Adrenal Insufficiency

See also Adrenal Insufficiency in Pregnancy See also Adrenal Crisis

Background

- 1. Definition
 - Partial or complete loss of adrenal gland function
 - Decr production of glucocorticoids and/or mineralocorticoids by adrenal glands resulting from a defect in hypothalamic-pituitary-adrenal axis
- 2. General info
 - Primary adrenal insufficiency
 - Failure of adrenal gland to synthesize corticosteroids (one or both types)
 - Secondary adrenal insufficiency
 - Adrenal gland function intact but inadequate ACTH stimulation of adrenal glands
 - Can be acute or chronic process
 - 90% of gland destroyed before clinical S/Sx appear

Pathophysiology

- 1. Pathology of dz
 - Primary
 - Damage to adrenal gland or process that blocks cortisol synthesis, often associated with lack of aldosterone as well
 - Autoimmune
 - Most common cause in developed countries
 - 68-94%
 - Schmidt's Syndrome
 - AI or positive autoantibodies, plus autoimmune thyroiditis
 - Polyglandular Autoimmune Syn I (PGA-I)
 - Onset in childhood with mucocutaneous candidiasis, hypoparathyroid & later with hypogonad, hypothyroid, vitiligo, dystrophy of teeth & nails
 - PGA-II
 - Onset as adult autoimmune adrenalitis with autoimmune thyroiditis or DM 1
 - Can have concurrent vitiligo, celiac sprue, pernicious anemia
 - Ovarian failure in 10% women <40 yo with PGA-II
 - Carpenter syndrome
 - Autoimmune adrenalitis with autoimmune thyroiditis and DM 1
 - Adrenal hemorrhage
 - Coagulopathies, pregnancy
 - Waterhouse-Friderichsen Syndrome
 - Hemorrhage into adrenal glands assoc with sepsis, most commonly meningococcemia
 - Tuberculosis <15%, most common cause in developing countries
 - Medications
 - Ketoconazole, etomidate

- X-linked Adrenoleukodystrophy
 - AI occurs long before CNS Sx
- AIDS associated infections:
 - Cytomegalovirus
 - C. neoformans
 - T. gondii
 - M. avium intracellulare
 - H. capsulatum
 - P. jirovecii
- Metastatic CA:
 - Lung, breast, kidney, colon, lymphoma
- Misc:
 - Sarcoidosis, amyloidosis
- Secondary
 - Decreased pituitary ACTH production
 - Abrupt discontinuation of long term corticosteroids
 - Pituitary adenomas, other tumors or inflammatory process involving sella
 - Massive hemorrhage: postpartum bleed (Sheehan's syndrome)
- Tertiary
 - Decreased hypothalamic CRH production
- 2. Incidence/ prevalence
 - Primary
 - Incidence: 50 per 1 million in Western populations
 - Prevalence: 110 per 1 million in UK
 - Secondary
 - In 2003, prevalence of 150-280 per million
 - Estimated 6 million people in US have undiagnosed 2° adrenal insufficiency
- 3. Risk factors
 - Female 1.5-3.5x > males
 - Adrenal Cortex Antibodies confers 30% increased risk of AI
- 4. Morbidity/ mortality
 - Mortality 2-fold higher than background
 - Usually related to malignancy, infections or cardiovascular dz
 - Fatigue, depression, anxiety
 - Acute adrenal insufficiency may be fatal if untreated
 - Death usually from cardiac arrhythmias secondary to electrolyte imbalances
- 5. Etiologies
 - Primary adrenal insufficiency
 - Autoimmune disorders (80%)
 - Addison's dz
 - Autoimmune polyendocrine syndromes, Type 1 and 2
 - Infection
 - Tuberculosis
 - CMV
 - HIV
 - Coccidioidomycosis
 - Histoplasmosis

