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ABSTRACT 

 

 

 

Analyzing data derived from well logging and core plugs to understand the 

heterogeneity of porosity in geologic formations is paramount in petrological studies. The 

well-log data and core-plug data are integrated in order to generate an accurate model 

describing the porosity distribution; however these data exist at different scales and 

resolution. This difference necessitates scaling of one or both sets of the data to aid in 

integration. 

The present study established a geostatistical scaling (GS) model combining mean, 

variance, skewness, kurtosis and standard deviation with a misfit algorithm and sequential 

Gaussian simulation to integrate porosity data in conjunction with correlating the depth of 

core-plug data within the well-log data through a scaling process. The GS model examined 

well-log porosity data from a Permian-age formation in the Hugoton Embayment in Kansas 
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and well log data from a Cretaceous-age formation in the GyeongSang Basin in The Republic 

of Korea. Synthetic core-plug porosity data was generated from well-log data with random 

number generation. 

The GS model requires basic histograms and variogram models for scaling the 

computerized tomography (CT) plug data to well log scale as well as integrating the data in a 

sequential Gaussian simulation. Variance-based statistics were calculated within specific 

intervals, based on the CT plug size, then a best fit for depth correlation determined. A new 

correlation algorithm, named the multiplicative inverse misfit correlation method (MIMC), 

was formulated for accurate depth correlation. This associated depth then constrained the 

well log porosity data at reservoir- or field-scale to interpolate higher-resolution porosity 

distributions. 

Results for all the wells showed the MIMC method accurately identified the depth 

from which the CT plug data originated. The porosity from the CT plug data was applied in a 

sequential Gaussian co-simulation, after kriging the well log data. This culminated in a 

greater refinement in determining the higher porosities distributions than the interpolation of 

solely the well log data. These results validate the proposed high-resolution model for 

integrating data and correlating depths in reservoir characterization. 
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CHAPTER 1 

INTRODUCTION 

Geologic reservoirs serve as fundamental archetypes for gas and oil exploration, 

methane extraction and carbon sequestration. Among many physical parameters, porosity and 

permeability are the major factors determining the capacity of gas/oil production and carbon 

storage. Well logging and core experiments are the methods for examining lithology and rock 

characteristics in order to analyze the porosity and permeability relations in carbonate 

reservoir formations. The data resolution and spatial coverage combined with the quantity of 

measured parameters occur at separate scales to impart subsurface lithology and structural 

information. 

1.1 Background 

Evaluating geologic reservoirs requires continual effort due to the heterogeneity of 

the rock and the lack of modern day proxies for carbonate formation (Lucia, 1999). 

Heterogeneity creates challenges modeling and predicting flow, therefore knowledge about 

heterogeneity is essential for evaluating fluid flow behavior. The geophysical measurements 

exploring the characteristics of a petroleum reservoir include well-log data at the medium-

scale and small-scale computerized tomography (CT) scans or core-plug data. The 

measurements taken directly from well logs and CT scans are used as proxies for determining 

the porosity at that location (Rider, 1986). Investigating and determining the capabilities of 
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carbonates and sandstone as reservoirs and the amount of petroleum contained in them can be 

accomplished by using geophysical techniques and geostatistics. 

Porosity heterogeneity within the reservoir occurs at various scales from large vugs to 

interparticle, making multi-scale geological-heterogeneity integration complex. Intricate 

porosity distributions dominate in carbonate formations due to dissolution and diagenesis 

creating secondary porosity (Choquette & Pray, 1970). The high porosity in carbonates 

allows for reservoir capabilities, resulting in carbonates producing nearly half of the world’s 

petroleum (Prothero & Schwab, 2004). 

During the coring process, sections of the core may not be fully recovered, so the 

exact depths of any scans or plugs taken from the core are difficult to establish. The accuracy 

of the depth correlations depends on the skills of the logging geologist and the amount of 

useable retrieved core, and even then there may be more than a 2-foot (0.61 meters) 

correlation-match uncertainty. The typical method for correlating strata at different depths 

involves matching the lithology from the extracted core to the well-log data. 

Well-log data and core-plug measurements exemplify types of hard data, as they 

derive from accurate measurements generated by tools directly on the geologic formation 

(Hirsche, Boerner, Kalkomey, & Gastaldi, 1998). Yet core measurements and well logs 

evaluate at different scales that the researcher must explicate in reservoir modeling. These 

measured data evince different volume scales that necessitate deliberation before beginning 

modeling. 

Well logging evaluates at a medium resolution or scale (several centimeters) with 

medium coverage (several meters). Meanwhile, laboratory measurements on the core 

investigate at a maximum resolution (micrometer to millimeter) but with minimum coverage 
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(centimeters). This variance in scale leads to concerns during the depth correlation when 

determining how to relate the higher resolution measurements of the computerized 

tomographic (CT) scan or core-plug data to the lower resolution well-log measurements. 

These differences in the volume resolution of measurements generate the necessity of scaling 

the data. 

The resolution of well-log measurements determines the spatial accuracy of the data 

at that scale and the uncertainty in correlations. Additionally, core-plug data exhibits greater 

variations in measurements than well-log due to an increase in the resolution of the data (Oz, 

Deutsch, & Frykman, 2002; Tilke, Allen, & Gyllensten, 2006). Data integration then 

becomes incompatible across the available data-resolution range.  

Various geostatistical methods combine and correlate data to facilitate the generation 

of reservoir models which detail the reservoir’s characteristics and make production 

estimates for the reservoir. Variograms and kriging represent the most common geostatistical 

methods for integrating spatially varying parameters. However, variograms cannot discern 

natural variations in the reservoirs due to the limitations of interpolation smoothing and an 

increase in uncertainty owing to inadequate data distributions (Leary & Al-Kindy, 2002; Liu, 

Harding, Abriel, & Strebelle, 2004).  

1.2 Objectives 

The present study seeks to illustrate the capability of geostatistics in examining 

several parameters in porosity data, correlating the maximum -resolution data to the medium-

resolution data, and then constraining the data to construct a high-resolution geostatistical 

model. This study also investigates the efficacy of a geostatistical modeling approach to the 
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integration of geophysical data from well-logs and core experiments under different geologic 

settings of reservoir.  

The objective is the development of a multi-dimensional high-resolution modeling 

framework for the reconstruction of stratigraphically-ordered rock formation in reservoirs 

using geostatistical techniques involving a misfit/likelihood method and sequential Gaussian 

simulation (SGS). The model actuates with basic statistics arising from well-log and CT plug 

porosity data and then implements a scaling process to compare and identify the best depth 

correlation. Figure 1.1 illustrates the proposed modeling flow of a geostatistical framework to 

integrate core and well-log data from a reservoir beginning with the multiplicative inverse 

misfit correlation method after scaling the core data. 

 

 

 

Figure 1.1, Geostatistical modeling flow 

 

 

Step-1. Porosity/permeability measurements from computerized tomographic (CT) images of 

cores from a single bore hole will update well-log data using the MIMC method. 
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Step-2. The updated well-log data and the CT core data are upscaled to a one-dimensional 

cell structure using arithmetic upscaling formulation.  

Step-3. The CT core data are used in a sequential Gaussian co-simulation to integrate the data 

and upscaled to a coarser, multidimensional-scale resolution. 

Step-4. Multiple lines of a one-dimensional porosity/permeability model are 

interpolated/extrapolated using simple kriging and SGS. 

Step-5 (optional, if have seismic data). When a two-dimensional inversed model of porosity 

or permeability from seismic survey is available, depending on the resolution of 

seismic model, the model from Step 3 will be either upscaled or downscaled by using 

SGS or block kriging. 
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CHAPTER 2 

GEOSTATISTICAL FRAMEWORK 

2.1 Well-Log Data 

Well-log data originate from a constant recording obtained in a borehole and 

documents diverse geological parameters (Rider, 1986). The measurements derive from three 

techniques: mechanical, spontaneous or natural, and induced. The well-log tests quantify the 

properties of rock matrix and the fluids or gases in the pores surrounding the well in an 

attempt to locate formations containing hydrocarbons (Bigelow, 1992; Luthi, 2001). Porosity, 

texture, internal structure, and permeability are rock characteristics defined by the well-log 

tests.  

On a larger scale, lithology, bed thickness, compaction, and reserve estimates may 

also be ascertained through well-log tests (Bigelow, 1992). A collection of well-log data 

encompassing a geographical area provides material to define reservoir geometry, correlate 

beds, and map structures (Asquith & Gibson, 1982). Reservoir properties then can be 

described through combining well-log and core-plug data. 

There are two methods for well-log testing, open hole or logging-while-drilling 

(LWD) (Luthi, 2001). Open-hole logs take place once drilling is complete and in the uncased 

portion of the well (Asquith & Gibson, 1982; Luthi, 2001). The instruments, attached to a 

cable or wire-line, are subsequently lowered into the depths of the well to acquire the data 

(Serra, 1984). The down-hole logger records the data as the wire-line is pulled back up from 
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the bottom while transmitting the information to the surface (Rider, 1986). LWD logs are 

performed during the drilling of the well, to lessen fluid invasion and borehole damage 

effects, with the instruments placed in the bottom-hole assembly of the drill (Luthi, 2001). 

