
A SEMANTIC FRAMEWORK FOR EVENT-DRIVEN SERVICE COMPOSITION

A DISSERTATION IN

Computer Science
and

Telecommunications and Computer Networking

Presented to the Faculty of the University

of Missouri Kansas City in partial fulfillment of
the requirements for the degree

DOCTOR OF PHILOSOPHY

by

SOURISH DASGUPTA

M.C.A, West Bengal University of Technology, 2006

Kansas City, Missouri

2011

 ii

 ii

A SEMANTIC FRAMEWORK FOR EVENT-DRIVEN SERVICE COMPOSITION

Sourish Dasgupta, Candidate for the Doctor of Philosophy Degree

University of Missouri - Kansas City, 2011

ABSTRACT

Service Oriented Architecture (SOA) has become a popular paradigm for designing

distributed systems where loosely coupled services (i.e. computational entities) can be

integrated seamlessly to provide complex composite services. Key challenges are discovery

of the required services using their formal descriptions and their coherent composition in a

timely manner. Most service descriptions are written in XML-based languages that are

syntactic, creating linguistic ambiguity during service matchmaking. Furthermore, existing

models that implement SOA have mostly middleware-controlled synchronous request/reply-

based runtime binding of services that incur undesirable service latency. In addition, they

impose expensive state monitoring overhead on the middleware. Some newer event-driven

models introduce asynchronous publish/subscribe-based event notifications to consumer

applications and services. However, they require an event-library that stores definitions of

all possible system events, which is impractical in an open and dynamic system.

The objective of this study is to efficiently address on-demand consumer requests

with minimum service latency and maximum consumer utility. It focuses on semantic event-

driven service composition. For efficient semantic service discovery, the dissertation

proposes a novel service learning algorithm called Semantic Taxonomic Clustering (STC).

 iii

The algorithm utilizes semantic service descriptions to cluster services into functional

categories for pruning search space during service discovery and composition. STC utilizes

a dynamic bit-encoding algorithm called DL-Encoding that enables linear time bit operation-

based semantic matchmaking as compared to expensive reasoner-based semantic

matchmaking. The algorithm shows significant improvement in performance and accuracy

over some of the important service category algorithms reported in the literature. A novel

user-friendly and computationally efficient query model called Desire-based Query

Model (DQM) is proposed for formally specifying service queries. STC and DQM serve as

the building block for the dual framework that is the core contribution of this dissertation: (i)

centralized ALNet (Activity Logic Network) platform and (ii) distributed agent-

based SMARTSPACE platform. The former incorporates a middleware controlled service

composition algorithm called ALNetComposer while the latter includes the SmartDeal

purely distributed composition algorithm. The query response accuracy and performance

were evaluated for both the algorithms under simulated event-driven SOA environments.

The experimental results show that various environmental parameters, such as domain

diversity and scope, size and complexity of the SOA system, and dynamicity of the SOA

system, significantly affect accuracy and performance of the proposed model. This

dissertation demonstrates that the functionality and scalability of the proposed framework

are acceptable for relatively static and domain specific environments as well as large,

diverse, and highly dynamic environments. In summary, this dissertation addresses the key

design issues and problems in the area of asynchronous and pro-active event-driven service

composition.

 ii

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies, have

examined a dissertation titled “A Semantic Framework for Event-driven Service

Composition” presented by Sourish Dasgupta, candidate for the Doctor of Philosophy

degree, and certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
School of Computing and Engineering

Vijay Kumar, Ph.D.
School of Computing and Engineering

Deendayal Dinakarpandian, Ph.D., M.D.
School of Computing and Engineering

Appie Van de Liefvoort, Ph.D.
School of Computing and Engineering

Deepankar Medhi, Ph.D.
School of Computing and Engineering

Baek-Young Choi, Ph.D.
School of Computing and Engineering

 iii

CONTENTS

ABSTRACT .. ii

ILLUSTRATIONS ... iii

TABLES ... xiv

LIST OF ABBREVIATIONS .. xv

ACKNOWLEDGEMENTS .. xvi

CHAPTER

1. INTRODUCTION ... 1

1.1 Research Motivation .. 1

1.2 Problem Statement ... 5

1.3 Challenges of Service Composition ... 7

1.4 Scope & Contributions of Dissertation .. 9

1.5 Dissertation Outline ... 14

2. RESEARCH BACKGROUND ... 17

2.1 SOA Model .. 17

2.2 Service Composition Platforms ... 24

2.3 Service Description Languages .. 24

2.3.1 Syntactic Service Description .. 24

2.3.2 Semantic Web and Semantic Service Description .. 26

2.4 Static Service Composition .. 31

 iv

2.5 Dynamic Service Composition .. 32

2.5.1 Task based Composition .. 32

2.5.2 Goal based Composition .. 33

2.5.3 Specification based Composition .. 35

2.5.4 Event-driven Composition ... 37

2.5.5 Semantic Service Composition .. 38

2.6 Reachability Computation in Service Composition ... 39

2.7 Service Composition & Distributed Multi-Agent Platform ... 41

2.8 Summary .. 44

3. SEMANTIC SERVICE MATCHMAKING & QUERY MODELING 46

3.1 Introduction – The Proposed Framework .. 46

3.2 Service Matchmaking .. 51

3.3 Semantic Subsumption - Background .. 53

3.4 Limitations of Taxonomic Encoding Techniques .. 57

3.5 Semantic Service Matchmaking. .. 59

3.6 g-subsumption Service Matchmaking .. 62

3.6.1 Feature Stratification ... 62

3.6.2 g-subsumption Algorithm .. 65

3.7 DL-Encoding .. 66

3.7.1 Base Space Encoding .. 68

3.7.2 Base Concept Subsumption ... 71

 v

3.7.3 DL Bits for Semantic Equivalency .. 72

3.7.4 DL-Encoding of Union .. 73

3.6.5 DL-Encoding of Negation ... 75

3.7.6 DL-Encoding of Intersection ... 77

3.7.7 DL-Encoding of Value Restriction .. 78

3.7.8 DL-Encoding of Full Restriction ... 81

3.8 Dynamic Concept Subsumption ... 81

3.9 Query Modeling - Background .. 83

3.10 Desire-based Query Modeling (DQM) .. 86

3.11 DL-Encoding of DQM Query .. 91

3.12 g-subsumption based Query Matching... 93

3.13 2-Phase Service Discovery Algorithm: Outline ... 98

3.14 Discussion .. 99

3.15 Results .. 102

3.16 Conclusion ... 105

4. SERVICE ORGANIZATION BY LEARNING SERVICE CATEGORY 107

4.1 Introduction .. 107

4.2 Related Work ... 109

4.3 Shortcomings of Distance-based Learning .. 122

4.4 Problem Statement: Reformulated ... 122

4.5 Semantic Taxonomical Clustering (STC): Conceptual Foundation........................... 123

 vi

4.6 Semantic Taxonomical Clustering: Algorithm. ... 126

4.7 Online Learning: STC vs EASY. ... 131

4.8 STC Analysis: Soundness & Completeness. .. 134

4.9 Results. ... 135

4.10 Conclusion. .. 145

5. ALNet: EVENT-DRIVEN PLATFORM FOR SERVICE COMPOSITION 147

5.1 Introduction .. 147

5.2 Related Work ... 150

5.3 Event Handling: Service Composition Problem Reformulated. 151

5.3.1 Event Notability Theory. ... 153

5.3.2 Context-Aware Ontology Framework for Event and Services (CAOFES). 163

5.3.2.1 Context Element Ontology. .. 164

5.3.2.2 Activity Context Ontology. ... 165

5.3.2.3 Activity Constraint Ontology. ... 166

5.3.2.4 Event Ontology. .. 167

5.3.2.5 Field Ontology. ... 169

5.4 Activity Logic Network (ALNet): Conceptual Foundation 169

5.5 ALNet Architecture .. 176

5.5.1 ALNet Abstraction .. 179

5.5.2 ALNetSniffer: 2-Phase Service Discovery .. 182

5.5.3 Dependency Path Discovery .. 188

 vii

5.5.4 ALNetComposer: Event-handling Algorithm ... 191

5.5.5 Situation Boundary & Event-handling Optimization .. 194

5.6 Results: Service Discovery Accuracy .. 197

5.7 Results: Query Processing.. 208

5.8 Results: Event-handling ... 209

5.9 Conclusion & Discussion ... 213

6. SMARTSPACE: DISTRIBUTED MULTI-AGENT BASED EVENT-HANDLING 217

6.1 Introduction .. 217

6.2 Related Work ... 221

6.3 Limitations of Centralized Service Composition ... 226

6.4 SMARTSPACE: Architectural Overview ... 228

6.5 Directory Agent .. 233

6.5.1 DA-directory .. 233

6.5.2 SmartDirect: Query Mapping Algorithm .. 236

6.6 Blackboard Agent... 239

6.6.1 BA-directory .. 241

6.6.2 BA-directory Update ... 242

6.7 SmartCluster: Distributed STC Algorithm .. 243

6.8 SmartMap: Distributed Desire Processing Algorithm ... 248

6.9 SmartDeal: Distributed Event-handling ... 249

6.9.1 Deal Directory ... 250

 viii

6.9.2 SmartDeal Algorithm .. 251

6.9.2.1 Make Deal ... 251

6.9.2.2 Accept Deal ... 253

6.9.2.3 Confirm Deal .. 254

6.10 Optimizing SmartDeal ... 258

6.10.1 Problem of Make Deal Explosion ... 259

6.10.2 Problem of Starvation .. 261

6.10.3 Problem of Confirm Deal Dilemma .. 262

6.11 Results .. 264

6.11.1 SmartCluster Evaluation .. 267

6.11.2 SmartDeal Evaluation .. 272

6.12 Conclusion ... 275

7. CONCLUSION & FUTURE WORK .. 277

7.1 Summary .. 277

7.2 Future Work ... 278

7.2.1 DL-Encoding Theory Extension .. 278

7.2.2 SMARTSPACE Analysis .. 279

7.2.3 Context-Aware Event-handling ... 280

7.2.3.1 A Priori Context Modeling ... 280

7.2.3.2 Dynamic Context Learning ... 286

REFERENCES289

 ix

VITA .. 330

 x

ILLUSTRATIONS

Figure Page

Figure 1: General Classification of SOA models .. 18

Figure 2: Broker-based SOA Model .. 19

Figure 3: Event-Driven Model .. 20

Figure 4: Web Service Standards .. 25

Figure 5: The Semantic Web Standardization Layer ... 26

Figure 6: OWL-S Model .. 29

Figure 7: FIPA Agent Management Ontology [125] ... 42

Figure 8: JADE Architectural Overview [125] ... 43

Figure 9: Dissertation Structure ... 47

Figure 10: g-subsumption Algorithm .. 66

Figure 11: A Vehicle Base Ontology (Encoded) ... 68

Figure 12: BaseOntoEncoding Algorithm .. 70

Figure 13: Base Ontology with Dual Taxonomies (encoded) ... 77

Figure 14: DL-Encoding Runtime over OWLS-TC v2 dataset ... 103

Figure 15: DL-Encoding Runtime over Random Dataset ... 104

Figure 16: Comparative Analysis of DL Subsumption Test Runtime 105

Figure 17: Ontology of 3 Taxonomies: Vehicle, Location, & Address 116

Figure 18: Effect of Sample Selection Order over Euclidean Space 117

Figure 19: g-Taxonomical Cluster Space .. 125

Figure 20: STC Algorithm Illustration .. 128

 xi

Figure 21: Semantic Taxonomical Clustering (STC) Algorithm .. 129

Figure 22: findMSP Sub Procedure ... 130

Figure 23: findLSC Sub Procedure .. 131

Figure 24: Average Runtime Performance of STC ... 136

Figure 25: Average Number of Hit Count over Random Sample Space 137

Figure 26: Average Number of Hit Count over OWL-S TC ... 137

Figure 27: Output Cluster Space Generated by STC ... 139

Figure 28: Input Cluster Space Generated by STC ... 139

Figure 29: STC Algorithm vs. Integrated SGPS-distance based NN Clustering 140

Figure 30: Distribution of OWLS-TC v2 Web Services According to 8 domains 141

Figure 31: Domain-Accuracy of Output-cluster space Generated by STC 142

Figure 32: Domain-Accuracy of Input-cluster space Generated by STC 144

Figure 33: CAOFES - Top Level Scheme ... 163

Figure 34: An ALNet Instance .. 170

Figure 35: ALNet Architecture .. 176

Figure 36: Abstract Edge between Clusters in O-cluster space and I-cluster space 178

Figure 37: ALNet Abstraction Algorithm ... 181

Figure 38: ALNetSniffer Phase 1 Algorithm ... 183

Figure 39: ALNetSniffer Phase 2 Algorithm ... 184

Figure 40: ALNetSniffer: Discovering Strong Solution Sets for query (Q-T1 & Q-T2) 186

Figure 41: ALNetComposer: Event-Handling Algorithm ... 193

Figure 42: SBTraveller: An Optimized ALNetComposer Algorithm 197

 xii

Figure 43: Query Accuracy (MIP): Phase 1 & Phase 2 ALNetSniffer 201

Figure 44: Comparative Analysis of Mean Interpolated Accuracy 202

Figure 45: Comparative Analysis of F-measure .. 204

Figure 46: Comparative Analysis of Query Processing Accuracy (Precision vs. Recall) ... 205

Figure 47: Query Processing Accuracy of ALNetSniffer (in terms of Entropy) 207

Figure 48: Comparative Analysis of Average Query Response Time 208

Figure 49: ALNet Abstraction over Abstract ALNet Instances .. 209

Figure 50: SBTraveller Runtime Performance (in terms of System Scalability) 211

Figure 51: SBTraveller Runtime Performance (in terms of System Complexity) 212

Figure 52: Operator Node Distribution w.r.t. Number of Logical Nodes in SBs 212

Figure 53: SBTraveller Runtime Performance (in terms of SB Length) 213

Figure 54: SMARTSPACE - System Overview .. 228

Figure 55: DA-directory as Dynamically Maintained by a DA .. 234

Figure 56: SmartDirect Process Overview .. 236

Figure 57: SmartDirect Algorithm ... 239

Figure 58: BA-directory as Dynamically Maintained by the BA .. 241

Figure 59: SmartCluster Initiation Process: DA Finds the Correct BA 246

Figure 60: SmartCluster: (a) Pruning Search Space, (b) Phases ... 247

Figure 61: SmartMap Algorithm ... 249

Figure 62: SmartDeal initiation - Make Deal process ... 252

Figure 63: SmartDeal completion - Confirm Deal process ... 254

Figure 64: SmartDeal Algorithm .. 256-258

 xiii

Figure 65: Effect of BI over SmartCluster Runtime Performance 267

Figure 66: Effect of Specialized Node Count over SmartCluster Runtime Performance ... 269

Figure 67: Effect of DF over SmartCluster Runtime Performance 270

Figure 68: Effect of Domain Size over SmartCluster Runtime Performance 271

Figure 69: Effect of Specialized Node Count over SmartDeal Runtime Performance 272

Figure 70: Effect of Concurrency over SmartDeal Runtime Performance 274

 xiv

TABLES

Table Page

Table 1: Reachability Algorithms .. 40

Table 2: Truth Table for DL Union Operator .. 75

Table 3: Truth Table for DL Negation Operator ... 76

Table 4: Truth Table for DL existential Operator ... 79

Table 5: Truth Table of DL OR Operator .. 80

Table 6: ALNet Operators – Semantics and Symbols ... 174

Table 7: Runtime Traversal Optimization Guideline .. 194

Table 8: Comparitive Study of SMARTSPACE with other Agent Models 225

 xv

LIST OF ABBREVIATIONS

 ALNet Activity Logic Network

 DAML DARPA Agent Markup Language

 OIL Ontology Interchange Layer

OWL Web Ontology Language

 OWL-S Web Ontology Language - Service

 RDF Resource Description Framework

 RDFS Resource Description Framework Schema

 URI Uniform Resource Identifier

WWW World Wide Web

JADE Java Agent Development Environment

SA Service Agent

SHA Service Helper Agent

UA User Agent

DA Directory Agent

BA Blackboard Agent

 xvi

ACKNOWLEDGEMENTS

 I gratefully acknowledge my advisor Dr. Yugyung Lee for her continuing guidance

and support during the course of this research. She has been a constant source of inspiration

over my years in this department. Without her the thesis would never have been possible. I

also sincerely thank my PhD committee members Dr. Deendayal Dinakarpandian, Dr. Vijay

Kumar, Dr. Appie Van de Liefvoort, Dr. Deepankar Medhi, and Dr. Baek-Young Choi for

taking time off their busy schedule to render their thoughts, advice, and critical comments

regarding my research and for their continuous encouragement throughout my program. I

would also like to show my special gratitude to the UMKC Preparing for Future Faculty

Fellowship (PFF) program for providing generous financial support for the last three years.

I am also indebted to the ARTISAN and the SMARTSPACE project teams for their

sleepless nights of coding and testing and my abnormally frequent demands for tea. Thanks

a lot to Nitin Mamillapally, Satish Bhat, Jia Zhang, Sourav Jana, Teja Mylavarapu, and

Sudeep Maity for bearing with me. I love you all.

Finally I would like to thank my wife Tina for happily enduring my negligence over

the last three crazy years and caring for me so much during the last few months of my

dissertation writing. I don’t think I can ever parallel her love for me.

 The views and conclusions contained herein are those of the author’s and should not

be interpreted as necessarily representing the official policies or endorsements, either

expressed or implied, of the University of Missouri - Kansas City.

 1

CHAPTER 1

 INTRODUCTION

1.1 Research Motivation

Over the past decade Service Oriented Architecture (SOA) has evolved into a

generic design paradigm widely adopted in distributed systems such as WWW cloud [1],

P2P based systems, and pervasive systems [2]. The underlying principles of SOA draw

inspiration from the earlier distributed component based models such as Microsoft’s DCOM

[3] and OMG’s CORBA [4]. Both these models aimed at integrating independent software

components over network so as to provide a unified service to a consumer. This problem of

providing a complex service from independent decoupled software components is called

service composition. Often the software components would be written in very different

languages and hosted in completely heterogeneous platforms. The challenge was to interface

the software components in a manner such that they can call each other over RPC. For this

purpose most models invented their proprietary interface languages (e.g., IDL for CORBA)

that mapped object messages from a calling component to the native language of the

receiving component.

However, there were several drawbacks of component based models that led to the

evolution of SOA. One of the most important drawbacks was Internet firewalls that

prevented inter-component communications. Another problem was that programmers had to

be skilled in interface languages and complex mappings. The third problem (and perhaps as

far as the motivation of this research goes the most important one) was the inability of the

system as a whole to dynamically call up components as and when required. Although

 2

software components were independent for providing a complex integrated service they had

to be tied up programmatically at the client front-end application so that the RPC calls could

take place. In other words, service composition is static in these models. In an evolving

dynamic and non-deterministic system where old components are modified and new

components are added in and where competing components exist (with their individual cost

and QoS) static service composition cannot provide an optimal solution. We need an

architecture that can retrieve required software components according to a consumer

demand and then assemble them on-the-fly by selecting the best components in terms of cost

and QoS in order to provide the desired complex service. Studying and solving this problem,

known as dynamic service composition, is going to be the core of this dissertation.

In order to understand how SOA helps us to provide an architectural framework for

formalizing and solving dynamic service composition (from now onwards will be called

simply as service composition) let us look at the popular general definition of SOA given by

OASIS [5]:

“Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership domains”.

As per this definition we see that the components within an SOA-based system may

be not be just software but can also include any computational capability ranging from

devices, agents, hardware resources (e.g., CPU, memory, etc), dynamic linking libraries

(DLL), databases, and network resources. We also see from the definition that such

capabilities can have different ownerships. This is a very important feature as it demands a

method of communication that is not proprietary and limited within an Internet firewall. The

 3

idea behind this definition becomes clearer from the following definition given by Nickull

[6]:

“SOA is an architectural paradigm for components of a system and interactions or

patterns between them such that a component offers a service that waits in a state of

readiness and other components may invoke the service in compliance with a service

contract”.

The above definition emphasizes two important facets of SOA: (i) components as

‘ready-to-execute’ services and (ii) discovering a set of inter-service behavioral interactions

or patterns (i.e. service composition). These two aspects of SOA are very clearly

incorporated in the widely referenced definition of services given by Papazoglou and

Georgakopoulos [7] which states:

“Services are self-describing, open components that support rapid, low-cost

composition of distributed applications”.

To summarize, SOA principles provides a framework to model systems where:

 Service hosting platforms are distributed and heterogeneous.

 Service providers are independent stakeholders.

 Services are either loosely coupled (minimum mutual dependency) or completely

independent (no mutual awareness).

 Services include all kinds of computational entities.

 Services are accessible over Internet firewalls.

 Services are reusable as participants in satisfying multiple complex consumer demands.

 Services are volatile and undergo modifications.

 4

 Services may be competing with each other in terms of their operational similarity.

The objective, therefore, is to provide a seamless on-demand integration of mutually

independent services for complex consumer requests. It should be kept in mind that SOA is

a set of design principles and does not prescribe a fixed architectural solution model for the

underlying problem of service composition. The conventional model for implementing SOA

is the ‘pull-based’ broker model. In this model, as will be described in detail in the next

chapter, service composition is planned out by a middleware broker and then the composed

plan is executed by each participant service by runtime binding over HTTP/communication.

Services are invoked as a request-reply process by other services/consumer applications

once they get discovered by the broker. This obviously has to be guided by the broker.

Another more recent model is the ‘push-based’ ED-SOA (Event-driven SOA) that

aims to solve some of the problems of broker-based SOA models that will be elaborated in

the next chapter. ED-SOA [14] evolved from the EDA (Event-driven Architecture)

paradigm and incorporates an event-manager middleware (in place of a broker) which

observes consumer events (i.e. service subscriptions) and service provider events (i.e.

service advertisements) and orchestrates the service composition runtime (instead of

computing a composition plan offline) through notifications to both the services and the

subscribed consumers. Hence, services are not pulled up but are rather notified by the event-

manager about the events that they are “interested” in. In turn whatever output a service

generates is again viewed as an event and is notified to all other services/applications that

are interested. ED-SOA makes runtime service composition asynchronous and hence, more

flexible. ED-SOA provides the core motivation for this dissertation. The dissertation

 5

includes a detailed study of the ED-SOA design paradigm in the context of service

composition and investigation of its drawbacks. It then proposes ALNet and SMARTSPACE

as two asynchronous event-driven service composition solution frameworks. ALNet looks

into the problem from a centralized middleware point of view while SMARTSPACE

provides a distributed multi-agent based solution platform. The problem of service

composition is outlined in the next section.

1.2 Problem Statement

There are at least three components to the problem of service composition:

 Service: Computational entity that is hosted as a service within an SOA-based system.

 Service Description: Advertised machine readable formal schema that describes:

o Functional parameters in terms of input (I) and output (O)

o Functional constraints in terms of pre-conditions (P) and effect/result (R)

o Optional QoS parameters in terms availability, reliability, latency, etc.

o Service name (textual)

o Service functionality narrative (textual)

 Consumer query: The query, usually assumed to be in a specific format, given by the

consumer to the system. The query must include:

o The desire of the user

o Some input information to the system for the services to execute

o Optional QoS constraints that are desired by the consumer (such as cost or

latency)

 6

The general problem then boils down to the following:

Given a dynamic set of services (say S) and a consumer query Q find a set of

services (say Sc) where ܵ஼ ⊆ ܵ ∋ ൫∀ݏ௜, ௝ݏ 	 ∈ ܵ஼	; ௝൯ݏ௜ܴ஼ݏ	 ∧ ሺܵ஼ ⊨ ܳሻ ∧ ሺ݂ሺܵ஼ሻ ∈ ሻ݂	݊݅ܯ

RC: Order relation that denotes si and sj are composable

f: Cost function (i.e. consumer utility function) that has to be optimized.

From the above problem statement we need to understand that if two services are

composable then they are said to form a potential composite service. If this potential

composite service satisfies a given query then it is a composite service with respect to that

query. It is also worth noting that the set SC is essentially a partially ordered set over the

relation RC. The query Q is satisfiable (fully or partially) by the set SC. Hence, SC is the

desired composite service. We intentionally kept the problem statement general because of

the following reasons:

 Service descriptions corresponding to the set S are defined differently in different

approaches.

 Query Q is formally described in different ways in different models and hence, query

satisfiability takes on different formal interpretation.

 The relation RC has been defined in different manner in literature and thus, the

underlying notion of composability is also sometimes differently modeled.

 The cost function f is modeled differently in different approaches.

Service composition involves two allied problems: (i) service discovery and (ii)

service selection. In order to satisfy a given query the service composer first needs to search

 7

for the necessary individual services that can participate in the composition process. This

process is called service discovery. However, the composer also needs to optimize the cost

function associated with the composition problem. Hence, it needs to select the best services

out of the pool of discovered services. This process is called service selection. After

selection services are then composed into a composite workflow that represents the poset SC.

However, the allied problems of service discovery and service selection cannot be solved as

two independent problems separate from service composition. One of the most important

reasons for this is that the set of services S is not static for all practical purposes. Services

are volatile in nature and may not exist in the same form all the time. Also new services can

be added to the system. Another reason is that independent service selection may not lead to

a possible SC due to mutual composability issues later found in the service composition

stage. This results in reiterating the selection process again. Hence, we need a unified

approach to solve all the three problems dynamically.

1.3 Challenges of Service Composition

The problem of service composition is not easy. The hardness of the problem is

because of several factors:

 Services are ‘self-described’ using a wide range of formal specification languages (such

as WSDL [18], BPEL4WS [19], etc.). This creates compatibility issues during service

binding since an additional layer is required for inter-format translation. Also the

language vocabulary is significantly diverse introducing problems such as semantic

 8

ambiguities due to polysemy and synonymy. This creates lot of problems for service

compatibility during composition.

 Huge proliferation of different kinds of services into open systems such as the WWW

makes it computationally hard for generating an optimal composition for a given

consumer request due to an explosion in the search space.

 Systems are mostly dynamic and hence, any composition process has to take into

consideration runtime state changes in the system such as addition of new services and

deletion/modification of old ones. This is computationally intensive.

 Services, in principle, are stateless. This means that a service do not store its output state

in order to reduce local resource overhead and improve scalability. However, this design

principle comes with a cost – service composition during runtime has to be synchronous.

The problem with synchronous service composition is that it increases the overall

composition latency because of wait periods. This also results in a notification overhead

on an external middleware that has to oversee all composition process going on within a

system. Moreover, statelessness means that the middleware has to keep track of all the

output states and notify services as and when required. This is an additional cost.

 Consumer requests need to be satisfied within a desired time interval and possibly given

QoS constraints. This usually requires a trade-off between the optimality of the

composition and the global latency of the composition. Also the unpredictability of

underlying hardware resources and network resources adds up to the complexity.

 As service composition creates an environment of open pervasive B2B and B2C markets

hence, issues such as service reliability, security, safeguarding business policies, legal

 9

validity, validity of transactional properties (i.e. Atomicity, Concurrency, Integrity,

Durability), etc. make the composition process very complex.

1.4 Scope & Contributions of the Dissertation

The previous section discussed about the innate hardness of the service composition

problem in general. Although all the difficulties discussed therein are very important

contemporary research topics over the past decades the dissertation focuses on four distinct

(but related) research questions and proposes solutions for each of them. In this section the

overall scope and contribution of the dissertation have been outlined.

 Problem 1 - Service Matchmaking Accuracy & Efficiency: Formal specifications of

service descriptions serve as the building block for service discovery and hence,

composition. In a discovery process a consumer query specification is matched with a

set of service descriptions so as to retrieve services that can satisfy the query (i.e.

services that are similar in some sense to the required service stated within the query).

This process is called service matchmaking. Service matchmaking can be done either at

a syntactic level or at a semantic level. In the case of syntactic service matchmaking

sophisticated Information Retrieval (IR) techniques are applied to compute specification

similarity using vector space similarity measures or information theory based

probabilistic measures. However, syntactic approaches suffer from several innate

drawbacks that mainly originate from linguistic ambiguity and fuzziness (as discussed in

previous section). One such problem is due to polysemy (i.e. case where lexically

equivalent terms have different meaning) that leads to false matches during service

 10

discovery. An example of such a problem can be a scenario where a consumer query

contains a desire for a service that provides information about the island Java while it is

incorrectly matched with a service that provides information about the drink Java.

Another problem is due to synonymy (i.e. case where lexically different terms have same

meaning) that leads to false mismatches. An example of synonymy would be a case

where the desired service is one that provides information about Coffee while it

incorrectly misses a service that provides information about the drink Java. Other

linguistic ambiguities can be purely contextual where a term may have different

meanings in different contexts. For an example a query for a service providing Hot Food

where hotness is the degree of temperature may be incorrectly matched with a service

providing Hot Food where the meaning of hot is spicy. To eliminate such inaccuracy

semantic service matchmaking approaches have been proposed. In semantic service

matchmaking the semantics of service descriptions are explicitly formalized into precise

logical propositions. A commonly used formalism in most semantic service descriptions

is Description Logics (DL) [39]. Description Logics is a predicate logic based calculus

that enables terms to be represented as well formed definitions (called concepts).

Similarity computation is not lexical in these approaches. Instead two concepts are said

to be similar if one of the concept’s definition satisfies the other concept’s definition.

Such satisfaction checking, called subsumption reasoning, is done using DL reasoners

that use techniques such as resolution, unification, tableaux method, etc. However,

subsumption reasoning on DL concepts is computationally expensive as the underlying

complexity in most versions of DL is intractable (see chapter 3 for further reading). One

 11

of the major contributions of this dissertation is to study this problem in the context of

semantic service matchmaking and propose a bit-encoding based solution, called g-

subsumption, that is non-DL based and performs computation in linear time. More on the

approach and the theoretical foundation can be found in chapter 3.