- Drugs
 - Ketoconazole
 - Metyrapone
 - Aminoglutethimide
 - Mitotane
 - Etomidate
- Cancer
 - Metastasis to adrenal most common (lung, GI, breast, and renal)
- Adrenoleukodystrophy
- Coagulopathies
- Hx of familial glucocorticoid deficiency
- Congenital adrenal hyperplasia
- Adrenal hemorrhage
- Secondary adrenal insufficiency
 - Discontinuation of exogenous glucocorticoid therapy
 - Hypothalamic: pituitary dz
 - Pituitary tumor
 - Radiation therapy to pituitary gland
 - Removal of endogenous steroid-producing tumor
 - ACTH-producing lung carcinoma
- Acute adrenal crisis
 - Precipitated in pts with underlying adrenal dz by physiological stressors
 - Infection
 - Trauma
 - Surgery
 - Dehydration
- 6. Conditions assoc w/adrenal insufficiency
 - Stressors (infection, trauma, surgery or dehydration) with underlying adrenal dz
 - Inadequate exogenous replacement during infection, trauma, periods of stress
 - Coagulopathies
 - Post-partum hypopituitarism (Sheehan's syndrome)
 - Hypopituitarism secondary to necrosis due to blood loss and hypovolemic shock during and after childbirth
 - Waterhouse-Friderichsen syndrome
 - Bilateral hemorrhage of adrenal glands 2° to fulminant meningococcemia

Diagnostics

- 1. History
 - Acute symptoms
 - Weakness
 - Abdominal pain
 - Salt craving
 - Diarrhea/ constipation
 - N/V

- Syncope
- Myalgias
- Arthralgias
- Subacute symptoms
 - Hyperpigmentation of skin
 - Weight loss
 - Orthostatic hypotension
 - Cold intolerance
 - Amenorrhea
 - Axillary hair loss
 - Depression/ anxiety
 - Fatigue
 - Hair loss
 - Anorexia
- 2. Physical exam
 - Acute
 - Hypovolemic shock
 - Fever
 - N/V
 - Confusion
 - Coma
 - Tachycardia
 - Abdominal pain
 - Flank pain: from adrenal hemorrhage
 - Primary
 - Hyperpigmentation of skin (not universal)
 - Mucous membranes, lips
 - Pressure areas (knuckles, skin creases)
 - Nipples, axilla, perineum
 - Palmar creases
 - Areola, scars
 - Vagina
 - Hypotension
 - Wt loss
 - Dehydration
 - Vitiligo (9%)
 - Secondary
 - No hyperpigmentation of skin
 - Hypotension less common
 - Visual field defect (pituitary origin)
 - Headache (pituitary origin)
- 3. Dx testing
 - Lab eval
 - Primary
 - Hyponatremia (85-90%)
 - Hyperkalemia (60-65%)
 - Hypoglycemia
 - Normocytic normochromic anemia
 - Neutropenia

- Eosinophilia
- Lymphocytosis
- Incr BUN and creatinine 2° to dehydration
- Secondary
 - Same as primary except potassium, creatinine, bicarbonate and BUN are usually normal
- Dx imaging
 - Abd X-ray:
 - Calcification of adrenal glands (tuberculosis)
 - CT scan:
 - Calcification, metastasis, adrenal enlargement or hemorrhage
 - Head CT:
 - Pituitary destruction, mass
- Other studies
 - EKG
 - Nonspecific ST-T wave changes due to electrolyte abnormalities
- 4. Other studies (if indicated)
 - Screening test:
 - 8 am serum cortisol (alt draw time for shift workers)
 - Level >13 mcg/dL reliably rules out adrenal insufficiency
 - Primary AI: <3 mcg/dL with elevated ACTH, usually >100 pg/mL
 - Secondary AI: <3 mcg/dL with low or inappropriately normal ACTH
 - Level $\leq 13 \text{ mcg/dL}$ initiate dynamic testing
 - NOTE:
 - Serum cortisol less reliable than free cortisol in severe physical stress
 - Use free cortisol if serum albumin <2.5 g/L
 - Dynamic testing
 - None of available tests are ideal in relation to sensitivity / specificity
 - Choice of dynamic testing depends on clinical experience / considerations of test performance / available resources
 - Synthetic ACTH (Cortrosyn) stimulation (SOR:C)
 - Low dose: Cortrosyn 1 mcg IV, measure serum cortisol at 0, 30, & 60 min
 - More sensitive for Dx mild AI
 - Peak serum cortisol >18 mcg/dL normal; 13-17 mcg/dL indeterminate, requires confirmation with ITT; <13 confirms dx
 - Preferred initial dynamic test due to more physiologic dose, simplicity, better sensitivity and less expensive
 - High dose: Cortrosyn 250 mcg IV or IM, measure cortisol at 0, 30, & 60 min (spec 95%; sens 97%)
 - Same cutoffs as low dose stim test
 - Can have falsely normal cortisol in mild AI due to hyperexaggerated stress dose at 250 mcg
 - Peak of <15 mcg/dL is definitively abnormal

