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FORMAL TOTAL SYNTHESIS OF PSEUDOPTEROXAZOLE.
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Dr. Michael Harmata, Dissertation Supervisor

ABSTRACT

In the first chapter, a formal total synthesis of pseudopteroxazole is presented,
highlightening an E-selective Horner-Emmons reaction, a Buchwald-Hartwig coupling,
and a diastereoselective intramolecular Michael addition.

In the second chapter, the effort toward synthesizing anti-viral natural product
hamigeran B is summarized. Several routes to the core structure were shown separately,
including those unexpected discoveries when pursuing those routes. Tius-Nazarov
cyclization was first applied in synthesizing natural product; an efficient palladium-
catalyzed oxidative intramolecular carbocyclization was realized on an a-hydroxy enone
for the first time; an interrupted Nazarov cyclization of a hydrolysis intermediate of

dithiane was achieved.
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CHAPTER ONE

FORMAL TOTAL SYNTHESIS OF PSEUDOPTEROXAZOLE

1.1 Introduction

It has been well recognized that the synthesis of natural products has played a
significant role in the development of organic chemistry and chemistry as a whole in the
past century. The richness of natural products available from terrestrial plants and water-
born plants, and the metabolites of microorganisms provide practically unlimited
structures for organic synthetic chemists to work on. By striving to synthesize natural
products, numerous new reagents, new methodologies, new strategies, and even new
concepts are developed, enriching the textbook of organic chemistry. Apart from the
applications of total synthesis of natural products to the discovery of medicines, the pure
beauty of designing the strategy, the exquisiteness of manipulating materials at the
molecular level, and the beauty of structural transformations are more than enough to
attract numerous people to devote years of the best time of their lives to this field.
Becoming a true synthetic organic chemist is also demanding: one should be, at first, a
skilled technician, good at hands-on bench work, always driven by challenges; he should
be an artist with a heart for beauty; also, he should be a scientist who puts integrity above
everything, practices logic, and discover the truth.

As the knowledge about organic synthesis exploded during the last century, new
concepts, such as Corey’s retrosynthetic analysis,* the Woodward-Hoffmann rules,? and
Baldwin’s rules were formulated®; challenging natural products, such as taxol, strychnine,

vitamin By, and brevetoxin B were synthesized; bioactive small molecules were



discovered and developed into drugs that improved the quality of human health. With the
introduction of modern combinatorial chemistry and high-throughput screening
approaches to drug lead discovery, the importance of natural product guided approach for
drug discovery has never be undermined.® What needs to be resolved at the synthesis
stage is the efficiency of the syntheses.

In the first part of this chapter, the background of a natural product synthesis
project will be introduced, including the source of the natural product, its natural
relatives, and their bioactivities; the total syntheses of this natural product to date; and a
proposed chemical relationship of this family of natural products to be scrutinized.

The second part of this chapter will introduce the synthetic plan and the detailed
synthetic efforts leading to the formal total synthesis of pseudopteroxazole. The key
reactions are: a completely E-selective Horner-Wordsworth-Emmons (HWE) reaction, a

Buchwald-Hartwig coupling, and a stereoselective intramolecular Michael addition.



1.1.1 Marine Natural Products from Pseudopterogorgia Elisabethae

To natural product chemists, finding a good source for isolating novel natural
products is obviously a very important factor for their productivity. To that end, the
gorgonian coral (sea whip) Pseudopterogorgia elisabethae did not disappoint them.® In
the genus of Pseudopterogorgia in the animal kingdom, Pseudopterogorgia elisabethae
is typically found at a depth of 40 to 70 meters underwater. The animal samples used by
the Rodriguez group to isolate pseudopteroxazole were collected in the eastern Caribbean

sea.’

Figure 1

http://gorgonien.npage.de/pseudopterogorgia_elisabethae_neu_70837353.html

1.1.2 Selected Serrulatane Diterpenoids From Pseudopterogorgia Elisabethae

There are many novel carbon skeletons discovered from the natural products
isolated from Pseudopterogorgia elisabethae. An excellent review by Heckrodt and
Mulzer covered this topic more comprehensively.’ In the following, five skeletons are
shown, with the representatives for each skeleton and bioactivities of those natural

products.



First, let us look at the serrulatane skeleton (Shown in Figure 2). Nine natural
products possessing serrulatane carbon skeleton were discovered, four of which are
shown in Figure 2. These differ in the substitution on the aromatic ring, or as for
elisabethadione, the aromatic ring is oxidized. Two of the other natural products with the
serrulatane skeleton are also of higher oxidation state, indicating the presence of an
oxidizing environment producing these metabolites. Erogorgiaene showed 96% growth
inhibition of Mycobacterium tuberculosis, seco-pseudoptersosin glycosides showed better

anti-inflammatory and analgesic activity than existing drugs in animal models.’

Figure 2
Me Me
wMe
Me L H
HO Y
OH Me
1 Erogorgiaene 2 seco-Pseudopterosin
serrulatane skeleton 96% A-D, E-G aglycone

N i i
Y0 Me O Me
3 seco-Pseudopteroxazole 4 Elisabethadione

Nine natural products isolated from Pseudopteroxazole elisabethae share the

amphilectane skeleton (Figure 3). Pseudopteroxazole falls into this class of natural
4



products. It has shown strong inhibition effects toward tuberculosis bacteria (TB). (97%
inhibition at 12.5 pg/ml)® It is worth noting that some of them have different
stereochemistry, such as pseudopterosin A-F aglycone, pseudopterosin K, L aglycone.
The diversity of the stereochemistry is associated with the different collection sites of the
Pseudopterogorgia elisabethae sample. The sample from which pseudopterosins G-J
were isolated was collected near Bermuda Island; samples containing pseudopterosins M-
O were collected from Florida Keys; pseudopterosins K and L were obtained from

Bahamian samples.?

Figure 3
MeT Me
l wMe
Me <H
N B HO i
Y0 Me OH Me
5 Pseudopteroxazole 6 Pseudopterosin G-J,
amphilectane skeleton 97% M-O aglycone
MeTMe
‘, Me
Me H
HO
OH Me
7 Pseudopterosin 8 Pseudopterosin
A-F aglycone K, L aglycone

Elisabethin A and elisabethin D share a novel tricyclic core structure called

elisabethin skeleton. (Figure 4) While the relative stereochemistry was unambiguously
5



determined by a single-crystal X-ray diffraction experiment, the absolute stereochemistry
has not yet been determined. Though it was once thought to have been resolved by the
total synthesis of elisabethin A, it was later found that the total synthesis product was not
actually the natural product, but rather the epimer of elisabethin A.*° We expect the total
synthesis of elisabethin A to come in the future since organic synthetic chemists are

always ready to embark upon the formidable challenges.

Figure 4

: H -
oM e O ' Me
9 Elisabethin A 10 Elisabethin D

Elisabethin
skeleton

Another novel diterpene skeleton is the tetracyclic elisapterane skeleton (Figure
5). Through oxidation and cyclization, a variety of secondary metabolites containing
elisapterane skeleton were also produced. Elisapterosin B exhibited anti-TB activity
(79% inhibition). Elisapterosin A showed anticancer activity in vitro.**

The colombiane skeleton is represented in colombiasin A (Shown in figure 6).



Figure 5

00

Elisapterane
skeleton

13 Elisapterosin D 14 Elisapterosin A

Figure 6

O Me
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1.1.3 Biosynthesis of the Common Intermediate Elisabethatriene.

The biosynthesis of this class of natural products is believed to start with
geranylgeranyl phosphate, and through a serrulatane intermediate, producing a diversity
of carbon skeletons and stereochemical complexities. While the sea creature
Pseudopterogorgia elisabethae has been using this kind of diversity-oriented synthesis to

generate metabolites for quite a long time with its enzymes, humans are still trying hard
7



to mimic this feat in the hope to discover more bioactive molecules that could benefit
people.*?

As shown in Scheme 1, the biosynthesis of pseudopterosins was determined to
start with geranylgeranyl pyrophosphate.™® Elisabethatriene was found to be a product of

a diterpene cyclase, based on radiolabelling experiments (Scheme 1).

Scheme 1
78
= A diterpene
—_—
OPP cyclase
=
16 17 Elisabethatriene

The mechanism for the generation of elisabethatriene from geranylgeranyl
pyrophosphate was proposed as shown in Scheme 2. lonization of pyrophosphate yields
an allylic cation, which could be trapped by an internal double bond. A series of hydride
shifts generate another allylic cation at the same position, which can then react with
another double bond to form a tertiary carbocation. The elimination of the terminal

proton in addition to a couple of hydride shifts affords the elisabethatriene.



Scheme 2
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1.1.4 Proposed Diversity Oriented Synthesis of Serrulatane Diterpenoids

Having discussed the biosynthesis of pseudopterosin diterpenoids, biomimetic
syntheses of several of the natural products from this family were proposed as an
alternative to what was proposed in Mulzer’s review. As shown in scheme 3,
pseudopteroxazole 5 could be produced via selective enamine formation and
condensation with orthoformate. Oxidation of 6 could lead to elithabethol 18, which
could in turn generate elithabethin A 9, after an acyloin rearrangement. Further oxidation
leads to elithabethin D 10, which, after allylic oxidation, phosphonation, and C15
allylation, yields elisapterosin D 13. Hydration of 13 will lead to semiketal elisapterosin
A 14 and F 19. C2 allylation of 9 would generate colombiasin A 15; CAN oxidation of 9

would lead to elisapterosin B 11.



Scheme 3
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1.1.5 Total Synthesis of Pseudopteroxazole by the Corey Group

As early as 2001, Johnson and Corey published a total synthesis of the proposed
structure of pseudopteroxazole.’* In 2003, the Corey group reported the first total
synthesis of pseudopteroxazole together with three diastereomers.* It took 19 steps to get
the natural product in 7% overall yield from an abundant natural product, (S)-(-)-
limonene 20 (Figure 7). This total synthesis showcased the use of inexpensive chiral
natural products as chiral sources to set up the stereocenters in the synthesis of natural
products. An earlier application of the enantiopure (S)-(-)-limonene in total synthesis
came from the same laboratory in 1998, as evidenced by their paper of the total synthesis

of pseudopterosins (Figure 7).

Figure 7
OH
Me OH '4\(3277
: o )b

OH
Me Y
Me
Me —> ] H
) Me"
Me
20

Me" Me

21 pseudopterosin E 5 pseudopteroxazole

As is illustrated in Scheme 4, starting from the readily available (S)-(-)-limonene
20, TBDPS-protected (8R)-hydroxy ketone 25 (8R:8S = 99:1 from HPLC analysis of
their corresponding derivatives) was obtained through hydroboration followed by
oxidation, selective oxidation of secondary alcohol, diastereoselective acetylation

catalyzed by Amano PS lipase, and protection with a tert-butyl-diphenylsilyl group. Next,

11



Scheme 4
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2. MeMgBr; then TFA,
HC(OEt);, 90%

Me  Me

5 pseudopteroxazole

kinetic deprotonation with LDA followed by trapping with TMSCI led to an enol silyl
ether, which underwent a Mukaiyama-type Michael addition with enone 26, giving a 61%

yield of 27 as a mixture of diastereomers (about 1:1 ratio). An intramolecular aldol
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reaction followed by elimination of the tertiary hydroxyl group led to the net Robinson
annulation product 28 in 69% vyield. Oxime formation followed by acylation gave the
oxime pivalate diastereomers 29, which were aromatized under modified Wolff-Semmler
conditions by heating with a stoichiometric amount of acetyl chloride in toluene in a
sealed reaction vessel. Thus, the two diastereomers were converged to one aromatic
compound 30. Deprotection of the benzyl group freed the phenol, which was treated with
carbonyldiimidazole to form the cyclic carbamate 31. After hydrolysis of the carbamate,
the TBDPS group was removed with a hydrofluoric acid-pyridine complex. Perruthenate-
catalyzed oxidation led to the aldehyde, which reacted under Wittig-Vedejs E-selective
olefination conditions to produce the diene 32, setting up the stage for the key cationic
cyclization to form 33.

It is interesting to note that, in this catalytic cyclization, changing the solvent from
acetic acid to dichloromethane completely reversed the diastereoselectivity. In order to
explain this phenomenon, they proposed two transition states for the cationic cyclization
(Scheme 5). First, the protonation of the conjugated diene 32 gave an allylic cation 32a.
Then, the road diverges. One path leads to a six-membered ring transition state 32b,
affording the undesired diastereomer 33b; the other is through a five-membered ring
transition state 32c, leading to the other diastereomer 33a. Presumably, when
dichloromethane is used as the solvent, the oxygen is a better electron donor to the
aromatic ring system than the nitrogen in the cyclic carbamate, activating the para-
position of the aromatic ring (C14), forming the six-membered ring transition state.
Rearomatization leads to the diastereomer 33b. When acetic acid is used as the solvent, it
is proposed to serve as a hydrogen bond acceptor, stabilizing the transition state in which

13



the nitrogen atom is a better electron donor (32c). The nitrogen atom activates the para-
position relative to the nitrogen (C1), leading to the five-member ring transition state 32c,

which after rearomatization affords the other diastereomer 33a.

Scheme 5

In other experiments with the corresponding mesylate (34) or triflate, the
diastereomer 35, generated from the oxygen-activated route was formed in a greater than
20:1 ratio, in either dichloromethane or acetic acid (Scheme 6). Keeping in mind that the
methanesulfonyl group, being strongly electron withdrawing, should attenuate the
electron donating ability of the oxygen atom, the acylated nitrogen atom failed in
competing with the oxygen in activating the aromatic ring. Combined with the result of
the cyclic carbamate 32, it proves that the planarity of the cyclic carbamate enables the
nitrogen’s lone electron pair to be perpendicular with the aromatic ring, which is crucial

for its ability to activate the aromatic ring.
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Scheme 6

Having discussed this cationic cyclization, another set of examples should not be
overlooked. In the paper about the total synthesis of pseudopterosins from the Corey
group, the diastereoselectivity was switched, by switching the mesyl group to the TBS
group (Scheme 7). Considering the different electronic properties of the two functional
groups, the mesyl group being strongly electron withdrawing while TBS group being
electron donating, the stereoselectivity can be rationalized based on different oxygen

atoms serving as the predominant activating group. *’

Scheme 7

Me OBn

36 36a




After this biomimetic cyclization, acylation of the free NH with Boc-,O, cleavage
of the cyclic carbamate, and treatment with trifluoroacetic acid and triethyl orthoformate
gave the desired natural product pseudopteroxazole 5, confirming the absolute structure

of this natural product at the same time.

1.1.6 Total Synthesis of Pseudopteroxazole by the Harmata Group

The second total synthesis of pseudopteroxazole came from our group in a couple
of communications reported in 2004 and 2005."® In the first communication, Harmata and
Hong applied the methodology they developed and published in 2003,*° the
intramolecular Michael addition of sulfoximine carbanions to a,B-unsaturated esters, to
the synthesis of an intermediate for the total synthesis of pseudopteroxazole, which is
essentially a benzothiazine analog of pseudopteroxazole. This endeavor proved the
fidelity of the methodology in setting up the benzylic stereocenters diastereoselectively.

In this world of organometallic catalysis, organocatalysis, and enzymatic
catalysis, auxiliary-controlled stereoselectivity is overlooked due to its intrinsic lack of
step and atom economy. But when it comes to achieving as high stereoselectivity as
nature does, (100% d.r. within detection limit) developing this unique chiral sulfoximine
auxiliary-controlled intramolecular Michael addition is irresistible. What is more, the
stability, the stereoregidity, the hydrophilicity, and being the bioisostere of the ester
hydrolysis intermediate render the compounds containing this functional group more

added values, with respect to the discovery of new medicines at least.?
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Scheme 8

Me . _CO,Et
Ve | Pd(OAC),, BINAP |
(R)-methyllphenylsulfoximine 41 2 equiv LDA
Br Cs,COs, toluene, 81% = THF, 88%
OMe
40

1. LAH
2. Swern, 67%
dr.=1.6:1

OMe
43 44

Me Me

MeSO,H
CH,Cl,, 88%

As shown in Scheme 8, the synthesis began with a known substituted ortho-
bromocinnamate 40, which can be made from commercially available anisole in five
steps. (R)-N-methyl-N-phenylsulfoximine 41 was coupled to the ortho-bromocinnamate
40 via a Buchwald-Hartwig coupling reaction. Treatment with two equivalents of lithium
diisopropylamide, followed by kinetic protonation, led to the Michael addition product 43
as 10:1 ratio of two diastereomers. Although there could be up to four diastereomeric
products produced from this reaction, as there are two new stereogenic centers formed,
there were only two diastereomers formed with diastereomeric ratio being ten to one, as

determined by *H-NMR analysis. This application of the intramolecular Michael addition
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of a sulfoximine stabilized carbanion to an unsaturated ester not only provided complete
stereocontrol over the benzylic position, but also expanded the power of the reaction to
the control of the stereogenic center next to the benzylic position. Although the reaction
is highly stereoselective, it generated the products favoring the diastereomer with the
wrong stereochemistry.

Nevertheless, Harmata and Hong pushed the mixture of products to the end of the
total synthesis with great dedication and stamina. Lithium aluminum hydride reduction
and Swern oxidation transformed the ethyl ester 43 to the aldehyde 44 in 67% yield. With
prolonged reaction time in the presence of base, the mixture of two diastereomers
underwent epimerization, giving another mixture of diastereomers favoring the one with
the correct stereochemistry as the thermodynamically more stable aldehyde. To make the
dienyl branch, a Wittig-Vedejs E-selective olefination was applied to this mixture of
benzothiazines, generating a 52% yield of the diastereomer 46 with the required
stereochemistry and a 33% yield of one with the wrong stereochemistry. These were

separated by flash chromatography.

Scheme 9
OMe

0]
= + N
Ph=S~

46 46a 47
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The next step was a cationic cyclization, forming the six-membered ring with
complete diastereoselectivity (Scheme 9). Assuming the nitrogen is a better electron
donor, the cationic cyclization was rationalized by the steric hindrance between the S-
phenyl group and the allylic cation through a five-membered ring transition state (46a). It
was the first report on this type of cationic cyclization of benzothiazine. The
diastereoselectivity was completely reversed if the oxygen is a better electron donor and
the cationic cyclization processed through a six-membered ring transition state based on
Corey’s studies (Scheme 7, from 36 to 37).

Scheme 10

1. LIHMDS, THF
2. allylbromide, 100%

Pd(OAc),
1. HONO . .
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53, H, HNO;, 84%

CH,Cl,, 90%

NaH, EtSH Me
DMF, 87%
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The second report from our group detailed the total synthesis of
pseudopteroxazole in nine steps from the tricyclic benzothiazine 47 (Scheme 10). First,
the benzothiazine 47 was deprotonated by LIHMDS diastereoselectively, presumably by
the direction of the oxygen on the sulfur through lithium cation. Then the carbanion was
trapped by allyl bromide, giving a quantitative yield of the allylated product 48 in
diastereopure form. Next, sodium amalgam cleaved the sulfur-carbon bond, producing
the aniline 49 in 92% vyield. The aniline 49 was efficiently transformed to the
corresponding iodide 51 through a 1-aryl-3,3-diethyltriazene intermediate 50. The last
ring was formed by an innovative intramolecular Heck coupling. The next step is another
highlight of this total synthesis, the regioselective and diastereoselective homogeneous
hydrogenation catalyzed by an iridium catalyst 53. In this case, both the catalyst and the
structure of the molecule worked together to enable the high regioselectivity and
stereoselectivity of this hydrogenation in a near perfect fashion. Later, it was found that
the rigidity of the tricycle is crucial for the selectivity.?? After deprotection of the
methoxy group by in situ generated NaSEt in refluxing DMF, nitration yielded the nitro
phenol 56, which was reduced and treated with methyl orthoformate to give the natural

product pseudopteroxazole 5.

1.2 Formal Total Synthesis of Pseudopteroxazole

From the review of the first generation of total synthesis of pseudopteroxazole,
the innate ability to control stereoselectivity by a sulfoximine as a chiral auxiliary was
clearly demonstrated in the intramolecular Michael addition, which set up two of the four
stereocenters contained in pseudopteroxazole. The preference for the wrong
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diastereomer, however, diminished the usefulness of that synthetic route. Through
strategic design, a new approach was proposed to ameliorate the drawback of the first

total synthesis of pseudopteroxazole.

1.2.1 Synthetic Plan

Bearing in mind the major pitfall of the first generation of total synthesis being
the highly diastereoselective intramolecular Michael addition favoring the diastereomer
with the wrong stereochemistry, the methyl group on C-3 (pseudopteroxazole numbering)
was changed to an ester group as a surrogate. Though reducing an ester to an alkane has
been shown to be quite facile in a similar system,?? a subtle change of the structure
rendered this reduction process quite challenging, as will be discussed later. Another
strategic change was made in the pursuit of better efficiency of the total synthesis. The
diene branch was planned to be installed prior to the Buchwald-Hartwig coupling
reaction. Though there are many “philosophic concepts” about the economy in total
synthesis in the modern literature world,” in academic environment, the value of a good
total synthesis can always be appreciated by its aesthetically pleasing transformations
perceived by the mind through drawings on the paper, or more and more frequently, on a
screen; and by its ease to perform, and hence the satisfying feelings arising from it, by the
practitioners in the laboratory. To access the starting material 58 for the key reaction
(intramolecular Michael addition), a two-step sequence (Horner-Wadsworth-Emmons
reaction and Buchwald- Hartwig coupling) was designed to merge three relatively simple

starting materials together convergently (Scheme 11).
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Scheme 11
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1.2.2 Preparation of Coupling Partners

The (R)-(-)-S-methyl-S-phenylsulfoximine 41 was prepared according to the
published  procedure.®*  Another  coupling  partner,  2-bromo-3-methoxy-5-
methylbenzaldehyde 60 was made following Koyama and Kamikawa’s protocol.”> The
isopropyl dienonate 59 was synthesized through a modified Minami procedure in four to

five steps, depending on which starting material used (Shown in Scheme 12).%

Scheme 12
Me O O CO,'Pr 1. CHzN,,
)\ﬂ + MeO BQJ\ 1. Ti(OiPr),, TEA = Me _ 0°Ctort, 5 hr
Me o ‘ OMe = P(OMe), 5 -
MeO 2. IN HCI, 92% Me " 2.100°C,1.5h
0,
61 62 63 84% for 2 steps
Me CO,Pr
Me” X" pOMe),
(0]
59
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3-Methyl-2-buten-1-al 61 could be purchased from Acros at a price of $180.6/25
mL, or it could be synthesized directly from 3-methyl-2-buten-1-ol ($55/kg) by
pyridinium chlorochromate oxidation. We used 3-methyl-2-buten-1-ol as the initial
starting material most of the time, for economic reasons. However, 3-methyl-2-buten-1-al
61 is very volatile, in spite of a relatively high boiling point (132-133°C), and a
significant amount of material was lost after distillation. Therefore, the aldehyde starting
material 61 was used as a solution in dichloromethane in most cases. As for the
Knoevenagel condensation between the allylic aldehyde 61 and the trimethyl
phosphonate 62, titanium isopropoxide was chosen as the Lewis acid instead of titanium
chloride used by Minami and his coworkers.?®?” The next step was a regioselective
cyclopropane formation, followed by pyrolysis of the cyclopropane intermediate to the
homologated isopropyl ester 59.

