

DESIGN AND VALIDATION OF A DIGITAL CORE FOR WIRELESS

COMMUNICATION WITH RFID-ENABLED DEVICES

A THESIS IN

Electrical Engineering

Presented to the Faculty of the University

of Missouri-Kansas City in partial fulfillment of

the requirments for the degree

MASTER OF SCIENCE

by

KUMAR SWAMY HOSUR SATYAMURTHY

B.E., Visvesvaraya Technological University, 2009

Kansas City, Missouri

2011

iii

DESIGN AND VALIDATION OF A DIGITAL CORE FOR WIRELESS

COMMUNICATION WITH RFID-ENABLED DEVICES

Kumar Swamy Hosur Satyamurthy, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2011

ABSTRACT

 A digital core was designed and successfully tested to communicate with RFID-

enabled devices. This digital core comprises of a communication block and a control block.

The communication block is made up of two blocks, namely, the receiver block and the

transmitter block whereas the control block controls the operation of the digital core. VHDL

(Very High Speed IC Hardware Description Language) was used to design the digital block

according to the ISO15693 standard specified for RFID-enabled devices. The developed

VHDL code was successfully simulated and the design was transferred onto a CPLD. A test

circuit was developed on a bread board with the CPLD and a commercially available RFID

reader was used to successfully communicate with the designed digital core. Then a printed

circuit board (PCB) was designed to validate the above design with all components including

the CPLD for communication. This PCB meets all the specifications provided for

communication by the ISO15693 standard. The developed digital core can be translated into

a layout which can be part of an implantable or embedded RFID passive sensors chip.

iv

 The faculty listed below, appointed by the Dean of the School of Computing and

Engineering have examined a thesis titled "Design and Validation of a Digital Core for

Wireless Communication with RFID-enabled Devices, " presented by Kumar Swamy H.S.,

candidate for the Master of Science in Electrical Engineering degree, and certify that in their

opinion it is worthy of acceptance.

Supervisory Committee

Walter D. Leon-Salas, Ph. D., Committee Chair

Department of Computer Science and Electrical Engineering

Ghulam Chaudhry, PhD.,

Department of Computer Science and Electrical Engineering

Deb Chatterjee, Ph. D.

Department of Computer Science and Electrical Engineering

v

CONTENTS

ABSTRACT ... iii

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES …………... xiii

ACKNOWLEDGEMENTS .. xiv

Chapter

1. INTRODUCTION ... 1

1.1 RFID Enabled Sensors …... 1

1.2 Prior Work …………………………….…….. 3

1.3 Plan of Development …….. 7

2. BACKGROUND .. 8

 2.1 Introduction .. 8

 2.2 RFID Tag with Sensor Interface .. 9

 2.3 ISO15693 ………………... 11

 2.4 Communication From Reader to Tag …….. 12

 2.4.1 Start of Frame (SOF) and End of Frame (EOF) ..………………....... 13

 2.4.2 Data Coding and Data Rates ….……………...…………………....... 14

 2.4.3 CRC ………………………………………….…………………....... 15

 2.4.4 Read/Write Data Request Packet ..………….......………………....... 16

 2.5 Communication from Reader to Tag …….. 18

vi

 2.5.1 Bit Representation and Coding ...……………..………...………....... 19

 2.5.2 Start of Frame (SOF) and End of Frame (EOF) ..………………....... 20

 2.5.3 Read/Write data request packet …………….......………………....... 21

 2.6 RFID Tag Transmission Protocol ………... 23

3. THE DIGITAL CORE - PART I ….………………... 25

 3.1 Introduction .. 25

3.2 Design Constraints .. 25

 3.3 Digital Core Design …..…………….. 26

 3.4 Control Module ………….. 28

 3.5 Frame Decoder …...…….. 30

 3.5.1 State Machine Design for Frame Deocder .…..…………………....... 31

 3.6 Frame Encoder …….. 37

 3.6.1 SOF Module ………………...………………..…………………....... 42

 3.6.2 EOF Module ………………...………………..…………………....... 45

 3.6.3 Data Module ………………………………….…………………....... 48

 3.6.4 CRC and PISO Module ……….…………….......………………....... 49

 3.6.5 Manchester Module ….……….…………….......………………....... 54

 3.6.6 Delay Module …….…..……….…………….......………………....... 56

 3.6.7 Clock Module …….…..……….…………….......………………....... 57

 3.6.8 Data Routing and Carrier Multiplication ..…........………….…......... 58

4. RESULTS …………………………………………... 63

vii

 4.1 Introduction .. 63

4.2 Validation of the Design ….. 63

4.3 Simulated Results .. 66

 4.3.1 Transmitter Results ….……...………………..…………………....... 66

 4.3.2 Control Module Results ……...………...……..…………………....... 75

 4.3.3 RFID Reader Output ………………………….…………………....... 76

 4.4 RFID Communication using HyperTerminal ……...……………………...…… 78

4.5 Analog Component Design …..………………….………………………...…… 80

 4.5.1 Clock Extractor ….……...…...………………..…………………....... 80

 4.5.2 Modulator and Demodulator ..……………..…………………............ 81

4.5.3 Final Chip Layout ……….…………………….…………………....... 83

 4.6 Robustness of the RFID Tag ………………………………………...……….... 85

 5. CONCLUSION AND FUTURE WORK ………………………............................... 87

APPENDIX ... 88

REFERENCES .. 109

VITA …………... 110

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 RFID Contactless Communication System …………......…………………………. 8

2.2 Block diagram of the RFID Tag .……………………………………………………. 9

2.3 General Request Format ………….………………...…………………...……….… 12

2.4 SOF to select 1 out of 4 data coding mode ………………………………………… 13

2.5 EOF for either data coding mode ……………………...………………………...…. 13

2.6 One out of Four coding example .…...…….……………….………………….…… 14

2.7 One out of Four data coding mode ….…….……………….………………….…… 15

2.8 CRC Specifications ……………………...………………….………….……..…..... 15

2.9 CRC Transmission rules ………………..……….…………………………….…… 16

2.10 Read Single Block request format ………..……………………………………...… 16

2.11 Write Single Block request format …..……………………………..…………...…. 17

2.12 General Response format …...……………………………………………………… 19

2.13 Logic 0 representation …………....………………………………………………… 20

2.14 Logic 1 representation …………....………………………………………………… 20

2.15 SOF Representation for response packet ……...…………...……………………..... 20

2.16 EOF Representation for response packet ……...…………………………………… 21

2.17 Read Single Block response format ……..……………….………………………… 22

2.18 Write Single Block response format …...…………………………………………... 22

2.19 Transmission Protocol Timing …...………………………………………………… 24

x

Figure Page

3.1 Block diagram of the RFID Tag ...…………….…………………………..…...…... 27

3.2 Digital logic of the RFID Tag .……...…………………………………………...…. 28

3.3 State diagram for the Control Module state machine ……...…….………………… 29

3.4 Read Single Block request format ………………….……..……...………...……… 30

3.5 Write Single Block request format ….………………..……………………….…… 31

3.6 State diagram for the a_state process …………………………………………….. 32

3.7 State diagram for the c_state process …………………………………………….. 33

3.8 SOF with two pauses ..…………………………………………………………...… 34

3.9 BIT0 state of the c_state process after start of frame detection ………………….. 35

3.10 BIT1 state of the c_state process after dibit 00 detection ………...……………….. 36

3.11 Read Single Block Response Format ……………………………………………… 37

3.12 Write Single Block Response Format ..…………………………………….……… 37

3.13 State diagram for the Frame Encoder module ……………….....………………..… 38

3.14 Architecture of the Frame Encoder …...……...……………………..……………… 41

3.15 SOF representation for response packet ...………….……………………………… 42

3.16 Use of clk_256 to generate SOF ...…...……………………….…...……………..… 43

3.17 SOF after modulating with clk_32 (fc/32 = 423.75 kHz) ………………………….. 44

3.18 EOF representation for response packet ………..…………………….…….…...… 45

3.19 Use of clk_256 to generate EOF …………………….....……………………..…… 46

3.20 EOF after modulating with clk_32 (fc/32 = 423.75 kHz) ………………..………… 47

3.21 Flowchart for Data Module design …..…..………………………………………… 49

3.22 CRC specifications ………………………………..……..….…...……………….… 50

xi

Figure Page

3.23 CRC operating principle ………………...………………………..…………..….… 51

3.24 The circuit to realize CRC-16 calculation ……………….………………………… 52

3.25 Flowchart representing operation of the PISO module …….……….…..……….… 53

3.26 Manchester code ……………………………………………………………..…….. 54

3.27 Example for Manchester Encoding ……...………………………………………… 55

3.28 Flowchart describing the operation of delay module ….………………………..… 56

3.29 State diagram the operation of clock module ………………...…...……………..… 58

3.30 Mux 2:1 …………………………………………...…….………………………….. 59

3.31 Truth table for Mux 2:1 ………………………………...………………………….. 59

3.32 Mux 4:1 …………………………………...…..…...………………..……………… 60

3.33 Subcarrier multiplication using AND gate .……………………….…...…….......… 61

3.34 Subcarrier multiplication ………………………………….……………………….. 61

4.1 Test-bed to test the developed digital core ..………...….……………..…………… 63

4.2 RFID reader and test-bed setup ……….………………………….……..………..… 65

4.3 Test-bed on a printed circuit board ……………………….………………………... 66

4.4 Simulated output for Start of Frame Module. ……………………………….…….. 67

4.5 Simulated output for End of Frame Module ………………………….………….... 67

4.6 Simulated output for Clock Module …………………………………………….… 68

4.7 Simulated output for Delay Module ………………………………………………. 69

4.8 Simulated output for CRC Module ….…………………………………………….. 69

4.9 Simulated output for Data Module …………………………………….…………. 70

4.10 Simulated output for Manchester Module ….………………………………..……. 71

xii

Figure Page

4.11 Simulated output for PISO Module ………...……………………..….……..……. 72

4.12 Simulated output for Transmitter Module ………...………………………………. 73

4.13 Magnified Sample of the transmitted output „tx_out‟ .……………………………. 73

4.14 Transmitter response at the output of the CPLD ………………………………....... 74

4.15 Start of frame signal generated by the CPLD …………………………………….... 74

4.16 The request and response packets seen at the coil …………………………………. 75

4.17 Simulated output for Control Module ………...……...……………………………. 75

4.18 RFID communication through Melexis user interface …………………………..... 76

4.19 Command and Communication Window as seen in the Melexis User Interface 77

4.20 RFID Communication using Hyper Terminal ……………………………………... 78

4.21 Clock extractor layout design …………………………………………………….... 80

4.22 Clock extractor post-layout simulation …………………………………………….. 80

4.23 Modulator layout design ………………………………………………………….... 81

4.24 Modulator post-layout simulated waveform ..…………………………………….... 82

4.25 De-Modulator layout design ……………………………………………………….. 82

4.26 Final chip layout of the analog core ……………………………………………...… 83

xiii

LIST OF TABLES

Table Page

2.1 Request flags 1 to 4 definitions …………….......................………………………... 17

2.2 Request fields 5 to 8 when bit 3 is reset (0) ………………………………………... 18

2.3 Request fields 5 to 8 when bit 3 is set (1) ………………………………………….. 18

2.4 Response flags 1 to 8 definitions …………………………………………………... 22

2.5 Time values for packets transmission ……………………………………………… 24

4.1 In-detail pin configuration for final chip layout …………………………………… 84

xiv

ACKNOWLEDGEMENTS

 First, I would like to thank my parents, aunt and my late uncle for their support and

encouragement which has inspired me to come all the way to graduate school. I always

admire you for your will to achive excellence in life. The values taught by you are taking me

a long way and I am sure one day it will help me to reach my goal. Thank you dear sisters for

your love and affection which brings a smile on my face even during the toughest of time. I

would like to thank my dad Professor H N Satyamurthy for supporting me financially

without which none of these would be possible. I could not have continued taking classes or

have completed my thesis without their support.

 My thesis advisor, Prof. Walter D. Leon-Salas, has been a great help in directing my

research work, and suggested a thesis topic that I continue to enjoy. He has worked on a

couple of research projects that he has allowed me to be a part of, and I have learned a lot

that is sure to be helpful to me in whatever career path I end up taking. I also appreciate the

graduate research positions that I have had with my advisor, as well as other various graduate

teaching positions in the CSEE department, that have allowed me to stay focused on my

studies.

I would also like to thank Prof. Ghulam Chaudhry and Prof. Deb Chatterjee who are

on my thesis committee for their support and for everything that they have taught me in the

multiple courses that I have had with them. I would like to acknowledge helpful

conversations that I have had with my fellow colleagues who have done excellent job in

enlightening me about VHDL, microcontrollers, circuit design and many other topics which

helped me to get a good start of my thesis.

1

CHAPTER 1

INTRODUCTION

1.1 RFID Enabled Sensors

 In recent years Radio Frequency Identification (RFID) technology have become very

popular in many service industries, purchasing and distribution logistics, manufacturing

companies and many more. RFID systems provide information about products, goods, people

and animals, to name a few. The use of barcode labels which revolutionized identification

systems a few years ago are now being found to be inadequate in increasing numbers of cases

due to their line of sight requirement, their low storage capacity and inability to be

reprogrammed. To overcome this problem RFID-based solutions have been proposed which

use electronic data storage devices to store large amounts of data. They can be reprogrammed

and do not require line of sight. Moreover, RFID systems provide contactless transfer of

power and data from the reader to the data storage device [1]. Because of this unique

property, namely battery is not a requirement, RFID technology has gained popularity. A

RFID system is made up of basically two components a RFID reader and an RFID tag.

 Electronic sensing is another technology which is seeing exponential growth across

various industries. Electronic sensors measure physical quantities and convert them into a

electric signal which can be used to understand the behavior of a physical quantity or the

environment in which it is placed [2]. The ability of the sensor to detect the smallest change

is often very critical to the application in which it is used, called as resolution of the sensor.

Sensors are classified based on their applications such as pressure sensors, temperature

sensors, biosensors, etc.; some of these sensors are passive sensors which do not require a

2

battery for operation. The industry is moving towards implementation of networks of

wireless sensors that can operate in demanding environment and provide clear advantages in

cost, size, power, flexibility and ability to re-program.

 From the above discussion we can see that RFID technology along with sensors can be

used to address many challenges in the field of engineering and medicine. In the past two

decades many industries have embraced RFID enabled sensors to provide quality service to

their customers. RFID-enabled sensors can be classified based on power consumption into

two type‟s active and passive sensors. An active RFID sensor requires a battery to operate.

While this increases its communication range it limits their application only where battery

replacements are possible and affordable [3]. In applications where battery replacement is not

possible such as implantable sensors, sensors embedded in concrete and construction material

it is desirable to use passive RFID sensors. Passive RFID sensors are less complex and hence

very economical, they use passive circuits which have no internal power source and use

backscattering techniques to transmit data back to the reader. Passive RFID sensors have

many advantages such as low power consumption, low cost, small size, flexibility, durability,

long shelf life and are easy to control. With these many advantages they have unlimited

applications in consumer goods, healthcare system, engineering and others industries.