- NOTE:
 - Normal cortrosyn stimulation test does not rule out mild or recent onset secondary adrenal insufficiency
- Insulin tolerance test (ITT)
 - Relies on entire hypothalamic -pituitary -adrenal axis
 - Used when pretest probability for dz is high and normal cortrosyn stim test obtained
 - Insulin 0.1 U/kg (0.15 U/kg in obese) IV, measure serum cortisol at 0, 30, 45, 60, 90 min
 - Serum cortisol <18 and concomitant serum glucose <40 suggest AI
 - Contraindications: age >60, seizure disorder, CAD
 - Resource intensive; requires close supervision d/t hypoglycemia effect
 - Can test growth hormone reserve in pts with hypothalamic/pituitary dz
- Metyrapone test
 - Performed if rapid ACTH test is normal
 - Measures ability of HPA axis to respond to acute drop in serum cortisol levels
 - Metyrapone blocks final step of cortisol synthesis (11-beta hyroxylase)
 - Admin should cause an increase in ACTH and 11deoxycortisol (cortisol precursor)
 - Overnight single dose-test
 - Metyrapone 30 mg/kg (max dose 3,000 mg) at midnight
 - Measure Serum 11-deoxycortisol and cortisol next morning (8 am)
 - Two or three day test
 - Cortisol should drop to <5 mcg/dL; deoxycortisol should incr to >7 mcg/dL
 - Low cost; safe for outpt use
 - Limitations: metyrapone intermittently available
- CRH stimulation test
 - High cost/low utility (high sensitivity; specificity 33%)
 - 1 mcg/kg CRH IV, measure serum cortisol at 0, 15, 30, 60 min
 - Cortisol level >18.5 mcg/dL normal
 - Peak of <15 mcg/dL is definitively abnormal
- 5. Identify level of dz
 - ACTH >100 pg/ml = primary adrenal insufficiency
 - ACTH infusion (250 mg/day over 8 hours) for 3-5 days
 - Daily urine 17-hydroxysteroid levels
 - Day 5 should record 3-5 fold incr 17OH steroid level
 - Diagnostic of secondary OR tertiary dz
 - Primary Adrenal Insuff: 17OH steroid does not decr
 - CRH Stimulation Test
 - Differentiates primary, secondary AND tertiary dz

- 6. Identify cause
 - Primary

•

- Anti-adrenal antibodies (highly specific; limited sensitivity)
 - ACA (Adrenal cortex autoantibody) + 21-hydroxylase antibody (210Hab) = autoimmune adrenalitis
- Adrenal CT scan: hemorrhage, metastatic, infectious
 - Tuberculosis work-up: adrenal CT scan
 - Enlarged adrenal gland w/classic calcifications; caseating granulomas
 - Non-caseating granulomas likely in cancer/sarcoidosis
- Very long chain fatty acids if adrenoleukodystrophy suspected (males only)
 - MRI superior to CT for identification of mass
 - Cannot distinguish tumor vs. inflammatory process
- Secondary
 - Pituitary / hypothalamic MRI: neoplasia (if no glucocorticoid exposure)

Differential Diagnosis

1. Key DDx

- Chronic fatigue syndrome
- Hypothyroidism
- Congenital adrenal hyperplasia
- Hypothyroidism
- Pregnancy
- Polyglandular autoimmune dz
- Depression
- Anorexia Nervosa
- 2. Extensive DDx
 - o 3-Beta-hydroxysteroid dehydrogenase deficiency
 - Adrenal hypoplasia
 - Acanthosis Nigricans
 - Lentigo
 - Malignant melanoma
 - o Melasma
 - Vitiligo
 - Birth trauma
 - Familial glucocorticoid deficiency
 - Pseudohypoaldosteronism
 - Adrenoleukodystrophy
 - Adrenomyeloneuropathy
 - Autoimmune polyglandular endocrinopathy syndromes
 - Infectious adrenalitis (HIV, TB)
 - Lipoid adrenal hyperplasia
 - Wolman disorder