After a cursory screening of conditions, 2-bromo-3-methoxy-5-
methylbenzaldehyde 60 was coupled with the dienoate 59 under very mild conditions,
barium hydroxide in THF and water at room temperature. This generated the coupled

product 64 in 84% to 98% vyield, with complete E-selectivity (Scheme 13).

Scheme 13
Me_ Me
. | i
Me CO,Pr 0.8 equiv 60, 1 equiv Ba(OH), & CO,Pr
Me” X" p(OMe), THF: H,0 = 20:1 Me
o) 45°C, 10min, 84% to 98%
59 Br

OMe

64
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1.2.3 Buchwald-Hartwig Coupling and the Intramolecular Michael Addition

Aware of the possibility of an intramolecular Heck reaction,?® we coupled the aryl
bromide 64 with (R)-(-)-S-methyl-S-phenylsulfoximine 41 through a Buchwald-Hartwig
reaction. Gratifyingly, the Buchwald-Hartwig coupling product 58 was produced with up
to 81% yield. ® Only trace amounts of the fluorescent Heck product 65 was formed,

demonstrating the high selectivity of this catalyst system (Scheme 14).

Scheme 14
Me_ Me Me
_~_-CO,Pr o Me Co,Pr
M | (R)-sulfoximine 41 _ OO
€ Pd(OAc),, BINAP, Cs,CO;  Me
Br Toluene, 110°C, 12 h OMe X\ _Me
OMe Me
64 81% 58 trace 65

The highlight of this synthetic route would be the intramolecular Michael addition
to generate chiral benzothiazine 57 with two contiguous chiral centers. At -78 °C, two
equivalents of lithium hexamethyldisilamide in THF solution was added to a solution of
starting material 58 in THF. After TLC analysis showed the complete consumption of
starting material, the reaction mixture was quenched by slowly adding a pre-cooled HCI
solution in MeOH. This reaction was clean and diastereoselective, favoring the product
57 with the right stereochemistry which was separated from 57a with flash

chromatography (Scheme 15).
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Scheme 15
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Scheme 16

Me

OMe OMe

The stereocontrol over the benzylic position was consistent with all other related
examples.'® 1° The stereoselectivity could be rationalized based on the steric interactions
in the transition state, or it could be conceived as an oxygen-directed Kkinetic
deprotonation of the a-carbon next to sulfur. Though the sigma bond connecting the a-
carbon and sulfur could rotate freely, the chelation between the oxygen, lithium, and
nitrogen could restrict the rotation about the sigma bond, forcing the Michael accepter

approaching from the bottom face to react with the carbanion (Scheme 16). The
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diastereoselectivity on the C-3 could be rationalized as the result of kinetic protonation

from the Re face, since the Si face of the enolate was hindered by the aromatic system.

1.2.4 End Game of Formal Total Synthesis of Pseudopteroxazole

Now, what needed to be done was reduction of the isopropyl ester 57 to the 47.
There are a lot of tactics to furnish this transformation in organic chemists’ arsenal.*®’
However, this seemingly simple functional group transformation proved to be quite
troublesome in this circumstance. First, after a cursory screening of reductants, DIBAL

gave the best yield (88%) of the alcohol 66, though in some cases, a variable amount of

the aniline product 67 was isolated as byproduct (Scheme 17).

Scheme 17

DIBAL

OMe OMe
88% 66 trace 67

A similar byproduct was identified by reducing an analogous benzothiazine with
LAH. A proposed mechanism for the formation of the chiral tetrahydrofuran is shown in
Scheme 18.3! First, the isopropyl ester 57 was reduced to alkoxide by DIBAL; hydride
reduction of the benzothiazine followed by elimination of hydrogen led to sulfoxide
intermediate. The sulfoxide underwent a Pummerer rearrangement; elimination of the
oxygen on the sulfur atom formed a sulfonium intermediate, which was trapped

intramolecularly by the alkoxide to form the tetrahydrofuran product 67.
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Scheme 18
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Having acquired the alcohol 66, the last move now was to deoxygenate 66 to the
47. The first strategy coming to mind for this transformation was converting the hydroxy
group to a good leaving group, followed by hydride reduction. Thus, iodination of the
alcohol 66 afforded the corresponding iodide 69 in rather low yield with a major
byproduct 70 (Scheme 19).

Initially, the structure of this cyclopropane was established based on NMR study
(Figure 8). The chemical shifts in the high field from 81.7 to 0.7 and the coupling
pattern were typical for cyclopropanes. It is known that for cyclopropanes, the coupling
constant between the two geminal hydrogens of the cyclopropanes is 5 Hz, while the
coupling constants of the vicinal hydrogens are from 4 Hz to 5 Hz for trans-
cyclopropanes and 8 Hz to 9 Hz for cis-cyclopropanes.® The chemical shifts and
coupling constants for hydrogens on C10, C9, C16a, and C16b are: 6 1.64 (dddd, J = 4.5,
4.5, 8.5, 8.5 Hz, 1H), 1.04 (dddd, J = 4, 4, 9, 9 Hz, 1H), 0.85 (ddd, J = 5, 5.5, 8 Hz, 1H),

0.76 (ddd, J = 4.5, 5, 8 Hz, 1H) (Figure 9). The coupling constant between C10 and C9 is
27



about 5 Hz. This is in accordance with trans-cyclopropanes. This cyclopropane is stable
at room temperature open to air for at least one year. And we were able to get the single
crystal and thus the X-ray crystallography of 70, which confirmed the trans-cyclopropane

structure (Scheme 19).
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Figure 9

Scheme 19
Me
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Next mesylation was tried with success, giving the mesylate 68 in a 79% vyield
with trace amount of the same byproduct 70 as in the iodination (Scheme 20). Then, the
mesylate 68 was treated with excess amount of Nal in acetone, in order to be transformed

to the iodide 69. However, it led to a mixture of the iodide 69 and again the same
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byproduct 70. When the crude mesylate 68 was used directly for the iodination reaction,

42% of 69 and 42% of 70 were obtained (Scheme 20).

Scheme 20

10 eqiv. Nal
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1:1

1. MsClI, TEA
2. Nal, acetone

OMe OMe

66 69 42% 70 42%

Though it was not the product we expected, the enantiopure cyclopropane
compound 70 could be obtained in high yield, simply by treating the mesylate 68 with

four equivalents of imidazole in refluxing acetone (Scheme 21).

Scheme 21

4 equiv. imidazole
DCM, 50 °C, overnight
91%
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A working mechanism was proposed to rationalize the high stereoselectivity of
this cationic cyclopropanation reaction. An ionization mechanism was unlikely due to the
high energy of primary carbocation. An intramolecular SN, reaction of the mesylate 68
generated an allylic carbocation. Elimination by imidazole led to the final product 70.
The stereoselectivity was presumably the result of a strong 1,3-allylic strain between the

benzothiazine group and the allylic hydrogen (Scheme 22).

Scheme 22

TS1 TS 2
suffers 1, 3 - allylic strain

Finally, the mesylate 68 was reduced with a combination of lithium iodide and
super hydride, giving up to a 79% yield of the deoxygenated product 47. This reduction
presumably involved the in situ formation of the corresponding iodide, followed by

reduction by super hydride (Scheme 23).

Scheme 23
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1.3 Concluding Remarks and Outlook

A convergent and diastereoselective formal total synthesis of pseudopteroxazole
was achieved, once again demonstrated by the fidelity of the stereocontrol of chiral
sulfoximine on the benzylic position (Scheme 24). This was the third report on synthesis
of anti-TB natural product pseudopteroxazole. The newly developed synthetic route
corrected the diastereoselectivity issue from the first total synthesis of pseudopteroxazole
reported from our group. At the same time, it is more efficient and more step economic
than our first synthesis. What is noteworthy in this sequence is the completely E-selective
HWE reaction, the Buchwald-Hartwig coupling between a triene and sulfoximine, the
highly diastereoselective intramolecular Michael addition, and the super hydride
reduction of mesylate influenced by lithium iodide. During the synthesis progress, a
diastereoselective formation of a tetrahydrofuran and a diastereoselective cyclopropane
formation were also discovered, opening up opportunity to explore more new reactivity
of chiral benzothiazine.

The drawback of this methodology is the same as all the others using chiral
auxiliaries to control stereochemistry, poor atom economy and step economy. However,
from another point of view, it provided the opportunity to make sulfoximine-substituted
analogs of the natural products, which would certainly change their pharmacological

properties. This should need to be tested.
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Scheme 24
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1.5 Experimental Section

General Information:

All air and moisture sensitive reactions were carried out in flame-dried glassware
under an argon or nitrogen atmosphere. Reactive liquid reagents (LHMDS, etc.) were
measured and transferred by gastight syringes through rubber septa. Tetrahydrofuran
(THF) was freshly distilled over sodium benzophenone kytyl. Toluene was distilled from
CaH,. The reaction mixture was concentrated by using a rotary evaporator attached to a
water aspirator. Residue solvents were usually removed under reduced pressure using
vacuum pump (approximately Imm Hg).

Flash chromatographic separations were carried out on silica gel (230-400 mesh)
with ACS reagent grade solvents. Analytical thin layer chromatography was performed
on glass—backed silica gel plates with F254 indicator. Compounds were visualized under
UV light or by developing in iodine, vanillin, phosphomolybdic acid solution or with
potassium permanganate solution followed by heating in a hot plate to approximately
350°C. Melting points were determined with a melting point apparatus.

'H NMR spectra were recorded in Fourier transform mode at 250, 300 or 500
MHz, respectively, as CDClj; solutions with tetramethylsilane (5 = 0 ppm) as the internal
standard. *C NMR spectra were recorded on the same instruments at 62.5, 75 or 125
MHz, respectively, with CDCl3 (6 = 77 ppm) as the internal reference. 1P NMR spectra
were recorded on the same instruments at 101 MHz, respectively, with 85% H3PO,4 (6 =0
ppm) as the external standard. Chemical shifts (8) were reported in parts per million

(ppm). Multiplicities were reported as s (singlet), b (broad), d (doublet), t (triplet), g
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(quartet), m (multiplet), and dd (doublet of doublet), etc. In *H NMR spectra of
diastereomeric mixtures, the signals for individual isomers were reported when possible.
Infrared spectra were recorded on an FT-IR spectrometer. Optical rotations were recorded
on a polarimeter with sodium D line at the temperatures as indicated in the experimental
for specific compounds. High resolution mass spectra were obtained on a magnetic sector

instrument with a resolution greater than 10,000.

Me 0
— P(Ol\/le)2
Me — _
Co,'Pr
63

(E/Z)-isopropyl 2-(dimethoxyphosphoryl)-5-methylhexa-2,4-dienoate (63): A mixture
of 3-methylbut-2-enal 61 (5 mL, 0.065 mol) and trimethyl phosphonoacetate 62 (5.26
mL, 0.033 mol) in THF (300 mL) with molecular sieves (4 A) was placed in a 1 L round-
bottom flask under an argon atmosphere. To this solution, Ti(O'Pr)s (29 mL, 0.098 mol)
was added. Then TEA (17 mL, 0.13 mol) was added over 30 min, and the mixture was
stirred at 0°C for 7 h. The reaction mixture was poured into 1 N HCI and vigorously
stirred at rt for 1 h. It was extracted by ethyl acetate (3 x 300 mL) and the extract was
washed with 300 mL saturated sodium bicarbonate solution and 300 mL brine. The
organic layer was dried with anhydrous sodium sulfate and the solvent was evaporated,
affording the product as a mixture of E/Z (2:1) isomers (5.82 g, 92%). (Z)-isomer: IR
(neat): 2978, 2953, 2848, 1699, 1618, 1564, 1250, 1025, 829 cm™; *H NMR (CDCl3, 500
MHz) § 8.20 (dd, 1 H, J = 12.5, 44.5 Hz), 7.22 (dd, 1 H, J = 1.0, 12.0 Hz), 5.12 (septet, 1
H,J = 6.5 Hz), 3.78 (s, 3 H), 3.75 (s, 3 H), 2.00 (s, 3H), 1.98 (s, 3H), 1.30 (d, 6 H, J = 6.0

Hz); 3C NMR (CDCls, 125 MHz) § 165.9 (d, J = 15.0 Hz), 155.2 (d, J = 2.5 Hz), 152.9
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(d, J=10.0 Hz), 122.4 (d, J = 5.0 Hz), 115.6 (d, J = 186.0 Hz), 68.7, 52.6 (d, J = 5.0 Hz),
27.6, 21.7 (d, J = 10.0 Hz), 19.0; HRMS calcd for C1,H»0sPNa [M+Na]® 299.1019;

Found: 299.1006; **P NMR (CDCls, 250 MHz) & 23.4 (85% H3PO, as external standard).

Me
= Q
Me —\__P(OMe),
CO,'Pr

59
(E)-isopropyl 2-(dimethoxyphosphoryl)-6-methylhepta-3,5-dienoate (59): To a
solution of 63 (4.86 g, 0.018 mol) in ether (20 mL) in a 50 mL round-bottom flask, a 0.5
M diazomethane solution in ether (0.088 mL, 0.045 mol) at 0 °C was added dropwise.
The reaction was warmed to rt and stirred for 12 h. After the reaction was complete, the
solvent was evaporated and the crude product was heated at 100 °C for 1 h. After flash
chromatography with 50% ethyl acetate in hexanes, colorless oil (4.54 g, 84% for two
steps) was obtained, the product 59 having only an (E) configuration. IR (neat): 2983,
2851, 1728, 1450, 1262, 1102, 1025, 829, 796 cm™; *H NMR (CDCls, 500 MHz) & 6.44
(ddd, 1H, J = 5.0, 11.0, 15.5 Hz), 5.85 (d, 1H, J = 11.0 Hz), 5.65 (ddd, 1H, J = 7.0, 9.5,
16.0 Hz), 5.07 (septet, 1H, J = 6.5 Hz), 3.81 (d, 3H, J = 11.0 Hz), 3.79 (d, 3H, J = 11.0
Hz), 3.75 (dd, 1H, J = 9.5, 24.0 Hz), 1.78 (s, 3H), 1.76 (s, 3H), 1.28 (d, 3H, J = 4.5 Hz),
1.26 (d, 3H, J = 4.0 Hz); *C NMR (CDCls, 125 MHz) & 167.0 (d, J = 5.0 Hz), 136.9 (d,
J =5.0 Hz), 131.9 (d, J = 12.5 Hz), 124.0 (d, J = 5.0 Hz), 118.5 (d, J = 12.5 Hz), 69.2,
53.7 (d, J = 7.5 Hz), 53.4 (d, J = 7.5 Hz), 50.6, 49.6 (d, J = 130.0 Hz), 25.8, 21.5 (d, J =

10.0 Hz), 18.2; HRMS calcd for C13H,30sPNa [M+Na]" 313.1175; Found: 313.1171.
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64
(2E, 3E)-Isopropyl 2-(2-bromo-3-methoxy-5-methylbenzylidene)-6-methylhepta-3,5-
dienoate (64): To a solution of o-bromoaldehyde 60 (2.22 g, 10 mmol) and
phosphonoacetate 59 (3.43 g, 12 mmol) in 120 mL THF and 6 mL of H,0O, Ba(OH),
(7.35 g, 43 mmol) was added in portions with vigorous stirring at 40 °C. After 10 min,
the reaction was allowed to reach rt and was diluted with 200 mL CH.Cl,. It was
washed with 1 x 100 mL saturated NaHCO3; and 1 x 100 mL brine. It was dried with
MgSQ,, filtered through Celite and concentrated in vacuo. After flash chromatography
(1% TEA, 10% ethyl acetate in hexane), 3.2 g (84%) of the bromo ester 64 was obtained
as a viscous oil. IR (neat): 2974, 2930, 1714, 1234, 1096 cm™; *H NMR (CDCls, 300
MHz) § 7.33(s, 1H), 7.16 (dd, 1H, J = 11.0, 15.6), 6.79 (s, 1H), 6.67 (s, 1H), 6.22 (d, 1H,
J = 15.6 Hz), 5.82 (d, 1H, J = 11.0 Hz), 5.22 (septet, 1H, d = 6.0 Hz), 3.90 (s, 3H), 2.33
(s, 3H), 1.79 (s, 6H),1.38 (s, 3H), 1.36 (s, 3H); °C NMR (CDCls, 125 MHz) § 167.0,
155.8, 138.3, 137.6, 137.4, 135.8, 132.2, 131.8, 126.2, 123.9, 122.2, 112.2, 110.1, 68.4,

56.2, 26.2, 21.8, 21.4, 18.6; HRMS calcd for CoH,503BrNa [M+Na]* 415.0879; Found:

415.0875.
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58: A 100 mL round bottom flask with condenser was charged with palladium acetate (15
mg, 0.065 mmol), rac-BINAP (60 mg, 0.1 mmol), in 35 mL toluene. The mixture was
stirred for 15 min at room temperature. The bromo ester 64 510 mg (0.5 mmol) and (R)-
41 220 mg (0.77 mmol) in 5 mL toluene was added, followed by addition of Cs,CO3
(1.17 g, 2 mmol). It was refluxed at 110°C for 12 h. Then it was diluted with 40 mL
CH,CI,, filtered through Celite, which was washed with 3 x 50 mL CH.Cl,, and
concentrated in vacuo. After flash chromatography (25% ethyl acetate in hexanes), 491
mg (81%) of 58 was obtained as pale yellow semisolid. IR (film): 3064, 2974, 2925,
1703, 1560, 1454, 1336, 1270, 1233, 1094, 735 cm™; *"H NMR (CDCls, 500 MHz) & 8.00
(dd, 2H, J = 1.5, 10.0 Hz), 7.77 (s, 1H), 7.56-7.50 (m, 3H), 7.20 (dd, 1H, J = 11.0, 15.5
Hz), 6.80 (s, 1H), 6.60 (s, 1H), 6.40 (d, 1H, J = 15.5 Hz), 5.87 (d, 1H, J = 11.0 Hz), 5.21
(m, 1H, J = 6.0 Hz), 3.59 (s, 3H), 3.10 (s, 3H), 2.28 (s, 3H), 1.81 (s, 6H), 1.36 (s, 3H),
1.34 (s, 3H); °C NMR (CDCls, 125 MHz) & 167.6, 152.2, 142.4, 137.2, 136.9, 132.3,
132.0, 131.6, 130.7, 130.2, 129.8, 128.9, 127.5, 126.6, 123.4, 113.1, 67.8, 55.6, 46.0,
26.2, 22.0, 21.2, 18.6; HRMS calcd for C,7H33sNO,SNa [M+Na]* 490.2022; Found:

490.2016; [a]®p= 77.975 (c 0.79, CHCIs).
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The Heck coupling product 65 is a byproduct that was formed in trace amount under the
Buchwald coupling condition. It was isolated as a fluorescent colorless oil: IR (neat):
2978, 2917, 1708, 1573, 1454, 1372, 1274, 1221, 1136, 1103 cm™; *H NMR (CDCls,
500 MHz) & 8.28 (d, 1H, J = 1.5 Hz), 7.67 (s, 1H), 7.30 (s, 1H), 6.94 (s, 1H), 6.73 (d, 1H,
J=1.0 Hz),5.29 (septet, 1H, 6.0 Hz), 3.87 (s, 3H),1.96 (d, 3H, J = 1.0 Hz), 1.71 (d, 3H, J
= 1.5 Hz), 1.40 (d, 6H, J = 6.5 Hz); °C NMR (CDCls, 125 MHz) § 166.4, 157.3, 136.1,
135.7, 135.3, 130.9, 128.5, 128.0, 127.7, 126.8, 124.9, 121.6, 110.4, 68.3, 55.9, 26.0,

22.0, 21.7, 19.1; HRMS calcd for CpoH2403Na [M+Na]" 335.1618; Found: 335.1618.

57: A 100 mL round-bottom flask was charged with bromo ester
58 (1.58 g, 3.38 mmol) in 40 mL THF. LIHMDS 6 mL (1 M in
toluene, 6 mmol) was added dropwise to the solution at -78°C.