 This thesis is part of a research effort that sims at developing a passive RFID-enabled

sensor which can be used in implantable applications. Such a sensor will have two parts the

analog core and the digital core. The analog core will be used to generate the required

voltage levels to power circuit from the incoming RF input and also to convert the analog

signals from the sensor to digital signals which can be easily sent back to the reader. The

function of the digital core is to decode the incoming signal, execute commands and send the

3

data back to the reader. The control logic required to communicate with the reader will be

performed by this digital core. In this thesis work we have developed a digital core that

complies with the ISO15693 standard and can be used in RFID sensors for different

applications. A testbed to test the digital core has also been developed.

1.2 Prior Work

 In the past decade, a plethora of RFID sensors related research have been carried out

especially after the influential and most widely-cited paper by Udo Karthaus [4], in which a

fully integrated passive RFID transponder IC with very low RF input power was designed.

Research in this field has been galvanized in recent years due to advances in technology

coupled with demand in numerous applications and exponential adoption for commercial

uses [5].

 One of the earliest works in the field of RFID tag was done by Ulrich Kasier et al [6] in

1995 who have presented an integrated circuit for a battery-less transponder system. The

system works in half-duplex mode. First, the energy is transmitted to and stored in the

transponder. A data telegram is sent back to the reader unit. This technique allows for greater

reader distance over simple receivers that use full-duplex systems. The transponder consists

of a LC tank, a supply capacitor and a transponder circuit. The LC tank serves as the RF

interface to receive energy from the reader unit and to send back the data. The supply

capacitor stores the charge during supply first phase and supplies current in second phase.

The antenna was able to get an operating range of up to 2 m, depending on the size of the

antenna and allowable field strength. The main drawback of this design is the use of LC tank.

Tuning an LC circuit for the desired frequency is complex and also damping is a major factor

to worry. Aging will have the most effect on damping of the LC tank, as damping increases

4

LC tank will discharge very quickly and the circuit might not be able to complete the

transmission of data. Because of these factors it is not reliable to use this design in

implantable applications.

 After the work by Ulrich Kaiser another work by Qiuting Huang et al [7] is worth

mentioning. In 1998 they came up with a low-power, single-chip, one-channel, fully

implantable microtransponder system for low-frequency biomedical sensors application. This

circuit is powered externally by an RF source of 27/40 MHz and the chip is battery less. The

RF power received by the circuit via a small antenna is in millivolts range so the data

acquisition and transmission systems are optimized for low power consumption. The on-

board sensors communicate wirelessly with the external monitoring units through backscatter

modulation. The sensor and the transponder are implanted. Power and communication is

provided via coupled loop antennas between the transponder and a mobile interrogation unit

(MIU). The microtransponder consists of two main modules: the data acquisition unit (DAU)

and the RF/DC converter (RFC). The data acquisition unit (DAU) is an interface to the

sensor and it does all the pre-processing of sensor signals. The RF/DC converter provides

wireless powering and communication. The signals from the sensors are converted to low-

duty-cycle pulse-position-modulation (PPM) signals and amplitude modulated for

transmission. The main disadvantage of this design is the use of amplitude modulated (AM)

signals which are highly sensitive to noise. Once the transponder is implanted the AM signals

will have to travel through the skin, blood and other muscles inside the body which will

greatly attenuate the AM signal decreasing the signal to noise ratio.

5

 In the past 10 years technological advancement has been faster than ever and thus the

quality and quantity of research work done on RFID sensors has increased. Because of this

now we have numerous applications using RFID sensors.

 Udo Karthaus and Martin Fischer have developed a fully integrated passive UHF RFID

transponder IC [4]. The reading range is around 4.5 m at 500 mW base-station transmit

power operating in the 868/915 MHz band. The IC includes DC power supply generation,

phase shift keying backscatter modulator, pulse width modulation demodulator, EEPROM

and logic circuitry to handle protocol for wireless write and read access to the IC‟s EEPROM

and for anti-collision. The DC power supply generation unit is a Schottky diode-based

voltage multiplier circuit which allows for a high efficiency conversion of received RF input

signal energy in to DC supply voltage. Use of UHF band frequencies is the main cause of

concern of this design, line-of-sight is required for communication, atmospheric moisture,

physical obstructions and time of the day affect the signal transmission and degradation of

signal reception. UHF signals are greatly attenuated by moisture than lower frequencies.

Therefore the sensor circuit should consume little power and have considerable reading

distance for implantable applications.

 Another interesting work has been done by Vijay Pillai et al [8] who designed a fully-

integrated dual-battery and passive RFID tags which works in both UHF and microwave

bands and consumes low power of 700 nA at 1.5 V. This design uses a small 100 mA.hr

capacitive battery for lifetimes exceeding ten years. But the use of battery and UHF band

prohibits this design from use in implantable applications.

6

 Most recent work in the field of passive RFID sensors has been done by Daniel Yeager

et al [5]. They have developed an addressable sensor tag for bio-signal acquisition. This

sensor tag is a fully passive 900 MHz RFID tag IC with addressability. It contains a 1.25 μV

rms integrated noise chopper-stabilized micro-power sensor interface amplifier and an 8-bit

ADC. The communication range with the off-the-shelf reader is around 3m, enabling

previously impossible recording scenarios like in-flight recording from small insects [5]. For

accurate signal amplification and digitization precise supply and reference voltages are

provided by the ultra-low-power linear regulators, bandgap reference and bias current

generator. The sensor signals are first amplified using a low-noise chopper-stabilized

amplifier then digitized using an 8-bit successive approximation ADC (SAR). Then random

numbers are used for anti-collision and encryption of data. Finally the controller logic

encodes all the data in to a Gen 2-compatible packet in response to reader commands. This

design cannot be used for implantable applications because of the use of 900 MHz RF signals

which greatly attenuates due to moisture.

 Melexis, one of the leading manufacturers of smart mixed-signal ICs, have come up

with a wireless sensor tag, the MLX90129, which works in the 13.56 MHz band. This IC

provides a precise acquisition chain for external resistive sensors with a wide range of

interface possibilities. It can be accessed via a front-end RFID interface or through a SPI

port. It is designed to work as a temperature sensor with no other components connected to it.

It has an option to add a battery. With SPI port connectivity there are numerous application

possibilities. This IC is designed for low-power, low-voltage battery or battery-less

applications and it is mounted on a printed cirucit board (PCB). This PCB having so much

capability cannot be used for implantable applications because the size of the PCB is around

7

1 cm
2
, which is large for implantation, also the materials from which the PCB is

manufactured might prove to be hazardous for implantable applications.

1.3 Plan of Development

 The development of the digital core is suitable for any implantable application and can

be easily modified to be used with most of the readers available in the market. To achieve

this we had to follow a communication standard, so we decided to follow the ISO15693

standard for contactless integrated circuits/ vicinity cards. The main reason for choosing this

standard is because it works at high frequency band (13.56 MHz carrier frequency), this has

better read range and data rate compared to low frequency signals and its ability to read

objects with water and metal content is better than ultra high frequency signals. The main

working principle of the RFID-enabled sensors and the standard followed to develop the

digital core are described in chapter 2. Chapter 3 will focus on the detail description of the

digital core. Working principle and design techniques of every module in the digital core is

described in this chapter. Chapter 4 will discuss about testing the designed digital core using

two methods and the obtained results. Summary and conclusions drawn from the results,

future work are discussed in chapter 5.

8

CHAPTER 2

BACKGROUND

2.1 Introduction

 The main idea behind the passive RFID-enabled sensors is the use of radio frequency

(RF) for contactless power supply and communication with an integrated circuit. These

RFID-enables sensors mainly consist of two basic components: a RFID reader and an RFID

tag. The block diagram of a generalized RFID communication system is shown in Fig 2.1.

Magnetic field H

Power

Data

Reader
Control

Module

Demodulator

Modulator

Rectifier Digital

Logic

RFID tag (transponder)Reader

Fig 2.1: RFID Contactless Communication System [5].

 This RFID reader can read and/or write data in the RFID tag depending on the

application in which it is used. The RFID reader generally consists of a transmitter, receiver,

coupling element and a control unit whereas the RFID tag consists of a coupling element and

an electronic microchip. This electronic microchip is a mixed signal IC where both analog

core and the digital core are used in conjunction to communicate with the reader. The RFID

9

tag is activated only when it comes in the interrogation range of the reader during which the

power required to activate the tag is supplied through the coupling element of the tag.

2.2 RFID Tag with Sensor Interface

 The RFID tag described in the previous section has two parts to it the analog core and

the digital core. The analog core is responsible for stable power supply to the RFID tag

whereas, the digital core process the incoming digital signal, performs required function and

sends back a response signal to the reader.

RF

rectifier

Voltage

limiter

VDD

GND

ASK

demodulator

ASK

modulator

Clock

extraction

Voltage

regulator

(LDO)

Control

logic

Low-power

ADC

Sensor

Frame

decoder

Frame

encoder

Power -

on - reset

Digital core

Voltage

reference &

Current

reference

Analog core

Transponder

antenna

Fig 2.2: Block diagram of the RFID Tag

10

 From the above block diagram we can see that the power rectifier, voltage limiter,

voltage regulator, voltage rectifier, ASK modulator & demodulator, clock extraction unit,

low-power ADC and sensor forms the analog core of the RFID tag and the frame decoder,

frame encoder & control logic forms the digital logic. The digital logic is the crucial

component of the tag which communicates with the tag. In the analog core the power rectifier

is a full wave rectifier which rectifies the incoming RF signal and sends it to the limiter. The

voltage limiter is designed to protect the tag from incoming signal which might spike up

suddenly to high voltage (as much as 30v) which the tag cannot withstand. Voltage regulator

is used to provide stable voltage supply to the entire tag as the incoming signal varies in

strength. The voltage reference provides required references to different analog blocks of the

tag. The long term goal of this thesis is to use this digital core for implantable application

with sensors, so we have given provision to use a low-power ADC to convert the incoming

analog signal from a sensor into a digital signal. Then this digital signal can be encoded in a

packet and sent to the reader. The digital core is made up of a frame decoder, control logic

and a frame encoder. The frame decoder extracts information from all the fields of the

incoming data packet, control logic then takes action based on the information in the

incoming packet and the frame encoder will generate a data packet to respond to the reader

which is sent out using load modulation. Detailed explanation of the digital core and the

prototype designed to use with this has been explain in the next chapter.

 For communicating with the RFID tag, the reader uses many different protocols defined

by the international organization for standardization (ISO), in this thesis we chose to use the

ISO15693 standard. To understand the design of the above shown block diagram and its

components we have to get to know the protocols used in the ISO15693.

11

2.3 ISO15693

 The international organization for standardization widely known as ISO is an

international standard setting body composed of representatives from various national

standards organizations. This organization promulgates worldwide proprietary industrial and

commercial standards. Many different standards have been defined for RFID applications.

We chose to use the ISO 15693 standard for vicinity cards, i.e. cards which can be read from

a greater distance as compared to proximity cards. The reasons for choosing this ISO

standard is because they operate at 13.56 MHz which corresponds to high frequency range.

Low frequency signals which operate at 125 KHz have better ability to read objects with

water or metal content but they suffer from low read range and low data rate, on the flip side

the Ultra high frequency signals which operate at 860 – 930 MHz band have very high read

range and high data rate but the signal is attenuated by atmospheric moisture. Physical

obstructions and time of the day affect the signal transmission and degrades signal reception.

Considering all these factors we choose to use ISO15693 which uses 13.56 MHz carrier

frequency, this has better read range and data rate compared to low frequency signals and its

ability to read objects with water and metal content is better than ultra high frequency

signals. Also the effect of environmental conditions on this signal is less than ultra high

frequency signals.

 The communication between the reader and the tag occurs through the following

sequence as defined by the above ISO15693 standard:

1) Activation of the RFID tag by the RF operating field of the reader.

2) Transmission of the command by the reader.

3) Transmission of the response by the tag.

12

This technique is called Reader talk first. In this reader talk first technique, initially the tag is

activated by the RF field of the reader. Then the tag waits for a communication signal from

the reader called the request data packet, once this packet arrives depending on the request

from the reader the tag will send a response data packet. The format of the request and

response data packets which includes the data rate, encoding schemes, packet delimiters are

all defined by the ISO15693 standard. In the following sections we will discuss the specified

formats for both request and response data packets.

2.4 Communication from Reader to Tag

 The communication signal used for reader to tag uses different modulation, data coding

techniques and different packet format. The communication signal from the reader to tag uses

modulation principle of ASK (amplitude modulation) with 10% or 100% modulation indices

[9] [10]. The request data packet format used for the reader to tag consists of seven fields

they are start of frame (SOF), request flags (Flags), command code, parameters, data, CRC

and end of frame (EOF) as shown in Fig 2.3

SOF Flags
Command

code
Parameters Data CRC EOF

Fig 2.3: General Request Format.

 The SOF and EOF are packet delimiters which specify the start and end of a packet, the

flags used in the second field indicates the use of subcarrier, data rate and other variables to

the tag. The command code specifies the action to be performed by the tag for example to

indicate if it‟s a read operation or a write operation. Parameters and data fields are optional

and it depends on the command code. The CRC used is calculated as per the definition in

13

ISO13239. It‟s a two byte CRC and it is appended to each request and response packet,

within each frame before the end of frame. The CRC is calculated on all the bytes after the

SOF up to the CRC field. To understand the read data command which our digital tag uses

initially we have to see the description of each field of the general request format. Following

sections will discuss every field in-detail.

2.4.1 Start of Frame (SOF) and End of Frame (EOF)

 The SOF defines the data coding mode the reader is to use for the following command

frame. The SOF sequence described in Fig 2.4 selects 1 out of 4 data coding mode. The EOF

for either of the coding modes is described in Fig 2.5 [9] [10].

9.44 μs

37.76 μs 37.76 μs

9.44 μs 9.44 μs

Fig 2.4: SOF to select 1 out of 4 data coding mode.

37.76 μs

9.44 μs9.44 μs

Fig 2.5: EOF for either data coding mode.

14

2.4.2 Data Coding and Data Rate

 The ISO15693 specifies two data coding rate for the signals coming from the reader to

the tag they are 1 out of 256 and 1 out of 4. The selection of data coding rate and modulation

index is done by the reader and indicated to the tag within the Start of Frame (SOF). In this

thesis we use 1 out of 4 data coding method where the value of 2 bits is represented by the

position of one pause. The position of pause on 1 out of 4 successive time periods of 18.88 μs

(256/fc), determines the value of 2 bits. Four successive pairs of bits form a byte, where the

least significant pair of bits is transmitted first. So, transmission of one byte takes 302.08 μs

and the resulting data rate is 26.48 Kbits/s (fc/512) [10]. Fig 2.6 illustrates the 1 out of 4

coding example for transmission of E1h (1110 0001b) by the reader and Fig 2.7 illustrates

the technique of pulse position coding. The flags, command, data and CRC fields are sent

using this data coding method.

75.55 μs 75.55 μs 75.55 μs 75.55 μs

10 00 01 11(LSB) (MSB)

Fig 2.6: One out of Four coding example.

