develop, an individual’s cognitive 

privacy may become of increasing concern [41]. 

Posturography 

The most commonly used measure in posturography is the center of pressure 

(COP).  The COP can be calculated based on ground reaction force and moment data that 

is collected by a force plate.  Equation 1 and Equation 2 can be used to determine the 

center of pressure in both the x-direction and y-direction, which typically correspond to 

the medial lateral (ML) and the anterior-posterior (AP) directions respectively. 

       
           

  
 Equation 1 

 

       
        

  
 Equation 2 

The value of az0 is defined as the perpendicular distance of the force plate relative 

coordinate system relative to the plate’s surface, and is specific to the particular force 

plate being used [43]. 
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Stabilograms, which may also be referred to as stability diagrams, are plots of the 

COP displacement in the ML direction against the COP displacement in the AP direction.  

Stabilograms provide a visual representation of the movement of the COP, and are useful 

for qualitative assessment of COP movement.  An example of a stability diagram during 

quiet stance is shown below by Figure 1. 

 

 

Figure 1: Typical Stability Diagram 

 

 There are several different measures that can be derived from a COP time series.  

The most commonly used amplitude measures are COP displacement, COP pathlength, 

COP sway, COP sway area, COP velocity, and the major axis length and the eccentricity 

of an 85% confidence ellipse fit to the (x,y) COP trajectory.  It is often useful to express 
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these amplitude measures as resultant magnitudes and as separate ML and AP 

components.  From each of these amplitude measures, the minimum value, maximum 

value, mean value, and the standard deviation are commonly extracted.  COP 

displacement is usually defined as the distance away from the mean COP location to each 

point in the COP time series.  The COP displacement in the ML and AP directions can be 

calculated by using Equation 3 and Equation 4 [44]. 

                            Equation 3 

                             Equation 4 

The mean COP displacement in the ML and AP directions can be calculated by 

using Equation 5 and Equation 6 [44]: 

                          
       

   

 
 Equation 5 

                          
       

   

 
 Equation 6 

COP sway is defined as the net range of COP motion in the ML and AP 

directions.  The COP sway in the ML and AP directions can be calculated by using 

Equation 7 and Equation 8 [44]: 

                        Equation 7 

                        Equation 8 

The sway area is defined as the area enclosed by the COP path per unit time.  The sway 

area can be calculated by using Equation 9 [44]. 
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 Equation 9 

In this equation T is the total time.  

  The COP pathlength is defined as the sum of the incremental displacements 

between pairs of points in the COP time series.  The pathlength can be calculated by 

using Equation 10 [44]. 

                                                  

   

   

 Equation 10 

   COP velocity can be calculated by numerical differentiation of the COP 

displacement.  In most cases the mean velocity is calculated by dividing the COP 

pathlength by the total time, T, that has elapsed in the trial as this eliminates the need to 

compensate for directional effects that result when the velocity is determined by 

numerical differentiation of the COP time series.  The mean velocity can be calculated by 

using Equation 11 [44]. 

               
          

 
 Equation 11 

The elliptical measures are based on an ellipse that covers 85% of the sway area.  

The major axis corresponds to the direction of least stability.  The length of the major 

axis can be calculated by using Equation 12 [44]. 

                     
     

     
   

 Equation 12 

The length of the minor axis of the ellipse can be determined using Equation 13. 

                    
     

     
   

 Equation 13 
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In Equation 12 and in Equation 13,              represents the F statistic at a 

confidence level of 85% for a bivariate distribution with n data points, and sAP and sML 

represent the standard deviation of the AP and ML time series respectively.  The value of 

D can be calculated by using Equation 14 [44]: 

        
     

        
    

       
    Equation 14 

In Equation 14,       is the covariance.  The eccentricity of the ellipse 

corresponds to the comparative directionality of the COP [45].  The eccentricity of the 

ellipse can be determined using Equation 15. 

                  
 

 
 
 

 Equation 15 

The major axis angle of an ellipse that covers 85% of the sway area represents the 

angle between the major axis of the ellipse and the positive ML axis [46].  The direction 

of least stability is typically in the AP direction during quiet stance, therefore this would 

imply an expected major axis angle of approximately 90 degrees.   

Frequency-based measures are also commonly derived from COP time series, 

often using a Fast Fourier Transform (FFT), which enables the development of a COP 

power spectrum.  Spectral measures such as median frequency (the frequency at which 

the area under the power spectrum plot is divided into equal halves) may then be 

extracted from the power spectrum to characterize COP oscillations [44].   

Age Related Balance Deficiencies 

COP measures are commonly used to asses age-related declines in balance ability.  

For example, Prieto et al. [44] studied age effects on several different COP based 
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measures for both an eyes-closed and an eyes-open condition to determine the importance 

of the visual system in maintaining balance.  The results showed that different COP 

measures identified differences between the eye conditions for the young and elderly 

subjects, particularly the 85% confidence ellipse measures and all of the frequency-based 

measures.  This result suggests that the role of vision in maintaining postural stability 

changes with age.  The mean velocity in the AP direction was the only measure that was 

found to identify age-related differences for both the eyes-open and the eyes-closed 

group.  The mean COP velocity was found to increase with age for the eyes-closed 

condition and for the elderly subjects.  The study showed that elderly people who have 

visual impairments (approximated by the eyes-closed condition) must make significantly 

more postural adjustments in order to maintain balance, which is reflected by the 

increased COP velocity.   

The age-related postural differences shown in previous studies suggest that 

deception-related changes in postural control may also vary among people of different 

ages.  When designing a study to investigate the effects of deceptive behavior on 

measures of standing posture, it was desirable to choose participants that were close in 

age, as this would ensure that any age effects not related to deception were not present.   

Disease Related Balance Deficiencies 

COP measures are commonly used to assess disease-related declines in balance 

ability.  For example, postural stability in stroke patients is another topic that has been 

examined in previous studies.  Stroke survivors typically are left with residual 

sensorimotor deficits which result in a negative impact on the quality of their lives.  
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Motor control deficiencies following a stroke have been found to result in force 

production that is slow, weak and lacking in precision, making it difficult for stroke 

patients to provide a rate of force development sufficiently high in magnitude to maintain 

postural control [47].   

In a study that was conducted by Chern et al. [48], dynamic postural control 

during a trunk bending and reaching task was examined by comparing healthy adults and 

stroke patients.  In this study, they calculated COP pathlength, displacement in the ML 

and AP directions, mean velocity (based on the pathlength), and the limb weight bearing 

ratio (LRWBR), which was defined as the ratio between the load applied to the affected 

limb to the load applied to the unaffected limb.  The pathlength was found to be 

significantly larger among stroke patients, except for targets located on their non-paresis 

side.  Additionally, COP displacement in the AP direction was found to be significantly 

larger for stroke patients than for the healthy subjects, and stabilograms were highly 

irregular for stroke patients when compared to the healthy subjects.  The greater COP 

pathlength and velocity were found to characterize decreased postural adaptability.  This 

result is similar to the result described above, in that the stroke patients must make 

significantly more postural adjustments to maintain balance.  The reason for this increase 

in mean COP velocity was attributed to impaired neuromuscular activation such as 

insufficient activation or change in muscle activation pattern of the postural muscle in the 

lower limb.   

Dyslexia is another condition that has been shown to affect postural control.  

Dyslexics commonly fail to automate postural responses due to balance perturbations.  
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This has been attributed to attention deficiencies in dyslexics.  Attention deficiencies in 

dyslexics have most commonly been identified by their difficulty in reading and in 

performing component skills such as spelling and being able to tell left from right [49].  

These attention deficiencies have been associated with motor skill impairments and a 

reduction in the speed of information processing.   