After 10 min at -78 °C, the reaction was quenched with 1 N HCI

in methanol at -78 °C. It was poured into water, extracted with 3 x
20 mL CH)Cl,, dried with MgSQO, and concentrated in vacuo. After flash
chromatography (30% ethyl acetate in hexane), 1.28 g (81%) of 57 was obtained as the
major isomer. IR (film): 2970, 2921, 2868, 1720, 1462, 1245, 1102 cm™; 'H NMR
(CDCls, 500 MHz) & 8.10-8.12 (m, 2H), 7.62-7.66 (m, 1H), 7.54-7.57 (m, 2H), 6.68 (s,

1H), 6.64 (s, 1H), 6.26 (dd, 1H, J = 11.0, 15.0 Hz), 5.77 (d, 1H, J = 11.0 Hz), 5.49 (dd,
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1H,J = 7.5, 15.0 Hz), 4.89 (septet, 1H, J = 6.0 Hz), 3.96 (t, 1H, J = 7.0 Hz), 3.88 (s, 3H),
3.60-3.64 (m, 1H), 3.52-3.56 (m, 2H), 2.3 (s, 3H), 1.75 (s, 3H), 1.69 (s, 3H), 1.15 (d, 3H,
J=6.5Hz), 1.05 (d, 3H, J = 6.0 Hz); *C NMR (CDCls, 125 MHz) § 172.3, 152.6, 139.4,
136.8, 133.8, 132.1, 131.1, 129.9, 129.5, 129.4, 124.9, 124.9, 124.3, 119.4, 111.9, 68.4,
56.2, 51.1, 49.2, 38.4, 26.2, 21.8, 21.6, 18.6; HRMS calcd for C27H33NO,SNa [M+Na]*

490.2022; Found: 490.2012; [a]®p = -60.48 (c 1.66, CHCl5).

(2S,3E)-6-Methyl-2-[(2R,4R)-2-oxido-2-phenyl-3,4-dihydro-2I* 1-benzothiazin-4-

yl]hepta-3,5-dien-1-ol (66): To a solution of the ester 57 (383mg, 0.819 mmol) in 8 mL
THF, was slowly added 8.19 mL of DIBAL (1M in THF) at 0°C. After 2 h, it was
carefully quenched with ethyl acetate and water. After filtration, followed by washing
with 20 mL ethyl acetate, it was concentrated. After flash chromatography (50% ethyl
acetate in hexanes), 0.285 g (88%) of 66 was obtained as a semisolid. IR (film): 3448,
2962, 2917, 1577, 1462, 1250, 1102, 1017 cm™; *H NMR (CDCl;, 500 MHz) & 8.10-
8.12 (m, 2H), 7.63-7.66 (m, 1H), 7.54-7.57 (m, 2H), 6.69 (s, 1H), 6.69 (s, 1H), 6.40 (dd,
1H, J = 11.0, 15.5 Hz), 5.82 (d, 1H, J = 10.5 Hz), 5.51 (dd, 1H, J = 9.0, 15.5 Hz), 3.89 (s,
3H, CH3), 3.69 (ddd, 1H, J = 4.0, 7.0, 11.0 Hz), 3.46-3.55 (m, 3H), 2.98-3.13 (m, 1H),

2.32 (s, 3H), 1.77 (s, 3H), 1.73 (s, 3H), 1.35 (dd, 1H, J = 4.5, 6.5 Hz); 3C NMR (CDCls,
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125 MHz) & 152.8, 139.2, 136.1, 133.9, 132.2, 131.0, 130.2, 129.5, 128.4, 125.1, 124.7,
119.1, 1116, 62.7, 56.2, 50.3, 45.0, 37.5, 26.2, 21.7, 18.6; HRMS calcd for

CasH2sNO3SNa [M+Na]* 434.1760; Found: 434.1751; [a]*°p = -4.04 (c 3.02, CHCIs).

(2R,4R)-,4-[(1S,2E)-1-Methanesulfonyloxylmethyl-5-methyl-2,4-hexadienyl]-3,4-

dihydro-8-methoxy-6-methyl-2-phenyl-2y4-2,1-benzothiazine-2-oxide (68): To a
solution of alcohol 66 (48 mg, 0.116 mmol) in 2 mL CH,Cl, was added TEA (33 U, 24
mg, 0.24 mmol) and mesyl chloride (14 i, 21mg, 0.18 mmol) at 0°C. The reaction was
allowed to reach rt and was stirred for 17 h. It was quenched with 1 mL saturated NH,ClI,
extracted with 2 mL CH,Cl,, washed with 2 mL brine, dried with Na,SO,4, and
concentrated in vacuo. After chromatography (50% ethyl acetate in hexanes), 45 mg
(79%) of 68 was obtained as a white semisolid. IR (film): 3060, 2929, 2226, 1569, 1462,
11348, 1242, 1172, 1103, 964, 833, 731, 682 cm™; 'H NMR (CDCls, 500 MHz) & 8.11
(d, 2H, J = 7.5 Hz), 7.66 (dd, 1H, J = 7.0, 8.0 Hz), 7.56 (dd, 2H, J = 8.0, 7.5 Hz), 6.70 (s,
1H), 6.67 (s, 1H), 6.37 (dd, 1H, J = 11.0, 15.5 Hz), 5.80 (d, 1H, J = 11.0 Hz), 5.47 (dd,
1H, J = 7.5, 15.0 Hz), 4.24 (dd, 1H, J = 4.5, 10.0 Hz), 4.05 (dd, 1H, J = 7.5, 10.0 Hz),
3.88 (s, 3H), 3.61 (dt, 1H, J = 11, 5 Hz), 3.51 (dd, 1H, J = 4.5, 13.0 Hz), 3.43 (m, 1H),

3.06 (dd, 1H, J = 11.5, 12.5 Hz), 2.90 (s, 3H), 2.33 (s, 3H), 1.7 (s, 3H), 1.72 (s, 3H); 1°C
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NMR (CDCls, 125 MHz) & 152.7, 138.5, 136.6, 133.8, 131.9, 130.9, 130.2, 129.3,
129.2, 126.0, 124.2, 123.5, 118.8, 111.6, 69.0, 56.0, 49.6, 41.9, 37.3, 37.2, 25.9, 21.4,
18.3; HRMS calcd for CsH3NOsS;Na [M+Na]* 512.1536; Found: 512.1526; [a]*p = -

13.82 (c 0.55, CHCls).

69: To a stirred solution of mesylate 68 106 mg (0.22 mmol) in 2 ml CH,Cl, was added
0.33 g Nal. It was stirred at rt for 3 days, diluted with 2 ml CH,Cl,, washed with 2 ml
water, and 2 ml saturated NapS;03, 2 ml brine, concentrated and column
chromatographied using 30% ethyl acetate in hexane to get iodide 69 60 mg (50%), and
cyclopropane compound 70 57 mg (50%). lodide 69: IR: 2909, 1573, 1462, 1332, 1246,
1160, 1107, 1017 cm™; 'H NMR (CDCl;, 500MHz, ppm) & 8.14-8.16 (2H, m, ArH),
7.68-7.69 (1H, m, ArH), 7.58-7.62 (2H, m, ArH), 6.72 (1H, s), 6.65 (1H, s), 6.29 (1H, dd,
J=11, 15 Hz), 5.84 (1H, d, J=11 Hz), 5.4 (1H, dd, J=9, 15 Hz), 3.91 (3H, s,CH3), 3.48-
3.54 (2H, m), 3.21-3.28 (2H, m), 3.11-3.17 (1H, m), 2.78 (1H, dd, J=9, 9 Hz), 2.36 (3H,
s, CHs), 1.80 (3H, s, CH3), 1.74 (3H, s, CH3); *C NMR (CDCls, 500MHz, ppm) &
153.0, 139.2, 136.4, 134.0, 132.1, 130.8, 130.6, 129.6, 129.4, 129.1, 124.5, 124.5, 119.4,
111.9, 56.3, 49.5, 44.8, 40.8, 26.2, 21.7, 18.6, 7.8; HRMS calcd for Cy4H2sINO,SNa

[M+Na]* 544.077764; Found: 544.075818; [a]*p= -11.05(c 0.60, CHCI3)
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70: IR: 3066, 2936, 2852, 1630, 1463, 1326, 1275, 1231, 1202, 1159, cm™; *H NMR
(CDCl3, 500MHz, ppm) & 8.07-8.08 (2H, m, ArH), 7.63-7.66 (1H, m, ArH), 7.54-7.57
(2H, m, ArH), 6.97 (1H, s), 6.72 (1H, s), 6.41 (1H, d, J=16 Hz), 5.34 (1H, dd, J=9, 15.5
Hz), 4.94 (2H, s), 4.90 (1H, 5),3.90 (3H, s, CH3), 3.50 (1H, dd, J=3, 11.5 Hz), 2.74-2.84
(2H, m), 2.30 (3H, s), 1.86 (3H, s, CHs), 1.64 (1H, m), 1.04 (1H, m), 0.85 (1H, m), 0.76
(1H, m); *C NMR (CDCls, 500MHz, ppm) & 133.7, 132.4, 131.5, 129.3, 129.2, 119.1,
1145, 111.3, 56.0, 51.9, 39.0, 24.4, 24.2, 215, 18.7, 12.4; HRMS calcd for
CaHsNO,SNa [M+Na]® 416.165471; Found: 416.164164; [0]®p= -284.00(c 1.40,

CHCly)

(2R,4R)-,4-[(1S,2E)-1,5-Dimethyl-2,4-hexadienyl]-3,4-dihydro-8-methoxy-6-methyl
-2-phenyl-2y4-2,1-Benzothiazine-2-oxide (47): To a solution of mesylate 68 (71 mg,

0.15 mmol) and Lil (201 mg, 1.5 mmol) in 7.5 mL dry THF at -30°C, was added 1.5 mL
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of 1 M LiBHEtz in THF slowly. After it was kept at -30°C for 26 h, it was diluted with 15
mL DCM and quenched with 10 mL 10% NaOH, and 5 mL 30% H,0,. After it was
stirred for 30 min at rt, it was washed with 10 mL saturated Na,S,03 solution, followed
by 30 mL brine. After drying with Na,SO,, it was concentrated under vacuum.
Chromatography (20% ethyl acetate in hexanes) afforded 45 mg (79%) of 47 as a

colorless oil. The NMR data matched the published.*
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CHAPTER TWO

PORGRESS TOWARD TOTAL SYNTHESIS OF HAMIGERAN B

2.1 Introduction

Hamigerans are a family of natural products isolated from the poecilosclerid
sponge Hamigera tarangaensis by Bergquist and Fremont from shallow water off the
eastern coast of New Zealand.! Hamigeran B stands out in the family, due to its
impressive inhibitory activities against herpes and polio viruses and in vitro activity
against P-388 leukemia cell line." The initial goal for this project was to apply a
methodology that had been discovered and developed in our research group, the eight-
electron cyclization reaction of cyclopentadienones to build the aromatic ring-fused
[4.3.0] bicycle.? Since its appearance in the literature, hamigeran B has attracted a
significant amount of synthetic effort among organic chemists, due to its interesting

bioactivity, and novel, relatively complex structure within a fairly compact architecture.’

2.1.1 Hamigerans

Hamigeran A (1), debromohamigeran A (2), hamigeran B (3), 4-bromohamigeran
B (4), hamigeran C (5), hamigeran D (6), hamigeran E (7), and debromohamigeran E (8)
were isolated from poecilosclerid sponge Hamigera tarangaensis, which belongs to
Anchinoidae family (Figure 1). Only phorboxazoles and the anchinopeptolides that have
been isolated from Anchinoidae family members. Phorboxazoles attracted a lot of

attention from organic chemists, leaving the anchinoperptolides almost uninvestigated.
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Figure 1
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2.1.2 Proposed Chemical Relationship of Hamigerans

Though hamigerans are obviously structurally related, there is no reported
biosynthesis of hamigerans. Based on their structural relationship, a biomimetic chemical
relationship was proposed for the hamigeran family members (Scheme 1). Hamigeran D
may be in equilibrium with the corresponding 1,2-diketone, which can be oxidized to an
acyloin. Upon acylation, it will lead to hamigeran C; upon further oxidation to triketone,
a Norrish type-1 fragmentation (which is possible since the sea sponge was collected in
shallow sea water, where sunlight is abundant), followed by trapping with methanol, will
give hamigeran A. After hydrolysis of the ester and decarboxylation, hamigeran B would

be obtained. Further oxidative cleavage of hamigeran B would produce hamigeran E.
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2.1.3 Total Syntheses of Hamigeran B
A review by Clive, written in 2005, contains a collection of various total
syntheses of hamigeran B.?® Since this review, several formal total syntheses of this

natural product by a variety of strategies have appeared.

2.1.3.1 Total Synthesis of Hamigeran B by Nicolaou, Gray and Tae

In 2001, two back-to-back communications in Angewandte Chemie reported
Nicolaou, Gray and Tae’s efforts in developing and applying the photoenolization of
substituted benzaldehydes and subsequent Diels-Alder (PEDA) trapping of the hydroxyl-
o-quinodimethanes.* ® The full article published in 2003 provided the readers with more

details (Scheme 2).°
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Starting from benzamide 11, enantiopure alcohol 13 was obtained by a sequence
of directed lithiation and regioselective epoxide ring opening. Acid-catalyzed lactone
formation, followed by LAH reduction yielded the diol, which was sequentially and
selectively protected with TBS group and MOM group. Wacker oxidation of the terminal
double bond of 14 led to a ketone, which further produced the a,B-unsaturated ester 15
(E/Z ratio was ca. 3.5:1) through a HWE reaction. The TBS group was selectively
deprotected and the exposed benzylic alcohol was oxidized to the benzaldehyde 16,
which set the stage for the PEDA reaction. On irradiation, the substituted benzaldehyde
16 underwent photoenolization to give the quinone methide 17. Intramolecular Diels-
Alder cyclization then proceeded with high diastereocontrol to give ester 18 as a mixture
of epimers.

The hydroxyl group on carbon 6 served as a handle to epimerize the stereocenter
of carbon 5 once being oxidized. Next, it served as the electrophile to install the isopropyl
group, leading to 20. After failed attempts to hydrogenate the trisubstituted double bond
in 20, they found that hydroboration and oxidation led to the acetonide 21 as the major
product.

Deprotection of the acetonide 21, followed by oxidation and bromination,
provided hamigeran A. Hydrolysis under aerobic conditions enabled a saponification,
decarboxylation, and auto-oxidation cascade sequence to give (-)-hamigeran B. (Scheme

2)
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Scheme 2
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2.1.3.2 Total Synthesis of (-)-Hamigeran B by Clive and Wang
In 2003, Clive and Wang published their total synthesis of racemic hamigeran B
and later, (-)-hamigeran B.” ® Again, the stereochemistry of carbons 5 and 6 were

controlled by the C9 stereogenic center. While Nicolaou’s paper showed that
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hydrogenation of the cylcopentene 20 produced a mixture of products with the one with

an exo-isopropyl group as the major product under a variety of hydrogenation

conditions,® Clive’s synthetic route featured a hydrogenation of cyclopentadiene 31 to get

the product with endo-isopropy! group.

Scheme 3
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As shown in Scheme 3, the core carbon skeleton 26 was constructed very
efficiently from the iodide 23 and Meyers’ chiral lactam 24. Then, dehydrogenation by
DDQ, followed by dihydroxylation, and protection with TBSOTf produced
cyclopentenone 29. Moreover, it was reduced by DIBAL, and eliminated via the mesylate
intermediate to give the cyclopentadiene 31. A rather mild hydrogenation of 31 with Pd/C
led to 32 with the right stereochemistry. It was proposed by the authors that the bulky
TBS groups were essential for controlling the stereochemical outcome.

After removing the two TBS groups with TBAF, the diol 33 was oxidized to
diketone 34. Demethylation with LiCl in DMF, and mono-bromination gave hamigeran B

(Scheme 3).

2.1.3.3 Total Synthesis of Hamigeran B by Trost, Pissot-Soldermann, Chen,

and Schroeder

A vyear later, the Trost group published their total synthesis of (-)-hamigeran B,
featuring their palladium-catalyzed asymmetric allylic alkylation reaction, which was
used to install the quaternary stereogenic C9 center.’ The full article on this work was
published in 2005 and included more details of the total synthesis."® A noteworthy
reaction in this sequence is the kinetic hydrogenation of the trisubstituted alkene 47 to 48
by iridium black under high pressure. Under similar conditions, Pd/C gave only the exo-

isopropy! product, which was hypothesized to be the result of the undesired equilibration
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of the semihydrogenation intermediates, leading to the thermodynamically more stable

diastereomer (Scheme 4).
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A vyear later, the Trost group published their total synthesis of (-)-hamigeran B,
featuring their palladium-catalyzed asymmetric allylic alkylation reaction, which was
used to install the quaternary stereogenic C9 center.® The full article on this work was
published in 2005 and included more details of the total synthesis.'® A noteworthy
reaction in this sequence is the kinetic hydrogenation of the trisubstituted alkene 47 to 48
by iridium black under high pressure. Under similar conditions, Pd/C gave only the exo-
isopropyl product, which was hypothesized to be the result of the undesired equilibration
of the semihydrogenation intermediates, leading to the thermodynamically more stable

diastereomer (Scheme 4).

2.1.3.4 Total Synthesis of ()-Hamigeran B by Piers and Lau

A different strategy, developed by Piers and Lau, for the synthesis of hamigeran B
involved the installation of stereogenic centers, followed by the construction of the core
structure. While most synthetic organic chemists prefer to use aromatic rings as one of
the starting materials if the natural products contain them, Piers and Lau made the
aromatic system instead of starting with it, in order to take advantage of the preset
stereochemistry of the ketone 53.

The enone 52 was prepared following the protocol developed by Snider, Corey
and Engler. Hydrogenation with Pd/C yielded 53 with ease, setting up all of the three
contiguous stereogenic centers. A Reusch enone migration protocol was later applied to
convert enone 55 to epoxide 60, which nicely set up the stage for a Diels-Alder reaction
using an excess amount of the reactive diene 60. Under rather harsh conditions (150 °C, 4
days), the DA product was formed in satisfying yields (61-77%). Hydrolysis and
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aromatization led to a known ketone 48, which upon bromination yielded racemic

hamigeran B (Scheme 5).

Scheme 5
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2.1.3.5 Total Synthesis of (-)-Hamigeran B by Taber and Tian
In 2008, Taber and Tian reported their total synthesis of hamigeran B utilizing
rhodium-mediated intramolecular C-H insertion, a methodology they developed.'* They

borrowed the stereochemistry of citronellal to get the enantiomerically pure citronellol

Scheme 6
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derivative 64 as the starting material. After extensive efforts aimed at optimizing the
reaction conditions for the diazo transfer step and the Rh-mediated intramolecular C-H
insertion step, three more operations led to ketone 71. Olefination with the non-basic

Petasis reagent, in the presence of NaHCOj3; to prevent isomerization of the product,
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yielded an intermediate 72. To their delight, the iridium-catalyzed hydrogenation with
1100 psi hydrogen gas in the Parr reactor selectively reduced the more strained double
bond after 4-8 hours, leaving the benzylic alkene untouched. Upjohn dihydroxylation,
hydrogenolytic cleavage of cyclopropane together with the benzylic alcohol, followed by
TBAP/NMO oxidation led to a known diketone 34. Following Clive’s procedure, (-)-
hamigeran B was obtained (Scheme 6).
2.1.3.6 Formal Total Synthesis of Hamigeran B by Miesch, Welsch, Rietsch, and
Miesch

The Miesch group accomplished a formal total synthesis of racemic hamigeran B,
using the methodology developed in their lab, the intramolecular akynylogous Mukiyama

aldol-type reaction of cycloalkanones tethered to alkynyl esters (Scheme 7).*2
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2.1.3.7 Formal Total Synthesis of (+)-Hamigeran B by Mukherjee, McDougal,
Virgil, and Stoltz

Starting from the same starting material Miesch used, the Stoltz group synthesized
(+)-hamigeran B, using a palladium-catalyzed decarboxylative allylic alkylation

reaction.™®

Scheme 8
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After the highly enantioselective (94% ee) decarboxylative allylic alkylation,

catalyzed by Pd,(dba)z using the trifluoromethylated derivative of (S)-t-BuPHOX (85) as
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ligand, cross-metathesis and reductive cyclization yielded 90, the core structure of
hamigeran B. After dehydration of the B-hydroxyketone 90, enone 91 was obtained,

which was used to prepare (+)-hamigeran B (92) following Miesch’s protocol.

2.2 Progress Toward Total Synthesis of Hamigeran B

2.2.1 The Eight-electron Cyclization Reaction

Harmata, Zheng, Schreiner and Navarro-V&quez published a novel
electrocyclization of 2-bromocyclopentenones to form aromatic ring fused [4.3.0]
bicycles (Scheme 9).2 The theoretical study supported a cyclopentadienone intermediate

93d, which underwent an electrocyclization driven by deantiaromatization (Scheme 10).

Scheme 9

TEA (3 equiv)

TFE, 70 °C, 2d
93a Ry, Ry, Ry = H 69% 93b
94a R;, Ry = H; R, = OMe 61% 94b
95a R; = OMe; R, = H; R = Me 64% 95b
96a R; = H; Ry, Ry = -OCH,O- 61% 96b
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Scheme 10

2.2.2 Initial Synthetic Plan

Since the natural product hamigeran B has the aromatic ring fused [4.3.0] bicycle
substructure, we thought this new methodology was perfect to synthesize hamigeran B.
Since the Clive group had published their total synthesis of hamigeran B, using enone 26
as an intermediate, our initial efforts were focused on synthesizing 26 to realize a formal

total synthesis.

Scheme 11
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Retrosynthetic analysis revealed that 26 might be derived from a 2-

hydroxycyclopentenone 98 via cyclopentadienone 99 as a reactive intermediate through
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the electrocyclization reaction. Furthermore, 98 can be synthesized via a Tius-Nazarov

cyclization reaction from the 1,2-diketone 97 (Scheme 11).***°

2.2.3 Preparation of 2-Hydroxycyclopentenone

Based on the proposed synthetic route, making 98 would be the required for
testing the electrocyclization reaction. Tius had pioneered the use of a-diketones and a-
alkoxydienones as starting material for the Nazarov cyclization (Scheme 12). From their
studies, a-ethoxydienone 99 readily underwent Nazarov cyclization in the presence of
bis(acetonitrile)dichloropalladium(lIl) in wet acetone at room temperature. The possibility
that the reaction was a Michael addition was considered unlikely, since the 5-endo-trig
cyclization was not possible due to the poor orbital overlap. They also did a control
experiment to rule out HCI serving as the catalyst. Formally, treatment of 99 with HCI
led to the hydrolysis product 101 quantitatively. Moreover, they discovered a Nazarov
cyclization of o-diketones such as 102 with the Lewis acid ytterbium(l11) triflate, silica
gel, or lithium tetramethylpiperidide (Scheme 11). We wanted to use this chemistry in the
synthesis of 98, since it is potentially the product of Nazarov cyclization of diketone 97,
a-siloxydienone or a-ethoxydienone (Scheme 12).