 Problem 2 - Service Organization Accuracy & Efficiency: As mentioned in the

previous section proliferation of services and the non-deterministic dynamics of SOA

based systems leads to the problems of: (i) search space explosion (during discovery)

and (ii) maintenance of online registries where service advertisements are stored. A very

efficient way to control and prune the search space is to categorically index services in

registries. Queries can then be directly mapped on to the category space whose generic

description matches with the query description. Most contemporary research works on

this problem have applied Machine Learning (ML) techniques such as supervised

learning and unsupervised learning of service categories. However, as ML techniques

are mostly founded on statistical learning theory therefore the accuracy of such

techniques depends on lot of factors that include the underlying parameters of the

learning model, the goodness of the dataset in terms of its representative capacity of the

entire data space, choice of dimensions (or features), quality of similarity measure and

choice of threshold, etc. In this dissertation a non-ML based service category learning

algorithm called Semantic Taxonomic Clustering (STC) has been proposed that utilizes

encoded feature set for each semantic service description so as to provide more efficient

and accurate learning model in comparison to some of the significant ML based models.

STC has been covered in chapter 4 of the dissertation.

 12

 Problem 3 - Computationally Efficient Query Specification: User query specification

is mostly formalized either as task templates or as formal specifications. In the former

approach a query is assumed to be a sequence (linear or non-linear) of desired services

and where each desired service (called sub task) is formally specified by its input and

output. Such a specification requires the consumer to have a detailed understanding of

each sub task and the underlying sequence as well. In the case of formal specification

based query modeling user queries are represented as a tuple of desired states (both

internal and external), required operators, transition function that maps one state to

another based on selection of some operators, an initial state, and a set of accepting

states that represent the terminating state requirement after the query has been processed.

Such a modeling entails that the user should have the knowledge of a specification

language as well as the entire state space and operator space. For a lay user both the

models are not very useful and practical. Moreover, such models induce a lot of

computational overhead since service composition based on task-template is an

assignment problem (which is NP-HARD) and service composition based on formal

specification is a behavioral equivalency problem (which is also NP-HARD). Since

query modeling is intrinsically related to the efficiency of service composition therefore

the dissertation also includes a detailed proposal of a novel query model called Desire-

based Query Model that is shown to be sufficiently expressive to represent simple and

complex queries where a user only needs to specify his/her final desired output and

initial input without requiring any detailed understanding of the underlying sub tasks or

operations and states that might be required to satisfy the given query.

 13

 Problem 4 - Efficient Design of Event-driven Service Composition: In the previous

section it has been discussed that services in general are stateless. This imposes

significant state maintenance overhead on a middleware in an ED-SOA model. This is

because under the situation where a particular event channel is busy the middleware has

to store all events that are interesting to busy subscribing services/applications and has to

forward the stored events by efficiently identifying when the busy channel is ready.

Moreover, service composition is still an assignment problem since event notification

has to be made to the best subscribing service such that all the selections have mutual

interest in each other’s event. In the proposed dissertation instead of modeling as an

assignment problem service composition has been modeled in two different ways: (i)

non-constrained path optimization problem (for the proposed middleware based event-

driven ALNet framework) and (ii) fair deal game optimization problem (for the proposed

distributed agent-based SMARTSPACE framework). It has been observed through

theoretical and experimental analysis that service composition efficiency can be

significantly improved in both the cases as compared to when composition is modeled as

an assignment problem. The principal idea in path optimization modeling is to efficiently

generate a service network based on the mutual service composability where network

nodes represent services and edges represent their inter-dependency. A path optimization

problem is: Given source service node (that can consume part or whole of the given

input) and a given end service node (that generates part or whole of the desired output)

it is required to find the minimal cost path between the two. This is essentially the

shortest path problem with user defined constraints (such as service quality, service cost,

 14

service latency, etc) imposed as a single utility cost function over the path. When the

path optimization takes place in an event-driven framework (that supports proactive

participation of the services as opposed to purely reactive participation in conventional

ED-SOA) then the problem is called event-handling. On the other hand, a fair deal game

optimization problem is: Given a set of fair deal maker agents and fair bidder agents

where a deal maker agent has a service desire and optimizes its satisfaction utility

function while a bidder agent provides a desired service to a deal maker agent and

optimizes its corresponding service utility function. A fair agent means that: (i) agents do

not manipulate their identity (i.e. role description), (ii) agents cooperate with each other

with no bias, and (iii) agents do not behave to obstruct each other’s actions. In this

model a deal is made by a deal maker whenever it has a desire for a set of services.

1.5 Dissertation Outline

The rest of the dissertation begins with chapter 2 that serves as the necessary background for

understanding the general problem of service composition along with a detailed summary

and analysis of various approaches taken to solve the problem. This chapter is followed by

chapter 3 (Semantic Service Matchmaking & Query Modeling) that starts with a brief

overview of the dissertation. The chapter then introduces and elaborates on the problem of

service matchmaking which is the foundational operation for service discovery and

composition. A novel semantic service matchmaking algorithm called g-subsumption has

been proposed in this chapter that leverages the proposed efficient bit-encoding based DL-

Encoding algorithm for testing semantic concept subsumption. The chapter then illustrates

 15

how DL-Encoding can be utilized to match user queries (represented in the proposed DQM

format) with services. In chapter 4 (Service Organization by Learning Service Category) we

have proposed a novel service category learning algorithm called Semantic Taxonomical

Clustering (STC). STC utilizes the g-subsumption matchmaking algorithm for clustering

service descriptions into their corresponding functionalities. Organizing service description

registries into functionally equivalent clusters helps to prune the search space during service

discovery and composition. Chapter 3 and chapter 4 set the necessary foundation for

introduction of the proposed solution frameworks for event-driven semantic service

composition. Chapter 5 (ALNet - Event-driven Framework for Service Composition)

proposes a novel event-cognition calculus called Notability Theory that serves as the formal

basis for the proposed event-driven semantic service composition platform called ALNet

platform. The ALNet platform is a centralized framework that facilitates asynchronous

service composition by leveraging the underlying service dependency overlay (called

Activity Logic Network) within an SOA based system. It will be shown that complex service

dependency overlays can be simplified into abstract overlays for improving the efficiency of

composition. Although the framework is centralized yet it supports pro-active composition

of services instead of a notification based reactive model where the entire coordination

during service composition is on the middleware. Service composition is formulated as a

event-handling problem where user requests and service executions are observed and

interpreted according to Notability Theory by the middleware as well other services as

events. Chapter 5 follows up by an alternative approach to the same problem as discussed in

chapter 6 (SMARTSPACE: Distributed Multi-Agent based Event Handling) but from a

 16

completely decentralized framework. A JADE agent platform based distributed multi-agent

framework called SMARTSPACE has been proposed in this chapter. SMARTSPACE includes

software agents to represent user requests, services, and also act as middle agents for

transforming the event-handling problem into an event-driven unbiased game problem

where agents deal and bid with each other with the help of minimum local knowledge to win

a deal (on behalf of service providers) and to get the best deal (on behalf of users). The

dissertation concludes with chapter 7 where it is has been explained and emphasized that the

problem of service composition cannot be very accurate under all circumstances if the

contextual evidences are overlooked during service composition. The future direction of the

research work that has been put into this proposed dissertation is going to be strictly related

to the problems of context modeling and context learning especially in a intelligent

distributed agent based system as applied to the area of distributed cooperative systems (and

specifically in SOA based systems).

All the chapters from chapter 3 to chapter 6 are accompanied by a section of related

works that specifically provides a literature review and comparative analysis of the

individual problems and techniques that each chapter focuses on. Every chapter also

includes a detailed experimental analysis of the performance and accuracy of the various

proposed algorithms in terms of system attributes such as domain diversity and size, system

complexity and scale, user request complexity.

 17

CHAPTER 2

RESEARCH BACKGROUND

In this chapter we are going to provide the dissertation background and an extensive

literature review of research work in the field of SOA based system modeling and

specifically in the area of service composition. The chapter first introduces different

approaches of modeling SOA. This mainly includes two contrasting models: broker based

SOA and Event-driven SOA. This follows by some literature review of currently existing

SOA platforms (both industry and academic). After this the chapter includes an extensive

study of formal service description specification languages that serve as the building block

for service discovery and composition procedure. This study is followed by a detailed

summary of the significant research approaches taken in solving the service composition

problem. The chapter concludes with an overview of the FIPA compliant JADE multi-agent

platform that has been used in this dissertation as a basis for the proposed SMARTSPACE

distributed platform for service composition.

2.1 SOA Model

SOA based models can be broadly classified according to two attributes: (i) initiator

and (ii) addressee. From the former perspective the models can be classified into two types:

(i) that where communication is initiated by the consumer and (ii) that where

communication is initiated by the provider. From the latter perspective models can again be

classified into two types: (i) that where communication is direct (i.e. the addressed entity is

 18

SOA Model

Indirect Communication Model

Direct Communication Model

Addressee Perspective

Consumer Initiated Model

Provider Initiated Model

Initiator Perspective

Request-Reply Model

Broker based Request-Reply Model

Call-back Model

ED-SOA Model

Figure 1: General classification of SOA models

known to the caller) and (ii) that where communication is indirect (i.e. the addressed entity

is not known to the caller). In this model of categorization we can place any model into four

broad classes: (i) request/reply mode (the consumer is the initiator and directly addresses the

provider), (ii) indirect request/reply mode (the consumer is the initiator and indirectly

addresses the provider via a broker), (iii) callback mode (the provider is the initiator and

directly addresses the consumer), (iv) event-based mode (the provider is the initiator and

indirectly addresses the consumer via an ESB). The classification has been summarized in

figure 1. In this section we discuss two contrasting modeling approaches: (i) Broker-based

SOA models and (ii) Event-driven SOA (ED-SOA) models.

The basic architecture of broker-based SOA model involves three role players: (i)

consumer (or user/requestor), (ii) broker (or middleware), and (iii) service provider (figure

2). Service providers typically advertise their service profiles (in terms of formal service

 19

Figure 2: Broker-based SOA Model

descriptions) that are stored and organized in registries maintained by the broker. Registries

are organized using formal meta-data and schema represented in languages such as UDDI

[8] and ebXML registries [9]. The broker matches the consumer request for a service with

the available service profiles and then returns the best matched service profile to the

consumer (i.e. applications/services/agents/users). This process is called service discovery.

The consumer then binds with the corresponding discovered service remotely over

synchronous channels (i.e. “pulled up”) using remote procedure call based protocols such as

SOAP [10]. Sometimes the broker has to compose more than one service profiles into a

partial order of execution such that the consumer request can be satisfied. This process is

called service composition. In such a situation the broker supervises the runtime binding of

services by providing each of the participating services the service binding information that

it needs to for calling the service up. As mentioned in the introduction chapter, the major

disadvantage in this mode is that service call-ups have to be synchronous because services

are stateless. Synchronous coupling underutilizes resources and introduces integration

overhead. Another problem in broker-based model is that the invocation of services needs to

 20

be done explicitly with a priori knowledge of the end-points of such services and possible

service contracts. There is no way that the service can do its job and let other services take

care of what needs to be done next based on the service’s current output state.

Figure 3: Event-Driven Model

With the advent of Event-driven Architecture (EDA) in software designing a new

form of SOA, called ED-SOA, has evolved [11 – 17]. Approaches in this paradigm model all

processes as events and the communication between these processes as event objects [15].

Processes can be a business decision, a transaction, or any communication signal that may

signify an external alarm/interrupt/stimulus to another computing process. Events describe a

process completely. An important feature of this paradigm is that it is not assumed that

business processes can be pre-designed based on deterministic, static flow of events [14].

ED-SOA model relies on a publish/subscribe mode where consumers and service providers

have to subscribe themselves into a registry. A subscription contains the description of the

 21

consumer/provider’s interest regarding a particular set of published event topic. The ED-

SOA middleware maintains the subscription registry along with a well-defined event library

that stores all possible definitions of notable events in the system. Events are published by

consumers and providers. In this context, an event can be a business process or a consumer

request. Events are pushed into an ESB (Enterprise Service Bus) channel so that they get

published into the registry. Event publication is ad hoc in ED-SOA (as in contrast to static

predefined UDDI based service advertisements in broker-based SOA). The middleware’s

role is limited to the mapping of event notifications to consumer subscriptions at the

registry. There can be two possibilities when an event is pushed into the ESB: (i) the event is

mapped with a consumer subscription and hence, the service is directed (using an event

notification) to that consumer and (ii) the event is mapped to some other service subscription

and hence, the mapped service is triggered (using an event notification). Unlike

request/reply based SOA models, the event publisher does not need to be aware of the

subscribers and vice-versa. In other words, the publisher and the subscriber are fully

decoupled. The communication between the processes is asynchronous and hence, event

objects can trigger specific target processes without blocking the services from being used

for some other purpose. Figure 3 shows an overview of a generic ED-SOA model.

However, there are several drawbacks in ESB based ED-SOA modeling. First, the

subscription method entails that subscribers need to know a priori of the event topics at the

meta-data level. Hence, publishers need to organize their events into an event taxonomy that

may be indexed with unique event IDs. In a dynamic and open system where new types of

events are not known a priori such topic-wise subscription cannot take place until the

 22

potential subscribers know about the new topic class. In such a situation event recipients

need to be discovered and bound to the events at runtime. This is difficult to do over an

ESB-based framework where subscription is independent of event publication. Secondly,

classification of events into topics depends upon the way the publishers describe such

events. Most descriptions are content based – i.e. they describe the constraints over

attributes of the events in an XML format. In this case a particular topic class will contain all

events that have the same type of attributive constraints. However, the attributive constraints

do not contain information about the event state transition. This restricts several reasoning

procedures that require the semantic description of event states. For an example, causality

determination, conflict detection, or situation recognition is difficult to reason without

properly formalized state descriptions. Thirdly, in traditional ED-SOA models event objects,

being concrete data structures, need to be formally created and published by the publishers.

As different role players (consumer/provider) may have different (subjective) interpretations

of the same event object hence, an event may have several unique IDs that represent

different interpretations of the same event. For an example, the event object flight booked

generated by a flight reservation service may have one interpretation for a hotel reservation

service (i.e. a hotel has to be reserved at the destination city for the period of stay) while

may not have the same interpretation for a car rental service (i.e. a rental advertisement has

to be emailed to the customer for a flight search). In the former case the event is indeed

flight booking while in the latter case the event is flight search. In this case two IDs need to

be generated for the same event object. This means that there has to be some mechanism

where the consumer interpretations and provider interpretations have to be known and

 23

mapped a priori. This is not possible if the SOA system is dynamic (changes in the system

state is frequent) and non-deterministic (the state changes cannot be predicted with

certainty) in nature. Fourthly, the data format of the event IDs is mostly at the syntactic

level. Hence, such representation makes it difficult to reason whether: (i) a new event

belongs to an already known event class and hence, (ii) whether it should be connected to a

known set of service classes. In other words, most EDA-based systems lack a proper

ontological framework support. Fifth, user request may be difficult to model as events (as

understood in traditional ED-SOA systems). The model is essentially a broker based

approach where the broker has to satisfy the user request (mostly in the form of a task

workflow) by dynamically forming a service workflow that optimally matches the user

request. Hence, a complex task-based user request can be seen as a logical workflow of

several events that need to be published as a complex event. The published event needs to

have subscriptions so that notifications may be sent when the event actually occurs. This is

equivalent to saying that the template solution to the complex request event has to be known

a priori. In non-deterministic and complex environment such an assumption is over

simplification. Sixth, an ESB-based framework may create a bottleneck at the middleware.

The load of the middleware can be distributed into a federation of middleware in order to

tackle the situation. However, such a federation needs to be updated frequently and the

integrity has to be maintained. Also loss of information at the brokers may lead to denial of

service. Large federations can also lead to unnecessary network traffic due to forwarding of

event notifications and publications mostly in the broadcast mode.

 24

2.2 Service Composition Platforms

Several commercial platforms for service composition have been implemented.

Hewlett-Packard's e-speak [20] is an example platform where service descriptions can be

registered for dynamic discovery of e-services. Other examples include Microsoft's .NET

[21] and BizTalk tools [22], erstwhile Sun Microsystem's Open Network Environment [23],

and Oracle Corporation's Dynamic Services Framework [24]. IBM also has its service

composition platform called WebSphere Application Server [25]. VerticalNet has come up

with a solution platform called OSM [26] that utilizes service ontologies and tools to

enhance web service discovery. More academic platforms include that propose an agent-

based service matching and invocation [27]. In [28] a service composition platform based on

HP workflow has been proposed.

2.3 Service Description Languages

Service description language is the building block for any service composition

process. Service advertisements that are published need to be specified formally. In this

section we discuss two approaches to service description specification: (i) syntactic and (ii)

semantic.

2.3.1 Syntactic Service Description

Several proposals have been made over the past decade on formal specifications for

service descriptions. IBM has developed a widely accepted framework for implementing

broker based SOA systems and has proposed the three IBM Web service languages: UDDI

(Universal Description Discovery & Integration language), WSDL (Web Service

 25

Figure 4: Web Service Standards

Description Language) and SOAP (Simple Object Access Protocol). Each has been briefly

described below:

 UDDI [8] provides a registry where service providers can register and publish their

services. The registry consists of three parts: white pages, yellow pages and green pages.

Contact information, human readable information and related can be registered in the

white pages. Keywords that characterize the service are registered in the yellow pages.

Service rules and descriptions for application invocations are registered in the green

pages (technical).

 WSDL [18] provides the language specification for describing services in terms of: (i)

message information, (ii) port information, and (iii) binding information. Services are

modeled as ports. Port types are abstract collections of operations (i.e. service functions)

supported by the service. Messages are abstract descriptions of the exchanged data

 26

between services. Binding constitutes the concrete communication protocol (such as

SOAP, HTTP, etc) that need to be followed and the data format so as to call a service.

 SOAP [10] is a proposed W3C standard for exchanging information in a decentralized

and distributed environment. SOAP consists of three parts: (i) envelope, (ii) encoding

rules, and (iii) Remote Procedure Call (RPC) representation.

All the three IBM languages are syntactic. Hence, linguistic ambiguities such as

polysemy and synonymy can rise up very quickly during service matching operation

fundamental in all service discovery and composition techniques.

Figure 5: The Semantic Web Standardization Layer

2.3.2 Semantic Web and Semantic Service Description

In order to resolve the problems of linguistic ambiguity service descriptions are

recently described using formal languages that have been developed and used in the

Semantic Web research community. The Semantic Web is an extension of the current Web

in which information is represented as logical well-formed-formulae that can be understood

 27

by computational Web resources and can be shared and processed both by automated tools,

such as software agents, and by human users. The vision of the Semantic Web is attributed

to Tim Berners-Lee [30]. To understand the utility of Semantic Web we cite the example in

[31]: "Suppose you want to compare the price and choose flower bulbs that grow best in

your living area given zip code, or you want to search online catalogs from different

manufactures for equivalent replacement parts for a Volvo 740. The raw information that

may answer these questions, may indeed be on the Web, but it is not in a machine usable

form. You still need a person to discern the meaning of the information and its relevances to

your needs". The Semantic Web addresses this problem in two different ways. First, data is

made to be available publicly in machine readable format clearly giving a formal universal

meaning to itself. Hence, parsers do not have to parse through the formatting, pictures, ads,

and other noises from a web page to get the relevant data. Second, the definitional

relationships between different sets of data are explicitly written in machine readable

languages. Thus, in the given example a machine can reason that a database with a zip-code

column has a semantic link with a form that has a zip field since the terms (called concepts)

zip-code and zip have equivalent definitions. This provides automatic integration of data

sources on the Web. In order to ensure common understanding for a particular concept

knowledge bases called ontologies are used. Ontologies are formal data-structures that store

semantic definitions of concepts in a hierarchical structure such that a parent concept

definition is satisfied by its child concept definition. Ontologies are used by Semantic Web

community as repositories of joint terminology.

 28

The Semantic Web formal specifications have been standardized and recommended

by the W3C (figure 5). We briefly discuss each important layer as follows:

 Uniform Resource Identifiers (URIs): It is the foundational specification of the current

Web and provides the ability to uniquely identify resources as well as relations among

resources. The symbol of a URI includes two parts: an XML namespace and a

vocabulary.

 XML (eXtensible Markup Language) [33]: This layer is the fundamental component for

syntactical interoperability on Web. XML is the universal format for structured

documents and data on the Web. XML-Schemas can be used as an ontology language

since it represents the structure, constraints and the semantics of XML documents.

 RDF (The Resource Description Framework) [34]: RDF is a family of XML based

languages. It can be used to describe documents in the form of metadata by means of

resources (subjects), properties (predicates, describing the resources), and statements

(the object, a value assigned to a property in a resource). A description is basically a

semantic definition and is called the RDF triple.

 RDFS (RDF Schema) [35]: RDFS has been developed as a simple modeling language on

top of RDF. RDFS enables the representation of class, property and constraint while

RDF allows the representation of instances and facts.

 DAML + OIL: DAML + OIL [38] was built over RDFS to increase the expressivity of

the concept definitions (i.e. triples). Although started up as separate projects DAML

(DARPA Agent Modeling Language) [36] and OIL (Ontology Inference Layer) [37]

were finally converged into a single specification called DAML+OIL by W3C. OIL was

 29

part of the On-To-Knowledge project and was developed as both a representation and

information exchange language. The language models primitives from frame-based

languages and Description Logic (DL) [39] so as to provide a universal markup language

for the Semantic Web. DL serves as a rigorous theoretical foundation for formal logic-

based reasoning of semantic definitions.

 OWL (Web Ontology Language): OWL [40] is the latest W3C recommended semantic

markup language for publishing and sharing ontologies on the Web. OWL comes in

three flavors depending on the expressivity: (i) OWL Lite (Classification hierarchy and

simple constraints), (ii) OWL DL (adding class axioms, Boolean combinations of class

expression and arbitrary cardinality), and (iii) OWL Full (meta-modeling included).

Figure 6: OWL-S Model

DL-based reasoners such as FACT [41], Pellet [42], and RacerPro [43] are used to

automatically construct and integrate ontologies. Ontology development and maintenance

tools such as OilEd [44] and Protege [45] has been developed and widely used. In the

 30

context of service description there has been significant research. In [46-47] the Web

Service Modeling Ontology (WSMO) has been proposed. The objective is to describe

relevant features of web services so as to provide a platform for service discovery, selection,

composition, mediation, execution, and monitoring. The conceptual foundation of WSMO is

Web Service Modeling Framework (WSMF) [48]. WSMO comprises of four root concepts:

(i) domain ontologies, (ii) services, (iii) goals, and (iv) mediators. The underlying ontology

language is WSML (Web Service Modeling Language) [49] and is not based on any specific

ontology language such as OWL. Another web service description language is OWL-S [50-

51]. OWL-S is an OWL based service ontology for describing three aspects of web services:

(i) Service Profile, (ii) Service Model, and (iii) Service Grounding (figure 6). OWL-S is

based on the earlier DAML-S language [52].

Apart from WSML and OWL-S there are other semantic service description

specifications that have been proposed. One of them is the Semantic Web Services

Framework (SWSF) [53]. SWSF is built on the top of OWL-S and the Process Specification

Language (PSL) standardized by ISO 18269 [54]. SWSF comprises of the SWSO ontology

that has been written in the SWSL (Semantic Web Service Language) language. Although

SWSL is founded on OWL-S yet it is richer and includes PSL as a more expressive

procedural model. Another proposal that has its root to the non-semantic WSDL language is

WSDL-S [55]. WSDL-S was part of the METEOR-S project [56] discussed in later section.

Other WSDL based semantic description languages include SAWSDL (Semantic

Annotations for WSDL) [57]. SASDL extends WSDL with a number of attributes that can

 31

be used for the semantic annotation of services. Service operation or XML schema types are

annotated with a model Reference (list of URIs) to concepts defined in domain ontologies.

2.4 Static Service Composition

Static service composition problem is tackled mostly in two different ways: (i)

Orchestration: calling up each of the services according to a predefined workflow [58] or (ii)

Choreography: having each service host execute a predefined set of conversations with other

hosts and in the process generate a resultant composite service [59]. Choreographies are

written in formal languages such as WS-CDL (Web Service – Choreography Description

Language) [60] and UML 2.0 – Sequence Diagram. There has been considerable work on

standardization of choreographies between static proprietary orchestrated business

processes. RosettaNet [61] is an example in the domain of supply chain. Other examples

include SWIFTNet InterAct Realtime for financial services [62] and Health Level Seven

(HL7) in the health-care domain [63].

One of the major limitations in this approach is that the user/consumer needs to

choose an a priori collaboration (i.e. predefined workflow) of service providers before

placing his request. Service composition cannot take place beyond the workflow logic that is

provided by the participating vendors. Another major disadvantage is that the services need

to be more or less static. We cannot accommodate update of the services in this framework

as that might lead to redesigning of part or whole of the service workflow. In a dynamic

environment, where services are not stable entities and where service definitions, profiles,

internal logic, or service providers may change, this is a serious limitation.

 32

2.5 Dynamic Service Composition

Dynamic service composition, on the other hand, promises to resolve most of the

problems mentioned above. However, such a promise comes with a cost – dynamic service

composition is not an easy problem. Dynamic service composition approaches can be

classified as: (i) Task-based composition, (ii) Goal-based composition, (iii) Specification-

based composition and (iv) Event-driven composition.

2.5.1 Task based Composition

Many research approaches tend to propose a platform where service composition can

take place via a generic middleware that pulls up services from distributed repositories on

the basis of a given task workflow [64 - 66] where a task workflow is an abstract process

model that defines the set of user-given query clauses and their corresponding data

dependencies. The query clauses are structured as desired abstract service templates (also

called sub-tasks). An example of task-based service composition platform is EFlow [28].

Other research approaches in this direction include [67 - 69].

The objective of task-based composition approaches becomes an assignment

problem where concrete services are mapped to the desired abstract services such that a

valid and optimal service workflow is established while all the user-specified constraints are

satisfied. We call this approach of dynamic service composition as task-based dynamic

composition. As the assignment problem can also be modeled as a 0/1 Knapsack problem

[70] task-based service composition approaches are potentially NP-Hard [71 – 72]. In some

task-based models, especially those designed for B2B environments, the task workflow has

 33

to be explicitly specified by the user [73]. However, framing the user-request into a task

workflow is not easy as it requires the user to have good understanding of the underlying

processes, the data dependency between them, and a process model specification language

(like CSDL [73]). Clearly, such a model is not useful for a lay user. Another approach is to

let the system frame the task workflow while the user just provides the required sub-tasks

and their individual constraints. Even then these models require that the user should be able

to frame his request in terms of the underlying processes and their constraints. In several

realistic situations, such as making a package tour reservation online or desiring healthcare

monitoring services in a smart home environment, task-based models cannot work. Some

works have tried to identify generic workflow pattern [74 - 75] for a given query and then

match the pattern with existing composite services [76].

2.5.2 Goal based Composition

Apart from task based dynamic service composition, there is an alternative approach

for dynamic service composition known as goal-based dynamic service composition (or AI-

planning based dynamic service composition). In this approach the user does not need to

define a task workflow. Instead, he/she submits a goal that fully defines the required

services in terms of their pre and post conditions (or effects) and what they require from the

environment in order to give something to the environment [77 – 80]. Services are

composed dynamically in such a way to achieve the user’s goal considering the pre and post

conditions associated with the services. The idea is either to conduct a forward-chain

 34

reasoning where primitive achievable goals are taken up by AI planners [80 – 82], theorem-

provers [83 – 84], or rule-based engines [85 – 86] to finally come to the given desired goal.

Research efforts within this approach have been surveyed in detailed in Rao et al.

[66]. Some research works have used Situation Calculus based Golog-derivative languages

[78 - 79] for specific abstract service procedures and constraints. The approach is agent-

based where agents have the reasoning capability to understand user requests and service

specifications. There are also works using PDDL (Planning Domain Definition Language)

based planners [80]. PDDL based approaches utilize the easy translational property between

PDDL and DAML-S. However, such planning is restricted with the closed world

assumption and hence, is not suitable for dynamic open SOA-based systems. Another

technique for service composition is rule-based planning. In [85] rules of service

composability are defined and stored in an expert system. The user query is typically a

composite service specification written in CSSL (Composite Service Specification

Language). The planner generates a composite plan than matches the user query

specification that is the goal in this case. SWORD [86] is an implemented rule based service

composition toolkit. SWORD uses the E-R modeling language for specifying services.

Service specification consists of the service pre-condition and the post-condition. It is

represented as a Horn rule in a pre-condition implies post-condition format. The user query

specification is simpler in SWORD and just comprises of the initial state and the final

required state. SWORD uses a rule engine for composing the required services to satisfy the

query specification. An alternative approach to automated service composition is using

Hierarchical Planners such as HTNs. The principle idea is to conduct a backward-chain

 35

reasoning with the help of HTN based planners such as SHOP2 [77, 87] that break up the

desired goal into sub-goals until the best set of executable primitive goals are reached. It has

been observed that goal-based techniques are computationally expensive as planning

involves efficient decomposition of goals into sub-goals, selection of the best set of sub-

goals via efficient heuristics, and accurate reasoning of the order in which the primitive

goals have to be executed. Moreover, goal-based composition models require that the user

should specify the desired goal in terms of one of the possible world states within the

domain. In other words, such models are basically closed-world. Also, the plan that is

generated is temporal and has to be regenerated for new user goal.

2.5.3 Specification based Composition

Specification based composition (or program synthesis based composition) is another

approach to dynamic service composition. The idea originates from the theory of automatic

generation of software programs where formal specifications are treated as a theorem and

then deductive theorem provers are applied to search for deductive proof of the theorem

[88]. The proof is then translated into a program. In the context of service composition a

service description is translated into a logical axiom and the required composite service

specification is represented as a sequent to be proved. If the underlying theorem prover

discovers a proof then a composite service process description is constructed from the proof.

In [81] the SNARK theorem prover has been used for automated service composition.

Another approach to program synthesis is using intuitionistic propositional logic for service

composition [82].

