Exercise-Induced Asthma

Background

- 1. Definition
 - Episodic bronchoconstriction during or following exercise
- 2. General information
 - More suitably called "exercise-induced bronchoconstriction"
 - See also Asthma

Pathophysiology

- 1. Pathology of dz
 - o Hyperosmolarity theory
 - Hyperventilation during exercise causes evaporative water loss
 - Water loss causes hypertonicity/hyperosmolarity of cells
 - Change in cell composition causes release of bronchoconstricting mediators
 - Histamine
 - Prostaglandins
 - Leukotrienes
 - o Airway rewarming theory
 - Large volume of cold air overwhelms ability of airways to warm air
 - Cold air reaches distal airways causing airway narrowing and edema
 - Inflammatory mediator theory
 - People that exercise freq, especially in cold air, develop chronic inflammatory changes
 - Incr levels of IL-8, LTC4, LTD4, and histamine
 - TH-2 lymphocytes are incr
 - Incr IgE
 - Incr activation of eosinophils
- 2. Incidence/ prevalence
 - Approx 90% of pts known to have asthma will have an exercise component of their underlying dz
 - o Between 7-20% of pts w/o dx of asthma will have bronchospasm w/exercise
- 3. Risk factors
 - High ventilation sports
 - Endurance sports
 - Cross country skiing
 - Swimming
 - Long-distance running
 - Winter sports
 - o Participation in a location w/environmental pollutants
- 4. Morbidity/ mortality
 - Unrecognized and inadequately treated cases incr risk of sudden death in a given athlete
 - All individuals involved in physical activity should be aware of risks of exercise-induced asthma
 - Specific training in tx of exercise-induced asthma provided to coaches/trainers decr morbidity associated w/this disorder

Diagnostics

- 1. History
 - Personal or family hx of asthma
 - Symptoms
 - Cough
 - Wheeze
 - Chest tightness
 - Dyspnea
 - Peak at 5 to 10 min into exercise
 - May last up to 60 min
 - Refractory period
 - Period during which repeated exertion causes less bronchoconstriction

2. Physical exam

- o Generally negative when pt is evaluated
- o Careful ENT exam
 - Rule out nasal allergies, sinusitis, or otitis
- o Careful cardiac exam
 - Rule out cardiac arrhythmias and murmurs
- o During exacerbation, will resemble that of an asthmatic
 - Wheeze/ rhonchi
 - Prolonged expiratory phase
 - Poor inspiratory effort
 - Incr work of breathing
 - Nasal flaring
 - Substernal/subcostal retractions

3. Diagnostic testing

- Peak flow
 - Crude, yet efficient, form of exercise field testing
 - Does not differentiate exercise induced bronchoconstriction from chronic asthma
 - Method
 - Determine peak flow at baseline
 - Recheck peak flow 10 min into exercise (60-80% of max intensity)
 - 15% drop in peak flow indicates exercise induced bronchospasm
 - Repeat a positive test
 - o Admin a short-acting bronchodilator
 - Document a smaller decr in peak flow
- Exercise testing
 - Performed during exercise provocation
 - Sport-specific testing is ideal
 - Best done under specific humidity and temp controls
 - Spirometry done before and after bronchodilator therapy
 - Dx criteria: decr in FEV1 greater than or equal to 15%
 - NOTE: if baseline FEV1 <90%, suspect underlying asthma
- Eucapnic voluntary hyperventilation (EVH)
 - Hyperventilation of a gas mixture of 5% CO2 and 21% O2 at 85% max voluntary ventilation for 6 min

- FEV1 is assessed at specified intervals
- High specificity, high sensitivity
- Methacholine or histamine challenge
- o Mannitol inhalation
 - Newer alternative to EVH
 - Currently a research tool only

Differential Diagnosis

- 1. Vocal cord dysfunction
- 2. Central airway obstruction
- 3. Cystic Fibrosis
- 4. Laryngomalacia
- 5. Cardiac arrhythmias
- 6. Congestive Heart Failure (CHF)
- 7. Pulmonary or cardiac shunt
- 8. Gastroesophageal reflux dz
- 9. Normal physiologic exercise limitation