A variety of approaches to the synthesis of a-diketone 97 were considered, as
shown in Scheme 13 and Scheme 14. In Scheme 13, the a-diketone 97 was envisioned to
be assembled via an umplong approach from an electrophilic carbonyl component (acyl
chloride, Weinreb’s amide, N-acyl morpholine, etc.) and a nucleophilic carbonyl

equivalent (dithiane, protected cyanohydrin, alkylvinyl ether, etc.). The vinyl group on
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the aromatic ring can be installed via Pd-catalyzed coupling reaction. (Heck reaction,

Suzuki coupling, Stille coupling, etc)
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In Scheme 14, a-siloxydienone or a-ethoxydienone was planned to be synthesized
through HWE reaction, with either the aromatic part being the aldehyde coupling partner

or being the phosphonate coupling partner.

Scheme 14
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With many possible ways making the key intermediates 97 and its related
derivatives, we identified the ortho-vinylbenzaldehyde being a versatile and important
intermediate that can lead to many of the other possible starting materials. An efficient

way of making large quantities of 102 would be crucial for the success of this project.

2.2.4 Preparation of Important Intermediate 102

Aldehyde 102 can be disassembled in at least two ways, as shown in Scheme 15.
The vinyl group can be installed on the known o-bromobenzaldehyde via Stille coupling
reaction with vinylstannanes or via Suzuki coupling reaction with vinylboronates. The
alternative approach would be to form the vinyl group through Wittig reaction of a lactol

intermediate generated from the known lactone 106.
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Scheme 15
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2.2.4.1 Palladium-Catalyzed Coupling Reactions to 102

As shown in Table 1, (2-bromo-3-methoxy-5-methylphenyl)methanol reacted
with tributylvinylstannane under standard Stille coupling condition to yield 105 in 23%
yield, with  46% recovered starting material. (2-lodo-3-methoxy-5-
methylphenyl)methanol reacted with potassium vinyltrifluoroboronate under standard

Suzuki coupling condition to generate 105 in 91% yield.

Table 1
Me Me
OH . . ; OH
NGY Stille or Suzuki coupling N
X
OMe OMe
105
M = SnBujz, X = Br: 1.1 equiv, 1 mol% Pd(Ph3P),Cl,, 4 mol% PhsP, 23%
1.5 equiv CsF, Toluene (0.12 M), 100°C, 18 h, with 46% recovered SM
M =BF3zK, X =1:1 equiv, 2 mol% Pd(OAc),, 6 mol% Ph3P, 3 equiv Cs,COg3,
THF/H,0 = 9:1(0.2 M), 90°C, 16.5 h, 91%
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Starting with the known 2-bromo-3-methoxy-5-methylbenzaldehyde, Stille
coupling yielded the vinylated product 102 in 82% yield; Suzuki reaction gave 102 in
51% yield. Using 2-iodo-3-methoxy-5-methyl-benzaldehyde as starting material, Stille

reaction provided 102 in higher yield (74%, 78%) than Suzuki reaction (69%) (Table 2).

Table 2
0 ]
| Me
Me Stille or Suzuki coupling
+ M >
x |
OMe OMe
102
M = SnBug, X =Br: 1.1 equiv, 1 mol% Pd(Ph3P),Cl,, 4 mol% PhsP, 1.5 equiv CsF,
Toluene, 100°C, 6 h, 82%
M = SnBus, X =1: 1.1 equiv, 1 mol% Pd(PhsP),Cl,, 4 mol% PhsP, 1.5 equiv CsF,
Toluene (0.25 M), 90°C, 16 h, 78%
1 equiv, 0.2 mol% Pd(PhsP),Cl,, 0.8 mol% PhsP, 1.5 equiv CsF,
Toluene (0.25 M), 90°C, 10 h, 74%
M = BF3K, X = Br: 1.5 equiv, 2 mol% Pd(OAc),, 6 mol% Ph3P, 3 equiv Cs,COs3,
THF/H,0 = 9:1, microwave, 45°C, 30 min; 75°C, 60 min, SM:P =2:1
2 equiv, 2 mol% Pd(OAc),, 6 mol% PhsP, 3 equiv Cs,CO3
THF/H,O = 9:1, seal tube, 85°C, 21 h, 51%
M =BF3K, X=1: 1 equiv, 2 mol% Pd(OAc),, 6 mol% Ph3P, 3 equiv Cs,COs3,
THF/H,0 = 9:1(0.2 M), 90°C, 11 h, 69%

2.2.4.2 The Wittig Route to 102
The isobenzofuranone 106 was synthesized from 4-methylsalicylic acid 107

following Snider’s protocol.*

Double methylation of 107 and basic hydrolysis yielded
acid 108 almost quantitatively. Amide 109 was obtained from acid 108 via the
corresponding acyl chloride in almost quantitative yield. Directed lithiation by amide

group generated an o-lithium benzamide that was trapped with N,N-dimethylformamide
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to yield 120. Reduction by sodium borohydride and acid-catalyzed lactonization led to
106 in 70% vyield. Next, the isobenzofuranone 106 was reduced partially with diisobutyl
aluminium hydride at -78 °C to the lactol. Treating the reaction mixture with Wittig

reagent in the same pot generated the alcohol 105 in 22% yield (Scheme 16).

Scheme 16
o 1. K,COs, Mel OMe 1. SOCl,, DMF OMe
COOH 2 % COOH CONEt
2. NaOH, 99% 2. HNEt,, 99% 2
Me Me Me
107 108 109
OMe
1. s-BuLi, TMEDA CONEt 1. NaBH,, MeOH OMe o
2. DMF, 96% 2 2.6 NHCI, 70%
> o )
Me CHO Ve
110 106
OMe o OMe o OMel
- )
DIBAL, -78°C . _ PhsP=CH,, 22%
— o ~ o .
OH
Me Me Me
105

2.2.5 Preparation of Phosphonates for Olefination Reaction

As shown in Scheme 14, the HWE reaction requires the synthesis of phosphonate
to react with the aldehyde 102. Scheme 17 summarizes three routes to synthesize three
different phosphonates from ethyl oxalate. In the first step, reacting the diethyl oxalate
with isobutyl magnesium chloride at -78 °C generated the ketoester 111. The second step
of route A involved trapping the enol with a TBS group, giving only the Z-silyl enol ether
112; the second step of route B consists of converting the carbonyl group to dithiane 115,

with BF3 as Lewis acid catalyst; route C protected the carbonyl group as methyl vinyl
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ether 117. The last step was to install the phosphonate by an acylation reaction (Scheme

17).
Scheme 17
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92% o)
117
118

2.2.6 Preparation of Methylphosphonate 103

Bromination of alcohol 105 with tetrabromomethane and triphenylphosphine

yielded benzyl bromide 119 in 81% yield. Methylphosphonate 103 was synthesized from

108 via a nucleophilic substitution with trimethyl phosphite (Scheme 18).

70



Scheme 18

OMe OMe OMe
| 1.2 equiv. CBr,, 1.2 equiv. PPhg | xs. (MeO)zP |
DCM, rt, 1h, 81% 100 °C, 12 h, 90% Q
oH P(OMe),
Me Me Br Me

105 119 103

The other coupling partner ketone 104 was prepared from (E)-5-methylhex-3-en-
2-one 120 by dihydroxylation with osmium oxide and N-methyl morpholine N-oxide, and
ketal formation with 2,2-dimethoxy propane in 85% yield. (E)-5-Methylhex-3-en-2-one
120 was made following Ragoussis’ procedure for regioselective aldol condensation

between methyl 3-oxobutanoate and isovaleraldehdye (Scheme 19) .*°

Scheme 19
o Me
N Me
j\/chJ\ MY 0 Me  1.0sO, NMO 0 Me
Me >
Me OMe —— ——> = 2. 2, 2-dimethoxy
pH78topH1 Ve Me Me 0O
120 propane, 85% O7LMe
Me
104

Next, the proposed olefination reaction was carried out. The solution of
phosphonate 103 in THF was added with 1 equivalent of KHMDS (0.5 M in toluene)
slowly. After 30 min at -78 °C, about two equivalents of the ketone 104 was added. The
reaction mixture was allowed to rise to rt and quenched with water. However, the desired
olefination product was not observed from the crude *H-NMR (Scheme 20). (E)-Stilbene
121 was formed cleanly from the analysis of crude *H-NMR. The structure of 121 was

unambiguously confirmed by X-ray crystallography. It was repeated to get 45% of
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stilbene with 17.6% of recovered phosphonate starting material. (E)-Stilbene 121 was
formed exclusively when phosphonate 103 was treated with potassium
hexamethyldisilazide at -78 °C for 20 minutes. Though the crude *H-NMR for this
reaction was very clean, the isolated yield of stilbene 121 was 40% in this case. This is a
rare example of stilbene formation from a phosphonate. If the reaction is general, it could
provide an alternative for generation of stilbenes otherwise difficult to make. We
proposed a possible mechanism for this transformation (Scheme 21). After the
deprotonation of phosphonate 103 with KHMDS, the carbanion attacked another
phosphonate fast enough to generate a new phosphonate. After elimination under basic

conditions, the (E)-stilbene 121 was formed.

Scheme 20
Me M
e
. . (e}
OMe \ 1. 1 equiv. KHMDS, -78 °C, 30 min Me )(O
o 2.es Me ,-78°Ctort ‘
P(OMe), Me Me
Me o) Me
103 " ‘ Me
e (6]
0—/Me OMe
Me clean conversion Not observed
104 from THNMR
OMe \ 1. 1 equiv KHMDS, -78 °C, 20 min; rt, 3 min
9 2. 1equiv 104, -78°Ctort, 4.5h
Me P(OMe), 45% 121, 17.6% 103
103 Me

OMe ‘
o 1.1 equiv KHMDS, -78 °C
P(OMe), 20 min, 40%
Me

103
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Scheme 21

OMe ‘
?
OMe ‘ Me P(OMe),
o KHMDS
P(OMe) —~
Me 2 Me P(OMe),
103 0
OMe ‘

Me

2.2.7 Heck Coupling Route to 97

Starting from orcinol, salicylic acid 124 was prepared according to Brise’s
protocol."® The salicylic acid 124 was treated with triflic anhydride and triethylamine to
yield the triflate 125 (Scheme 22). Ketone 104 was reacted with Wittig reagent to
produce the disubstituted alkene 126 in low yield, a result caused by the volatility of this

compound (Scheme 23).

Scheme 22
CHO
HO OH MeO OMe , MeO oM
Me,S0,, K,CO4 1. n-BuLi, THF e e
_ > _ >
Acetone, 82% 2. DMF, 85%
Me Me 122 Me 123
CHO CHO
MeO OTf
AICl, Nal MO OH 11,0, TEA
e —_—_—
74% DCM, 62%
Me 124 Me 125
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Scheme 23

Me Me
(o] Me M
m PhsP=CH, M ©
Me o 13.4% Me 0
O%Me O*/*Me
Me Me
104 126

The Heck coupling reaction between triflate 125 and alkene 126 was tried but no
coupling product was formed. Due to the low yield of alkene 126, methyl methacrylate
was used as the coupling partner for the Heck reaction. While, Pd(OAc), with triphenyl-

phosphine as ligand in triethylamine resulted in no converstion under microwave

Scheme 24
Me Me
Me O)<
CHO 5 mol % Pd(OAC),, Me o
MeO oTf Me 10 mol % (o-tolyl);P " \ N
' Me o) 4 equiv TEA, toluene © e
s b 07LMe 90°C, 14 h, no rxn ‘ Me
e
_Me OMeO
1.8 equiv 126
not observed
CHO
MeO OTf 10 mol % Pd(OAc),,
0,
Me OMe 20 mol %Ph3P, no rxn
o es. TEA, 120°C,
Me X 5 min, microwave
563 mg 125 1.2 equiv
CHO
MeO OTf 2 mol % Pd(OAc),, M
e
M OMe 4 mol % dppb,
© o 3 equiv TEA, toluene ‘
Me > eaui reflux, 12 h OMeO
equiv
563 mg 125 The only product from crude NMR
o (0]
CHO Me
MeO OTf 10 mol % Pd(OAc),, ‘ OMe OMe
M J%(OMe 20 mol % dppb, Me + Me
e
o 3 equiv K,COg, toluene
Me . reflux, 1.5 days | |
64 mg 125 10 equiv OMeO OMeO
48% 127 33% 128
CHO
MeO OTf 2 mol % Pd(OAc),,
0,
Mej%(OMe 4 mol % dppb, Polimerization
o 3 equiv K,COg, toluene
Me reflux, 4 days
439125 50 equiv Y
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conditions, switching to dppb as ligand generated the detriflated benzaldehyde only from
the analysis of crude proton NMR. The triflate 125 did react with methyl methacrylate to
yield a mixture of two isomeric products in 48% and 33% yield (Scheme 24). However,
this reaction failed when it was scaled up to 4.3 grams scale, due to the polymerization of
methacrylate under the conditions.
2.2.8 Preparation of a-Hydroxyl Cyclopentenone

Finally, vinylation of o-bromo-a-methyl cinnamaldehyde was explored,
generating excellent yields of the vinylated product. This working protocol was one of
the earliest to be explored, since 129 was also the starting material used for the total
synthesis of pseudopteroxazole. HWE reaction with triethyl 2-phosphonopropionate
yielded the o-bromo-a-methylcinnamate 130 cleanly with complete (E)-selectivity.
Reduction with DIBAL and allylic oxidation with manganese(IV) oxide led to the o-
bromo-a-methylcinnamaldehyde 131 in very good yield. Very gratifyingly, both of the
Suzuki and Stille coupling produced the vinylated a-methylcinnamaldehyde 132 in good

yield (Scheme 25).

Scheme 25

11

(EtO),P.

OEt o
Me
Me
Me Me Me CHO ‘ OEt
5 steps Ba(OH),, THF/H,0 Me
_—
a.c. 20% Br 30°C, 24 h, 90%
OMe OMe Br
3,5-dimethylanisole 129 OMe
130
\/SHBU:;
Me CHO Me CHO
1. DIBAL, THF, 2.5 h e ‘ Stille Coupling (A) y |
e
2. MnO, _ or Suzuki Coupling (B)
96% for 2 st
6 for 2 steps Br /\B/O

OMe (\)\f OMe ‘
131 132

A: Pd(Ph3P),Cl,, PhsP, CsF, PhMe, 90°C, 17 h, 94%
B: Pd(OAG),, PhsP, Na,COz, PrOH/H,0 = 2:1, 90°C, 7 h, 92%
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Having the aldehyde 132 in hand, it was added to a solution of lithiated dithiane
solution that was generated from 2-isobutyl-1,3-dithiane with n-butyl lithium at -20 °C.
The crude mixture was hydrolyzed with mercury oxide and boron trifluoride-etherate to
yield the hydroxyketone 134, which was oxidized with IBX to generate a-diketone 97 in
83% yield (Scheme 26). a-Diketone 97 was treated with strong non-nucleophilic bases,
lithium  hexamethyldisilazide, lithium  tetramethylpiperidide, and  potassium
hexamethyldisilazide (Table 3). Up to 71% yield of the desired product was obtained
under optimized conditions. It also seemed that the acidification step during workup may

contribute to the higher yield, since the *H-NMR of the crude product was consistently

clean.
Scheme 26
Me | CHO Sﬁ HgO, BF3z Et,O
Me Li—f~g THF, -20°C, 3 h THF/H,0
* Me
56% for 2 steps
| Me
OMe
132
OH o
Me (o) Me o
Table 3
Me | Me _BX EtOAC _ e | Me
90°C, 3 h, 83%
Me Me
OMe | OMe |
134 97
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Table 3

o
Me (0]
| Conditions
Me Me — 5
Me
OMe |
97
Entry

1 1.2 equiv LITMP, THF, -78°C to rt, 28 h, 59%
2 1.1 equiv LIHMDS, THF, -78°C to rt, 21 h, 42%
3 1.2 equiv LIHMDS (0.24M in THF), THF, -78°C to rt, 18 h, 44%
4 1.5 equiv LIHMDS (0.8M in THF), THF, -78°C slowly to rt, 2 days, 71%
5 1.4 equiv LIHMDS (0.9M in THF), THF(0.1 M), -78°C slowly to rt, 1 days, 64%

2.2.9 The Dead End and the Detour
At this stage of synthesis, we were ready to try the key electrocyclization reaction

on this a-hydroxycyclopentenone 98.

2.2.9.1 The Key Reaction Did Not Go

Trapping the Tius-Nazarov cyclization product with triflic anhydride produced
the triflate 136 in an 8% vyield. Next, the triflate 136 was dissolved in acetonitrile and
treated with Hinig’s base, producing no desired product 135. The crude *H-NMR showed
only a mess. Treating a-hydroxycyclopentenone 98 with PhN(Tf), and triethylamine in

dichloromethane yielded a mess from the crude NMR too. The negative results were not
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too surprising, since a B-substituted a-bromocyclopentenone (137) failed to undergo the

electrocyclization too, yielding only the elimination product 138.%

Scheme 27
o}

Me (0] 1.1 equiv LIHMDS

_7Q0, .

Me \ ve 78 Ctolrt, 21 h;

1.1 equiv Tf,O

Me THF, -20°C, 1h

OMe ‘
97 42% 98 8% 136

OMe

Hunig's base O‘ Me
ACN, rt Me

)

Me e
Me
135 not observed

OMe
PhN(Tf),, TEA O‘ Me
DCM, rt Me '
Me (o)
Me

135 not observed

Me
O TEA, TFE 0 Zheng, P. PhD. Thesis, UMC,
70°C, 7d ‘ 2007
25% ’

O

137 138

2.2.9.2 Wacker-type Oxidative Carbocyclization

Based on the above results, we decided to abandon the use of the
electrocyclization method to construct the six-membered ring. Instead, we used this
opportunity to invent new tactics, since there was no reported literature about this specific
type of transformation. This also presents a common occurrence in the total synthesis,

which requires discovery and development of new methodologies.
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2.2.9.2.1 Wacker and Wacker-type Oxidations

Using oxygen as an oxidant, nature evolved oxidase and oxygenase enzymes such
as cytochrome P450 for oxidizing small organic molecules. In the world of organic
synthesis, the Wacker oxidation uses oxygen as the ultimate oxidant too (Scheme 28).
Though there was a review published after we overcame this obstacle, covering all kinds
of “addition of metal enolate derivatives to unactivated carbon carbon rnulti-bonds”,20 we
were specifically interested in a Wacker-type oxidative process for two reasons: the
efficiency of Wacker oxidation has been proved for long time, though the mechanism is

still under debate, and the process is relatively green and biomimetic, using molecular

oxygen as oxidant rather than stoichiometric amount of metals or organic oxidants.

Scheme 28
Oxidase catalysis: Wacker Oxidation o
H,C=CH, PdCl,, CuCl, g )J\
H,0, O, Me H
Oxygenase catalysis: Dihydroxylation
i 0
H,C=CH, or Epoxdation . A or HO/\/OH

Metal, O,

The mechanism of Wacker oxidation generally is considered to include the
activation of the alkene by the Lewis acidic palladium(ll). A water molecule then attacks
the activated alkene, followed by a facile B-hydride elimination. The palladium catalyst is

regenerated by the copper salt, which is oxidized by oxygen ultimately (Scheme 29).
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Scheme 29

OH,
X \/\\/R nucleopalladatlon X. %OH B-hydride elimination> \\‘/OH
L,PQ'X “HX !
HX +

catalyst regeneration: H
ystreg ! L,PdX, L,Pd° <L—1,1Pd\

2 cucl 2 CuCl,

1

0,, 2 HX

More recently, Wacker-type reactions using palladium(ll) as a Lewis acid to

activate alkenes and nucleophiles to form Pd-m-allyl complex or Pd-n-benzyl complex

were developed (Scheme 30).%

Scheme 30
Wacker-type reactions:
HNu HX
H PdX Nu
/T + PdX2 /> NU o . . . . > %
R nucleopalladation R> B-hydride elimination R

Nu, Pd(ll) Pd(II)\O pd-mallyl complex

Pd(II

Nu, Pd(II)
©A @N Pd-m-benzyl complex

The work of Widenhoefer concerning nucleophilic addition of B-diketones to

unactivated” double bonds was found to be most similar to the Wacker-type oxidative
80



alkylation of an a-hydroxyenone with an adjacent vinyl group. It provided us a strong

reason to try their conditions, based on the similar mechanisms of the two processes.?? ?*

Yang’s work on p-ketoamides was also inspiring (Scheme 31).2*

Scheme 31
Widenhoefer's intramolecular oxidative alkylation:

O (0] O O
PdCl,(MeCN), 5 mol %
Et CuCl, (2.5 equiv) Et
% DCE, 11, 97% Me
139 140

Yang's aerobic oxidative cyclization:
O O O O

PdCl,(MeCN), 10 mol %
MezN Yb(OTf); 1 equiv MexN |
A~ NTs 0, 1 atm Me M

0
141 THF, rt, 98%

2.2.9.2.2 Pd(I1) Catalyzed Oxidative 6-endo-trig Carbocyclization

We were really excited by the preliminary results on this reaction. With 0.3
equivalent of PdCl,(MeCN),, the product to starting material ratio was 0.6 to 1 from the
crude proton NMR (Table 4, entry 1). Using THF as solvent enabled the reaction to
happen at room temperature (Table 4, entry 2). Further optimization indicated that
oxygen gas is superior to air as the oxidant, and prolonged reaction time led quantitative
yield of the enol ketone 144 after tautomerization with catalytic amount of silica and

TEA (Table 4, entry 6).
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Table 4

_—

(@] . Me OH
Me \_ silica / Me

143 TEA 144

Entry  PdCI,(CH3CN), Cul(mol %) Oxidant Solvent Temp Time yield

1 30 mol %

2 1 equiv

3 (1+2)mol%® 15 0,
4 10 mol % 15 air

5 3.6 mol % 28P 0,

6 4.3 mol % 5 0,

dioxane 40°C 30 min SM/P =1:0.6

THF(0.01M) rt over night 66%°
THF(0.05M) 1t 48 h 87%°
THF(0.1M) rtto 65°C 17 h 66%°
DMF(0.05M) rt 1week norxn
THF(0.05M) rt 1week 100%

22 mol % of catalyst was added one day after the addition of first 1 mol % of catalyst.

b CuCl was used instead of Cul.
¢ Products were mixture of two epimers.

d This is isolated two step yield, after epimerization to enone ketone.