15

Pulse position for “00”

Pulse position for “01”

(0=LSB)

Pulse position for “10”

(1=LSB)

Pulse position for “11”

9.44 μs
9.44 μs

18.88 μs

9.44 μs

9.44 μs

9.44 μs

18.88 μs

18.88 μs

18.88 μs

75.55 μs

Fig 2.7: One out of Four Data coding mode.

2.4.3 CRC

 The CRC used in the communication between the reader and the tag is defined as per

the definition in ISO13239 as shown in Fig 2.8 [9]. The cyclic redundancy check (CRC) is

calculated on all the data contained in a message from the SOF till the CRC field.

CRC type

ISO13239

Length Polynomial Direction Preset Residue

16 bits 151216  xxx Backward „FFFF‟ „F0B8‟

Fig 2.8: CRC specifications.

16

Upon reception of the request packet the tag verifies if the CRC value is valid, if it is invalid

then it discards the frame and does not answer the reader. Similarly upon reception of the

response packet CRC can be verified. As we can see from Fig 2.9 that CRC is 2 bytes long

and it is transmitter least significant bit first and each byte is transmitter least significant byte

first.

CRC 16 (8 BITS) CRC 16 (8 BITS)

LSByte MSByteLSBit MSBit MSBitLSBit

Fig 2.9: CRC Transmission rules [9].

2.4.4 Read/Write data Request Packet

 As we have explained earlier we have designed our tag for read and write data

operations. In the previous section we have seen the format for general request format now

we shall see the request format for reading and writing data in the tag. To read/write data

from the tag we have to specify the command code in the request packet. According to the

ISO15693 standard 0x20/0x21 is the command code used to read/write data from the tag

respectively. When the tag receives a read/write command the request is processed and in

case of read command the tag sends back its 32 bits value or in case of write command it will

report the success of the operation in response.

Request

SOF

Request

Flags

Read Single

Block

Block

number

CRC 16 Request

EOF

8 bits 0x20 8 bits 16 bits

Fig 2.10: Read Single Block request format.

17

Request

SOF

Request

Flags

Write Single

Block

Block

number
CRC 16 Request

EOF

8 bits 0x21 8 bits 16 bits

Data

32 bits

Fig 2.11: Write Single Block request format.

The request SOF and EOF are defined in section 2.4.1, the CRC 16 is discussed in section

2.43 and data in other fields are sent as shown in section 2.4.2.

 The ISO command to request a read/write from the tag is Iso15 022001/ Iso15 4221data

crc respectively where Iso15 specifies the ISO standard used, 02 (0000 0010)/ 42 (0100

0010) refers to the 8 bit data in the request flags field, 20 (0010 0000)/ 21 (0010 0001) refers

to the 8 bit data in the read/write single block (command code) field and 01 (0000 0001)

refers to the 8 bit data in the block number field. The request flag field is as shown in Table

2.1 it consists of eight bits. The bit 3 (Inventory flag) of the request field defines the content

of the 4 MSB‟s (bits 5 to 8). When bit 3 is reset (0), bits 5 to 8 define the tag selection criteria

and when bit 3 is set (1), bits 5 to 8 define inventory parameters [9] [10].

Table 2.1: Request Flags 1 to 4 definitions [9].

Bit LevelRequest flag Definition

Bit 1

Bit 2

Bit 3

Bit 4

Subcarrier

flag

Data_rate

_flag

Inventory

flag

Protocol

extension flag

0

1

0

0

1

1

0

A single subcarrier frequency shall be used by the tag

Two subcarriers shall be used by the tag

Low data rate is used

High data rate is used

Flags 5 to 8 meaning according to Table 2.1.1

Flags 5 to 8 meaning according to Table 2.1.2

No protocol format extension

18

Table 2.2: Request Fields 5 to 8 when bit 3 is reset (0).

Bit Requested

Flag

Level Definition

Bit 5 Select Flag 0 Request shall be executed by the tag

1 Request shall be executed by the tag in selected state

Bit 6 Address Flag 0 Request shall be executed by all tags, UID field absent

1 Request is executed by matched tag, UID field present

Bit 7 Option Flag 0

Bit 8 RFU 0

Table 2.3: Request Fields 5 to 8 when bit 3 is set (1).

Bit Requested

Flag

Level Definition

Bit 5 AFI Flag 0 AFI field is not present

1 AFI field is present

Bit 6 Nb_slots Flag 0 16 slots

1 1 slot

Bit 7 Option Flag 0

Bit 8 RFU 0

 The flag field in the read/write command can be understood from the above tables 2.1,

2.2 and 2.3. As defined earlier the ISO command for read/write specifies 02 (0000 0010) for

the flag field which means the reader uses and expects a data packet in single subcarrier

frequency, high data rate and the request shall be executed by all the tags.

2.5 Communication from Tag to Reader

 The RFID tag communicates with the reader via an inductive coupling area in which the

carrier is loaded to generate a subcarrier with frequency fs. The subcarrier is generated by

switching in a load in the tag. The tag designed in this thesis supports one subcarrier response

format. This is indicated by the reader using the first bit of the flag field in request packet. In

this format the frequency fs of the subcarrier load modulation is 423.75 kHz (fc/32). The tag

responds using high frequency data rate (26.48 Kbits/s i.e. fc/512) format and this selection is

19

again indicated by the reader in the second bit of the flag field in request packet. The

response data packet consists of the following field‟s namely start of frame (SOF), response

flags (Flags), parameters, data, CRC and end of frame (EOF) as shown in Fig 2.11.

SOF Flags Parameters Data CRC EOF

Fig 2.12: General Response Format [9].

All the fields in the response format are defined as per the ISO15693 standard, we will

discuss about their definition in the following sections. The data bits in the response format

are encoded using Manchester coding and depend on the data rate indicated by the reader.

2.5.1 Bit Representation and Coding

 In this thesis we have designed the digital tag to respond with one subcarrier using high

data rate but, with small modification it can respond with low data rate. For high data rate,

logic 0 and logic 1 bit representations are as shown below.

 Logic 0 starts with 8 pulses of 423.75 kHz (fc/32) followed by an unmodulated time of

18.88 μs as shown in Fig 2.13.

37.76 μs

Logic 0, High data rate

Fig 2.13: Logic 0 representation.

 Logic 1 starts with an unmodulated time of 18.88 μs followed by 8 pulses of 423.75 kHz

(fc/32) as shown in Fig 2.14 .

20

37.76 μs

Logic 1, High data rate

Fig 2.14: Logic 1 representation.

2.5.2 Start of Frame (SOF) and End of Frame (EOF)

 The SOF for high data rate is made up of 3 parts namely, an unmodulated time of 56.64

μs followed by 24 pulses of 423.75 kHz and a logic 1 which also corresponds to the high data

rate as shown below in Fig 2.15.

37.76 μs113.28 μs

Start of frame, high data rate, one subcarrier

56.64 μs

Fig 2.15: SOF Representation for response packet.

 The EOF for high data rate is made up of 3 parts namely, a logic 1 which also

corresponds to the high data rate followed by 24 pulses of 423.75 kHz and an unmodulated

time of 56.64 μs as shown below in Fig 2.16.

113.28 μs37.76 μs

End of frame, high data rate, one subcarrier

56.64 μs

21

Fig 2.16: EOF Representation for response packet.

 Flags field in the response packet is an 8 bit flag and it indicates to the reader the actions

it has performed and whether other fields are present or not. The parameter and data fields

are optional. The CRC is calculated as discussed in section 2.4.3.

2.5.3 Read/Write data Response Packet

 The request format for read/write operations were explained in section 2.4.4 and the

general response format were explained in section 2.5.1 and 2.5.2, now we shall see the

response format for reading and writing data in the tag. To read/write data from the tag we

have to specify the command code in the response packet. According to the ISO15693

standard 0x20/0x21 is the command code used to read/write data from the tag respectively.

When the tag receives a read/write command the request is processed and in case of read

command the tag sends back its 32 bits value or in case of write command it will report the

success of the operation in response. The response format for a read and write operation is as

shown in Fig 2.17 and Fig 2.18.

Response

SOF

Response

Flags
CRC 16

Response

EOF

8 bits 16 bits

Data

32 bits

Fig 2.17: Read Single Block response format.

Response

SOF

Response

Flags
CRC 16

Response

EOF

8 bits 16 bits

Fig 2.18: Write Single Block response format.

The response SOF and EOF are defined in section 2.5.2, the CRC 16 is discussed in section

2.43 and data in other fields are sent as shown in section 2.5.1.

22

 The response format a read/write from the tag for Iso15 022001/ Iso15 4221 data crc

respectively uses 00 (0000 0000) 8 bit data in the response flags field. The response flag field

is as shown in Table 2.2 and it consists of eight bits [9] [10].

Table 2.4: Response flags 1 to 8 definitions [9].

Bit LevelRequest flag Definition

0

1

0

0

0

0

0

0

0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Error flag

RFU

Extension flag

RFU

RFU

RFU

RFU

RFU

No error

Error detected

No extension

 The flag field in the read/write command can be understood from the above tables 2.4,

as defined earlier the ISO command for read/write specifies 00 (0000 0010) for the flag field

which means no error was detected by the tag and the operation was successful. If error flag

is set by the tag in the response then error code field is present but in our design we do not

respond to errors, if error is detected then the packet is dropped and the tag waits for another

request from the reader.

2.6 RFID Tag Transmission Protocol

 The ISO15693 standard defines the transmission protocol for exchange of instructions

and data between the reader and tag. As explained in section 2.3 it is based on the concept of

23

reader talk first, this means the tag does not start transmission unless it has received and

properly decoded an instruction sent by a reader. The protocol is based on an exchange of

request packet from the reader to tag and a response packet from the tag to the reader. Each

request and response is contained in a frame. The frame delimiters SOF and EOF are

explained in-detail in the previous sections. The protocol is bit-oriented, the number of bits

transmitter in a frame is a multiple of eight. A single–byte field is transmitted Least

significant bit first. A multiple-byte field is transmitted Least significant byte first and each

byte is transmitter Least significant bit first. The settings of the flags fields in the packets

indicate the presence of optional fields. When the flag is set, the field is present else if flag is

reset then the field is absent [9]. The protocol timing defined by the ISO15693 states that the

response frame for any request frame should be sent to the reader after a certain time t1 and

consecutive request frames are sent in intervals of certain time. The protocol timing diagram

is shown below in Fig 2.19 and the timing specifications are summarized in Table 2.5.

t1 t2 t1 t2

Request Frame

from reader

Response Frame

from the tag

Response Frame

from the tag

Request Frame

from reader

Reader

Tag

Timing

Fig 2.19: Transmission Protocol Timing.

Time Minimum Nominal Maximum

24

t1

t2

- -

Table 2.5: Time values for packets transmission (fc = 13.56 MHz).

 Summarizing this chapter, we have seen the basic block diagram of the digital core used

in the development of the RFID-enabled sensor and the ISO standard on which it has been

designed. The ISO standard ISO15693 which defines communication protocols, formats used

for data packets and the timing constraints used to design the digital core has been explained

in this chapter. Next chapter will discuss about the design of the digital core which works

according to the standard defined in this chapter.

25

CHAPTER 3

THE DIGITAL CORE

3.1 Introduction

 In this chapter we will see detailed description of the digital core used in the

development of the RFID tags. The digital core is designed to conform to the ISO 15693

standard. To understand the design of the digital core we have to visualize it as a big state

machine which steps through different states based on the input conditions and present state

of the machine. This state machine is a Mealy state machine whose output values are

determined by its current state and by the values of its input.

3.2 Design Constraints

 The combination of extreme low-power and high reliability requirements make

implantable electronic systems differ from other electronic-systems implementations. Most

of the implantable medical devices available today depend on a non-rechargeable battery for

operation. Use of a non-rechargeable battery reduces the shelf-life of the implantable device,

thus making it less reliable. To increase the operating lifetime of an implantable device we

are going to use passive RFID technology. RFID technology for implantable applications

place a number of constraints on power management, design environment, targets used to

implement those designs. As system complexity and activity increases, without a

proportional increase in available energy, design challenges become more persistent [11].

26

 Most of the implantable systems utilize fair amount of analog signal processing due to

the fact that most of the systems on the chip are analog devices which are used for power

harvesting, regulation, signal acquisition from sensors when compared to digital signal

processing. Most of this design is done as subthreshold analog design to take advantage of

low bias currents and high gain. The subthreshold region offers low current, high gain at

given current and maximum voltage swing due to low Vgs and Vdsat. Another reason that

aides us in the use of subthreshold analog design is these systems can be very slow as most

body responses are measured in milli-seconds rather than in nano-seconds. This is an

important distinction, as the need to do things slowly translates to lower power consumption.

Design of digital blocks for implantable applications can take variety of approaches. At the

system level and IC level, this often includes turning off blocks and/or clocks when they are

not required to perform a task, lowering power supply voltage down to the sum of p- and n-

channel thresholds, using libraries that offer gates with multiple thresholds, selectively

duplicating functions, circuits or tasks at the expense of area to save power, and balancing

the decision to implement functions in hardware versus firmware. At the IC level,

minimizing power dissipated in the clock network is important [11].

3.3 Digital Core Design

 The digital core handles the communications and control operations of the RFID tag. It

decodes the incoming data packet from the reader, executes commands and sends data back

to the reader. The control logic performing reception, acquisition and transmission of data is

also implemented by the digital core. The generalized block diagram of the RFID tag is as

shown in Fig 3.1, it consists of both analog core and digital core. The block diagram of the

27

digital core is as shown in Fig 3.2. From the block diagram we can see that there are three

main modules which make up the digital core namely Frame decoder, controller and the

encoder.

RF

rectifier

Voltage

limiter

VDD

GND

ASK

demodulator

ASK

modulator

Clock

extraction

Voltage

regulator

(LDO)

Control

logic

Low-power

ADC

Sensor

Frame

decoder

Frame

encoder

Power -

on - reset

Digital core

Voltage

reference &

Current

reference

Analog core

Transponder

antenna

Fig 3.1: Block diagram of the RFID Tag.

28

Digital Logic

clk (13.56 MHz)

Data from

envelope

detector

Data sent for

transmission

Frame

encoder

Data

from

ADC

Control

signal

to ADC

Data, command

and eof_rx

signals

clear_rx

Frame

decoder

Control

logic

load,

start_tx

eof_tx

Fig 3.2: Digital logic of the RFID Tag.

As we said earlier the digital core works on a state machine which is operated and controlled

by the control module in the tag. In the next subsequent sections we will discuss about the

architecture of every module and state machines on which they work.