 36

Formal verification of composite service specifications and consistency checking has

been a subject of intensive research. Verification is important to check the validity of a

composition plan before it can be executed. There are several formal computational model

based approaches to model composite service. One such model is Automata (or Labeled

Transition System (LTL)) [89 - 91]. In [92] properties of service compositions of BPEL

processes communicating via asynchronous XML messages have been analyzed and

verified. The underlying model checker is SPIN [93]. SPIN verifies whether service

compositions satisfy certain LTL properties. In [94] it has been shown that BPEL/WS-CDL

service descriptions can be automatically translated to timed automata and then verified by

the model checker UPPAAL [95].

Another approach to composition verification is using Process Algebra based

models. Process Algebra provides a strong theoretical foundation of analysis behavioral

similarity of two service specifications (called bi-simulation checking). This is useful in

formal analysis of service selection where the best service has to be selected out of the set of

behaviorally similar services. In Dumas et. al. [96], a model for interface transformation has

been proposed. Interface transformation is the method for changing from one behavioral

interface to another based on a collection of operators. π-calculus [97] is another specialized

process algebra for composition verification. Compositional constructs in π-can be used to

compose services in sequential, parallel, and conditional execution order. In Ferrara et. al.

[98] CCS [99] has been used to specify and compose services as processes. The

Concurrency Workbench 2 is used to validate composition correctness. In [100] BPEL

process specifications and the more expressive process algebra LOTOS [101] has been

 37

shown to be inter-translational. Translation helps to deal with temporal property related

issues such as compensations and exception handling. The underlying model checker that

has been used is CADP [102].

The third popular approach to composition verification is using Petri Nets [103].

Petri Nets provide a formal way of understanding and analyzing concurrent systems. Petri

nets are very popular graphical modeling tools in BPM (Business Process Modeling) related

fields due to their capability of expressing complex control-flows [104]. In OuYang et. al.

[105] a set of mappings from BPEL control-flow constructs to labeled Petri nets has been

proposed. Other works in this direction include [106].

2.5.4 Event-driven Composition

Within the ED-SOA paradigm a fairly recent event-service rule based service

composition framework has been proposed by Zakir et al. in [107]. In this work events are

mapped to set of services via certain ECA-based rules that need to be triggered when the

events occur. The composition technique adopted does not check the validity of causality

between two services while establishing a path sequence. Instead a forward reasoning is

done over a set of tasks (the tasks are computed by a backward reasoning over a set of rules)

so as to form a correct sequence of the tasks. However, owing to the dynamic nature of SOA

systems the service network grows and shrinks over time. Hence, formulation of such rules

may not be feasible in most of the times. Moreover, such rule based framework is closed-

world in the sense that actions are defined to be a finite set without any consideration of the

possible variants of such actions when the associated contexts change. Thus, a closed-world

 38

rule-based system logically negates all other possible versions of actions that have solution

compositions as well. Also, the set of tasks that is deduced from the set of rules represents

services that are sufficient for formation of the desired sequence and does not assume any

other intermediate service that may be required in order to fulfill such a sequence.

2.5.5 Semantic Service Composition

Semantic service composition is based on semantic matchmaking of service profiles

written in languages such as DAML-S and OWL-S. For any semantic matchmaking

operation we require formally defined semantic similarity measures. A lot of researchers

have focused on this topic. In [108] a similarity measure is proposed for computing the

degree of similarity between a service template and an actual service. The measure is based

on the syntactic, operational, and semantic similarity. An algorithm is proposed for Web

Service discovery using proper interfaces and operational mechanisms for workflow

generation [108 - 109]. Service discovering using DAML described Web Services has been

proposed in [110] as well. Other works such as [111] have treated the discovery problem

from a functionality requirement perspective. Query languages such as Process Query

Language (PQL) have been proposed therein to search process models from process

ontology. In [112] semantic representations of state, actions, and goals have been proposed

as a framework for service composition. [113] proposes a path-optimization based service

composition where a sequence of operators (i.e. services) that compute data are connected

together using communication connectors. The shortest path is discovered from a search

space that consists of the underlying dependency graph between operators. A very

 39

prominent research work in the field of semantic service composition is the METEOR-S

project by LSDIS at University of Georgia [114]. The focus of research was to study the use

of Semantic Web technologies in the area of service composition and to develop Semantic

Web Service and Process specification, semantics-based Web Services discovery, and

Process Composition [109, 115]. MWSAF (METEOR-S Web Service Annotation

Framework) was proposed as an ontology-driven mark up tool for Web Service descriptions.

Translation algorithms were proposed to translate and annotate WSDL files with relevant

ontologies [115]. The METEOR-S Web Services Discovery Infrastructure (MWSDI) served

as a platform for scalable semantic publication and discovery of Web Services [116]. The

research group also proposed the MWSCF (METER-S Web Service Composition

Framework) platform that specifies an activity as a semantic activity template. A service

ranking function measures the optimality for service selection based on semantic matching

and QoS criteria matching [117].

2.6 Reachability Computation in Service Composition

Service composition as a path optimization problem has been studied earlier in [113].

Finding an optimal path as a composition plan has to be preceded by discovering all possible

paths between two service nodes in a service workflow. This problem is known as graph

reachability problem and has been extensively studied in the field of computational graph

theory [118 - 123]. One approach of solving the problem is to traverse the underlying

service graph from the vertex u to vertex v using depth first search at run-time (shortest-

path). This implementation does not require extra space and the time complexity is O(m + n

 40

log n) where m is the number of edges and n is the number of service nodes. But for

massively large graphs (i.e. open SOA based system such as the WWW) m can be very big.

Another approach is to compute the transitive closure matrix of the entire graph. In this way

the reachability can be calculate in constant time O(1) although the required storage space is

O(n2) .

Table 1: Reachability Algorithms

Schemes Query Time Index Time Index Size

Shortest Path O(m + n log n) 0 0

Transitive Closure O(1) O(n3) O(n2)

Interval [118] O(n) O(n) O(n2)

2-Hop [119] O(m1/2) O(n4) O(nm1/2)

HOPI [119] O(m1/2) O(n3) O(nm1/2)

Dual-I [120] O(1) O(n+m+t3) O(n+t2)

Dual-II [120] O(log(t)) O(n+m+t3) O(n+t3)

Interval based indexing approach [118] is the best approach for trees. The principle

idea is to traverse the tree in pre-order and incrementally assign a lower bound of an interval

till the leaf nodes are reached. Then during upward return traversal the upper bounds are

assigned incrementally. Two vertices are reachable if the interval of one vertex lies within

the interval of other vertex or vice versa. Time complexity for reachability test is O(1).

 41

However, the technique is not suitable for graphs and also for systems that have frequent

updates (addition and deletion of service nodes).

The 2-hop labeling scheme [119] is another technique that suits well for sparse

graphs. The time complexity of reachability test is O(m1/ 2). However, obtaining the 2-hop

labels is NP-hard. Using approximation algorithms the problem was reduced to O(n3) . In

the dual labeling scheme [122] the graph is broken down into two components: (i) spanning

tree of the graph (ii) and the set of non-tree edges (t). These two components constitute the

complete reachability information of the graph. The spanning tree is indexed using the

interval based approach and the non-tree edges are kept in a table. At query time the interval

based approach is consulted to find out if there is reachability between two nodes. In case an

answer is not found then the non-tree edge table. The performance of this approach depends

on the value t. The value of t can be reduced by selecting the appropriate spanning tree. This

can be achieved by obtaining the minimal equivalent graph. Table 1 summarizes the

reachability prominent algorithms.

2.7 Service Composition & Distributed Multi-Agent Platform

Service composition can also be addressed from a multi-agent cooperative model

perspective. This is because software agents have adaptive sociability features that help

them to collaborate with each other for a common goal. In such a model services are viewed

as agent behavior which the agent chooses to adopt based on specific interpretation of the

system state and the consumer query. The W3C specifies software agents as "... running

programs that drive web services both to implement them and to access them as

 42

Figure 7: FIPA Agent Management Ontology [125]

computational resources that act on behalf of a person or organization" [123]. Agent-driven

SOA models therefore add an additional layer of intelligence, autonomy, and flexibility on

top of conventional service composition processes.

Most agent technologies in recent research revolve around the FIPA (Foundation for

Intelligent Physical Agents) Agent Management Specifications [124]. According to FIPA

any compliant agent platform must have these features: (i) AMS (Agent Management

System), (ii) DF (Directory Facilitator), (iii) AC (Agent Container), and (iv) MTS (Message

Transport System). We discuss each of them as follows:

 AMS: The AMS is a record keeper agent that creates, maintains, and destroys (i.e. kills)

agents in a specific platform governed by it. It assigns unique identifiers to services and

keeps a record (essentially a white page) of all active services within a system.

 DF: The DF is an agent that behaves like a yellow page directory service provider in the

system. The directory keeps record of all active agent behaviors via the means of

 43

behavior publication (similar to UDDI registry publishing). Discovery of a required

agent behavior can be conducted over the DF registry.

 AC: The AC is the runtime environment where an active agent lives. An agent's life

cycle management facilities are provided by the AC.

 MTS: The MTS provides the inter-agent communication bus via which agents talk to

each other by exchanging speech-act-theory [127 - 128] (standardized into FIPA as

FIPA Communicative Act Library Specification) styled ACL (Agent Communication

Language) messages. ACL packets are put into SOAP envelope and are typically sent

over HTTP, WAP, or CORBA IIOP.

Figure 8: JADE Architectural Overview [125]

Figure 7 depicts the ontological framework of a FIPA compliant platform. There are

several research proposals on FIPA compliant multi-agent platforms. Some like the IBM

Aglet Toolkit [126] and Telecom Italia's JADE (Java Agent Development Environment)

platform [125] have become very popular. In this dissertation we have specifically chosen

JADE as the underlying agent development framework for the proposed SMARTSPACE

service composition platform. JADE is Java based and provides implementation capability

 44

of multiple containers that are linked up with a single main container where the AMS resides

(figure 8). Each container maintains two tables: (i) LADT (Local Agent Descriptor Table)

and (ii) GADT (Global Agent Descriptor Table). These tables keep track of all agents living

locally and globally in the system. Apart from these two tables the main container also

maintains an additional table called CT (Container Table) that is essentially the AMS white

page. Inter-container communication within the same platform is typically done using IMTP

(Internal Message Transport Protocol) that is built over Java RMI.

JADE incorporates the Web Services Integration Gateway (WSIG) for implementing

web services as agents. Some very significant work has been done in the area of bridging

web service standards and agent technologies [129 - 131]. Gateways are software

implementations that bridges web service specifications (WSDL + SOAP + UDDI) to agent

technologies (i.e. FIPA) such that web services published in UDDI registries can be

accessed by agents and agent behaviors in turn can be published as web services. Gateways

typically has a service discovery converter (for inter-operation between UDDI and FIPA

DF), service description converter (for translation of description content between WSDL

and FIPA SL), and communication protocol converter (for translation between SOAP to

ACL).

2.8 Summary

This chapter has given a detailed overview of SOA models and their application in

solving the problem of service composition. Extensive literature review has been given in

 45

this area of study. The chapter also includes a summary of FIPA compliant multi-agent

platforms and their applicability in the problem of service composition.

 46

CHAPTER 3

SEMANTIC SERVICE MATCHMAKING & QUERY MODELING

3.1 Introduction – The Proposed Framework

 Service discovery, selection, and composition are based on formal service

descriptions. In general these service descriptions are advertised by providers so that the

composer has access to them. We observed that, as mentioned earlier in chapter 1, most

formal languages for service description such as WSDL are syntactic. Hence, polysemic and

synonymic ambiguities during service discovery and composition induce sub-optimal

accuracy. There has been considerable research on solving this problem by adding an extra

ontology-driven semantic layer over syntactic service description languages. Semantic

languages such as DAML-S [52] and later on the W3C recommended OWL-S [50] evolved

in this direction. The principle idea was to replace the token-based vocabulary of syntactic

languages by a standardized vocabulary that consists of Description Logics (DL) [39] based

wff (well-formed-formulae) definitions. This creates the possibility of logical reasoning

based computation of service description similarity (called service matchmaking) that is the

foundational operation for service discovery and composition process. However, DL-

reasoner based computation is inefficient and intractable in the worst case. This led to the

proposal of a novel encoding based linear time service matchmaking algorithm called g-

subsumption (introduced in this chapter). The algorithm is based on the proposed dynamic

bit-based coding theory, called DL-Encoding, that preserves the semantic definitions of

service descriptions while reducing the matchmaking operation to simple logical bit-

 47

operations. The proposition of the DL-Encoding theory serves as the building block of the

rest of the dissertation (figure 9).

Figure 9: Dissertation Structure

Query specification is another important aspect of service composition. Consumer

requests have to be formally specified in a way that is: (i) user friendly with minimum

requirement of technical understanding and the hidden process workflow, (ii) comparable

with the service description format for easy matchmaking, and (iii) avoids unnecessary

complex composition. Conventional task-template based query models and formal

specification based query models do not include these three desirable features. Moreover,

they make the compositional problem computationally hard since the problem reduces to an

assignment problem [71 - 72]. To support these necessary features we have proposed a new

formal query model called Desire-based Query Model (DQM) that requires the consumer to

provide the desired output and whatever input s/he can provide at a given moment. The user

SMARTSPACEALNet

DL-Encoding

SmartClusterSTC

ALNet
Composer

Smart
Map

Smart
Deal

g-Subsumption DQM

SBTravellerALNet
Sniffer

 48

does not need to know the underlying composite process workflow or any formal

specification language. Also the formulation is such that the composition problem is no

more an assignment problem but rather a constraint-free path optimization problem. DQM

allows queries to be of three kinds: simple, complex, and compound and hence, is expressive

enough to represent a wide range of queries. DQM formatted queries are encoded using DL-

Encoding in the same manner as services are encoded in g-subsumption. Together with g-

subsumption matchmaking algorithm DQM forms the basic platform for the proposed

solution frameworks of ALNet and SMARTSPACE. In both these frameworks queries are

formatted as per DQM and experimental evaluations involves complex DQM queries only.

DL-Encoding, g-subsumption, and DQM will be the content of this foundational chapter.

For service discovery the composer has to perform a service matchmaking process

given a query so as to satisfy the query as stated in section 1.2 of chapter 1. Service

discovery can be significantly improved if services can be organized into their

corresponding functional categories. This is because categorization can prune the search

space for finding a set of services that matches a query specification. More specifically the

problem has two parts: (i) modeling a learner that can learn service categories given an

unobserved set of services and (ii) mapping the query (in DQM format) over the categorized

service space to extract services that are similar to the query specification. Lot of research

works has studied this problem extensively by applying Machine Learning (ML) techniques.

However, we argue that if service descriptions can be mapped into a semantic space then we

can model a significantly improved non-ML learner (in terms of accuracy) and at the same

time achieve a much better discovery efficiency in terms of computational overhead. This

 49

led to the proposal of a novel service category learning algorithm called Semantic

Taxonomic Clustering (STC) algorithm. STC is based on pair-wise g-subsumption

matchmaking between service descriptions and is an essential component of the ALNet

framework. STC has been proposed and analyzed (in terms of performance and accuracy) in

chapter 4 of this dissertation.

The dissertation subsequently unfolds into the proposed ALNet framework for event-

driven service composition in chapter 5. It has been observed therein that there are some

limitations to the existing models of ED-SOA based systems. One of the biggest obstacles is

the requirement of an event library that incorporates formal definitions of all possible events

in the system. Service providers as well as service consumers need to follow a specific event

format in order to publish and subscribe to events. However, this is not possible in an open

and dynamic system where events cannot be pre-determined. Furthermore, event recognition

and event interpretation are coupled together in conventional ED-SOA models. This is a

serious limitation for situations where: (i) a single event can have different interpretations

for different subscribing applications, (ii) a single event can have different interpretations for

the same subscribing application at different time points, (iii) multiple events can have same

interpretation to a set of different subscribing applications. Such situations arise when an

application such as software agents is intelligent in some sense (i.e. has a belief system and a

reasoning capability) and is adaptive to changes in its belief. Thus, the chapter introduces a

formal event cognition theory called Notability Theory that reconciles such limitations by

completely decoupling event recognition from event interpretation. A formal ontological

framework, called CAOFES, for semantic representation of the theory has been proposed.

 50

The proposed ALNet event-driven framework is essentially founded on Notability Theory. In

the context of Notability Theory the problem of service composition is called event-

handling. There are three important components of the ALNet framework: (i) middleware

service registry organization based on STC, (ii) service discovery component called

ALNetSniffer, and (iii) service composition component (i.e. the event-handling algorithm)

called ALNetComposer. ALNet platform also includes an additional component called

SBTraveller that optimizes ALNetComposer as the platform evolves over time (figure 9).

In chapter 6 an alternate ED-SOA framework called SMARTSPACE has been

proposed. SMARTSPACE is a distributed multi-agent based solution platform to the event-

handling problem discussed in chapter 5. In comparison to ALNet platform SMARTSPACE

addresses the issues of large scale high dynamics of SOA based systems where the diversity

and the size of services are significantly greater than the scope of ALNet and the innate

randomness within the systems is also much higher that what ALNet addresses.

SMARTSPACE is built over the Notability Theory as well and models all computational

entities as agents and their corresponding services as behaviors. However, SMARTSPACE

drastically diverges from the conventional notions of SOA, as will be detailed in this

dissertation, in many ways. It does not require any centralized middleware composer. All the

processes are completely localized and hence, SMARTSPACE does not require any global

system state knowledge. This makes the framework highly adaptive to the dynamics of the

system. The event-handling problem is modeled as a cooperative fair deal game problem by

SMARTSPACE. Within a game instance agents deal with other agents and in turn also bid to

win a deal. Deals finally converge to win-win equilibrium (i.e. confirmation of deals) for

 51

participating agents in an event-handling process. Analogous to ALNet platform

SMARTSPACE also has three components: (i) a service agent organization algorithm called

SmartCluster that essentially is the distributed version of STC, (ii) a distributed service agent

discovery algorithm called SmartMap, and (iii) a distributed service composition (i.e. deal-

bid game based event-handling) algorithm called SmartDeal (figure 9).

3.2 Service Matchmaking

One of the key problems in Service Oriented Architecture (SOA) based system is

service discovery. The fundamental operation required for service discovery is matchmaking

of service descriptions against consumer query descriptions. Matchmaking is a

computational operation over a pair of service/query descriptions that maps a defined

similarity measure function into a real or Boolean space of similarity score. Such

matchmaking is also required for clustering service registries into groups of similar services

to prune the search query space. Service matchmaking results in significant accuracy

enhancement if the service/query descriptions are semantic. Semantic services (e.g.,

semantic web services) are described using XML-based representational languages such as

DAML-S (DARPA Agent Mark-up Language for Services [52]) and more recently OWL-S

(Web Ontology Language – Service [50]). The underlying mathematical foundation of most

of these languages is Description Logics (DL) [39]. In such a framework service/query

descriptions can be modeled as a bag of DL concepts that are already defined within a set of

domain ontologies. The semantic service matchmaking problem then essentially becomes

subsumption testing of concepts that have DL based definitions and are used for

 52

semantically describing services [132 - 133]. Most semantic matchmaking algorithms in

literature have employed DL-reasoners (such as PELLET [42], FACT++ [41], etc.) for

subsumption computation [132 - 134]. However, DL-based subsumption reasoning can be

intractable even for relatively simple languages within the DL family [39].

 An alternative approach of reducing the subsumption computation significantly is by

using encoding techniques to codify ontology concepts [136 - 143]. Such techniques

guarantee O(1) time worst-case subsumption computation (considering no in-memory

constraint). However, most encoding techniques assume that there must exist a pre-defined

base taxonomy of ontological concepts whose mutual subsumption relations are already

known. In other words, these techniques have to rely on a DL-reasoner that has to be used to

generate the base concept taxonomy. As a result such techniques cannot allow dynamic

encoding of service descriptions that uses newly defined concepts not existent a priori within

the original taxonomy. In this chapter we propose an alternative non DL-reasoner based

linear time (with constrained in-memory) semantic matchmaking algorithm called g-

subsumption. The algorithm leverages a novel bit-encoding based concept subsumption

testing technique. The encoding method converts	ࣦࣛ࣢ࣷ࣬ܥ	(a very expressive DL language)

definitions of concepts (used in describing services) into equivalent bit codes preserving the

definitional properties of the concepts. Since g-subsumption preserves the semantic

properties of concepts it is able to support dynamic subsumption testing (unlike most

prevalent encoding techniques).

The rest of the chapter begins by identifying and making a comparative analysis of

some of the significant existing methods that can be used to some extent for fast concept

 53

subsumption computation. The chapter will then unfold into the details of the proposed

encoding theory and its computational feasibility in terms of service encoding. Having laid

the necessary theoretical foundation we will then introduce the g-subsumption algorithm and

make a detailed analysis of empirical studies that support the computational efficiency that

we are able to achieve using both standard real datasets (OWLS-TC v2 [134]) as well as on

simulated synthetic datasets.

3.3 Semantic Subsumption - Background

As mentioned in the introduction, semantic match making over service description in

most cases is DL reasoner based [132 - 133]. Reasoning over DL has been a very

extensively studied area. There are three basic kinds of reasoning within the DL framework:

(i) subsumption reasoning, (ii) unsatisfiability reasoning, and (iii) semantic rule validation.

An informal explanation of each of these 3 types is given:

 Subsumption Reasoning: It is a computational operation that checks whether a given

concept definition can satisfy (i.e. be a sub-concept) of another given concept definition.

For an example, we can check through subsumption reasoning techniques that a concept

car is a sub-concept of the concept vehicle given the DL definitions of both the concepts.

In the context of semantic service matchmaking subsumption reasoning can be used to

evaluate the three kinds of service matchmaking as described in [132]: (i) exact, (ii)

plug-in, and (iii) subsume.

 Unsatisfiability Reasoning: It is a computational operation that verifies whether a given

concept has at least one set of interpretations that satisfy its definition. For an example,

 54

given the definition of the concept car and a set of all possible interpretations we can

figure out through unsatisfiability reasoning techniques whether car can have member

instances (e.g., Honda Civic Sedan DX). In the context of semantic service matchmaking

unsatisfiability reasoning techniques can verify whether a given service description is

semantically well-formed or not. For an example, if a service provider for a car rental

service describes the output parameter as ܿܽݎ ∩ ݌݄݅ݏ then in any current domain the

parameter is obviously an impossible parameter.

 Rule Validation: It is a computational operation over Horn-like rules (implemented by

rule languages such as SWRL [135]) that verifies whether a rule can indeed be satisfied

with the current set of interpretations. For an example, a rule such

as	∃ݔ; ,ݔሺܣݏ݅ ܸ݄݈݁݅ܿ݁ሻ ∧ ,ݔሺݎ݋݈݋ܥݏ݄ܽ ሻܦܧܴ → ,ݔሺܣݏ݅ ሻ states that all instances ofݎܽܥ

vehicles having color red must be instances of car. Rule validation techniques enable us

to verify whether, such as in this example, there can really exist an interpretation x that

satisfies both the antecedent and the consequence part of the rule. In the context of

semantic service matchmaking such techniques can be applied to verify whether a pre-

condition rule or an effect expression of a given service description is satisfiable under a

given domain or not. However, in the present work since we are not including pre-

conditions and effects into our service matchmaking algorithm hence, we will not

discuss rule validation within the scope of this dissertation.

It can be shown that all three of these forms of reasoning are inter-reducible [39].

Thus, if we can efficiently solve subsumption reasoning we can also efficiently solve the

other two. However, in almost all languages within DL such reasoning has been proven to

 55

be intractable with most results being NP-hard and coNP-hard [39]. Even in the simplest

sub language of DL such as ࣦ࣠	satisfiability is proven to be coNP-Hard [144]. These

findings imply that a mere increase in the expressivity of DL generates a major increase in

the computational cost for subsumption testing.

A way to avoid the aforesaid problem (coined “computational cliff in DL”) is to

generate (and maintain) a taxonomy of concepts where the taxonomy represents a lattice

structure over the subsumption relation between concepts within the lattice. Such a lattice

structure (also called inheritance graph) is formed by pair-wise subsumption reasoning

(done by DL reasoners) over a fixed set of concepts. The taxonomy is then encoded and the

concept codes are used to test subsumption mostly in constant time (assuming no limit on

memory). This way we can avoid expensive re-computation of subsumption over the same

concept set. We can summarize such taxonomy encoding into three categories: (a) bit-vector

based [136 - 140], (b) interval-based [141 - 142], and (iii) prime number based [143]. We

explain each of these 3 approaches as follows:

 Bit-Vector based Encoding: A bit-vector is a binary transitive closure table representing

pair-wise subsumption (and non-subsumption) with 1 (and 0). There are 3 main

approaches that utilize the bit vector: (i) the top-down approach where bit encoding

topologically sorts the concept taxonomy starting from the root concept [137 - 138], (ii)

the bottom-up approach where encoding starts from the leave concepts [136, 139], and

(iii) the conflict-graph based approach where the original taxonomy is reduced to a

smaller conflict graph before encoding takes place [138 - 139]. In all these encoding

approaches concept subsumption is checked by doing a bit-operation (AND/OR) over

 56

the bit codes. However, in these approaches we cannot avoid the problem of conflicting

codes because of a general focus on bit reusability for code compression. Finding and

dealing with such conflicts incurs a lot of update costs for generally huge taxonomies.

Apart from this problem, for conflict graph based methods, we have an additional

computational problem of constructing the conflict graph that actually is based on the

NP-hard graph-coloring problem.

 Interval based Encoding: In this approach [141 - 142] the taxonomy is spanned over

using a depth first search assigning incrementally the lower bound of the interval to

every new concept visit and then the upper bound of the interval on return upward visits

to concepts. However, in cases where the taxonomy is not a tree but a graph where there

exist concepts that are sub-concepts of multiple concepts the approach generates

additional intervals for all such concepts. Also handling increments (specifically, new

leaf concepts) into the taxonomy is problematic. In [142], a linear parameterized

function based approach has been used to solve the problem of newer concept additions

to the taxonomy. However, the problem of having multiple intervals is still unresolved.

 Prime Encoding: This is a top-down approach of encoding a concept taxonomy where

prime numbers are assigned to concepts incrementally [143]. Concepts that are

subsumed by multiple concepts within the taxonomy inherit the codes of their parent

concepts as prime factors along with a new unique prime factor that characterizes the

concept. Hence, the final concept code being a product of unique prime factors is

guaranteed to be unique. Although this approach clearly resolves the problem of code

uniqueness and also multiple codes of a single concept yet there are some significant

 57

drawbacks. One of the major problems is the number explosion of concept codes due to

incremental use of primes as multiplication factors. Also, division of large concept code

values for checking subsumption is computationally expensive for most computational

models and can grow very rapidly as the taxonomy grows.

3.4 Limitations of Taxonomic Encoding techniques

 It is to be noted that in all the approaches discussed so far there are some essential

assumptions within:

a.) The concept taxonomy has to be generated a priori by a DL reasoner before encoding

process starts. This is the primal assumption as any encoding technique requires the

taxonomy to exist as the input.

b.) The concept taxonomy has to be static once the service matchmaking process takes off.

This means that no new concepts are allowed to be added into the taxonomy after the

service matchmaking process is initiated. This is important because if addition of new

concepts is allowed then service matching very well reduces to DL reasoner based

subsumption testing because to add new concepts a DL reasoner has to be invoked.

c.) Service descriptions must be defined based on a priori encoded taxonomy only. In other

words no service provider can describe a service with concepts that are either excluded

from the taxonomy or defined dynamically from existing concepts using DL constructs

such as union or intersection.

 The problems that follow up due to these 3 assumptions (and that which the

proposed g-subsumption algorithm has been able to solve) are that:

 58

a.) None of the encoding techniques can avoid DL-reasoning and hence, the issue of

computational hardness in semantic service matchmaking exists in essence.

b.) All the techniques restrict the service providers to use common concept taxonomy as the

base vocabulary for describing services. This severely undermines the inherent

capability of the expressive power of semantic service languages such as OWL-S. For

an example, if the concept taxonomy has the concepts car and bus then a car rental

service provider cannot express a service that rents both car and bus since the

corresponding conceptሺܿܽݎ ∪ ሻis not existent and hence, not encoded within theݏݑܾ

taxonomy.

c.) There is no way to understand whether a service description is a valid description or not

from a semantic point of view. This is because all of the discussed encoding techniques

assume the correctness of the underlying DL-reasoner that generates the base taxonomy.

If the base taxonomy is incorrectly generated then there is no real way of understanding

that just by looking into the codes. For an example, if the concept car is defined as

	ݎܽܿ ≡ .	ݐݎܽܲݏ݄ܽ 	ݎ݋݄ܿ݊ܣ ∧ and a DL-reasoner mistakenly reasons		݈݄ܹ݁݁.	ݐݎܽܲݏ݄ܽ

that car should be subsumed by the concept vehicle then encoding techniques will

assign a valid code to car even though the concept is unsatisfiable. Moreover, there is

no direct mapping of the concept code with the concept definition in any of the

discussed encoding techniques.

 59

3.5 Semantic Service Matchmaking

 Semantic service matchmaking can be of four types: (i) exact match, (ii) plug-in

match, (iii) subsume match, and (iv) sibling match. In most research works as in [132 - 134,

145 - 149] the first three types have been included into the service matchmaking algorithms

while the fourth type has generally been neglected. Before we can propose the g-

subsumption match making algorithm we first need to lay down a general background of

semantic matchmaking and its 4 cases as follows:

 Exact Match: Exact match is a case of semantic matchmaking between two semantic

descriptions (in our context service/query descriptions) where:

o For every DL concept within one description there is exists a definitional

equivalent DL concept within the other description

o The two descriptions are definitional equivalent.

 For an example, let us consider two services s1 and s2 described in DL as follows:

ଵݏ													 ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵ݋ݐݑܣ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

ଶݏ ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰ݊݋ݏݎ݁ܲ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫ݊݋ݏݎ݁ܲ ⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	ݏ݈݅ܽݐ݁ܦݎܽܥ

⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

 In the above example CustomerName may be definitional equivalent of PersonName

in a given domain while AutoSpecification is definitional equivalent of CarDetails

within the same domain. We can also observe that for every DL concept (and

corresponding relations such as hasInput and hasOutput) in s1 there is an equivalent

concept (and relation) in s2. Thus, this example is a case of exact match.