This allows for real-time data acquisition. A specific curve, collection of curves, a logging 

tool or the logging process can all be expressed as a “log”  Asquith & Gibson, 1982).  

The logging tools obtain the measurements while moving and the sensors have 

dimension, which while factored into the design means the measurements are not perfect 

(Rider, 1986). Rock characteristics such as permeability, porosity, water saturation, and 

resistivity will also affect the measurements (Asquith & Gibson, 1982). The fluid and mud 

administered during drilling generally enters the bedrock surrounding the borehole and 

consequently influence the log measurements.  

Natural phenomena simply need an appropriate sensor to obtain the measurements; 

called mechanical and spontaneous measurements (Rider, 1986; Serra, 1984). Natural or 

spontaneous measurements involve self or spontaneous potential (SP) and gamma-ray, while 

mechanical measurements include temperature and borehole diameter (Rider, 1986). Calipers 

measure the well diameter; thermometers record the formation temperatures at different 

depths, which is required when defining porosity and permeability in the formation. 

Spontaneous potential reads the spontaneous electrical currents and gamma-ray calculates the 

natural radioactivity in the formation. 

Induced measurements need an emitter or transmitter, which creates a specific 

reaction in the formation, plus a detector (Serra, 1984). Induced measurements include 

resistivity, neutron porosity logs, and sonic or acoustic measurements. Resistivity measures 

how well electricity flows through the formation since locations containing hydrocarbons act 
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as resistors. Sonic measurements test the travel velocity of sound waves through the rock; 

neutron ray and density tests measure the gamma-ray or neutron density that through 

processing determines the amount of pore space or porosity. 

2.2 CT and Core-Plug Data 

Core plugs consist of small corings or plugs removed from the larger core procured 

during the well drilling, illustrated in Figure 2.1. Microscopic methods and rock physics 

examine these plugs to gain insight into porosity and the matrix framework. Without these 

analyses which evaluate beyond the surface of the core, the formation’s porosity would lack 

a detailed rendering and lead to inaccuracies when characterizing the reservoir. 

 

 

 

Figure 2.1, The relationship between the well core and plugs 
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Scanning electron microscopy (SEM) and x-ray computerized tomography (CT) 

directly render porosity from an extracted core and allow for whole core inspection at the 

macroscale. The CT scanners measure the average attenuation of an X-ray beam as it passes 

through a sample. The resolution of the tomography is 0.165 milimeters, which is the size of 

the voxel, the three-dimensional volume cubes that represent the average attenuation of 

material within the voxel (Price, Curtis, & Wood, 2008). This higher detailed analysis, 

capable from the CT images, reveals the pore sizes and shapes while also allowing for 

investigating fractures without causing damage to the core.  

Additionally, the identification of pore fluids and pore connectivity becomes 

perceptible under the comprehensive exploration available from a CT investigation. The 

porosities resulting from CT images or core plugs present higher variability than porosity 

derived from well logs. However, since these measurements are highly precise due to the 

type of investigation, these porosities reveal an accurate view of the porosity at that location 

or depth.  

2.3 Porosity 

Porosity of a formation is important in order to evaluate fluid content, potentiality of 

fluids to flow and probable recovery rates within a reservoir (Prasad, 2003). Porosity is the 

ratio of pore volume to bulk volume thus determining the volumetric concentration of pore 

space using the equation  

    
           

           
  
      
      

  (1) 

where   is the porosity,     is the density of the grain matrix,    is the density of the fluid 

and    is the bulk density of the formation (Serra, 1984). 



10 
 

There are two different definitions of porosity: effective porosity and total porosity. 

Total porosity involves porosity that can never be accessed as a result of the pores not being 

connected. Effective porosity means the pores are connected with flow channels and thus 

fluids can be attained. The pores produced during the original sedimentation and lithification 

of the reservoir are called primary porosity. The pores generated later during multifarious 

geologic process following deposition, such as fracture or dissolution, are accordingly called 

secondary porosity. 

Well logs can help compute porosity using either the gamma-ray log or by the 

preferred method with the neutron density logs. The gamma-ray logs use an algorithm to 

formulate the bulk density of the formation. Once the matrix density and fluid density is 

known, the porosity can be calculated using Equation (1). When using the neutron density 

logs, the neutron porosity (NDPI) and density porosity (DPHI) logs are averaged to directly 

estimate the porosity. 

Akin, Ross & Kovscek (2008) suggest that porosity distribution is neither random nor 

homogeneous thus consequently its structure impacts the petrophysical character of rock. 

Porosity heterogeneity in a reservoir is complex with pore throat scales stretching over orders 

of magnitude (Choquette & Pray, 1970; Price et al., 2008). Exploration of the porosity 

distribution varies depending on the ultimate objective of the reservoir characterization and 

the relationships of the tested parameters. Porosity distribution statistics develop from 

statistical scaling relationships between high-resolution data and low-resolution data, which 

then improves the porosity heterogeneity understanding for modeling reservoirs (Price et al., 

2008; Tilke et al., 2006). The major problem when developing these relationships consists of 
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correlating the high-resolution sections, CT data, to the low-resolution information, well log 

data (Price et al., 2008). 

2.4 Geostatistical Characterization of a Reservoir 

Various geostatistical techniques are developed to combine and correlate data, and to 

facilitate the generation of numerical models that detail the reservoir’s characteristics. 

Identifying statistical relationships between measurements helps predict the porosity 

distribution (Price et al., 2008). Geostatistical analysis examines the spatial relationships 

between measured properties of rocks which is a useful precursor to reservoir modeling. 

One or more variables distributed through space and having multiple values is a 

feature of natural phenomena and obliges geostatistics to describe these variables as 

regionalized. In geology, nearly all the variables can be considered as regionalized and thus 

analyzed to a greater degree using geostatistics. Matheron (1970) indicated that the 

application of random functions to the observations and estimations of natural phenomena 

defines geostatistics.  

According to Journel & Huijbregts (1978) “geostatistical theory is based on the 

observation that the variabilities of all regionalized random variables have a particular 

structure” (p. 10). Geostatistical estimation assumes that the variable z at location x is the 

value or function z(x) and leads to representing the variability of the function where x varies 

(Journel & Huijbregts, 1978; Minasny, Vrugt, & McBratney, 2011). Geostatistical solution 

requires interpreting every value of z(x) as a realization of a random variable Z(x).  

A random variable takes a series of values as possible outcomes, each according to a 

certain probability distribution with a particular frequency of occurrence (Journel & 

Huijbregts, 1978; Remy, Boucher, & Wu, 2009). The set of random variables realized at 
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every point x defines a random function. The random variable and function lie at the root of 

any conceptual models developed in geostatistics (Remy et al., 2009). The geostatistical 

model is designed to represent reality but in an uncomplicated process to facilitate describing 

or predicting a particular variable. The complexity of the model relates more to the number 

of parameters involved in the model instead of the amount of observations (Pawitan, 2001). 

2.5 Porosity Modeling 

Porosity is often modeled alongside permeability and acoustic impedance when 

characterizing a reservoir’s properties, particularly when modeling fluid flow (Alfaaouri, 

Riahi, Alizadeh, & Resaei, 2009; Deutsch, 2002; Leary & Al-Kindy, 2002; Liu et al., 2004; 

Prasad, 2003). Often times, porosity is modeled first due to the large amounts of available 

data, and is then compared to permeability data (Deutsch, 2002). Seismic data also is 

frequently combined to provide the overall structure of a reservoir although the scale 

difference between seismic and well-log data impedes the integration when modeling 

porosity (Al-Khalifah & Makkawi, 2000). When seismic data and porosity are incorporated 

together, the resulting porosity model has been very successful in delineating the distribution 

within geologic structures (Al Qassab et al., 2000; Tran, Wen, & Behrens, 1999; Xu et al., 

1992).  

Porosity modeling can be more accurate and successful after combining core plugs, 

well logs and seismic data (Fournier, 1995; Yao et al., 1999). Price et al. (2008) proposed the 

use of statistical parameters derived from porosity imaging of high resolution data to 

constrain correlation with well log data, an important step before a realistic model can be 

developed. Stochastic or geostatistical approaches, kriging and SGS, are the most common 
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procedures for porosity modeling, although artificial neural network techniques are currently 

being explored (Akin et al., 2008; Deutsch, 2002; Journel & Deutsch, 1993). 

Kriging has a long history with geostatistics and prevails as a key tool in data 

integration (Isaaks & Srivastava, 1989; Journel & Deutsch, 1993; Remy et al., 2009). Simple 

kriging (SK) assumes the known mean is constant and a constant trending variable, and is 

defined by: 

   ( )     ∑   
  

 ( )

   

( )[ (  )   ]   (2) 

where   and    are the location vectors for estimation point and one of the neighboring data 

points indexed by  ,   
  ( ) is the kriging weight assigned to datum  (  ) for estimation at 

the location u, m is the expected mean of    ( ) and  (  ),       n(u) is the number of 

conditioning data points used for the estimation of    ( ) centered at u (Journel & 

Huijbregts, 1978). However, this estimate is changed based on the established conditions. As 

the simulation process moves forward, each previous node’s value is used in the kriging of 

the current node. This process is repeated until all nodes are visited. Simple kriging is 

adapted to gain a baseline estimate (Remy et al., 2009). 