3.4 Control Module

 The control module is the main module of the RFID tag as it controls the operation of

both frame decoder and frame encoder in the tag. This module has been designed to operate

as a state machine. This state machine works in four, states namely: IDLE, COMPARE,

TRANSMIT and WAIT_STATE. To help visualize the operation of the state machine a state

diagram is shown below in Fig 3.3. The VHDL code for the above control module is shown

in appendix and the VHDL entity for this control module is given below

29

entity controller is

Port (data_in : in STD_LOGIC_VECTOR (15 downto 0);

Clk : in STD_LOGIC;// 13.56 MHz clock signal

Rst : in STD_LOGIC;

eof_rx : in STD_LOGIC; // End of frame signal from the decoder

eof_tx : in STD_LOGIC; // End of frame signal from the transmitter

frame_error : in STD_LOGIC; // Frame error signal from the decoder

adc_data : in STD_LOGIC_VECTOR (7 downto 0);

data_to_tx : out STD_LOGIC_VECTOR (39 downto 0);

load : out STD_LOGIC;

start_tx : out STD_LOGIC;

clear_rx : out STD_LOGIC);

end controller;

State = IDLE

State =

COMPARE

eof_rx = 1 or

rx_cmd = 20 (read

command) or

State =

TRANSMIT

State =

WAIT_STATE

eof_tx = 1

rst = 0

rx_cmd = 42

(write command)

frame_error = 1

frame_eror = 0
eof_tx = 0

start_tx = 1

Fig 3.3: State diagram for the Control Module state machine.

 During power-on the state machine is always reset to the IDLE state. When the state

machine is in IDLE state most of the control signals and both frame decoder and frame

encoder modules are reset and it is ready to receive a data packet from the reader. When the

reader sends a data packet, the frame decoder decodes the incoming packet and sends a end

of frame signal (eof_rx) to the controller. Based on this signal the controller will step into

the COMPARE state. If frame error occurs then the controller will drop the packet and

30

remains in the IDLE state where it waits for another packet but, if the packet is received

without error then the controller will go to COMPARE state. In COMPARE state the

received command is used to determine if the requested operation is read or write, once this

is determined then the requested operation is preformed and the state machine goes into the

TRANSMIT state. In this state a response data packet is generated using frame encoder

module and sent to the reader using load modulation, during this time a WAIT_STATE is

initiated to wait for a signal from the frame encoder which indicates completion of packet

transmission. When the frame encoder indicates the end of transmission (eof_tx) of a

response packet the control module goes back to IDLE state resetting both the frame decoder

and frame encoder.

3.5 Frame Decoder

 This module decodes the incoming data packet and extracts information sent by the

reader. The incoming data packet format is as shown in Fig 3.4 and Fig 3.5. If it‟s a read

request data packet then it contains 6 fields which include packet delimiters SOF and EOF

along with 40 bits of data which represent flag bits, block number and the calculated CRC for

error detection. If the incoming data packet is a write request data packet then it contains 7

fields with packet delimiters SOF and EOF along with 72 bits of data which represents flag

bits, block number, data to be written in the block and the calculated CRC for error detection

as shown in Fig 3.5.

Request

SOF

Request

Flags

Read Single

Block

Block

number

CRC 16 Request

EOF

8 bits 0x20 8 bits 16 bits

Fig 3.4: Read Single Block request format.

31

Request

SOF

Request

Flags

Write Single

Block

Block

number
CRC 16 Request

EOF

8 bits 0x21 8 bits 16 bits

Data

32 bits

Fig 3.5: Write Single Block request format.

 To do the job of decoding these packets we designed a state machine which was

implemented using VHDL and verified on a CPLD. VHDL (very high speed IC hardware

description language) is a high level hardware description language used in electronic design

automation to describe digital and mixed signal systems such as FPGA‟s and integrated

circuits. VHDL was used because it offers many benefits such as the management of

complex designs, explore alternative design techniques, provides feedback to produce better

results, increase productivity and most importantly portable design data.

3.5.1 State Machine Design for Frame Decoder

 The process of decoding the incoming data packet in the frame decoder can be

understood by first describing the state machine on which the frame decoder works. The state

machine has two processes in it: ASK process and CLK process which depend on each

other to step through different states as shown in Fig 3.6 and 3.7. The ASK process is used

to step through different states depending on the condition of the CLK process. If the CLK

process goes to ERROR state during any point in the decoding process then ASK process

will go into IDLE state, else it normally steps through every state. The CLK process is the

main process where the incoming data is decoded and stored in a register to be transferred to

control module for analysis. The reason for using two process can be understood by referring

to chapter 2, section 2.4.2 where I have shown that incoming data from the reader uses 1 out

of 4 data coding technique. In this technique 2 data bits are represented by a pause in any one

32

of four consecutive 18.88 μs time periods, so by using two processes we can count between

two pauses and depending on the value of the counter we can determine the value of the

incoming data bit. The ASK process process always works on the falling edge of the

incoming signal (ask_in) and CLK process works on the rising edge of the 13.56 MHz

clock. The VHDL code for the frame decoder is given in appendix; the VHDL entity for this

module is given below:

entity frame_decoder is

port (ask_in : in STD_LOGIC; // Incoming signal from the data slicer

rst : in std_logic; // Reset signal

clk : in STD_LOGIC; // 13.56 MHz clock signal

SOF : out std_logic; // Start of frame signal

EOF : out std_logic; // End of frame signal

ask_out : out std_logic;

clk_out : out std_logic;

frame_error : out std_logic; // Frame error signal

data_out : out std_logic_vector(15 downto 0)); // Data extracted from the incoming

packet

end frame_decoder;

33

a_state =

IDLE

a_state =

SOF1

a_state =

SOF2

a_state =

BIT0

Process: ASK

a_state =

BIT1

a_state =

BIT2

a_state =

BIT3 c_
state ≠

E
R

R
O

R
c_state ≠

E

R
R

O
R

c_state ≠

ERROR

c_state ≠

E
R

R
O

R
c_

state ≠

E
R

R
O

R

c_state ≠

ERRO
R

c_sta
te =

ERROR

or E
OF1

rst = 0

Fig 3.6: State diagram for the ASK process.

c_state =

IDLE

c_state =

SOF1

c_state =

BIT0

c_state =

BIT1

Process: CLK

c_state =

BIT2

c_state =

BIT3

c_state =

EOF

a_state =

c_state

rcv_byte_count < 4/8

a_state = SOF1

a_
state =

S
O

F
2

a_state =

c_state

a_
st

at
e

=

c_
st

at
e

a_sta
te =

ID
LE

rcv_byte_count = 4

or
rcv_byte_count = 8

Fig 3.7: State diagram for the CLK process.

34

The states used in the two processes are IDLE, SOF1, SOF2, SOF3, BIT0, BIT1, BIT2,

BIT3, INTER, BYTE_READY, HALT, EOF1, ERROR and a_state, c_state are the two

signals used to handles the states in ASK process and CLK process respectively. To see and

understand how the count value between two pauses determines the value of data bits let us

see the following steps:

1) Fig 3.8 shows the start of frame format of the incoming data packet. Initially the

ASK process steps into SOF1 state due to which c_state also steps into SOF1 state

and the 11 bit counter in CLK process starts counting. Next, a_state will step into

SOF2 state, when this happens the counter in the c_state stops counting. If the

counter value is 512 (±32, due to effect of noise) then c_state decodes this signal as

start of frame and steps into BIT0 state. When determining the counter value we use

the first 6 bits of the counter ie., from counter(10) to counter(5). The least significant

bits are neglected to include the effect of noise.

SOF

SOF 1 SOF 2

9.44 μs

37.76 μs 37.76 μs

9.44 μs 9.44 μs

37.76 μs = 512 counts at
13.56MHz clock

SOF Flags
Command

code
Parameters Data CRC EOF

Fig 3.8: SOF with two pauses.

35

2) Fig 3.9 shows how dibits are decoded in BIT0 state of the CLK process after S0F

detection. The BIT0 state determines the value of the first dibit of a byte. According

to the 1 out of 4 data coding technique, a byte of data can be divided into four dibits.

Detection of the first dibit of a byte is refered as BIT0 state. The CLK proces may go

to BIT0 state any number of times depending on the number of bytes in the incoming

data packet. Fig 3.9 shows the BIT0 state after detection of start of frame in the

incoming data packet. The method of determing the value of the first bit after start of

frame is similar to the method of determing the start of frame as shown earlier in

step 1. When the c_state steps into BIT0 state the counter starts counting until

a_state steps into BIT0 state. On the falling edge of incoming signal a_state steps

into BIT0 state. When this happens the counter stops and depending on the value of

the counter the value of the incoming bit is determined. Suppose after start of frame

signal, a dibit 00 occurs, then the counter value should be 384 (±32, due to effect of

noise). Similarly if other dibits such as 01, 10 or 11 occur after the start of frame

signal then depending on the counter value the dibits are decoded.

36

SOF 00 representation

01 representation

10 representation

11 representation

18.88 μs

= 256

counts

9.44 μs

= 128

counts

256 + 128 = 384 counts

SOF2 BIT0

18.88 μs

= 256

counts

18.88 μs

= 256

counts

18.88 μs

= 256

counts

28.32 μs

= 384

counts

256 + 384 = 640 counts

47.2 μs

= 640

counts

256 + 640 = 896 counts

BIT1

BIT2

BIT3

66.08 μs

= 896

counts

256 + 896 = 1152 counts

SOF1

Fig 3.9: BIT0 state of the c_state process after start of frame detection.

3) Fig 3.10 shows how dibits are decoded in BIT1 state of the CLK process after dibit

00 detection in BIT0 state. Once the first bit of the incoming data byte is detected

then c_state process steps into BIT1 state. When the c_state steps into BIT1 state the

counter starts counting until a_state steps into BIT1 state. On the falling edge of

incoming signal (ask_in) a_state steps into BIT1 state. When this happens the

counter stops and depending on the value of the counter the value of the incoming bit

is determined. Suppose dibit 01 occurs in BIT1 state after dibit 00 in BIT0 state then

the counter value should be 1152 (±32, due to effect of noise). Similarly if other

37

dibits such as 00, 10 or 11 occurs after BIT0 state then depending on the counter

value the dibits are decoded.

00 representation

01 representation

10 representation

11 representation

9.44 μs

= 128

counts

BIT0

28.32 μs

= 384

counts

768 + 384 = 1152 counts

47.2 μs

= 640

counts

768 + 640 = 1408 counts

BIT1

BIT2

BIT3

66.08 μs

= 896

counts

768 + 896 = 1664 counts

00 representation

56.64 μs

= 768

counts

56.64 μs

= 768

counts

56.64 μs

= 768

counts

56.64 μs

= 768

counts

768 + 128 = 896 counts

Fig 3.10: BIT1 state of the c_state process after dibit 00 detection.

Similarly when CLK process decodes dibits in BIT1 state it steps into BIT2 state followed

by BIT3 state to decode the incoming data bits. Again the counter value between the two

pauses determines the value of the dibits. When all the data bytes are decoded the value is

stored in data_out register (as seen in the VHDL entity), which is sent out to the control

module for analysis. When the CLK process steps into end of frame (EOF) state the ASK

process steps into IDLE state and on the next rising edge c_state also steps into IDLE state.

38

So at the end of decoding process both the processes go back into IDLE state and wait for

another incoming data packet.

3.6 Frame Encoder

 The frame encoder module is responsible for sending a response back to the reader. We

know that the RFID tag works on the principle of reader talk first, when the RFID tag

receives a command from the reader the control module in the RFID tag processes the

incoming packet and determines the type of operation to be performed. The RFID tag

responds after a time interval t1 (311.5 μs) specified in Table 2.5 of section 2.6, which

describes the RFID tag transmission protocol. After time t1 (311.5 μs) the frame encoder

starts generating a response packet and simultaneous transmission of response packet takes

place. The read and write response packet format is as shown below in Fig 3.11 and 3.12

respectively.

Response

SOF

Response

Flags
CRC 16

Response

EOF

8 bits 16 bits

Data

32 bits

Fig 3.11: Read Single Block response format.

Response

SOF

Response

Flags
CRC 16

Response

EOF

8 bits 16 bits

Fig 3.12: Write Single Block response format.

39

start_tx = 1

d
ela

y
_

d
o

n
e =

 1

DELAY

STATE

sof_done = 1

d
elay_d

on
e =

 1
d
at

a-

m
od

u
le

_d
on

e

=
 1

START of

FRAME

STATE

CLOCK

GENERATION

STATE

IDLE

STATE

PISO

STATE

DATA & CRC

GENERATION

STATE

p
is

o
_

m
o

d
u

le
_

d
o

n
e

=
 1

EOF

STATE

eof_done = 1

FRAME ENCODER

STATE MACHINE

sta
rt_tx = 0

Fig 3.13: State diagram for the Frame Encoder module.

 The frame encoder uses a state machine to generate the response packets; the designed

state machine follows the state diagram shown in Fig 3.13. As we know from the response

format shown in Fig 3.11 and Fig 3.12 we need to generate SOF, FLAGS and/or DATA,

CRC and EOF fields before we send the response packet. To generate all these fields we

have designed different modules which work in a sequence, each module depends on the

input signal coming from the previous module. The architecture of the frame encoder is

shown below in Fig 3.14. A response frame starts by generating a delay, once a delay of

311.5 μs is generated then it raises the signal delay_done which starts the clock module. The

40

clock module generates 3 sub-clocks from the incoming master clock of 13.56 MHz

frequency. The three different clocks used inside the frame decoder are clk_512 (26.484

KHz), clk_256 (52.968 KHz) and clk_32 (423.75 KHz). The clk_512 is used for CRC,

FLAGS and/or DATA modules, clk_256 is used for SOF and EOF modules and clk_32 is

used for modulation during data transmission. The clk_512 corresponds to the high

frequency data rate (26.484 Kbits/s i.e. fc/512) chosen for data transmission, the use of

clk_256 for SOF and EOF and clk_32 for data transmission will be explained later. The start

of clock module initiates the process of generating a response frame. As explained earlier, to

generate different fields of the response packet we have designed different modules, all these

modules are connected to a 4:1 mux which switches its output depending on the completion

of every module. The completion of a module is specified by the done signal of that module,

this signal is used to start the succeeding module, switch the 4:1 mux and in some cases to

disable it to save power.

 The ISO 15693 standard uses Manchester codes (see section 2.4) for encoding data and

a clock frequency of fc/32 for sub-carrier modulation before data transmission. So, to follow

this rule we have designed a Manchester module which will convert the incoming data into

Manchester codes before sending it to the 4:1 mux for transmission. The Manchester module

has to convert both data and the CRC checksum of the data, to facilitate this 2:1 mux is used.

The 2:1 mux has inputs from both data module and CRC module. The data_module_done

signal from the data module is used to switch the output of 2:1 mux. The designed CRC

module generates CRC value in parallel but the Manchester module requires data to come-in

serially, so we designed another module called PISO (parallel in serial out) module. The

PISO module takes 16 bit CRC value in parallel from the CRC module and sends them out

41

serially to the 2:1 mux. The 2:1 mux will switch its output from data module output to PISO

module output when data module sends the data_module_done signal. Once all the data (40

bits from data module and 16 bits from CRC module) is sent out through Manchester module

the frame encoder switches the 4:1 mux to the end of frame output. The piso_module_done

signal will switch the 4:1 mux and also starts the end of frame module. The end of frame

module generates the end of frame signal and then it raises eof done signal. This signal

disables EOF module to save power and the control modules on receiving this signal disables

the entire frame encoder module by lowering the start_tx signal.

