Knee Meniscal Injuries

See also Meniscal Injuries

Background

- 1. Definition
 - Injury or tear to C-shaped wedges of fibrocartilage located between femoral condyle and tibial plateau
- 2. General information
 - Medial meniscus
 - Larger
 - Semilunar
 - Fixed to tibia
 - Bears heavier load
 - More freq injured than lateral meniscus
 - Medial and lateral meniscus connected by transverse ligament
 - Fibers of meniscus arranged in circular pattern
 - Expand w/load to provide shock absorption and joint lubrication, "hoop tension"
 - \circ Classification of tears
 - Anterior, lateral, posterior, traumatic vs. degenerative, "bucket handle", vertical, radial
 - Association w/"Unhappy Triad"
 - ACL tear
 - MCL tear
 - Posterior horn of medial meniscus tear

Pathophysiology

1. Pathology of dz

- Mechanism of injury
 - Twisting action exerted on knee while foot is planted
- Atraumatic injury
 - Degenerative knee w/decr blood supply and fluid content allow meniscus to be vulnerable to injury
- Tear and loss of smooth motion of knee may lead to "locking" sensation, effusion, premature osteoarthritis
- 2. Incidence/ prevalence
 - Meniscal tears: 9% of all knee injuries
 - Male to female ratio; 2.5:1
- 3. Risk factors
 - Most common sports
 - Twisting, pivoting, contact sports
 - Football, soccer, rugby, lacrosse, basketball
 - Degenerative changes associated w/decr vascularity
- 4. Morbidity/ mortality
 - May be
 - Debilitating
 - Unable to work
 - Time lost for rehab, possible surgical intervention
 - Restriction of ADLs

Knee Meniscal Injuries in Athletes Page 1 of 5

- Elite athletes
 - Loss of play time
 - Psychological stresses of injury
- May lead to early osteoarthritis

Diagnostics

- 1. History
 - Appropriate mechanism of injury
 - Planting, twisting
 - o Insidious effusion, clicking, popping, locking/catching, joint line tenderness
 - Previous injury
- 2. Physical examination
 - General knee exam
 - Joint line tenderness
 - Effusion
 - Range of motion (ROM)
 - McMurray's test
 - The best individual test for ruling in meniscal pathology
 - Technique
 - Pt lies supine
 - \circ Knee flexed to 45°
 - Hip flexed to 45°
 - Examiners thumb and index fingers placed on joint line
 - Passively flex knee
 - Internally rotate tibia at full flexion (to trap lateral meniscus) or externally rotate tibia (to trap medial meniscus)
 - Extend knee
 - Positive test is noted by painful click at joint line
 - McMurray's: 35-68% sensitivity, 87-99% specificity
 - NPV approaches 100%
 - Duck walk/squat
 - Pt finds this difficult to perform
 - o Ottawa Knee Rules
 - Use when there is a possibility of fracture
- 3. Diagnostic imaging
 - Plain x-ray
 - Knee injuries: Indications for radiography
 - Ottawa & Pittsburgh knee rules
 - MRI findings
 - MRI sequence varies based on institution, physician preference, and availability
 - No significant difference in evaluating knee structures using different magnet strengths
 - No need for injection of contrast for arthrography
 - Should interpret w/recent radiograph to correlate w/any calcified loose bodies or chondrocalcinosis
 - Sensitivity 89-98%, negative predictive value approaching 100%
 - Strict criteria for dx tear w/MRI

- Normal meniscus appears as homogeneous low signal intensity on all pulse sequences
 - Smooth, clean, dark "triangles"
- A tear has larger water molecules resulting in incr signal intensity on all T1W, proton density and T2W sequences
 - Bright signal disrupting dark meniscus
- Bright tear must definitively extend into meniscus
 - "Squint sign": If one must squint to see signal extending into meniscus, not usually a true tear
- 4. Diagnostic criteria
 - Clinical dx, reaffirmed w/MRI, but confirmed only on arthroscopy
 - Comparing to arthroscopy as "gold standard", MRI accuracy is near 90% for predicting a meniscal tear

Differential Diagnosis

- 1. MCL sprain
- 2. Foreign body (calcification, loose cartilage)
- 3. Plica
- 4. Osteochondritis dissecans
- 5. Pes anserine bursitis
- 6. Osteoarthritis