Block kriging (BK) approximates the random variable over a local area rather than a 

point and the covariance estimations are point-to-block rather than point-to-point (Isaaks & 

Srivastava, 1989). An advantage to block kriging is it gives one kriging solution yet provides 

a block average estimation. Since BK provides this block averaging it has a higher 

computational demand which is slightly negated as multiple kriging estimates are not needed 

(Isaaks & Srivastava, 1989; Tran et al., 1999). The BK estimation discretizes the variables on 
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a regularly spaced grid that based on the amount of points in the grid governs the spatial 

accuracy. 

Sequential Gaussian Simulation (SGS) is similar to kriging, differing due to the 

application of conditioning to the estimates based on global statistics (Asghari, Soltni, & 

Amnie, 2009; Webster & Oliver, 2007; Tran et al., 1999). However, when using the Gaussian 

simulation, it must be noted that the random function aggrandizes the covariance model’s 

entropy (Journel & Deutsch, 1993; Remy et al., 2009). Once global statistics are obtained and 

normalized within a Gaussian space, the known data is used to model a variogram which is 

the basis for the simulation. After the variograms are set up, a grid is defined on which to 

simulate data in a method similar to block kriging (Asghari et al., 2009; Remy et al., 2009).  

However, unlike kriging, which minimizes variance of the parameter estimation, the 

SGS method maximizes variance of the estimation. To maximize this variance, a random 

path must be defined to visit each node within the block of data (Asghari et al., 2009; Tran et 

al., 1999). As the SGS process continues, the value of the prior node is calculated in the 

estimation of the current node and this repeats until all nodes are evaluated. During the SGS 

process some nodes may be overestimated and a process of back-transformation is needed. 

This process adjusts the out-of-line estimations to fit more suitably with the distribution of 

the data. This process is repeated until the entire model fits the normalization (Asghari et al., 

2009; Delbari, Afrasiab, & Loiskandl, 2009). Every iteration or realization in the simulation 

represents a different model that can be reviewed and tested. The point of normalization is 

the simulation that best represents the actual area of examination. 

Sequential Gaussian co-simulation (SGcS) utilizes the cokriging process to 

incorporate information contained in neighborhood secondary data which relates to the 
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primary variable when simulating the Gaussian variable (Babak & Deutsch, 2009; Deutsch, 

2002). The primary variable is conditioned to the secondary variable with full cokriging 

which models co-regionalization to reproduce the variables within a correlation structure 

(Deutsch, 2002; Remy et al., 2009). The Markov Model 1(MM1) works around needing the 

multiple variograms required in the linear model of co-regionalization by only requiring the 

correlation coefficient between the primary and secondary variables (Babak & Deutsch, 

2009; Remy et al., 2009).  
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CHAPTER 3 

FORMULATION OF THE GEOSTATISTICAL SCALING MODEL 

 

The geostatistical scaling model (Figure 3.1) combines several geostatistical stages in 

order to achieve correlation depths and integrate the porosity data from well-log and CT data. 

Basic histograms and semi-variogram models are needed to both upscale the CT plug data to 

well-log scale, and integrate the data with SGS. Variance-based statistics are calculated 

within the specified interval based on the CT plug length, then a best fit-for-depth correlation 

determined with the multiplicative inverse misfit correlation (MIMC) method. This depth 

then constrains the well-log porosity data at the reservoir or field scale, and thus interpolate 

all depths to the higher-resolution porosity distributions. 

 

 

 

Figure 3.1, Flowchart for the geostatistical scaling model 
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3.1 Defining the Histogram and Semi-Variogram 

Histograms are required for well-log porosity data and the CT plug data to obtain the 

set mean which SGS required for processing and estimation. A histogram graphically shows 

the distribution and frequency of the data and when combined with the percent frequency 

reveals how closely the data has a Gaussian distribution. The histograms are designed using 

twenty bins, which show the best representation of the distribution. 

The algorithms used in scaling the CT data are based on the semi-variogram. An 

omni-directional semi-variogram, hereafter referred to simply as variogram, was calculated 

for the CT plug data as well as for the well-log data by:  

 ( )  
 

  ( )
 ∑[ (  )    (     )]

 

 ( )

   

   (3) 

where z(u) is the porosity and N(h) is the number of pairs of data separated by h, the lag 

distance (Deutsch, 2002). The number of lags, for both the CT data and well-log data, are 

kept to a comparable value while the lag spacing and tolerance remained at lower numbers 

due to the close spatial proximity of the data.  

3.2 Generating Basic Statistics 

Statistics for mean, variance, skewness, kurtosis, and standard deviation are generated 

on porosity data for the entire CT core length, as well as on a moving window within the 

well-log data on intervals to correspond with the CT core length. The statistics were upscaled 

on the smaller measurement volume then algorithms compared the core data to well-log data 

using misfit, likelihood, and entropy. 
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Mean or the arithmetic average of the dataset defines the center of the distribution and 

responds easily to erratic values. Variance and standard deviation express the variability and 

spread of the data values; both conveying moments (shape) of the distribution. Skewness, or 

the coefficient of skewness, examines the symmetry of the distribution. A positive skewness 

indicates the median is less than the mean and shows a long tail of high values to the right. A 

negative skewness, alternatively, indicates the median is greater than the mean with the long 

tail of small values to the left. Kurtosis examines the flatness or roughness of the data 

distribution; a negative number showing flat distribution and a positive showing peaks or a 

more extreme variation in the data. 

The following equations were applied to define the statistics for numbers xi , . . .  xN: 

Mean :  ̅  
 

 
∑  

 

   

 (4) 

Variance:    
 

   
∑(    ̅)

 

 

   

 (5) 

Skewness:      
 

 
∑[ 

    ̅ 

 
]
  

   

 (6) 

Kurtosis:      [
 

 
∑[ 

    ̅ 

 
]
  

   

]    (7) 

Standard Deviation:   
 

   
∑(    ̅)

 

   

 (8) 

where N is the total number of data, xi is the value at the first position,  ̅ is the mean of the 

set of values and σ is the standard deviation of the set. 
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Upscaling was performed on each statistic calculated from the core-plug to 

correspond with the volume scale of the well-log measurements using the equation:  

       
    ̅

    ̅
 (9) 

where PV is the statistical parameter for the larger volume of investigation, Pv is the statistical 

parameter for the smaller volume of investigation, Γv is the normalized point-scale sill in v 

and ΓV is the normalized point-scale sill in V. Equation (9) is based on the correction applied 

to upscale the sill on the variogram by reason that variance forms the basis of the statistical 

parameters, utilized in the MIMC method, which correlates with the variance traced to the 

co-variance equation (Journel & Huijbregts, 1978; Frykman & Deutsch,1999; Tilke, Allen, & 

Gyllensten, 2006).  

A non-dimensional measure of misfit function is applied to compare the statistics 

from the core-plug and the well-log by:  

 ( )   √
( ( )   ) 

  
   (10) 

where M(x) is the misfit at the depth x, T(x) is the observed well-log statistic at that depth, T 

is the reference plug statistic and σ
2
 is the variance between the well-log statistic, at the depth 

where the core was sampled, and the corresponding plug upscaled statistic. The lower the 

misfit measure the more similar the data are to each other. 

Using the misfit parameters for variance, skewness, kurtosis and standard deviation, 

the group average absolute deviation, ̅  a measure of dispersion or variability is calculated at 

each depth:  
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 ̅  x  
 

 
∑(     ̅ )

 

   

   (11) 

where   ( ) is the misfit parameter, i, at the depth x and  ̅x is the central tendency or mean 

at depth x. This group misfit deviation value then is transformed as:  

   ( )  
 

 ̅   x 
   (12) 

where Cm (x) is the correlation “constant” at the depth x, the larger the value of Cm the better 

the fit or correlation to the data. The introduction of this deviational parameter of misfit 

serves to search the position of an ‘equally-likely’ event of occurrence which is the minimal 

misfit with equal probability. Therefore, where the depth produces the greatest value of C the 

CT or smaller volume data likely derives from this location. This multiplicative inverse 

misfit correlation (MIMC) approach is presented as: 

   ( )  
 

∑ (     ̅ )
 
   

   (13) 

Assuming a Gaussian uncertainty, the likelihood function, which reveals the depths 

that have a better fit to the core statistics, is calculated by:  

  ( )   
  ( )   (14) 

where   ( ) is the likelihood parameter, i, at depth x, and M(x) is the misfit at the depth x. As 

the likelihood increases the more completely the model fits to the data. Misfit and likelihood 

are calculated for each parameter. Pawitan (2001) explains that the likelihood function uses 

unknown quantities to express information about the data. The likelihood function is 

especially suited for dealing with uncertain data or parameters as the information contained 

in a parameter leads to an unbiased evaluation of the data. Likelihood compares the models 
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to determine how well the information is portrayed in the data and then quantifies the amount 

of variation.  