In a study that was conducted by Patel et al. [50] postural control was compared 

between a dyslexic group and a group of healthy adults while standing on a firm and a 

soft foam surface during an eyes-open and an eyes-closed condition.  In the study the 

torque exerted by the subject was determined by multiplying the center of pressure by the 

vertical reaction force that is exerted by the subject.  A significant dyslexia-related effect 

was found for the torque variance in both the AP and ML direction on the foam surface 

for both the eyes-open and the eyes-closed condition.  A significant interaction was found 

between the surface and vision, which shows the importance of the contribution of vision 

in postural control.  Dyslexics are known to have deficiencies in auditory, cognitive, and 

learning capabilities.  This study showed that dyslexics exhibited increased postural 

instability especially of a softer surface, which perturbs balance and thus increases the 

attention requirement to maintain postural stability.  The attention deficits in dyslexics 

have been hypothesized by several researchers to be caused by deficiencies in the 

cerebellum [50]. 

Based upon the studies that have been examined, it was desirable to ensure that 

participants that were included in a deception study were all in good health.  This 
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criterion was used in order to ensure that any observed differences in postural control 

would due to the deceptive behavior, rather than any underlying health condition. 

Self-Induced Balance Deficiencies 

Posturography has been used to detect fatigue caused by sleep deprivation.  For 

example, in a study conducted by Ma et al. [51], effects of sleep deprivation on various 

COP measures were examined.  This study, like many others, demonstrates the 

importance of vision in maintaining postural control; it was found that the standard 

deviation of COP displacement in the ML and AP directions were good indicators of 

fatigue in both eyes-open and the eyes-closed conditions.  The results of this study also 

revealed that pathlength decreased during eyes-open and eyes-closed conditions in the 

sleep deprived group, which implies that the mean velocity also decreased after sleep 

deprivation.  This result differs from those observed in other balance deficient groups 

such as stroke patients and the elderly, in which the mean velocity and pathlength were 

found to significantly increase.  As a result of this study it was determined that 

posturography has the potential to identify mental fatigue due to sleep deprivation.  The 

results also imply that the contributions of the somatosensory, visual, and vestibular 

information are altered as a result of sleep deprivation.   

Postural control in alcoholic men and women has been analyzed in recent studies.  

Alcoholics have a characteristic amount of excessive sway during quiet stance, even after 

prolonged periods of sobriety.  This excessive sway has been used to explain why current 

or recovering alcoholics have a greater fall rate than healthy sober people.  In a study that 

was conducted by Sullivan et al. [16], postural control of recovering alcoholic men and 
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women was analyzed during quiet stance both with and without stabilizing conditions 

(touch, vision and stance type).  The results of the study showed that alcoholics had 

significantly longer COP pathlengths and greater COP sway, especially in the AP 

direction for the condition which did not allow balance aids.  Alcoholic men, when 

compared to alcoholic women, exhibited significantly greater improvement in postural 

stability with the balancing aids.  This study highlighted differences between alcoholic 

men and alcoholic women, as well as the persisting liability for falling even after 

prolonged periods of sobriety.  The results of this study are also consistent with other 

conditions associated with balance deficiencies such as those found in stroke patients, 

dyslexia patients, and in the elderly in that they all exhibited longer COP pathlengths and 

greater COP sway than in healthy people.   

Based upon the studies that have been examined, it was desirable to ensure that 

participants included in the deception study were not current or recovering alcoholics.  It 

would also be desirable to instruct participants to be well rested upon arrival for testing.  

These criteria would ensure that any observed differences in postural control would be 

due to deceptive behavior, rather than any self-induced balance deficiencies.    

Improving Postural Control 

There have been multiple methods proposed to improve postural stability.  In a 

study conducted by Boudrahem et al. [52] the effects of visual feedback of the resultant 

COP was studied.  The results of the study showed that the majority of subjects improved 

their postural control with the aid of visual feedback.  All of the significant effects found 

in this study were isolated to the AP axis, which is similar to the earlier study that was 
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examined involving elderly subjects that was conducted by Prieto et al. [44].  This 

finding was attributed to the tendency of the ankle and hip joint mechanisms responsible 

for postural control when the feet are spread apart, as well as visual sensory mechanisms 

playing a significant role in controlling posture in the AP direction.   

These studies concerning improving postural control are of interest when 

considering the use of posturography for the purpose of deception detection as they show 

that conscious efforts may be successfully made to modify one’s normal sway patterns.  

This means that given training that people may be able to alter their sway patterns in a 

way that will hide their lie.   

Non-Traditional Posturographic Studies 

A recently developed area of posturography is the classification of specific body 

movements based on various COP measures.  In a study conducted by Saripalle et al. 

[45], COP measures were used to classify a number of body motions including head 

shaking, head nodding, shoulder shrugging with and without hand movement, touching 

the back of the head, touching the nose, scratching the opposite arm, outstretching of the 

hands, shifting weight from one foot to the other, shifting weight to the tiptoes and 

tapping of the foot.  COP measures calculated during this experiment included 

displacement, pathlength, sway, velocity, and the length of the major axis and the 

eccentricity of a confidence ellipse, as well as the median frequency.  These were found 

in the AP and ML directions and the mean, maximum and standard deviation were found 

for the applicable measures.  Modern machine learning techniques were applied to 

conduct feature selection of classifiers for each movement.  Multiple techniques were 
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used for classification of movements, including linear discriminant analysis, nearest 

neighbor classifiers, support vector machines, and neural networks.  The results of the 

study revealed that many of the COP features were subject-specific.  Following 

optimization, the resulting classification methods were able to achieve average correct 

rates up to 92% across all of the 11 movements by using various classification models.  

However, there was no single model or feature set that was considered to be sufficient for 

all of the movements.  This type of study is unique in that, unlike most other 

posturographic studies, its aim was not to characterize postural instability.  This study 

exhibited promise for future studies/applications in which a quick, automated 

classification of body movements relating to emotional state or gestural movement could 

be identified.  It shows that COP data can be used in order to identify relatively complex 

movements in a reliable manner.  This study has great potential to be expanded upon in 

other non-traditional posturographic studies such as deception detection.  

Posturography for Deception Detection 

Based upon the posturographic studies that have been reviewed in previous 

sections of this chapter, there are several COP measures that have proven to be very 

versatile.  The two measures that seem to have the widest use are the COP pathlength and 

mean velocity.  Other useful measures include mean displacement in the AP and ML 

directions, median frequency in the ML and AP directions, sway in the ML and AP 

directions, as well as the eccentricity, major axis length and major axis angle of an 85% 

confidence ellipse.  These measures were all selected for the study that was conducted 

since they have demonstrated utility for other applications.   
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In the current study, posturography was used in an attempt to determine the effect 

of deception upon measures of standing posture.  The first goal of the study was to 

identify COP-based measures that are useful in identifying differences between people 

who are being deceptive and between people who are being truthful.  We hypothesized 

that deceptive participants, compared to truthful, would exhibit varied COP patterns.  A 

positive result for this hypothesis would provide support for the future goal of 

discriminating between truthful and deceptive participants.   

Based on the literature review, it was suspected that deception-related 

posturographic effects due to an increased cognitive load may be identified in the current 

study.  It was hypothesized that there would be a reduced COP pathlength, mean velocity 

and sway for interview questions that require participants to develop a cognitively 

demanding response, as well as an increased median COP frequency in the AP direction. 

Based on previous applications of posturography, it was also determined that 

participants should all be in good health, close in age, and have no vision impairments.  

These criteria were chosen to eliminate any underlying effects that would skew the 

results, ensuring that any observed differences in sway patterns could be attributed to 

deception effects alone. 

Using posturography for the purpose of deception detection, if successful, has the 

potential to overcome many of the limitations of other commonly used techniques.  

Posturographic systems for deception detection may be used in a covert manner; they 

don’t require the use of intrusive sensors, or participant cooperation.  The cost of force 

plates varies considerably, but posturographic systems are relatively inexpensive 
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compared to techniques such as fMRI.  Successful posturographic deception detection 

systems would have many potential applications, such as in credibility assessment, 

security screening, homeland security, and counter-terrorism.  The aim of this study was 

to demonstrate the feasibility of posturographic methods, paving the way for further 

research on the topic and eventually even commercial development of such systems.   
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CHAPTER 3 

METHODS 

Participants 

A total of sixty-eight adult participants (mean age 22 ±7.1) were recruited for the 

study after providing written informed consent prior to testing.  Participants were 

randomly assigned to either an experimental group (EG) or a control group (CG).  The 

participants consisted of volunteers from the UMKC student body, the majority of which 

were recruited via pools of undergraduate Psychology students.  Each semester 

researchers in the UMKC Department of Psychology recruit students to participate in 

their research projects via the “Psych Pool”.  The “Psych Pool” is an online research 

participant recruitment system.  Students that are interested in participating in research 

studies sign up via the “Psych Pool”.  Participants were given the option of receiving 

course credit for their participation (psychology students only) or a $10 incentive.  