The VHDL code for this module is given in appendix, but the VHDL entity for this module is

as given below:

entity transmitter is

generic (n : integer := 39);

Port (start : in STD_LOGIC; // This will start the delay module

Data : in std_logic_vector(n downto 0); // Data to be transmitter

Clk : in std_logic; // 13.56Mhz clock

Load : in std_logic; // This will load the data onto Data and CRC module

eof_done : inout std_logic;

tx_out : out std_logic);

end transmitter;

42

sta
rt_

tx

clk
 =

1
3
.5

6

M
H

z

39:0

data

load

lsb_serial_out

manchester

15:0

tx
_
o

u
t

cl
k

and

data_module_done

control

clock_delay

clk_32

clk_256clk_512

clk

start

sof_module

clk

eof_module

clk

crc_module cl
k

en
ab

le

delay_module

clkstart

done

data_module clk

data_vect_in

done

load

piso_serial_out

PISO
clk

m
an

ch
es

te
r_

o
u

t

so
f_

o
u

t

eo
f_

o
u

t

mux41
sof_done

piso_module_done

cr
c_

o
u

t

01 2 3

NA

eof_done

done

0

1

disable

sof_out

eof_out

sof_done

lsb_serial_out

sof_done

data_module

_done

enable

done_done_piso

done_done_piso
pulse_in

piso_module

_done
data_vect_in

done_to_eof

done_to_eof

start

delay_done

start

delay_done

short_data
short_data

serial_in

crc_out

done_to_dm

done_to_dm

reset

mux21_outmux21

1
0

data_serial_in

enable
sof_done

output

Fig 3.14: Architecture of the Frame Encoder.

43

 The following sections will discuss all the modules used to design the frame encoder in

detail. We start with start of frame module and end of frame module as their design technique

is similar, later we will discuss about data module, crc generation, PISO module and other

supporting modules.

3.6.1 SOF Module

 The SOF for high data rate is made up of 3 parts namely, an unmodulated time of 56.64

μs followed by 24 pulses of 423.75 kHz and a logic 1 which also corresponds to the high data

rate as shown below in Fig 3.15.

37.76 μs

Start of frame, high data rate, one subcarrier

Logic „1‟

Unmodulated

time of 56.64μs

Modulated time of

56.64μs with 24 pulses

of 423.75 KHz.

Fig 3.15: SOF representation for response packet.

The VHDL code for this module is given in appendix, the entity for this module is given

below.

entity sof_module is

port(start : in std_logic; // delay_done signal from the delay_module

clk : in std_logic; // clk_256 (52.968 KHz)

enable : in std_logic;

sof_out : out std_logic;

done : inout std_logic; // sof_done signal to switch MUX41

done_early : out std_logic);

end sof_module;

44

 To generate the start of frame (SOF) signal as shown above we approached many

different types of designs, of which one design suited for the state machine described above.

In this design we make use of a shift register to shift out desired data on a particular clock.

To generate SOF we made use of clk_256 which has a time period of 18.88 μs to shift out

data „00011101‟ which corresponds to SOF signal.

Start of frame, high data rate, one subcarrier

0 10 10 1 0 1

clk_256 (fc/256)

56.64 μs 56.64 μs 37.76 μs

18.88 μs

`

Fig 3.16: Use of clk_256 to generate SOF.

The reason for using clk_256 is that its time period 18.88 μs is a multiple of 56.64 μs, so on

the rising edge of every clock cycle of clk_256 we can shift out data which will represent the

SOF for the response packet as shown in Fig 3.16. After generating the SOF signal we

modulate the outgoing data using clk_32 as shown below in Fig 3.17.

45

clk_32 = fc/32 = 423.75 kHz

SOF without modulation

SOF ready for transmission

Unmodulated

time of 56.64μs

Modulated time of

56.64μs with 24 pulses

of 423.75 KHz.

Logic „1‟

Fig 3.17: SOF after modulating with clk_32 (fc/32 = 423.75 kHz).

This method is the simplest way of generating an SOF frame. The VHDL code written for

this module will perform the function as described by this method. Once the frame is sent

this module will send a signal sof_done to initiate the next module and to stop itself to save

power.

46

3.6.2 EOF Module

 The EOF for high data rate is made up of 3 parts namely, a logic 1 which also

corresponds to the high data rate followed by 24 pulses of 423.75 kHz and an unmodulated

time of 56.64 μs as shown below in Fig 3.18.

End of frame, high data rate, one subcarrier

37.76 μs

Unmodulated

time of 56.64μs

Modulated time of

56.64μs with 24 pulses

of 423.75 KHz.

Logic „1‟

Fig 3.18: EOF representation for response packet.

The VHDL code for this module is given in appendix, the entity for this module is given

below.

entity eof_module is

port(start : in std_logic; // Done signal from the PISO module

clk : in std_logic; // clk_256 (52.968 KHz)

enable : in std_logic

eof_out : out std_logic; // End of frame signal

done : inout std);

end eof_module;

 Similar to start of frame (SOF) to generate the end of frame (SOF) signal as shown

above we approached many different types of designs, of which one design suited for the

state machine described above. In this design again we make use of a shift register to shift

out desired data on a particular clock. To generate EOF we made use of clk_256 which has a

time period of 18.88 μs to shift out data „10111000‟ which corresponds to EOF signal.

47

End of frame, high data rate, one subcarrier

01 01 0101

clk_256 (fc/256)

56.64 μs 56.64 μs 37.76 μs

18.88 μs

Fig 3.19: Use of clk_256 to generate EOF.

The reason for using clk_256 is similar to that of SOF, that its time period 18.88 μs is a

multiple of 56.64 μs, so on rising edge of every clock cycle of clk_256 we can shift out data

which will represent the EOF for the response packet as shown in Fig 3.19. After generating

the EOF signal we modulate the outgoing data using clk_32 as shown below in Fig 3.20.

48

clk_32 = fc/32 = 423.75 kHz

EOF without modulation

EOF ready for transmission

Unmodulated

time of 56.64μs

Modulated time of

56.64μs with 24 pulses

of 423.75 KHz.

Logic „1‟

Fig 3.20: EOF after modulating with clk_32 (fc/32 = 423.75 kHz).

This method is the simplest way of generating an EOF frame. The VHDL code written for

this module will perform its function based on the method described above. Once the frame

is done this module will send a signal sof_done to initiate the next module and to stop itself

to save power.

49

3.6.3 Data Module

 The VHDL entity for the data module is given below; complete VHDL code for this

module is given in the appendix.

entity data_module is

port(data_vect_in : in std_logic_vector(39 downto 0);

clk : in std_logic;

load : in std_logic; // Signal on which data is stored in local register

enable : in std_logic : // Signal on which transmission starts

lsb_serial_out : out std_logic; // Data sent to Manchester and CRC module

done : out std_logic; // Pulse sent to mux21 and XOR gate

done_to_piso : out std_logic);

end data_module;

 The main idea behind the data module is to load data (8 bits flag and/ or 32 bits data)

from the control module before transmission into a shift register and then to shift them out

during transmission. The control module loads data after the comparison state using load

signal and the data module transmits data during transmission state using enable signal.

When the load signal goes high the incoming data is stored in a local register. During

transmission of this data the load signal goes low and enable signal goes high. When the

enable signal goes high, data in the local register is shifted out on the rising edge of the clock

(clk_512). The data is sent out least significant bit first to the mux 2:1 and also to CRC

module as shown in Fig 3.14. The mux 2:1 will send this incoming data out for transmission,

whereas the CRC module will use the data to calculate the CRC checksum. The state diagram

given below in Fig 3.21 describes the design of the data module. Once shifting of 40 bits are

completed the data module generates two control signals namely done and done_to_piso,

done signal is generated to inform the crc module and mux 2:1 module whereas the

done_to_piso is generated to start the PISO module. Once these signals are received, the

CRC module is disabled, the mux 2:1 switches its output from data module to PISO

50

module and the PISO module will output the CRC serially starting from least significant bit

of the least significant byte. Seen from the code in appendix, these two signals are generated

on the transmission of 39
th

 bit this is because the state machine will detect this signal on the

rising edge of the 40
th

 bit which helps to synchronize the PISO module with data module. If

we raise these two signals on the 40
th

 bit instead of 39
th

 bit then the state machine will detect

them on the rising edge of the 41
st
 clock cycle which will create a gap in transmission.

L
o
a
d

 =
 0d

o
n

e
=

 1

LOAD /

RESET

STATE

DATA MODULE

STATE MACHINEL
o
a
d

 =
 1

TRANSMISSION

STATE

Fig 3.21: Flowchart for Data Module design.

3.6.4 CRC and PISO Module

 The CRC (Cyclic Redundancy Check) method is a widely used and highly reliable way

of detecting transmission errors. It can only detect errors but it cannot correct them. The

calculation of CRC is a cyclic procedure which incorporates the current CRC value of the

data and the CRC value of all previous data bytes. The CRC value of the entire data block is

obtained by calculating CRC value of every individual byte in a data block. Mathematically

we calculate the CRC by division of a polynomial using a generator polynomial. The

remainder obtained from this division is the CRC value of the data used for division. The

51

calculation of CRC always starts with an initial value, for large data blocks the CRC value

from the preceding data byte is used as starting value for the subsequent data byte. To

evaluate the received data for errors we perform CRC calculation on the received data along

with the CRC value appended to it, the result should be same as a pre-determined residue

(0xF0B8) [1].

 When a data block is transmitted, the CRC value of the data is calculated within the

transmitter and this value is appended to the end of data block and transmitted with it. The

CRC value of the received data, including the appended CRC byte, is calculated in the

receiver. The result is always a pre-determined residue (0xF0B8), unless there are

transmission errors in the received block. Checking for this residue is a very easy method of

analyzing the CRC checksum and avoids use of complex methods of comparing checksums.

Care should be taken to start both the CRC calculation from the same initial value (0xFFFF)

[1]. The great advantage of using CRC is the reliability of error recognition that is achieved

in a small number of steps even where multiple errors are present [12]. A 16-bit CRC is

suitable for checking the data integrity of data blocks up to 4 Kbytes in length, above which

the performance degrades. The data blocks transmitted in RFID systems are much less than 4

Kbytes, which means we can use 16-bit CRC [1]. The specifications of the 16-bit CRC used

in RFID systems are given in the ISO15693 standard shown in Fig 3.22.

CRC type

ISO13239

Length Polynomial Direction Preset Residue

16 bits 151216  xxx Backward „FFFF‟ „F0B8‟

Fig 3.22: CRC specifications.

52

LSB.………………………………...………… MSB

0 1 2 3 4 5 6 7 8 9 A B D E FC

Data in the Data module

serial_data

16-bit shift register

N-bit shift register

Fig 3.23: CRC operating principle.

 When CRC algorithms were first developed, priority was given to realize a simple CRC

processor made up of shift registers and XOR gates as shown in Fig 3.23 [1]. The CRC-16

can be calculated using shift registers as shown in Fig 3.21. To this end, a 16-bit shift

registers is first set to its starting value (FFFFh in this case). The calculation is then initiated

by shifting in the data bits obtained by the data module starting with the least significant bit

of the least significant data byte into the 16-bit shift register. The polynomial division is

based upon the XOR logic gating of the CRC bits shown in Fig 3.24. When all the bits have

been shifted out of the register, the calculation is complete and the content of the 16-bit shift

register represents the desired CRC [12]. The polynomial used in CRC-16 calculation called

the generator polynomial is given by, . So the XOR logic gates X1, X2

and X3 represent the polynomial respectively.

 The VHDL code written for this module does a structural description of the circuit given

in Fig 3.24. A separate behavioral description of D flip-flop is provided. Appendix gives the

code used for this module.

53

The VHDL entity is given below,

entity crc_module is

port (serial_in: in STD_LOGIC; //Serial data coming from data module

clk : in STD_LOGIC; // clk_512 = 26.484 KHz clock

enable : in std_logic;

reset : in STD_LOGIC;

crc_out : out std_logic_vector(15 downto 0)); // 16-bit CRC available in parallel

end crc_module;

entity d_ff is

port (data : in STD_LOGIC; // D1 input

clk : in STD_LOGIC; // clk_512 = 26.484 KHz clock

set : in STD_LOGIC;

Q : out STD_LOGIC); // D0 output

end d_ff;

clk = clk_512

(26.484 KHz)

serial_in

crc_out

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1 D0

clk

D1D0

xor

xor

xor

Dff_1 Dff_2 Dff_3 Dff_4 Dff_5 Dff_6 Dff_7 Dff_8

Dff_9

clk

D1D0

Dff_10

clk

D1D0

Dff_16

clk

D1D0

Dff_15

clk

D1D0

Dff_14

clk

D1D0

Dff_13

clk

D1D0

Dff_12

clk

D1D0

Dff_11

X1

X2

X3

clk = clk_512

(26.484 KHz)

Fig 3.24: The circuit to realize CRC-16 calculation.

The signal serial_in is the serial data coming in from the data module. Enable signal starts

the CRC module. Sixteen D flip-flops are used as shift registers to shift out data serially into

54

the register array, at the end of calculation all the N-bits in the data module would have been

shifted out and the content of the 16-bit shift register is the CRC checksum of the N-bit data.

 The PISO module is basically a 16-bit parallel in and serial out module which

receives CRC data parallelly from the CRC module and shifts out data serially for

transmission via mux 4:1. This module was designed because as we know the CRC module

computes using shift registers. At the end of computation the data in the shift register is the

computed CRC value, but this value is available parallelly. To transmit data serially we came

up with a small PISO module. The flow diagram for the operation of PISO module is shown

in Fig 3.25.

PISO reset state

If

pulse_in

= 1

No

On rising edge of clock

shift out data serially

Yes

If

shifting

done

No

Yes

Switch mux 4:1 to

eof_out

Fig 3.25: Flowchart representing operation of the PISO module.

55

The VHDL code for this module is a simple behavioral description of the above flowchart,

which can be seen in appendix. The VHDL entity for this model is given below,

entity PISO is

port(pulse_in : in std_logic; // Data module sends this pulse to start PISO

clk : in std_logic;

data_vect_in : in std_logic_vector(15 downto 0); // 16 bit parallel data from CRC

serial_out : out std_logic; // CRC data sent out serially

done_to_eof : out std_logic; // module done pulse sent to eof module

done : out std_logic); // done pulse sent to switch the mux41

end PISO;

3.6.5 Manchester Module

 The data bits in the transmitter must be Manchester encoded before transmission

according to the ISO15693 standard. In Manchester code the value of a bit is defined by the

change in level (negative or positive transition) within a bit window (Tbit). A logic 0 in this

module is coded by a negative transition and a logic 1 is coded by a positive transition as

shown in Fig 3.26. The no transition state is not permissible during data transmission and is

recognized as an error. The Manchester code is often used for data transmission from

transponder to the reader based upon load modulation using a subcarrier.

1 0

Tbit Tbit

Manchester Code

Fig 3.26: Manchester code.

56

 To convert the data into Manchester coder before transmission we thought of many

different approaches and the simplest way of doing it was to just XOR the data with the

clock. The reason why it would work is that the data from the data module is being sent at a

rate of fc/512 = 26.48 Khz, so if we use the same clock then XOR of these two will give us

the Manchester encoded data as shown in Fig 3.27.