Using the likelihood parameters for variance, skewness, kurtosis, and standard 

deviation the group average deviation,  ̅  was calculated at each depth: 

 (̅̅ ̅ )  
 

 
∑(  ( )   ̅( ))

 

   

 (15) 

where   ( ) is the likelihood parameter, i, at the depth x. This group likelihood deviation 

value was transformed using equation:  

Cl (x) = - ln ( ̅( )) (16) 

where Cl (x) is the logarithmic deviational likelihood at the depth x. The deviational 

parameter of likelihood similarly searches for the position of an ‘equally-likely’ occurrence 

event. Again, the larger the value of C, the better the fit or correlation to the data.  

The likelihood function frequently educes extremely small values from the 

parameters, < 1 x 10
-6

, which necessitates a transformation to result in true correlation 

extremes and ease the identification of the best depth correlation. To account for these 

values, set the average deviation value to 1; this results in true correlation extremes and eases 

the identification of the best depth correlation. The parameters at the best depth fit do not 

contain the particularly small values and thus are unaffected by the correction. 

Entropy reveals areas of data that have high amounts of uncertainty with little 

information about the data; this is interpreted to mean that it performs similarly to natural 

systems. Entropy was determined using the equation: 
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    ∑         

 

 

 (17) 

where pi is the normalized parameter at depth i and K is a constant. Entropy was 

implemented to determine which parameters would reveal the most information in the data. 

3.3 Scaling Process 

The scaling process has two components: upscaling, which reduces the dimension of 

data into a lower resolution, and downscaling, which adds more dimensions and increases the 

overall resolution. Upscaling, generally achieved by averaging cell values, reduces the 

amount of data to process allowing for multiple model derivations while preserving 

formation details. Concurrently, downscaling creates a more accurate and vibrant model that 

permits greater simulations. While upscaling is a stress-free procedure, downscaling is far 

more problematic.  

The main purpose of upscaling is to reduce the amount of data that needs to be 

worked with for modeling processes. This allows for less computationally-intense models, 

easier transport of the data, and the ability for retaining many large-scale features found 

within the high-resolution image. The simplest method of upscaling consists of the averaging 

of data points: 

 ̅  
 

 
{  (   )    (     )    (     )    (       )} (18) 

where Xm is the data value at m-th cell, Ā is the mean value of four Xm, i is the x coordinate of 

m-th cell, j is the y coordinate of m-th cell (Harris & Foufoula-Georgiou, 2001). The above 

formula will average the data evenly while preserving the two-dimensional scale of the 
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collected data. Nonetheless, upscaling aggrandizes the amount of uncertainty in estimation 

due to the nature of averaging. 

Downscaling increases the amount of data while assigning values to locations that 

normally are lacking data. Simulation algorithms, such as kriging and SGS, are capable of 

large volume estimations of unknown values. This converts a coarse-scale data, or low-

resolution scale, to fine-scale data. The SGS method generates multiple realizations of the 

downscaling results at the same time honoring the spatial variance of the data. 

3.4 Scaling with Sequential Gaussian Simulation 

The formation data structure and variations across the reservoir appear in variograms 

producing a spatial statistical representation. An omni-directional variogram or variogram 

map portrays the anisotropy in the formation. The data is then fit to the experimental 

variogram using a model such as Gaussian, exponential or spherical distributions and 

determining the nugget effect, sill and appropriate range. This defines the model variogram 

which kriging applies in downscaling.  

A three-dimensional Cartesian block is created for each dataset to allow for the SGS 

and kriging algorithms. The well-log dataset is interpolated to reservoir scale using simple 

kriging, SK, and then a co-simulation performed with the CT dataset. The model variogram 

created from the CT plug data functions in the sequential Gaussian co-simulation with the 

reservoir scale well-log porosity to constrain the data. Then the algorithms are processed 

through a double-stepping process, to upscale and then downscale the data, in an attempt to 

better preserve the details in the reservoir. 
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CHAPTER 4 

APPLICATIONS OF THE MODEL: CASE STUDIES 

4.1 Case Study Overview 

Two formations originating from dissimilar depositional environments were chosen 

to study, in order to test the applicability of the geostatistical scaling model to multiple 

settings. The first formation, located in the southeastern region of Korea, is understood to a 

lesser degree with investigations into petrophysical opportunities currently ongoing. The 

second formation in Kansas, currently under production for oil and gas, has been intensely 

studied.  

4.2 Case Study: Jinju Sub-basin, Republic of Korea  

The Korean peninsula tectonically links the Japanese Arc to eastern China. During 

the Mesozoic, the land rested directly at the hindmost section of a subduction-zone-created 

magmatic arc. The Mesozoic orogenic events produced the mountain regions and basins, 

dominating Korea, which lie in a predominately northeast-southwest orientation.  

The Gyeongsang Basin, the largest basin, forms the southeastern part of the peninsula 

as a result of crustal extension associated with volcanic activity (Paik & Lee, 1995). Through 

the Cretaceous, the Gyeongsang Basin filled with approximately 9 km of succedent layers 

consisting of non-marine sediments and volcanic deposits that have been separated into three 

major stratigraphic units, in ascending order: the Sindong, Hayang and Yucheon groups 
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(Chough & Sohn, 2010). The sedimentation occurred in an interior continental region during 

a semi-arid paleo-climatic environment. 

The Jinju sub-basin, located in the southwest area of the Gyeongsang Basin, is 

composed of low dipping strata and contains approximately seven formations within the 

Sindong Group. The Sindong Group, dating from middle-early Cretaceous, consists of 

terrigenous sandstone, conglomerate, shale and mudstone deposited in lacustrine and alluvial 

environments, some two to three thousand meters thick (Chough & Sohn, 2010). Faults, 

which cut through most of the Gyeongsang Basin, are rare in the Jinju basin leaving the area 

untouched by major deformation. 

The Jinju Formation ranges from 750 meters to 1,200 meters thick and is composed 

of mudstone and intercalcalated sandstone, as seen in Figure 4.1. Petrological studies of the 

formation reveal the sediments derived from erosion of pre-Cambrian gneiss and schist, and 

Jurassic granite (Chough & Sohn, 2010). The mudstone that generally comprises the 

formation formed from marginal lake to deeper lake deposition and sandstone accumulated 

from meandering braided stream channel deposits. A layer of mudstone displays soft-

sediment deformation characteristic of nearby seismic activity. 
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Figure 4.1, Jinju Formation in outcrop at Bitori-do Island, Korea 

 

 

 

An exploratory core was drilled near the town of Jinju, located in the southwest 

region within the Gyeongsang Basin, and penetrated through only one geologic unit within 

the Sindong Group, the Jinju Formation. As Figure 4.2 depicts, the 60 meter long core 

exhibited distinct multiple layering of light-gray sandstone and a darker-gray mudstone, 

characteristic of the formation where seen in outcrops. Porosity was determined by averaging 

the values calculated with the long-spaced density (LDS) and the high-resolution density 

(HRD) tools as ascertained by Kim, Suh, & Kim (2001). 
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Figure 4.2, Photo of core showing the darker-gray mudstone and lighter-gray sandstone 

 

 

The well-log instruments recorded measurements every 0.02 meters for depths from 

6.51 meters to 64 meters then a linear averaging was performed to bring the measurements to 

every tenth of a meter. For CT data, the readings from 12.01 meters to 12.51 meters were 

selected followed by random number generation every 0.02 meters in order to have data 

every hundredth of a meter, or every centimeter, using the random number function: 

= RAND ( ) * (X2 - X1) + X1 , (19) 
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where X2 represented the larger number and X1 represented the smallest number in the range 

of interest.  

Statistics for mean, variance, skewness, kurtosis and standard deviation were 

generated on the porosity data for the entire CT core length, 0.5 meters, as well as on a 

moving window within the well-log data on intervals corresponding with the core length. 

Histograms and variograms for the Jinju data were created as well to in order to run the 

statistics and upscale the CT data for the MIMC method. However, SGS was not performed 

on the Jinju data on account that data from a single well cannot render field distribution of 

porosity.  

4.3 Results for Jinju Sub-basin, Republic of Korea 

Following the creation of the histograms (Figures 4.3 and 4.4) for the well-log data 

and CT plug data the variograms were designed (Figures 4.5 and 4.6). The experimental 

variograms, for both the well-log and CT data, were assigned twenty lags. The well-log 

variogram lags were spaced at a distance of 4 meters and a tolerance of two meters. The CT 

variogram lags were spaced at a distance of 0.03 meters with a 0.015 meter tolerance.  
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Figures 4.3, Histogram showing distribution of Jinju well-log data 

 

 

Figures 4.4, Histogram showing distribution of Jinju CT data 
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Figure 4.5, Variogram at 1 meter well-log scale of Jinju well 

 

 
Figure 4.6, Variogram at 0.01 meter CT scale of Jinju well 

 

 



31 
 

The sill, for each subsequent model variogram, was noted for both data sets in order 

to assign the volumes when upscaling the plug data. The basic statistics were calculated with 

a moving window for the well-log data and the CT data over the length of the core plug, 0.5 

meters. The CT data was then upscaled using the parameter scaling equation (Equation 9).  

