Anemia In Athletes

See also Anemia

Background

- 1. Anemia = hemoglobin (Hgb) or hematocrit (Hct) <2 SD below mean
 - Normal values vary w/age, sex, altitude
 - Normal Hgb for males: 14-16 gm/dL
 - Normal Hgb for females: 12-15.5 gm/dL
 - "Sports anemia": anemia in an athlete
- 2. General information:
 - Anemia in athletes should be worked up & tx as in non-athletes:
 - Iron studies
 - Vit B12 & Folate
 - GI evaluation
 - Referral as indicated

Pathophysiology

- 1. Anemia is a lack of RBCs due to a number of causes:
 - Vitamin deficiencies
 - Iron deficiency
 - Hemoglobinopathies
 - o Bone marrow failure or dysfunction
- 2. Symptoms of anemia related to relative tissue hypoxia due to low oxygen carrying capacity of blood
- 3. Sports anemia is a dilutional pseudoanemia
 - Research indicates it may be a beneficial adaptation
 - Plasma vol incr 10-20% as a response to endurance training
 - Incr plasma vol causes Hgb levels to decr while incr blood fluidity
 - Not felt to be pathologic
 - Usually returns to normal within 3-5 days of activity cessation
- 4. Footstrike hemolysis or Exertional hemolysis, also "heel strike hemolysis" and "march hemoglobinuria"
 - o Result of intravascular hemolysis d/t RBC trauma at sole of foot on impact
 - o Primarily seen in long distance runners d/t repeated forceful, high impact heel strikes
 - Can also occur when recreational runner incr distance
 - "March hemoglobinuria" described in 1861 in military personnel after strenuous field marches
 - Affected men had dark urine that cleared w/rest
 - Can also be seen in swimming, wt lifting, and rowing
 - Thought to be d/t RBC exposure to continuous high oxygen-flux causing oxidative damage
 - Which may lead to a shorter life-span of RBC
 - Normal life-span: 120 days
- 5. Iron deficiency in athletes
 - Long-distance endurance sports
 - GI loss of heme due to reversible bowel ischemia, GI bleeding, gastric ulcers
 - Poor dietary intake of iron

- Menstruation
- Ferritin can be decreased in training athletes
 - Loss in sweat
 - Rapid turnover of iron in aerobic oxidative muscle metabolism
 - Iron shift from tissue storage to RBCs

6. Incidence/ prevalence

- o Athletes are no more likely to develop anemia than non-athletes
- Footstrike hemolysis found in up to 20% of long-distance endurance runners
 - Occurs equally in male and female runners
- Iron deficiency anemia is more common in female athletes and young athletes
 - Insufficient dietary intake of iron
 - Higher iron demands during growth
 - Menstruation
 - Low iron stores in ~18% of strenuously trained adolescent athletes

Diagnostics

1. History:

- o Often no or mild symptoms
- o General fatigue
- Weakness
- Dyspnea w/long, strenuous exertion
- Decr in exercise performance
 - Most common reason for athlete to seek care
- Hx should incl
 - Dietary intake
 - Possible hemoglobinopathies
 - Sickle cell anemia/ trait
 - Thalassemias
 - Occult malignancy
 - GI or GU pathology
 - Hx of blood transfusions
 - Oral supplements
 - Prescription meds
 - Recent training hx
 - If incr mileage eval for footstrike hemolysis

2. Physical examination:

- o See: Anemia
- o Often mild or no findings
- o May see glossitis, angular stomatitis, spooning of nails

3. Diagnostic testing

- Sports anemia
 - Mild decr in Hgb in euvolemic pt
 - Orthostatic VS normal
 - Normal
 - MCV
 - Iron studies
 - Vit B12 level
 - Folate

- Footstrike hemolysis
 - Incr reticulocyte count
 - Echinocytes/ reticulocytes on peripheral smear
 - UA for hemoglobin, hemoglobin casts, hemosiderin
 - CBC w/mild decr in Hgb, mild incr in MCV
 - Iron studies normal w/ferritin normal or slightly low
- o Iron deficiency anemia
 - Normal to low Hgb
 - Low serum ferritin
 - Decr MCV
 - Soluble transferrin receptor (sTfR)
 - Incr sTfR: upregulation of receptor indicates iron deficiency
 - Not standard testing at this time, may be helpful
 - Consider GI workup
 - Occult blood loss in stool incr w/long duration athletic events
 - Usually minimal loss
 - o If anemic, work-up
 - Iron malabsorption
 - Check serum iron before and 2 hrs after oral iron supplementation
 - If no serum iron rise, malabsorption syndrome likely
 - o Parenteral iron tx