Institutional Review Board (IRB) approval was obtained prior to testing. 

Data collection was successful for forty-eight of the participants.  The remaining 

trials were unsuccessful due to an unexpected computer lag, which resulted in a loss of 

some of the required audio data.  For the unsuccessful trials the audio computer displayed 

an error message when the operator attempted to begin recording all of the data for the 
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participant.  Since audio data was needed to align COP data with particular interview 

questions, the remaining data for the participant was not processed.  All of the 

participants were in good health and were able to comply with the requirements of the 

study.   

An additional $200 incentive was offered to the two participants from the EG that 

were the “most deceptive”, as well as to the two participants from the CG that were the 

best at convincing the interviewer that they were being truthful.  Additionally, 

participants from the EG were told that if they failed to be deceptive, they would be 

required to take part in an additional screening session after the interview.  The $200 

incentive and possibility of additional screening were intended to increase the motivation 

for participants to be deceptive in order to provide a more realistic replication of 

deception.  Given previous work on deception and motivation [19], these consequences 

for successfully or unsuccessfully being deceptive was believed to result in behavior that 

will much more closely match deceptive behavior in natural environments than if there 

was no motivation.  

Procedure 

The participants were instructed to pack a backpack with various items.  In 

addition to items that were identical between the CG and EG groups (socks, shoes, shirts 

and jeans), the CG was required to pack “control” items (cookies, sunglasses and a travel-

size container of mouthwash), while the EG was required to pack “prohibited” items 

(pocket knife, bottle of rubbing alcohol and cigars).  The EG was instructed not to reveal 

that they were carrying any prohibited items during the interview that followed.  After 
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packing the backpack each participant was instructed to stand on a force plate by an 

embodied conversational agent (ECA), a computer-generated interviewer (Battelle, Inc., 

Columbus, OH, USA) using text-to-speech technology.  The ECA is shown in Figure 2. 

 

 

Figure 2: Embodied Conversational Agent 

 

Once the subject was standing on the force plate, the interviewer asked a series of 

questions about the contents of the backpack.  Figure 3 shows a participant answering 

interview questions during testing. 
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Figure 3: Participant Standing on Force Platform  

 

The interview was divided into 49 events, which are shown in detail in the Index 

Key (Appendix B).  For analysis purposes, the interview was separated into 11 different 

intervals, which corresponded to subject responses to interview questions.  Three of the 

11 intervals were characterized as control (C) intervals, which were answered truthfully 

by both CG and EG groups.  The remaining 8 intervals were characterized as test (T) 

intervals consisting of questions that the CG should have answered truthfully and the EG 

should have answered deceptively.  Table 1 provides a description of each interval. 

 

 

 

 

 



 
 

36 
 

Table 1: Interval Description 

Interval 

(Type) 

Question/Instruction 

1 (C) Did you pack your own luggage? 

2 (T) Are you carrying any [prohibited] items? 

3 (C) Does your bag contain any fruits or vegetables? 

4 (T) Does your bag contain any flammable liquids? 

5 (T) Does your bag contain any large containers of liquids? 

6 (T) Please describe the container of liquid that is in your bag 

7 (C) Does your bag contain any cameras or photography equipment? 

8 (T) Does your bag contain any cigars or tobacco products? 

     9 (T)  Does your bag contain any knives or sharp implements? 

    10 (T) Just to be sure you aren't carrying prohibited items please tell me each 

item that is in your bag 

    11 (T) Is there anything else in your bag you did not tell me about? 

 

 

To ensure that the analysis would be specific to each participant, the outcome 

variables within each test interval were normalized to the average value of their own 

control responses obtained in intervals 1, 3, and 7.  This resulted in unit-less outcome 

variables.  Data collection for each subject required both an operator and a handler, 

whose responsibilities are described in the following paragraphs. 

Handler Procedure 

The handler was responsible for all interaction with the participants prior to and 

after testing.  Before each participant arrived, the handler assigned the participant a 

subject ID and randomly assigned them to either the CG or EG.  The paperwork that each 

participant was required to fill out was placed on the table along with the backpack which 
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corresponded to whether they were part of the EG or the CG.  Table 2 shows the contents 

of the backpack for both the EG and CG: 

 

Table 2: EG and CG Backpack Contents 

Backpack Contents 

CG EG 

Shoes  Shoes  

Socks Socks 

Shirt Shirt 

Jeans Jeans 

Cookies Pocket Knife 

Sunglasses Rubbing Alcohol 

Travel-Size Mouthwash Cigars 

 

 

The handler welcomed participants into the packing room and established whether 

they wanted to receive the $10 payment or course credit (applicable for Psych Pool 

students only).  The handler then administered the informed consent to the participant 

(Appendix B).  After each participant provided informed consent, the handler asked the 

participant each of the questions on the demographics survey (Appendix B).  The handler 

checked for exclusions due to age, health, hearing, vision, illness, or being unable to 

stand.  Participants were dismissed if they met any of the exclusion criteria.  The handler 

then asked the participant to remove their shoes, and to put on socks (which were 

provided).  All participants were given the same type of socks to wear.   
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Following consent and screening, the handler instructed each participant to pack a 

backpack with the items described above (Table 2), and that they would then be 

interviewed by a computer-generated interviewer about the contents of their backpack.  

The handler told the participant whether or not they were carrying any prohibited items.  

The handler informed EG participants that the interview would finish early if they 

successfully concealed the “prohibited” contents of the backpack; and that they would 

otherwise be required to participate in an additional hour of screening.  CG participants 

were instructed to truthfully answer questions about the contents of their backpack.  The 

EG participants were informed that if they were one of the two most deceptive 

participants that they would receive a $200 reward.  Likewise, the CG participants were 

informed that if they were one of the two most truthful participants that they would 

receive a $200 reward.  This part was reinforced by having them fill out a rewards form 

(Appendix B).  The handler applied a wireless microphone to the participant’s clothing, 

and instructed them to put on the wireless headphones, and proceed to the interview room 

once they had finished packing the backpack.   

After the interview, the handler met participants in the post interview room to 

administer the post interview survey (Apendix B), which ensured that participants 

completed the interview in the manner that they were instructed by the handler.  The 

handler then debriefed the participant and removed the wireless microphone.  Payment 

was made to participants who elected to receive the $10 compensation, and participants 

who elected to receive course credit were informed that they their credit would be 

assessed in the Psych Pool within 24 hours.  The handler told the participants that they 
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would receive a letter in the mail, which would tell them a little more about the study, 

and would contain the additional $200 payment if they were selected.  In order to 

maintain the integrity of the study, participants were asked to avoid discussing any details 

of the study with other students until the study had been completed (July 2011).     

Operator Procedure 

The operator was responsible for setting up and running all of the equipment 

required for the collection of the COP, audio and video data.  Before testing each day the 

operator set the origin of the force plate to the corner of the plate that the subject was 

instructed to stand on, and ensured that the force plates displayed a force of zero in all 

directions when no force was applied to it.  The audio from the computer generated 

interviewer and from the wireless microphone were also checked to ensure that each 

signal could be adequately recorded.   

Before the arrival of each participant, the operator set up a file for the next 

participant in the Nexus software, and for the audio recording.  During testing, the 

operator was present in the interview room behind a curtain, which ensured that each 

participant was unaware of their presence.  Figure 4 shows the interview room layout. 
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Figure 4: Interview Room Layout 

 

The operator started the data collection as they heard the participant enter the 

room.  The operator then guided the computer generated interviewer timing by pressing 

“Y” or “N” in response to the participant’s answers to the questions that were asked of 

them.   