The misfit and likelihood algorithms compared the well-log and CT porosity values 

on both upscaled parameters and non-scaled parameters at every depth for the Jinju well. The 

upscaled parameters demonstrated a better likelihood result than the non-scaled parameters 

especially at the 12 meter depth (Figures 4.7 and 4.8). However, the low likelihood values 

derived from the likelihood function could not clearly establish a correlation for the CT 

values within the well-log values. 
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Figure 4.7 Graph showing non-scaled 

likelihood results, Jinju well 

 

Figure 4.8 Upscaled results showing 

likelihood to depth, Jinju well 
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The entropy results, Figure 4.9, showed no parameter was significantly lacking 

information which suggests that every parameter could be incorporated into the MIMC 

method. Lower entropy values reflect differentiation capabilities and the values documented 

in the Jinju data are all very small and comparable to each other (Price et al., 2008). When 

the MIMC method was executed twice, one with the mean and one without the mean, the 

results did not change.  

 

 

 

Figure 4.9 Entropy for Jinju for each likelihood function per data window 
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The statistical parameters derived from misfit (Equation 10) were transformed by 

implementing the MIMC method (Equation 13) and subsequently the results improved. The 

depth of twelve meters, from which the CT porosity originated, became unmistakably evident 

as seen in Figure 4.10. 

 

 

 

Figure 4.10 Jinju data showing correct correlation depth after using MIMC 
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4.4 Case Study: Panoma Gas Field, Kansas  

A group of gas wells were drilled in Grant County in the southwestern corner of 

Kansas in a section of the Panoma Gas Field (Figure 4.11). This field lies underneath a 

section of the Hugoton embayment, a keel-like extension of the larger and deeper Anadarko 

Basin that stretches through Texas and Oklahoma. A massive trough forms the Hugoton 

embayment arranged in a southward orientation and uplift on the north, west and east (Carr 

& Sawin, 1996). The Hugoton Field has the capability to produce 70 trillion cubic feet of 

gas, making it one of the largest gas fields in the world (Newell, Watney, Cheng, & 

Brownrigg, 1987).  
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Figure 4.11, Site map of wells in the Panoma Gas Field, Grant County, Kansas 
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The producing formation for these wells is the Council Grove Group of Lower 

Permian age, with a formation top depth around 1800 feet (Figure 4.12). During the Permian, 

this area rested in an immense transgressing and regressing marine environment forming 

characteristic cyclothems. The Council Grove Group comprises intercalcalated limestones 

and shales. The limestones, vacillating from wackestones to dolomites, and the shaley silt 

mudstones developed in a shallowing marine environment (Newell et al., 1987). 

 

 

 

Figure 4.12, Cross section of Hugoton and Panoma Field, (adapted from Carr & Sawin, 

1996) 

 

 

The datasets came from eleven Log ASCII Standard (LAS) files downloaded from the 

Kansas Geological Survey and focused on a small section of the Council Grove Group in the 

Panoma Gas Field. Measurements were taken every 0.5 feet for depths from 1800 feet to 
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3100 feet. Depths focusing around the 3000 foot depth were selected, limited by one hundred 

feet in each direction.  

The porosity for the Panoma Gas Field data was derived from the grain density 

determined by core analysis from a section of Well 20338. The grain density, ρma, fluctuated 

negligibly around the average density of limestone, 2.71 g/cc. As Well 20338 and ten nearby 

wells were used in this study, the assumption was made that the formation’s grain density did 

not fluctuate wildly through the depth investigated. The fluid density, ρf, was assumed to be 

1.0 g/cc, the density of fresh water.  

The bulk density, ρb, was determined by inserting the identified variables from Well 

20338 into the porosity equation (1) and solving for the bulk density. Then by relating the 

bulk density to the electron density equation (20) to the equation connecting the observed 

gamma intensity to the electron density (21), equation 22 is derived: 

     
  
 
  ⁄

 (20) 

       
 

  
 (21) 

     
 

    
 (22) 

where    is the electron density, A is the molecular weight, Z is the number of electrons per 

molecule,      is the observed gamma-ray measurement and k is a constant (Serra, 1984; 

Kim et al., 2001). 

This formulated a constant that was applied when calculating the porosity data from 

the gamma-ray data available in the LAS files. The equations are based on a series of 
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assumptions: there is no significant amount of noise in the gamma-ray data produced by 

natural gamma-ray in the formation; the molecular weight to number-of-electron ratio is near 

unity; the grain density fluctuates nominally; and fluid density remains constant throughout 

the distribution.  

A linear regression is performed to bring the well-log measurements to every tenth-

of-a-foot for data robustness. For the CT scan data, the smaller volume measurements are 

chosen from a foot-long section of the larger well, and random number generation (Equation 

19) is applied to create data every hundredth-of-a-foot. Histograms and variograms are 

generated for the well-log and CT datasets. Figures 4.13 and 4.14 are the histograms showing 

the porosity distribution for both the well-log and CT datasets. The omni-directional 

variograms for the well-log data and porosity data are shown in Figures 4.15 and 4.16. 

Statistics for mean, variance, skewness, kurtosis and standard deviation were generated on 

the porosity data for the entire CT core length, one foot, as well as on a moving window on 

the well-log data on intervals corresponding with the core length. 
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Figure 4.13, Distribution of the Panoma Field well-log data 

 

 
Figure 4.14, Distribution of the Panoma Field CT data 
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Figure 4.15, Variogram for the Panoma Field well-log data 

 

 
Figure 4.16, Variogram for the Panoma Field CT data 
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A coefficient of correlation, used in the SGcS, is determined to be 0.997 after 

comparing both datasets at the 3022 foot marker. The original porosity data from the Panoma 

Field consisted of point data that served as the backbone for basic upscaling and downscaling 

using SK and SGS algorithms. The geostatistical program SGeMS loaded the 3D point 

dataset (Figure 4.17) for the well-log data and the CT data to prepare for the integration and 

scaling processes. 

 

 

  

Figure 4.17, 3D point dataset of well-log porosity from Panoma Gas Field 
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4.5 Results for Panoma Gas Field, Kansas 

A model variogram was created for all eleven Panoma Gas Field wells at both the 

well-log scale and the CT scale, in order to define the sill values for the scaling relationship 

in the upscaling equation (Equation 9) for each well. The well-log experimental variograms 

were constructed using 20 lags at a distance of eight feet and the tolerance set to four feet. 

The CT experimental variograms also had twenty lags used in their creation but the lag 

distance was 0.0625 feet with 0.0313 feet for the lag tolerance. Figures 4.18 and 4.19, the 

variograms for Well 20369, are characteristic of the results demonstrated in the Panoma Gas 

Field data. The remaining variograms for each well are located in the Appendix. 
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 Figure 4.18 Variogram for well-log scale of Well 20369 

 

 
Figure 4.19 Variogram for CT scale of Well 20369 
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The porosity values from the Panoma Gas Field for both the well-log data and the CT 

data also were evaluated using the misfit and likelihood functions on the upscaled and non-

scaled statistical parameters. Figures 4.20 through 4.23 show the Panoma Gas Field data for 

two wells, 20363 and 20370. The graphs illustrate the results from the likelihood function on 

the upscaled parameters and the results following the MIMC method. Recall that the greatest 

peak indicates the largest correlation constant and denotes the depth correlation. The graphs 

showing likelihood and MIMC results, using misfit, for the remaining Panoma Gas Field 

wells can be found in the Appendix. 

Much like the Jinju data, the Panoma Gas Field data displays a point of coalescence 

following transformation with the likelihood function on the scaled parameters; however, the 

convergence of the parameter value is often indistinguishable within the disorder of the 

graph. Furthermore, as seen with the Jinju data, the correlation with depth distinctly emerged 

following the transformation of the misfit values with the MIMC method. The likelihood 

results also patently revealed the depth after the MIMC transformation. 
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Figure 4.20 Likelihood for Well 20363 

 

Figure 4.21 MIMC for Well 20363 
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Figure 4.22 Likelihood for Well 20370 

 

Figure 4.23 MIMC for Well 20370 
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4.6 SGS Results for Panoma Gas Field, Kansas 

A 3D Cartesian grid of size 80 x 50 x 52 was specified with the cell dimension set to 

1 x 1 x 1 on which to perform the SK and SGS interpolations. The well-log porosity data 

from the Panoma Gas Field was then interpolated to the reservoir field extent. This 

interpolation was accomplished through SK (Figure 4.24) and then with SGS (Figure 4.25) to 

determine the best method for retaining porosity distribution information. Both interpolations 

applied the model variogram calculated from the well-log data.  

 

 

 

Figure 4.24, Interpolation of Panoma Gas Field to 1x1x1 cell size using SK 
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The SGS (Figure 4.25) used simple kriging in order to maintain a target distribution 

and a smoother interpolation. The search ellipsoids specified for the SGS method had ranges 

set at 25 feet while the SK estimation used ranges of 40 feet. Both had azimuth, dip and rake 

fixed to zero and involved 20 for the conditioning data. 

 

 

 

.  

