Exercise Induced Collapse: Hypothermia

See also Hypothermia (Accidental)

Pathophysiology

- 1. More prevalent in winter sports
- 2. Defined as core body temperature <35 °C (<95 °F)
 - Mild = 32-35 °C (90-95 °F)
 - Moderate = 28-32 °C (82-90 °F)
 - Severe $\leq 28 \degree C (< 82 \degree F)$
- 3. Mild symptoms
 - Usually conscious
 - Shivering
 - $\circ \quad \text{May have some confusion/disorientation} \\$
- 4. Moderate symptoms
 - Decreased metabolism
 - Low BP/heart rate/respiratory rate
 - Severe delirium/confusion
 - Occasionally combative
- 5. Severe
 - Usually comatose
 - Muscles are rigid/areflexic

Diagnostics

- 1. Measuring core body temperature:
 - Use low register thermometer
 - Standard body thermometers do not read in hypothermic range
- 2. Feel for pulse
 - Performing CPR in hypothermic patient WITH pulse may precipitate fatal arrhythmia
 - Myocardium extremely sensitive
- 3. Many ACLS protocols ineffective on profoundly hypothermic patient until core temperature increased

Therapeutics

- 1. Rewarm as soon as possible:
 - Remove all wet clothes
 - Move athlete to a warm, sheltered location
 - Cover with dry blankets
 - Use warm, humidified oxygen
 - IVF NS at 40 °C (105 °F)
 - \circ $\,$ DO NOT warm too rapidly-can cause rewarming shock $\,$
 - Increased blood flow to periphery
 - Causes return of cold peripheral blood to core
 - Causes drop in temperature and blood pressure

Prevention

- 1. Multilayered clothing with linings
 - Keep moisture away from skin
- 2. Also cover head, neck, legs, hands

References

- 1. Abbiss et al. Effect of carbohydrate ingestion and ambient temperature on muscle fatigue development. J Appl Physiol. 2008; 104: 1021-1028
- 2. Blue, J, Pecci, M. The Collapsed Athlete. Orthopedic Clinics of North America, Vol. 33, Issue 3, July 2002.
- 3. Camargo, C, Simmons, FE. Anaphylaxis: Rapid recognition and treatment. UpToDate Online 16.3 Topic last update 10/10/08
- 4. Davis, J Mark, Alderson L, Nathan, Welsh, S Ralph. Serotonin and Central nervous system fatigue: nutritional considerations. American Journal of Clinical Nutrition, Vol. 72, No. 2, 573S-578S, August 2000.
- 5. Hew-Butler, T, Ayus, JC, Kipps, C, et al. Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clinical Journal of Sport Medicine 2008; 18:111
- 6. Hosey, R, Carek, P, Goo, A. Exercise-Induced Anaphylaxis and Urticaria. American Family Physician. October 15, 2001.
- 7. McCaffree, J. Managing the Diabetic Athlete. Journal of America Dietetic Assn. 2006: 106 (8): 1161-2.
- Nybo, L, Nielsen, B, Blomstrand, E, Moller, K. Secher, N. Neurohumoral responses during prolonged exercise in humans. J Appl Physiol, September 1, 2003; 95(3): 1125 - 1131.
- 9. Ostrowski, K, Schjerling, P, Pedersen, B. Physical activity and plasma interleukin-6 in humans: effect of intensity of exercise European. Journal of Applied Physiology 2000, vol. 83, n6, pp. 512-515
- 10. J. D. Fernstrom and M. H. Fernstrom. Exercise, Serum Free Tryptophan, and Central Fatigue. J. Nutr., February 1, 2006; 136(2): 553S 559S.
- 11. Tang, A. A Practical Guide to Anaphylaxis. Am Fam Physician 2003; 68:1325-32, 1339-40.

Author: Tony Chang, MD, University of Nevada Reno FPRP

Editor: Carol Scott, MD, University of Nevada Reno FPRP