We proposed a simplified mechanism for this reaction (Scheme 32). The Lewis
acidic palladium(Il) coordinates and activates the vinyl group. Then the adjacent
nucleophilic enol attacks the electrophilic vinyl palladium complex. This is followed by
B-hydride elimination, leading to the product 143, which could be tautomerized to the

more stable enol ketone 144. The catalyst was regenerated with oxidation of Cu(ll),

which in turn was regenerated by oxygen.
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Scheme 32

2.2.10 Attempts for Tandem Reactions

Having a working reaction for the carbocyclization available, we envisioned
making this synthetic sequence more efficient and attractive by designing tandem
reactions for the key cyclization steps. As shown in Scheme 33, treating the lithiated TBS
cyanohydrin 145 with ketene 146 would generate the dienone 147. Based on Tius’ results
on Nazarov cyclization and our result on Wacker-type oxidative carbocyclization, the
benzene-fused [4.3.0] bicyclic compound 144 would be produced by the same catalyst:
PdCI;(MeCN),.

Scheme 33

proposed tandem 1,2-addition and Nazarov cyclization:

OTBS =

Me Me OTBS
L 146
L 'V'e _PdCly(MeCN); _
tandem

PACI,(MeCN), O‘ Ve
_——-——
tandum Me

144
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To try this idea out, the preparation of the TMS-protected cyanohydrin was
attempted first, generating 92% of the crude 148a. However, the product 148a was too
labile and decomposed back to the starting material on silica and alumina columns. After
passing the crude material through a short pack of silica gel, 148a was deprotonated with
LiHMDS in THF at low temperature and trapped with isovaleraldehyde and the
corresponding amide, leading to a complex mixture (Scheme 34).

Then, the TBS-protected cyanohydrin 148 was prepared directly from the
vinylated cinnamaldehyde 132 with KCN, TBSCI and catalytic amount of Znl, in 91%
yield (Scheme 35). The dimerization of ketene 146 was too facile. And the attempted
reactions for making it yielded only the dimer. Treating the deprotonated TBS-protected
cyanohydrin 148 with isovaleraldehyde led to ketone 149 (Scheme 35). Oxidation of
ketone 149 to dienone 150 would produce the same starting material for trying the
palladium-catalyzed tandem reaction (Scheme 36). However, Saegusa oxidation and IBX

oxidation did not yield the desired dienone.

Scheme 34
? oTMS
Me Me CN
Ve | 1.5 equiv TMSCN . \
cat. Znl,, DCM, rt
= 3 days, 92% =
OMe OMe
132 148a
oTMS (\)
Me Me

1.1 equiv LIHMDS only 132 and
- . Weinreb's aimde

O Me

Me

Me.
N Me

|
OMe
no rxn

—_— messy



Scheme 35

? oTBS
Me Me CN  LHMDS, THF Me OoTBS
\ KCN, TBSCI, Znl,
Me 8°C
MeCN, rt
= 24h, 91%
OMe OMe OMe
132 148 87% 149

Scheme 36

proposed tandem Nazarov cyclization and Wacker-type oxidative cyclization:

O
Me oTBS Me OTBS
oxidation PdCIz(MeCN)2
e Me " tandem
OMe

PdCl,(MeCN), O‘ "
_— - e
tandem Me g Q o

Me OH 144
Me

Finally, the ketone 149 was deprotected with TBAF to generate the a-
hydroxyketone 150, which then was oxidized with pyridinium dichlorochromate or Dess-

Martin periodinane to yield the a-diketone 97 in good yields (Scheme 37).%

Scheme 37
[e) (@]
OTBS OH o]
Me Me PDC, DCM Me
Me | Me TBAF, THF, 1t Me | Me 1t 90%; Me | Me
—_— _—
0,
P Me 92% P Me Or DMP, DCM _ Me
rt, 71%
OMe OMe OMe
149 150 97

85



2.2.11 An Interrupted Nazarov Cyclization

The Nazarov cyclization has been developed for decades. It has been applied in
the total synthesis of natural products beautifully. Also known is the interrupted Nazarov
cyclization, the trapping of the oxocarbenium intermediate with nucleophiles, such as
aromatic rings, alkenes, or dienes.

During our study of making the a-diketone 97, we discovered a rare stable
hydrolysis intermediate of a dithiane, which upon treating with Lewis acids or Brensted
acids, underwent an interesting interrupted Nazarov cyclization.

It is well known that Weinreb’s amide gives ketones when reacted with
organolithium or Grignard’s reagents. a-Diketone 97 could theoretically be synthesized

from a Weinreb’s amide 152 through a dithiane intermediate 151 (Scheme 38).

o)
Me _.OMe
roN
|:> Me Me
OMe |

152

Scheme 38

the retrosynthesis of diketone from Weinreb's aimde:
O
Me (0]
Me | Me ——> Me
Me
OMe |
97

Starting from the o-bromo-a-methacinnamate 130, Stille coupling yielded the

ethyl ester 153 in 92% yield. The ester was converted to Weinreb’s amide 154 with N,O-
dimethyl-N-hydroxyl amine hydrochloride and isopropyl magnesium chloride in 88%
yield. The lithiated dithiane added to the amide to yield the dithiane 155 in 80% yield

(Scheme 39).
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Scheme 39

o}
Me =N Me
[ oEt 2 SnBus [ oEt
Me Stille Coupling (A) Me HCI-HN(OMe)Me, iPrMgCl
92% > THF, 88%
Br |
OMe OMe
130 153
o)

.S
Me | N-OMe Ll\ﬁs\\7
|
Me Me

i-Pr

THF, -20°C, 8 h, 80%

OMe |
154

A: 1.5 equiv tributylvinyltin, 1 mol% Pd(PhsP),Cl,, 4 mol% PhsP, 1.5 equiv CsF, toluene, (0.2 M) 110°C, 20 h, 92%

Many hydrolysis conditions known for converting dithianes to ketones were tried
to hydrolyze the dithiane 155. However, either no reaction happened or it gave a mess
due to the decomposition of the a-diketone (Scheme 40, entry 1 to 4). From TLC, a
significant new spot was detected only five minutes after adding NCS (Scheme 40, entry
5). It was estimated to be an intermediate of the hydrolysis of dithiane, based on the
analysis of *H-NMR and *C-NMR. Changing the solvent to methanol and the base to
2,6-lutidine, the methyl sulfinate 156 was isolated in 86% vyield (Scheme 40, entry 6).
The structure of 156 was derived from 'H-NMR, *C-NMR, DEPT135, COSY, high
resolution mass spectrum and IR analysis. From HRMS, the observed mass 459.1636u
(MNa") was consistent with a formula of C23H3,0,S,. The IR showed a strong absorbent
peak at 1642 cm™, indicating a conjugated carbonyl group. **C-NMR and DEPT135

showed one ketone’s carbonyl group, six quaternary sp® hybridized carbons, five sp

87



hybridized CH, one sp® hydridized CH,, five CHj, three aliphatic CH,, and one aliphatic
CH (Figure 2 and 3). From *H-NMR, the diastereotopic hydrogens on the carbon next to
sulfinate (p2 in Figure 4) were obviously observed based on the splitting pattern common
to the diastereotopic hydrogens. Further, COSY showed the coupling between proton b
and i1 (Figure 5); v1, v2, and v3 were from the vinyl group (Figure 6); p1, p2, and p3

from the propylene group (not shown here).

Figure 2. ®*C-NMR of 156
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Figure 3. DEPT135 of 156.
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Figure 5. COSY showing b and il.
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Scheme 40

O S O I
Me S S<
Me | s\\7 | | ~ S oMe
Me . » Me Me
i-Pr
= Me
OMe | OMe
155 156
Reagents Solvents Temperature Product
1. 2.2 equiv HgO, 2.2 equiv BF3Et,0O THF/H,O rt SM + mess
2. 5equiv IBX, 0.1 equiv B-cyclodextrin ~ Acetone/H,O rt SM
3. (CF3CO,),IPh ACN/H,O (9:1) rt decomposition
4. NBS ACN/H,O (9:1) rt SM
5. NCS, Na,CO3, wet SiO, Acetone rt unknown
6. NCS, 2,6-lutidine MeOH 0°C 156 (86%)

It was a very rare example of hydrolysis intermediate of dithianes, once again
supporting the oxidative hydrolysis mechanism for NCS-mediated deprotection of
dithianes. Looking at the structure of the methyl sulfinate, it is likely that this o-
heteroatom dienone could be a perfect starting material for an interrupted Nazarov
cyclization. It would also be catalyzed by milder Lewis acids, since the oxygen of the
sulfinate functional group could coordinate with the metal, forcing the dienone in the cis-
configuration to facilitate the electrocyclization. And the adjacent vinyl group, being a
nucleophile, could attach the thiocarbenium intermediate to generate the benzene fused
[4.3.0] bicycle.

The initial results were quite promising, giving the desired product in up to 53%
yield (Scheme 41 and Experimental Section). And we proposed a mechanism for this

transformation as shown in Scheme 42.
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Scheme 41

Me Me
M i S 2 Me o Me oH
e < .
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Scheme 42
OMel
Me
Me
Me
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OMe OMe OMe
T+ o~ H
Me O‘ Me hydrolysis O‘ Me
—_—
— > Me O —> Me o Me . o
H H H
) S . S
|-Pro:s |-Pro:s Me o)
Me
160 161 143

We then tried to optimize this interrupted Nazarov cyclization process. Numerous
Lewis acids and Brensted acids were screened. However, the yields were consistently
low, being around 20% typically (See the Experimental Section for details). One of the
byproducts isolated was determined to be the dithiane 162, a reduced product of the
sulfoxide intermediate 161. This indicated there should be some auto-redox reaction
happening. Being curious to see if this byproduct 162 could be transformed to a useful

intermediate for the synthesis of natural product hamigeran B, a short sequence of
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deoxygenation was executed on 162. Reduction by LAH led to the secondary alcohol 163
with complete diastereoselectivity, with hydride coming from the convex face.
Mesylation of the secondary alcohol 163, however, led to an unexpected product 164 by
that time (Scheme 43). A literature research gave us another example of this type of
reaction.?® It is possible that the configuration of 164, having the hydrogen, sulfur and
mesyl group aligned antiparallel to each other, made the elimination of the mesyl group

and the concomitant migration of sulfur a rather facile process.

Scheme 43
OMe

MsCl, TEA
DCM, 74%

2.2.12 The Dead Ends

Starting from commercially available 3,3-dimethylaniline, the diketone 143 and
its tautomer 144 with the core carbon structure of hamigeran B, were obtained in twelve
to fourteen steps depending on which route was used. Now, it is the stage for the end
game of the total synthesis, converting the diketone to the natural product through

functional group manipulations. Obviously, the two carbonyl group needs to be reduced;
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the benzylic double bond needs to be oxidized into a diketone. The stereochemistry of
C6, the carbon bearing the isopropyl group, need to be inverted.

Taking advantage of the lability of the a-hydrogen of ketones, the stereochemistry
of C6 was destroyed by epimerizing the diketone 143 to enone ketone 144 with silica and
amine base. Treatment with triflic anhydride and triethylamine yielded the triflate 165 in

83% vyield. Reduction with formic acid by palladium(0) catalysis led to the enone 166 in

OMe
_THhO, TEA O‘ Me
B e
H
Me oTf
Me

86% yield (Scheme 44).

Scheme 44

Pd(OAC)Z, PPhS
HCO,H, TEA
DMF, 86%

With enone in hand 166, it was very tempting to do a conjugate reduction to set
the C6 stereochemistry by kinetic control with hydride attacking from the less sterically
hindered convex face. However, Wilkinson’s catalyst and copper hydride reduction

yielded only the thermodynamic product with the exo-isopropyl group 167 (Table 5).
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Table 5
OMe OMe

Me Me
Me Me
166 167
Entry
1 (PPh3)3RNCl, i-Pr3SiH, PhMe, 80°C, 33%
2 CuCl, t-BuONa, BINAP, PMHS, PhMe, rt, 11%
3 CuCl, NaOMe, (R)-DTBM-SEGPHOS, PMHS, PhMe, rt, 1 day, 24%

Given the difficulty of setting up the correct stereochemistry of C6 by conjugate
reduction, we turned our attention to making Tius’ TBS-protected cyclopentadiene 31 for
a formal total synthesis purpose. To that end, the enone 166 needs to be oxidized to diol
171, protected with TBS group to 170, reduced to allylic alcohol 169, mesylated and

eliminated to the cyclopentadiene 31 (Scheme 45).

Scheme 45
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The dihydroxylation with osmium(lIV) oxide and NMO generated the diol 171
chemoselectively.”” The protection of the diol 171 turned out to be rather tricky. Using
TBSCI as silylation reagent under different conditions resulted in no conversion.
Applying TBSOTTf as the silylation reagent with 2,6-lutidine yielded TBS-protected
hemiketal 172 as the only product, because of the proximity of the benzylic hydroxyl
group and the carbonyl group (Scheme 46). The structure of 172 was identified from
analysis of H-NMR, 13C-NMR, DEPT135, HMQC and COSY. Efforts to protect the diol
171 with other protecting groups, such as acetal, dimethylsilyl group did not produce

satisfying result.

Scheme 46

TBSOTf, 2,6-Iutidine
73%

L-selectride reduces simple enones in a 1,4-manner, and reduces sterically
hindered enones in a 1,2-manner. L-selectride reduced the enone 166 cleanly to generate
the allylic alcohol 173, the relative stereochemistry of which was determined through 2-D
NMR analysis of the corresponding acetate (176) (Scheme 48). From the NOESY

spectrum, the hydrogen on C15 (5 5.64) showed correlation with hydrogens on C16 (&
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1.15), indicating the cis-relationship between them (Figure 2). Both of the two possible
diastereomers of the allylic alcohol could be utilized for the setting up of C6 stereogenic
center. Many allylic formats can be reduced by palladium(0) to alkene via Sn2-type
fashion with inverstion of stereochemistry. The other allylic alcohol diastereomer could
be reduced via OH-directed hydrogenation conditions for the construction of C6
stereochemistry.

For the formate formation, acetic formic anhydride was used to generate the
formate 174 in 87% vyield. However, the palladium(0) mediated reduction did not do
anything to the starting material 174. Interestingly, palladium on carbon led to the

oxidized product 166 in 67% yield (Scheme 47).

Scheme 47

OMe OMe

O‘ Me L-selectride O‘ Me Acetic formic anhydride
Me . Q o] THF, 0°C, 95% Me " --‘OH DMAP, DCM, tt, 87%
Me Me
Me Me
166 173
OMe OMe

Pd(OACc),, nBusP,
dioxane, rt to 90°C

No reaction H

Me
175 Not observed

OMe
10 Wt% Pd/C
B0OpsiHp Meo
_800psiHy 1t
EOH, 67% © H Q

Me

Me
166
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Scheme 48

O‘ Ve _©S:Ac0, DMAP
-_—---——
.OH DCM,rt, 11 h
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2.3 Concluding Remarks

In summary, the core structure of hamigeran B was constructed efficiently, using
Tius-Nazarov cyclization and Wacker-type oxidative carbocyclization or an interrupted
Nazarov cyclization. Instead of converting to the known intermediates for synthesis of

hamigeran B through long sequence, we explored any efficient way of setting the

stereochemistry of C6.
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2.5 Experimental Section
General Information:

All air and moisture sensitive reactions were carried out in flame-dried glassware
under an argon or nitrogen atmosphere. Reactive liquid reagents (LHMDS, etc.) were
measured and transferred by gastight syringes through rubber septa. Tetrahydrofuran
(THF) was freshly distilled over sodium benzophenone kytyl. Toluene was distilled from
CaH,. The reaction mixture was concentrated by using a rotary evaporator attached to a
water aspirator. Residue solvents were usually removed under reduced pressure using
vacuum pump (approximately Imm Hg).

Flash chromatographic separations were carried out on silica gel (230-400 mesh) with
ACS reagent grade solvents. Analytical thin layer chromatography was performed on
glass—backed silica gel plates with F254 indicator. Compounds were visualized under UV
light or by developing in iodine, vanillin, phosphomolybdic acid solution or with
potassium permanganate solution followed by heating in a hot plate to approximately
350°C. Melting points were determined with a melting point apparatus.

'H NMR spectra were recorded in Fourier transform mode at 250, 300 or 500 MHz,
respectively, as CDCI; solutions with tetramethylsilane (6 = 0 ppm) as the internal
standard. *C NMR spectra were recorded on the same instruments at 62.5, 75 or 125
MHz, respectively, with CDCl; (5 = 77 ppm) as the internal reference. **P NMR spectra
were recorded on the same instruments at 101 MHz, respectively, with 85% H3PO, (6 =0
ppm) as the external standard. Chemical shifts (0) were reported in parts per million
(ppm). Multiplicities were reported as s (singlet), b (broad), d (doublet), t (triplet), q
(quartet), m (multiplet), and dd (doublet of doublet), etc. In *H NMR spectra of
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diastereomeric mixtures, the signals for individual isomers were reported when possible.
Infrared spectra were recorded on an FT-IR spectrometer. Optical rotations were recorded
on a polarimeter with sodium D line at the temperatures as indicated in the experimental
for specific compounds. High resolution mass spectra were obtained on a magnetic sector

instrument with a resolution greater than 10,000.

O TBSCI, TEA o
i-Bu )
' \[HJ\OEt DMAP, DCM _ |-Pr/\HJ\OEt
0] rt, 54% OTBS
111 112

112: To a solution of 111 (1.38 g, 8.7 mmol) in DCM (17 mL, 0.5 M) was added TBSCI
(1.57 g, 10.4 mmol), DMAP (0.1 g, 0.9 mmol), and TEA (1.76 g, 17.4 mmol) at rt
sequentially. After 13 hours at rt, it was quenched with 10 mL water, washed with 10 mL
brine, dried with Na,SO,4, concentrated under reduced pressure at rt, and purified by FCC
with 2-5% EA/Hex on silica gel to get 112 (1.28 g, 54%) as a colorless oil. IR (neat):
3428, 2962, 2929, 2856, 1720, 1642, 1250 cm™; *H NMR (CDCls, 500 MHz) & 5.84 (d, 1
H,J=10Hz), 419 (q, 2 H, J = 7.5 Hz), 2.87-2.80 (m, 1 H), 1.31 (t, 3 H, J = 7.5 Hz), 1.01
(d, 6 H, J = 7 Hz), 0.96 (s, 9 H); *C NMR (CDCls, 125 MHz) § 165.2, 138.9, 129.7,
60.8, 25.8, 25.1, 22.2, 18.6, 14.2, -4.4; HRMS calcd for Cy4Hs03SiNa [M+Na]*

295.1700; Found: 295.1697.

0 o)
O Me_ _P(OEY), 113 I iPr
e~ P(OEY; (EtO),P
i-Pr OEt >
OTBS nBuLi, THF, -78°C Me OTBS
64% )
112 114
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114: To a solution of 113 (446 mg, 2.69 mmol) in THF (8 mL, 0.34 M) was added nBuL.i
(1.4 mL, 1.9 M in THF, 2.69 mmol) at -78 °C slowly. After 1 hour, 112 (245 mg, 0.896
mmol) was added slowly. It was quenched after stirring at -78 °C for 10 hours with 10
mL sat. NH4ClI, extracted with 3 x 10 mL EA, washed with 10 mL brine, dried with
Na,SO4, concentrated under reduced pressure to get 495 mg crude yellow oil. Then it was
purified by FCC with 50% EA/Hex to get 114 (151 mg, 43%) as colorless oil. IR (neat):
3469, 2958, 1675, 1622, 1250, 1025 cm™; *H NMR (CDCls, 500 MHz) & 5.80 (d, 1 H, J
= 9 Hz), 4.16-4.07 (m, 4 H), 3.76 (dq, 1 H, J = 22.5, 7 Hz), 2.95 (m, 1 H), 1.41 (dd, 3 H, J
=7,18 Hz), 1.31 (dt, 6 H, J = 7, 6.5 Hz), 1.05 (dd, 6 H, J = 6.5, 9.5 Hz), 0.95 (d, 9 H, J =
0.5 Hz), 0.18 (s, 3 H), 0.14 (s, 3 H); *C NMR (CDCls, 125 MHz) & 193.2 (d, J = 5 Hz),
146.9 (d, J = 2.5 Hz), 133.3, 62.6 (d, J = 7.5 Hz), 62.4 (d, J = 6 Hz), 40.2, 39.2, 25.9,
25.6,22.1 (d, J = 2.5 Hz), 18.8, 16.4 (d, J = 3.8 Hz), 16.36 (d, = 5 Hz), 12.5 (d, J = 6.2

Hz), -4.0, -4.2; HRMS calcd for C1gH370sPSiNa [M+Na]* 415.2040; Found: 415.2040.

o) HS” " sH o]
i-Bu\[HJ\ - i-Bu%J\
OEt OEt
I BF;.Et,0 s
DCM, 83% V
111 115

115: To a solution of 111 (309 mg, 1.95 mmol) and propane-1,3-dithiol (211 mg, 1.95
mmol) in DCM (10 mL, 0.2 M) was added trifluoroborane etherate (80 pL, 48%, 0.3
mmol) at 0 °C. It was stirred at rt for 5 hours. Then, it was quenched with sat. NaHCOj,
extracted with DCM, dried with MgSO,, concentrated under reduced pressure, and
purified by FCC with 5% EA/Hex to get 115 as a colorless oil (402 mg, 83%). IR (neat):
2958, 2925, 1716, 1209, 1119, 1025 cm™; *H NMR (CDCls, 500 MHz) & 4.24 (q, 2 H, J

= 7 Hz), 3.26 (M, 2 H), 2.65 (M, 2 H), 2.16-2.11 (m, 1 H), 2.00 (d, 2 H, J = 1.5 Hz), 1.86
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(m, 2 H), 1.33 (t, 3H, J=7.5Hz), 0.94 (d, 6 H, J = 6 Hz); ®*C NMR (CDCls, 125 MHz)
§ 171.2, 61.7, 53.0, 16.9, 27.9, 25.1, 24.7, 23.6, 14.0; HRMS calcd for Cy11H0,S;Na

[M+Na]" 271.0797; Found: 271.0791.