Figure 4.25, Interpolation of Panoma Gas Field to 1x1x1 size using SGS 

 

 

A 3D Cartesian grid of size 17 x 10 x 11 was specified for upscaling with the cell 

dimension set to 5 x 5 x 5. Averaging of the data points upscaled the well-log data to the 5 x 
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5 x 5 scale on the SGS interpolation (Figure 4.26) and the SK interpolation (Figure 4.27) 

where the well-log porosity distribution is still visible in the coarser resolution. SGcS brought 

in the CT porosity data to constrain the well-log porosity to the higher porosity resolution of 

the CT data. Since a larger volume support for the secondary variable is required for Markov 

Model 2, MM1 is chosen for the co-kriging method (Remy et al., 2009). 

 

 

.  

Figure 4.26, Upscaled Panoma Gas Field to 5x5x5 cell size from SGS 
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Figure 4.27, Upscaling of SK Panoma Gas Field to 5x5x5 cell size 

 

 

The search ellipsoids retained the same specifications as used for the earlier 

simulations methods: ranges set at 25 feet, azimuth, dip and rake fixed to zero, and 12 for the 

conditioning data. Once finished, the integrated data was downscaled back to the 1x1x1 cell 

size (Figures 4.28 and 4.29), using the model variogram described earlier. 

The results from originally upscaling to the field extent in the 1x1x1 between using 

the SK (Figure 4.24), and SGS (Figure 4.25) then downscaling display certain variations 

from each other. The SGS interpolation (Figure 4.28) contained numerous lower porosity 
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locations while the SK (Figure 4.29) conversely showed increased higher porosity 

distribution. Additionally, the result from running the SGS without adding the CT data shows 

higher porosity in a greater distribution (Figure 4.30). 

 

 

.  

Figure 4.28, Downscaling of SGS Panoma Gas Field to 1x1x1 cell size after SGcS 
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Figure 4.29, Downscaling of SK Panoma Gas Field to 1x1x1 cell size after SGcS 

 

 

Figure 4.30, SGS results for Panoma Gas Field to 1x1x1 cell size  

with no co-simulation 
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CHAPTER 5 

DISCUSSION OF RESULTS 

5.1 Misfit and Likelihood  

The use of solely the misfit or likelihood algorithm to determine the depth from 

which the CT data originated yielded insufficient results. The Jinju well exhibited a cohesive 

response to likelihood, which was not prominent although it was at the correct depth. The 

Panoma Gas Field wells likely displayed a similar response; however, the graphs are too 

chaotic to elucidate the depth. Additionally, when the likelihood and misfit transformed 

parameters were compared based on whether the CT data had been upscaled or not upscaled, 

the best results were seen in the upscaled data. Entropy alone would not identify the CT 

depth but is a useful step when determining the amount of information contained in the 

parameters and thus which parameters should be included in the MIMC method. 

After the MIMC method transformed the results from both misfit and likelihood 

functions, the misfit-derived results for each well yielded comparable findings to the 

likelihood results. However, the likelihood results required an adjustment, based on the value 

of the parameter which added a slower development, whilst the misfit results worked well on 

their own. The correct depth of the CT plug data appeared for every well following the use of 

the MIMC method.  
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5.2 MIMC Discussion 

The histograms for the Panoma Gas Field (in the Appendix) and the Jinju (Figures 4.3 

and 4.4) well-log and CT porosity data have different shapes of distribution, shifting from 

normal, to bi-modal, to uniform and to skewed. The Jinju well-log and CT data share the 

same distribution shape, both being positive or slightly skewed to the right. The most 

common distribution in the Panoma Gas Field well-log data was negatively skewed or a 

skewed-left distribution suggesting the data has a natural upper bound.  

The Panoma Gas Field CT data were all uniform in their distribution shape, which 

might be a result of the random number generation. The well-log data distributions are all 

representative of natural varying data and suggest that the data does not need to be Gaussian 

or normalized to work in the MIMC method. Interesting to note, the individual well-log 

variograms did not have a nugget effect, but when the data was combined together to 

represent the field, the variogram then had a nugget effect. 

The variograms for the Panoma Gas Field well-log data (Figure 4.18 and Appendix) 

were all very similar to each other, in terms of range, and mostly found to be Gaussian. The 

sills tended to vary the most with values ranging from ten to forty. One interesting aspect in 

several of the variograms was the falling tendency, where the data falls back towards zero 

after reaching the sill and range point. It is possible this is just one curve of the data 

representative of cyclical behavior but without a larger dataset, this is merely speculation. 

The variograms for the Panoma Gas Field CT data (Figure 4.19 and Appendix) are 

even more similar than the well data. All the variograms have an exponential shape and 0.2 

feet for the range. The sill changes minimally, ranging from 0.085 to 5.5 with 0.3 the most 



56 
 

common value. In contrast to the well-log variograms, the CT variograms did not have 

erratically behaving data. 

The likelihood function had the capability to identify the depth for the CT data in the 

well-log data; however, a graph examining solely these results is not always clear enough to 

locate the depth. This is also seen when graphing the misfit function results. Determining the 

entropy of the data was not always a necessary step in the correlation. 

The MIMC method demonstrated remarkable ability to identify and correlate the 

depths of CT data to well-log data. The MIMC method combined with the misfit function 

performed to a better capacity than using the depth-correlation constant with the likelihood 

function. The MIMC method joined with misfit instead of adding the likelihood step shows a 

clearer and more readable graph, meaning depth correlation occurs quicker and more easily. 

The mean parameter originally was included in the MIMC process but disregarded as 

after transforming the value it repeatedly had a value that varied significantly from the other 

statistical parameters, which then skewed the final results. This often occurred when the 

parameters were non-scaled or scaled incorrectly (Table 5.1). However, when the mean had a 

reasonable value, the inclusion of the parameter to the correlation method will either show no 

difference in the result or helps tighten the correlation enough to increase the value of the 

correlation constant and reveal the depth. 
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Table 5.1, Showing how the mean skews the final results 

 misfit likelihood 

depth mean var skew kurt std dev mean var skew kurt std dev 

1797 378.85 0.77 1.40 1.20 0.62 0.0E+00 0.55 0.14 0.24 0.68 

1798 390.63 0.45 1.06 1.95 0.34 0.0E+00 0.82 0.33 0.02 0.89 

1799 523.09 0.40 0.12 4.22 0.30 0.0E+00 0.85 0.99 1.86E-08 0.92 

1800 610.34 1.32 0.31 4.78 1.26 0.0E+00 0.17 0.91 1.20E-10 0.20 

1801 634.87 1.49 1.52 15.08 1.57 0.0E+00 0.11 0.10 1.92E-99 0.09 

1802 493.75 3.74 0.28 3.60 1.85 0.0E+00 0.00 0.93 2.40E-06 0.03 

 

 

As noted in generating basic statistics (Section 3.2) the likelihood function may 

derive a very small number, often smaller than 10
-6

. These smaller numbers, however, never 

showed in the parameters at the correct depth which generally were greater than zero but 

have little variation or deviance from each other. Due to these conditions, the decision was 

made to set the average deviation values to one or alternatively the correlation constant to 

zero to reduce the influence of the extremely small values. This modification, again, is not 

necessary when using solely the misfit function, and as such MIMC joined with misfit is 

recommended. 

Well 20338, located in the Panoma Gas Field, displayed results showing irregular 

repeating sequences due to the skewness and kurtosis values not varying through the entire 

depth (Appendix A1.1). Due to this, the data transformation with MIMC did not reach as 

clear of a result as the other wells. However, after factoring in the depth correlation 

uncertainty, as determined in the Kansas Geological Survey well database to be 2.5 feet, the 

peak at the depth of 3022 feet still has the best depth correlation.  

Error variance equations compared the highly resolved CT porosity values to the 

well-log porosity values. The largest variances between the datasets occur in wells that had 
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negative values in one of the parameters, such as skewness or kurtosis, which described the 

porosity distribution. These error variance values are all larger than one. However, the 

remaining error values are smaller than one, often by an order of magnitude, reflecting the 

relationship between the values (Table 5.4). The correlation coefficient was also calculated 

for each set of parameters, analyzing well-log to CT values at the MIMC determined depth 

(Table 5.2). Tables 5.3 and 5.4 show the statistical parameters for well-log data and CT data 

and corresponding error values, respectively. 