1 0 1 011 0 1

Data

Clock_512 (fc/512)

Manchester Encoded data

37.76 μs

37.76 μs

Fig 3.27: Example for Manchester Encoding.

 The VHDL code written for this module is a simple behavioral model which takes in the

incoming data and XOR gates it with clock (clk_512). The VHDL entity for this module is

given below,

57

entity manchester is

port(data_serial_in : in std_logic; // Serial data coming in from 2:1 mux

clock : in std_logic; // clk_512 = 26.484 KHz clock

enable : in std_logic;

manchester_out : out std_logic); // Manchester encoded data going out

end manchester;

3.6.6 Delay Module

The flowchart describing operation of the delay module is shown below in Fig 3.28. From

When start_tx = 1

Start delay module,

counter starts

If count ≥

4141(306 μ sec)

Send done signal

to clock module

Wait until start_tx = 0

to stop

Count

Yes

No

Fig 3.28: Flowchart describing the operation of delay module.

58

The RFID command transmission follows certain timing protocol described in Table 2.5. So

to provide a nominal delay of t1 which is equal to 311.5 μs (4224/ fc) we have designed this

delay module. This delay of 311.5 μs is calculated from the time end of frame of received

data to the start of frame of transmission data. In our design we have to account for the time

the control module takes to change state and send control signals to start the transmitter. So

inside the delay module we wait for 306 μs before we send done signal to start the clock

module. The VHDL code for this module is again a behavioral model which resets all signals

when start_tx signal is 0 and starts counting when it becomes 1. The VHDL entity for this

module is given below,

entity delay_module is

port (start : in std_logic; // Start signal from the control module

clk : in std_logic; // 13.56 MHz clock extracted from the incoming RF signal

enable : in std_logic;

done : inout std_logic); // Done signal to SOF module to start Transmission of

response

end delay_module;

3.6.7 Clock Module

 The clock module is a simple clock divider which divides the incoming 13.56 MHz

clock into three smaller clocks namely clk_32 (fc/32 = 423.75 KHz), clk_256 (fc/256 =

52.97 KHz) and clk_512 (fc/512 = 26.484 KHz). We make use of a ten bit counter which

starts counting once it receives start signal. The 5
th

, 7
th

 and 8
th

 bits of the counter are used to

derive clk_32, clk_256 and clk_512 respectively. The start signal to the clock module is

given by the done signal from the delay module. The VHDL code for this module is written

in behavioral model and the code is presented in appendix, but the VHDL entity is given

below. The state diagram describing the operation of this module is given below in Fig 3.29.

59

entity clock_delay is

 Port (clk : in STD_LOGIC;

 start : in STD_LOGIC;

 clk_32 : out STD_LOGIC;

 clk_256 : out STD_LOGIC;

 clk_512 : out STD_LOGIC);

end clock_delay;

start =
 „1

‟

CLOCK

GENERATION

STATE

RESET

STATE

st
ar

t
=

 „
0

‟

Fig 3.29: State diagram describing the operation of clock module.

3.6.8 Data Routing and Carrier Multiplication

 From the architecture of the frame encoder shown in Fig 3.14 we can see that two mux‟s

have been used for routing data. The 2:1 mux shown in Fig 3.30 is used to route data from

data module and PISO module in a sequence. Initially the data module sends out 40 bits of

data which is routed into the Manchester module followed by 16 bit CRC by PISO module.

The equation for this 2:1 mux derived from the truth table shown in Fig 3.31 is given by

output = (Input(0) and (not sel)) or (Input(1) and (sel)).

60

0

sel

mux21
output

1

lsb_serial_out

piso_serial_out

Fig 3.30: Mux 2:1.

sel
output

0

1

Input 0

Input 1

(lsb_serial_out)

(piso_serial_out)

data_module_done

Fig 3.31: Truth table for Mux 2:1.

 The 4:1 mux shown in Fig 3.32 is used to route data from start of frame module,

Manchester module and end of frame module in a sequence. Initially the start of frame sends

out its data bits 00011101 shown in Fig 3.14 at 52.97 KHz (fc/256) rate, once it is done the

sof_done signal is raised which switches the mux output from Input 0 to Input 1. Similarly

once Manchester module is done sending all 56 bits (40 bits data and 16 bits CRC) it will

raise piso_module_done which switches the 4:1 mux output from Input 1 to Input 2. Once

end of frame is done sending out all its data bits it raises eof_done signal which will disable

61

the output of 4:1 mux. From the equation given below for the designed 4:1 mux we can see

how the output of mux never changes to the fourth input NA as this condition never occurs.

output = ((Input(0) and (not sel(0)) and (not sel(1))) or (Input(1) and sel(0) and (not

sel(1))) or (Input(2) and sel(0) and sel(1))) and disable.

mux41

sof_out

eof_out

NA

sof_done

piso_module_done

output

~eof_done

AND

gate

0

1

2

3

0
1

select signals

disable

signal

disable

Fig 3.32: Mux 4:1.

The VHDL code is the behavioral description of the above shown equation and it is given in

appendix, but the VHDL entity for this module is given below,

entity mux41 is

port(input : in std_logic_vector(2 downto 0); // 3 input signals

sel : in std_logic_vector(1 downto 0); // 2 select signals

disable : in std_logic;

output : out std_logic);

end mux41;

62

 Carrier multiplication is required to be performed on the data before transmission. The

data bits coming out of 4:1 mux are sent out for transmission through load modulation. But

before load modulation the data has to be multiplied with the subcarrier with frequency fs =

423.75 KHz (fc/32) to achieve this multiplication we use AND gate as shown in Fig 3.14. We

logically AND data coming from 4:1 mux with a clk_32 and then send that signal for load

modulation.

AND

gate

Data to load modulation

Mux 4:1 output

clk_32 (423.75 Khz)

Fig 3.33: Subcarrier multiplication using AND gate.

clk_32 = fc/32 = 423.75 kHz

Manchester encoded data

Manchester encoded data after subcarrier multiplication

0 10 1

37.76 μs

Fig 3.34: Subcarrier multiplication.

63

 From the above Fig 3.34 we can see how the data with subcarrier looks before it is sent

out through load modulation. The VHDL code for this module is a simple behavioral

description of the AND gate and it is given in appendix.

 Summarizing this chapter, we have seen the architecture of the digital core in section

3.3. From the architecture we have seen the part that digital core plays for successful

operation of the digital core. The digital core has three modules: 1) frame decoder, 2) control

module and 3) frame encoder. The Frame decoder decodes the incoming data packet from the

reader, the control module executes a command according to the data it receives and the

frame encoder responds to the reader. The operating principle of all three modules was

discussed in-detail, especially the complex process of frame encoder. The frame encoder has

eight sub modules which were individually discussed with state diagrams, flowcharts, block

diagrams and waveforms. The VHDL code written for all the modules and sub-modules are

given in appendix, the flowcharts, waveforms and in some cases block diagrams help us to

understand the written code.

 In the next chapter we will see results for the above design. Simulation results for all

sub modules of the frame encoder, design of the test bed for evaluating the VHDL code and

results obtained through the test bed will be discussed. Another test bed using a PCB was

designed. Design and results from that PCB will be seen in the next chapter.

64

CHAPTER 4

RESULTS

4.1 Introduction

 This chapter will focus on the results obtained through simulation using Xilinx ISE and

from the developed test-bed. During the design phase each module was separately designed

and tested. The simulated outputs of every module are shown below and they are explained

in brief.

4.2 Validation of the Design

 The developed code was simulated successfully to see the response given by the

transmitter for a read command sent by the reader, now to test it practically a test-bed has

been developed.

1
 M

 O
h
m

s

3
3
 K

 O
h
m

s

1
0
 p

 F

0
.4

7
 u

 F

1 M Ohms

Envelope

Detector Data Slicer

OPA 2331

XILINX CPLD XC2C256100 Ohms
Clock in

Transmit out

Receive in

C
o
il

 t
o
 h

ar
n
es

s
R

F
 e

n
er

g
y

C
o
u
p
li

n
g
 c

ap
ac

it
o
r

C
c

G

D

S

Load

modulation

BSS83_N

nmos

Fig 4.1: Test-bed to test the developed digital core.

65

The test-bed consists of a full wave rectifier, a data slicer, CPLD and a load modulation unit.

The coil used to harness the RF energy and data is connected to the full wave rectifier; the

rectified output is then fed to a data slicer. The data slicer unit consists of a low-pass filter

and a comparator. The data slicer is used to demodulate the incoming signal by removing all

the high frequency components of the signal, the capacitor and resistor form a low-pass filter

to filter out the carrier frequency. The filtered signal is then compared with a reference signal

to get a clean full rail DC signal which is then sent to the CPLD for analysis. The developed

code was mapped into the CPLD, which decodes the incoming signal and performs required

operation. The response packet to the reader is generated by the CPLD and sent out through

load modulation unit. The load modulation unit consists of an NMOS (BSS23_N by NXP)

transistor for switching and a 100Ω resistor. The resistor is used to load the coil so that the

reader can see the incoming signal. The test-bed was successful and the results are shown in

the next section.

66

Fig 4.2: RFID reader and test-bed setup.

Finally a printed circuit board was designed and fabricated to incorporate the designed test-

bed as shown below in Fig 4.3.

67

Fig 4.3: Test-bed on a printed circuit board.

4.3 Simulated Results

 The simulated results are presented in two sections: transmitter results and control

module results. The transmitter results have simulation results of all the sub blocks and the

final transmitter output, this is followed by the simulated results of the control block which

shows transition from one state to another in a sequential order.

4.3.1 Transmitter Results

 The transmitter code consists of twelve sub-modules the simulation results are shown

below with brief explanation.

68

Start of Frame Module:

Fig 4.4: Simulated output for Start of Frame Module.

 The simulation result of the start of frame module is seen above in Fig 4.4, where we

can see the sof_out signal which is the start of frame signal generated by the module. The

Start of Frame module is controlled by the enable signal which starts the module, generates

the start of frame signal and stops the module when it is done. We can also see two control

signals done and done_early which are enable signals for succeeding modules, the done

signal switches the 4:1 mux whereas the done_early signal starts the data module. The

done_early signal is raised earlier to allow data module to start at the precise moment when

the start of frame module ends.

End of Frame Module:

Fig 4.5: Simulated output for End of Frame Module.

69

 The simulation result of the end of frame module is seen above in Fig 4.5, where we can

see the eof_out signal which is the end of frame signal generated by the module. The end of

frame module is controlled by the enable signal which starts the module, generates the start

of frame signal and stops the module when it is done. The control signal done is generated

when the end of frame module has generated the required signal. This control signal will

disable the mux 4:1 which in-effect switches off the transmitter also it indicates the control

module to change its state.

Clock Module:

Fig 4.6: Simulated output for Clock Module.

 The clock module generates all the clocks required for the operation of the transmitter.

The master clock of 13.56 MHz extracted from the incoming RF field is divided into three

clocks clk_32 (13.56 MHz/32), clk_256 (13.56 MHz/256) and clk_512 (13.56 MHz/512) as

shown in Fig 4.6 which drive all the sub systems in the transmitter module.

70

Delay Module:

Fig 4.7: Simulated output for Delay Module.

 From the section 2.6 we know that RFID command transmission follows certain timing

protocol described in Table 2.5. So to provide a nominal delay of t1 which is equal to 311.5

μs (4224/ fc) we have designed this delay module. From Fig 4.7 shown above we can see that

the delay module generates a delay of 305.43 μs and then raises the done signal but the delay

is supposed to be 311.5 μs. The reason is, it takes 6 μs for the control module to detect end of

frame signal from the received data, change its state and send start signal to the delay module

inside the transmitter.

CRC Module:

Fig 4.8: Simulated output for CRC Module.

 The simulated result of the CRC module is shown above in Fig 4.8. We know from

chapter 3 the operation of the CRC module. Once the data module starts sending out data, the

71

CRC module receives data serially and calculates the CRC value. So for 40 bits data it takes

40 clock cycles to calculate the CRC. On the 41
st
 clock the CRC value is obtained, from the

above simulated result we can see the CRC value for forty „0‟ bits is CF77 h. This value is

sent out through Manchester and 4:1 mux modules.

Data Module:

 The data module sends out data in least significant bit first, the data sent out is routed

into two modules namely, CRC module and Manchester module for data transmission. The

data required to be sent out is initially loaded into the data module by the control module

after the COMPARE state as explained in section 3.4. When the load signal goes low and

enable signal goes high the data is sent out as lsb_serial_out. The simulated result for a test

data is shown below in Fig 4.9.

Fig 4.9: Simulated output for Data Module.

72

Manchester Module:

Fig 4.10: Simulated output for Manchester Module.

 We know from chapter 3 that the data sent for transmission should be Manchester

modulated, which is performed by this module. From the simulated result shown above in

Fig 4.10 we can see that test data 10011 is Manchester modulated. „1‟ is represented by a low

to high going signal and „0‟ is represented by a high to low signal. We can see small spikes

between two signals this is because of the testing conditions that were given in the test bench,

but the final result has no such spikes.

PISO Module:

 The PISO module is used to send CRC data serially into the Manchester module and

then out for transmission. The CRC module generates the CRC value in parallel, but the

Manchester module requires data to be serial. To solve this problem we came up with this

module. The 16 bit CRC value is initially sent saved in a temporary register and then sent out

least significant bit first to the Manchester. The simulated result is shown below in Fig 4.11.

73

Fig 4.11: Simulated output for PISO Module.

Digital Core Transmitter Simulated Output:

 The transmitter module simulated output is seen below in Fig 4.12 and Fig 4.13. The Fig

4.12 shows all the control signals, output from every module inside the transmitter module

and also the final transmitted signal tx_out. The white arrow in Fig 4.12 points to two

signals: tx and tx_out which are final transmitted signals before and after modulation. The

Fig 4.13 is a magnified sample of the transmitted signal, which clearly shows clock

multiplication before transmission.

74

Fig 4.12: Simulated output for Transmitter Module.

Fig 4.13: Magnified Sample of the transmitted output ‘tx_out’.

75

The transmitted response at the output of the CPLD was captured using high speed

osciloscope as it is shown below in Fig 4.41:

Fig 4.14: Transmitter response at the output of the CPLD.

Fig 4.15: Start of frame signal generated by the CPLD.

From the above figures 4.14 and 4.15 we can see the response of the CPLD for a read request

from the RFID reader. In Fig 4.15 we can see manchester encoded and subcarrier modulated

start of frame signal generated by the CPLD. The request packet by the reader and response

packet generated by the CPLD is shown below in Fig 4.16.

76

Response

of CPLD

Command

sent by

reader

Time interval

between

transmission

Fig 4.16: The request and response packets seen at the coil.

4.3.2 Control Module Results

Fig 4.17: Simulated output for Control Module.

