Blood Doping

Background

1. Definition:

- "Blood doping" or "blood boosting" originally:
 - Transfusion of blood that had been withdrawn and stored (autologous)
 - Transfusion of another's blood (allogenic or heterologous)
 - To increase athlete's RBC count
- Currently other technology exists to incr RBC count and capacity to carry and deliver oxygen
 - Recombinant human erythropoietin (rhEPO)
 - Other forms of artificial EPO
 - Artificial blood substitutes
 - Modified hemoglobin solutions
 - Perfluorocarbon-based emulsions
 - Novel erythropoiesis-stimulating protein (darbepoetin /Aranesp®)
 - Gene-activated erythropoietin (Dynepo®)
 - Encapsulated recombinant human erythropoietin
 - Gene therapy for alteration of endogenous erythropoietin production
 - Erythropoietin mimetics
 - Haematopoietic cell phosphatase inhibitors
- 2. Not considered blood doping:
 - Altitude training
 - Altitude tents
 - High altitude (nitrogen) house
- 3. General information
 - \circ VO2max = max oxygen uptake
 - Major determinant of performance in endurance events
 - Affected by
 - Pulmonary respiratory fxn
 - Diffusion capacity of lung
 - Oxygen transport capacity
 - Fxn of hemoglobin concentration and cardiac output
 - Tissue ability to absorb and utilize delivered oxygen
 - \circ $\,$ $\,$ Training protocols for endurance athletes often aim to improve VO2max $\,$
 - Legal
 - Exercise at low altitude, live at higher altitude ("live high-train low")
 - Exercising and living at high altitude ("live high-train high")
 - Altitude tents, altitude (nitrogen) houses, supplemental oxygen delivery
 - Illegal
 - Recombinant human erythropoietin (rhEPO)
 - Other forms of artificial EPO
 - Artificial blood substitutes
 - Autologous or heterologous blood transfusion

- Performance improvement from blood transfusion may be small but significant in elite competition
 - Study in two sets of cross-country skiers
 - Group that received autologous blood transfusion performed 5.3% better immediately after transfusion & 3.1% better 14 days after transfusion vs control group

Pathophysiology

- 1. Incidence/prevalence
 - Unknown how commonly this is used in sports
- 2. Risk factors
 - More benefit for endurance athletes
- 3. Morbidity/mortality
 - Autologous blood transfusion
 - Large quantity transfusions associated w/hypercalcemia and coagulopathy
 - Due to citrate preservative used in blood storage
 - Allogenic/Heterologous blood transfusion
 - Hypercalcemia and coagulopathy if blood is stored in preservative prior to infusion
 - HIV, Hepatitis B, and Hepatitis C transmission is possible
 - Transfusion reactions
 - Mild fever and hives
 - Severe hemolysis and DIC
 - Recombinant Human Erythropoietin
 - Numerous risks, see prescribing info
 - Hyperviscosity
 - Thrombosis
 - HTN
 - Post-tx blunted endogenous erythropoietic response w/secondary anemia
 - Development of anti-EPO antibodies
 - Pure red cell aplasia
 - Modified hemoglobin solns exist, complications include:
 - Incr pulmonary and peripheral arterial pressures
 - GI symptoms: pylorospasm, pancreatitis
 - Solutions from human or animal hemoglobin can contain and transmit infective agents or induce antibodies
 - Renal cell necrosis
 - $\circ \quad \text{Perfluorocarbon-based emulsions}$
 - Chemically inert and highly soluble chemicals that incr blood solubility of gases, incl oxygen
 - Perfluorocarbon is exhaled through lung and can be measured w/chromatography, complications include:
 - Myalgia and fever
 - Thrombocytopenia
 - Some forms produced w/egg; can induce allergic reaction
 - Phagocytosis can lead to engorgement of hepatic system by:
 Microclots

- Inhibition of white blood cells
- Complement activation
- Immune system disturbance
- EPO gene therapy
 - Early studies have demonstrated difficulties in regulating rate of EPO production

Diagnostics

1. History

- No specific symptoms
- May see improved performance
- Hyperviscosity symptoms
 - Fatigue
 - Headaches
 - Malaise
- 2. Physical exam
 - No physical changes usually noted
- 3. Diagnostic testing
 - Continuing to evolve
 - Appropriate testing depends on doping method
 - o Screening hematocrit used to determine athletes with "at risk" level
 - Hematocrit >50%
 - o DNA testing, spectrometry, other methods in development
 - Guidelines and recommendations
 - International Olympic Committee (IOC)
 - National Collegiate Athletic Association (NCAA)
 - World Anti-Doping Agency (WADA)
 - United States Anti-Doping Agency (USADA)

Differential Diagnosis

- 1. Polycythemia Rubra Vera
- 2. Severe dehydration

Therapeutics

- 1. If doping is suspected and pt has hyperviscosity symptoms
 - Phlebotomy is indicated
- 2. Discourage use of blood doping
- 3. Follow-Up
 - Follow-up should be based on individual pts symptoms and MDs request

References

- Berglund B and Hemmingson P. Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Inst. J. Sports Med. 1987, 8(3): 231-233.
- Brien AJ and Simon TL. The effect of red blood cell infusion on 10-km race time. Journal of the American Medical Association. 1987, May 22-29. 257(20):2761-2765.

- 3. Schumacher YO, Schmid A, Dinkelmann S, Berg A, Northoff H. Artificial oxygen carriers-the new doping threat in endurance sport? Int. J. Sports Med. 2001, 22:566-571.
- 4. Gaudard A, Varlet-Marie E, Bressolle F, Audran M. Drugs for increasing oxygen transport and their potential use in doping. Sports Medicine. 2003; 33(3):187-212.
- 5. Schumacher YO, Ashenden M. Doping with artificial oxygen carriers. Sports Medicine. 2004; 34(3):141-150.
- 6. Noakes T. The Lore of Running. 4th Ed. Human Kinetics; 2001

Authors: Karen Milligan, MD, & Michael Milligan, MD, University of Nevada Reno FPRP

Editor: Carol Scott, MD, University of Nevada Reno FPRP