 

 

Table 5.2, Correlation coefficients for the statistical parameters 

  between well-log and CT at the best fit depth 

Parameter mean var skew kurt std dev 

Correlation 0.9975 0.9920 0.0605 -0.2414 0.9898 
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Table 5.3, Comparing statistical parameters for well-log and CT for each well 

 Well-Log CT 

well mean var skew kurt std dev mean var skew kurt std dev 

20338 9.65 0.00 0.00 -1.20 0.04 10.71 0.10 1.12 2.82 0.29 

20363 38.68 0.03 -0.74 -0.83 0.17 38.66 0.18 0.16 -0.92 0.43 

20369 23.05 0.02 1.06 -0.31 0.15 23.26 0.06 0.11 -1.22 0.24 

20370 24.15 0.13 -0.59 -0.98 0.36 24.38 0.26 0.01 -1.12 0.51 

20371 21.87 0.08 -1.13 0.03 0.28 22.20 0.83 -0.11 -1.16 0.91 

20398 20.32 0.35 -0.53 -1.02 0.59 20.45 0.77 -0.02 -1.12 0.88 

20414 21.50 0.76 1.05 0.18 0.87 22.16 0.82 -0.18 -1.26 0.91 

20416 19.90 3.15 0.22 -1.17 1.78 19.36 4.77 0.07 -1.19 2.18 

20592 26.04 13.27 -0.37 -1.11 3.64 24.56 13.99 0.22 -1.28 3.74 

21031 27.32 0.73 -1.11 0.13 0.86 26.91 0.78 -0.13 -1.09 0.88 

21040 19.65 0.05 1.13 0.04 0.23 19.77 0.21 -0.02 -1.17 0.46 

Jinju 5.02 11.31 0.59 -1.81 3.36 5.57 14.42 0.25 -1.29 3.80 

 

 

Table 5.4, Error variances for each well at the correlated depth 

Error Variances 

Well mean var skew kurt std dev 

20338 0.0992 0.9885 1.0000 1.4262 0.8716 

20363 -0.0004 0.8486 5.6210 0.0918 0.6109 

20369 0.0090 0.6050 -8.6146 0.7456 0.3715 

20370 0.0092 0.5016 41.7434 0.1310 0.2941 

20371 0.0151 0.9032 -8.8469 1.0278 0.6888 

20398 0.0060 0.5475 -27.3846 0.0928 0.3273 

20414 0.0298 0.0743 6.8016 1.1447 0.0379 

20416 -0.0280 0.3388 -2.2664 0.0154 0.1869 

20592 -0.0601 0.0511 2.7148 0.1274 0.0259 

21031 -0.0150 0.0537 -7.2329 1.1169 0.0272 

21040 0.0061 0.7593 48.4268 1.0346 0.5093 

Jinju 0.0975 0.2156 -1.3407 -0.3998 0.1143 

 

 

The statistical parameters were compared further in order to examine the correlation 

between each parameter at the well-log and CT scale. The mean, variance and standard 
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deviation all show high correlation values, while skewness and kurtosis values are low. The 

low skewness and kurtosis correlation is likely a response to both values fluctuating between 

positive and negative values, while the other parameters are only positive. These values can 

be seen both in Table 5.2 and in the cross plots in Figure 5.1 for porosity and Figure 5.2 for 

skewness. 

 

 

  

Figure 5.1, Cross plot showing correlation of porosity values 
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Figure 5.2, Cross plot showing correlation of skewness values 

 

 

For circumstances when the depth from which the CT core is sampled is unknown or 

has a high uncertainty, a modified correlation method can be used to find a best-fit depth to 

the well-log data. However, this requires a more rigorous process using unscaled CT data, 

where likelihood and the MIMC method are run twice. The first time the process is done on a 

larger section, the second time the process is only run using the depths of interest. To begin, 

the depth interval for running the statistics should be narrowed down to within a five to ten 

foot window on either side from where the sample plug is believed to originate. Table 5.5 

illustrates how the variances, used in misfit to compare the parameters, are calculated at 

every depth interval instead of just a single known depth.  
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Table 5.5 

The progression from primary statistics to Misfit results with unknown correlation depth 

 primary derived statistics constants from CT data 

depth (ft) mean var skew kurt std dev mean var skew kurt std dev 

1817.0 25.7 0.3 -0.4 -1.1 0.6 24.5 0.1 -0.2 -1.1 0.3 

1818.0 26.7 0.0 -1.1 -0.3 0.1 24.5 0.1 -0.2 -1.1 0.3 

1819.0 25.4 0.4 1.0 -0.5 0.6 24.5 0.1 -0.2 -1.1 0.3 

1820.0 24.8 0.0 0.5 -1.1 0.0 24.5 0.1 -0.2 -1.1 0.3 

1821.0 24.7 0.0 -0.2 -1.2 0.0 24.5 0.1 -0.2 -1.1 0.3 

1822.0 24.5 0.0 -0.7 -0.8 0.1 24.5 0.1 -0.2 -1.1 0.3 

1823.0 24.0 0.0 -0.1 -1.0 0.2 24.5 0.1 -0.2 -1.1 0.3 

1824.0 24.4 0.0 -0.6 -0.9 0.1 24.5 0.1 -0.2 -1.1 0.3 

1825.0 24.7 0.0 -0.5 -1.1 0.0 24.5 0.1 -0.2 -1.1 0.3 

1826.0 24.0 0.4 -0.6 -1.0 0.6 24.5 0.1 -0.2 -1.1 0.3 

1827.0 21.5 0.5 0.7 -0.9 0.7 24.5 0.1 -0.2 -1.1 0.3 

 Variances between derived & CT Misfit  

depth (ft) mean var skew kurt std dev mean var skew kurt std dev 

1817.0 0.4 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1818.0 1.1 0.0 0.2 0.2 0.0 2.0 2.0 2.0 2.0 2.0 

1819.0 0.2 0.0 0.4 0.1 0.0 2.0 2.0 2.0 2.0 2.0 

1820.0 0.0 0.0 0.1 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1821.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1822.0 0.0 0.0 0.1 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1823.0 0.1 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1824.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1825.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1826.0 0.1 0.0 0.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

1827.0 2.3 0.0 0.2 0.0 0.0 2.0 2.0 2.0 2.0 2.0 

 

 

The CT plug data is not upscaled throughout this process. Once the misfit function 

has been applied, the results are transformed with the average group deviation (Equation 11) 

and then followed by taking the log of results (log10(x)), where x is the result. Misfit is 

combined with the correlation in this process as the subsequent values are slightly greater 
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which aids in ascertaining the depths for testing; however, the likelihood function also can be 

utilized.  

The largest values specify the depths that are tested. Table 5.6 and Figure 5.3 show 

the MIMC values, of which the best depths to test for are at 1821 and 1822 feet, within the 

2.5 foot uncertainty. The graph elucidates the data which facilitates choosing the depths for 

the best-fit determination. 

 

 

Table 5.6 

Continuing the progression from Misfit to best-fit with unknown CT depth 

unknown Misfit results MIMC 

depth (ft) mean var skew kurt std dev avg dev log 

1817.0 2.0 2.0 2.0 2.0 2.0 6.44E-03 -2.191 

1818.0 2.0 2.0 2.0 2.0 2.0 2.44E-05 -4.613 

1819.0 2.0 2.0 2.0 2.0 2.0 2.32E-05 -4.635 

1820.0 2.0 2.0 2.0 2.0 2.0 1.50E-04 -3.823 

1821.0 2.0 2.0 2.0 2.0 2.0 1.34E-03 -2.874 

1822.0 2.0 2.0 2.0 2.0 2.0 2.13E-04 -3.671 

1823.0 2.0 2.0 2.0 2.0 2.0 1.29E-04 -3.890 

1824.0 2.0 2.0 2.0 2.0 2.0 1.40E-04 -3.854 

1825.0 2.0 2.0 2.0 2.0 2.0 1.63E-04 -3.787 

1826.0 2.0 2.0 2.0 2.0 2.0 8.55E-05 -4.068 

1827.0 2.0 2.0 2.0 2.0 2.0 3.36E-05 -4.474 
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Figure 5.3, The greatest values within the uncertainty range can be seen with the graph 

 

 

Once the depths with the highest peak have been identified, usually within the 

uncertainty recorded from the coring, the misfit function and MIMC are executed. The 

variances are set to the selected depths (Table 5.7) as when running the MIMC method as 

detailed in the generating basic statistics (Section 3.2). The MIMC columns (in Table 5.7) 

show the values following the misfit transformation with the MIMC method (Equation 13). 

Table 5.8 demonstrates the greatest value, 287.6, seen between the two selected depths, 1821 
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and 1822 feet, is in the column for the correct depth, depth 1822. These correlated depths 

then can help guide the reservoir simulation. If plotting the results, the peak with the greatest 

value from the different depths will be the best fit for the correct depth. 