77

 The control module is the main state-machine which controls and synchronizes the

operation of the designed digital core in the RFID tag. As we have seen in section 3.4 the

control module steps through many states. From the simulation result shown above in Fig

4.17 we can see that the control module steps through idle-state, compare-state, transmit-

state and wait_state. During the idle-state most of the signals are reset, the frame decoder

module is reset by the clear_rx signal and the transmitter module is reset by the start_tx

signal. During the compare state the received signal is analyzed and data to be sent out is

initialized into the data module. During the transmit module the clear_rx resets the receiver

and the start_tx signal initiates the transmitter module. During the wait_state it waits for end

of frame signal from the transmitter on receiving that signal it switches to idle state.

4.3.3 RFID Reader Output

Fig 4.18: RFID communication through Melexis user interface.

 The Digital core was tested using the user interface provided by Melexis corp. The test-

bed developed on the bread board receives commands sent by this user interface through the

78

RFID reader shown in Fig 3.36. The reply sent by the digital core can be seen in the

communication window as shown in Fig 4.16.

Fig 4.19: Command and Communication Window as seen in the Melexis User Interface.

CRC value for the reply sent by the digital core is calculated by the Melexis software and if it

matches with the CRC value in the received signal then it accepts the packet and says there

was no collision else it displays YES for collision.

79

4.4 RFID Communication using HyperTerminal

RFID Test-bed

Power

Data

RFID

reader

Fig 4.20: RFID communication using HyperTerminal.

 We can also use HyperTerminal to communicate with the RFID tag. HyperTerminal is a

terminal emulation program capable of communicating to systems through COM ports,

TCP/IP Networks and Dial-Up Modems. When the HyperTerminal program runs we have to

setup the COM port properties such as bit rate, data bits, flow control, parity and stop bits.

Once initialized the COM port is open and we can start to type in commands and receive

response from the tag.

The commands that we type into the hyper terminal are :

1) For read single block, the commnd is Iso15 022011 crc.

2) For write single block, the command is Iso15 42210132-bit data crc (ex: Iso15

422101AABBCCDD crc). Write single block allows user to send 32-bit data in one

packet, as an example I have shown AABBCCDD as 32-bit data.

80

4.5 Analog Component design:

4.5.1 Clock Extractor

RF IN CLK OUT

N1 N2 N3

P1
P2

P3VDD

GND

Fig 4.31 Clock extractor layout design

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0
3.5

2.5

2.0

3.0

1.5

1.0

0.5

0

V
(V

)
V

(V
)

100.0 200.0 300.0 400.0 500.0time(ns)

Test Signal

Clock

0

-0.5

Fig 4.32 Clock extractor post-layout simulation

81

 The layout of the clock extractor is shown in Fig. 4.31. The layout measures 86.25 µm x

65.75 µm. The post layout simulation of the clock extractor is shown in Fig 4.32. The post

layout plots correspond to the schematic waveforms confirming a functional layout design.

4.5.2 Modulator and Demodulator

Control In

N1

GND

RF In

Fig 4.33 Modulator layout design

 The modulator layout is shown in Fig 4.33. The layout measures 30.25 µm x 28.5 µm.

Post-layout simulation is shown in Fig 4.34 which corresponds to the pre-layout simulation

confirming a functional layout design. The demodulator layout is shown in Fig 4.35. The

layout measures 355.260 µm x 441.400 µm.

82

3.5

3.0

2.5

2.0

1.5

1.0

0.5

7.0

5.0

4.0

6.0

3.0

2.0

1.0

0

V
(V

)
V

(V
)

2.5 5.0 7.5 10.0

time(μs)

Control Signal

Modulated

0

-1.0

0.0
-0.5

Fig 4.34 Modulator post-layout simulated waveform

C1

C2

R1 & R2

R3

Op-amp

Bias In

Envelope
In

Demod
Out

Fig 4.35 De-Modulator layout design

83

4.5.3 Final Chip layout

 The layout of the entire analog core is shown in Fig 4.36. This shows the final chip

submission layout. The final layout measures at 3.0 mm x 2.4 mm and was designed on 0.5

µm CMOS technology. An in-detail pin configuration and description is provided in Table

4.1.

Op-amp

Vref1

RF Rectifier

Master Bias

CDC LDO1 LDO2 Demodulator

Analog Buffer,
RF Limiter &
Modulator

PoR
Current Source

Vref2

Clock Extractor

AND

φ
2

V
re

f
V

ar
ca

p
+

φ
A

φ
B

Iin V
o

u
t

V
co

m
p

V
re

g
V

D
D

/L
D

O
1

V
fb

V
re

f

V
b

ia
s

V
re

g
V

D
D

/L
D

O
1

V
re

f

V
b

ia
s

D
em

o
d

 O
u

t
B

ia
s

In
En

ve
lo

p
e

In
V

B
1

V
B

2
φ

A
V

b
ia

s2
 o

u
t

V
b

ia
s2

 in

Bias
Control In
RF In
RF In
V+
PoR
~PoR
Iout
BiasN
VinN
V1
RF in
Clk out
in1
in2
out

GND

VDD
φ1

Varcap -
φR
φ'A

Vbias1
Vbias2

Vbias P
Vbias N

Out
Neg In
Pos In

V1
V2

Vin N
Neg In

Out

Pos In
Bias

Fig 4.36 Final chip layout of the analog core

84

Table 4.1 In-detail pin configuration for final chip layout

 Pins Analog/Digital Input Range Connectivity

VDD Analog 3 V in/out

 GND Analog 0 V in/out
C

D
C

фA Digital 0 V-3 V input

фB Digital 0 V-3 V input

ф1 Digital 0 V-3 V input

ф2 Digital 0 V-3 V input

фR Digital 0 V-3 V input

ф'A Digital 0 V-3 V input

Varcap - Analog 5.71 pF - 6.2 pF in/out

Varcap + Analog 5.71 pF - 6.2 pF in/out

Iin Analog 10 nA input

Vref Analog 3 V input

Vbias1 Analog 750 mV input

Vbias2 Analog 1.5 V input

Vout Analog 1.5V - 2 V output

Vcomp Analog 0V - 3V output

L
D

O
 w

/o

re
si

st
o
r

Vreg Analog 3V output

VDD Analog 0V - 10V input

Vfb Analog From resistors input

Vref Analog 2 V input

Vbias Analog 750 mV input

F
ix

ed
 L

D
O

Vreg Analog 3V output

VDD Analog 0V - 10V input

Vref Analog 2V input

Vbias Analog 750 mv input

D
em

o
d

Demod Out Analog 0 V- 3 V output

Bias In Analog 1 V input

Envelope In Analog From Diode input

A

n
al

o
g
 B

u
ff

er

VB1 Analog 750 mV input

VB2 Analog 1 V input

фA Digital 0 V - 3 V input

Vbias2 Out Analog 1.5 V output

Vbias2 In Analog 1.5 V input

Bias Analog 750 mV - 1 V input

M
o
d

Control In Analog 0 V- 3 V input

RF In Analog 4 VP-P, 13.56 MHz in/out

RF Limiter RF In Analog 0 V- 30 V, 13.56 MHz in/out

P
O

R

V+ Analog 0 V- 10 V, 13.56 MHz input

PoR Analog 0V - 3 V output

85

~PoR Analog gnd output

C
u
rr

en

t

S
o
u
rc

e

Iout Analog 10 nA output

BiasN Analog 750 mV input
C

lk

E
x
tr

RF In Analog 0 V - 10 V, 13.56 MHz input

Clk Out Analog 0 V - 3 V, 13.56 MHz output

A

N
D

in 1 Analog 0 V - 3 V input

in 2 Analog 0 V - 3 V input

out Analog 0 V - 3 V output

M
as

te

r
B

ia
s

VbiasP Analog 2.212 V output

VbiasN Analog 550 mV output

V
re

f1
 V1 Analog 1.5 V output

V2 Analog 750 mV output

Vin N Analog 550 mV input

V
re

f2

V1 Analog 1 V output

Vin N Analog 550 mV input

R
ec

ti
fi

er

Neg In Analog 10 VP-P, 13.56 MHz input

Pos In Analog 10 VP-P, 13.56 MHz input

Out Analog 8 V output

 O

p
-a

m
p

Neg In Analog 2 V input

Pos In Analog 2 V, 10 VP-P, 1 KHz input

Bias Analog 750 mV input

Out Analog 0 V - 3 V output

4.6 Robustness of the RFID Tag

The designed RFID Tag is robust with an error rate of < 7% when the matching network of

the coil is good. But the only disadvantage of this matching network is that the DC level of

the clock signal shifts when the distance between the RFID tag and RFID reader is varied.

Due to the change in the clock level the CPLD cannot recognize it and thus response will not

be given for a request packet. To overcome this problem we have designed a clock extraction

circuit which is part of a chip sent for fabrication. Once the chip is fabricated we can test the

performance of the clock extraction circuit and recalculate the error rate.

86

 Summarizing this chapter we can say that the digital core has been successfully

designed and tested to communicate with the commercially available RFID readers. The

simulated results clearly show the response of the developed digital core to the read

command sent by the reader.

87

CHAPTER 5

CONCLUSION AND FUTURE WORK

1) A digital core was designed and successfully tested to work with commercially

available RFID reader. The design is compatible with the ISO standard and is robust

with an error rate of less than 7%.

2) The design needs to be tested with the analog core. Depending on the test results the

digital core might have to be customized, so the design is still evolving.

3) The analog components required to work with this digital core have been designed by

and sent for fabrication.

4) If the analog core satisfies the power requirement of the digital core then we can add

more functionality to the designed RFID Tag.

5) Once the design is completed and validated then the VHDL code can be translated in

to a layout which can be part of an RFID sensor chip.

6) This synthesis report generated by Xilinx ISE shows this design constitutes 2589

basic gates, 294 sequential circuits and 10 combinational circuits.

88

APPENDIX

VHDL CODE

 The VHDL code used to design the digital core is presented in the next pages. Each

code has a heading which describes the module name for which the code was designed.

89

Frame Decoder:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.numeric_std.all;

entity frame_decoder is

 port (ask_in: in STD_LOGIC; rst: in std_logic;

clk: in STD_LOGIC; SOF: out std_logic;

EOF: out std_logic; ask_out: out std_logic;

clk_out: out std_logic; frame_error: out std_logic;

data_out: out std_logic_vector(15 downto 0));

end frame_decoder;

architecture behavioral of frame_decoder is

 type TState is (IDLE, SOF1, SOF2, SOF3, BIT0, BIT1, BIT2, BIT3, INTER,

BYTE_READY, HALT, EOF1, ERROR);

 signal a_state : TState;

 signal c_state, next_state : TState;

 signal counter: std_logic_vector(10 downto 0);

 signal dibit: std_logic_vector(1 downto 0);

 signal rcv_byte: std_logic_vector(7 downto 0);

 signal bit_decoding: std_logic;

 signal rcv_byte_count : integer range 0 to 7;

 signal error_flag: std_logic;

begin

 ask_out <= ask_in; clk_out <= clk; frame_error <= not error_flag;

90

 ---------------------- ASK process -----------------------------

 process(ask_in, rst)

 begin

 if rst = '0' then

 a_state <= IDLE;

 elsif falling_edge(ask_in) then

 if a_state = IDLE then

 a_state <= SOF1;

 elsif a_state = SOF1 then

 if c_state = ERROR then

 a_state <= IDLE;

 else

 a_state <= SOF2;

 end if;

 elsif a_state = SOF2 then

 if c_state = ERROR then

 a_state <= IDLE;

 else

 a_state <= BIT0;

 end if;

 elsif a_state = BIT0 then

 if (c_state = EOF1) or (c_state = ERROR) then

 a_state <= IDLE;

 else

 a_state <= BIT1;

 end if;

91

 elsif a_state = BIT1 then

 if c_state = ERROR then

 a_state <= IDLE;

 else

 a_state <= BIT2;

 end if;

 elsif a_state = BIT2 then

 if c_state = ERROR then

 a_state <= IDLE;

 else

 a_state <= BIT3;

 end if;

 elsif a_state = BIT3 then

 if (c_state = EOF1) or (c_state = ERROR) then

 a_state <= IDLE;

 else

 a_state <= BIT0;

 end if;

 end if;

 end if;

end process;

 ---------------------- CLK process -----------------------------

 process(clk, rst)

 begin

 if rst = '0' then

 counter <= (others => '0'); SOF <= '1'; EOF <= '1';

92

 c_state <= IDLE; bit_decoding <= '0';

 rcv_byte <= (others => '0'); data_out <= (others => '0');

 dibit <= "10"; rcv_byte_count <= 0; error_flag <= '0';

 elsif rising_edge(clk) then

 counter <= counter + 1;

if (a_state = SOF1 and c_state = IDLE) then

 counter <= (others => '0');

 error_flag <= '0';

 c_state <= SOF1;

 elsif (a_state = SOF2 and c_state = SOF1) then

if (counter(10 downto 5) = "010000") or (counter(10 downto 5) = "001111") then -- from

543 - 480 or 0x21F - 0x1E0

 c_state <= BIT0;

 bit_decoding <= '1';

 SOF <= '0';

 counter <= (others => '0');

 else

 error_flag <= '1';

 c_state <= ERROR;

 end if;

 elsif (c_state = a_state) and bit_decoding='1' then

 ------------------------- dibit decoding --------------------------

 if (counter(10 downto 5)="000100") or (counter(10 downto

5)="000011") then --128 --> -3 (159 - 96)

 dibit <= dibit + 1;

 elsif (counter(10 downto 5)="001100") or (counter(10 downto

5)="001011") then --384 --> -2 (415 - 352)

 dibit <= dibit + 2;

93

 elsif (counter(10 downto 5)="010100") or (counter(10 downto

5)="010011") then --640 --> -1 (671 - 608)

 dibit <= dibit + 3;

 elsif (counter(10 downto 5)="011100") or (counter(10 downto

5)="011011") then --896 --> +0

 dibit <= dibit;

 elsif (counter(10 downto 5)="100100") or (counter(10 downto

5)="100011") then --1152 --> +1 (1183 - 1120)

 dibit <= dibit + 1;

 elsif (counter(10 downto 5)="101100") or (counter(10 downto

5)="101011") then --1408 --> +2

 dibit <= dibit + 2;

 elsif (counter(10 downto 5)="110100") or (counter(10 downto

5)="110011") then --1664 --> +3

 dibit <= dibit + 3;

 else

 error_flag <= '1';

 end if;

 if c_state = BIT0 then

 next_state <= BIT1;

 elsif c_state = BIT1 then

 next_state <= BIT2;

 elsif c_state = BIT2 then

 next_state <= BIT3;

 elsif c_state = BIT3 then

 next_state <= BYTE_READY;

 end if;

 c_state <= INTER;

94

 elsif c_state = INTER then

 if error_flag = '1' then

 c_state <= ERROR;

 else

 rcv_byte(7 downto 0) <= dibit & rcv_byte(7 downto 2);

 counter <= (others => '0');

 c_state <= next_state;

 end if;

 elsif c_state = BYTE_READY then

if rcv_byte_count = 0 then

 data_out(7 downto 0) <= rcv_byte;

 elsif rcv_byte_count = 1 then

 data_out(15 downto 8) <= rcv_byte;

 end if;

 if rcv_byte_count = 4 then

 c_state <= EOF1;

 bit_decoding <= '0';

 rcv_byte_count <= 0;

 else

 rcv_byte_count <= rcv_byte_count + 1;

 c_state <= BIT0;

 end if;

 elsif c_state = EOF1 then

 if a_state = IDLE then --wait for EOF pulse

 c_state <= IDLE;