 60

 Plug-in Match: Plug-in match is a case of semantic matchmaking between two semantic

descriptions (i.e. service/query description in our context) where:

o There exists at least one DL concept within one of the descriptions that

definitionally satisfies (i.e. subsumed by) at least one DL concept within the

other description

o The former description definitionally satisfies (i.e. subsumed by) the latter.

For an example, we take two services s1 and s3 such that:

ଵݏ ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵ݋ݐݑܣ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

ଷݏ	 ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫ݈ܽ݅ܿ݋ܵݎ݁݉݋ݐݏݑܥ

																																															⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵ݊ܽ݀݁ܵ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

 In this example, s3 has a plug-in match with s1 as s3's input parameter concept

CustomerSocialID may be subsumed by s1's input parameter CustomerID and likewise,

the output parameter SedanSpecification of s3 is subsumed by the output parameter

AutoSpecification of s1.

 Subsume Match: Subsume match is just the inverse match of plug-in match. Hence, in

the previous example s1 has a subsume match with s3.

 Sibling Match: Sibling match is a case of semantic matchmaking between two semantic

descriptions (i.e. service/query description in our context) where:

o There exists at least one DL concept within one of the descriptions that

definitionally satisfies (i.e. subsumed by) OR has least common subsuming

concept with at least one DL concept within the other description

 61

o There exists at least one DL concept within the latter description that

definitionally satisfies (i.e. subsumed by) OR has least common subsuming

concept with at least one DL concept within the former description

o Both the descriptions have a least common subsuming parent description that

may or may not exist within the current set of service descriptions.

To illustrate this case we take three services s4, s5, and s6 such that:

ସݏ											 ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫ݈ܽ݅ܿ݋ܵݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵݎܽܥ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

ହݏ																 ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܸܷܵܵ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

଺ݏ												 ≡ ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫ݈ܽ݅ܿ݋ܵݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵݏݑܤ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

 In this example, s4 has at least one concept (i.e. CustomerSocialID) that is subsumed

by at least one concept of s5 (i.e. CustomerID) and s5 likewise has at least one concept (i.e.

SUVSpecification) that is subsumed by at least one concept of s4 (i.e. CarSpecification).

Here we can also note that both s4 and s5 have a common subsuming parent description as

follows:

 ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫݎ݁݉݋ݐݏݑܥ ⊓

ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵݎܽܥ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

The same goes with s4 and s6 except that instead of having concepts that subsume

each other s6 has an output concept BusSpecification that has a least common subsuming

concept with that of s4's output concept CarSpecification. The least subsuming concept in

 62

this case is LandVehicleSpecification. Thus, both s4 and s5 can be said to have a common

subsuming parent description as follows:

						ሺ݄ܽݐݑ݌݊ܫݏ	. 	݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ሻܦܫ݈ܽ݅ܿ݋ܵݎ݁݉݋ݐݏݑܥ

⊓ ሺ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌݈݄ܸܵ݁ܿ݅݁݀݊ܽܮ ⊓ .	ݐݑ݌ݐݑܱݏ݄ܽ ሻ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

 Here it is to be noted that both the above common subsuming parent service

descriptions may be absent from any of the service repositories that contain the service

descriptions. In cases where the parent descriptions are absent we term such descriptions as

abstract descriptions. Later in chapter 5 and 6 we will explain why this case becomes very

significant for accurate service matchmaking and discovery.

3.6 g-subsumption Service Matchmaking

In this section we propose a novel matchmaking algorithm, called g-subsumption, for

computing the 4 cases of service matchmaking discussed in the previous section. The

algorithm is based upon a new bit encoding technique, called DL-Encoding, that

dynamically assigns bit codes to service descriptions based on their DL based semantic

definitions (as explained earlier). While the detailed analysis of DL-Encoding will be

discussed in the next section a complete outline of the proposed g-subsumption algorithm

has been laid out in this section.

3.6.1 Feature Stratification

Feature-stratification is a technique of breaking up a given DL based service

description into its corresponding features so as to form several conjunctive sub-

descriptions. In general these features would be the four functional features – (i) Input (I),

 63

(ii) Output (O), (iii) Pre-Condition (P), and (iv) Result (R). Each of these 4 functional

features is explained below:

 Input (I): Input of a service is a sub-description that includes DL concepts that are used

to define the types of input parameters of the service. For an example, for the car rental

service s1 the input sub-description is: ݄ܽݐݑ݌݊ܫݏ	. ݁݉ܽܰݎ݁݉݋ݐݏݑܥ ⊓ .	ݐݑ݌݊ܫݏ݄ܽ ܦܫݎ݁݉݋ݐݏݑܥ

 Output (O): Output of a service is a sub-description that includes DL concepts that are

used to define the types of output parameters of the service. For an example, for the car

rental service s1 the output sub-description is: ݄ܽݐݑ݌ݐݑܱݏ	. 	݊݋݅ݐ݂ܽܿ݅݅ܿ݁݌ܵ݋ݐݑܣ ⊓

.	ݐݑ݌ݐݑܱݏ݄ܽ ݊݋݅ݐܽ݉ݎ݂݅݊݋ܥݐܴ݊݁

 Pre-condition (P): Pre-condition of a service is a sub-description that defines, in Horn-

like DL rules, the environment state set required to be satisfied before the service can be

invoked. For an example, for s1 the pre-condition can be ݄ܽ݊݋݅ݐ݅݀݊݋ܥ݁ݎܲݏ	. ௦ܲଵ	where ௦ܲଵ

is defined as:

 ௌܲଵ ≡ ሾܵ݁݁ܿ݅ݒݎሺݏଵሻሿ 	∧ ሾ∃ݔ; ሻݔሺܫܱܦ ∧ ሻሿݔሺݕܽܦܹ݇݁݁ݏ݅ 	∧

													൤
,ݕ∃ ;ݖ ሻݕሺݎ݁݉݋ݐݏݑܥ ∧ ,ݕሺ݁݃ܣݏ݄ܽ ሻݖ ∧

,ݖሺ݄݊ܽܶݎ݁ݐܽ݁ݎܩݏ݅ 18ሻ
	൨ → ଵሻݏሺ݈ܾ݁ܽݐݑܿ݁ݔ݁

The pre-condition states that if s1 is an instance of the DL concept Service and if x is an

instance of the DL concept Day Of Invocation (DOI) such that x is a week day and also

if y is an instance of the DL concept Customer such that y’s age is greater than 18 then s1

can be executed.

 Result (R): Result of a service is a sub-description that defines, in Horn-like DL rules,

the new environment state is generated by the service as a result of its execution. In the

 64

example of the car rental service s1 the result can be ݄ܽݐ݈ݑݏܴ݁ݏ. ܴ௦ଵwhere ܴ௦ଵ	is defined

as:

ௌܲଵ ≡ ሾܵ݁݁ܿ݅ݒݎሺݏଵሻሿ 	∧ ሾ݁݀݁ݐݑܿ݁ݔ	ሺݏଵሻሿ ∧ ሾ∃ݔ; ሻݔሺݎܽܥ ∧ ,ଵݏሺݐݑ݌ݐݑܱݏ݄ܽ ሻሿݔ →

,ݕݎ݋ݐ݊݁ݒ݊ܫݎܽܥሺݕݎ݋ݐ݊݁ݒ݊ܫݐܿݑ݀݁݀ .ሻݔ

The result states that if s1 is an instance of the DL concept Service and if s1 is executed

and if the output instance of s1 (x) is an instance of the DL concept Car then as effect x is

deducted from the DL concept CarInventory representing the inventory of cars.

In our context we include only the first two features (i.e. I and O) while an in-depth

study over the other two features is left as a future work. After the given service description

is feature-stratified each of the two sub-descriptions (i.e. for I and O) so formed is furthered

pre-processed into a data structure called g-array where g = (I, O). The g-array groups all

the object concepts within the DL sub-expressions as a set. Hence, the example car rental

service s1 has an I-array = {CustomerName, CustomerID} and an O-array =

{AutoSpecification, RentConfirmation}. After feature-stratification process is done each of

the g-arrays are bit-codified as per the proposed DL-Encoding algorithm that will be

detailed in the following section. Let us assume, for the sake of the current discussion, that

in the above example I-array is encoded as {DLcode(CustomerName),

DLcode(CustomerID)} = {M,N} where M and N are bit strings and the O-array is encoded

as {DLcode(AutoSpecification), DLcode(RentConfirmation)} = {X, Y} where X and Y are bit

strings. During the encoding phase the g-subsumption algorithm does a global DL-encoding

over the entire g-arrays by ORing all the individual member DL-codes together, thus,

forming two corresponding bit string DL-codes, say P and Q. The global DL-code is termed

 65

as g-code. Hence, any given DL-based service description is reduced to a feature-stratified

set of two g-codes: {P, Q}.

3.6.2 g-subsumption Algorithm

In this section we propose a service matchmaking measure, called Feature Similarity

(or FS), that is based on feature stratification discussed in the previous section. FS is a

relative measure and is defined upon a particular g-array for a service description. We

define FS as follows:

Definition 3.1: Feature Similarity (FS) is a measure that is defined over the function

⊃
೒ (called g-relation) that maps a pair of g-codes of two services into a 5-ary service match

space (denoted g-M) = {0, 1, 2, 3, 4} where 1 represents a sibling match, 2 represents a

subsume match, 3 represents a plug-in match, 4 represents an exact match, and 0 represents

no match.

The g-code sub-space = {1, 2, 3, 4} is called the space of feature similar g-arrays (or

g-MFS). If two given g-codes (say, P1 and P2 corresponding to the I-code of two services s1

and s2) can be mapped into I-MFS then s1 is said to I-feature similar to s2 (denoted as

ଵݏ ≡		ଶݏ	
ூ). 	

It is to be understood that g-relation is undefined over the four algebraic operations:

{+, -, *, /}. However, ⊃
೒ generates an order in terms of strength of similarity where the

order is defined over the sub-space g-MFS as: 4 > 3 > 2 > 1 > 0. The g-relation function is

implemented within the g-subsumption algorithm. In this section we outline the algorithm

while in the next section we detail the g-relation function (which is essentially the proposed

 66

DL-Encoding technique of subsumption testing). Assigning DL-codes to g-arrays is done

dynamically at the time of hosting of the service by parsing each member concept’s DL-

definition (i.e. if the concept has not been already defined within the domain ontologies) and

then generating an equivalent bit string DL-code. More details of the ⊃
೒ function (which is

essentially the proposed DL-Encoding technique for subsumption testing) are given in the

next section.

Figure 10: g-subsumption Algorithm

3.7 DL-Encoding

In this work we restrict ourselves to a special sub class of DL definitions - 	ALCୖౙH

(nomenclature as per DL norms). DL concepts that are defined using ࣦࣛ࣢ࣷ࣬ܥ are

significantly expressive in the sense that we can use the basic DL concept constructors

⊔,⊓, ൓	 (i.e. intersection, union, and negation), role hierarchy (i.e. subsumptive taxonomy of

 67

concept relations), full existential role quantifier (∃) and role value restriction (∀). Note that

the language also supports some of its roles (i.e. relations) to be transitive (e.g.,	

⊑, ⊒, ≡) [39]. The objective of this section is to be able to model the DL-Encode function

that dynamically maps a given 	ࣦࣛ࣢ࣷ࣬ܥ concept.

 For a given SOA based system we assume that there exists a terminology ∆p

consisting of primitive concepts. Primitive concepts are base concepts that cannot be defined

any further within a given system domain. However, these concepts may be ordered partially

according to the subsumption relation ⊑ using human domain expertise. Hence, a

corresponding primitive concept taxonomy (Tp) can be formed out of ∆p. In a similar fashion

we also assume the existence of a terminology Rp consisting of primitive roles (relations)

from which a corresponding primitive role taxonomy (Tr) can be formed. Since all DL

definitions must be definitorial (i.e. should not contain definitional cycles such as Human =

loves . Human) hence, all concept definitions can be unfolded into a set of primitive object

concepts and a chain of primitive roles that are used as the predicate chain for defining the

(subject) concepts. Thus, the assumption of Tp and Tr is justified.

As has been outlined in the g-subsumption algorithm (discussed in the previous

section) the encoding can be either static or dynamic. In the context of g-subsumption static

encoding refers to the case when a concept is already defined within a set of domain

ontologies while dynamic encoding is required only when the concept is new and has not

been defined apriori. Hence, for static encoding, an apriori defined concept or relation is

either primitive concept or primitive relation or base concept/relation whose subsumptive

order with respect to other apriori concepts/relations within the given set of domain

 68

ontologies is already known. Such a set of taxonomies is called the base space. Thus, the

base space includes both Tp and Tr. The proposed DL-Encoding algorithm uses this base

space to dynamically encode concepts that are outside the base space but are defined using

concepts and relations within the base space. For an example, the Car and containsRecord

can be a base space concept and relation respectively. A concept CarInventory can exist

outside the base space that has been defined as		ݕݎ݋ݐ݊݁ݒ݊ܫݎܽܥ ≡ .݀ݎ݋ܴܿ݁ݏ݊݅ܽݐ݊݋ܿ It .ݎܽܥ

is to be noted that g-subsumption has the capability of learning new concepts by including

concepts that have been encoded into the base space.

3.7.1 Base Space Encoding

Vehicle

Land
Vehicle

Water
Vehicle

Air
Vehicle

Universal Parent
Concept

Car Bus Boat Sea Plane Jet Plane

Universal Child
Concept

[0*]

0*1

0*11 0*101
0*1001

0*10011 0*100011 0*1000101 0*10001101 0*100001001

[1*]

Figure 11: A Vehicle Base Ontology (Encoded)

 69

Before we go into the details of dynamically encoding such concepts using DL-

Encoding we first need to encode the base space itself. We first include the universal

concept ⊺	and an empty concept ٣	within a given base space to transform the base space

into a lattice structure where the order relation is the subsumption relation ⊑. The lattice so

formed can be seen as a directed acyclic graph, called base ontology (denoted as TBS), with a

single root concept ⊺	and a single leaf concept	٣. The root concept is called the universal

parent (since it subsumes any DL concept) while the leaf concept is called the universal

child (since it can be subsumed by any DL concept). We define a parent and a child concept

as follows:

Definition 3.2: A parent concept ci is concept within the base ontology such that

there exists at least one concept cj within the same base ontology such that ܿ௜ ⊏ ௝ܿ. ci is said

to be the parent of cj.

Definition 3.3: A child concept ci is concept within the base ontology such that there

exists at least one concept cj within the same base ontology such that ܿ௜ ⊐ ௝ܿ. ci is said to be

the child of cj.

 The base ontology encoding algorithm (called BaseOntoEncoding) is a simple

topological spanning over the corresponding graph starting with assigning code [0*] to the

universal parent ⊺	and finishing with assigning the code [1*] to the universal child ٣. The

superscript [*] means that the 0/1 is repeated over an n bit string length where n refers to the

current number of concepts within the base space. During the topological spanning a new 1

bit, called the most significant bit, is assigned to a concept that signifies its unique identity.

The assignment is done at the code string position that corresponds to the visit count (or

 70

order) of the topological span. For an example, in figure 11, the order of visit to the concept

Car is 5. Hence, a 1 bit is assigned to the 5th position of the code string. While assigning

code to a concept at a particular visit all the codes of its parent concepts are ORed together

so that all of their respective uniqueness can be inherited. This ORed code is then

concatenated together with the newly assigned 1 bit. Thus, the concept Car in figure 11 is

encoded as 0*10011 where the 1 bit at position 1 is inherited from the code of its sole parent

LandVehicle (whose code is 0*11). Codes assigned in this manner are called b-codes. The

algorithm is outlined below:

Figure 12: BaseOntoEncoding Algorithm

A very important property of the above encoding algorithm is that it always assigns a

unique code to any given concept within the base ontology. The uniqueness is guaranteed by

the assignment of the most significant bit during the topological span.

 71

3.7.2 Base Concept Subsumption

 Once the base ontology TBS is encoded as discussed in the previous sub-section we

can very efficiently compute whether two given base concepts are mutually subsumptive by

using the following theorem:

Theorem 3.1 (Base Subsumption Testing): cx⊑ cy iff ܿ௫ ⊑ ܿ௬ → ቂܾെ ሻݔሺܿ݁݀݋ܿ b െ

൯ݕ൫ܿ݁݀݋ܿ ൌ 	ܾെ ܿ௫	ሻቃ whereݔሺܿ݁݀݋ܿ ∧ ܿ௬ ∈ ܶ஻ௌ.

Proof: If ܿ௫ ⊑ ܿ௬	then cx inherits all the 1 bits of cy according to BOEncoding algorithm

(figure 12). Hence, ቂܾ െ ሻݔሺܿ݁݀݋ܿ b െ ൯ቃ contains all the common inherited 1 bitsݕ൫ܿ݁݀݋ܿ

of cy and cx. For the non-inherited 1 bits of cx there can only be corresponding 0-bits of cy

since all the 1-bits of cy has already been ORed up inቂܾ െ ሻݔሺܿ݁݀݋ܿ b െ ,൯ቃ. Thusݕ൫ܿ݁݀݋ܿ

ቂܾ െ ሻݔሺܿ݁݀݋ܿ b െ .will also contain all the non-inherited 1 bits of cx	൯ቃݕ൫ܿ݁݀݋ܿ

Therefore,	ܿ௫ ⊑ ܿ௬ → ቂܾെ ሻݔሺܿ݁݀݋ܿ b െ ൯ݕ൫ܿ݁݀݋ܿ ൌ 	ܾെ .ሻቃݔሺܿ݁݀݋ܿ

If ቂܾ െ ሻݔሺܿ݁݀݋ܿ b െ ൯ݕ൫ܿ݁݀݋ܿ ൌ 	ܾ െ ሻቃ then all the 1 bits of cx is preserved in theݔሺܿ݁݀݋ܿ

result. Now if cy is not identical with cx (i.e.	ܾ െ ൫ܿ௬൯݁݀݋ܿ ് ܾ െ ሺܿ௫ሻ) then there can݁݀݋ܿ

be two cases: (i) b-code(cx) must contain a set of 1 bits that are not contained in b-code(cy),

and (ii) b-code(cy) must contain a set of 1 bits that are not contained in b-code(cx). The

second case is a contradiction to the initial assumption that ቂܾ െ ሻݔሺܿ݁݀݋ܿ b െ ൯ݕ൫ܿ݁݀݋ܿ ൌ

	ܾ െ ,ሻቃ since the result after ORing will be b-code(cy) instead of b-code(cx). Henceݔሺܿ݁݀݋ܿ

the first case is true. Since all the 1 bits of b-code(cy) are common to b-code(cx) therefore it

implies that ܿ௫ ⊑ ܿ௬	 	

∨

∨

∨

∨

∨

∨

∨

 72

 The above theorem proves that the g-relation function 	

⊃
೒

 is sound and complete over the base ontology TBS. The time complexity of g-relation

over TBS is Θሺܰ/ܹሻ where N is the total word length of a particular computational model

(e.g., 64 bits for a fairly modern computer). A comparison of number of base space members

(concepts and relations) while W is the word length of the memory for g-relation with other

DL-based reasoners for subsumption computation has been discussed in the results section.

 An example for b-code subsumption can be that of the concept Car and the concept

LandVehicle in figure 11. ݎܽܥ ⊑ 10011∗0 = ݈݄ܸ݁ܿ݅݁݀݊ܽܮ ∨ 0∗111	 ൌ 	0∗10011	 ൌ .ݎܽܥ	

Thus, the concept LandVehicle subsumes the concept Car. In the next section we will

introduce the theoretical foundations of DL-Encoding and g-subsumption over concepts that

are dynamically defined outside the base ontology.

3.7.3 DL Bits for Semantic Equivalency

Base ontology encoding is based on the assumption that at least the primitive

terminologies (Tp and TR) exist as a standard agreement within the system domain

community. However, DL encoding can be applied to the ࣦࣛ࣢ࣷ࣬ܥ	 space outside the base

ontology. Any ࣦࣛ࣢ࣷ࣬ܥ concept definition into 5 simple semantics:

Semantics 1. ܥ௜ ൌ ௝ܥ ⊔ .௞ where ⊔ represents concept unionܥ

Semantics 2. ܥ௜ ൌ ൓	ܥ௝	where ൓ represents concept negation.

Semantics 3.	ܥ௜ ൌ ௝ܥ 	⊓ .where ⊓ represents concept intersection	௞ܥ

Semantics 4.	ܥ௜ ൌ ∀	ܴ	. .where ∀ represents value restriction over role R	௝ܥ

Semantics 5. ܥ௜ ൌ ∃	ܴ	. .where ∃ represents full existential restriction over role R	௝ܥ

 73

Based on such semantic possibility we discuss each of these 5 semantics and their

corresponding DL-Encoding rules in this section. In order to assign a semantically

equivalent code for each of these 5 possible semantics DL encoding uses 5 types of bits: (i)

1-bit used for representing the presence of certain semantic characteristics of a concept, (ii)

0-bit used for the absence of certain semantic characteristics of a concept, (iii) X-bit (called

block bit) for blocking a position in the code string of a concept to distinguish it from other

concepts (use of this bit will be discussed later), (iv) C-bit (called confusion bit) that is used

when it cannot be told for sure whether the bit is a 1 or a 0, and (v) 0* bit for representing the

upper end 0s (called prefix 0) of a DLcode (figure 11). We now define the 0th rule of DL-

Encoding as follows: Rule 0 (Code Expansion): If a particular DLcode = 0*P where P is a

code string then it can be equivalently coded as 0*X*P where X* is the block bit string.

According to rule 0 if, for an example, the code of the concept Vehicle is 0*1 then as

per need it can be expanded to 0*X1 = 0*XX1 = 0*XXX1 … and so on. Codes are expanded

when two codes are treated as operands of any particular DL (binary) operator.

3.7.4 DL-Encoding of Union

An example of semantics 1 in the previous section can be a car rental service whose

O-array is defined as ሼݎܽܥ ⊔ (figure 11). The O-array is outside the base ontology and	ሽݏݑܤ

hence, has not been defined although individually the concepts Car and Bus are defined

within the base ontology. The rule for dynamically generating the new code is:

 Rule 1a (Union Encoding):	ሺܣ ൌ ܤ ⊔ ሻܥ → ሻܣሺ݁݀݋ܿܮܦൣ ∶ൌ ൫݁݀݋ܿܮܦሺܤሻ	∧ ሻ൯൧ܥሺ݁݀݋ܿܮܦ	

where ∧ , called DL-union, is defined as per the given truth table (table 2).

 74

In the example above the corresponding DLcode of the O-array is 0*C01. This code

signifies that the first 1-bit is a common bit to both car and bus while the next 0-bit is a

mismatch. The third C-bit distinguishes the union from other possible unions (such as

ݎܽܥ ⊔ C001 and Car*0 = ݌݁݁ܬ ⊔ Bus	 ⊔ Jeep = 0*CC01). It has to be understood that

ݎܽܥሺ݁݀݋ܿܮܦ	 ⊔ ሻݏݑܤ ് according to figure 11 since DLcode(Vehicle)	ሺܸ݄݈݁݅ܿ݁ሻ݁݀݋ܿܮܦ

when expanded becomes 0*XX1. As mentioned in rule 0, the X-bits help to distinguish

Vehicle with the concept (Car ⊔ Bus). This distinction is necessary to understand that the

union operator does not imply any cover axiom over here where we can say that	ܸ݄݈݁݅ܿ݁	 ≡

ݎܽܥ ⊔ The concept Vehicle, as per figure 11, also subsumes the concepts Jeep and .	ݏݑܤ

Bicycle. The confusion bit (C-bit) may appear because of negation operation done over any

concept as will be discussed in the next section. Since the C-bit denotes no proper

understanding of whether the bit is 0 or 1 hence the union operator always outputs a C-bit as

a result.

Rule 1b (Cover Union Encoding): ሺܣ ൌ ܤ ⊔ ሻܥ → ሾ݁݀݋ܿܮܦሺܣሻ ∶ൌ ሺ݁݀݋ܿܮܦሺܤሻ ∧

 ሻሻሿܥሺ݁݀݋ܿܮܦ

In case of the presence cover axiom we simply perform a logical AND. Note that

rule 0 does not apply in this case as we do not need the blocking bit to distinguish concepts.

Thus, DLcodeሺCar ⊔ Busሻ = 0*1.

 75

Table 2: Truth Table for DL Union Operator

∧

1 1 1

1 0 0

0 1 0

0 0 0

X 0 0

0 X 0

X 1 C

1 X C

X X X

C 1 C

1 C C

C 0 C

0 C C

C C C

 76

3.7.5 DL-Encoding of Negation

A concept A can be defined in terms of the negation of already encoded concept B.

For an example, in the case of a car rental service description we can have the O-array

defined as	ሼ൓	ݎܽܥ	 ⊓	. . . ሽ. This output is interpreted as any concept that is not equivalent to

the concept Car but something else. The rule for encoding negation is as follows:

Rule 2 (Negation Encoding): ሺܣ ൌ ൓	ܤሻ → ሻܣሺ݁݀݋ܿܮܦ ∶ൌ ൓	݁݀݋ܿܮܦሺܤሻ	where ൓	, called

DL-negation, denotes a special NOT operator and has the given truth table (table 3).

The C-bit denotes that in the case where a bit is 1 a negation may or may not be

flipped into a 0 bit. The only exception is that of the significant bit (denoted as 0*1). Since

the significant bit characterizes a concept hence, that characteristic has to be removed from

its DLcode.

Table 3: Truth Table for DL Negation Operator

 77

However, other inherited characteristics (non-significant 1-bits) may not be

necessarily removed for a negation operation. For an example: ൓	ݎܽܥ	may actually mean

Bus where both share the first 1-bit. On the other hand	൓	ݎܽܥ may also mean something

non-vehicle such as Table that shares no 1-bit with Car. In fact, Table can actually have

some 1- bits that are not present in Car. In other words, some of the 0-bits of Car can

actually be flipped into 1-bits. However, this is not necessarily true always. Hence, the DL

negation of Car is 0*0C.

Vehicle

Car Bus
loves

Universal Parent
Concept

likes

Universal Child
Concept

[0*]

0*1

0*101 0*1001
0*10010 0*100010

[1*]

hasEmotion

0*10
Primitive Relation Taxonomy

Primitive Concept Taxonomy

Figure 13: Base Ontology with Dual Taxonomies (encoded)

3.7.6 DL-Encoding of Intersection

A concept can also be defined as an intersection of two concepts. DL-Encoding

follows de Morgan’s law in this case and hence, the rule for concept intersection can be

formulated using rule 1 for union and rule 2 negation as follows:

 78

Rule 3 (Intersection Encoding): ሺܣ ൌ ܤ ⊓ ሻܥ → ቈ
ሻܣሺ݁݀݋ܿܮܦ ∶ൌ ሺ݁݀݋ܮܦሺܤሻ ∨ഥ ሻሻܥሺ݁݀݋݈ܿܦ

: ൌ 	൓൫൓	݁݀݋ܿܮܦሺܤሻ ∧	൓	݁݀݋ܿܮܦሺܥሻ൯
቉	.

Thus, for the car rental service example, if the O-array is defined as ሼݎܽܥ ⊓ then the	ሽݏݑܤ

corresponding DLcode is ൓	(0*0CC) as per figure 13. According to the DL-negation truth

table the code comes to 1*1 = ٣. Thus, DL-Encoding is able to show that the concept

Car ⊓ Bus	 is unsatisfiable (or invalid). This is so because there is cannot exist a concept

that can inherit all the properties of Car and Bus such that it can represent an entity that is

both Car and Bus at the same time. It is interesting to note that there can be no valid

semantics 3 concept within the primitive concept taxonomy Tp. This is so because of the

innate mutual disjointness of primitive concepts as per definition. A semantic 3 concept can

only be valid if the concept is not primitive. In that case the DLcode of Car ⊓ Bus	would

have been 0*1CC.

3.7.7 DL-Encoding of Value Restriction

In semantics 4 a value restriction restricts the filler concept of the definition of a

concept (say A) to a particular concept only (say C) via the role R. Hence, all the 1-bits of R

and the 1-bits of C must be contained within the DLcode of A. The rule for value restriction

uses the normal OR operator and is as follows:

Rule 4 (Value Restricted Encoding): ሺܣ ൌ ሻܥ		.	ܴ∀ → ሾܣ. ݁݀݋ܿ ∶ൌ ሺ݁݀݋ܿܮܦሺܴሻ ∨

 ሻሻሿܥሺ݁݀݋ܿܮܦ

For an example we can think of an O-array = {CarLover} where ݎ݁ݒ݋ܮݎܽܥ ൌ

.	ݏ݁ݒ݋݈	∀	 This is a very restrictive definition where a car lover can only love car and .	ݎܽܥ

nothing else. In this case the corresponding DLcode as per figure 13 will be 0*10111. If we

 79

consider another O-array = {BusLover} where ݎ݁ݒ݋ܮݏݑܤ ൌ .	ݏ݁ݒ݋݈	∀	 then the	ݏݑܤ

corresponding DLcode will be 0*11011.

Table 4: Truth Table for DL existential Operator

⋁
∃

1 1 1

1 0 1

0 1 1

0 0 C

X 0 C

0 X C

X 1 1

1 X 1

X X C

C 1 C

1 C C

C 0 C

0 C C

C C C

 80

Table 5: Truth Table of DL OR Operator

⋁
ை

1 1 1

1 0 1

0 1 1

0 0 0

X 0 C

0 X C

X 1 C

1 X C

X X C

C 1 C

1 C C

C 0 C

0 C C

C C C

 81

3.7.8 DL-Encoding of Full Restriction

Rule 5 (full-restricted role encoding): ሺܣ ൌ 	∃	ܴ	. ሻܥ → ሻܣሺ݁݀݋ܿܮܦ ≔ ⋁		ሺܴሻ݁݀݋ܿܮܦ
∃ ሻܥሺ݁݀݋ܿܮܦ

where	⋁
∃ , called the DL-full existential operator, has the given truth table.