For each participant, the operator noted whether the instruction to stand on the 

force plate was followed, and whether they put the backpack onto a table in front of them 

as instructed by the computer generated interviewer.  At the end of the interview the 

operator, who was blinded as to whether the participant was part of the EG or CG, noted 

a rating of 1-7 as to whether they thought that the participant was being truthful or 

deceptive (with 1 being most deceptive and 7 being most truthful).   
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Measurements 

Force and moment data were continuously sampled at a rate of 1000 Hz by using 

a single force plate (AMTI, Watertown, MA, USA).  Participant audio data was captured 

using a wireless microphone that was attached to the participant’s clothing.  The 

interviewer’s audio data was captured from the interview PC’s audio output.  All audio 

data were captured at a rate of 8000 Hz using LABVIEW 2010 (National Instruments, 

Austin, TX).  A sampling rate of 8000 Hz was chosen for the audio data collection in 

order to ensure that the audio data was of a high enough quality for later interpretation.  A 

sampling frequency of 8000 Hz is used for telephone communications [53], and thus was 

determined to be sufficient for the purpose of this study.  The data collection process was 

automated by using a single LABVIEW  VI. 

Data Processing 

The COP time series for both the medial lateral (ML) and the anterior-posterior 

(AP) directions were exported using Vicon Nexus software (Vicon, Centennial, CO, 

USA).  All data were processed using MATLAB 2009a (The Mathworks, Natick, MA, 

USA), with a custom written code (Appendix A).  Calculation of COP-based measures 

was done between the offset of the interviewer’s question and the offset of the 

participant’s response, which were extracted from captured audio data using Audacity 

1.3.14 (Freeware).  Video and audio data were combined using audio and video using 

Windows Movie-maker 2.1(Microsoft, Redmond, WA) to ensure that data collection of 

the audio and video computers were correctly synchronized (the video computer also 

captured the force plate data).  Due to a lag in the initialization of the audio computer for 
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some participants, not all trials were successfully synchronized.  This issue was addressed 

by determining the offset between the audio and video and by adjusting the values 

determined in Audacity accordingly.  The audio data offset was adjusted manually by 

ensuring that the words spoken in the audio data matched the lip movements of the 

participant.  This ensured that the COP data that was collected was properly aligned with 

the interval being examined. 

Equation 1-Equation 15 were used in order to determine 8 of the 11 COP-based 

outcome measures by using custom written MATLAB code.  The remaining 3 variables, 

major axis angle of an ellipse that covers 85% of the sway area, AP median frequency, 

and ML median frequency were also calculated in MATLAB as follows.  The FFT was 

calculated in MATLAB using an in-built command.  This was then used to develop the 

power spectrum that was required for determination of the median frequency.  The 

median frequency was found to be the frequency corresponding to half of the area under 

the power spectrum.  The major axis angle of an ellipse covering 85% of the sway area 

was determined using a custom written code, using a principle component method as 

described by Duarte et al. [46].  The major axis angle was calculated in MATALAB as 

the angle between the positive ML axis and the major axis of the ellipse that was created.  

The calculation of these measures was performed within each of the indices extracted 

with Audacity (Freeware).  The measures that were calculated are summarized by     

Table 3. 

 

 



 
 

43 
 

 

 

Table 3: COP Outcomes Measures 

Outcome 

Measure 

Description 

P Pathlength -Total distance travelled of the COP 

SWAP Sway AP - range of COP motion in the AP direction 

SWML Sway ML - range of COP motion in the ML direction 

MV Mean COP velocity 

MDAP Mean AP displacement 

MDML Mean ML displacement 

E Eccentricity  

MAL Major axis length of 85% confidence ellipse 

MAA Major axis angle of 85% confidence ellipse 

MFAP Median frequency - AP 

MFML Median frequency - ML 

 

 

Statistical Analysis 

The statistical analysis was performed using SPSS 18 (SPSS, Inc., Chicago, IL, 

USA), and by using MATLAB 2009a (The Mathworks, Natick, MA, USA).  Hotelling t-

squared, t-tests, and Mann Whitney non-parametric tests were all performed.  The tests 

were performed at a confidence level of 90% (     ).   

Hotelling’s t-square test was used to identify intervals in which significant overall 

deception-related effects were present.  Hotelling’s t-square test is the multidimensional 

extension of the t-test [54].  The test t-square statistic for comparison of two independent 

samples with unequal covariance matrices is given by Equation 16 [54]. 
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            Equation 16 

The individual covariance matrices    , and     were determined using Equation 17 and 

Equation 18 respectively [54]. 

 
    

                             
   

     
 

Equation 17 

     
                             

   

     
 Equation 18 

The test t-square statistic for comparison of two independent samples is shown by 

Equation 19, assuming equal covariance matrices [54].   

                    
  

            Equation 19 

In Equation 19,     and     are the vectors representing the mean values of each of the 

COP-based measures within a given interval, Sp is the pooled covariance matrix, and     

and     represent the sample size for the EG and CG.  In Equation 19, Sp is the pooled 

covariance and is given by Equation 20 [54]. 

    
          

            
 

         
 Equation 20 

The test t-square statistic for unequal variances is shown by Equation 21 [54]. 

                    
 

   
 

 

   
  

  

            Equation 21 

In order to determine whether the variances were equal, Box’s M test was 

performed for each interval.  Box’s M-test was performed using SPSS 18 (SPSS, Inc., 

Chicago, IL, USA) in order to determine whether the variances were equal.  Based on the 
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results of Box’s M-test the appropriate equation for determining the t
2
 statistic was 

chosen.   

For very large samples the t-square statistic will approximately follow a chi-

square distribution.  However, since relatively small samples were used for the analysis 

that was conducted, this approximation does not take into account the variation due to 

estimating the variance-covariance matrix.  In order to account for this it is necessary to 

transform the t-square statistic into an F-statistic.  The test F-statistic was determined by 

using Equation 22 [54]. 

    
           

            
   Equation 22 

In Equation 22, p represents the number of COP based variables that were included in the 

analysis.  The null hypothesis is rejected if the condition shown in Equation 23 is met for 

      [54]. 

                   Equation 23 

Once intervals of interest had been identified, the individual intervals were 

separately examined to determine the particular COP-based variables that were 

significant.  A two sample t-test was performed by using SPSS 18 (SPSS, Inc., Chicago, 

IL, USA).  The two-sample t-test was used to identify deception related differences 

between the COP-based measures that were calculated.  The two sample t-test was used 

to test for significant differences between the EG and CG sample means.  The null 

hypothesis is given by Equation 24 and Equation 25 [55]: 

             Equation 24 
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              Equation 25 

The two sample t-test is based upon the assumption that each sample taken from 

independent populations that are normally distributed.  The hypotheses are evaluated by 

using a t-statistic, which is shown by Equation 26 [55]. 

 
   

         

 
   

 

   
 

   
 

   

 
Equation 26 

In Equation 26,     and      represent the mean of a given COP-based measure for the 

EG and CG,    
  and    

  represent the variance for the EG and CG, and     and     

represent the sample size for the EG and CG.  The degrees of freedom are determined by 

using Equation 27 [55]. 

 
  

 
   

 

   
 

   
 

   
 
 

 
   

 

   
 

 

      
 
   

 

   
 

 

     

 
Equation 27 

The null hypothesis, given by Equation 24 would be rejected if           , where 

        represents the value of the value of a t-distribution for v degrees of freedom and 

for a confidence level of 90% (a two sided test was used).   

Both the Hotelling t-square test and the two-sample t-tests required that the data 

be normally distributed.  Although the majority of the COP-based variables were found to 

be normally distributed over each interval, there were some intervals for which the 

variables were not normally distributed.  Although both of these tests are fairly robust for 

non-normally distributed data, it was determined a non-parametric distribution free 
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analysis should also be performed to account for the violations of the normality 

assumption.    

