EXERCISE INDUCED ASTHMA

Background

- 1. Definition: Exercise induced symptoms of asthma in patients who have asthma.
 - Exercise induced bronchoconstriction is airway obstruction with exercise without presence of chronic asthma.

Pathophysiology

- 1. Pathology of dz
 - Hyperosmolarity theory
 - Hyperventilation during exercise causes evaporative water loss
 - Water loss causes hypertonicity/hyperosmolarity of cells
 - Change in cell composition causes release of bronchoconstricting mediators
 - Histamine
 - Prostaglandins
 - Leukotrienes
 - $\circ \quad \text{Airway rewarming theory} \\$
 - Large volume of cold air overwhelms ability of airways to warm air
 - Cold air reaches distal airways causing airway narrowing and edema
 - Inflammatory mediator theory
 - People that exercise frequently, especially in cold air, develop chronic inflammatory changes
 - Increased levels of IL-8, LTC4, LTD4, and histamine
 - TH-2 lymphocytes increased
 - Increased IgE
 - Increased activation of eosinophils
- 2. Incidence/ prevalence
 - About 10% of pts w/o dx of asthma will have bronchospasm w/exercise
 - Approx. 20.5 million Americans have asthma.ⁱ
 - Between 60-90% of people with asthma experience Exercise-Induced
 - Bronchospasm (EIB)/EIA and consider it a major trigger of asthma symptoms.¹
- 3. Risk factors¹
 - High ventilation sports
 - Football
 - Basketball
 - Endurance sports
 - Cross country skiing
 - Swimming
 - Long-distance running
 - Winter sports
 - Participation in a location w/environmental pollutants (ex: automobile exhaust, sulfur dioxide, nitrogen dioxide, smoke, ozone, chlorine)
 - Cold temperatures
 - Dry air
 - Allergens, molds, dust, irritants

- Respiratory tract infections
- Sinusitis
- Rhinitis
- Concurrent medications ex: salicylates, NSAIDs, beta-blockers
- Pre-exercise food: peanuts, celery, shrimp, grain, carrots, bananas
- 4. Morbidity/ mortality
 - Unrecognized and inadequately treated cases increase risk of sudden death in a given athlete
 - All individuals involved in physical activity should be aware of exercise-induced asthma risks
 - morbidity associated w/this disease decreased by specifically training coaches/trainers to recognize and treat exercise-induced asthma

Diagnostics

- 1. History
 - Personal or family hx of asthma
 - Symptoms
 - Cough
 - Wheeze
 - Chest tightness
 - Dyspnea
 - Peak at 5 to 10 min into exercise
 - May last up to 60 min
 - Refractory period
 - Period during which repeated exertion causes less bronchoconstriction
- 2. Physical Examination
 - Generally negative when pt is evaluated
 - Careful ENT exam
 - Rule out nasal allergies, sinusitis, or otitis
 - Careful cardiac exam
 - Rule out cardiac arrhythmias and murmurs
 - During exacerbation, will resemble that of an asthmatic
 - Wheeze/ rhonchi
 - Prolonged expiratory phase
 - Poor inspiratory effort
 - Increased work of breathing
 - Nasal flaring
 - Substernal/subcostal retractions
- 3. Diagnostic Testingⁱ
 - Measure change in FEV₁ before and after a standardized exercise challenge test (ECT) on treadmill or bicycle ergometer
 - Gold Standard
 - Minute ventilation must reach the target level in first 4 minutes of the challenge.

- Exercise-induced bronchoconstriction defined by plotting FEV₁ as percentage of pre-exercise baseline FEV₁ at each post-exercise interval.
 - 10% decrease in baseline FEV_1 (i.e., <90% of baseline) generally accepted as abnormal response.
 - Some authors suggest a decrease of 15% (i.e., <85% of baseline FEV₁) more diagnostic of EIB/EIA, particularly if exercise performed in the field^v
- In elite athletes: sport specific challenges, free running asthma screening tests (FRAST), measures of direct bronchial responsiveness to methacholine (MCH), and indirect responsiveness to eucapnic voluntary hyperpnea (EVH) or mannitol.
- EIB/EIA quantified using maximum percent fall index, which is maximum reduction in lung function post-exercise, expressed as a percent of the pre-exercise value.
 - Calculated using formula:

$$\frac{{}^{FEV}1^{/PEF}pre-exercise}{{}^{FEV}1^{/PEF}pre-exercise} \xrightarrow{-\min minimum FEV}1^{/PEF}post -exercise}_{\times 100}$$

• A result of 50% or more clinically significant

Differential Diagnosis

- 1. Key Differential Diagnoses
 - Vocal cord dysfunction
 - Central airway obstruction
 - Cystic Fibrosis
 - o Laryngomalacia
 - Cardiac arrhythmias
 - Congestive Heart Failure (CHF)
 - Pulmonary or cardiac shunt
 - Gastroesophageal reflux dz
 - Normal physiologic exercise limitation

Therapeutics

- 1. Acute Treatment
 - Pharmacological pre-treatment
 - Short acting beta-agonist (SABA)
 - Example: albuterol
 - First-line tx, most effective in preventing exercise-induced bronchoconstriction (SOR:A)ⁱ
 - Use: 2-4 puffs given 15 min before exercise as prophylaxis
 - Quick onset of action
 - Provides relief for up to 4 hrs
 - Is rescue medication and can be repeated if prophylaxis ineffective
 - Caution: overuse can lead to tachyphylaxis within 1 wk of regular use; however, medication should not be discontinued if still effectiveⁱ
 - Should be used w/spacer to ensure more efficient medication delivery