In the above truth table the C-bits denote that any of the two binary possibilities can

happen. Thus, for the car rental service example, if the O-array = {CarLover} where

ݎ݁ݒ݋ܮݎܽܥ ൌ .	ݏ݁ݒ݋݈	∃	 then the corresponding DLcode will be 0*1C111 as compared to ݎܽܥ

0*10111 (encoding of CarLover in the previous section). Here we see that the encoding has

all the necessary 1-bits of the concept Car and the relation loves. However, it is not

restrictive on what they lack (i.e. the 0-bit) and hence inserts a C-bit that can be either a 0 or

a 1.

3.8 Dynamic Concept Subsumption

ALCୖౙH	concept subsumption testing for dynamic concepts (i.e. concepts defined

outside the base ontology) is essentially similar to that of base concept subsumption testing

(as shown earlier). However, instead of the ordinary logical OR operator as was used earlier

a modified OR operator, called DL-OR (denoted as ሻ⋁
	ை , is used for subsumption testing. The

DL-OR opertor follows the given truth table.

In the example of the two concepts CarLover and BusLover that we introduced in the

previous section we can now try to understand their mutual subsumptive relation in terms of

g-relation. Both the concepts are defined outside the base ontology TBS and hence, we

cannot use the standard base concept subsumption in this case. Thus, according to the DL-

OR operator, the subsumption test is:

 82

 ቂݎ݁ݒ݋ܮݎܽܥ	 ⋁ݎ݁ݒ݋ܮݏݑܤ	
ை ቃ ൌ ൣ0௫10111		⋁

ை 	0௫11011൧ ൌ 0௫11111. The test confirms that

the two concepts do not have any mutual subsumption (no exact/plug-in/subsume match)

since none of the concepts came out as the final result.

Time Complexity Analysis: There are 10 cases in the truth-table that are applicable

for non base concepts (the first 4 are basically equivalent to simple logical OR). If the word

length for a particular computational model is assumed to be W then for any pair-wise

subsumption testing we are basically dealing with (N/W) chunks of W bits per operand

where N is the total number of bits in the DLcode. Thus, in the worst case we have 10 * W

cases to check per chunk during subsumption. Thus, the worst case time complexity of DL-

OR is O(10 * W * N/W) = O(N).

However, the test does not guarantee that the two concepts are mutually disjoint (i.e.

they do not have a sibling match). To verify that we just do a DL-union operation over the

two concepts to get the least common subsuming concept (i.e. abstract parent). The abstract

parent DLcode for this example is 0*10011. The way to interpret this code is to begin with

the beginning right hand most bit (which is a 1-bit) and check its position. In this case it is

the 5th bit. We then go to the 5th topologically ordered concept/relation in the base ontology.

In this case it is the relation loves. After that we move to the next 1-bit and check whether

that bit is present in loves. The next 1-bit is in the 2nd position and is contained in loves. So

the interpretation is still the relation love. Then we move on to the next 1-bit which is the 1st

bit. This bit is not present in loves. So we again look up the 1st topologically sorted

concept/relation in the base ontology. We observe that it is the concept Vehicle. Thus, the

 83

abstract parent is a labeled concept that is defined:	݈ݏ݁ݒ݋	. ܸ݄݈݁݅ܿ݁. If the abstract parent

concept is the universal concept ⊺	then the concepts are disjoint. Also sometimes the

abstract parent concept is too abstract to be defined. An example of that can be	ݎ݁ݒ݋ܮݎܽܥ ⊔

 In this case the DLcode of the abstract parent is 0*C0101. Since the beginning bit is a .ݎܽܥ

C-bit it is not possible to label the abstract parent semantically as it was for ݎ݁ݒ݋ܮݎܽܥ ⊔

 However, we can observe that there is a semantic relatedness between the .ݎ݁ݒ݋ܮݏݑܤ

concepts CarLover and Car since there are some 1-bits present in the abstract parent.

Semantic relatedness is outside the scope of this current work.

3.9 Query Modeling - Background

 Most of the previous works have focused on the former where a query is structured

as a task-template before it is submitted to the service discovery and composition system [64

- 65]. Service composition engines reformat user-requests into abstract task templates. Such

well-defined task templates are framed as a graph or workflow of abstract services (i.e. the

required services). These abstract services are the sub goals that constitute the global goal

(i.e. the desire of the requestor) to be achieved in the best way through a service composition

process. In the case of modeling query as specifications the user is assumed to know how to

express his/her query in a specification language (such as petri net [104 - 106], FSM [81 -

95], etc) that formally states the given input, required output, and all internal process (and

intermediate states) that transforms the given input state to the required output state.

However, there are some serious disadvantages in each of these two popular modeling

 84

techniques. We first discuss the disadvantages of the most popular query model – task

templates:

(a) Problem of task structuring: A task-based approach demands the requestor or query

analyzer to format the query into a sequence of sub tasks and model them as an abstract

DAG of desired services (termed abstract service). This assumes prior knowledge of the

type of services that may be required to satisfy the user request. In other words, it demands a

thorough design process of the user request at the first hand. This again is a costly overhead.

At the same time the temporal and functional dependency order in which the desired

services have to be invoked should also be specified by the requestor or the query analyzer.

This assumption happens to be very weak when the requestor is a lay user (as depicted in

our use case in section 3.10).

(b) Problem of task analysis: Query processors have to analyze a formally represented

query task and map that into an isomorphic sub graph of existing services from the

underlying service dependency graph. This is basically a service assignment problem.

Numerous research efforts have modeled this problem of service composition with

multidimensional QoS constraints as a mixed integer programming problem. It has been

proven that this problem can be transformed to the Multiple Choice Multiple Dimension

Knapsack problem and hence is NP-Hard [71 - 72].

(c) Problem of task mapping: There may be many situations where the query is not a one to

one mapping with the services available. This is especially so when there can be services

that can satisfy a particular sub task partially while the rest of the sub task can be satisfied

by some other service.

 85

(d) Problem of task recognition: Queries may not evidently be recognized as a task. There

may be a lot of cases where user interactions have to be interpreted as events rather than

requests and subsequent services have to be invoked on the fly to handle those events. For

an example, a person having a heart attack may have to be monitored and interpreted as an

event (rather than a specifically designed task template) and corresponding healthcare

services have to be invoked so that the person gets the proper hospital treatment.

(e) Problem of selection incompatibility: In most task-based approaches services are

selected independently before the service composition takes place. However, the best

selections may not be functionally compatible with each other during composition. In this

context compatibility means that whether two selected services can be integrated together

during composition in a way such that one can provide the necessary input required by the

other to finally produce the desired output. If two services are functionally compatible then

they are said to be functionally dependent on each other in a temporal order. If two services

are causally dependent (the execution of one service requires input from the other service)

on each other but are not compatible then the selection is said to be incompatible. This sort

of incompatibility blocks any composition possibility after the services have been selected.

In the case of specification based modeling [81 - 106] the assumption that the

requestor needs to know a particular specification language is not applicable for a lay user.

Moreover, a standardized specification language for representing all service queries and all

service descriptions has not been realized yet. Also specification matching is

computationally expensive and can become NP-Hard in the worst case. Specifications, in

 86

general, are thus used to study the behavioral validity and inconsistency of a service or a

query.

3.10 Desire-based Query Modeling (DQM)

 We now propose the DQM that contains all the essential information a user can

easily provide and that can be satisfied in polynomial time in the worst case. Any kind of

query has two essential parts that users can provide comfortably: (i) the desire (or required

set of service output), and (ii) the (given) input information. There are several advantages of

the proposed query model over task-based model and specification-based model. We

describe each of them as below:

 Ease of Query Formulation: The major difference between a desire and a task template

or a specification is that a desire lacks the temporal and the functional dependency order

between the desired services. Moreover, a desire is not a partially ordered set of service

descriptions but rather a set of final states that the user needs from the system. For an

example, in the car rental case study, the desire is the set {car profile, car_rent

confirmation}. Suppose that the best car rental service can provide a confirmation but

needs a third-party service that can generate a detailed profile of the car that has been

rented. In this case it is not possible for the requestor to know that such a situation may

arise and a third-party service has to be invoked. Hence, stating the query as a desire it

becomes easy for a requestor to articulate his/her query.

 87

 Improve Discovery Recall: The given input of the query is very loosely coupled with the

desire. This is so because the given input by the user does not necessarily map with the

desired output states directly. For an example, a car rental service may require age

confirmation as an input before it can produce the final desired output while the user

may have given the input as {name, source location, destination location}. In this case

we see that although the input is not directly mapable to the desired output as produced

by the car rental service still there is a possibility that a third-party ID verification

service may accept the given input and produce age confirmation as output that can then

serve as the input to the car rental service. However, if the input and the desired output

are strongly coupled as a task-template or a specification (i.e. only one kind of service is

expected to take the given input and produce the desired output) then there can be cases

of false negatives during discovery that can adversely affect the overall recall of the

discovery process.

To explain the model in details let us take a case study as an example that we will

adhere to for the rest of this dissertation.

Car Rental Scenario

Chris works for a consultant company in Kansas City. He desires to travel to

Chicago from Kansas City on business within the next 14 days. However, he is busy on

Tuesdays and Thursdays of every week and cannot travel. Here it is worth mentioning that

Chris occasionally travels to neighboring city Manhattan to visit his mom. He wishes for a

car rental service such that his desire is satisfied with minimum rental cost and maximum

 88

comfort (that includes best weather conditions and nearest pickup location) without

hampering his busy schedule. His personal preference is always weekends. Chris decides to

lookup a car rental service that can best satisfy his needs. Chris is supposed to join office

two days after his arrival to Chicago. Hence, he decides to fly back to Kansas City. He

expects his chosen service discovery engine to take up his query and give back a confirmed

car rental booking that contains the pickup location and the pickup date as the final output

along with a confirmed flight ticket back to Kansas City as wished.

In this use case we can identify that the consumer (Chris) requires a rental car from

his current place of location to Chicago. Therefore he needs a car rental service for this

purpose. There can be several competing car rental services in the system. For an example,

one service might have the description: {O = (sedan confirmation, sedan information), I =

(customer age, customer ID)}. Another may have the description: {O = (SUV confirmation),

I = (customer social security, credit card information)} while a third one may be having the

description: {O = (car confirmation, car information), I = (customer name, customer age)}.

Another requirement of Chris is that he needs to come back to this working place

(which is Kansas City) after two days of his arrival to Chicago. Therefore, he needs a flight

booking service as well. As with the car rental service there can be several available flight

booking services as well. A service may have the specification {O = (flight confirmation,

itinerary information), I = (customer name, source airport, destination airport)}. Another

service may have the description: {O = (flight confirmation), I = (customer credit card

information, source city, destination city)}. An interesting thing to note in this seemingly

simple use case is that the current place of location of Chris is a variable (since it can be

 89

both Manhattan and Kansas City). Hence, the car rental service should be aware of his

current location so as to maximize his comfort by providing the nearest pick-up location.

Another very interesting constraint is that the returning date to Kansas City solely depends

upon the output of car rental service as it can be any of the next 14 days. Therefore until the

car rental service is evoked the flight booking service cannot be executed by the engine.

Hence, there exists a dependency between the two services that requires a dynamic

composition. Other constraints are also added such as Chris's preference to drive in the

weekends, his busy schedule on Tuesdays and Thursdays, and weather conditions. We now

formalize the proposed query model as follows:

Definition 3.4: A desire is a set of 2-tuples	ሼ〈ܱ, ܴ〉|	ܱ	 ് ሽ݈݈ݑ݊	 where O is the desired

output state (set of output parameters) and R is the optional desired output effect on the

system state set.

The desire component of a query is also called Type-1 query (or Q-T1)

Definition 3.5: An input is a set of 2-tuples	ሼ〈ܫ, 	ܫ	|〈ܴ ് ሽ where I is the given input݈݈ݑ݊	

state (set of input parameters) and P is the optional desired pre-condition for the input to be

valid.

The input component of a query is also called Type-2 query (or Q-T2).

Definition 3.6: A query Q is a 2-tuple 〈݀݁݁ݎ݅ݏ, 〈ݐݑ݌݊݅ 	∋ 	݁ݎ݅ݏ݁݀ ≢ .ݐݑ݌݊݅ ∎	

It is mentionable over here that the parameters that constitute both the set O and the

set I are semantically defined within a collection of domain ontologies. Also a query can be

initiated both by the user as well as intermediary services. We now propose three different

 90

types of query as per the DQM: (i) simple query, (ii) complex query, and (iii) compound

query.

Definition 3.7: A simple query QSI is a 2-tuple 〈݀݁݁ݎ݅ݏ, 〈ݐݑ݌݊݅ ∋ ∀〈 ௜ܱ, ܴ௜〉 ∈ ;݁ݎ݅ݏ݁݀ | ௜ܱ| ൌ

1	∎

We can modify the use case query in order to form a simple query ܳௌூ ൌ ,ܦ :where	ܫ

ܦ ൌ ሼ〈ሼܿ݊݋݅ݐܽ݉ݎ݂݅݊݋ሽ, ,݊݋݅ݐܽܿ݋݈	݌ݑ݇ܿ݅݌ሺ	݊ܫ݀݁ݐܽܿ݋݈ and	ሻ〉ሽ݋݄݃ܽܿ݅ܥሺ	݊݋݅ݐܽ݊݅ݐݏ݁݀⋀ሻݕݐ݅ܥ	ݏܽݏ݊ܽܭ

ܫ ൌ ሼ〈݊ܽ݉݁, ,݊݋݅ݐܽܿ݋݈	݁ܿݎݑ݋ݏ ,ሽ݊݋݅ݐܽܿ݋݈	݊݋݅ݐܽ݊݅ݐݏ݁݀ ሽ〈݈݈ݑ݊

Definition 3.8: A complex query QCO is a 2-tuple 〈݀݁݁ݎ݅ݏ, 〈ݐݑ݌݊݅ ∋ ∀〈 ௜ܱ, ܴ௜〉 ∈ ;݁ݎ݅ݏ݁݀ | ௜ܱ| ൐

1	∎

An example of a complex query is the query that is given by the requestor Chris in our use

case. The query is structured as ܳ஼ை ൌ ,ܦ :where	ܫ

ܦ ൌ ሼ〈ሼܿ݊݋݅ݐܽ݉ݎ݂݅݊݋, ,ሽ݋݂݊݅	ݎܽܿ ,݊݋݅ݐܽܿ݋݈	݌ݑ݇ܿ݅݌ሺ	݊ܫ݀݁ݐܽܿ݋݈ 		ሻ〉ሽ݋݄݃ܽܿ݅ܥሺ	݊݋݅ݐܽ݊݅ݐݏ݁݀⋀ሻݕݐ݅ܥ	ݏܽݏ݊ܽܭ

and ܫ ൌ ሼ〈݊ܽ݉݁, ,݊݋݅ݐܽܿ݋݈	݁ܿݎݑ݋ݏ ,ሽ݊݋݅ݐܽܿ݋݈	݊݋݅ݐܽ݊݅ݐݏ݁݀ ሽ〈݈݈ݑ݊

The implication of the output parameters in a complex query is that all the desired output

parameters (or states) are in conjunction. In the above query the desire is to have both the

confirmation as well as the car profile together as a single desire. Absence of one of the

parameters from the generated output of a matching service will disqualify the service from

being a solution.

Definition 3.9: A compound query QCP is a 2-tuple 〈݀݁ݐݑ݌݊݅,݁ݎ݅ݏ〉 	∋ 	 ∃〈 ௜ܱ ,ܴ௜〉, 〈 ௝ܱ , ௝ܴ〉 	 ∈

;	݁ݎ݅ݏ݁݀ | ௜ܱ| ൌ 1	 ∧ ห ௝ܱห ൐ 1	∎	

According to the above definition we can perceive a compound query as mixed set of

simple and complex queries. For brevity we only consider queries that are complex while

 91

proposing the service discovery process and the service composition process without any

loss of generalization. We can do so because any compound query is essentially simple and

complex queries that are OR-ed up during discovery and composition since each member in

the query desire is independent from the requestor’s standpoint.

3.11 DL-Encoding of DQM Query

Similar to service encoding we DL-encode queries into string of bits (1s and 0s) so

that the semantic properties of the query parameters (both input and desire) are preserved.

Queries that contain multiple desires are split into sub queries such that each sub query

contains a single desire. Since the query model implies that multiple desires are in

disjunction with each other (i.e. mutually independent) hence, each sub query can be treated

and processed as a completely separate query. However, as mentioned earlier, at times there

can be some sort of hidden dependency (like temporal) that is not discernible from the point

of view of the requestor. For an example, suppose a query has one desire of renting a car

from Kansas City to Chicago within next 14 days. Another desire within the same query is

to return to Kansas City from Chicago after spending a week in Chicago. The Q-T1 of this

query is

ሼ〈ሼܿܽݎ	݈݂݁݅݋ݎ݌, ,ሽ݊݋݅ݐܽ݉ݎ݂݅݊݋ܿ	ݎܽܿ ሼ݈݊ܫ݀݁ݐܽܿ݋ሺ݌ݑ݇ܿ݅݌, ሻݕݐ݅ܥ	ݏܽݏ݊ܽܭ ∧

ሻ݋݄݃ܽܿ݅ܥሺ݊݋݅ݐܽ݊݅ݐݏ݁݀ ∧

,݁ݐܽ݀	݁ݒܽݎݐሺ݄݊ܽܶݏݏ݁ܮ݁ܿ݊݁ݎ݂݂݁݅݀ ,݁ݐܽ݀	ݐ݊݁ݎݎݑܿ 15ሻሽ〉…	〈ሼ݂݈݄݅݃ݐ	݊݋݅ݐܽ݉ݎ݂݅݊݋ܿሽ,

ሼ݀݁݊݋݅ݐܽ݊݅ݐݏሺݏܽݏ݊ܽܭ	ݕݐ݅ܥሻ ∧ ,݁ݐܽ݀	݈݁ݒܽݎݐሺ݋݈ܶܽݑݍܧݐ݊݁ݎ݂݂݁݅݀ ,݁ݐܽ݀	ݐ݊݁ݎݎݑܿ 21ሻሽ〉ሽ

 92

In this example we see that the hidden dependency between the two desires is that if

the first desire is not satisfied then the second desire even if satisfiable becomes

unnecessary. Hence, even if the two desires can be treated as two sub Q-T1s still there lies a

hidden problem. We leave the treatment of these cases as a future work. For now, we

assume that multiple desires do not have any hidden dependency and are purely disjunctive

in nature. Based on this assumption, each of the sub queries are then encoded separately as

follows:

 Simple Query Q-T1 Encoding: Encoding simple query is pretty straightforward. Since a

simple query contains only one desire parameter the Q-T1 gets the bit code of the single

concept parameter that it carries. For an example, if the desire is {car} then according to

the ontology encoding shown earlier in this chapter the Q-T1 is encoded as DL-

code(car) = 0*10011.

 Complex Query Q-T1 Encoding: Encoding a complex query is done by OR-ing up the

codes of each of the individual desire parameters within the Q-T1. Hence, if the desire is

{car, confirmation} then Q-T1 is encoded as: [DL-code(car) ∨	DL-code(confirmation)].

 Compound Query Q-T1 Encoding: Since a compound query is a disjunctive collection

of simple and complex queries hence, we can split it up into simple and complex sub-

queries. After that we can encode each of the sub queries as stated in the earlier two

cases.

 Q-T2 Encoding: Irrespective of the type of query the Q-T2 component is encoded by

OR-ing up the individual codes of input concept parameters. Thus, for an example, if the

 93

input is {name, source city} then the Q-T2 is encoded as: [DL-code(name) ∨	DL-

code(source city)].

3.12 g-subsumption based Query Matching

Semantic query matching for service discovery [145 - 154] is most often based on

the web service match model proposed by Paolucci et al [132] and Sycara [133]. According

to this model there are three types of query matches: (i) exact, (ii) plugin, and (iii) subsume.

Exact matching is the case when all of the desired input/output set are either same or direct

subclasses of one or more generated output of a matching service. For an example, the desire

of a car can be considered as an exact match of a service providing vehicle according to the

vehicle ontology introduced earlier in this chapter. Plugin matching is the case when all of

the desired output set are indirect subclasses of one or more generated output. For an

example, the desire of a sedan can be considered as a plugin match with a service providing

vehicle. Subsume matching is the case when all of the desired output set are super classes of

one or more generated output. For example, the desire of a car can be considered as a

subsume match with a service providing sedan. The relative strength of these three types of

matches is given as: subsumes < plugin < exact.

Although the above query matching scheme is widely followed in research proposals

on semantic service discovery we contest this scheme to be seriously flawed in several

aspects. In this section we first identify and discuss these flaws. Then we propose a derived

matching scheme that eliminates the identified flaws. The flaws are identified as follows:

 94

A. Order is incorrect: For Q-T1 query (containing desire) the match is computed over the

service output. In this case any service providing an output state that is either exact or a

hyponym of the desired output state should be selected as one of the candidate end

services. For an example if Q-T1 desires the car then a rental service producing sedan is

a match. This is because under all situations the service promises to provide sedan which

is a car. Hence, the probability that the Q-T1 is going to be satisfied is 1 (assuming that

the pre-condition of the service is satisfied by Q-T1). On the other hand, suppose the

service has output vehicle then the match cannot be considered strong (although it can

still be considered a weak match). This is because the output of the service may take on

several possible discrete states one of which is the state car (other states can be bus,

boat, aeroplane, etc). Thus, the probability of that the Q-T1 query can be satisfied is

dependent on the number of discrete output states that the service can produce. Hence,

for Q-T1 query we argue that the order of match strength (query to service) should be:

exact > subsumes > plugin.

B. Order is not preserved: For Q-T2 query (containing input) the match is computed over

the service input. In this case any service that requires an input state that is either exact

or a hypernym of the given input state should be considered as a Q-T2 match. For an

example, suppose a service requires car (type) as input and produces manufacturer as

output. If the given input of a Q-T2 query is sedan then the service should be considered

as a match. However, if the given input is vehicle then the service may be a match with a

match probability dependent on the number of discrete given input states possible. In

this case the given input can sometimes be car, while at some other time be bus. Hence,

 95

for Q-T2 we argue that the order of match strength (query to service) should be: exact >

plugin > subsume. Therefore, we conclude that the match order is not preserved and

differs according to the query type.

C. Accuracy can be improved: The matchmaking algorithms that are designed according to

the Paolucci match order suffer from serious accuracy issues. This is because according

to these algorithms a match is valid if all the desired output parameters have match with

one or more service output. To illustrate this further let us consider a complex Q-T1

query having a desire {car profile, confirmation} and a service having output

{confirmation}. Now, as the desire is not completely satisfied hence, in conventional

models the service will not be chosen as a candidate. However, in reality it may be

possible that service may call up another third-party service that can generate the output

{car profile} when given the input {car} by the service. Thus, considering only

complete match may adversely affect the recall. In the same way if the Q-T1 query is

simple having multiple desires then also the recall will be negatively affected. Also since

the order is incorrect for both Q-T1 and Q-T2 queries hence, the algorithms will

adversely affect the precision by falsely including services as strong matches (while in

reality they may be weak).

In our proposed matchmaking scheme we do not apply the same match strength

order for Q-T1 and Q-T2 queries. There are 3 basic types of matches: (i) strong, (ii) weak,

and (iii) sibling. A strong match is either an exact match or a plugin/subsume (depending on

query type) match (car vs. sedan). A weak match is a subsume/plugin (depending on query

type) match (sedan vs. car). Lastly, a sibling match is neither a strong match nor a weak

 96

match but a match where there is at least one most specific common parent (bus vs. car

where both has most specific parent vehicle). Based on these 3 basic matches we consider 9

different match possibilities between a query and a service. They are given as per strength as

follows:

1. Strong-Strong Match (SS): This is the case when the desire part of the query (Q-T1) has

a strong match (exact or subsume) with service output while the input part of the query

(Q-T2) has a strong match (in this case exact or plugin) with the required input of the

service.

2. Strong-Weak Match (SW): This is the case when the desire part of the query (Q-T1) has

a strong match (exact or subsume) with service output while the input part of the query

(Q-T2) has a weak match (in this case subsume) with the required input of the service.

3. Strong-Sibling Match (SSi): This is the case when the desire part of the query (Q-T1)

has a strong match (exact or subsume) with service output while the input part of the

query (Q-T2) has a sibling match (in this case sibling) with the required input of the

service.

4. Weak-Strong Match (WS): This is the case when the desire part of the query (Q-T1) has

a weak match (plugin) with service output while the input part of the query (Q-T2) has a

strong match (in this case exact or plugin) with the required input of the service.

5. Weak-Weak Match (WW): This is the case when the desire part of the query (Q-T1) has

a weak match (plugin) with service output while the input part of the query (Q-T2) has a

weak match (in this case subsume) with the required input of the service.

 97

6. Weak-Sibling Match (WSi): This is the case when the desire part of the query (Q-T1)

has a weak match (plugin) with service output while the input part of the query (Q-T2)

has a sibling match (in this case sibling) with the required input of the service.

7. Sibling-Strong Match (SiS): This is the case when the desire part of the query (Q-T1)

has a sibling match (sibling) with service output while the input part of the query (Q-T2)

has a strong match (in this case exact or plugin) with the required input of the service.

8. Sibling-Weak Match (SiW): This is the case when the desire part of the query (Q-T1)

has a sibling match (sibling) with service output while the input part of the query (Q-T2)

has a weak match (in this case subsume) with the required input of the service.

9. Sibling-Sibling Match (SiSi): This is the case when the desire part of the query (Q-T1)

has a sibling match (sibling) with service output while the input part of the query (Q-T2)

has a sibling match (in this case sibling) with the required input of the service.

Each of the above 9 match cases may be either partial (where not all the desire set is

satisfied by a single match) or complete (where all of the desire set is satisfied). It may

happen that in some cases there is a mixed match. For an example, suppose a complex query

has desire {car profile, email confirmation} while input {name, source location, destination

location}. A service has output {sedan profile, sms confirmation} while input {name, ID,

destination location}. In this case, the Q-T1 has a mixed match with the service output

where the first desire state has a strong match while the second desired state has a sibling

match. In such a situation the weaker match dominates and the desire is said to have a

complete sibling match. Similarly, for the Q-T2 the required input is said to have a partial

strong match. Note that Q-T2 is always matched with respect to the service while Q-T1 is

 98

always matched with respect to the query. We now present the matchmaking algorithm that

is applied for pair-wise query-service matching.

3.13 2-Phase Service Discovery Algorithm: Outline

Service queries are shot into an SOA based system in two phases: (1) desire

matching phase and (ii) input matching phase. The proposed discovery & composition

system (both broker based as well as agent-based SMARTSPACE) splits the given query

into the desire and the input components as a pre-searching process. Each component is

treated as a separate query: type-1 query for the desire matching phase (Q-T1) and type-2

query for the input matching phase (Q-T2).

 Desire Matching Phase: The first phase called desire matching. In this phase the

system works for the requestor and looks for all services that can provide either partially

or completely his/her desire. At the end of this phase a set of matching candidate

services (called end services) are retrieved that are capable of satisfying the query desire.

 Input Matching Phase: If the retrieved candidate service set is empty then the second

phase is aborted. If not then the second phase, called input matching, starts off. In this

phase the system shifts mode and starts working for the candidate service set by trying to

serve them with their required input. It is at this phase that the algorithm differs from the

proposed centralized broker based model to the proposed distributed multi-agent based

model (i.e. SMARTSPACE). More details will be given in subsequent chapters.

 99

3.14 Discussion

The advantages of query modeling have already been discussed in the previous

section. In this section we conclude the chapter with a discussion on the effect of 2-phase

service searching and query type classification into simple, complex and compound query

on service discovery and composition.

A. Effect on Service Discovery:

 Improves Matching Computation: The advantage of 2-phase search on service

discovery can be significant. One of the properties of the proposed query model

states that if Q-T1 query during first phase of service searching (desire matching

phase) fails (i.e. candidate set is empty) then there is no need of conducting the

second phase (input matching phase). This is because failure of type 1 query

suggests that there is no end service that can produce the desired final state. In such a

situation the second phase is unnecessary. This significantly reduces unnecessary

computational overhead on the system for a lot of query types that are not

serviceable. When compared to prevalent single phase service discovery based on

task-based or specification-based queries we can observe that in those techniques a

lot of unnecessary matchmaking computation is done by considering all the

description parameters (service name, input/output/pre-condition/result parameters,

service category, QoS parameters, etc) in cases where the many of the services

cannot output the desire. In other words, in our model the failure cases are detected

much faster.

 100

 Improves Search Precision: Since the query is classified formally into simple,

complex, and compound queries based on the nature of the desire component the

service discovery can be done with higher precision as compared to task-based and

specification-based queries. This can be illustrated using the use case scenario.

Suppose that the car profile service can only provide the car profile but cannot

provide the confirmation that was desired as well by the requestor. Also let us

suppose that the “car information service” is provided with all the input that it

requires (viz. name). In a task-based model, since the query matching is integrated

hence, the desired abstract service will have a high match with the car rental service

although an important desire (i.e. confirmation) is missing. This results in false

positive and affects the search precision. However, in our proposed query model as

the searching is done in two-phases, hence the system reports a partial match with

the car information service. As the query is a complex query hence, the system

rejects such a partial solution since the car profile output is in conjunction with the

desired confirmation output. However, had the query been a simple query consisting

of two independent desires (car profile and confirmation) then the partial solution

would have been accepted and suggested by the system. Thus, we see that query

classification helps in increasing the precision in our proposed model. More details

of the discovery process (both broker based as well as SMARTSPACE based) will

be given in later chapters.

 101

B. Effect on Service Composition:

 Eliminates Issue of Selection Incompatibility: 2-phase service searching allows

seamless integration of service composition with service discovery and selection.

Treating the composition problem separate from the discovery and selection problem

has several disadvantages. One of the major problems is the issue of selection

incompatibility if the selection process is done before composition. In our proposed

model, since the first-phase involves only discovery while the second phase involves

the selection process integrated into the composition process hence, the 2-phase

service search helps in avoiding the aforesaid problem.