Therapeutics

- 1. Acute tx
 - Short-acting bronchodilators
 - Example: albuterol
 - First-line tx
 - Use: 2-4 puffs given 15 min before exercise as prophylaxis
 - Quick onset of action
 - Provides relief for up to 4 hrs
 - IS a rescue medication and admin can be repeated if prophylaxis is ineffective
 - Problem: overuse can lead to tachyphylaxis
 - Should be used w/spacer to ensure more efficient delivery of medication
 - Mast cell stabilizers
 - Example: cromolyn
 - Use: 4-8 puffs given 15 min before exercise as prophylaxis
 - May be used in combo w/short-acting bronchodilator for added benefit
 - Nonpharmacologic therapy
 - Pre-competition warm-up/ conditioning
 - Release of catecholamines causes bronchodilation and depletion of mast cell contents
 - Facemask
 - Wearing facemask during activity warms and humidifies inspired air when conditions are cold and dry
 - Avoidance
 - Triggers such as pollen, grasses, trees, cold air, should be avoided when possible
 - Nose breathing
 - Humidifies, warms, and filters air
 - Cool down
 - Do not abruptly cease activity

- Control of chronic asthma
 - Athletes w/chronic asthma should not exercise on days in which their asthma is not adequately controlled
 - Peak flow meter can help determine how well athlete's asthma is being controlled on a given day

2. Subacute mgmt

- o Inhaled corticosteroids
 - Example: fluticasone
 - Used first line as a stabilizing medication in athletes that have frank asthma
 - 1st or 2nd line prophylaxis for athletes w/persistent symptoms of exercise induced asthma
 - Improves airway hyper-responsiveness over wks to mos
 - Does not have short term effects in an acute exacerbation
- Leukotriene modifiers
 - Example: montelukast
 - May be used as first or second line prophylaxis for athletes w/persistent symptoms
 - Once daily dosing makes this quite useful in children
- Long-acting bronchodilators
 - Example: salmeterol
 - Prophylactic use in athletes w/exercise induced symptoms
 - Has become second or third line d/t multiple SE
 - Cardiovascular stimulation
 - Anxiety
 - Skeletal muscle tremor
 - Always recommended for use w/low to medium dose corticosteroid, never alone

3. Long-term care

- o Improve overall asthma control
- o Combo medications may facilitate tx when multiple therapies are required
- Ensure that pt is taking above medications as prescribed and w/proper technique
- o If there is no improvement w/conventional therapy, consider a different dx
- 4. Prescribing asthma medications in athletes
 - Bronchodilators
 - Must be given in inhaled route
 - No injections or oral preparations
 - Must be accompanied by a therapeutic use exemption (TUE) form
 - Acceptable bronchodilators (US Anti-Doping Agency)
 - Formoterol
 - Salbutamol
 - o Concentration >1,000 ng/mL is considered a doping violation
 - Salmeterol
 - Terbutaline
 - Corticosteroids, leukotriene inhibitors, and mast cell stabilizers are not restricted by USADA

Follow-Up

- 1. Return to play
 - o Monitor closely after an acute attack
 - o An athlete's peak flow should be >85% of baseline
 - Should be free of wheezing before returning to field of play
 - o Incomplete response to "rescue" medications on sideline
 - Restrict from play
 - Refer for further medical eval
- 2. Return to office
 - o Routine follow-up yearly is appropriate if symptoms are under control
 - o Reassess tx strategies w/any exacerbation
- 3. Refer to specialist
 - o For uncontrolled symptoms despite maximal therapy
 - o May be utilized earlier in more competitive athletes
- 4. Admit to hospital
 - For respiratory compromise requiring intubation
 - For exacerbations requiring continuous bronchodilator therapy or continuous oxygen admin

Prognosis

1. Excellent prognosis as long as athlete, coach, and trainer are well educated about disorder

References

- 1. Allen, T, "Return to play following exercise-induced bronchoconstriction." Clin J Spor Med 2005, 15: 421-425.
- 2. O'Byrne, PM. "Exercise-induced bronchoconstriction." UpToDate 2006.
- 3. Parsons, JP, Mastronarde, JG. "Exercise-induced bronchoconstriction in athletes." Am Coll Chest Phys 2005, 128(6): 3966-74.
- 4. O'Byrne, P, et al. "Global strategies for asthma management and prevention." Revised in 2006
- 5. Pope, JS, Koenig, SM. "Pulmonary disorders in the training room." Clin J Spor Med 2005, 24(3): 541-64.
- 6. Storms, WW. "Asthma associated with exercise." Immunol Allergy Clin N Am 2005, 25: 31-43.
- 7. http://www.jewishhospital.org/carecenters/sm_asthma.html (Asthma in the Athlete)
- 8. http://www.nhlbi.nih.gov/health/dci/Diseases/Asthma/
- 9. http://www.usantidoping.org/

Authors: Hayley Rintel-Queller, MD, Jennifer Naticchia, MD, & Tony S. Reed, MD, Christiana Care Health Services, Wilmington, DE

Editor: Carol Scott, MD, University of Nevada Reno FPRP