  The Mann Whitney non-parametric test, also referred to as the Wilcoxon Signed 

Rank Test, was used to identify deception related differences between the COP-based 

measures that were calculated.  The Mann Whitney test was selected due to the lack of 

normality in the data that was collected.  The Mann Whitney test is appropriate for use 

for ordinal data that has a continuous symmetric distribution.   

The Mann Whitney test is used in order to test the null hypothesis that sample 

means are equal.  The null and alternative hypotheses are shown by Equation 28 and 

Equation 29 respectively. 

               Equation 28 

                Equation 29 

The test procedure is performed by arranging all observations in ascending order 

of magnitude, and then by assigning ranks to them.  If there is a tie (identical 

observations) then the mean of the ranks is assigned to each of the identical observations.  

Letting    represent the sum of the ranks in the smaller sample, n1, and    represent the 

sum of the ranks in the larger sample, n2, the following test statistic shown by      

Equation 30 is used.   

    
                

 
    Equation 30 

This test statistic is compared to critical values of    in order to evaluate the null 

hypothesis for the given sample sizes.  The null hypothesis is rejected in favor of the 

alternative hypothesis if either   or   is less than        .   
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A significant amount of effort was put into attempting to develop a binary logistic 

regression model that would make use of an optimized set of COP-based measures.  This 

model was desirable as it would have allowed for the prediction of whether a particular 

subject was being truthful or deceptive for a given response.  However, a reliable model 

could not be developed due to significant co-linearity of the COP-based measures.  The 

development of a binary logistic regression models requires that the predictor variables 

must be independent of one another [56].   
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CHAPTER 4 

RESULTS 

The results of the Hotelling t-squared test is shown by Table 4: 

Table 4: Hotelling t-squared Results 

Interval nEG nCG t2 F p 

2 27 21 23.7677 1.691 0.1154 

4 27 21 14.536 1.0342 0.4383 

5 27 21 12.7064 0.904 0.5461 

6 27 21 15.4726 1.1008 0.3884 

8 27 21 28.1877 2.0054 0.0574 

9 27 21 14.0706 1.0011 0.4645 

10 27 21 126.001 8.9645 <0.0001 

11 27 21 32.8992 2.3407 0.0270 

 

The results of both the two sample t-tests and the Mann-Whitney tests are shown 

by Table 5.   

Table 6 shows the key, which explains significant results shown in Table 5. 
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Table 5:  T-test and Mann Whitney Results 

Mean 

Interval P SWAP SWML MV MDAP MDML E MAL MAA MFML MFAP 

2 

EG 0.88 0.75 
0.79 

MW 

p=0.083 
0.88 0.97 

1.06 

MW 

p=0.06 

 

T 

p=0.056 

1.04 

MW 

p=0.076 

0.77 0.19 1.12 1.03 

CG 0.96 0.75 
0.97 

MW 
0.96 0.91 

0.69 

MW 

T 

0.98 

MW 
0.85 1.61 1.10 1.02 

4 
EG 0.98 1.25 0.85 0.98 1.12 0.97 1.04 1.15 -0.04 1.16 1.11 

CG 1.07 0.71 0.66 1.07 0.80 0.73 1.00 0.67 1.38 1.02 1.13 

5 
EG 

0.93 

MW 

p=0.047 

0.82 0.85 
0.93 

MW 

p=0.047 

0.87 0.84 1.05 0.94 -1.11 1.11 0.97 

CG 
0.98 

MW 
0.87 0.98 

0.98 

MW 
1.01 0.84 1.02 0.93 0.90 1.01 1.01 

6 
EG 2.12 3.08 1.77 2.12 1.30 1.09 

1.05 

T 

p=0.042 

1.94 
0.40 

MW 

p=0.083 

0.61 0.67 

CG 1.90 1.65 1.68 1.90 0.95 1.07 
0.97 

T 
1.82 

-1.91 

MW 
0.64 0.70 

8 

EG 
1.08 

T 

p=0.088 

1.54 1.05 
1.08 

T 

p=0.088 

1.00 0.82 1.04 1.33 0.41 1.08 

0.91 

MW 

p=0.037 

 

T 

p=0.032 

CG 
0.95 

T 
0.96 1.03 

0.95 

T 
1.43 1.02 1.01 1.07 0.15 1.21 

1.13 

MW 

T 

9 
EG 1.08 0.79 0.95 1.08 0.96 0.87 1.05 0.94 -0.15 1.03 0.98 

CG 0.99 1.80 1.50 0.99 1.42 1.43 1.00 1.96 -0.04 0.98 1.08 

10 

EG 

3.25 

MW 

p<0.001 

 

T 

p<0.001 

2.22 
1.93 

T 

p=0.084 

3.25 

MW 

p<0.001 

 

T 

p<0.001 

1.47 1.12 1.03 1.78 -1.09 0.53 
0.55 

MW 

p=0.025 

CG 
5.20 

MW 

T 

3.08 
2.92 

T 

5.20 

MW 

T 

1.70 1.37 0.98 2.76 0.68 0.43 
0.43 

MW 

11 

EG 1.70 0.93 0.97 1.70 
1.49 

MW 

p=0.076 

0.95 1.03 0.88 

0.22 

MW 

p=0.045 

 

T 

p=0.021 

0.64 0.73 

CG 1.77 0.98 1.37 1.77 
0.97 

MW 
1.26 1.00 1.26 

-3.20 

MW 

T 

0.75 0.84 
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Table 6: Results Key 

Key 

T Indicates t-test significance p < 0.1 

MW Indicates Mann-Whitney significance p < 0.1 

 

Representative time series plots of both a CG and EG subject’s COP position 

results are shown by Figure 5 and Figure 6 respectively. 

 

 
Figure 5: Representative CG Time Series Plot 
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Figure 6: Representative EG Time Series Plot 

 

The vertical lines which are shown in Figure 5 and in Figure 6 separate different 

intervals.  The first three intervals on each plot show control intervals 1, 3 and 7.  The 

final interval that is shown is the test interval 10.  Interval 10 was chosen for the test 

interval since it was the interval which contained the most significant differences between 

the CG and EG.   
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CHAPTER 5 

DISCUSSION 

The results of the Hotelling t-square test shown in Table 4 indicate that there was 

a significant deception-related effect in intervals 8, 10, and 11.  The Hotelling t-square 

tests were followed up with t-tests and Mann-Whitney tests.   

The results of both the Mann Whitney tests and t-tests indicate a significant 

deception-related decrease in pathlength and mean velocity for interval 10.  Mann 

Whitney tests exhibited a similar deception-related decrease in pathlength and mean 

velocity for interval 5.  This result suggests that EG participants significantly reduce the 

overall amount of COP excursions when they are telling a lie.  The t-tests also revealed a 

deception-related decrease for COP sway in the ML direction in interval 10.  These 

findings are consistent with previous studies describing deception-related decreases in 

body movement, an effect that is attributable to an increased cognitive load and manifests 

itself as stiffening of the ankle joint via a co-contraction mechanism [36] [35].  The 

increase in stiffness may be explained by a heightened level of awareness, and reduced 

postural automaticity [35].   

In addition to the deception-related decrease in COP pathlength and mean 

velocity, Mann Whitney tests revealed a deception-related increase in median AP 

frequency.  The increased frequency may be explained by changes in ankle stiffness 
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when a co-contraction mechanism is employed since it is a more automatic control 

process.  This more automated control process releases cognitive resources for the 

primary focus of the person.  The combined effect of reduced COP excursions, shown by 

reduced COP pathlength and mean velocity, and an increased AP median frequency is 

consistent with previous studies citing these effects as signs of increased cognitive load 

[35] [36].   

The observed stiffening response closely resembles the “freezing” behavior 

commonly observed in nature.  Freezing is a common defensive response in animals that 

are threatened by predators [37].  It may be characterized by reduced body motion, and a 

decrease in heart rate [37].  Freezing may be described as part of an early orienting 

response, possibly serving to aid in the detection of information for a subsequent fight-or-

flight response involving whole-body movements [37].  Since social threats often elicit a 

freezing response [37], it follows that a deception-related reduction in COP excursions 

due to an increased cognitive load may be the cause of this observed effect.  It is also 

possible that participants may have felt threatened by the computer generated interviewer.  