0 Q 0 |
i-Bu%J\ MePOED, 113 gi0),p P
OFt -
SRS nBuLi, THF, -78°C Me/\H/ESSA
\7 96% o)

115 116

116: To a solution of 113 (287 mg, 1.73 mmol) in THF (2 mL, 0.86 M) was added nBuL.i
(0.95 mL, 1.9 M in THF, 1.8 mmol) at -78 °C slowly. After 1 hour, 115 (140 mg, 0.564
mmol) was added slowly. It was quenched after stirring at -78 °C for 2 hours with 2 mL
sat. NH4Cl, extracted with 3 x 2 mL EA, washed with 4 mL brine, dried with Na,SOs,,
concentrated under reduced pressure. Then it was purified by FCC with 50% EA/Hex to
get 116 (200 mg, 96 %) as colorless oil. IR (neat): 2954, 1704, 1254, 1021 cm™; *H NMR
(CDCls, 500 MHz) & 4.28-4.11 (m, 4 H), 3.95 (dg, 1 H, J = 25, 7 Hz), 3.36 (dt, 1 H, J = 3,
14 Hz), 2.79 (dt, 1 H, J = 2.5, 14 Hz), 2.61 (tt, 2 H, J = 3, 15.5 Hz), 2.16 (heptet, 1 H, J =
6 Hz), 2.06-2.01 (m, 1 H), 1.91 (dd, 3 H, J = 7, 18 Hz), 1.34 (dt, 6 H, J = 5, 7 Hz), 1.05
(d, 6 H, J = 6.5 Hz); *C NMR (CDCls, 125 MHz) & 199.6 (d, J = 3.75 Hz), 63.7 (d, J =5
Hz), 62.9 (d, J = 7.5 Hz), 62.1 (d, J = 7.5 Hz), 44.8, 40.5, 39.5, 27.8 (d, J = 3.8 Hz), 25.3,
25.2, 25.1, 24.1, 16.4 (d, J = 6.2 Hz), 16.3 (d, J = 5 Hz), 16.0 (d, J = 6.2 Hz); HRMS

calcd for C15H2904PS,Na [M+Na]* 391.1137; Found: 391.1127.
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OMe ¢ OMe o OMe |
/
DIBAL, -78°C _ PhsP=CH,, 22%
> O -
o OH
Me Me

105

Me
106

To a solution of lactone 106 (422 mg, 2.37 mmol) in DCM (10 mL, 0.2 M) was added
DIBAL (4.74 mL, 1 M in Toluene, 4.74 mmol) at -78 °C. After 9 hours, it was quenched
with ethyl acetate. Then it was poured to a solution of Wittig reagent (4.74 mmol) in THF
at 0 °C. The reaction mixture was stirred at rt overnight, quenched with 50 mL water, and
washed with sat. NH4CI. Then it was purified by FCC with 25% EA/Hex after
concentration under reduced pressure to get 105 (94 mg, 22%) as colorless wax with
melting point of 58-60 °C. IR (neat): 3293, 3011, 2913, 1605, 1458, 1405, 1295, 1033,
907, 837 cm™; *H NMR (CDCls, 500 MHz) & 6.89 (s, 1 H), 6.81 (dd, 1 H, J = 12, 18 Hz),
6.68 (s, 1 H), 5.64 (dd, 1 H, J = 2, 18 Hz), 5.50 (dd, 1 H, J = 2, 11.5 Hz), 4.71 (s, 2 H),
3.83(d, 3H,J =2Hz),2.35(s, 3H),1.73 (s, 1 H); °C NMR (CDCls, 125 MHz) § 157,
139, 138, 130, 123, 121, 119, 111, 63, 56, 22; HRMS calcd for C1;H1,0,Na [M+Na]*
379.1880; Found: 379.1881.

Me CH,OH Me CH,OH
¢ U BFK 2 mol% Pd(OAc),, 6 mol% PhsP, 3 equiv C232003>
| THF/H,0 = 9:1(0.2 M), 90°C, 16.5 h, 91% |
OMe

OMe 1 equiv

105

To a solution of (2-iodo-3-methoxy-5-methylphenyl)methanol (530 mg, 1.92 mmol) in
THF/H,0 (9: 1) (10 mL, 0.2 M) was added Pd(OAc), (8 mg, 0.038 mmol, 2 mol %),
triphenylphosphine (26 mg, 0.115 mmol, 6 mol %), potassium vinyl fluoroborate (260

mg, 1.92 mmol), and Cs,COs (1.88 g, 5.76 mmol) at rt. After stirring at 90 °C for 16.5
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hours, the top yellow organic layer was separated. The bottom aqueous layer with white
solid was extracted with ethyl ether. Together, it was washed with brine, concentrated

under reduced pressure, and purified by FCC with 25% EA/Hex to get 105 (310 mg,

91%).
OMe ) _ OMe
| 1.2 equiv. CBry, 1.2 equiv. PPhy |
DCM, rt, 1h, 81%
OH
Me Me Br
105 119

119: To a solution of 105 (92 mg, 0.516 mmol) in DCM (10 mL, 0.05 M) was added
CBr4 (205 mg, 0.619 mmol) and triphenylphosphine (162 mg, 0.619 mmol) at rt. The
colorless solution was stirred for 1 hour at rt and turned to coffee color solution. Then it
was concentrated under reduced pressure, and purified directly by FCC with 25%
EA/Hex to get 119 (100 mg, 81%) as white solid which melted at 73-74 °C. IR (neat):
2933, 2835, 1630, 1564, 1462, 1328, 1278, 927, 845 cm™; *H NMR (CDCls, 500 MHz) &
6.84 (s, 1 H), 6.81 (dd, 1 H, J = 12, 18 Hz), 6.66 (s, 1 H), 5.79 (dd, 1 H, J = 2, 18 Hz),
5.58 (dd, 1 H, J = 2, 12 Hz), 4.57 (s, 2 H), 3.82 (s, 3 H), 2.33 (s, 3 H); *C NMR (CDCls,
125 MHz) & 158, 138, 136, 130, 124, 123.6, 120, 112, 56, 33, 21; HRMS calcd for

C11H13BrONa [M+Na]* 263.0042; Found: 263.0044.

OMe
oMe | xs. (MeO)sP |
100 °C, 12 h, 90% O
P(OMe)
Br 2
Me Me

119 103

103: To a solution of 119 (56 mg, 0.23 mmol) was added trimethylphosphite (1 mL, 1.05
g, 8.47 mmol) and refluxed at 115 °C overnight. Then it was concentrated under reduced
pressure and purified by FCC with EA to get 103 (57 mg, 90%) as colorless oil. IR
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(neat): 3007, 2953, 2852, 1605, 1569, 1462, 1405, 1250, 1054 cm™; *H NMR (CDCls,
500 MHz) & 6.83 (s, 1 H), 6.72 (dd, 1 H, J = 12, 18 Hz), 6.61 (s, 1 H), 5.62 (dd, 1 H, J =
2.5, 18 Hz), 5.54 (dd, 1 H, J = 2, 11.5 Hz), 3.80 (s, 3 H), 3.68 (d, 3 H, J = 0.5 Hz), 3.65
(d, 3H,J=0.5Hz),3.29 (d, 2 H, J = 22 Hz), 2.33 (s, 3 H); *C NMR (CDCl3, 125 MHz)
§ 157.5 (d, J = 3.8 Hz), 137.7 (d, J = 3.8 Hz), 131.1 (d, J = 1.25 Hz), 129.8 (d, J = 8.8
Hz), 124.6 (d, J = 7.5 Hz), 123.6 (d, J = 5 Hz), 119.9, 110.3 (d, J = 1.2 Hz), 55.4, 52.7 (d,

J=6.2 Hz), 30.4, 29.3, 21.5; HRMS calcd for C13H;90,PNa [M+Na]* 321.1226; Found:

321.1231.
(0] OTMS
Me ! Me cN
\ 1.5 equiv TMSCN \
Me Me
cat. Znl,, DCM, rt
= 3 days, 92% =
OMe OMe
132 148a

148a: To a solution of 132 (2.61 g, 12.1 mmol) in dichloromethane (24 ml, 0.5 M) was
added TMSCN (1.20 g, 12.1 mmol) and Znl, (1 mg, cat.). The reaction mixture was
stirred at rt for 18 hours. Then another 0.6 g of TMSCN was added to the reaction
mixture. After total reaction time of three days, the mixture was filtered through a well
packed silic plug, and rinsed with DCM till the eluent became colorless. Then it was
concentrated under reduced pressure to get yellow oil (3.49 g, 92% yield based on crude
mass). Then it was purified on aluminum oxide (activated, basic, Brockmann I, standard
grade, ~150 mesh, 58A), it decomposed back to the starting material 132. It was passed
through another silic plug quickly for further reactions. IR (neat): 2958, 1603, 1459,
1255, 1159, 1023, 845 cm™; *H NMR (CDCls, 500 MHz) § 6.72 (dd, 1 H, J = 12, 18 Hz),

6.70 (s, 1H), 6.65 (s, 1 H), 6.62 (s, 1 H), 5.56 (dd, 1 H, J = 2, 18 Hz), 5.43 (dd, 1 H, J = 2,
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11 Hz), 4.95 (s, 1 H), 3.83 (s, 3 H), 2.34 (s, 3 H), 1.85 (s, 3 H), 0.25 (5, 9 H); °C NMR
(CDCls, 125 MHz) § 157.5, 137.6, 135.5, 132.2, 130.6, 129.5, 123.1, 122.6, 119.5, 118.6,

110.7, 67.0, 55.4, 21.5, 13.4, -0.3, -0.5.

Io OTBS
Me Me
| KCN, TBSCI, Znl, | CN
Me Me
MeCN, rt
= 24h, 91% =
OMe OMe
132 148

148: To a solution of 132 (1.84 g, 8.52 mmol) in acetonitrile (43 ml, 0.2 M) was added
TBSCI (1.92 g, 12.8 mmol), NaCN (3.34 g, 68.2 mmol), and Znl, (27 mg, 0.08 mmol).
The yellow suspension was stirred at rt for 1 day, and quenched with 40 mL water,
extracted with 3x40 mL EA, washed with 40 mL brine, dried with anhydrous MgSO4.
Then, it was concentrated under reduced pressure. Flash chromatography purification
with 0-5% EA/Hexane yielded the product 148 (2.77 ¢, 91%). The pink band was
collected, with the following yellow band discarded. IR (neat): 2955, 2858, 1603, 1462,
1255, 1100, 840, 781 cm™; *H NMR (CDCls, 500 MHz) § 6.72 (dd, 1 H, J = 12, 18 Hz),
6.70 (s, 1 H), 6.66 (s, 1 H), 6.62 (s, 1 H), 5.55 (dd, 1 H, J = 2, 17.5 Hz), 5.42 (dd, 1 H, J =
2,12 Hz), 4.95 (s, 1 H), 3.84 (s, 3 H), 2.35 (s, 3 H), 1.85 (d, 3 H, J = 1 Hz), 0.95 (s, 9 H),
0.23 (s, 3 H), 0.18 (s, 3 H); °C NMR (CDCls, 125 MHz) § 157.5, 137.6, 135.6, 132.3,

130.6, 129.3, 123.2, 122.6, 119.6, 118.7, 110.8, 67.3, 55.5, 25.5, 21.6, 18.2, 13.5, -5.2, -

5.22.
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149: To a solution of 148 (1.2 g, 3.35 mmol) in THF (16.8 mL, 0.2 M) was added
LiHMDS (4.47 mL, 0.9 M in THF, 4.02 mmol) slowly at -78 °C. The color turned red
upon the addition of LIHMDS. After 10 min at -78 °C, isovaleraldehyde (0.346 g, 4.02
mmol) was added neat. The color of the solution turned yellow upon finishing adding
isovaleradehyde at -78 °C. Immediately, it was quenched with saturated NH,Cl and raised
to rt. It was then extracted with ethyl ether, washed with brine, dried with MgSQOy,
concentrated under reduced pressure, and purified by FCC (5-10% EA/Hex) to yield 149
(1.2 g, 89%). IR (neat): 2954, 2860, 1683, 1601, 1458, 1258, 1099, 1046, 833, 776 cm™;
'H NMR (CDCls, 500 MHz) & 7.65 (s, 1 H), 6.81(dd, 1 H, J = 11.5, 17.5 Hz), 6.70 (d, 1
H,J=3.5Hz),5.49 (dd, 1 H,J =2, 11.5 Hz), 5.43 (dd, 1 H, J = 2, 18 Hz), 4.90 (dd, 1 H,
J=3.5, 10 Hz), 3.86 (s, 3 H), 2.37 (s, 3 H), 1.93 (s, 3 H), 1.89-1.84 (m, 1 H), 1.66 (m, 1
H), 1.48 (m, 1 H), 0.95 (d, 3H, J =2.5 Hz), 0.94 (d, 3 H, J = 3 Hz), 0.90 (s, 9 H), 0.06 (s,
3 H), 0.04 (s, 3 H). *C NMR (CDCl;, 125 MHz) & 203.2, 157.4, 140.3, 137.8, 135.3,

131.0, 123.8, 122.4, 120.5, 111.3, 74.1, 55.6, 44.8, 25.8, 24.4, 23.6, 21.7, 21.4, 18.3, 13.7,

-4.5,-5.2.
o o]
Me OTBS Me OH
Me | Me  TBAF, THF, 1t Me | Me
—_— >
. Me 92% e
OMe OMe 150
149

150: To a solution of 149 (150 mg, 0.36 mmol) in THF (1 mL, 0.36 M) was added TBAF
(0.43 mL 1 M solution in THF, 0.43 mmol) at 0 °C. After 20 min, it was quenched with
sat. NaHCO3, extracted with EA, washed with brine, dried with MgSO4, concentrated
under reduced pressure, and purified by FCC with 5% EA/Hex to get 150 (100 mg, 92%).
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IR (neat): 3471, 2954, 2920, 1661, 1601, 1563, 1464, 1049 cm™; *H NMR (CDCls, 500
MHz) & 7.48 (s, 1 H), 6.82 (dd, 1 H, J = 11.5, 18 Hz), 6.74 (s, 1 H), 6.72 (s, 1 H), 5.52
(dd, 1 H, J = 1.5, 11.5 Hz), 5.38 (dd, 1 H, J = 2, 17.5 Hz), 4.95 (ddd, 1 H, J = 2,7, 9.5
Hz), 3.86 (s, 3 H), 3.56 (d, 1 H, J = 7 Hz), 2.38 (s, 3 H), 2.01 (s, 3 H), 1.61-1.56 (m, 1
H), 1.41-1.35 (m, 1 H), 1.02 (d, 3 H, J = 7 Hz), 0.95 (d, 3 H, J = 6.5 Hz). *C NMR
(CDCls, 125 MHz) & 2.4.1, 157.4, 141.7, 138.0, 134.4, 133.8, 130.9, 124.3, 122.4, 121.0,

111.7,70.9, 55.6, 45.4, 25.0, 23.7, 21.7, 21.3, 13.5.

172: To a solution of diol (29 mg, 0.09 mmol) in dichloromethane (2 mL, 0.045 M), was
added 2, 6-lutidine (52 L, 0.45 mmol) and TBSOTTf (63 pL, 0.27 mmol) consecutively
at 0 °C. After TLC showed complete consumption of starting material, it was quenched
with saturated ammonium chloride aqueous solution and extracted with dichloromethane.
Then it was washed with brine, dried with MgSQ,, concentrated under reduced pressure,
and purified by flash chromatography (1: 20 ethyl acetate in hexane) to get the silyl ether
as a colorless oil (36 mg, 73%) *H NMR (CDCls, 500 MHz) § 6.49 (s, 1 H), 6.41 (s, 1 H),
5.34 (s, 1 H), 5.33 (d, 1 H, J = 1.5 Hz), 3.82 (s, 1 H), 3.76 (s, 3 H), 3.30 (s, 1 H), 2.31
(heptet, 1 H, J = 6.5 Hz), 2.28 (s, 3 H), 1.16 (s, 3 H), 1.14 (d, 3 H, J = 7 Hz), 1.01 (d, 3 H,
J = 6.5 Hz), 0.91 (s, 9H), 0.89 (s, 9H), 0.19 (s, 3H), 0.14 (s, 3 H), 0.07 (s, 3 H), 0.06 (s, 3
H); ®°C NMR (CDCls, 125 MHz) & 155.3, 154.4, 140.2, 138.4, 126.8, 124.2, 120.1,
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115.6, 109.5, 81.2, 77.9, 57.4, 56.2, 55.4, 26.3, 26.0, 25.9, 21.8, 20.8, 20.3, 18.6, 17.9,

155, -2.5,-3.4,-4.7, -4.8.

4,5-dihydroxy-6-methoxy-3a,8-dimethyl-1-(propan-2-yl)-  3a,4,5,9b-tetrahydro-3H-
cyclopenta[a]naphthalen-3-one (171): To a solution of enone (20 mg, 0.07 mmol) in 1
MI acetone/water (4: 1), was added 2.5% OsO, in 2-methylpropanol (44 L, 0.0035
mmol) and 60% NMO in water (35 pL, 0.33 mmol) at rt. After 24 hours, 1 mL water was
added, followed by 1 mL saturated sodium thiolsulfate. The mixture was extracted with
dichloromethane (3 x 3 mL), washed with 2 mL brine, and dried with Na,SO,. After
purification by flash chromatography (25% to 50% ethyl acetate in hexane), 12 mg
(54%) white solid was obtained: mp 155-156 °C; IR (neat): 3420, 2962, 2929, 1675,
1609, 1462, 1090 cm™*; 'H NMR (CDCls, 500 MHz) & 6.70 (s, 1 H), 6.63 (s, 1 H), 5.90
(s, 1 H),5.17 (d, 1 H, J = 11.5 Hz), 5.166 (s, 1 H), 3.81 (s, 3 H), 3.76 (s, 1 H), 3.68 (dd, 1
H, J =25, 13.5 Hz), 2.61 (heptet, 1 H, J = 7 Hz), 2.07 (d, 1 H, J = 2.5 Hz), 1.44 (s, 3 H),
1.28 (d, 3H, J = 7 Hz), 1.00 (d, 3 H, J = 7 Hz); *C NMR (CDCls, 125 MHz) § 215.7,
188.2, 157.7, 139.7, 136.1, 124.8, 129.0, 121.7, 110.3, 79.2, 65.6, 56.9, 55.6, 45.2, 28.7,
24.9, 22.0, 21.9, 20.8; HRMS calcd for CigH»4Os;Na [M+Na]® 339.1567; Found:

339.1568.
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6-methoxy-3a,8-dimethyl-1-(propan-2-yl)-3a,9b-dihydro-3H-

cyclopenta[a]naphthalen-3-one (166): To a solution of enol triflate (132 mg, 0.307
mmol) in 3 mL DMF (0.1 M), was added palladium (II) acetate (7mg, 0.03 mmol),
triphenylphosphine (16 mg, 0.06 mmol), triethylamine (0.17 mL), and formic acid (56
pL, 1.5 mmol) at rt. The reaction was stirred at 70°C for 12 hours, and quenched with 20
mL water and 20 mL diethyl ether at rt. Then the mixture was extracted with diethyl ether
(3 x 20 mL), washed with 50 mL saturated ammonium chloride aqueous solution, 50 mL
saturated sodium bicarbonate aqueous solution and 50 mL water. After drying with
sodium sulfate and concentrated under reduced pressure, it was purified by flash
chromatography (10% ethyl acetate in hexane) to get a white solid (75 mg, 86 %). mp
116 - 118°C; IR (neat): 2966, 1704, 1687, 1605, 1458, 1381 cm™; *H NMR (CDCls, 500
MHz) § 6.73 (d, 1 H, J =10 Hz), 6.72 (s, 1 H), 6.62 (s, 1 H), 5.99 (d, 1 H, J = 2 Hz), 5.50
(d, 1 H, J =10 Hz), 3.82 (s, 3 H), 3.78 (d, 1 H, J = 1.5 Hz), 2.48 (heptet, 1 H, J = 7 Hz),
1.23 (d, 3 H, J = 7 Hz), 1.21 (s, 3 H), 0.83 (d, 3 H, J = 7 Hz); *C NMR (CDCls, 125
MHz) 6 210.7, 185.6, 155.4, 138.1, 132.0, 129.9, 124.4, 122.8, 119.0, 118.4, 110.7, 55.5,
53.7,52.3, 28.7, 22.4, 21.9, 21.3, 20.4; HRMS calcd for C19H2,0,Na [M+Na]* 305.1512;

Found: 305.1508.
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173: To a solution of 166 (42 mg, 0.149 mmol) in THF (1.5 mL, 0.1 M) was added L-
selectride (0.179 mL, 1 M in THF, 0.179 mmol) at 0 °C slowly. It was quenched with 4 N
NaOH and 30% H,0, after 30 min at 0 °C. Then it was extracted with DCM, washed
with brine, dried with MgSQO,, concentrated and purified by FCC with 25% EA/Hex to
get the allylic alcohol 173 (40 mg, 95%). IR (neat): 3346, 2954, 2917, 2860, 1605, 1569,
1454, 1324, 1127, 1017, 821 cm™; *H NMR (CDCls, 500 MHz)  6.81 (d, 1 H, J = 10.5
Hz), 6.62 (s, 1 H), 6.58 (s, 1 H), 5.85 (d, 1 H, J = 10.5 Hz), 5.43 (d, 1 H, J = 1.5 Hz), 4.65
(d, 1 H, J = 6.5 Hz), 3.81 (5, 3 H), 3.44 (s, 1 H), 2.35 (s, 3 H), 1.92 (heptet, 1 H, J =7
Hz), 1.57 (s, 1 H), 1.00 (d, 3 H, J = 7 Hz), 0.73 (d, 3 H, J = 7 Hz); **C NMR (CDCls, 125
MHz) 6 155, 152, 137, 133, 129, 124, 123, 119, 110, 86, 55.4, 55, 50, 27, 23, 22, 21.8,

21; HRMS calcd for C19H24,0,Na [M+Na]* 307.1668; Found: 307.1683.