95

 dibit <= "10";

 EOF <= '0';

 else

 c_state <= EOF1;

 end if;

 elsif c_state = ERROR then

 bit_decoding <= '0';

 dibit <= "10";

 SOF <= '1';

 EOF <= '1';

 rcv_byte_count <= 0;

 data_out <= "1111" & '0' & counter;

 error_flag <= '1';

if a_state = IDLE then --wait for other state machine to recognize error state

 c_state <= IDLE;

 else

 c_state <= ERROR;

 end if;

 end if;

 end if;

end process;

end behavioral;

96

Start of Frame Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity sof_module is

port(start : in std_logic; clk : in std_logic; enable : in std_logic;

sof_out: out std_logic; done : inout std_logic; done_early : out std_logic);

end sof_module;

architecture Behavioral of sof_module is

signal data : std_logic_vector(7 downto 0) := "00011101";

signal i : integer; signal clock: std_logic;

begin

clock <= clk and enable;

 process(clock,start)

begin

 if(start = '0') then

 sof_out <= '0'; done <= '0'; done_early <= '0'; i <= 0;

 elsif (clock='1' and clock'event) then

 if i < 8 then

 sof_out <= data(7-i);

 end if;

 i <= i + 1;

 if i = 7 then

 done_early <= '1';

 end if;

 if i = 8 then

 done <= '1';

97

 end if;

 end if;

 end process;

end Behavioral;

End of Frame Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity eof_module is

port(start : in std_logic; clk : in std_logic; enable : in std_logic;

 eof_out : out std_logic; done : inout std_logic);

end eof_module;

architecture Behavioral of eof_module is

signal data : std_logic_vector(7 downto 0) := "10111000";

signal i : integer range 0 to 8; signal clock: std_logic; signal count: integer range 0 to 100;

begin

clock <= clk and enable;

 process(clock,start)

begin

if(start = '0') then

 eof_out <= '0'; done <= '0'; i <= 0; count <= 0;

 elsif (clock='1' and clock'event) then

 if count > 0 then

 if i < 8 then

 eof_out <= data(7-i);

 end if;

 if i > 7 then

98

 done <= '1';

 end if;

 i <= i + 1;

 end if;

 count <= count + 1;

 end if;

 end process;

end Behavioral;

Data Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity data_module is

port(data_vect_in : in std_logic_vector(39 downto 0);

clk : in std_logic; load : in std_logic; enable : in std_logic;

lsb_serial_out : out std_logic; -- data sent to Manchester and CRC module

done : out std_logic; -- pulse sent to eof_encoder

done_to_piso : out std_logic -- pulse sent to PISO module);

end data_module;

architecture Behavioral of data_module is

signal clock: std_logic;

signal ireg : std_logic_vector(39 downto 0);

signal lsb : std_logic :='0';

signal i : integer range 0 to 41;

99

begin

clock <= clk AND (enable);

process(clock,load)

begin

if load ='1' then

lsb_serial_out <= '0'; done <= '0'; done_to_piso <= '0'; i <= 0; ireg <= data_vect_in;

elsif(clock='1' and clock'event) then

if (i < 40) then

lsb <= ireg(i); -- sending lsb data for manchester

end if;

lsb_serial_out <= lsb;

if i > 38 then

done <= '1'; -- this will send a pulse to crc indicating completed sending data to

manchester

done_to_piso <= '1'; -- this will send a pulse to crc indicating completed sending data

to PISO

end if;

i <= i + 1;

end if;

end process;

end Behavioral;

100

CRC Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity crc_module is

 port (serial_in : in STD_LOGIC; clk : in STD_LOGIC; enable : in std_logic;

 reset : in STD_LOGIC; crc_out : out std_logic_vector(15 downto 0)); end

crc_module;

architecture structural of crc_module is

 component d_ff is

 port (data : in STD_LOGIC;

 clk : in STD_LOGIC;

 set : in STD_LOGIC;

 Q : out STD_LOGIC);

 end component;

 signal q : std_logic_vector(15 downto 0); signal x : std_logic_vector(2 downto 0);

 signal clock : std_logic;

begin

 clock <= clk AND (enable);

 x(0) <= serial_in xor q(15);

 x(1) <= q(4) xor x(0);

 x(2) <= q(11) xor x(0);

 U1: d_ff port map (data => x(0), clk => clock, set => reset, Q => q(0));

 U2: d_ff port map (data => q(0), clk => clock, set => reset, Q => q(1));

 U3: d_ff port map (data => q(1), clk => clock, set => reset, Q => q(2));

 U4: d_ff port map (data => q(2), clk => clock, set => reset, Q => q(3));

101

 U5: d_ff port map (data => q(3), clk => clock, set => reset, Q => q(4));

 U6: d_ff port map (data => x(1), clk => clock, set => reset, Q => q(5));

 U7: d_ff port map (data => q(5), clk => clock, set => reset, Q => q(6));

 U8: d_ff port map (data => q(6), clk => clock, set => reset, Q => q(7));

 U9: d_ff port map (data => q(7), clk => clock, set => reset, Q => q(8));

 U10: d_ff port map (data => q(8), clk => clock, set => reset, Q => q(9));

 U11: d_ff port map (data => q(9), clk => clock, set => reset, Q => q(10));

 U12: d_ff port map (data => q(10), clk => clock, set => reset, Q => q(11));

 U13: d_ff port map (data => x(2), clk => clock, set => reset, Q => q(12));

 U14: d_ff port map (data => q(12), clk => clock, set => reset, Q => q(13));

 U15: d_ff port map (data => q(13), clk => clock, set => reset, Q => q(14));

 U16: d_ff port map (data => q(14), clk => clock, set => reset, Q => q(15));

 crc_out(0) <= not q(15);

 crc_out(1) <= not q(14);

 crc_out(2) <= not q(13);

 crc_out(3) <= not q(12);

 crc_out(4) <= not q(11);

 crc_out(5) <= not q(10);

 crc_out(6) <= not q(9);

 crc_out(7) <= not q(8);

 crc_out(8) <= not q(7);

 crc_out(9) <= not q(6);

 crc_out(10) <= not q(5);

 crc_out(11) <= not q(4);

 crc_out(12) <= not q(3);

102

 crc_out(13) <= not q(2);

 crc_out(14) <= not q(1);

 crc_out(15) <= not q(0);

end structural;

 --- D-ff code -------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity d_ff is

 port (data : in STD_LOGIC; clk : in STD_LOGIC; set : in STD_LOGIC;

 Q : out STD_LOGIC); end d_ff;

architecture behavioral of d_ff is

begin

process (data,clk,set)

begin

 if set = '1' then

 Q <= '1';

 elsif (clk'event and clk = '1') then

 Q <= data;

 end if;

end process;

end behavioral;

103

PISO Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity PISO is

port(pulse_in : in std_logic;

 clk : in std_logic; data_vect_in : in std_logic_vector(15 downto 0);

 serial_out : out std_logic; done_to_eof : out std_logic; done: out

std_logic);

end PISO;

architecture Behavioral of PISO is

 signal i : integer :=0;

 signal temp : std_logic_vector(15 downto 0):= (others =>'0');

begin

 temp <= data_vect_in;

process(clk,pulse_in)

 begin

 if pulse_in = '0' then --or rst ='1' then

 serial_out <= '0';

 done <='0';

 done_to_eof <='0';

 i <= 0;

 elsif(clk='1' and clk'event) then

 if(i < 16) then

serial_out <= temp(i); -- CRC trasmitted as Least Significant

byte first & Least significant bit first.

 i <= i + 1;

 end if;

104

 if i = 15 then

 done_to_eof <= '1';

 end if;

 if i = 16 then

 done <= '1';

 end if;

 end if;

end process;

end Behavioral;

Manchester Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity manchester is

port(data_serial_in : in std_logic;

 clock : in std_logic; enable : in std_logic; manchester_out : out std_logic);

end manchester;

architecture Behavioral of manchester is

signal clk: std_logic;

begin

clk <= clock AND (enable);

process(clk,data_serial_in)

 begin

 manchester_out <= clk xor data_serial_in;

105

 end process;

end Behavioral;

Delay Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity delay_module is

port (start : in std_logic; clk : in std_logic; enable : in std_logic; done : inout std_logic

);

end delay_module;

architecture Behavioral of delay_module is

signal count : integer range 0 to 5000;

signal clk_13MHz: std_logic;

begin

clk_13MHz <= clk and enable;

process(clk_13MHz, start)

 begin

 if start = '0' then

 done <= '0';

 count <= 0;

 elsif (clk_13MHz'event and clk_13MHz ='1') then

 count <= count + 1;

 if (count = 4141) then

 done <= '1';

 count <= 0;

 end if;

106

 end if;

end process;

end Behavioral;

Clock Module:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity clock_delay is

 Port (clk : in STD_LOGIC; start : in STD_LOGIC; clk_32 : out STD_LOGIC;

 clk_256 : out STD_LOGIC; clk_512 : out STD_LOGIC);

end clock_delay;

architecture Behavioral of clock_delay is

signal count : std_logic_vector (9 downto 0);

signal clk_divide_32 : std_logic;

signal clk_divide_256: std_logic;

signal clk_divide_512: std_logic;

begin

 process(clk,start)

 begin

 if(start='0') then -- The Push Button is Acitve low. When we push the button rst ='1' else rst

='0'

 clk_divide_32 <= '0';

 clk_divide_256 <= '0';

 clk_divide_512 <= '0';

 count <= (others => '0');

107

 elsif(clk'event and clk='1') then

 clk_divide_32 <= count(5);

 clk_divide_256 <= count(7);

 clk_divide_512 <= count(8);

 end if;

 end process;

clk_32 <= not clk_divide_32;

clk_256 <= not clk_divide_256;

clk_512 <= not clk_divide_512;

end Behavioral;

Mux 4:1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity mux41 is

port(input : in std_logic_vector(2 downto 0); sel : in std_logic_vector(1 downto 0);

 disable : in std_logic; output : out std_logic:='0');

end mux41;

architecture Behavioral of mux41 is

begin

 output <= ((Input(0) and (not sel(0)) and (not sel(1))) or (Input(1) and sel(0) and (not

sel(1)))

 or (Input(2) and sel(0) and sel(1))) and disable;

end Behavioral;

108

Mux 2:1

library IEEE; use IEEE.STD_LOGIC_1164.ALL;use IEEE.NUMERIC_STD.ALL;

entity mux21 is

port(input : in std_logic_vector(1 downto 0); sel : in std_logic; output : out std_logic);

end mux21;

architecture Behavioral of mux21 is

begin

 output <= (Input(0) and (not sel)) or (Input(1) and (sel));

end Behavioral;

AND operator:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity andoperator is

 Port (clk_in : in STD_LOGIC; data_in : in STD_LOGIC; data_out : out STD_LOGIC);

end andoperator;

architecture Behavioral of andoperator is

signal data: std_logic;

begin

process(clk_in, data_in)

 begin

 data_out <= clk_in and data_in;

 end process;

end Behavioral;

109

REFERENCES

[1] Klaus F, RFID Handbook, Radio-Frequency Identification Fundamentals and

Applications, 2
nd

 ed. New York: Wiley, 2003.

[2] Wikipedia.org.

[3] Li Y; et al, "Battery-free RFID-enabled wireless sensors," Microwave Symposium

Digest (MTT), 2010 IEEE MTT-S International , vol., no., pp.1528-1531, 23-28 May

2010.

[4] Karthaus, U.; Fischer, M.; , "Fully integrated passive UHF RFID transponder IC with

16.7-μW minimum RF input power," Solid-State Circuits, IEEE Journal of , vol.38,

no.10, pp. 1602- 1608, Oct. 2003.

[5] Yeager, D.; Fan Z; Zarrasvand, A.; George, N.T.; Daniel, T.; Otis, B.P.; , "A 9 mu

A, Addressable Gen2 Sensor Tag for Biosignal Acquisition," Solid-State Circuits,

IEEE Journal of , vol.45, no.10, pp.2198-2209, Oct. 2010.

[6] Kaiser, U.; Steinhagen, W.; , "A low-power transponder IC for high-performance

identification systems," Solid-State Circuits, IEEE Journal of , vol.30, no.3, pp.306-

310, Mar 1995.

[7] Qiuting H; Oberle, M.; , "A 0.5-mW passive telemetry IC for biomedical

applications," Solid-State Circuits, IEEE Journal of , vol.33, no.7, pp.937-946, Jul

1998.

[8] Pillai, V.; Heinrich, H.; Dieska, D.; Nikitin, P.V.; Martinez, R.; Rao, K.V.S.; , "An

Ultra-Low-Power Long Range Battery/Passive RFID Tag for UHF and Microwave

Bands With a Current Consumption of 700 nA at 1.5 V," Circuits and systems I:

Regular Papers, IEEE Transactions on , vol.54, no.7, pp.1500-1512, July 2007.

[9] STMicroelectronics, LRI512 data sheet, http://pdf1.alldatasheet.com/datasheet-

pdf/view/22777/STMICROELECTRONICS/LRI512.html.

[10] ISO/1EC 15693:2000: Identification cards - contactless integrated circuit(s) cards -

vicinity cards. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30995.

[11] Gerrish, P.; Herrmann, E.; Tyler, L.; Walsh, K.; , "Challenges and constraints in

designing implantable medical ICs," Device and Materials Reliability, IEEE

Transactions on, vol.5, no.3, pp.435-444, Sept. 2005

doi: 10.1109/TDMR.2005.858914.

110

[12] Rankl, W.; Effing, W. (1996) Handbuch der Chipkarten, 2
nd

 edn, Carl Hanser Verlag,

Munich.

111

VITA

 Kumar Swamy H.S. was born on June 22, 1988, in Bangalore, India. He was educated

in local private schools and graduated from Seshadripuram Pre-University in 2005. Then he

went on to receive his Bachelor of Engineering degree in Electronics and Communication

from Visvevsaraya Technological University, Bangalore, India with magna cum laude, in

2009.

After receiving his Bachelor‟s degree Mr Kumar Swamy came to the United States to pursue

his graduate studies. He began his master‟s program in Electrical Engineering at the

University of Missouri – Kansas City. Due to his academic excellence he was awarded

“Dean‟s International Computing & Engineering Award” Scholarship for both the graduate

school years. Upon completion of the degree requirements, Mr Kumar Swamy received job

offers from many companies including Qualcomm Inc, ALTERA corporation. Currently he

is pursuing his career as an Electrical Engineering specializing in Hardware design at

Qualcomm Inc.

Mr Kumar Swamy recently published a paper given below,

Hosur Satyamurthy, K.; Leon-Salas, Walter D.; Timpson, Erik;, "Experimental Evaluation

of an Intravascular Differential Pressure Flow Meter Using MEMS Pressure Sensors," , IEEE

SENSORS Conference: Regular Papers , Oct 2011.