 

 

Table 5.7 

Setting the variance to the selected depths when the best-fit depth is unknown 

 

primary derived statistics CT values and variance by depth 

Depth (ft) mean var skew kurt std dev mean var skew kurt std dev 

1818.0 26.7 0.0 -1.1 -0.3 0.1 24.5 0.1 -0.2 -1.1 0.3 

1819.0 25.4 0.4 1.0 -0.5 0.6 

     1820.0 24.8 0.0 0.5 -1.1 0.0 

     1821.0 24.7 0.0 -0.2 -1.2 0.0 1821.0 variances 

1822.0 24.5 0.0 -0.7 -0.8 0.1 

 

0.0 -0.2 -1.2 0.0 

1823.0 24.0 0.0 -0.1 -1.0 0.2 var 0.0 0.0 0.0 0.0 

1824.0 24.4 0.0 -0.6 -0.9 0.1 1822.0 variances 

1825.0 24.7 0.0 -0.5 -1.1 0.0 

 

0.0 -0.7 -0.8 0.1 

1826.0 24.0 0.4 -0.6 -1.0 0.6 var 0.0 0.1 0.0 0.0 

 

Table 5.8 

MIMC results of selected depths to determine the best-fit depth when it is unknown 

 
1821.0 misfit 1821.0 1822.0 misfit 1822.0 

Depth (ft) var skew kurt std dev MIMC var skew kurt std dev MIMC 

1818.0 1.4 82.7 21.4 1.3 28.0 0.0 1.6 2.3 4.1 1.8 0.8 1.2 

1819.0 6.1 120.7 16.1 2.1 42.2 0.0 7.1 3.4 3.1 2.9 1.5 0.7 

1820.0 1.4 69.0 1.1 1.3 25.4 0.0 1.6 1.9 0.2 1.9 0.6 1.7 

1821.0 1.4 1.4 1.4 1.4 0.0 118.4 1.6 0.0 0.3 2.0 0.8 1.2 

1822.0 1.2 50.7 7.4 1.0 17.8 0.1 1.4 1.4 1.4 1.4 0.0 287.6 

1823.0 0.7 17.6 1.6 0.4 6.3 0.2 0.8 0.5 0.3 0.6 0.1 7.2 

1824.0 1.2 39.0 4.4 0.9 13.8 0.1 1.3 1.1 0.8 1.3 0.2 6.0 

1825.0 1.4 21.7 1.0 1.3 7.7 0.1 1.6 0.6 0.2 1.9 0.7 1.5 

1826.0 5.7 33.0 3.0 2.0 11.0 0.1 6.6 0.9 0.6 2.8 2.0 0.5 
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5.3 SGS Scaling Discussion 

The SGS scaling results produced several different models: original SK (Figure 4.29), 

original SGS (Figure 4.28), and the interpolation without the SGcS (Figure 4.30). Most 

interesting was how the SK downscaled model did not retain the porosity distribution as seen 

in the upscaled SK model. Even after varying the range distances and number of conditioning 

data, the smooth distribution was not retained. The simulation model that had a porosity 

distribution most similar to the SK original interpolation (Figure 4.24) was the SGS after the 

SGcS (Figure 4.28). Multiple realizations produced by upscaling and downscaling by SGS 

produced results that varied negligibly, indicating an increase in confidence in the model. 

Another interesting feature arising from the different simulation techniques, SGS, SK 

and SGcS, was the increase in the porosity in the SK realization (Figure 4.29) and the 

interpolation without the SGcS (Figure 4.30). It is often thought that SK has the greatest 

capacity for retaining the spatial structure of the data and SGS tends to lose the information. 

The results seen in this study insinuate that this may not always be the case. However, the 

SGS did use simple kriging for its interpolation method, which likely helped in the modeling 

(Figure 4.28). 

The SGS interpolation, unlike the SK, produced negative values, undoubtedly as a 

result of creating a normal distribution. In order to evaluate the performance of the porosity 

values under better conditions, the values were transformed into a lognormal distribution 

(Figure 5.4). These new porosity values were then run through the SGS upscaling then the 

SGcS and then downscaled back to the higher resolution model (Figure 5.5).  
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Figure 5.4, SGS simulation on log porosity values to 1x1x1. 
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Figure 5.5, After SGcS and downscaled back to 1x1x1 size. 

 

 

The log transformed porosity simulation reveals a tighter distribution of higher 

porosity areas concentrating around the wells before and after the co-simulation than the 

other interpolations. Additionally, it appears the CT data constrains the whole modeled 

reservoir to slightly lower porosity and a greater part of the reservoir to lower porosity values 

except for the areas immediately around the wells. This porosity structure or distribution 

retention is closest to the normal porosity simulation from SK as well. However, for 

projecting new locations to drill or for synthesizing fluid flow, this structural clustering 

resulting from the log transformed porosity becomes insufficient. 



69 
 

5.4 Further Work 

The co-simulation renders a greater refinement in determining or refining the porosity 

structure than the interpolation of exclusively the well log data. This difference would likely 

intensify when multiple depths of CT or core-plug data is available per well. The SGS 

method also yields improved results than simple kriging alone, even though the results are 

not as smooth when interpolating the data to field extent. It appears that SGS has the 

capability to retain a more vibrant and accurate interpretation of the porosity distribution. In 

order to realize or determine a superior reservoir model, these implications should be fully 

considered.  

An area of interest concerns the variogram models (see Appendix), in which instead 

of the exponential model chosen for some of the well-log variograms a dampened-hole effect 

variogram model would have been a more appropriate choice. This is in part due to the hole 

effect or cyclical behavior seen in the experimental variogram. It is unknown if this change in 

variogram model would have a significant effect on the scaling equation and subsequent 

correlation. 

The data integration model produced from this study would benefit from further 

exploration in achieving easier methods for locating the unknown correlation depth. As it 

stands now, the depth can be determined but the process is intensive requiring multiple 

calculations in order to determine then compare each suspect depth. Several methods 

involving comparing the likelihood derived correlation to the misfit derived correlation or 

MIMC, by adjusting the parameters in the algorithms, have been attempted with limited 

success. Perhaps finding the correlated depth shall remain a complex process or ascertaining 
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the hidden component to solve this issue demands more time than this project allowed, as 

that was not the focus of this research. 

While extensive research into the usefulness of SGS to model reservoir characteristics 

has occurred, further research into improving porosity estimations from correlated depth 

would benefit reservoir modeling. This research only investigated including one depth for CT 

or plug examination yet incorporating several depths for constraining would likely enhance 

the reservoir characterization. 

Much investigation has been done incorporating seismic data in order to delineate 

larger scale structure into the reservoir model. This study did not have the opportunity to 

integrate this much larger volume of measurement into the reservoir characterization. It is 

unknown if the addition of seismic data would have affected the simulation results to a great 

degree or would instead have minimal impact. 
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CHAPTER 6 

CONCLUSION 

This study investigated relating basic geostatistical methods to develop a model for 

integrating data of varying scales. Well-log and CT data from twelve different wells in 

geologic reservoirs formed under varying environmental conditions provided the data. The 

geostatistical scaling model incorporated several geostatistical stages in order to achieve 

correlation depths and integrate the porosity data from well-log and CT data.  

Basic histograms and variogram models defined the scaling parameter that brought 

the CT data to the same resolution as the well-log data plus to integrate the data with SGcS. 

The histograms for the Panoma Gas Field and Jinju well-log and CT porosity data had 

multiple distribution shapes, shifting from normal, to bi-modal, to uniform and to skewed. 

Variance-based statistics were computed within specific intervals then a best-fit for depth 

correlation was differentiated. 

Misfit and likelihood algorithms transformed the data, but cannot be used alone for 

depth correlation as they yielded insufficient results to determine the depth from which the 

CT data originated. The likelihood function had the capability to identify the depth for the 

CT data in the well log data; however a graph examining solely these results is not always 

clear enough to locate the depth. The likelihood and misfit transformed parameters were 

compared based on whether the CT data had been upscaled or not upscaled, with the best 

results seen in the upscaled data. Entropy was implemented to identify which statistical 
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parameters should be utilized in the correlation algorithm but entropy could not identify the 

CT depth alone. 

The development and application of the MIMC method delineated the depth to easily 

identify and correlate the well-log porosity and porosity from core-plugs or CT scans. The 

MIMC method proved its ability to correlate the depths of the CT data for every well, 

including within the determined uncertainty for the well with irregular data and resulting 

statistics. These depths then were employed during reservoir model building with SGcS to 

help realize a more accurate porosity distribution. 

The SGS upscaling and downscaling produced several different models for the 

porosity distribution. Upscaling methods utilizing SGS and SK were compared to determine 

the retention of porosity structure and differences were noted between the procedures. The 

simulation model that had a porosity distribution most similar to the SK original interpolation 

was the SGS following the SGcS. Multiple realizations produced by the SGS produced 

results that varied insignificantly suggesting minimal uncertainty in the simulation. Another 

observation of the different simulation techniques, SGS, SK and SGcS, was an increase in 

the porosity values in the SK realization and the interpolation without the SGcS 

Error variance equations compared the CT higher-resolution values to the well-log 

values with the largest variances between the datasets occurring in wells that had negative 

values in one of the statistical parameters of skewness or kurtosis. For circumstances when 

the depth, from which the CT core is sampled, is unknown or has a high uncertainty, a 

modified MIMC method can be used to find the appropriate depth. The porosity values were 

transformed into a lognormal distribution and run through the SGS upscaling then the SGcS 

and then downscaled back to the higher-resolution model. The CT data appeared to constrain 
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the reservoir to an overall lower porosity plus most of the reservoir to smaller porosity values 

except for the regions directly surrounding the wells. 

This research showed the usefulness of geostatistics in examining several parameters 

in porosity data, while correlating the maximum-resolution data to the medium-resolution 

data, and then constraining said data to construct a high-resolution geostatistical model. This 

project examined and illustrated the efficacy of a geostatistical modeling approach to the 

integration of geophysical data from well-log and core experiments under different geologic 

settings of reservoir. This research culminated in the development of a multi-dimensional 

high-resolution modeling framework for the reconstruction of sequential rock formation of 

reservoirs using geostatistical techniques involving a misfit/likelihood method and sequential 

Gaussian simulation. 
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