OMe OMe
O‘ Me Acetic formic anhydride O‘ Me
.\\ T Me e H
Me g Q OH " DMAP, DCM, 1t, 87% H Q N
Me Me O]
Me Me
173 174

174: To a solution of 173 (18 mg, 0.063 mmol) in DCM (1 mL, 0.06 M) was added
DMAP (15 mg, 0.123 mmol), formic acetic anhydride (11 mg, 0.125 mmol). It was

concentrated under reduced pressure after 19 hours at rt, and purified by FCC with 10%
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EA/Hex to get 174 (17.5 mg, 87%). IR (neat): 2959, 2922, 1725, 1463, 1174 cm™; 'H
NMR (CDCls, 500 MHz) & 8.24 (d, 1 H, J = 1 Hz), 6.78 (d, 1 H, J = 10 Hz), 6.63 (s, 1 H),
6.59 (s, 1 H), 5.85 (d, 1 H, J = 10 Hz), 5.76 (s, 1 H), 3.82 (s, 3 H), 3.48 (s, 1 H), 2.35 (5, 3
H), 5.45 (m, 1 H), 1.94 (heptet, 1 H, J = 6.5 Hz), 1.17 (s, 3 H), 1.01 (d, 3 H, J = 7 Hz),
0.74 (d, 3 H, J = 6.5 Hz); *C NMR (CDCls, 125 MHz)  161.2, 154.9, 153.6, 137.4,
132.7,128.8, 122.9, 120.8, 118.94, 118.9, 110.4, 86.6, 55.4, 54.7, 49.2, 27.2, 22.4, 22.2,
21.8,21.1.
OMe
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176: To a solution of 173 (3.5 mg, 0.012 mmol) in DCM was added Ac,0 (10.8 mg, 1.06
mmol) and DMAP (3 mg, 0.025 mmol) at rt. It was concentrated under reduced pressure
after 11 hours at rt, and purified by FCC with 10% EA/Hex to get the acetate 176. *H
NMR (CDCls, 500 MHz) § 6.77 (d, 1 H, J = 10.5 Hz), 6.63 (s, 1 H), 6.59 (s, 1 H), 5.86
(d, 1 H, J =10 Hz), 5.64 (s, 1 H), 5.44 (dd, 1 H, J = 1, 1.5 Hz), 3.82 (s, 3 H), 3.50-3.46
(m, 1 H), 2.35 (s, 3 H), 2.16 (s, 3 H), 1.92 (heptet, 1 H, J = 7 Hz), 1.15 (s, 3 H), 1.00 (d, 3
H, J = 7 Hz), 0.73 (d, 3 H, J = 7 Hz); DEPT135 (CDCls, 125 MHz) (CH, CH3) & 129.2,

123.0, 121.3, 118.8, 110.4, 86.8, 63.4, 55.5,54.7, 27.2,22.4,22.2, 21.8, 21.3, 21.2.
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(3a,9b)-6-methoxy-3a,8-dimethyl-3-oxo-1-(propan-2-yl)-3a,9b-dihydro-3H-
cyclopenta[a]naphthalen-2-yl  trifluoromethanesulfonate  (165):  2-hydroxy-6-
methoxy-3a,8-dimethyl-1-(propan-2-yl)-3a,9b-dihydro-3H-cyclopenta[a]naphthalen-3-
one (114 mg, 0.382 mmol) in 4 mL dichloromethane (0.1 M) was cooled to 0°C by
ice/water bath. To the solution was added triethylamine (106 L, 0.764 mmol) at 0°C.
Then triflic anhydride (77 L, 0.458 mmol) was added dropwisely at 0°C, during which
time the solution turned dark. The reaction mixture was allowed to warm up to rt by
removing the cooling bath after stirring for 10 minutes at 0°C. After 1.5 hours, the
reaction mixture was concentrated under aspirator vacuum to get dark slow flow oil,
which was directly purified by flash chromatography (10% ethyl acetate in hexane,
between yellow band and red band) to get a colorless wax (136 mg, 83%): IR (neat):
2974, 2938, 1732, 1417, 1209, 1139, 992 cm*; *H NMR (CDCls, 500 MHz) § 6.82 (d, 1
H,J=9.5Hz), 6.71 (s, 1 H), 6.67 (5, 1 H), 3.78 (s, 3 H), 5.43 (d, 1 H, J = 9.5 Hz), 3.83 (s,
3 H), 3.76 (s, 3 H), 2.75 (heptet, 1 H, J = 7.0 Hz), 2.40 (s, 3 H), 1.24 (s, 3 H), 1.15 (d, 3
H, J = 7.0 Hz), 0.96 (d, 3H, J = 7.0 Hz); **C NMR (CDCls, 125 MHz) & 119.9, 168.1,
156.6, 142.5, 138.9, 129.8, 128.2, 123.4, 119.9, 119.1, 118.5 (q, J = 319 Hz), 111.6, 55.5,

50.23, 50.15, 28.4, 21.9, 19.92, 19.89, 19.0; HRMS calcd for CyHpF30sSNa [M+Na]”

453.0954; Found: 453.0956.

117



OMe

L e
NGO
H
Me OH
Me

2-hydroxy-6-methoxy-3a,8-dimethyl-1-(propan-2-yl)-3a,9b-dihydro-3H-

cyclopenta[a]naphthalen-3-one  (144):  4-(2-ethenyl-3-methoxy-5-methylphenyl)-2-
hydroxy-3-methyl-5-(propan-2-yl)cyclopent-2-en-1-one (134 mg, 0.440 mmol) in 10 mL
THF was added bis(acetonitrile)palladium(Il) chloride (1 mg, 0.004 mmol, 1 mol%),
cuprous iodide (2 mg, 0.0105 mmol, 2 mol%) sequentially at rt. Then, nitrogen balloon
was changed to oxygen balloon. After stirring for 10 minutes at rt, yellow solution turned
red. After 36 hours at rt, the reaction mixture was filtered through a Celite plug, and
rinsed with dichloromethane (2x10 mL). After removing the solvent under reduced
pressure on rotvapor, 146 mg of red semisolid was obtained. H-NMR showed that it was
a mixture of the diketone and its enol tautomer in three to one ratio. It was further
purified by flash chromatography with 10% ethyl acetate in hexane to get a red solid
powder (124 mg, 93%). The pure enol tautomer was obtained quantitatively by treating
the red solution of mixture of the two isomers in THF with catalytic amount of TEA and
silica gel, and stirring for 5 to 7 hours. The disappearance of the red color is a sign of
completion of this tautomerization process. mp 195-198°C; IR (neat): 3322, 2970, 2921,
1691, 1646, 1458, 1401, 1311, 1029 cm™; *H NMR (CDCl3, 500 MHz) 6 6.74 (d, 1 H, J
=10 Hz), 6.68 (s, 1 H), 6.62 (s, 1 H), 5.43 (d, 1 H, J = 10 Hz), 5.36 (s, 1 H), 3.81 (s, 3 H),
3.58 (s, 1 H), 2.54 (heptet, 1 H, J = 7 Hz), 2.39 (s, 3 H), 1.26 (d, 3 H, J = 7 Hz), 1.23 (s, 3
H), 0.90 (d, 3 H, J = 7 Hz); *C NMR (CDCls, 125 MHz) 5 204.9, 155.4, 148.9, 146.4,
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138.1, 132.6, 129.1, 123.4, 118.8, 118.6, 110.7, 55.5, 49.5, 48.8, 27.5, 21.9, 20.2, 20.0,

19.9; HRMS calcd for C19H»,03Na [M+Na]" 321.1461; Found: 321.1459.

4-(2-ethenyl-3-methoxy-5-methylphenyl)-2-hydroxy-3-methyl-5-(propan-2-

ylcyclopent-2-en-1-one  (98):  (1E)-1-(2-ethenyl-3-methoxy-5-methylphenyl)-2,6-
dimethylhept-1-ene-3,4-dione (224 mg, 0.746 mmol) in 10 mL THF was dropwise added
LiHMDS (1 mL 0.9 M in THF, 0.9 mmol) at -78°C.During the addition of LiHMDS, the
yellow solution turned golden color gradually. The cooling bath was removed after 10
minutes. The reaction was quenched by adding 10 mL saturated aqueous ammonium
chloride solution at 0 °C after stirring for 12 hours at rt. It was extracted with ethyl
acetate (3x10 mL), washed with 20 mL brine, dried with Na,SO,, and concentrated under
reduced pressure. After purification by flash chromatography (25% ethyl acetate in
hexane), a colorless oil was obtained. (130 mg, 58%) IR (neat): 3326, 2954, 1699, 1650,
1462, 1401, 1115 cm™; *H NMR (CDCls, 500 MHz) § 6.78 (dd, 1 H, J = 12.5, 16.5 Hz),
6.57 (s, 1 H), 6.38 (s, 1 H), 5.61 (d, 1 H, J = 11 Hz), 5.46 (dd, 1 H, J = 2, 18 Hz), 4.12 (s,
1 H), 3.82 (s, 3 H), 2.32 (s, 1 H), 2.28 (s, 3 H), 2.22 - 2.15 (m, 1 H), 1.77 (s, 3 H), 0.89 (d,
3 H,J=6Hz),0.88(d 3H,J=65Hz); ®C NMR (CDCls, 125 MHz) & 204.9, 157.1,
149.1, 146.5, 140.8, 138.5, 131.6, 125.0, 120.4, 119.2, 109.5, 60.1, 55.5, 43.0, 29.4, 21.6,

19.7, 18.5, 12.6; HRMS calcd for C19H240sNa [M+Na]" 323.1618; Found: 323.1614.
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(1E)-1-(2-ethenyl-3-methoxy-5-methylphenyl)-2,6-dimethylhept-1-ene-3,4-dione
(97): (1E)-1-(2-ethenyl-3-methoxy-5-methylphenyl)-3-hydroxy-2,6-dimethylhept-1-en-4-
one (1.25 g, 4.13 mmol) in 25 mL anhydrous ethyl acetate was added IBX (5.78 g, 20.6
mmol) at rt at once. It was refluxed at 90°C for 3 hours and cooled to rt, when the
colorless solution turned yellow. Then, it was filtered thrugh a packed Celite plug, and
rinsed with 100 mL ethyl acetate. After concentration under reduced pressure and
purification by flash chromatography (5% ethyl acetate in hexane, collect the yellow
band), a yellow oil was obtained. (1.03 g, 83%) IR (neat): 2962, 2929, 1708, 1654, 1458
cm™; *H NMR (CDCls, 500 MHz) & 7.54 (s, 1 H), 6.81 (dd, 1 H, J = 11.5, 18 Hz), 6.77
(s, 1 H), 6.72 (s, 1 H), 5.53 (dd, 1 H, J = 1.5, 11.5 Hz), 5.38 (dd, 1 H, J = 1.5, 17.5 Hz),
3.85 (s, 3H), 2.67 (d, 2 H, J = 6.5 Hz), 2.37 (s, 3 H), 2.34 — 2.20 (m, 1 H), 2.01 (d, 3 H,
J=1Hz),0.99 (d, 6 H,J = 6.5 Hz); °C NMR (CDCls, 125 MHz) § 204.9, 197.1, 157.4,
147.7, 137.9, 134.0, 132.6, 130.5, 124.5, 122.3, 121.4, 112.0, 55.6, 48.2, 23.8, 22.6, 21.7,

12.3; HRMS calcd for Cy19H,40sNa [M+Na]* 323.1618; Found: 323.1628.
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(1E)-1-(2-ethenyl-3-methoxy-5-methylphenyl)-3-hydroxy-2,6-dimethylhept-1-en-4-
one (134): To a vigorously stirred suspension of HgO (5 g, 23 mmol) and BF3Et,0 (3.5
mL, 28 mmol) in 15% THF in water (120 mL) at rt, was added crude dithiane in 20 mL
THF slowly. After stirring for 20 minutes at rt (only trace amount of red HgO left and a
voluminous amount of white suspension formed), 100 mL diethyl ether and 50 mL brine
was added. Then it was filtered though a well packed Celite, rinsed with 500 mL diethyl
ether, separated and washed with saturated sodium bicarbonate (2x100 mL), brine (100
mL). after drying with sodium sulfate, and concentrated under reduced pressure, it was
purified by flash chromatography (10% ethyl acetate in hexane) to get viscous oil (1.25 g,
56%): IR (neat): 3465, 2958, 2868, 1708, 1597, 1560, 1454, 1095 cm™; *H NMR (CDCls,
500 MHz) 6 6.80 (dd, 1 H, J = 12, 18 Hz), 6.74 (s, 1 H), 6.69 (s, 1 H), 6.67 (s, 1 H), 5.68
(dd, 1 H, J = 2.5, 18 Hz), 5.48 (dd, 1 H, J = 2, 11.5 Hz), 4.69 (d, 1 H, J = 4.5 Hz), 4.05 (d,
1H,J=45Hz),3.87 (s, 3H), 2.51 - 2.42 (m, 2 H), 2.37 (s, 3 H), 2.26 (heptet, 1 H, J = 7
Hz), 1.58 (d, 3 H, J = 1 Hz), 0.99 (d, 3 H, J = 6.5 Hz), 0.97 (d, 3 H, J = 6.5 Hz); *C NMR
(CDCls, 125 MHz) 6 210.3, 157.6, 137.6, 136.4, 134.6, 132.0, 131.0, 123.0, 122.6, 119.4,
110.6, 83.6, 55.4, 46.5, 24.5, 22.6, 22.5, 21.6, 12.3; HRMS calcd for CigH203Na

[M+Na]" 325.1774; Found: 325.1770.
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(E)-1-(2-isobutyl-1,3-dithian-2-yl)-3-(3-methoxy-5-methyl-2-vinylphenyl)-2-

methylprop-2-en-1-ol (133): To a solution of dithiane (1.56 g, 8.9 mmol) in 20 mL THF,
was added 2.4 M nBuLi at — 20°C slowly. After it was stirred at — 20°C for 3 hours, the
aldehyde (1.6 g, 7.41 mmol) in 5 mL THF was added dropwisely, during which time the
colorless solution turned dark. After 1 hour at — 20°C, it was raised to rt and quenched
with 20 mL saturated ammonium chloride solution. Then it was washed with 10 mL
brine, dried with Na,SO,4, and concentrated under reduced pressure to get viscous oil
which went to the next step as crude: IR (neat): 3436, 2949, 1601, 1560, 1454, 1270, 907,
833, 731 cm™; 'H NMR (CDCl;, 500 MHz) & 6.80 (dd, 1 H, J = 11.5, 18 Hz), 6.68 (s, 1
H), 6.65 (s, 1 H), 6.63 (s, 1 H), 5.76 (dd, 1 H, J = 2, 17.5 Hz), 5.40 (dd, 1 H, J = 2.5, 12
Hz), 4.68 (s, 1 H), 3.84 (s, 3 H), 3.14 (d, 1 H, J = 1 Hz), 3.16 — 3.05 (m, 2 H), 2.68 — 2.62
(m, 2 H), 2.34 (s, 3 H), 2.16 — 2.09 (m, 2 H), 1.87 (s, 3 H), 1.94 — 1.83 (m, 2 H), 1.52 (dd,
1H,J=5,15Hz), 1.04 (d, 3 H, J = 6.5 Hz), 1.01 (d, 3 H, J = 6 Hz); *C NMR (CDCls,
125 MHz) 6 157.7, 137.8, 137.2, 134.6, 131.2, 130.4, 123.0, 122.7, 119.0, 110.2, 75.4,
60.4, 55.4, 43.2, 26.6, 25.6, 25.5, 24.9, 24.2, 21.6, 17.5; HRMS calcd for C5,H3,0,S;Na

[M+Na]" 415.1736; Found: 415.1733.
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(E)-1-(2-isobutyl-1,3-dithian-2-yl)-3-(3-methoxy-5-methyl-2-vinylphenyl)-2-
methylprop-2-en-1-one (155): To a solution of dithiane (2.68g, 15.2 mmol) in THF (30
mL, 0.5 M), was added n-buyl lithium (6 mL, 2.5 M in THF, 15 mmol) slowly over 10
minutes. After stirring for 3.5 hours at — 20 °C, weinreb’s amide (4.19 g, 15.2 mmol) in
30 mL THF was added slowly, at which time the colorless solution turned to dark. After
stirring at — 20 °C for 30 minutes (gradually turned to orange color), it was quenched with
saturated ammonium chloride aqueous solution at — 20°C. Then it was raised to rt and
stirred for 10 minutes. 40 mL brine and 40 mL diethyl ether was added. It was then
extracted with diethyl ether (3 x 50 mL), washed with brine (100 mL), and dried with
Na,SO,. After removing the solvents under reduced pressure, it was purified by flash
chromatography (5% to 10% ethyl acetate in hexane) to get pale yellow oil (5.31 g, 89%).
IR (neat): 2958, 2921, 1658, 1597, 1560, 1458, 1201 cm™; *H NMR (CDCls, 500 MHz) &
7.98 (s, 1 H), 6.78 (dd, 1 H, J = 11.5, 17.5 Hz), 6.68 (s, 1 H), 6.64 (s, 1 H), 5.57 (dd, 1 H,
J=2,17.5Hz),5.45 (dd, 1 H, J = 2, 12 Hz), 3.84 (s, 3 H), 3.14 (dd, 1 H, J = 2.5, 12 Hz),
3.12 (dd, 1 H, J = 2.5, 11.5 Hz), 2.74 (dd, 1 H, J = 3.5, 5 Hz), 2.71 (dd, 1 H, J = 35, 5
Hz), 2.36 (s, 3 H), 2.28 (d, 2 H, J = 6.5 Hz), 2.09 — 2.02 (m, 2 H), 1.99 (d, 3 H, J = 1 Hz),
1.93 — 1.84 (m, 1 H), 0.96 (d, 6 H, J = 6.5 Hz); *C NMR (CDCls, 125 MHz) & 199.9,

157.4, 138.9, 137.6, 135.7, 135.1, 130.7, 123.3, 122.1, 120.1, 110.9, 61.0, 55.4, 47.9,
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28.0, 25.3, 24.6, 23.8, 21.6, 16.4; HRMS calcd for Cy,H300,S,Na [M+Na]" 413.1579;

Found: 413.1578.

o O Q
Me S S.
Me . NCS, 2,6-lutidine > Me Me
i-Pr MeOH, 0°C, 86%
= Me
OMe | OMe
155 156

156: To a solution of 155 (5.31 g, 13.6 mmol) in methanol (35 mL, 0.4 M) was added
2,6-lutidine (9.38 g, 68 mmol) and NCS (3.6 g, 2.69 mmol) at 0 °C. After 7 min, the
milky solution turned a yellow homogeneous solution. Then it was quenched with sat.
Na,S,03, brine, and extracted with Et,O 3 x 35 mL. After washing with 1N HCI, washing
with brine, and drying with MgSO,, it was concentrated under reduced pressure. FCC
with 25% EA/Hex yielded 156 (5.1 g, 86%). IR (neat): 2962, 1642, 1454, 1234, 1127,
992 cm™; *H NMR (CDCls, 500 MHz) & 7.45 (s, 1 H), 6.78 (dd, 1 H, J = 11, 17.5 Hz),
6.73 (s, 1 H), 6.70 (s, 1 H), 6.15 (d, 1 H, J = 9.5 Hz), 5.45-5.40 (m, 2 H), 3.85 (s, 3 H),
3.74 (s, 3 H), 3.05 (m, 1 H), 2.91-2.79 (m, 2 H), 2.76 (t, 2 H, J = 7 Hz), 2.01 (d, 3H, J =
1.5Hz), 1.96 (t, 2 H, J = 7 Hz), 1.01 (d, 6 H, J = 5.5 Hz); *C NMR (CDCls, 125 MHz) &
196.5, 157.4, 149.8, 143.2, 137.9, 136.6, 135.1, 131.7, 130.8, 123.9, 122.3, 120.6, 111.5,
55.6, 55.2, 54.5, 31.3, 29.4, 22.0, 21.7, 21.6, 13.8; HRMS calcd for Cy3H3,0,S;Na

[M+Na]* 459.1634; Found: 459.1636.
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(2E)-3-(2-ethenyl-3-methoxy-5-methylphenyl)-2-methylprop-2-enal (132):

Stille coupling: CsF (1.8 g, 12 mmol) was added in one portion into a solution of
bromoaldehyde (2.17 g, 8.05 mmol), vinyltributyltin (2.81 g, 8.86 mmol), bistriphenyl
phosphine palladium (I1) chloride (56 mg, 0.08 mmol) and triphenyl phosphine (73 mg,
0.32 mmol) in toluene (50 mL, 0.16 M). Then the mixture was stirred at 90°C for 17
hours, during which time the yellow solution turned dark. It was cooled down to rt and
filtered through a well packed Celite and rinsed with 100 mL ethyl acetate to get rid of
the black solids. After concentrated under reduced pressure, it was purified by flashed
chromatography (pure hexane, then 2% to 5% ethyl acetate in hexane) to get the yellow
oil (1.63 g, 94%). IR (neat): 3003, 2958, 2831, 2709, 1683, 1622, 1597, 1458, 1201, 1017
cm™; *H NMR (CDCls, 500 MHz) & 9.63 (s, 1 H), 7.48 (s, 1 H), 6.83 (dd, 1 H, J = 11.5,
17.5 Hz), 6.79 (s, 1 H), 6.74 (s, 1 H), 5.52 (dd, 1 H, J = 2, 11.5 Hz), 5.41 (dd, 1 H, J = 2,
17.5 Hz), 3.86 (s, 3 H), 2.38 (s, 3 H), 1.95 (d, 3 H, J = 1.5 Hz); *C NMR (CDCls, 125
MHz) 6 195.7, 157.4, 150.4, 138.5, 137.8, 134.1, 130.4, 124.2, 122.1, 121.1, 112.0, 55.6,

21.6, 10.8; HRMS calcd for C14H160,Na [M+Na]* 239.1042; Found: 239.1045.