Several recent studies have shown that threat-related images can result in a reduction in 

body sway [57] [37] [58]. 

An alternative explanation for reduced body movement is that participants 

deliberately attempted to control their behavior.  For instance, deceptive participants may 

believe that an excessive amount of motion would give away their lie, and therefore 

intentionally avoid any non-essential movements.  Suppressing non-essential movements 

that are normally made during quiet stance results in an unusual amount of rigidity [59].     



 
 

55 
 

The Mann Whitney test revealed that eccentricity was significantly greater for 

deceptive participants in interval 2, and the t-test showed a similar deception-related 

increase in eccentricity for interval 6.  The eccentricity represents the ratio of the distance 

between foci to the major axis length of an ellipse that is fit to 85% of the stabilogram.  

The major axis is typically oriented in the AP direction, which implies that there is a 

greater amount of COP sway in the AP direction than in the ML direction.  In interval 2 

there was a decreased amount of deception-related sway in the ML direction, yet AP 

sway did not exhibit any significant deception-related changes.  This implies that the 

minor axis (in the ML direction) will be reduced for deceptive participants, indicating a 

greater amount of control in the ML direction.  The combined effect of reduced sway in 

the ML direction and unchanged AP sway implies that the increase in eccentricity was 

due to increased control in the ML direction.  However, there was a deception-related 

increase in the amount of ML displacement in interval 2 which, when combined with the 

observed reduction in ML sway, likely indicates that participants in the EG were likely 

leaning to one side (to their left or right), but their range of ML motion in this position 

was very small.  The deception-related increase in eccentricity observed in interval 6 may 

be explained in a similar manner; a trend of reduced ML sway was observed, although it 

was not found to be statistically significant. 

Mann Whitney tests in interval 6 revealed a deception-related increase in major 

axis angle.  A similar deception-related increase in major axis angle was also revealed via 

t-tests in interval 11.  The increased major axis angle shows there to be a change in the 

direction of least stability in these intervals for deceptive participants, which could be 
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explained by a simple change such as slight trunk rotation, or by a mechanism such as 

leaning to one side (placing more weight on one foot).  In interval 11 there was also 

observed to be a deception-related increase in mean AP displacement, which shows a 

tendency for EG participants to either lean further forward or backward.    

Interval 8 exhibited results that were at odds with the notion of a deception-

related decrease of COP movement.  The mean velocity and pathlength were both found 

to increase for deceptive participants, which suggests there to be a greater amount of 

COP movement.  Another result in interval 8 that differed from the trend in interval 10 is 

that there was a lower median frequency in the AP direction which suggests that there are 

slower oscillations in the AP direction for deceptive participants.  The differing results 

that are shown in interval 8 may be explained by participants being aroused in a manner 

that causes them to be agitated, rather than over-controlling as was likely the case in 

interval 10.  For liars, agitation is triggered by nervousness and fear.  Liars who are 

agitated make body movements associated with their feeling of nervousness [30].  

Specifically, facial fidgeting such as playing with hair or rubbing of the face increases 

when people are being deceitful [30].  Results of this study show that postural shifts 

increase when participants become agitated, evidenced by increased COP excursions and 

by decreased COP median AP frequency.  Unlike interval 10, the response to the question 

in interval 8 is not very cognitively demanding (only requiring a “yes” or “no”) response.  

This interval involves asking participants about possession of tobacco products.  It is 

unclear why this question elicited agitation, but it may just be due to EG participants 
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being more uncomfortable about possession of the cigars than any of the other items that 

were in the backpack that they packed. 

There was no COP-based measure that reliably exhibited deception effects for 

every interval.  This variability supports the notion that deception is a dynamic process in 

which people adjust their actions according to their perceived level of social threat.  The 

majority of the deception-related effects were observed in interval 10.  This interval, 

along with interval 6, represents the questions that required participants to develop a 

more elaborate response in order to avoid revealing any of the prohibited items in their 

backpack.  This suggests that open-ended questions may be more sensitive to deceptive 

behavior than those requiring a simple response (such as just “yes” or “no”).  It makes 

sense that those very short responses would produce little discrimination between those 

being truthful and deceptive participants.  In response to these questions the truthful 

participants had no reason to be particularly aroused and they therefore stood fairly still, 

and deceptive participants who were also constraining their movements were also 

standing very still.   

Overall, the results of this study indicate that posturography has potential utility 

for the purpose of deception detection.  If the idea that more cognitively demanding, 

open-ended questions elicit a greater response from deceptive people is correct, then this 

could lead to recommendations to include more open-ended questions in security 

screening applications.  This study has demonstrated COP measures that may be used in 

order to discriminate between truthful and deceptive participants for specific questions.  
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These measures include pathlength, mean velocity, AP mean displacement, AP median 

frequency, ML sway, eccentricity, and the major axis angle.   

While this study has successfully identified differences between truthful and 

deceptive participants, a predictive model has not yet been developed.  The use of more 

traditional techniques such as binary logistic regression and linear discriminant analysis 

could not be implemented due to significant violations of the necessary assumptions.  A 

significant amount of effort was put into developing a model using binary logistic 

regression; however, since the COP-based measures were so highly correlated with one 

another the independence of predictor variables assumption was not satisfied.  This 

resulted in a highly unstable model which produced unreliable results.  It may be possible 

to implement a model using binary logistic regression, but it would have to be used with 

a combination of other non-COP based measures that are not as highly correlated.  Future 

work is currently being planned to utilize more advanced machine learning and pattern 

recognition techniques in order to predict whether a response is from a truthful or 

deceptive participant based on the data that has been collected in this study.   

The use of posturography for deception detection does have some limitations.  It 

requires the person being tested to stand still in one place.  Unexpected movements 

during testing could produce unreliable results if, for example, the person happened to 

sneeze during their response.  The data also had to be manually processed, which was a 

very time consuming task.  Future systems with the capability of classifying a response as 

either truthful or deceptive will need to be automated if posturographic methods are to be 

used in real-time environments. 
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This study also revealed that there is no one COP-based measure that can reliably 

differentiate between truth tellers and liars.  Future work should be done to address this 

problem, with a particular focus upon which types of questions elicit a particular type of 

response.  Based upon the results of this study, future studies could be developed which 

purposefully include cognitively demanding questions, which should elicit the previously 

observed deception-related decrease in COP excursions coupled with an increased AP 

median frequency.    

A further weakness of the study is that testing was performed in a laboratory 

setting, thus participants were told to lie.  Many researchers would argue that deception 

must be voluntary; therefore laboratory studies aren’t necessarily measuring deception.  

In order to overcome this limitation it will be necessary to begin testing in natural 

environments in a covert manner.  This type of testing could demonstrate the 

effectiveness of posturography for deception detection in a security screening 

environment.  For example, a future automated posturographic system could alert 

security agents as to people who should be selected for further screening or searches.   
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CHAPTER 6 

CONCLUSIONS 

We successfully demonstrated deception-related effects on measures of static 

posture.  Deception-related COP measures were successfully identified.  Results of the 

study showed that there was a significant deception-related decrease in overall COP 

excursions, combined with an increase in AP median frequency.  The combined effect of 

reduced COP excursions, as evidenced by reduced COP pathlength and mean velocity, 

and an increased AP median frequency is consistent with previous studies citing these 

effects as signs of increased cognitive load.  Increased cognitive loads manifest 

themselves as stiffening of the ankle joint via a co-contraction mechanism, and may be 

explained by a heightened level of awareness, and reduced postural automaticity. 