Differential Diagnosis

- 1. Rule out other causes of anemia/ symptoms mimicking anemia
 - Acute infectious illness
 - Life threatening cardiac abnormalities
 - Congenital heart defects
 - HCM/ IHSS
 - If acute SOB
 - Pulmonary embolism (PE)
 - Asthma exacerbations
- 2. Decr exercise performance may be d/t deconditioning and overtraining w/o anemia
- 3. Supplements, herbal therapies, prescription drugs can cause bone marrow suppression
- 4. HIV may present w/anemia

Therapeutics

- 1. Sports anemia
 - o Pseudoanemia
 - No tx required
- 2. Footstrike/ Exertional hemolysis
 - Temporary
 - o Will improve w/decr training vol and/or runner adaptation
 - Biomechanical eval to change stride
 - Soft, padded shoe inserts
 - Training on soft surfaces
 - Appropriate hydration to prevent secondary renal insufficiency from hemolysis

- 3. Iron deficiency anemia
 - Iron supplementation
 - 200 mg of elemental iron per day
 - Vit C incr bioavailability of oral iron
 - Severe iron deficiency requires further eval
 - May require parenteral therapy w/ IV iron supplementation and transfusion
 - IV iron max 100 mg of elemental iron per day once weekly for 4 wks
 - Followed by monthly therapy if required
 - o IV iron dextran may cause anaphylaxis during tx
 - o Less chance of reaction w/IV iron sucrose products
 - Gastric ulcers
 - Tx w/histamine H2 antagonists

Follow-Up

- 1. For iron deficiency
 - o Repeat CBC, serum iron and ferritin to eval response to oral iron
 - o Severe iron deficiency requires GI eval
 - Occult GI malignancy
 - Hemorrhagic ulceration
 - Arteriovenous malformation
 - Other GI sources of blood loss
 - Iron malabsorption
- 2. Women w/severe menorrhagia
 - Need eval and referral to gynecology when appropriate

Prevention/ Screening

- 1. Screening for anemia in athlete is controversial
 - Consider in
 - Menstruating, tired female athletes
 - Elite male athletes
- 2. CBC and iron studies:
 - o Iron
 - Ferritin
 - o TIBC
 - o Transferrin saturation
- 3. Consider soluble transferrin receptor assay if previous iron studies are indeterminant
- 4. If iron supplementation results in incr Hgb concentration, exercise performance improves

References

- 1. Balaban EP et al. The frequency of anemia and iron deficiency in the runner. Med Sci Sports Exerc 1989; 21(6):643-8.
- 2. Beard J and J. Tobin. Iron status and exercise. Am J Clin Nutr 2000; 72(suppl):594S-7S.
- 3. Deitrick RW. Intravascular haemolysis in the recreational runner. Br J Sports Med 1991; 25(4):183-7.

- 4. Dressendorfer RH et al. Development of pseudoanemia in marathon runners during a 20-day road race. JAMA 1981; 246(11):1215-8.
- 5. Fallon KE. Blood tests in tired elite athletes-expectations of athletes, coaches and sport science/sports medicine staff. Br J Sports Med 2006 Oct 24 epub.
- 6. Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med May 2004; 14(3):145-152.
- 7. Merkel D et al. Prevalence of iron deficiency and anemia among strenuously trained adolescents. J Ado Health 2005; 37:220-223.
- 8. Sawka MN et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exer 2000; 32(2):332.
- 9. Shaskey DJ and GA Green. Sports haematology. Sports Med 2000; 29(1):27-38.
- 10. Smith JA. Exercise, training and red blood cell turnover. Sports Med 1995; 19(1):9-31.
- 11. Telford RD et al. Footstrike is the major cause of hemolysis during running. J Appl Physiol 2003; 94:38-42.
- 12. Weight LM et al. "Sports anemia" a real or apparent phenomenon in endurance-trained athletes? Int J Sports Med 1992; 13(4):344-7.

Authors: Karen Milligan, MD, & Michael Milligan, MD, *University of Nevada Reno FPRP*

Editor: Carol Scott, MD, University of Nevada Reno FPRP