Acute Treatment

1. IV saline (1-3 L) and dextrose, or saline alone, to correct

- Volume
- Electrolytes

- Possible hypoglycemia
- 2. Hydrocortisone sodium phosphate or sodium succinate 100 mg IV q6 hrs for 24 hrs; dexamethasone 4 mg IV bolus
 - If known adrenal insufficiency and potassium > 6 mEq/L, hydrocortisone preferred (mineralocorticoid activity)

Further Management (24 hrs)

- 1. If stable, decr hydrocortisone to 50 mg q6 hrs on day 2 and 10 mg on subsequent days
- 2. Fludrocortisone can be substituted (0.1 mg qD PO) for hydrocortisone once pt stable

Long-term Care

- 1. Maintenance hydrocortisone (HCT) varies
 - Typically 15-30 mg daily in adults
 - 10-20 in morning and 5-10 mg later in day
- 2. Fludrocortisone 0.05-0.2 mg PO in AM
 - Target: lower renin activity to upper normal range
- 3. Follow weight, BP and electrolytes regularly
- 4. Bone mineral density (BMD)
 - Measure annually for as long as glucocorticoid Tx is continued
- 5. Pts should wear medical alert bracelet
- 6. Periods of physiologic stress (severe illness or surgery)
- Require transient dosages of HCT 3-10 times that for maintenance Tx
- 7. Stress dosages usually not needed in mild illness (URIs)
 - But can use 3x3 rule
 - 2-3 times usual dose x3 days
- 8. Provide inj HCT to pts and family member for adrenal crisis or when pt cannot tolerate PO meds
- 9. Complications of long-term steroid replacement therapy
 - o Osteoporosis
 - Osteonecrosis
 - Skin thinning
 - o Purpura
 - Cataracts
 - o Glaucoma
 - Atherosclerosis
 - o Gastritis, ulcers, GI bleeding
 - Fluid retention
 - Hypertension
 - Myopathy, muscle weakness
 - Growth retardation in children
 - Psychosis
 - Glucose intolerance, hyperglycemia
 - Neutrophilia
 - Susceptibility to infection

Follow-Up

1. Return to office

0

- Chronic glucocorticoid therapy surveillance mainly based on clinical grounds
 - Serum ACTH levels and cortisol extremely variable
 - Use lowest possible dose, to avoid:
 - Obesity
 - Glucose intolerance
 - Osteoporosis
- o Often difficult to achieve correct dose of steroid replacement in pts
 - Physicians should look for S/Sx of over or under replacement
 - If corticosteroid dose excessive, pts experience wt gain and Cushing's features
 - If steroid dose inadequate, pts experience symptoms of adrenal insufficiency
- Mineralocorticoid replacement: look for S/Sx of postural hypotension, measure
 - Supine and upright BP and pulse
 - Serum potassium
 - Plasma renin
 - Recommend annual renin levels
- 2. Refer to specialist
 - Consult endocrinology in all cases of adrenal insufficiency
- 3. Admit to hospital
 - Acute adrenal crisis (hypotensive shock) should be admitted to ICU for stabilization
 - Severe physical stress such as surgery, trauma, or serious illness should be admitted for IV hydrocortisone

Prognosis

- 1. Untreated:
 - Poor prognosis, usually death
- 2. Treated:
 - Normal lifespan, quality of life sometimes impaired due to fatigue, depression, anxiety
- 3. Retrospective observational study in Sweden noted 2-fold higher risk of death
 - Due to cardiovascular, malignant and infectious causes

Patient Education

- 1. http://www.cc.nih.gov/ccc/patient_education/pepubs/mngadrins.pdf
- 2. http://www.endocrine.niddk.nih.gov/pubs/addison/addison.htm#education

Evidence-Based Inquiry

- 1. What's the most practical way to rule out adrenal insufficiency?
- 2. What is the sensitivity and specificity of the cosyntropin (ACTH) stimulation test for adrenal insufficiency?