Not all question types exhibited responses indicative of an increased cognitive 

load.  Some questions showed there to be increased eccentricity, caused by a reduction in 

ML sway, an indication of an over-controlling response.  In one question the opposite 

effect to those characterizing an increased cognitive load was observed; increased COP 

excursions accompanied by a decreased AP median frequency.  This response may be 

attributable to participants becoming agitated for this particular question.  Further 

research should be performed to determine which question types elicit a particular type of 

response from participants. 
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There were, however some limitations to the study.  First, there were no COP 

measures that reliably exhibited differences between liars and truth-tellers for all question 

types.  Open-ended questions that required liars to develop a more complex response 

caused liars to exhibit more of the aforementioned indicators of deception than questions 

requiring a simple response.  This effect may be attributed to increased cognitive load or 

a deliberate attempt by liars to control their behavior.  The results of this study could be 

used to provide suggestions to include more open-ended questions in security screening 

scenarios. 

Due to the limitations of the study, and to the inability to develop a predictive 

model using a traditional approach it will be necessary to conduct future studies to further 

explore this area of research.  Future studies using the same data will make use of 

machine learning techniques to predict whether a response is truthful or whether it is a 

lie.  If successful, this will provide a very powerful method for detecting deception.  

Unlike most techniques used for deception detection, it could be used covertly without 

the person’s knowledge or cooperation.  This may lead to many potential applications 

such as airport screenings, counter-terrorism, and credibility assessment. 
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APPENDIX A 

The MATLAB code that was used for the data processing is shown below. 

%Process.m 

  

  
clear 
clc 
close all 

  
%Declare Constants 
init_var; %This version uses the 13 intervals used for the initial 

analysis 
%init_var_48intervals    %This version uses 48 intervals 
%subs=[21];% 23 28 31 32]; 
subs = [7 10 11 12 13 17 18 19 21 23 28 31 32 35 37 38 39 42 43 45 46 

47 48 49 50 53 54 57 59 60 61 62 63 64 65 66 67 68 8 15 16 20 24 25 26 

27 33 9]; 
counter=1; %subject # index 
for sub = subs; %start of subject loop 

     
    fprintf('Processing subject #%i...',sub) 

    
    %Load COP and audio data 

     
    [COPX, COPY, audio, labels, 

sstr,subject_condition]=data_load(sub,counter); 

     
    fprintf('data loaded...') 

     
    %Define time vectors 

     
    t_cop = [1/f_force:1/f_force:length(COPX)/f_force]; 
    t_audio = [1/f_audio:1/f_audio:length(audio)/f_audio]; 

     
    %Convert audio indices from seconds to samples 

     
    for lab = labs 
        index_aud(lab,:) = labels(lab,1)*f_audio; %load indices; 

convert from seconds to samples 
    end 

  
    index_cop = round(index_aud.*(f_force/f_audio)); 

     
    fprintf('extracting outcome variables...') 

     



 
 

63 
 

    for index1 = indices  %Start of interval loop 

        
        if subject_condition == 1 
        sub_condition = truth(index1); 
        elseif subject_condition == 0 
            sub_condition=deceptive(index1); 
        end 
        %Define start and end indices for current time interval; use to 

partition 
        %COP data 

         
        index2=index1+1; 

         
        %start and end indices for analyzing intervals between pairs of 
        %events 

         
        %istart = index_cop(index1);     
        %iend = index_cop(index2); 

         
        %start and end indices for analyzing intervals identified for 
        %analysis during meeting on 12/20/10 

         
        istart = index_cop(startandend(index1,1)); 
        iend = index_cop(startandend(index1,2)); 

         
        COPX_interval=COPX(istart:iend,:); 
        COPY_interval=COPY(istart:iend,:); 

         
        %Plot COP and audio data 

         
        plotting 

         
        %Calculate maximum, mean and standard deviation displacement in 

the AP 
        %and ML directions. The COP sway in the AP and ML directions is 

also 
        %calculated 

     
        [max_displacement_x, max_displacement_y, 

max_displacement,COP_sway_x,COP_sway_y,mean_displacement_x,mean_displac

ement_y,x_squared, y_squared 

]=calc_displacement(COPX_interval,COPY_interval); 

     
        %Calculate Pathlength 

    
        [pathlength]=calc_pathlength(COPX_interval,COPY_interval); 

     
        %Calculate the mean velocity in the AP and ML directions,  
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        [vmax,vmean,vmax_x, 

vmax_y,vmean_x,vmean_y,velocity_x,velocity_y]=calc_velocity(x_squared, 

y_squared,COPX_interval,COPY_interval,pathlength,t_cop); 

  
        %Calculate the standard deviation of COP,AP displacement, ML 
        %displacement, AP velocity and of the ML velocity 

    
        

[sdev_COPX,sdev_COPY,sdev_velocity_y,sdev_velocity_x]=calc_sdev(COPX_in

terval,COPY_interval,velocity_y,velocity_x); 

   
        %Calculate zero crossing rate 

        
       [zero_crossing_x , 

zero_crossing_y]=calc_zero_crossing(COPX_interval,COPY_interval); 

         
        %Caluculate eccentricity, length of major ellipse axis and 

angle of 
        %major axis 

       
        [major_axis_angle eccentricity 

major_axis_length]=calc_ellipse(COPX_interval,COPY_interval); 

         
        %%Calculate maximum frequency in AP and ML directions 

         
        [maxfrequency_x,maxfrequency_y,p2,p3,freq] = 

calc_power_spectrum(COPX_interval,COPY_interval,f_force); 

  
        %%Calculate the median frequency in the AP and ML directions 

             
            %Darren's code: 
            

%[median_frequency_x,median_frequency_y]=calc_median_frequency(COPX_int

erval,COPY_interval,f_force) 

         
            %Greg's code (trying a different method): 
            [median_frequency_x,median_frequency_y,f,P] = 

med_freq_GWK_temp(COPX_interval,COPY_interval,f_force); 
            pt=transpose(P); 
           figure (2) 
            plot(f,pt) 
            xlabel('Frequency (Hz)') 
            xlim([0 50]) 
            ylabel('Power') 
            title('Power Spectrum') 
        %%Save all output measures to a single variable 

         
        variables(index1,:,sub) = [pathlength COP_sway_y COP_sway_x 

vmean vmax max_displacement_y max_displacement_x sdev_COPY sdev_COPX 

vmax_y vmax_x sdev_velocity_y sdev_velocity_x vmean_y vmean_x 

mean_displacement_y mean_displacement_x eccentricity major_axis_length 
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major_axis_angle zero_crossing_x zero_crossing_y maxfrequency_x 

maxfrequency_y median_frequency_x median_frequency_y,sub_condition]; 

     
    end %end of interval loop 

  
counter=counter+1; 
end%end of subject loop 

  
fprintf('writing output file...') 

  
stat_format 

  
fprintf('trial done.\n') 

  

  
  

 

%init_var.m 
%Define Constants 

  
f_force=1000;    % Force Plate Sampling Frequency 

  
f_audio = 8000; %Audio Sampling frequency 

  

  
%Subject vector 

  
%subs=[21 23 28 31 32] 
%subs=[21:21]; 
labs = [1:49]; 
%indices = [1:48]; 
indices = [1:13];   %represents 13 different intervals identified for 

analysis during meeting on 12/20/10 

  
startandend = [3 48; 
               4 6; 
               8 10; 
               14 16; 
               18 20; 
               22 24; 
               26 28; 
               30 32; 
               34 36; 
               38 40; 
               42 44; 
               45 47; 
               47 48]; 

  

            
%truth = [1 3 1 3 1 1 1 3 1 1 1 1 3];  %1=truthful 3=control 
%deceptive = [0 3 0 3 0 0 0 3 0 0 0 0 3];    %0=decptive  3=control 
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truth = [1 1 1 1 1 1 1 1 1 1 1 1 1];   
deceptive = [0 0 0 0 0 0 0 0 0 0 0 0 0]; 
  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        
function [COPX, COPY, audio, labels, 

sstr,subject_condition]=data_load(sub,counter) 
sstr=int2str(sub);   %Convert subject number to a string 

  

  
%Load COP Data 

  

  

  
data=csvread(['s',sstr,'.csv'],5,0);   %Load CSV file 

  
column = [0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1];    

  
condition = [1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 

0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0];    %1=truthful  0=deceptive 

  
subject_condition = condition(counter); 
if column(counter) == 1 

     
data= data(:,12:13);                    %Assign variable data to 12th 

and 13th column 

  
elseif column(counter) == 0 

   
    data= data(:,3:4);                  %Assign variable data to 3rd 

and 4th column 
end 
%Subtract mean off of COP data 

  
COPX=data(:,1)-mean(data(:,1)); 
COPY=data(:,2)-mean(data(:,2)) ;     