 Improves Composition Computational Complexity: The other problem that is

introduced as a result of this approach is that because of the possibility of a large

number of functionally incompatible selected services (especially in the case when

the composition involves the integration of lot of services) hence, in the worst case

the problem becomes NP-Hard. In our proposed solution the explosion of selection

incompatibilities is avoided using two different techniques applied specifically for

the centralized and the distributed agent-based systems. For the centralized model a

notion of reachability is applied using which a set of candidate source services are

retrieved in the second search phase that take in the given input and are composable

(i.e. reachable from) directly or indirectly (using intermediary services) with the set

of already retrieved candidate end services in the first phase of the search. For the

distributed model since there is no centralized global knowledge of the underlying

service dependency network hence, the notion of reachability may become quite

 102

complicated and expensive to be implemented. Instead, candidate services (starting

from end services) shoot Q-T1 queries where desire becomes the required input that

they could not find or sometimes in the cases of partial satisfaction of initial desire in

complex queries the Q-T1 carry desires that are still to be satisfied. In both the

proposed centralized and distributed systems, since the selection process is deferred

till the very moment of composition hence, the issue of functional incompatibility

does not arise. A detailed discussion on service composition is given in later chapters

on service composition.

3.15 Results

To get an insight over the computational validity of the proposed DL-Encoding

technique and its effect over the g-subsumption algorithm we have conducted certain

experiments. We conducted our experiments on a system having a CPU cycle of 1.4 GHz

and a RAM of 2 GB. The experiments had two objectives as follows:

 To understand the computational efficiency of pre-processing g-Arrays (i.e.

DLEncoding) of semantic web services (collected from standard OWLS-TC v2 dataset)

using DL-Encoding.

 To compare the computational efficiency of g-subsumption with other DL-based

reasoners: FACT++, Pellet, and Racer.

For the first experiment we first folded the ontologies covered in OWLS-TC v2 into

several sub-ontologies – each with different concept sizes starting from a concept size of

100 to a concept size of 2900 (figure 14). We found that there was an approximately

 103

linear growth in the computational cost of DLEncoding. We conducted the same

experiment with a randomly generated set of ontologies and found a quadratic growth

rate instead (figure 15). Since the probability of inclusion of complex concept definitions

increases with the ontology size in the randomized setup hence, the computational

growth rate is more in this case as compared to OWLS-TC dataset.

Figure 14: DL-Encoding Runtime over OWLS-TC v2 dataset

 For the second experiment we again took the standard OWLS-TC v2 dataset. The

concepts within the ontologies are pre-processed into their corresponding O-arrays. The O-

array represents the most significant service feature - Output. We then conducted a pair-

 104

wise subsumption testing between all distinct O-arrays within the ontologies for each of the

subsumption reasoners (vi. Pellet, FACT ++, Racer, and g-subsumption). We averaged the

computational time for subsumption as shown in figure 16. We observed a major

improvement in the subsumption test runtime for g-relation. The drop in the runtime is

because of two reasons: (i) the bit based OR operation, and (ii) the stratified and compact

Figure 15: DL-Encoding Runtime over Random Dataset

form of the g-array data structure as compared to a full DL definition taken as input

by the DL-based reasoners. We also observe that the dynamic g-relation performance is not

as good as the static g-relation. This is because the static subsumption is basically based on

the b-code that uses the normal logical OR operator while the dynamic subsumption is based

 105

on the DLcode that uses the DL-OR operator which has a significant constant factor in its

worst case time complexity.

0.975

0.77

0.986

0.005

0.1

0.875

0.723

0.863

0.0042
0.083

0

0.2

0.4

0.6

0.8

1

1.2

Pellet FACT ++ Racer g-relation (static) g-relation
(dynamic)

T
im

e
 (
s
e
c
)

Subsumption Reasoners

Subsumption Test Performance (OWLS-TC v2)

Series1

Series3

Figure 16: Comparative Analysis of DL Subsumption Test Runtime

3.16 Conclusion

The chapter has introduced the g-subsumption service matchmaking algorithm. The

proposed algorithm is a linear time matchmaker that does not involve DL-reasoner based

subsumption while checking subsumption type for service descriptions that are dynamically

defined by service providers. For this purpose it utilizes a novel bit-based encoding

technique called DL-Encoding. Service matchmaking is going to be one of the foundational

operations for efficient discovery of services in two ways:

 106

 Organizing services into their corresponding (functional) categories for pruning the

search space

 Mapping consumer queries into the organized service space to discover the best

matching services.

While the former will be discussed in the next chapter the latter is going to be treated in

chapter 5 and 6.

 107

CHAPTER 4

SERVICE ORGANIZATION BY LEARNING SERVICE CATEGORY

4.1 Introduction

As mentioned in the previous chapter one of the major operations in Service

Oriented Architecture (SOA) based systems is service discovery. In order to facilitate

dynamic on-demand access to services we need an efficient way of discovering the required

services out of a large pool of functionally different services. Service discovery process can

become very efficient when service advertisements are categorically organized into well-

defined access structures such as Universal Description Discovery & Integration (UDDI [8])

and Distributed Hash Tables (DHT) based registries such as CHORD [155]. A conventional

way of grouping services into categories is to apply machine learning techniques for

learning service categories. The process is called service category learning. The general

problem statement is as follows:

Given a set of service descriptions (that contain functional and other QoS features)

we need to model a learner that can predict the labeled or unlabeled category (mostly

functional) of the services by observing their corresponding descriptions with minimum

prediction error.

Functionally similar category classes/clusters can then be indexed into centralized

registries or into DHTs depending upon the application, domain, and underlying network

overlay issues. A consumer query is then mapped over the cluster space and the service

having the best match is selected. The evaluation of a best match is usually based upon a

 108

pre-defined ranking function and the process is called Service Selection. Some researchers

have used supervised learning algorithms such as SVM based classifiers [165 - 166], LSI

(Latent Semantic Index) based classifiers [164], Probabilistic LSI based classifiers [172 -

173], and naïve Bayesian classifiers [157, 163] to classify service advertisements (formally

represented by a description language such as WSDL or OWL-S) into domain categories

according to the service functionality. Ensemble learning has also been proposed by some

work [161, 163]. Some other works have applied partitional unsupervised learning

techniques such as KNN (k-nearest neighbor) [163], k-means (and derivatives) [168, 176],

star clustering [169] etc. There are also research works that have applied hierarchical

unsupervised learning algorithms such as Agglomerative (and derivatives) [163, 171, 181],

Word-IC algorithm [177], etc. In most of these works a service description is formalized as a

feature vector that constitutes the functional features (i.e. Input, Output, Pre-condition, and

Result) and descriptive features (usually key terms having high TF-IDF).

In this chapter we propose a novel service category learning algorithm, called

Semantic Taxonomical Clustering (STC), which utilizes semantic descriptions of services.

However, the approach does not apply statistical learning techniques (as is the case in most

service category learning algorithms). The assumption behind this approach is that service

descriptions have to be semantically defined using a set of domain ontologies (see chapter

3). The chapter starts with a detailed discussion on the limitations of some significant

statistical service category learning approaches. Since all these approaches are based on the

notion of a distance measure that models the pair-wise similarity between two services the

chapter then shows some of the limitations of distance measure based approaches in general.

 109

After that the STC algorithm together with its conceptual foundations and properties is

proposed and analyzed. The chapter concludes with a comparative empirical result that

shows: (a) the runtime efficiency of the proposed algorithm as compared to a nearest

neighbor based clustering algorithm (designed by us) over a set of randomly generated

dataset and (b) the domain-based accuracy of STC when compared against an expert

evaluated categorization of the standard OWLS-TC v2 web service dataset.

4.2 Related Work

There have been several research works on service category learning so far [156 -

177]. Service categorization is usually motivated by the thematic properties that have been

proposed in standards such as UNSPCS (United Nations Standard Products and Service

Codes) [178], NAICS (North American Industry Classification System) [179], etc. Thematic

properties may include the service functional properties (input types, output types, pre-

condition, and result), the QoS properties (availability, reliability, etc), domain information

(i.e. area of application) that can be extracted out of service descriptions. A distance measure

is then modeled that is used to compute the pair-wise similarity between two service

descriptions. In general the distance measure can be of two types: (i) keyword based and (ii)

ontology based. In key word based distance measures the similarity of two services is

computed based on TF/IDF technique derived from IR research [147 - 148, 158, 170 - 171].

TF/IDF is done to ascribe weight to the documents (service descriptions) with respect to a

particular term (attribute keyword). The weighted attributes (functional attributes are input,

output, pre-condition, post-condition) of the services are represented as a feature vector and

 110

then the similarity between the attributes are computed based on conventional vector cosine

similarity measure. IR based similarity computation can be very useful where we do not

have formalized semantics for the service descriptions. As an alternative approach, there has

been significant research on ontology based semantic distance measure [132, 153 - 154, 180,

182]. For any service similarity model we need to define a measure. Semantic distance

measure can be classified into three categories: (i) taxonomic distance based [183 - 184], (ii)

information content (IC) based [185 - 186], and (iii) concept property based [182, 187 -

188]. There also have been considerable researches on hybrid approaches incorporating

features from one or more measures.

In most research works relating to service categorization the learning problem is

limited to functional properties only. The motivation for this approach is that service

category learning is primarily done for service discovery and discovery is essentially

functional matching consumer queries with services. In general we can classify all such

learning techniques into two basic learning frameworks: (i) supervised learning and (ii)

unsupervised learning. In supervised learning mode it is essential to have a sufficiently

“sound” training data of service descriptions that guarantees minimum over-fitting and

under-fitting. Also, we need to have a clear understanding of the categories into which new

service descriptions can be fitted into. Research works have involved classical Machine

Learning techniques such as SVMs (Support Vector Machine) [165 - 166] and NBC (Naïve

Bayesian Classifier) [157, 163]. Some works have also used more recent Information

Retrieval models such as LSI (Latent Semantic Index) [164] and PLSI (Probabilistic LSI)

 111

[172 - 173]. However, in general, there are some major drawbacks in supervised learning of

service categories:

 Curse of Service Category: In an open SOA based system the number of classes that

needs to be predefined is practically impossible to estimate. This is because old

categories (i.e. classes) get deleted non-deterministically and new categories get added

non-deterministically. Hence, a suitable training set is very difficult to create. The

problems of over-fitting and under-fitting are always innate for service categorization.

Hence, service category algorithms such as Naïve Bayes and SVM may not be good

choices (see experimental results section in this chapter for supportive evidence).

 Curse of Dynamic Service Set: Since the set of services is dynamic hence, we cannot

use learning algorithms that are not online. Online statistical learning is computationally

expensive in terms of cluster space convergence as the training period can be very long.

Also, it is very difficult to guarantee a convergence for a particular algorithm.

 Problem with LSI: LSI (Latent Semantic Indexing) is a technique that helps to reduce

the dimensionality of service-term matrix into k-topics such that services that do not

have common terms can also be brought together into same group if they have the same

topic. In this context a topic can be seen as a thematic class of a service while terms are

the parameters and descriptive terms. The intuition is that if the matrix can be

decomposed into an SVD (Singular Vector Decomposition) then the original sparse

matrix can be reduced into a lower k-dimension matrix using k ranks. However, the

selection of the optimal k value is not easy. Also, the approach is intuitive and is not

theoretically sound.

 112

 Problem with PLSI: An advanced optimization over the LSI approach is PLSI

(Probabilistic LSI). In this approach the document, topic, and term are structured as a

Bayesian Network instead of a matrix. However, one of the big disadvantages of this

approach is that it is not easy to estimate the optimal number of latent variables (i.e.

topics) required to model the best classifier. Another major drawback is that topics are

assumed to be conditionally independent with respect to service descriptions within the

Bayesian network structure. However, this assumption may not be valid since the

existence of one topic may influence the occurrence of another topic in cases where

services may belong to multiple topics (e.g., a car rental service can act as both a rental

service as well as a car lookup service).

 Problem with Naïve Bayesian Classifier: In category learning using Naïve Bayesian

classifier the disadvantage is the lack of proper statistical data for dynamic service set.

Since in order to calculate the posterior probability for a service to belong to a particular

category class we need to estimate the prior probability of the service and the likelihood

that the category class accurately includes the service. To have accurate estimation

(generally based on frequency of occurrence) we need a strong representative statistical

data set which is difficult to obtain. Moreover, the algorithm is not suitable for online

learning.

Unsupervised learning mode is the other alternative method of service category

learning. In this mode we do not need to have pre-understanding of the service categories

into which services have to be fitted with. The training dataset is used to generate a learning

model that is basically a set of clusters of service descriptions such that it maximizes the

 113

global inter-cluster distance (i.e. service functional dissimilarity) while minimizes the global

intra-cluster distance. In other words, services are grouped into functionally similar clusters

in a way such that new observations do not disturb the cluster space topology by re-

modeling the learner (creating new clusters or modifying old clusters). One of the

commonest techniques in this direction of service category learning is using k-means based

algorithms [168, 176]. These algorithms are partitional in nature in the sense that it

partitions the training set into disjoint partitions (i.e. clusters) where the number of partitions

is pre-estimated. Subsequent new service descriptions are then fitted into these partitions

with a minimum error. Another technique of unsupervised learning is to use hierarchical

clustering algorithms such as agglomerative based clustering [163, 171, 181]. In these

approaches service descriptions are pair-wise compared to form of a kind of minimum

spanning tree over the cluster space (instead of disjoint partitions). The tree structure

enforces a partial ordering over the cluster space by representing nodes at lower depths to be

a more generic set of similar services while nodes at higher depths are more specific sets of

similar services. The partial order is essentially the intra-set distance that is lower in bottom

level nodes while higher in top level nodes. In this approach there is no requirement to pre-

estimate the total number of nodes (i.e. sets/clusters) as they are self-induced by the

algorithms. As with supervised learning mode unsupervised service category learning also

comes with several drawbacks as follows:

 Problems of Partitional Clustering: Partitional clustering algorithms such as k-means

and derivatives [168, 176] have some open problems that still demand efficient solution.

One such problem is the estimation of the number of centroids (i.e. clusters) that can

 114

converge to a optimal cluster space. The other problem is the optimal selection of

centroids as different selections lead to different qualities of final cluster space (in terms

of intra-cluster similarity and inter-cluster dissimilarity). The third problem is that since

such algorithms are ad-hoc it is not suitable for a services particularly which need

dynamic online clustering

 Problems of Agglomerative Clustering: As agglomerative clustering of services [163,

181] is a bottom-up ad hoc approach hence, it is computationally expensive as it requires

all pair similarity computation. Also there needs to be a halting condition for the

merging which is difficult to design. The halting condition should be such that the best

level of the hierarchy is achieved with maximum precision and recall. Also, since the

approach is ad-hoc we cannot apply it in its entirety to dynamic service set clustering.

 Problems with Merge-Split Clustering: In [171] an agglomerative merge-split clustering

(called Woogle) has been proposed for service discovery. The approach is slightly

different from most approaches in that the clustering is not done over the service set but

is done over the set of terms. A similarity metric is proposed based on term association.

Two terms are considered to be similar if they have a sufficient confidence-support

score. Each cluster finally contains a set of kernel terms that enforces strong intra-cluster

similarity. A cluster is split so that each cluster can have all its member terms as kernels.

Services are discovered based on Input-Output matching with a query where Input and

Output is a bag of terms. If the required output terms can be clustered into the same

clusters that represent the generated output term bag then there is a match. However, the

major drawback of this approach is that the cluster space convergence is computationally

 115

expensive. Also since it is agglomerative in nature hence, it is not suitable for dynamic

service set clustering.

 Problems of Star Clustering: Categorizing services using star clustering has been

introduced in [169]. However, the approach suffers from the problem of ad-hoc pair-

wise similarity computation that is essentially expensive. Moreover, since it is ad-hoc

hence, it is not suitable for dynamic service set clustering. Apart from that, identifying a

star structure within the linked up similar services is also computationally expensive.

 Problems of KNN: KNN (k-Nearest Neighbor) [163] can be a good choice for online

clustering. However, it may suffer from under-fitting because of the unknown

randomness within the dynamic service set. Also since it is an all inclusion approach

with no revision of existing clusters for splitting consideration the precision can be

adversely affected.

4.3 Shortcomings of Distance-based Learning

In general, most service category learning techniques (supervised and unsupervised)

discussed so far are distance measure (i.e. similarity measure) based. In this section we

discuss some of the major limitations of distance-based learning:

 Problem of Threshold Selection: Threshold selection is necessary for learning

algorithms that require some sort of selection condition for two services to be considered

similar. Barring a few techniques (such as k-means and k-nearest neighbor based

algorithms) most service category learning algorithms require an optimal threshold

selection. If the threshold is too tight then it might affect the recall while if the threshold

 116

Figure 17: Ontology of 3 Taxonomies: Vehicle, Location, & Address

is too loose then it might affect the precision. In most cases the choice of threshold is

empirically done. This consumes the overall learning time period and requires lot of

manual intervention.

 Problem of Sample Selection Order for Online Learning: In online learning mode we

do not have a fixed service set to begin with. In such a framework the order in which

services are observed and categorized may have negative side-effect on the overall

clustering performance. We call this problem of sample selection order. To explain this

problem we take an example. Let us consider three services s1, s2, and s3. Let these

services need to be clustered according to their output feature O (stratified clustering). It

is given that s1.o = {car, location}, s2.o = {vehicle, city, address}, s3.o = {SUV,

street_address}. The domain set for this example is: {vehicle, location, address}.

Semantically, s1 and s2 are siblings under a common abstraction {vehicle, location}

while s3 is sibling to this abstraction under a common abstraction {vehicle}.

 117

Figure 18: Effect of Sample Selection Order over Euclidean Space

In other words, all the three services should belong to one categorical cluster. Suppose

that the temporal online order in which each of the three services are observed into the

system (i.e. the timeline over which they are first published) is: ݏଵ → ଶݏ → . We now	ଷݏ

prove that the converged cluster space can be dependent on the sample selection order. It

is to be noted that sample means a service in this context.

Theorem 4.1: Given three sample points s1, s2, and s3 in a sample space S (where S is a

metric space) there exists some selection threshold d s.t. ܵܥଵଶଷ 	≢ 	ଵଷଶܵܥ	 ≢

 where CSxyz represent the cluster space formed as a result of sample selection	ଷଶଵܵܥ	

order ݔ → ݕ → .ݖ

Proof: We can draw a triangle ∆ݏଵݏଶݏଷ on the metric space S (figure 18) representing the

sample space. Now, considering order ݏଵ → ଶݏ → .ଷ let us assume that dist(s1,s2) < dݏ

We see that S3 is included into the cluster {S1, S2} if and only if dist(s3, M) < d (where M

is mid-point of s1s2). Using Apollonius Theorem [190],	ݏଷܯ
ଶ
ൌ ௦య௦భ

మା	௦మ௦య
మ

ଶ
െ ௦మ௦భ

మ

ସ
	.

 118

Similarly, for the sequence ݏଵ → ଷݏ → ଶܰݏ ଶ, we getݏ
ଶ
ൌ ௦మ௦భ

మା	௦మ௦య
మ

ଶ
െ ௦భ௦య

మ

ସ
	 (where N is

the mid-point of S1S3). Now ݏଷܯ
ଶ
ൌ 	 ଶܰݏ

ଶ
݂݂݅	 ൤௦య௦భ

మା	௦మ௦య
మ

ଶ
െ ௦మ௦భ

మ

ସ
ൌ 	 ௦మ௦భ

మା	௦మ௦య
మ

ଶ
െ

௦భ௦య
మ

ସ
൨	. This means that	ݏଷܯ ൌ 	 ଵݏଷݏ	݂݂݅	ଶܰݏ ൌ . Thus, unless the three sample	ଶݏଷݏ

points are topologically equidistant, the distance between the third selection and the first

cluster will vary based upon the particular sequence chosen. Hence, for a threshold d it

may happen that ݏଷܯ ൐ 	݀ ൐ ܯଷݏ	ݎ݋	ଶܰݏ ൏ ݀ ൏ . From this result we can conclude	ଶܰݏ

that ܵܥଵଶଷ ൌ 	ଵଷଶܵܥ ൌ 	݀∄	݂݂݅	ଷଶଵܵܥ ∋ 	∀݅, ݆, ;ܭ ݀ ∈ 	 ,	ܭ௜ݏൣ ൧ where K = {M, N, P}ܭ௝ݏ

is the mean sample point of first cluster. It is to be noted that the above theorem can be

generalized for n sample points.

 Problem of Disjoint Category Assumption: In most distance measure based learning

approaches the basic assumption underlying the learning problem is that clusters/classes

are disjoint. In other words, if a particular service belongs to one cluster then it cannot

belong to another cluster within the same cluster space. However, this assumption is not

applicable for services since a service can actually be categorized in more than one way.

For an example, a car rental service having Output = {car_profile, confirmation} can

also be used as a car lookup service without the confirmation.

 Problems of Integrated Similarity Measure: Integrated Similarity measure based

learning is a very popular approach where the measure is linear weighted combination

(mostly a simplex) of all the functional service features (Input, Output, Pre-condition,

 119

Result) so as to produce a single distance score. However, integrated measures suffers

from some serious drawbacks that have been discussed below:

 Effect of I/P match over O/R match: In integrated approach it may happen that two

service vectors are exactly similar in terms of their Input (I) and Pre-condition (P)

features while different in terms of their Output (O) and Result (R) features. A high

match in I and P can shift the overall similarity score beyond the chosen threshold even

if there is a low match in O and R. This effect can be reduced to some extent by carefully

choosing weights for each of the features [182]. However, this method also does not

guarantee the elimination of this problem for all cases. For an example, in a case where

the number of Input parameters of the two compared services is significantly higher than

the number of Output parameters and there is an exact match between their Input we

may see that the two services are clustered together as similar. Thus, two services may

be incorrectly clustered together even though their output and effect are different.

However, service functionality is directly dependent on the O feature and its

corresponding R feature. The I and P features indirectly determine the O and R. If any

two services have the same output then irrespective of the type of input we can say,

broadly, that they are functionally similar to some extent. In the given example s1 and s2

have output {vehicle, location}. Imagine that s1 takes as input {customer_name,

credit_info} and s2 takes input {customer_password}. Thus, semantically the I feature in

this case has no subsumptive match. However, s1 and s2 are functionally similar as they

do the same job (i.e. providing vehicle service in a given location).

 120

 Loss of subsumption match information: As integrated approach provides an overall

similarity score based on some similarity distance metric it is impossible to discern from

this score whether the match is plugin or subsume or vector space neighborhood match

(see chapter 3) [147]. Thus, it may be possible that a high similarity score between two

services may actually be the result semantic relatedness between the corresponding

feature concepts (such as vehicle and car pickup location) instead of semantic

subsumption (such as vehicle and car). Because of the lack of distinction between the

different types of matches two services having the O car and bus can be put under the

same non-divisible (or atomic) cluster even though at a finer granularity level they

should belong to separate clusters.

 Effect of the assumption of feature dependency: Integrated approaches tacitly assume

that the features are mutually coupled. This belief arises from the fact that most research

approaches have formulated user queries as tasks (see chapter 5 for detailed discussion).

Due to this reason it is quite obvious to assume a one-to-one mapping between any

particular atomic task and a particular type of service. As per one-one mapping, for a

query match both given Input and desired Output components of an atomic task should

be satisfied by the same service (or services that are functionally similar). However, the

problem of service discovery is not independent from the problem of service

composition. This creates a more plausible scenario where a set of “end” services is

responsible for satisfying the desired Output of a query while another set of “source”

services can take in the given Input of the same query. The problem is to select services

in such a manner such that there exists at least one valid composition path from a source

 121

service to an end service. From this analysis we learn that integrated clustering of

services may actually lead to a poor recall with respect to query matching if we do not

distinguish between source services, intermediate services, and end services.

 Loss of Semantic Taxonomic Relation: Integrated clustering approaches take two

directions: (i) partitional clustering (such as k-means) and (ii) hierarchical clustering

(such as agglomerative). In the first case there is no way that we can define the

granularities over the cluster space. In the second case the granularity is defined by the

distance measure and the chosen distance threshold on that measure. For any pair-wise

similarity computation between a service and an existing cluster at a particular

hierarchical level it may happen that, because of the above specified three disadvantages

of integrated approach, the hierarchy may not be a semantic taxonomy in the sense that a

higher level cluster does not semantically subsume a lower level cluster. In other words,

in integrated approach a lower level cluster is a subset (and not a semantic subclass) of

the higher level cluster from which it is identified. We cannot define any subsumptive

relation between either the members of a cluster or the members of two hierarchically

differentiated clusters. This results in sub optimal cluster quality in terms of precision

with respect to query matching as there is a probability of false positives within a cluster.

Also the lack of semantic taxonomic organization substantially increases query matching

computation because: (a) it is difficult to identify the optimal hierarchical level of the

cluster space where the average precision and F-score can be maximized, and (ii) for a

complete query match we require an exhaustive search within each cluster as a single

 122

match with the mean of a cluster (considering it to be the identity of the cluster) does not

ensure that the entire cluster can be considered as a solution to the query.

4.4 Problem Statement - Reformulated

 In this section we formalize the problem of service clustering in the following

manner: Given a dynamic set of services ܵ ൌ 	 ሼݏ	|	ݏ ൌ 	 ,ܫ〉 ܱ〉 ∋ ܫ ൌ 	 ሼ݌	|	݌	 ∈ 	∆ሽ	&	ܱ ൌ

	ሼݍ	|	ݍ	 ∈ 	∆ሽ	&	ሺ∀;ݍ	݌∄	 ∋ 	ݍ ≡ generate a set of “feature similar” clusters		ሽ	ሻ݌ ܵܥ ൌ

	൛ܥ௜	|	ܥ௜ ⊆ 	ݏ∀	&	ܵ ∈ ;	௜ܥ ௜ݏ	 ≡		௝ݏ	
ூை ; 	݅	 ് ݆ൟ	.

The underlying assumptions of the problem definition are:

 There exists a countable domain collection D

 D is completely identified and structured into ontologies (∆)

 D is not covered (i.e. possibility for addition of new domain ontologies or domain

concepts is always open)

In the above formalism there are several observations that are noteworthy:

 All input and output parameters belong to an ontology	∆. In other words they are

semantically defined within an ontology. Such definition can be either dynamic (see

chapter 3) or borrowed from existing ontologies.

 For all input parameters there cannot exist any output parameter that are semantically

equivalent. In other words, the semantic definition of parameter types has to be unique.

This restriction is imposed because for services if an output is equivalent to the input

then basically the functionality of the service is invalid since behaviorally the service

always remains in the same functional state.

 123

 Feature Similarity (denoted as 			≡
ூை) is a stratified way of matchmaking services (see

chapter 3) where services are pair-wise matched according to a single functional feature

(either Input (I) or Output (O)). This way of clustering is in complete contrast to

conventional integrated category learning where all the feature set is treated as a service

vector for similarity computation over a vector space. It is to be noted that there is no

restriction as such to which feature be chosen for clustering (i.e. input or output). The

selection of a particular feature will depend on the discovery algorithm (whether

centralized or distributed). In chapter 5 it will be seen that for centralized discovery both

the features are selected individually for creating separate cluster sets – one for the

Output (termed O-cluster space) and the other for the Input (termed I-cluster space).

While in chapter 6 only the O-cluster space is created for distributed agent-based

discovery.

 The set of services is dynamic which means that new members can be added into the set

non-deterministically and existing members can be deleted non-deterministically. We do

not model the underlying stochastic birth-death process in our algorithm.

4.5 Semantic Taxonomical Clustering (STC): Conceptual Foundation

In this section we propose Semantic Taxonomical Clustering – an alternative novel

algorithm for service category learning. Before discussing the algorithm in details and its

advantages over other approaches we first need to lay down the essential conceptual

foundation. In our approach we define a cluster space as a set of service taxonomies. We

first formally define a service taxonomy as follows:

 124

Definition 4.1: A g-type service taxonomy (denoted as Tg) is a partial-order

,ݏ〉 〉	where s is a service and the order is the g-relation (see chapter 3) where g = {I, O}

s.t. there exists a unique supremum (or least specific predecessor) called the root service.

 g-type service taxonomy (in brief g-taxonomy) Tg
 has some basic properties as

discussed below:

 A taxonomy is a cluster of feature similar services where the feature set g = {I, O}

 Feature similarity in a service taxonomy can be of 4 types: (i) exact, (ii) plugin, (iii)

subsume, and (iv) sibling. For detailed discussion on each of these 4 matches refer to

chapter 3.

 A taxonomy is a stratified cluster of feature similar services. This is because the g-

subsumption relation is either with respect to Input (I) or Output (O).

 Feature similarity with respect to a taxonomy is non-distance based. In other words, the

similarity condition is not based on any measure but rather type of semantic subsumption

match (exact/plugin/subsume/sibling).

We now define a taxonomical cluster space as follows:

Definition 4.2: A g-type taxonomical cluster space (denoted as CS-Tg) w.r.t to a

particular functional feature g is a dynamic set of g-type taxonomic clusters.

We now define a taxonomical cluster space as follows:

g-type Taxonomical cluster space (in brief g-cluster space; figure 19) has several

properties that makes it unique from cluster spaces generated in conventional learning

algorithms. They are discussed as follows:

⊃
݃

⊃
݃

 125

Figure 19: g-Taxonomical Cluster Space

 A taxonomical cluster space is dynamic (i.e. addition and deletion of member services

within taxonomies can be non-deterministic). Hence, as we will see in the following

proposed algorithm, the cluster space supports online learning.

 There are two types of cluster spaces possible: (i) O-cluster space (where the feature

similarity is over the Output feature) and (ii) I-cluster space (where the feature similarity

is over the Input feature).

 The member taxonomies within the cluster space are not necessarily disjoint from each

other. This is so because a particular service can have g-subsumption plugin match with

more than one service each of which are member of separate taxonomies. For an

example, a car rental service having Output = {car info, rental confirmation} may have

plugin matches with both a vehicle rental service having Output = {vehicle

 126

confirmation} and a vehicle lookup service having Output = {vehicle info} with the O-

cluster space. In this example the vehicle rental service and the vehicle lookup service

belong to two different taxonomies (i.e. taxonomies having two distinct root services).