- Long acting beta-agonist (LABA)ⁱⁱⁱ
 - Example: Salmeterol
 - 50 mcg x 1, 30-60 min before exercise
 - Caution: can lead to tachyphylaxis within 4 weeks of use; increased risk of sudden death without use of concomitant inhaled corticosteroid
 - Provides protection for 6-12 hrs in first 30 days, then drops to 6 hrs (not applicable if used less than 3 days per week)
- Mast cell stabilizers (MCS)ⁱ
 - Example: Nedocromil sodium (not available in US)
 - 4 mg, 15-60 min before exercise
 - Example: Cromolyn
 - 20 mg NEB x 1, 10-60 min before exercise
 - Not as effective as SABA
 - Can be used in combination
- Leukotrine receptor antagonists (LTRA)
 - Example: Singular
 - 10 mg adults, 5 mg children
 - More than 2 hrs before exercise
 - Expect effect from 8-24 hrs
 - Use with caution in patients with history of psychiatric conditions due to possible behavioral side-effects.ⁱⁱⁱ
- Short-acting anticholinergics (SAAC)
 - Example: Atrovent
 - 2 puffs, 30 min before exercise
 - Decreases mucus
 - Blocks muscarinic cholinergic receptors in bronchial smooth muscle.ⁱⁱⁱ
- Nonpharmacologic therapyⁱⁱⁱ
 - Physical conditioning
 - Warm up and cool down
 - Nasal breathing
 - Avoidance of cold weather
 - Avoid environmental allergens
 - Face mask or other aid to warm and humidify inhaled air
- 2. Long-Term Care
 - Underlying asthma, which commonly contributes to exercise-induced bronchoconstriction, should be diagnosed and controlled first (SOR:C)ⁱ
 - Control allergy and asthma
 - Antihistamines
 - Intra-nasal steroids
 - Inhaled corticosteroids (ICS)
 - Dietary salt restriction may improve lung function after exercise and possibly base line lung function.^{iv}
 - Very difficult to maintain due to severe sodium restriction (less than 165mmol/day)

Follow-Up

- 1. Return to play
 - Monitor closely after an acute attack
 - \circ An athlete's peak flow should be >85% of baseline
 - Should be free of wheezing before returning to field of play
 - Incomplete response to "rescue" medications on sideline
 - Restrict from play
 - Refer for further medical evaluation
- 2. Return to office
 - Routine follow-up yearly; appropriate if symptoms under control
 - Reassess treatment strategies with any exacerbation
- 3. Refer to specialist
 - For uncontrolled symptoms despite maximal therapy
 - May be utilized earlier in more competitive athletes
- 4. Admit to hospital
 - For respiratory compromise requiring intubation
 - For exacerbations requiring continuous bronchodilator therapy or continuous oxygen admin

Prognosis

- 1. Excellent prognosis with proper therapy
- 2. Should not pose a health risk or limit athletic achievement.

Preventionⁱⁱ

- 1. Control baseline asthma
- 2. Avoid known allergens
- 3. Choose appropriate sports with short bursts of activity
- 4. Choose warm, humid environments for activities
- 5. Warm-up before athletic events (take advantage of a 30-90 minute refractory period)

Patient Education

1. Handout from Family Doctor

Evidence Based Inquiries

1. What best prevents exercise-induced bronchoconstriction for a child with asthma?

References

¹ Dryden DM, Spooner CH, Stickland MK, Vandermeer B, Tjosvold L, Bialy L, Wong K, Rowe BH. Exercise-Induced Bronchoconstriction and Asthma. Evidence Report/Technology Assessment No. 189 (Prepared by the University of Alberta Evidence-based Practice Center under Contract No. 290-2007-10021-I) AHRQ Publication No. 10-E001. Rockville, MD: Agency for Healthcare Research and Quality. January 2010 (Web site posting); revised March 2010.

ⁱⁱPreston J, Cucuzzella M, Jamieson B. What best prevents exercise-induced bronchoconstriction for a child with asthma? *Journal of Family Practice*. 2006; 55(7):631-633.

ⁱⁱⁱ Millward DT, Tanner LG, Brown MA. Treatment options for the management of exerciseinduced asthma and bronchoconstriction. *The Physician and Sports Medicine*. 2010 Dec;38(4):74-80.

^{iv} Pogson Z, McKeever T. Dietary sodium manipulation and asthma. Cochrane Database of Systematic Reviews 2011, Issue 3. Art. No.: CD000436. DOI: 10.1002/14651858.CD000436.pub3.

^v Guidelines for Methacholine and Exercise Challenge Testing—1999. Am. J. Respir. Crit. Care Med.January 1, 2000 vol. 161no. 1 309-329. Available at: <u>http://ajrccm.atsjournals.org/content/161/1/309.full</u>

Author: Julia Nicholson, MD, Sara Roberson, MD, & Ximena Schnurr, MD AHEC West FPR, AR

Editor: Robert Marshall, MD, MPH, MISM, CMIO, Madigan Army Medical Center, Tacoma, WA