References

- Deaton, MA, Glorioso, JE and McLean, DB. Congenital adrenal hyperplasia: Not really a zebra. American Family Physician, March 1999. Vol 59(5):1190-1196, 1172. Available online at: <u>http://www.aafp.org/afp/990301ap/1190.html</u>
- 2. Klauer, KM. Adrenal insufficiency and adrenal crisis. Emedicine, January 2007. Available online at: <u>http://www.emedicine.com/emerg/topic16.htm</u>
- Nieman, LK and Lacroix, A. Diagnosis of adrenal insufficiency in adults. UpToDate, 16.1, March 2007. Available online at: <u>http://utdol.com/online/content/topic.do?topicKey=adrenal/4314&;selectedTitle=</u> 2~150&source=search_result
- 4. Nieman, LK and Lacroix, A. Treatment of adrenal insufficiency in adults. UpToDate Online, 16.1, February 2008. Available online at: <u>http://utdol.com/online/content/topic.do?topicKey=adrenal/4402&;selectedTitle=</u> 7~150&source=search_result
- 5. Wilson, TA and Speiser, PW. Adrenal insufficiency. Emedicine, October 2007. Available online at: <u>http://www.emedicine.com/PED/topic47.htm</u>
- Deaton, Michael A. Congenital Adrenal Hyperplasia: Not Really a Zebra. American Academy of Family Physicians. March 1, 1999. <u>http://www.aafp.org/afp/990301ap/1190.html</u>
- Klauer, Kevin. Adrenal Insufficiency and Adrenal Crisis. eMedicine. January 30, 2007. <u>http://www.emedicine.com/emerg/topic16.htm</u>
- 8. Nieman, Lynnette K. UptoDate. Clinical Manifestations of Adrenal Insufficiency. http://www.uptodateonline.com/utd/content/topic.do?topicKey=adrenal/5492&sel ectedTitle=1~204&source=search_result
- 9. Nieman, Lynnette K. Treatment of Adrenal Insufficiency. UpToDate. <u>http://www.uptodateonline.com/utd/content/topic.do?topicKey=adrenal/4402&;se</u> lectedTitle=9~5713&source=search_result
- 10. Rosen, Hillel. Prevention and Treatment of Glucocorticoid-Induced Osteoperosis. UpToDate.

http://www.uptodateonline.com/utd/content/topic.do?topicKey=minmetab/14899

11. Saag, Kenneth G. and Daniel E. Furst. UptoDate. Major Side Effects of Systemic Glucocorticoids. http://www.uptodateonline.com/utd/content/topic.do?topicKey=tx_rheum/6535&:

http://www.uptodateonline.com/utd/content/topic.do?topicKey=tx_rheum/6535&; selectedTitle=4~2468&source=search_result

- 12. Wilson, Thomas A. Adrenal Insufficiency. eMedicine, April 7, 2006. http://www.emedicine.com/PED/topic47.htm
- Bergthorsdottir R, et al. Premature Mortality in Patients with Addison's Disease: A Population-Based Study. Journal of Clinical Endocrinology & Metabolism – Volume 91; Issue 12: 4549-4963.
- 14. Liotta A. Addison's Disease. e-Medicine February2007 http://www.emedicine.com/derm/topic761.htm
- Majeroni BA, Patel P. Autoimmune Polyglandular Syndrome, Type II. AFP 75: 667-700 (March 2007) <u>http://www.aafp.org/afp/20070301/667.html</u>
- 16. Dorin RI, et al. Diagnosis of Adrenal Insufficiency. Ann Intern Med. 2008:139: 194-204.
- Gurnell PJ, et al. Long-Term DHEA Replacement in Primary Adrenal Insufficiency: A Randomized, Controlled Trial. Journal of Clinical Endocrinology and Metabolism – Volume 93: 400-409 (February 2008)

- Bergthorsdottir R, et al. Premature Mortality in Patients with Addison's Disease: A Population-Based Study. Journal of Clinical Endocrinology & Metabolism – Volume 91; Issue 12: 4549-4963.
- 19. Salvatori R.Adrenal Insufficiency. JAMA. 2005;294(19):2481-2488
- 20. Italian Addison Network Study: Update of Diagnostic Criteria for the Etiological Classification of Primary Adrenal Insufficiency Journal of Clinical Endocrinology and Metabolism - Volume 89, Issue 4 (April 2004)
- 21. Kirkland L. Adrenal Crisis. e-Medicine. December 2007. http://www.emedicine.com/MED/topic65.htm

Authors: Kristin Malefyt, MD, & Benjamin Fredrick, MD, James Haynes, MD, & Matthew Ramage, MD, USAF Eglin FMR, FL

Editor: Robert Marshall, MD, MPH, Capt MC USN, Puget Sound Family Medicine Residence, Naval Hospital, Bremerton, WA & Vince WinklerPrins, MD, Georgetown University-Providence Hospital, Washington DC