 The converged topology of the cluster space is independent of the order of sample

selection. In other words, the temporal order in which services are published into the

system does not affect the final cluster space topology (i.e. the number of taxonomies

and the partially ordering within each of the taxonomies). This will be evident once we

introduce the taxonomical clustering algorithm in the next section.

We now define an MSP and an LSC of a particular selected service s below. These

two structures form the basis of the STC algorithm that will be described in the next section.

Definition 4.3: MSP (or Most Specific Parents) of a given service s is a set of

services such that: ∀݌	 ∈ ;	ܲܵܯ 	݌	 	ݏ ∧ ݍ∄	 ∋ 	݌ 	ݍ .

Definition 4.4: LSC (Least Specific Children) of a given service s is a set of services

such that: ∀݉	 ∈ ;	ܥܵܮ 	ݏ	 ݉	 ∧ 	∄݊ ∋ 	ݏ ݊	 ݉	.

4.6 Semantic Taxonomical Clustering (STC): Algorithm

The basic outline of the proposed STC learning algorithm involves “semantically

inserting” a randomly selected service from a dynamic service set into one or more g-

taxonomies within the corresponding g-cluster space. The insertion of random service is

done by searching for the most specific parents (MSP) and the least specific children (LSC)

of the service (figure 20). The algorithm utilizes an important property of a g-taxonomy to

⊃
݃

⊃
݃

⊃
݃

⊃
݃

⊃
݃

⊃
݃

 127

improve the clustering efficiency. The property has been given in the form of a theorem

below:

Theorem 4.2: If for a selected service s there exists a non-empty MSP and if there

exists a non-empty LSC of s then ∀݌	 ∈ ;	ܥܵܮ ∃݉	 ∈ ܲܵܯ ∋ ݉	 .	݌

Proof: As the selected service ݏ	 hence, and as the MSP exists hence, there must ݌

exist m such that ݉	 	ݏ 	݌ .

The implication of the above theorem is that for semantically inserting a selected

service into a taxonomy we need to identify the MSP of the service. Once that is done then

we can restrict the search for LSC of the selected service to the LSC of each member service

within the MSP. This significantly reduces the search space for finding the correct

taxonomic position of the selected service. If the MSP of the selected service is empty and

the selected service does not have sibling match with any of the existing root services then

the selected service becomes a root service. In that case the LSC of the selected service has

to be identified from the entire existing cluster space. Otherwise, if the selected service has a

sibling match then a new abstract service is created that subsumes the sibling services. This

operation is very significant in the process of service discovery as will be explained later in

chapters 5 and 6. Another implication of the above theorem is that the member services in

the MSP may not belong to the same taxonomy. In other words, there may exist more than

one root services sr such that ݏ௥	 ݉; 	݉ ∈ Thus, the selected service may belong to .	ܲܵܯ

multiple taxonomies (figure 20).

⊃
݃

⊃
݃

⊃
݃

⊃
݃

⊃
݃

 128

Figure 20: STC Algorithm Outline

The STC algorithm returns an instantiated CS when given the dynamic service set S.

This main algorithm requires two functions: (a) findMSP for computing the MSP of a

particular service, and (b) findLSC for computing the LSC of a particular service. For pair-

wise service matching the g-subsumption algorithm is used (see chapter 3). It returns 0 if

there is no match, 1 if the first argument service subsumes the second argument service

(subsume match), and 2 if the argument services are sibling match under a common abstract

parent service. We now provide a detailed outline of the STC algorithm along with the

findMSP and findLSC functions that are called within STC as follows:

 129

Figure 21: Semantic Taxonomical Clustering (STC) Algorithm

 130

Figure 22: findMSP Sub Procedure

 131

Figure 23: findLSC Sub Procedure

4.7 Online Learning: STC vs EASY [149]

In an online learning framework we do not have a fixed training dataset (as opposed

to supervised learning mode) or a fixed sample space over which unsupervised learning can

be performed. Instead services are observed by the learner one at a time without any prior

knowledge or estimation of the stochastic process that might govern the occurrences of the

services. Thus, it is very difficult to create a statistical training data set that does not suffer

 132

the risk of under-fitting (by excluding significant parameters that have not appeared yet) and

over-fitting (by including seen parameters that in the long run prove to be not significant) in

the learning process. This is more so because the service categories cannot be estimated

clearly since so many categories are evolved online and so many categories can become

extinct. Also, unsupervised learning methods that are ad-hoc cannot fit into this framework

as well due to the dynamic addition (and deletion) of services.

It is in this kind of framework that STC fits in very well. This is because STC does

not require a prior training data. It also does not require the sample space to be fixed during

clustering. This is because according to STC newly observed services are semantically

positioned within a set of taxonomies within the cluster space after a certain number of g-

subsumption comparisons. As the algorithm does not involve ad-hoc comparisons within a

fixed set of services hence, once a newly observed service is positioned it does not require

re-positioning when newer services are observed. However, because of the positioning of

these newer services, the relative position of the already positioned services may change

automatically. In other words, newly observed services are self-organized by the learner.

In our knowledge there have been very few service category learning algorithms that

support such online learning. A relatively recent work by Mokhtar et al [149] has proposed

an online category learning algorithm, called EASY, that attempts to organize services into

taxonomies (called capability graphs). However, there are some major drawbacks in their

algorithm that makes it not sound and complete. Here we conclude this section by providing

a comparative analysis of STC and EASY as below:

 133

 In EASY the semantic similarity measure that has been used for matching is integrated.

This introduces the problems of integrated distance-based measures as discussed earlier.

Since STC is stratified such problems can be avoided.

 In EASY the semantic similarity measure is based on Paolucci match order. In chapter 5

we have shown that there are some serious flaws in the match order. Thus, EASY suffers

from serious accuracy problem.

 In EASY a separate comparison process is carried out from the bottom of the taxonomy

after a set of Most Specific Parents are found. This step is not necessary as per the

theorem in the previous section. STC, on the other hand, uses the property shown in this

theorem and hence, avoids redundant computations.

 According to EASY a newly selected service must have a predecessor if it is subsumed

by a root service within a taxonomy. However, this is not always true since the new

service may become a sibling of a set of services under the common predecessor – the

root service. As the sibling case is completely ignored by EASY (unlike STC) hence, the

learning algorithm may not terminate at all under those situations.

 It can happen that a newly selected service is neither subsumed by nor subsumes any of

the root services. However, it can be a sibling with one or more root services under a

common abstract service (as discussed earlier). Since this case is ignored by EASY

(unlike STC) hence, we see that there can be false negation during clustering.

In EASY services are organized into taxonomies called capability graphs. Capability

graphs are unique in the sense that each graph is indexed by the ontologies that contains the

semantic descriptions of the member services within the graph. Thus, if a service uses

 134

parameters from the domains vehicle and user profile then it will be inserted into a

capability graph that has services from these two domains only. However, the drawback in

this approach is that since, there may not be a single existing capability graph that is indexed

by both the two domain ontologies hence, the newly selected service may actually be

inserted into two separate capability graphs (each indexed separately by vehicle and user

profile respectively). This causes redundancy and increases the number of comparisons

needed for further service categorization as well as query mapping (will be discussed in

chapter 6).

4.8 STC Analysis: Soundness & Completeness

We now provide the mathematical proofs for the soundness and completeness of

STC as follows:

Theorem 4.3: STC is sound with respect to any arbitrary sample space S.

Proof: For any arbitrary sample space S if an arbitrary sample s is selected then it

has to either match with one or more of the existing taxonomies (say TE) or none. All

possible answers in the algorithm can be represented in the form: ௜ܰ 	ݏ ௝ܰ 	݁ݎ݄݁ݓ	 ௜ܰ 	⊆

ሼߝ, ݊ଵ௜, ݊ଶ௜, … , ݊௠௜ሽ;	 ௝ܰ 	⊆ ሼߝ, ݊ଵ௝, ݊ଶ௝, … , ݊௞௝ሽ	such that ݊௜, ௝݊ ∈ ாܶ. There cannot be any answer

beyond this bound (s has to be parent of some nodes and child of some nodes where these

set of nodes can be empty (i.e. ߝ)). To prove the soundness we need to prove that N is

always correct in the algorithm. If s is a parent of some npj then for each of the siblings of npj

a new search is conducted; thus, in the worst case, traversing the entire cluster space. Hence,

Nj includes all ns that are children of s and cannot include any n that is not (in that case it

will be included in Ni if it is a parent). Therefore, Nj is always correct. Similarly, if s is a

⊃
݃

⊃
݃

 135

child of some nqi then for each of the siblings of nqi a new search is conducted; in the worst

case traversing the entire cluster space. Hence, Ni includes all ns that are parents of s and

cannot include any n that is not (in that case it will be included in Nj if it is a child). Thus,

we see that there is no other N apart from Ni and Nj. Therefore, N is a correct and tight

bound. Thus, the algorithm is sound.	∎

Theorem 4.4: STC is complete with respect to any arbitrary sample space S.

Proof: The algorithm is complete because for any arbitrary sample s the algorithm

gives an answer in the bound

௜ܰ 	ݏ ௝ܰ 	݁ݎ݄݁ݓ	 ௜ܰ 	⊆ ሼߝ, ݊ଵ௜, ݊ଶ௜, … , ݊௠௜ሽ;	 ௝ܰ 	⊆ ሼߝ, ݊ଵ௝, ݊ଶ௝, … , ݊௞௝ሽ	. As the answer is always

correct and tight hence, s cannot be a false negative.	∎

4.9 Results

We tested the runtime performance of the proposed STC algorithm on a system

having a CPU cycle of 1.4 GHz and a RAM of 2 GB. The performances are measured based

on: (a) randomly generated synthetic services and (b) OWL-S TC v.2 test set of 871 web

services collected from different web service registries. The clustering performance is

evaluated on the basis of: (i) average runtime for clustering under an online learning

framework, (ii) average number of sample hit count (i.e. the number of g-subsumption

comparisons) during clustering, and (iii) effect of stratification in the proposed STC

algorithm (as compared to a non-stratified nearest neighbor based online learning

algorithm). As the learning framework is online hence, for both the synthetic dataset as well

as OWL-S TC dataset services were drawn from the set in random temporal sequence.

⊃
݃

⊃
݃

 136

Taxanomical Clustering performance

0

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Services

A
ve

 T
im

e
in

 m
se

c

Cluster formation time for OWLS-TC

Cluster formation time for Random Dataset

Figure 24: Average Runtime Performance of STC

Random Service Generation: For generating the random sample space we designed

a simulation platform where sample spaces of different sizes (50 to 850 web services) were

randomly generated using a domain space that consisted of 10 domain ontologies (with an

average number of concepts set to 300). An average parameter size of 5 was set for the

simulation. Service parameters where chosen randomly from the 10 domain ontologies such

that the Input feature of each service is distinct from the Output feature.

Average Clustering Runtime: When we conducted our experiment with synthetic

simulated service sets we found a fairly good runtime clustering performance within an

average range of 0.003 seconds (for 50 samples) to 0.277 seconds (for 850 samples) (figure

 137

Services vs HitCount for Random Dataset

0

20

40

60

80

100

120
1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

52
3

55
2

58
1

61
0

63
9

66
8

69
7

72
6

75
5

78
4

81
3

84
2

Services

H
it
 c

o
u
n
t

Services vs HitCount

Figure 25: Average Number of Hit Count over Random Sample Space

0

20

40

60

80

100

120

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

51
1

54
1

57
1

60
1

63
1

66
1

69
1

72
1

75
1

78
1

81
1

84
1

87
1

Services

H
it
 c

o
u
n
t

Services vs Hit count

Figure 26: Average Number of Hit Count over OWL-S TC

 138

24). For the OWL-S TC set the runtime was approximately similar with an average

range of 0.011 seconds (for 50 samples) to 0.337 seconds (for 871 samples).

 Average Hit Count: Hit count is basically the number of g-subsumption comparisons a

newly observed service has to go through before it can finally be inserted into its correct

position within the currently existing cluster space. This can be another way of

understanding the clustering performance. If the average hit count for clustering a set of

services is low then it means that it is easier computationally to insert a newly observed

service into the cluster space. On the other hand if the hit count is high then the cluster

space topology is not favorable for the new service and hence, the computation cost

increases. We saw that for random sample space the highest number of hit count is 96.

The mean hit count was 29.1 (figure 25). From this observation we can conclude that the

clustering algorithm is justified in the worst case when a maximum number of only 96

hits is recorded for placing a particular random sample within a cluster space of 850

services. For OWL-S TC sample space we recorded a highest number of 104 hits for a

space of 871 services while the mean hit is 23.4 hits (figure 26). Both the analysis shows

that approximately only 3% of the entire cluster space has to be hit before a sample can

be clustered. Thus, although the worst case complexity for STC is quadratic still the

amortized complexity is very promising.

 Effect of Stratified Clustering: We wanted to observe the runtime performance

improvement of the stratified clustering approach as compared to an integrated distance-

based clustering approach. For that we chose the SGPS-based semantic distance

measure proposed by us in [189]. The learning algorithm that was implemented in this

 139

348

6

91

2126

2

59

1 1

34

5 1 1 1

4145

1 3 1 4
17
39

93

36

1 1 5 12 1 1 1 1 1 3 4 1 3

36

1
23

1 1 1 1 1 1 2 1 1 1
0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

#
 S
e
rv
ic
e
s

Cluster ID

STC Output Cluster Space
(OWLS‐TC)

Figure 27: Output Cluster Space Generated by STC

97

18

1

16

1 1

14

67

56

2 1 1

11

1
4

1 1

30

1 1 1 1 2 1 1 1 1 1 1 1 1 1

60

26
23

31

1

23

1

39

1 1 2 1 1
0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

#
 S
e
rv
ic
e
s

Cluster ID

STC Input Cluster Space
(OWLS‐TC)

Figure 28: Input Cluster Space Generated by STC

 140

Figure 29: STC Algorithm vs. Integrated SGPS-distance based NN Clustering

work was nearest-neighbor based. For the comparison we used a randomly generated

synthetic dataset of 1500 services. We observed a significant improvement in

performance as the number of services increases (figure 29). This is because of two

major reasons: (i) the pair-wise similarity computation for the integrated SGPS measure

is significantly higher than that of g-subsumption comparison (see chapter 3 for more

details) and (ii) the amortized number of pair-wise g-subsumption comparisons needed

for STC algorithm is significantly lower than the amortized number of pair-wise

comparisons needed for the nearest-neighbor based algorithm.

For evaluating the accuracy of the proposed STC algorithm we used the standard

web service test dataset OWL-S TC v2. The first objective of our experiment was to

understand how close STC fits the given service descriptions as compared to the given

categorization of

Runtime Performance: Comparative Analysis

40.5435.9
46.4334.29

42.3131.2534.62
25.8124.142035.71

2016.6713.339.09

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Nodes

T
im

e(
m

se
c)

STC Algorithm

Services

Runtime Performance: Comparative Analysis

40.5435.9
46.4334.29

42.3131.2534.62
25.8124.142035.71

2016.6713.339.09

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Nodes

T
im

e(
m

se
c)

STC Algorithm

Runtime Performance: Comparative Analysis

40.5435.9
46.4334.29

42.3131.2534.62
25.8124.142035.71

2016.6713.339.09

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Nodes

T
im

e(
m

se
c)

STC Algorithm

Services

 141

34

359

58

285

60
73

165

40

0

50

100

150

200

250

300

350

400

#
 S
e
rv
ic
e
s

Domain

Domain‐wise Service Dispersion
(OWLS‐TC v2)

Figure 30: Distribution of OWLS-TC v2 Web Services According to 8 Domains

these service descriptions in terms of their corresponding domains. In order to meet the

objective we first define two important measures:

Definition 4.5: Domain-Precision with respect to a given service category C and a

given service domain D (denoted as Pr(C, D)) is defined as the ratio of the number of

services in D that are categorized as members in C (say NC,D) by any given learning

algorithm L vs. the number of services categorized in C (say NC) by L. Numerically this

means: Pr(C, D) = NC,D / NC .

Definition 4.6: Domain-Recall with respect to a given service category C and a

given service domain D (denoted as Re(C,D)) is defined as the ratio of the number of

services in D that are categorized as members in C (say NC,D) by any given learning

 142

algorithm L vs. the number of truly correct services in D (say ND). Numerically this means:

Re(C, D) = NC,D / ND.

 Note that the above definitions give us a way of computing precision and recall of a

given learning algorithm that is completely independent of any query (as opposed to the

more conventional query based precision/recall computation which we will discuss later in

this section). However, the definition is still a subjective evaluation as it requires human

judgment for estimating ND (number of truly correct services in domain D).

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
re
ci
si
o
n
 /
 R
e
ca
ll

Cluster ID

STC Output Cluster Space Accuracy

Precision

Recall

Ec Ed Ed T F Ed M T T Ed T Ed Ec CW/Ed

Figure 31: Domain-Accuracy of Output-cluster space Generated by STC

While evaluating the domain-precision and domain-recall of STC we took the

standardized human evaluation included within the OWLS-TC v2 dataset. In the OWLS-TC

dataset there are 8 web service domains as shown in figure 30. The innate assumption

implied within the expert evaluated classification is that all domains are mutually disjoint.

We first observed the accuracy over the O-cluster space of STC (figure 31). We observe that

there are 50 clusters that are generated (figure 27). However, out of these 50 clusters there

 143

are only 15 clusters that are significant in terms of number of services per cluster. In figure

31 we make a comparative analysis of the average domain-precision (in light blue) and

average domain-recall (in deep blue) of each of these 15 clusters when compared to the

domain-wise classified web services in the OWLS-TC dataset. The average domain-

precision in this context is computed as: Pr൫ܥ௜
௚൯ ൌ

∑ ୔୰൫஼೔
೒,஽൯ఴ

ವసభ

଼
	. Similarly the average

domain-recall is also computed as: Re൫ܥ௜
௚൯ ൌ

∑ ୖୣ൫஼೔
೒,஽൯ఴ

ವసభ

଼
	. We observe that the average

precision for almost all the significant clusters (except for one) is close to 1 while the

average recall is comparatively low in most cases. Upon analysis we understand that the O-

cluster space is strong enough to represent each of the domains in OWLS-TC that supports

our argument that the Output parameter is the most significant service feature in

understanding service functionality. Hence, STC was able to reduce false positives within its

Output taxonomies (clusters) by restricting inclusion of services to only those that have

mutual O-subsumption matches. A very interesting observation can be made with respect to

this result: most of the domains have been split over the cluster space. For an example, the

domain Economy has been split into 2 clusters each having average precision 1 while one

having the recall significantly higher than the other. This phenomenon occurs because STC

does not assume clusters to be disjoint. Hence, there may be two different functionalities

that describe only services within the Economy domain in OWLS-TC. Each functionality

represents a separate (although overlapped) O-taxonomy (i.e. cluster). When we compare

this result to the I-cluster space generated by STC over the same dataset we find that there

 144

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
re
ci
si
o
n
 /
 R
e
ca
ll

Cluster ID

STC Input Cluster Space Accuracy

Precision

Recall

Ec

T/Ed

M/F/W/Ed

Ec

C

Ec /Ed

T Ed Ed Ec Ed EcEd Ec

Figure 32: Domain-Accuracy of Input-cluster space Generated by STC

are 45 clusters (figure 28) out of which only 14 clusters are significant. On observation of

accuracy in terms of domain-precision and domain-recall we saw that overall precision and

recall dropped (figure 32). Another very interesting observation can be made within the I-

cluster space: more number of clusters are "mixed bag" in nature in the sense that more than

one domains are significantly represented (in terms of precision and recall) by each of these

mixed bag clusters. This phenomenon occurs because the Input feature of a service does not

adequately represent its functionality. Hence, there can be several services representing

different domains that may have the semantically similar type of input parameters (i.e. they

are mutually g-subsumption matches where g = I). For an example the 4th cluster in the

figure equally represents 4 domains: Medical, Food, Weapon, and Education. The overall

domain-recall for both the O-cluster space and the I-cluster space is relatively low because

the OWLS-TC expert classification of services into domains are primarily based on service

functionality but more on the thematic category of the services. In other words, there may be

 145

services that have quite different functionality although they can pertain to the same domain

thematically. For an example, car price-lookup service and car rental service generate

different output (i.e. functionality) while they belong to the same domain Economy (i.e.

services related to price).

4.10. Conclusion

There are several advantages of the proposed STC learning algorithm as compared to

conventional service category algorithms. In this section we discuss each of them as follows:

 Eliminates Assumption of Disjoint Cluster: Since a service can be subsumed (g-relation

= subsume) by more than one services belonging to different taxonomies (i.e.

taxonomies having distinct root services) hence, the problem with the assumption of

disjoint cluster (as discussed in earlier section) has been eliminated in the proposed STC

algorithm.

 Eliminates Centroid Problem: As the algorithm does not require the prior estimation of

the number of clusters (i.e. taxonomies) and is not centroid based hence, the problems

that are innate in partitional clustering algorithms are no longer relevant in STC.

 Supports Online Clustering: As discussed earlier STC fully supports online service

category learning.

 Eliminates Problems of Similarity Measure: Since STC is not based on any similarity

measure hence, the problems of distance-based learning algorithms can be easily

overcome. Also, since the approach is stratified hence, the problem of integrated

similarity measure can be resolved as well. Further elaboration of how the stratified

approach helps in service discovery will be done in chapter 5 and 6.

 146

 Computationally Efficient: The time complexity of STC is O(n2) in the worst case since

there can be n(n+1)/2 g-subsumption comparisons at the most. Each g-subsumption

operation between two services takes constant time (discussed in chapter 3). However,

we observed under empirical study that the amortized number of g-subsumption

comparisons is ~ 3% of the services existing within the cluster space in an online

learning framework (for more discussion see next section).

 Accuracy Theoretically Sound and Complete: According to the theorems that prove the

completeness and soundness of STC we can say that “theoretically” the proposed

algorithm has an F-score of 1 (i.e. 100% precision and 100% recall). However, in reality,

this totally depends upon the assumption that the semantic descriptions of every service

are valid, correct, and complete. In other words, the service providers should not make

gross mistake while semantically defining the functional parameters of their published

services.

 147

CHAPTER 5

ALNet: EVENT-DRIVEN PLATFORM FOR SERVICE COMPOSITION

5.1 Introduction

The previous two chapters covered the following foundational requirements of

service discovery and composition:

 g-subsumption: Efficient service matchmaking for improved service organization and

query matching .

 Desire-based Query Modeling (DQM): Efficient query modeling for improved service

discovery and service composition.

 Semantic Taxonomic Clustering (STC): Efficient service organization for improved

service discovery.

In this chapter we are going to propose a novel asynchronous event-driven platform

called Activity Logic Network (ALNet) for service discovery (that has been outlined in the

previous chapter) and service composition. The proposed approach draws inspiration from

the more recent Event-driven SOA (ED-SOA) architecture that has been proposed in [11 -

17]. In this way ALNet shifts significantly from the more conventional broker dependent

pull-based SOA paradigm where a consumer application needs to pull services from the

broker after the discovery process in order to bind itself to the discovered services. As

mentioned in the introduction chapter, traditional SOA based systems enforce synchronous

binds during runtime. This is because services are in general stateless and hence, service

output has to be gathered over a synchronous channel. In contrast, systems that are built over

 148

ED-SOA principles model all state transitions within the system as asynchronous events.

These transitions include services as well as consumer queries. The underlying design model

is that of publish-subscribe-notification where services are published as events to a

middleware while consumers subscribe to their required service types. If there is a match

then the middleware notifies the best matching service asynchronously. The main difference

lies in the fact that in conventional SOA it is the job of the consumer application to bind

synchronously to a matched service while in ED-SOA it is the middleware that

asynchronously calls the matched service and then provides the output to all the consumer

applications that have subscribed for the service.

ALNet is a specific type of ED-SOA based service discovery and composition

platform. However, it is quite different from the usual publish-subscribe-notify model in that

services are published not to be subscribed to by some consumer applications. Rather the

middleware generates a novel service dependency graph, called Activity Logic Network

(ALNet), that denotes the pair-wise functional dependency of the published services. There

is no centralized event-library that stores a priori all possible event definitions within the

system. A service when gets executed generates a service event. Consumer requests are also

treated as events (called user event) on-the-fly in accordance with the DQM model proposed

in the previous chapter. The ALNet services differ from conventional published service

descriptions in the sense that each service has a set of semantic interpretations for

interpreting different events (service events as well as user events) based on their observable

state changes. These interpretations are represented in the local knowledge bases of the

registered services. The knowledge bases are designed according to a novel ontological

 149

framework called CAOFES. Based on such interpretations each user event is handled on-

the-fly locally by the published services (in a proactive way) as well as globally by the

middleware. Thus, the ALNet framework is adaptable to newly observed undefined events as

well. The event handling process includes a 2-phase service discovery algorithm, called

ALNetSniffer, outlined in the previous chapter as a part of the event-handling as well. Hence,

service discovery, selection and composition are tied together into a common problem –

event-handling.

The chapter begins with an introduction of some significant research works in the area of

centralized service discovery and composition. It then discusses the problem of service

composition reformulated as an event-handling problem. The discussion includes a new

semantic way of interpreting events called Event Notability Theory. It also details the

corresponding semantic ontological framework called CAOFES for facilitating such

interpretation. After that the chapter unfolds into a full length proposal of the ALNet data

structure and the underlying ALNet architecture. After laying the architectural foundation the

chapter then makes a detailed treatment of the proposed 2-phase service discovery algorithm

called ALNetSniffer and its relation to STC - our proposed service category learning

algorithm. This follows with the proposal of the optimal composition discovery algorithm –

ALNetComposer. Later on the chapter discusses another new concept called Situation

Boundary (SB) that helps to optimize the runtime event-handling performance and then

finally proposes the event-handling algorithm – SBTraveller. The chapter concludes with a

detailed query-based accuracy evaluation of ALNetSniffer, the query processing overhead by

ALNetSniffer, and the composition performance of SBTraveller algorithm.

 150

5.2 Related Work

In most research works the problem of middleware based service discovery has been

treated as a special case of the more generic information retrieval problem. The common

principle is to organize (functionally) similar services into categories that are then stored in

backend systems. Back-end systems can be classified into two types: (i) centralized index

table based (such as UDDI [8], Jini [191], SLP [192], m-SLP [193]), and (b) Distributed

Hash Table based (such as CHORD [155]). Consumer requests are then directed to the

backend systems as queries. Currently, the most popular backend implementation for service

discovery is UDDI. UDDI is organized based on pre-defined categories (as standardized in

NAICS [179], UNSPSC [178]). However, the service descriptions within UDDI are not

categorized with respect to their functionality. Thus, UDDI cannot support effective content-

based query match. Many other researches propose an extension to the existing UDDI

structure by adding semantic descriptions of the services. The semantic description can be at

three levels: (i) functional (such as OWL-S [50]), (ii) contextual (CC/PP [194], UWL [195]),

and (iii) QoS (such as in WSLA [196], WSOL [SCP 197]).

There has been a lot of research on service composition – both static as well as

dynamic. A detailed discussion of these works has been provided in chapter 2. Although

there is not much research on modeling ED-SOA systems as service dependency network

yet a very close approach to ALNet can be found in the work by Lang & Su [198]. In that

work the authors have proposed a service network called service dependency graph (SDG)

that is based on AND/OR graphs [199]. The problem defined thereby is to search for a

matching structure of operations as required by the users. Queries are modeled as a structure

 151

containing user input, desired output and optional sequence of operations. In this way

queries are not restricted to tasks only. Composition takes place following a back-tracking

(or bottom-up) algorithm starting from the desired output data node. However, although the

overall problem objective is same as compared to our proposed SBTraveller algorithm yet

there are some major differences between the two. A comparative analysis of ALNet, SDG,

and its variant SDG+ [200] will be given in the conclusion and discussion section of this

chapter.

5.3 Event Handling: Service Composition Problem Reformulated

In the proposed model user requests/interactions (in the DQM format; see chapter 3)

and services (in the g-array format; see chapter 3) are treated as events. An event is an

activity executed by some agent (i.e. the users and the devices in an SOA system) in order to

bring about some changes in the states of the world. The world is comprised of the system

and its surrounding environment. However, not all activities can be treated as events. A state

change of an activity has to satisfy two conditions so that the activity can qualify as an

event: (a) it has to be observable by an agent, and (b) it has to invoke a defined interpretation

to an agent. For an SOA system the user’s activities are perceived as user events if a notable

change in the environment state provokes a system of services towards a specific

understanding and invokes subsequent responses to the activities as a handling process. We

term such a handling process as event-handling. The services organize themselves on the run

based on such interpretations and produce a resultant set of events that in turn has a specific

interpretation to the user/s. This resultant set of events is called the target event set and is the

 152

desired goal of user agent (i.e. the Q-T1 component according to the DQM format). The Q-

T2 component of the user event that provoked such a dynamic collaboration is called the

initial event. User events and services bear causal relations with each other. A particular

service can be triggered only if its corresponding causal events (services and/or user-events)

are triggered. If a service/s has its cause as the initial event then it is called the source

service/s for that event.

The uniqueness of the proposed event-handling process is that it does not require a

task-analyzer to form a task-based request. Instead, user requests are perceived by the

proposed ALNet system as user events. It then responds to these events by triggering the

corresponding services registered to it. Event-handling has a two-fold objective: (a) to obtain

the best target event set for an initial event, and (b) to minimize the cost of the overall

process. Hence, in our model the service composition problem is not primarily a global path

optimization problem but rather an end optimization where the best possible end service has

to be triggered starting the process from a set of source services that has reachability to

these end service/s. The best end service is the one that is functionally most similar to the

desired target event.

There are three basic operations over an ALNet instance: (i) search for end service

nodes that can trigger the target event(s), (ii) search for source nodes that have reachability

to at least one of the end service nodes, and (iii) select the service nodes starting from a

source node so as to achieve the optimal event-handling. The first two operations form the

basis of the 2-phase service discovery algorithm, called ALNetSniffer, proposed in chapter 3.

In order to perform the last operation we need to check the reachability between every

 153

selected node (starting from the source node) and the selected end node. Reachability

checking and subsequent service selection has to be done on the fly. In this paper we have

proposed an encoding based technique for performing such dynamic checking in linear time.