Suzuki coupling to make 132:
To a solution of bromoaldehyde (1.04 g, 3.87 mmol) in 20 mL propanol was added vinyl

pinacol borate (0.90 g, 5.8 mmol) and purged with N, for 10 minutes at rt. The solution

125



was treated with palladium (1) acetate (8.7 mg, 0.039 mmol), triphenylphosphine (30
mg, 0.11 mmol), sodium carbonate (8 mL, 0.725 M, 5.8 mmol), and purged with N, for
10 minutes. Then the mixture was raised to 85°C, and stirred under N, for 7 hours. TCL
showed complete consumption of bromoaldehyde. Then, it was cooled to rt, diluted with
ethyl acetate (20 mL), filtered through 2.5 g Florisil on top of a Celite plug (1 cm depth),
and rinsed with ethyl acetate (2x30 mL). The two layers were separated. The aqueous
layer was extracted with ethyl acetate (30 mL), washed with saturated aqueous sodium
bicarbonate (50 mL), brine (50 mL), concentrated under reduced pressure, and purified
by flash chromatography (10% ethyl acetate in hexane) to get a yellow oil (769 mg,

92%).

Oxidation by MnO, to make 132:

To a solution of the alcohol (470 mg, 2.15 mmol) in DCM (10 mL, 0.2 M) was added
MnO; (1.87 g, 21.5 mmol) at rt in one portion. It was stirred at rt for 12 hour and filtered
through Celite. After concentration under reduced pressure, it was purified by flash

chromatography (5% ethyl acetate in hexane) to get the aldehyde (414 mg, 89%).

Me\@HO
OMe |

102
3-methoxy-5-methyl-2-vinylbenzaldehyde (102): It was synthesized from 2-iodo-3-
methoxy-5-methylbenzaldehyde, or 2-bromo-3-methoxy-5-methylbenzaldehyde through
Stille or Suzuki coupling similar to the above procedures in yields from 51% to 82%
(Table 2) as a white wax. IR (neat): 3019, 2860, 1679, 1597, 1278, 1193, 1136, 1078, 996

126



cm™®; *H NMR (CDCls, 500 MHz) § 10.2 (s, 1 H), 7.34 (s, 1 H), 7.00 (dd, 1 H, J = 11, 18
Hz), 6.90 (s, 1 H), 5.71 (dd, 1 H, J = 1.5, 11 Hz), 5.31 (dd, 1 H, J = 1.8, 18 Hz), 3.87 (s, 3
H), 2.40 (s, 3 H); °C NMR (CDCls, 125 MHz) & 193, 157, 139, 135, 129, 128, 124, 120,

116, 56, 22; HRMS calcd for C11H1,0,Na [M+Na]* 199.0730; Found: 199.1727.

Me

Me

Br
OMe

(2E)-3-(2-bromo-3-methoxy-5-methylphenyl)-2-methylprop-2-enal  (131): To a
solution of alcohol (470 mg, 2.15 mmol) in DCM (10 mL, 0.2 M) was added manganese
oxide (1.87 g, 21.5 mmol) at rt. The mixture was stirred for 2 days at rt, filtered through
Celite to get rid of solid, and purified by flash chromatography (10% ethyl acetate in
hexane) to get colorless crystal (414 mg, 89%). mp 101 - 102°C; IR (neat): 2917, 2848,
1679, 1569, 1311, 1197, 1017, 727 cm™; *H NMR (CDCls, 500 MHz) & 7.45 (s, 1 H),
7.26 (s, 1 H), 6.82 (s, 1 H), 6.74 (s, 1 H), 3.92 (s, 3 H), 2.37 (5, 3 H), 1.93 (d, 3H, J =1
Hz); BC NMR (CDCls, 125 MHz) 6 195.4, 155.5, 138.7, 137.2, 124.4, 123.4, 110.9,

110.0, 68.0, 56.1, 21.3, 15.0 HRMS calcd for C;,H13BrO,Na [M+Na]* 290.9991; Found:

290.9989.
Me 1 oH
Me
Br
OMe
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(2E)-3-(2-bromo-3-methoxy-5-methylphenyl)-2-methylprop-2-en-1-ol (131a): To a
solution of the bromoester (5.64 g, 18 mol) in THF (200 mL, 0.09 M), was added DIBAL
(54 mL, 1 M in toluene, 54 mmol) slowly at — 30 °C. After stirring for 2.5 hours at — 30
°C, it was raised to 0 °C and added 2.16 mL water slowly, 0.2 mL 4 N sodium hydroxide
aqueous solution, 5.4 mL water sequentially at 0 °C. Then it was raised to rt and stirred
for 15 minutes at rt, added 10 g anhydrous magnesium sulfate, stirred for 15 minutes, and
filtered through Celite. After concentration under reduced pressure, it was purified by
flash chromatography (25% ethyl acetate in hexane) to get the yellow oil (4.69 g, 96%).
IR (neat): 3379, 2938, 2856, 1569, 1315, 1242, 1090, 1168, 911, 829, 731 cm™; *H NMR
(CDCl3, 500 MHz) § 6.69 (s, 1 H), 6.60 (s, 1 H), 6.50 (s, 1 H), 4.21 (d, 2 H, J = 4.5 Hz),
3.86 (s, 3 H), 2.49 (t, 1 H, J = 4.5 Hz), 2.30 (s, 3 H), 1.78 (s, 3 H); *C NMR (CDCl;,
125 MHz) o 155.5, 138.7, 137.2, 124.4, 123.4, 110.9, 110.0, 68.0, 56.1, 21.3, 15.0;

HRMS calcd for C1,H1sBrO,Na [M+Na]* 293.0148; Found: 293.0163.

Me 1 oEt

Me

OMe |
Ethyl (2E)-3-(2-ethenyl-3-methoxy-5-methylphenyl)-2-methylprop-2-enoate (153):
To a solution of bromo ester (5.06 g, 16.2 mmol), vinyltributyltin (7.71 g, 24.3 mmol),
bistriphenyl phosphine palladium (1) chloride (171 mg, 0.16 mmol) and triphenyl

phosphine (145 mg, 0.64 mmol) in toluene (80 mL, 0.2 M), was added CsF (3.70 g, 24.3

mmol). Then the mixture was stirred at 110 °C for 20 hours, during which time the
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yellow solution turned to a grayish suspension. It was cooled down to rt and filtered
through a short silica plug and rinsed with 200 mL diethyl ether. After concentrated
under reduced pressure, it was purified by flashed chromatography (5% to 10% ethyl
acetate in hexane) to get the yellow oil (3.86 g, 92%).IR (neat): 3085, 2979, 2958, 1704,
1597, 1560, 1454, 1242, 1115 cm™; *H NMR (CDCls, 500 MHz) & 7.73 (s, 1 H), 6.79
(dd, 1 H, J =115, 17.5 Hz), 6.68 (s, 1 H), 6.67 (s, 1 H), 5.52 (dd, 1 H, J = 1.5, 18 Hz),
5.46 (dd, 1 H, J = 1.5, 11.5 Hz), 4.26 (q, 2 H, J = 7 Hz), 3.85 (s, 3 H), 2.35 (5, 3 H), 1.96
(s, 3H), 1.34 (t, 3 H, J = 7.5 Hz); *C NMR (CDCls, 125 MHz) & 168.5, 157.5, 139.7,
137.6, 135.6, 130.5, 128.6, 123.5, 122.3, 120.1, 111.2, 60.7, 55.5, 21.6, 14.3, 14.0;

HRMS calcd for C16H200sNa [M+Na]" 283.1305; Found: 283.1305.

Me Me

OMe |
(2E)-3-(2-ethenyl-3-methoxy-5-methylphenyl)-N-methoxy-N,2-dimethylprop-2-
enamide (154): To a well mixed suspension of ethyl ester (7.18 g, 27.6 mmol) and N-
methoxymethanamine hydrochloride (5.40 g, 55.1 mmol) in THF (55 mL, 0.5 M) was
added isopropyl magnesium chloride (55.2 mL, 2 M in diethyl ether) over 1 hour at —20
°C by the aid of slow addition pump, resulting a yellow solution with white solid floating
at the bottom. The temperature was allowed to rise to — 5 °C slowly over 2 hours, and
quenched with saturated ammonium chloride aqueous solution at — 5 °C, forming

voluminous amount of white salt. After stirring at rt for 30 minutes, it was extracted with
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diethyl ether (3 x 100 mL), washed with brine (200 mL), dried with Na,SO,, and
concentrated under reduced pressure. After purification by flash chromatography (50%
ethyl acetate in hexane), the Weinreb’s amide was obtained as a colorless viscous oil
(6.75 g, 80%): IR (neat): 2962, 2938, 1650, 1560, 1454, 1368, 1291, 1201, 1103, 996,
911 cm™; *H NMR (CDCls, 300 MHz) § 6.86 (s, 1 H), 6.77 (dd, 1 H, J = 12, 18 Hz), 6.70
(s, 1 H), 6.67 (s, 1 H), 5.65 (dd, 1 H, J = 3.5, 18 Hz), 5.45 (dd, 1 H, J = 3.5, 12 Hz), 3.85
(s, 3 H), 3.71 (s, 3 H), 3.29 (s, 3 H), 2.35 (s, 3 H), 1.97 (d, 3 H, J = 2.5 Hz); *C NMR
(CDCl3, 75 MHz) 6 172.5, 157.6, 137.5, 135.6, 132.2, 132.16, 130.6, 123.2, 122.5, 119.8,
110.8, 61.2, 55.5, 33.6, 21.6, 15.5; HRMS calcd for C1gH2:NOsNa [M+Na]* 298.1414;

Found: 298.1413.

OH
Me

Me

OMe |

(2E)-3-(2-ethenyl-3-methoxy-5-methylphenyl)-2-methylprop-2-en-1-ol:

To a solution of the ester (540 mg, 2.07 mmol) in DCM (6 mL, 0.3 M), was added
DIBAL (6.22 mL, 1 M in toluene, 6.22 mmol) slowly at 0 °C. After stirring for 1 hour at
0 °C, it was quenched with MgSO,7H,0 till no bubble was released. Then it was filtered
through Celite, rinsed with 50 mL ethyl acetate, and concentrated under reduced pressure.
After purification by flash chromatography (25% ethyl acetate in hexane), the alcohol
was obtained (448 mg, 99%). IR (neat): 3354, 3015, 2913, 2852, 1605, 1564, 1454, 1303,

1156, 1095, 1005 cm™; *H NMR (CDCls, 500 MHz) § 6.75 (dd, 1 H, J = 12, 18 Hz), 6.63
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(s, 2 H), 6.52 (s, 1 H), 5.68 (dd, 1 H, J = 2.5, 18 Hz), 5.39 (dd, 1 H, J = 2, 11.5 Hz), 4.18
(d, 2 H, J = 5.5 Hz), 3.83 (s, 3 H), 2.33 (s, 3 H), 1.73 (s, 3 H); *C NMR (CDCls, 125

MHz) § 157.6, 137.4, 137.3, 137.2, 131.0, 125.2, 123.0, 122.6, 118.9, 110.2, 68.5, 55.4,

21.6, 15.1; HRMS calcd for C14H130,Na [M+Na]* 241.1199; Found: 241.1198.

(0]
Me SN
Me l l Me
= Me
OMe
156

Table 6

O

"
S.
OMe conditions
I

Catalystadditive

Solvent{concentration)

Temperature, time,

yield({A to B ratio)

reflux, 4.5 h

AcOH MeOH rt SM
Pd{ACN),Cl, Acetone/H,0 rt decomposed
Hd Acetone/H,0 rt decomposed
Cu(OTfybenzene, LICIO, DCM rt, 2h;

{quick test)5:7

2 mol% Cu(OTf)benzene

2 equiv. LiClO,

DCE(0.05 M)

rt, 45 min;

42°C, 45 min;

SM gone;

3 new compou I'i(lS_.'

Liclo,

spottospottospot

559C, 7 hours 53% (1:3.8)
7 mol3% Cu{OTf).benzene, [DCE(0.1M) rt, 1day; trace amount of P;
1 equiv. LiClO,
35°C,14 h 35% (1:5)
12 mol% Sc{0Tf};, 2 equiv. |DCE(0.025M) rt, 15 min; S gone after 15 min
Liclo,
50°C,0.5h 7%
10 mol% Sc{0Tf), DCE(0.11M) rt,1h no rxn
10 mol% Sc{0Tf},, 1 equiv. |DCE(0.1M) rt, 24h 24%(1:1.8

S gone after 15 min

131




10 mol% Cu{0Tf),, 1 equiv. |DCM{0.1M) reflux unknown
LiCl0,, 20 mol% 2,6-lutidine
10 mol% Cu({OTf),, 2 equiv. |DCM{0.05 M) rt, 1.5 days 10%
Liclo,
2 mol Cu(0Tf)-benzene, DCE{0.05 M) Rtto 55°C, 19 hours;  [Norxn;
2 equiv. LiCl0,; rt, 5 days 10%
Added Cu({0OTf),
10 mol% Cu(0Tf), DCE(0.05 M) 40 °C, 20 hours 25%
2 mol% Cu{0Tf), DCE(0.05 M) Rt, 20 min;

40 °C, 6 hours 28%
2 mol% Cu(0Tf)-benzene, Rtto 50°C 19% for 2 steps
1 equiv. LiClO,
10 mol% Pd{ACN}.Cl,, 1 DCE 70°C, 2 days No rxn
equiv. TEA
10 mol% AgShF, DCIM rt, 2 days Mo rxn
10 mol% DCM Reflux, 7 hours No rxn
Dichloro{pentamethylcyclop
entadienyl)iridium{Ill) dimer
1 equiv. Ti{O/Pr), DCM{0.2 M) -78°Cto 45°C No rxn
4 equiv. BF3.E120 DCM{0.2 M) -70°C, 4 days %
4 equiv. BF3.E120 DCIM{0.2 M) -50°C, 11 hours 22%
10 mol% Hg({CO,CF;), DCI{0.2 M} -20°C, hours %

Cu{Cl0,),6H,0 DCIM Reflux, 30 h Mo rxn
Cu(Cl0,), 6H,0 DCE{0.05M) 40°C, 3 h; Mo rxn
Added 2 mol% 48°C. 23 h 229
Cu{OTf} benzene and
2 equiv. LIClO,
Q S ome BFyELO o oH
s>/  DCM,-35°C Me
" 143:144:162 . b
€ i-pr  =1:0.28:0.25 O+ Me 0 Me

from crude NMR

H H
DO\ S G\
23% of 143 + 144

4% of 162 OMe OMe
156 143 144 162

162: To a solution of 156 (3.6 g, 8.24 mmol) in DCM (55 mL, 0.15 M) at -35 °C was

OMe |

added trifluoroborane etherate (3.5 g, 24.7 mmol) dropwise. The solution turned red.

After stirring at -35 °C for 5 min, it was raised to rt and stirred for 1 hour. Then, it was
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cooled to 0 °C and quenched with 50 mL sat. NaHCOj3. The mixture was stirred for 30
min at rt. Then, it was washed with 2 x 50 mL brine, dried with MgSO,, and concentrated
under reduced pressure to get reddish oil. The crude H-NMR showed the ratio of
143/144/162 to be 1: 0.28: 0.25. After purification by FCC with 10% EA/Hex, 23% of
143 and 144 were isolated together with 4% of less polar 162. IR (neat): 2958, 2933,
1720, 1605, 1278, 1086 cm™; *H NMR (CDCls, 500 MHz) 6 6.87 (d, 1 H, J = 9.5 Hz),
6.75 (5, 1 H), 6.60 (s, 1 H), 5.44 (d, 1 H, J = 9.5 Hz), 4.02 (dt, 1 H, J = 2.5, 13.5 Hz), 3.82
(s, 3H),3.31(d, 1 H, J =12 Hz), 3.24 (dt, 1 H, J = 2.5 14 Hz), 2.56 (dt, 1 H, J = 14, 3
Hz), 2.48 (dt, 1 H, J = 13.5, 3.5 Hz), 2.34 (s, 3 H), 2.22-2.16 (m, 1 H), 2.15 (s, 1 H), 2.15-
2.11 (m, 1 H), 1.88 (m, 1 H), 1.24 (d, 3H, J =7 Hz), 1.17 (5, 3 H), 0.81 (d, 3 H, J = 7.5
Hz); *C NMR (CDCls, 125 MHz) & 210.5, 155.3, 138.0, 134.7, 127.5, 123.6, 120.4,
117.6, 110.4, 55.4, 54.3, 52.6, 45.6, 27.1, 26.7, 25.5, 25.1, 23.2, 21.9, 21.8, 21.3; HRMS

calcd for CpH20,S;Na [M+Na]* 411.1427; Found: 411.1419.

Me
o LAH, Et,0

S 80%

S/
Me

163: To a solution of 162 (30 mg, 0.077 mmol) in Et20 was added LAH (10 mg, 0.26

MsCl, TEA
DCM, 74%

162

mmol) at 0 °C. After 10 min, it was filtered through a silica plug, rinsed with Et20,
concentrated under reduced pressure to get the crude white solid product. It was purified
by FCC with 25% EA/Hex to get analytically pure 163 (24 mg, 80%) as a white solid.
Melting point is 143-146 °C. IR (neat): 3461, 2917, 1462, 1274 cm™; *H NMR (CDCls,
500 MHz) & 6.77 (d, 1 H, J = 10 Hz), 6.67 (s, 1 H), 6.56 (s, 1 H), 5.85 (dd, 1 H, J = 10, 1

Hz), 4.46 (d, 1 H, J = 12 Hz), 3.80 (s, 3 H), 3.44 (dt, 1 H, J = 3.5, 13 Hz), 3.08 (ddd, 1 H,
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J=25,115,14 Hz), 2.91 (d, 1 H, J = 12 Hz), 2.84 (dd, 1 H, J = 1.5, 12 Hz), 2.70 (dt, 1
H, J = 14, 4 Hz), 2.56 (dt, 1 H, J = 13.5, 3.5 Hz), 2.32 (s, 1 H), 2.19-2.11 (m, 1 H), 2.10-
2.04 (m, 2 H), 1.91-1.82 (m, 1 H), 1.25 (d, 3 H, J = 7 Hz), 0.65 (d, 3 H, J = 7 Hz); **C
NMR (CDCl3, 125 MHz) 6 155.1, 137.3, 136.2, 127.9, 123.5, 119.2, 118.5, 110.2, 94.4,
62.6, 58.7,55.4, 47.2, 46.9, 29.3, 27.7, 25.6, 24.2, 23.3, 23.0, 21.8, 20.4; HRMS calcd for
C22H300,S;Na [M+Na]* 413.1579; Found: 413.1577.

164: To a solution of 163 (24 mg, 0.062 mmol) in DCM (1 mL, 0.06 M) was added TEA
(12.4 mg, 0.123 mmol) and mesyl chloride (10 mg, 0.092 mmol) at 0 °C. Then it was
stirred at rt for 1 hour and quenched with 2 mL sat. NHA4CI, extracted with 2x2 Ml DCM,
washed with brine, dried with Na2SO4, concentrated to get a white solid crude product. It
was purified by FCC to get pure 164 (17 mg, 74%) with a melting point of 168-170 °C;
IR (neat): 2950, 1601, 1471, 1274, 1086 cm™; *H NMR (CDCls, 500 MHz) & 6.64 (d, 1
H, J =10 Hz), 6.62 (s, 1 H), 6.57 (s, 1 H), 5.52 (d, 1 H, J = 9.5 Hz), 4.19 (s, 1 H), 3.79 (s,
3 H), 3.73 (s, 1 H), 3.30 (ddd, 1 H, J = 4.5, 11.5, 15.5 Hz), 3.09 (ddd, 1 H, J = 4.5, 11, 15
Hz), 2.76 (ddd, 1 H, J = 3.5, 5, 15 Hz), 2.64 (dt, 1 H, J = 15, 4 Hz), 2.49 (heptet, 1 H, J =
7.5 Hz), 2.34 (s, 3 H), 2.19-2.04 (m, 2 H), 1.53 (s, 3 H), 1.12 (s, 3H), 0.91 (d, 3 H, I =7
Hz), 0.81 (d, 3 H, J = 7 Hz); ®*C NMR (CDCls, 125 MHz) & 154.7, 142.0, 137.2, 136.6,
133.7, 129.9, 124.4, 119.4, 118.4, 110.5, 61.5, 55.6, 55.5, 48.5, 34.5, 30.7, 28.9, 28.6,
21.8, 20.3, 18.9, 18.6; HRMS calcd for CyH2s0S;Na [M+Na]® 395.1474; Found:

395.1472.
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APPENDIX

Selected *H and **C NMR Spectra
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CAI-PA-conjugated diene-1H NMR
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