Therapeutics

1. Acute treatment

- Immediate referral to orthopedics if
 - Severe pain immediately following traumatic injury
 - Severe restriction of motion
 - McMurray positive at minimal flexion
 - Presence of concurrent ACL, MCL tear
- Initial conservative tx
 - Rest/ restrict
 - No squatting, pivoting, kneeling
 - Ice: 20min q4-6hrs
 - Compression
 - No proven benefit; may use patellar restraining brace if poor quadriceps tone
 - Elevation to reduce effusion
- 2. Further mgmt (>24 hrs)

•

- Surgical decision based on
 - Frequency of symptoms or pain
 - Daily despite 2-4 wks conservative tx
 - Degree of tear
 - Complex
 - Bucket handle
 - Involving articular surface
 - Affects daily functioning
 - Inability to squat
 - Locking
- 3. Long-term care

- Rehabilitation: post-op repair vs. resection
 - Repair
 - Complete healing 70-80% pts; mainly based on availability of blood supply to area of tear
 - Do not begin vigorous rehab for 6 wks post-op to allow for healing time of repaired meniscus
 - 6 months for completion of remodeling process
 - Tensile strength 50% at 4 wks, 76% at 8 wks
 - ROM (except extremes of flexion and extension) and partial wt bearing important in promoting healing environment
 - No difference in clinical failure rates in restrictive rehabilitation programs w/return to pivoting activity delayed to 6 months vs. accelerated programs w/return at 4-8 wks or when quadriceps strength was 75%
 - Resection
 - No need to restrict sporting activity
 - Regeneration is limited and remaining meniscus is immediately stable
 - These pts experience more pain and swelling leading to
 - Decr ROM
 - Decr strength
 - Overall knee-related quality of life and athletic ability decr
 - No difference between formal physical therapy or home exercise program in most athletes
 - High level elite athlete
 - Lower extremity staged physical therapy for strength, endurance, proprioception

Follow-Up

- 1. Return to office
 - Time frame for return visit
 - 4-6 wks w/conservative tx
 - Recommendations for earlier follow-up
 - Incr pain
 - Effusion w/activity
- 2. Refer to specialist

0

- Immediate if "Red flags"
 - Traumatic twisting/ pivotal injury
 - Severe pain
 - Restricted ROM
 - Locking
 - Concurrent ACL tear

Prognosis

1. Good w/proper rehabilitation to strengthen, stabilize and prevent re-injury 2. Return to play

- Full, pain free ROM
- Able to perform sport specific functional activities

• Athletes may return to sport 2-3 wks after arthroscopic partial meniscectomy or 6-8 wks after meniscal repair

Prevention

1. Preventive bracing for high contact sports

- Lateral support bracing for football linemen
- 2. Reinforce proper technique and training
- 3. Preseason conditioning program
 - Flexibility
 - o Agility
 - Proprioception
 - Strength training
 - Emphasize proper sport specific technique

References

- 1. Ellis, MR, Meadows, S. For knee pain, how predictive is physical exam for meniscal injuries? Journal of Family Practice, November 2004, Vol 24, No. 11.
- 2. Jackson, JL, O'Malley, PG, Kroenke, K. Evaluation of acute knee pain in primary care. Annals of Internal Medicine 2003; 139:575.
- 3. Hayes, CW, Coggins, C. Sports- Related Injuries of the Knee: An Approach to MRI Interpretation. Clinics in Sports Medicine 2006; 25, 659-679.
- 4. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging 4th Ed. Churchill Livingston Publishing, © 2001.
- 5. Bowen, TR, Feldmann, DD, Miller, MD. Return to play following surgical treatment of meniscal and chondral injuries to the knee. Clinics in Sports Medicine 2004, 381-393.
- 6. Calmbach, WL, Hutchens, Mark. Evaluation of Patients Presenting with Knee Pain: Part I. History, Physical Exam, Radiographs, and Laboratory Testing. American Family Physician, September 1, 2003. http://www.aafp.org/afp/20030901/907.html

Evidence-Based Inquiries

- 1. For knee pain, how predictive is physical examination?
- 2. What is the best way to evaluate an acute traumatic knee injury?
- 3. Is musculoskeletal ultrasound helpful in diagnosing mensical tears?
- 4. Is a structured exercise program as effective as arthroscopic surgery for decreasing the pain of nontraumatic meniscal injuries?

Authors: Tony S. Reed, MD, & Jennifer Roth, MD, Christiana Care Health System FMRP

Editor: Carol Scott, MD, University of Nevada Reno FPRP