  
%%Load audio data 

     
    eval(['load S',sstr,'.txt;']); 
    eval(['audio = S',sstr,';']); 

     
%% Load labels    
     eval(['load S',sstr,'_labels.txt;']); 
    eval(['labels = S',sstr,'_labels;']); 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [max_displacement_x, max_displacement_y, 

max_displacement,COP_sway_x,COP_sway_y,mean_displacement_x,mean_displac

ement_y,x_squared, y_squared 

]=calc_displacement(COPX_interval,COPY_interval) 
%%add indices stuff to input/change/remove sub 
%%%NEED TO MAKE SPECIFIC FOR INTERVAL 

  

  
%COP displacement 
max_displacement_x=max(abs(COPX_interval)); 
max_displacement_y=max(abs(COPY_interval)); 
x_squared = (COPX_interval.^2);  
y_squared = (COPY_interval.^2);  
max_displacement = (max(x_squared + y_squared).^(0.5)); 

  
%COP Mean Displacement 
mean_displacement_x=mean(abs(COPX_interval));  %ML direction 
mean_displacement_y=mean(abs(COPY_interval));  %AP direction 

  
%COP Sway 
COP_sway_x = max(COPX_interval) - min(COPX_interval); 
COP_sway_y = max(COPY_interval) - min(COPY_interval); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

  
function [pathlength]=calc_pathlength(COPX_interval,COPY_interval) 

  
%Calculate total path length: 
            pathlength=0;%set counter 

            
            for count=1:(length(COPX_interval)-1) 

                         
              Temp_length = (((COPX_interval((count+1))-

COPX_interval(count))^2 + (COPY_interval((count+1))-

COPY_interval(count))^2))^0.5; 
              pathlength = pathlength+Temp_length; 

               
            end 
           pathlength; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function[vmax,vmean,vmax_x, 

vmax_y,vmean_x,vmean_y,velocity_x,velocity_y]=calc_velocity(x_squared, 

y_squared,COPX_interval,COPY_interval,pathlength,t_cop) 

  
%COP velocity (magnitude) 
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pos =(x_squared + y_squared).^(0.5);  
velocity = diff(pos)*1000; 
vmax = (max(abs(velocity))); 
vmean = (pathlength/max(t_cop));    %length/sec 

  
%Mean and Max COP velocity in the ML direction 
velocity_x=diff(COPX_interval)*1000; 
vmax_x = (max(abs(velocity_x))); 
vmean_x = (mean(abs(velocity_x)));    %figure out whether this should 

be mean(abs(velocity)) 

  
%Mean and Max COP velocity in the AP direction 
velocity_y=diff(COPY_interval)*1000; 
vmax_y = (max(abs(velocity_y))); 
vmean_y = (mean(abs(velocity_y)));    %figure out whether this should 

be mean(abs(velocity)) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [major_axis_angle eccentricity 

major_axis_length]=calc_ellipse(COPX_interval,COPY_interval) % ellipse 

is an optional argument you can just run Vo  = ellipsef(V) for the 

stats 

  

  

   
%modified from Marcos Duarte · Vladimir M. Zatsiorsky 
%"Effects of body lean and visual information on the equilibrium 

maintenance 
%during stance", Experimental Brain Research 2002 
%ml=V(:,1); 
%ap=V(:,2); 
V=cov(COPX_interval,COPY_interval); % covariance matrix between the a-p 

and m-l COP data 
[vec,val]=eig(V); % eigenvectors and eigenvalues of the covariance 

matrix 
axes=1.96*sqrt(svd(val)); % axes lengths (major axis first) 
angles=atan2(vec(2,:),vec(1,:)); % respective angles 
%area=pi*prod(axes); % area of the ellipse 
% ellipse data: 
t=linspace(0,2*pi,200); 
%ellipse=vec*1.96*sqrt(val)*[cos(t); 

sin(t)]+repmat([mean(COPX_interval); mean(COPY_interval)],1,200); %for 

plotting an ellipse 
eccentricity=sqrt(1-(axes(2)/axes(1))^2); 
%plot(ellipse(1,:),ellipse(2,:),'c') 
%Vo=[e;angles(2);2*axes(1)];%eccentricity , angle of major axes with 

respect to x axis, full length of ellipse 
major_axis_length=axes(1); 
major_axis_angle=angles(2); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [median_frequency_x,median_frequency_y,f,P] = 

med_freq_GWK_temp(COPX_interval,COPY_interval,f_force) 

  
L = length(COPX_interval); 
win = 2^nextpow2(L); 
f = f_force*(0:(win/2))/win; 

  
%Calculate median frequency - X 
COPX_interval_mean=COPX_interval-mean(COPX_interval); 
y = fft(COPX_interval_mean,win); 
P = y.*conj(y)/win; 
P = P(1:(win/2)+1); 

  
intP = trapz(P); 
half_intP = intP/2; 
i_median_temp = find(cumtrapz(P)>=half_intP); 
i_median = i_median_temp(1); 
median_frequency_x = f(i_median); 

  

  
%Calculate median frequency - Y 

  
COPY_interval_mean=COPY_interval-mean(COPY_interval); 
y = fft(COPY_interval_mean,win); 
P = y.*conj(y)/win; 
P = P(1:(win/2)+1); 
intP = trapz(P); 
half_intP = intP/2; 
i_median_temp = find(cumtrapz(P)>=half_intP); 
i_median = i_median_temp(1); 
median_frequency_y = f(i_median); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%stat_format.m 

  
%Rewrite output variables into row format (s) 

  
i = 0; 
for sub = subs 
    for index = indices 
        i = i + 1; 
        s(i,:) = [sub index variables(index,:,sub)]; 
    end 
end 



 
 

70 
 

  
%Define header and formatting  

  
header = ['SUB INTERVAL '... 
          'PATHLENGTH '... 
          'SWAY_Y SWAY_X '... 
          'MEAN_VEL MAX_VEL '... 
          'MAX_DISP_Y MAX_DISP_X '... 
          'SDEV_COPY SDEV_COPX '... 
          'VMAX_Y VMAX_X '... 
          'SDEV_VELY SDEV_VELX '... 
          'MEAN_VEL_Y MEAN_VEL_X '... 
          'MEAN_DISP_Y MEAN_DISP_X '... 
          'ECCENTRICITY '... 
          'MAJOR_AXIS_LENGTH '... 
          'MAJOR_AXIS_ANGLE '... 
          'ZERO_CROSSING_X ZERO_CROSSING_Y '... 
          'MAX_FREQ_X MAX_FREQ_Y '... 
          'MEDIAN_FREQ_X MEDIAN_FREQ_Y'... 
          'SUB_CONDITION\n']; 

       

       
statformat = ['%3.0f %8.0f '... 
               '%5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f '... 
               '%5.4f '... 
               '%5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f '... 
               '%5.4f %5.4f'... 
               '%3.0f\n']; 

  
%Initialize stats output file, write header 

  
fid = fopen('Statistics.dat','w'); 
fprintf(fid,header); 

  
%Loop to write elements of s to output file 

  
for j = 1:length(s) 
    fprintf(fid,statformat,s(j,:)); 
end 

  
fclose(fid); 
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APPENDIX B 

The Index Key for the security screening interview is shown by Figure A- 1:  

 

 
 

Figure A- 1: Index Key 
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The demographics survey that was administered is shown by Figure A- 2 

 

Figure A- 2: Demographics Survey 
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The consent form for extra credit is shown below by Figure A- 3. 
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Figure A- 3: Extra Credit Consent Form 
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The consent form for monetary compensation is shown by Figure A- 4. 
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Figure A- 4: Consent Form for Monetary Compensation 
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The post interview survey is shown by Figure A- 5. 
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Figure A- 5: Post Interview Survey 
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