The process of reachability checking and service selection results in a particular composition

path from the source service to the end service. Reachability has been discussed in section

6.5.3. A full length discussion on research work in this problem has been given in chapter 2.

5.3.1 Event Notability Theory

In a given SOA based system activities such as consumer request, consumer

interactions for occasional feedbacks into the system, and executed service operations can be

treated as events. In the proposed ALNet model an event is an activity executed by an agent

(i.e. the consumers or the devices hosting services) that is observable by the system and has

specific interpretations for a set of agents within the same system. Event Notability Theory is

a formal logic-based novel modeling of pro-active event-based systems. The model treats all

processes as activities and provides a semantics for event that is distinct (although derived)

from the semantics of an activity. There are two kinds of activities in a pervasive system: (a)

user agent activity, and (b) device agent activity. An activity is said to be an event if the

activity has a specific interpretation to a set of agents. Formal definitions of activity and

event will be given in later sections. We think that agent should be the core concept in a

pervasive system management framework as the definition of other concepts (such as

events, context, etc) is subjectively dependent upon agent. In other words what is event or

 154

context for one agent may not be so for other agents. Hence, we first provide a formal

definition of agent.

Definition 5.1: An agent (denoted as Ag) is an entity that has a well-defined

knowledge base (denoted ∆) and there exists an interpretation ߬ over ∆ (denoted ∆ఛ) such

that ߬ triggers off some role axiom A where ܣ	 ∈ 	∆ .■

The definition implies that: (a) the knowledge base (KB) of the agent has to be well-

defined in terms of syntax and semantics, (b) there exists a set of role axioms (denoted as

UR) within the knowledge base where UR is basically a set of first-order response rules

written in the event-causal_condition-action (ECA) format that is commonly used for

defining policy roles of agents [11], and (c) the knowledge-base should have an

interpretation that triggers off at least one of the response rules. The significance of the third

implication is that an agent having a KB without an interpretation is meaningless for a

particular world. The agent may be able to perceive entities but cannot understand their

meaning (if the entities are not interpretations) or cannot response to the perceptions (if the

entities are not interpretations). Thus, the above definition is an axiomatized version of what

we loosely mean by agents – viz. humans, devices, humanoids, software agents, etc. A

derived implication of the definition is that the agent should have the cognitive capability to

perceive (perceptibility) and the capability to response (notability). We will define these two

concepts in later sections. It should be noted that agents also execute the activities apart

from perceiving or understanding them. However, the capability of activity execution is not

a necessary condition for an agent (there can be agents that are purely event sinks [16]).

However, in our system there cannot be an agent that has takes action without having

 155

perceptibility and notability (that is purely event sources [16] are not allowed in our system).

This is because we do not think that an agent producing arbitrary events is of much use for a

pervasive system. Such agents cannot be associated with any desire, intention, and belief.

We term such agents as nuisance agents. Nuisance agents generally add up to the chaotic

property of a system by introducing non-deterministic noise and conflicts.

Interpretation of an activity as an event follows from the perception of the change in

states that is triggered by the activity. A state of an activity is the set of time variant vectors

that describe the system. We term the state vector space as State Vector Space. State Vector

Space is a 5-dimensional vector space having five state element vectors: (i) Background

 We call .(ሬሬሬሬሬԦ݌ܶ) and (v) Temporal ,(ሬሬሬሬԦ݌ܵ) Spatial (iv) ,(ሬሬሬሬሬԦ݃ܣ) Object (ܱܾሬሬሬሬሬԦ), (iii) Agent (ii) ,(ሬሬሬሬሬԦ݃ܤ)

such a vector space as state vector space (denoted as ܸܵሬሬሬሬሬԦ). The state vector elements are

defined in terms of the activity with which they are associated. Thus, we can describe the

state of an activity (and hence, an event) with the help of the state vector space. We explain

each of the five elements below:

a) Background Vector (݃ܤሬሬሬሬሬԦ): Specifies state information of entities around the place of

execution of an activity. Example: A player kicked a football in a stadium where cheer

leaders were present – here cheer leader is the background vector.

b) Object Vector (ܱܾሬሬሬሬሬԦ): Specifies the entity whose state is getting affected by the execution

of an activity. The state can be the location or dimension or some other property of the

entity. It is to be noted that the entity is not the agent who executes the activity or the

 156

agent who perceives the activity. Example: A player kicked a football – here football is

the object vector.

c) Agent Vector (݃ܣሬሬሬሬሬԦ): Specifies the active agent executing an activity (i.e. the agent profile,

capabilities, location, etc) and also the passive agent who perceives the activity. In the

above example player is the agent (in this case he is active agent).

d) Spatial Vector (ܵ݌ሬሬሬሬԦ): The place where an activity occurs (in terms of geography, specific

address, relative location with respect to a specific address). Example: A player kicked a

football in a stadium – here stadium is the spatial vector (in this case relative location).

e) Temporal Vector (ܶ݌ሬሬሬሬሬԦ): The time when an activity occurs (in terms of day, year, month,

morning, afternoon, evening and night). Example: A player kicked a football during a

morning match – here morning is the temporal vector.

We now formally define State Vector Space as follows:

Definition 5.2: A state vector space (denoted as ܸܵሬሬሬሬሬԦ) is a vector tuple

,ሬሬሬሬሬԦ௩݃ܤ〉 ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ ௩ሬሬሬሬሬሬሬԦ〉 consisting of one or more the five state vector element vectors݌ܶ

 ■ . ሬሬሬሬሬԦ݌ܶ ,ሬሬሬሬԦ݌ܵ ,ሬሬሬሬሬԦ݃ܣ ,ሬሬሬሬሬԦ, ܱܾሬሬሬሬሬԦ݃ܤ

As mentioned earlier, each of these elements is represented by an ontology hierarchy

with the root as StateVector class. However, it should be kept in mind that although we

argue that these five elements have been necessary to describe most world states it should be

noted that the composition of the state vector space is not sufficient. In other words the

definition of state vector space is not strict. The vector tuple 〈݃ܤሬሬሬሬሬԦ௩, ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ 	〈௩ሬሬሬሬሬሬሬԦ݌ܶ

simply specifies the complete format in which the classes have to be defined. Some of the

 157

vectors in the tuple may have NULL value set according to the state vector space class

definition that is required for a particular case. We now define a state in terms of an instance

of the state vector space:

Definition 5.3: A state (denoted as ሬ߮Ԧ) is vector value

tuple	〈݃ܤሬሬሬሬሬԦ௩, ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ that comprises of the set of values taken by a state vector	௩ሬሬሬሬሬሬሬԦ〉݌ܶ

class (ܸܵሬሬሬሬሬԦ) defined within a given domain. ■

The range of the values of a state ప߮ሬሬሬԦ depends on the particular domain in which it

lies. This domain may be the WWW, pervasive systems or may be any generic distributed

intelligent system. An activity can be associated to two types of states – initial state ߮௩పሬሬሬሬԦ and

final state ߮௩
௙ሬሬሬሬሬԦ. The initial state is the system state that is changed due to the occurrence of

the activity while the final state is the system state that is an effect of the activity. We now

formally define an activity as follows:

Definition 5.4: An activity (denoted as	ߴ) is an atomic process that when executed

by an agent a till completion over a continuous time period ∆் brings a change from an

initial state ߮௩పሬሬሬሬԦ to a final state ߮௩
௙ሬሬሬሬሬԦ. ■

We can derive the following axiom from the above definition:

Axiom 5.1: The vector tuple comprising ߮௩పሬሬሬሬԦ is equivalent to the vector tuple

comprising߮௩
௙ሬሬሬሬሬԦ. ■

Thus, axiom 5.1 implies that there cannot be any vector element defining the initial

state that does not define the final state when an activity occurs. In other words, we can say,

 158

in corollary, that the activity defines the type of vector elements that comprises the state

vector space class associated with the activity.

Agent cognitive ability needs to be defined formally so as to establish event

cognition within a framework. In order to respond to a particular activity the agent needs

perceptibility. This can be the capability to perceive (or sense) a particular activity via

several modes such as IRs, surveillance cameras, temperature sensors, heat sensors, GPS-

based location trackers, RFIDs, wearable mobile devices such as PDAs, smart pens, etc.

Much of the raw data that is perceived is stream data. The raw data needs to be cleaned

through data filtration techniques and then formatted into a specific feature vector that has a

pre-defined semantics. The feature vector is then used to classify the perceived entity via

Machine Learning techniques (such as image processing, speech recognition, etc). Other

logical inference techniques (such as inductive reasoning, deductive reasoning, etc) are used

to extract higher level knowledge regarding what is collected, aggregated and classified. The

responsibility of data collection and processing can be given solely to the agents (assuming

that the agents have such capability) or the processing job can be given to a higher level

software module while the data collection is done by the agents. In this work we propose a

state vector space based perceptibility definition where the pervasive device agents are

required to extract the feature vectors in terms of Bg, Ob, Ag, Sp, and Tp. In fact, the vector

tuple 	〈݃ܤሬሬሬሬሬԦ௩, ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ can be treated as a feature vector in itself. We define	௩ሬሬሬሬሬሬሬԦ〉݌ܶ

perceptibility as follows:

 159

Definition 5.5: Perceptibility (denoted as ℙ) of an agent a is the ௜ܺ ∋ ௜ܺ ⊆ ܵ ఫܸሬሬሬሬሬԦ; ݔ∀	 ∈

௜ܺ, ∃݉ ∈ ௔ܯ 	∋ 	ݔ
௣
→ ݉ set. ■

The implication of the above definition is that all the vector elements constituting the

perceptibility vector tuple Xi should be mapped to at least one sensory mode of perception

(the set of modes is denoted as M) of the agent a. We also can understand from the above

definition that perceptibility of an agent is independent of the object of perception. One of

major decisions that a pervasive system framework needs to take is whether to allow an

agent perceive all the time or whether the agent should perceive only when some interesting

activity is likely to happen. This is one of the most important issues regarding resource

utilization as typically pervasive systems are not energy rich. Moreover, there is a growing

concern in the research community to make the systems as green as possible. However, to

facilitate such feature we need efficient mechanism for probabilistic reasoning. This

reasoning can be based upon several evidences found within the system such as the

behavioral habit of agents performing activities, the correlation between two or more

activities, the causal effect of one or more activities over another activity, and so on.

While perceptibility is a necessary cognitive ability of an agent it is by no way

sufficient. Agents need to understand the filtered data and take necessary actions based upon

such understanding. For an example, a particular agent may perceive that a person has

entered the room. It may also be able to classify the movement of the person as entering

room. However, it may not understand what to do next as the classified information does not

trigger any of its role axioms. Let us imagine that a role axiom is added to its KB that tells:

 160

turn on the light if person enters the room. Now the classified information entering room

actually triggers this role axiom. The cognitive ability to understand and respond to a

particular activity is called notability. In order to formally define notability we first need to

introduce an operator called the sufficiently minimal subset operator as follows:

Definition 5.6: A sufficiently minimal subset operator w.r.t. agent a (denoted as ⊆ெ
௔)

is defined as an unary operator over the initial state of an activity ߮௩పሬሬሬሬԦ that produces the set

ܺ ൌ 	 ቄܻ|ሺܻ ⊆ 	߮௩పሬሬሬሬԦሻ ∧ ∀ܻ, ܣ∀ ∈ ܷ௔ோ, ሺ∄ݔ ∈ ܻ, ∋ 	 ߬௫ →ܣ	
⊭ ሻቅ wherex

߬௫	is the transition from

the initial state value to the final state value of the vector element x. ■

The above definition implies several things: (i) the operator is a functional operator

and hence, produces an output, (ii) the output is a collection of sets (X) where each set Y is a

subset of the initial state ߮௩పሬሬሬሬԦ of the activity ߴ, (iii) each set Y is such that there is no vector

element x comprising the set that does not trigger off any role axiom A in the set of role

axioms UA of the agent a. In other words, the set X contains all necessary and sufficient

vector elements whose value transition invokes some role axiom in UA.

An example in our case would be the event of car renting which is a user activity. In

this case the user activity, as per DQM¸ is

ܦ ൌ 	 ሼ〈ሼܿܽݎ	݈݂݁݅݋ݎ݌, ,ሽ݊݋݅ݐܽ݉ݎ݂݅݊݋ܿ	ݎܽܿ ሼ݈݊ܫ݀݁ݐܽܿ݋ሺ݌ݑ݇ܿ݅݌, ሻݕݐ݅ܥ	ݏܽݏ݊ܽܭ
∧ ሻ〉ሽ݋݄݃ܽܿ݅ܥሺ݊݋݅ݐܽ݊݅ݐݏ݁݀

ܫ ൌ 	 ሼ〈ሼ݊ܽ݉݁, ,݊݋݅ݐܽܿ݋݈	݁ܿݎݑ݋ݏ ,ሽ݊݋݅ݐܽܿ݋݈	݊݋݅ݐܽ݊݅ݐݏ݁݀ ሼ݈݈݊ݑሽ〉ሽ

where D is the user desire and I is the user input. According to DQM, if we consider only the

desire part of the activity then the parameters confirmation and car information are the two

background state variables that undergo change from an initial empty state to a final state

 161

that takes on some values (such as confirmed, and Honda Civic respectively). Here the set x

can be {confirmation}, {car information}, or {confirmation, car information}. Thus, it is to

be noted that the set x is not a single possibility for interpretation with respect to a particular

agent. There can be several versions of the set x (in the example three versions). Each

version may constitute different state variable information such that all of them are minimal

requirement for invoking an interpretation for a particular agent. In minimality of set x is

required because otherwise the set will contain state variables that are unnecessary for any

interpretation and hence, causes computational overhead for an agent to interpret an activity.

An agent can interpret an activity in several different ways depending on the set x. At

the same time an agent can interpret an activity in the same way on different versions of the

set x. For an example, by only observing at the set {car information} a car lookup service

agent might interpret the consumer request activity to be that of car lookup event. While for

some other car rental agent if the observation of the request activity is confined to only {car

information} then it actually invokes no interpretation and hence, this agent will simply

ignore the activity. We now formally define notability of an activity as follows:

Definition 5.7: Notability of an activity ߴ w.r.t. an agent a (denoted asՅ௩௔) is defined

as the set Z such that ܼ ∈ ቄܻቚܻ ൌ	⊆ெ
௔ . ߮௩పሬሬሬሬԦቅ ∋ ܼ	 ് 	∅	 ∧ ܼ	 →ܯ	

௣ . ■

In the above definition we can conclude that: (i) notability set Z is a member set of

the collection X, (ii) the set should not be empty, (iii) the notability set should be mapped to

M, where M is the set of all perception modes within a pervasive system. From axiom 5.1

we can conclude that ⊆ெ
௔ . ߮௩

పሬሬሬሬԦ ≡	⊆ெ
௔ . ߮௩

௙ሬሬሬሬሬԦ
. Hence, we see that the definition of notability is

 162

dependent on the state (initial or final) of the activity. However, not all the vector elements

composing the activity state are necessary and sufficient for triggering a role axiom in an

agent. Only those elements are selected that are necessary and sufficient and also perceptible

by the system. We can also deduce from the definition that notability of an activity by an

agent may not be the same as the agent’s perceptibility. For an example, the agent that turns

the light on when a person enters the room may not have the perceptibility of the activity

entering the room. However, the activity can still be notable by the agent if the activity is

perceptible by some other agent/s and the perception is somehow accessible to the agent.

The notion of notability defines the relation between activity and event as has been

explicated in the following definition.

Definition 5.8: An event w.r.t. an agent a (denoted as ߝ௔) is any activity ߴ which has

a corresponding notability Յ௩௔ with respect to an agent a.■

A major advantage of defining events in this manner is that, unlike conventional ED-

SOA systems, events do not have to be pre-defined and then published or subscribed into the

system. Instead the system lets its constituent services to capture different interpretations of

the same activity and register them into a common knowledge base. Dynamic registration of

different events is based on the different notability sets (Յ௩௔) that are detected by the different

devices (i.e. a) of the system.

The event notability theory, thus, sets the platform for a dynamic pro-active approach

of understanding and responding to events by devices hosting services (or agents). Service

discovery is therefore also proactive in the sense that it is the services that discover (from an

event interpretation point of view) the query rather than the query discovering the services.

 163

However, in this section we did not discuss the inter-dependency of these agents when they

have to work in cooperation to both interpret as well as respond to a particular system

activity (user activity as well as service). This is an extremely important problem to study

because in many cases agents are causally related to each other from a functional standpoint.

If one agent executes a service then it causes a set of interpretations for some other agents

that may trigger them to execute in turn. The interpretation of an activity by an agent, in this

way, may be dependent on the interpretations of the same activity by other agents. In the

next section a unified middleware architecture called ALNet is proposed that helps

individual service agents to interpret user as well as other service events and lets them

respond according to their corresponding interpretations.

Figure 33: CAOFES - Top Level Scheme

5.3.2 Context-Aware Ontology Framework for Events and Services (CAOFES)

In the previous section we discussed the essential formalism required for

understanding a service event and a user event with respect to the agents within a web

 164

domain. However, these formalisms require a semantic foundation in order to conduct

efficient semantic query processing. That is, the concepts so defined in section 6.3 must

have semantic definitional equivalency. In order to provide such a platform we developed a

framework called Context-Aware Ontology Framework for Events and Services (CAOFES).

CAOFES is a collection of five core ontologies: (i) Context Element Ontology (ii) Activity

Context ontology, (iii) Activity Constraint ontology, (iv) Event ontology, and (v) Field

ontology (figure 33). Apart from these defined ontologies we use the primal ontology OWL-

S for describing the service functional vector ሬܲԦ. Other upper level ontologies such as

OpenCyc [201] can be imported as the framework grows and equivalent concepts are needed

to be incorporated in the core ontologies. We now formally describe each of the four

ontologies in terms of Description Logics (DL) notations.

5.3.2.1 Context Element Ontology

The Context Element Ontology (named as OntoContextElement) is a DL terminology that

houses the semantic definitions of the space vector elements	〈݃ܤሬሬሬሬሬԦ௩, ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ that	௩ሬሬሬሬሬሬሬԦ〉݌ܶ

has been defined in section 5.3.1. The root concept Context Element (CE) is defined as a

primitive concept. It can be further classified into the five corresponding vector element

concepts Bg, Ob, Ag, Sp, Tp. Each of these concepts can be further classified. It is to be

noted that the concepts are generally borrowed or derived from upper level ontologies such

as OpenCyc, temporal ontologies, spatial ontologies and the like. OntoContextElement is the

building block of the other core ontologies defined within CAOFES as all other core

ontologies can be related to each other through this ontology.

 165

5.3.2.2 Activity Context Ontology

The Activity Context Ontology (named as OntoActivityContext) is a DL terminology

that houses the semantic definitions of concepts related to the vector elements

,ሬሬሬሬሬԦ௩݃ܤ〉 ܱܾ௩ሬሬሬሬሬሬሬԦ, ,௩ሬሬሬሬሬሬሬԦ݃ܣ ,௩ሬሬሬሬሬሬԦ݌ܵ ௩ሬሬሬሬሬሬሬԦ〉defined in vector space ܸܵ.ሬሬሬሬሬሬԦ The corresponding semantic݌ܶ

interpretation of ܸܵሬሬሬሬሬԦ called context vector space (denoted as CV) is:

	ܸܥ ≡ ሺ∃݄ܽݐ݈݊݁݉݁ܧݏ	. ሺ݃ܤ ⊔ ܱܾ	 ⊔ 	݃ܣ ⊔ 	݌ܵ ⊔ ሻሻ݌ܶ

where Bg, Ob, Ag, Sp, Tp corresponds to the vector elements.

The existential quantifier in the above definition leaves it open for the ontology

designer to introduce other filler concepts such as QoS parameter concepts like network

latency, throughout, bit error rate etc. for more specific application domains. CV is the root

concept of OntoActivityContext. The instances of CV are the states. We define a necessary

condition for A as: ܣ	 ≡ .	ݏ݁ݐݑܿ݁ݔ݁∀	 where E is the event concept defined in the Event ܧ

Ontology.

The context vector concept CV can be further classified into the concept notability

vector (denoted as NV), and the concept event context vector (denoted as ECV). We defined

each of them as:

ܸܰ	 ≡ ሺ⊑	. ሻܸܥ ⊓ ሺ∀݅ݕܤ݀݁ݐ݋ܰݏ	. ሻܧ ⊓ ሺ∀݂ܱ݊ݕݐ݈ܾ݅݅ܽݐ݋	. .ሻܧ

	ܸܥܧ ≡ ሺ⊑	. ሻܸܥ ⊓ ൫∀݂ܱ݅݊݋݅ݐܽݐ݁ݎ݌ݎ݁ݐ݊ܫݏ	. ሺܰܥܥ ⊔ ሻ൯	ܰܥܵ ⊓ ሺ∀݂ܱܿݐݔ݁ݐ݊݋. ሻܧ

where CCN is the causal constraint and SCN is the state constraint defined in the

Activity Constraint ontology (see section 5.3.2.3). NV is the semantic equivalent of Յ௩௔. ECV

is the semantic equivalent of ܸܵሬሬሬሬሬԦ.

 166

OntoActivityContext can be further classified as per the domain requirement keeping

the given definitions consistent.

5.3.2.3 Activity Constraint Ontology

The Activity Constraint Ontology (named as OntoActivityConstraint) is a DL

terminology that comprises of the semantic definitions of the different kind of constraints

that govern the behavior of agents executing events. We define the root concept of the

ontology, constraint (denoted as CN), as follows:

	ܰܥ	 ≡ ∃൒ .	݁ݏݑ݈ܽܥݏ݄ܽ	1 ሺ݃ܤ ⊔ ܱܾ ⊔ ݃ܣ ⊔ ݌ܵ ⊔ ሻ݌ܶ

The above definition reflects the fact that the domain of interpretation of the

constraints for any event is the same as the context vector elements. In other words,

constraints can be specified in terms of concepts derived from one or more of these five

vector elements. We assume that constraints are always formalized in the CNF (Conjunctive

Normal Form). The CN concept can be further classified into three kinds: (i) causal

constraint (denoted as CCN), (ii) state constraint (denoted as SCN), and (iii) stimulus

constraint (denoted as ZCN).

The CCN concept specifies the causal condition required for an event to be an effect

of other event(s). We define CCN as follows:

	ܰܥܥ ≡ ሺ⊑	. ሻܰܥ ⊓ ሺ∀݂ܱ݅ݐ݊݅ܽݎݐݏ݊݋ܥ݈ܽݏݑܽܥݏ	. .ሻܧ

The SCN concept specifies the initial state condition required to be satisfied for an

event to occur. We define SCN as follows:

	ܰܥܵ ≡ ሺ⊑	. ሻܰܥ ⊓ ሺ∀݂ܱ݅ݐ݊݅ܽݎݐݏ݊݋ܥ݁ݐܽݐܵݏ	. .ሻܧ

 167

The ZCN concept specifies the post-conditional stimuli given by a causal event in

order to trigger other event(s) as its effect. We define ZCN as follows:

	ܰܥܼ ≡ ሺ⊑	. ሻܰܥ ⊓ ሺ∀݂ܱ݅ݐ݊݅ܽݎݐ݊݋ܥݏݑ݈ݑ݉݅ݐܵݏ	. ሻܧ ⊓ ሺ∀	൒ 1	. .ݏ݂݁݅ݏ݅ݐܽݏ .ሻܰܥܥ

From the above definition we can see that ZCN is a model concept of the concept CCN.

Hence, any constraint instance that satisfies the definition connects two events with a causal

relation – the one that is an interpretation of the ZCN definition as the cause and the one that

is an interpretation of CCN definition as the effect.

5.3.2.4 Event Ontology

The Event Ontology (named as OntoEvent) is a DL terminology that comprises of

the different kind of events including user events and services that may be identified within

a particular system (or field). The root concept event (denoted as E) is defined as follows:

	ܧ ≡ ሺ∀݄ܽ݁ݐܽݐ݈ܵܽ݅ݐ݅݊ܫݏ	. ሻܸܥ ⊓ ሺ∀	݄ܽ݁ݐܽݐ݈ܵܽ݊݅ܨݏ. ሻܸܥ ⊓ ሺ݁݊ܫ݀݁ݐݑܿ݁ݔ. ሻܨ
⊓ ሺ݄ܽݐ݊݅ܽݎݐݏ݊݋ܥݏ	. ሻܰܥ

where F is the concept field defined in Field Ontology (see section 5.3.2.5). E is semantic

equivalent of ߝ௔.

The concept E can be further classified into two concepts: (i) user event (denoted as

UE) and (ii) service event (denoted as SE). We define each of them as follows:	

	ܧܷ ≡ ሺ⊑	. ሻܧ ⊓ ሺ∀݁݊ܫ݀݁ݐݑܿ݁ݔ	. ሻܨܧ ⊓ ሺ∀	ݏݎ݁݃݃݅ݎݐ. ሻܧܵ

where EF is the environment field defined in Field ontology. UE is semantic equivalent of

 .௨௔ߝ

	ܧܵ ≡ ሺ⊑	. ሻܧ ⊓ ሺ∀݁݊ܫ݀݁ݐݑܿ݁ݔ	. ሻܨܵ ⊓ ሺ∀	݄ܽݕݐ݈݅ܽ݊݋݅ݐܿ݊ݑܨݏ. ܲሻ

 168

where SF is the system field defined in Field ontology. S is the semantic equivalent of ߝ௨௔. P

is the semantic equivalent of the service functional vector ሬܲԦ. We define the concept P as

follows:

ܲ	 ≡ .ݏݐ݈݊݁݉݁ܧݏ݄ܽ	∀ ሺ݊ܫ ⊔ ݑܱ ⊔ ݎܲ ⊔ ܴ݁ሻ

 where In, Ou, Pr, Re are the service profile concepts defined in OWL-S.

OntoEvent connects itself to the agents that interpret it. Hence, it helps the reasoner

to understand the relation between events (both user query and services) for deducing

possible dependency. The moment an event instance is recognized as UE the CAOFES

automatically defines it by connecting the event to the notability vector concept (NV)

defined in OntoActivityContext. This definition connects the event to all the context vector

elements that are needed for defining the notability and also to the agent(s) (and hence, the

service) that interprets it. Hence, a causal definition is established between an UE and SE if

and only iff the antecedent of the following rule is valid:

Rule of User Event – Service Event Dependency:

,ሻݑሺܧ൫ܷݕݐ݈ܾ݅݅ܽݐ݋ܰݏܽܪ ܸܰሺ݊ሻ൯ ∧ ,൫ܸܰሺ݊ሻݕܤ݀݁ݐ݋ܰݏ݅ ሻ൯ݏሺܧܵ

∧ ݏ݂݁݅ݏ݅ݐܽݏ ቀܼܰܥ൫ܷܧሺݑሻ൯, ሻ൯ቁݏሺܧ൫ܵܰܥܥ ↔ ,ሻݑሺܧሺܷݏݎ݁݃݃݅ݎݐ ሻሻݏሺܧܵ

 The predicates defined in the above rule correspond to the relations defined in the above

mentioned ontologies.

 169

5.3.2.5 Field Ontology

The Field Ontology (named as OntoField) is a DL terminology that defines and

classifies the world in which events occur. The root concept field (denoted as F) is defined

as follows:

	ܨ ≡ .ݏݎ݁ݐݑܿ݁ݔܧݏ݄ܽ	∀ .where Ag is Agent defined in section 6.4.2 ݃ܣ

The concept F can be further classified into two sub concepts: (i) system field

(denoted as SF) and (ii) environment field (denoted as EF). We define the each of them as

follows:

	ܨܵ ≡ ሺ⊑	. ሻܨ ⊓ ሺ∀݄ܽݏݎ݁ݐݑܿ݁ݔܧݏ. .ሻwhere D is the service hosting device agent s.tܦ

ܦ ≡	⊑	. .݃ܣ

	ܨܧ ≡ ሺ⊑	. ሻܨ ⊓ ሺ∀݄ܽݏݎ݁ݐݑܿ݁ݔܧݏ. ሺܷ ⊔ ܷ .ሻሻ where U is the user agent s.tܦ ≡	⊑	. .݃ܣ

Ontofield connects OntoEvent with the agents executing specific events defined. It

further helps to reason about the type of event (whether a user event or a service event) by

verifying the type of executer.

5.4 Activity Logic Network (ALNet): Conceptual Foundation

As mentioned before an event-driven SOA system can be modeled as a causal network of

events (services and user events) called Activity Logic Network (ALNet). ALNet can also be

viewed as a logical workflow of events [74 - 76, 104 - 105, 202]. The nodes of ALNet are

event vectors (both services and user-events). Although, in general, nodes in ALNet may

signify both service and user event vectors we restrict the definition of nodes only to service

vectors that within the system (figure 34). We define service vectors as follows:

 170

s1

s4

s2 s3

s5 sNOR AND OR

CON

s* Service Vector

Cause

OR/AND/XC Logical Operator

CON/NN Special Operator

Figure 34: An ALNet instance

Definition 5.9: Service vector is a 4-dimensional vector tuple

,ሬሬሬԦ݊ܫ〉 ,ሬሬሬሬሬԦݑܱ ,ሬሬሬሬԦݎܲ ܴ݁ሬሬሬሬԦ〉 where the vector elements denotes: (i) input (denoted as ݊ܫሬሬሬԦ) that specifies

the input parameters of a service, (ii) output (denoted as ܱݑሬሬሬሬሬԦ that specifies the output

parameters of a service, (iii) pre-condition (denoted as ܲݎሬሬሬሬԦ) that specifies system state that

are needed to be satisfied for a service to be invoked, and (iv) result (denoted as ܴ݁ሬሬሬሬԦ) that

specifies the system state that is generated as a result of the service execution.■

This sort of treatment allows us to perform a variety of operations over ALNet

including service discovery and composition. It is to be noted that a service event is the

scalar equivalent of the service vector. As user-events are assumed to be handled solely by

services hence, we assume that the event-handling process occurs only within the system.

An edge in the ALNet (figure 34) signifies the causal relation between two services where

one of the services is the functional cause and the other service is the functional effect. The

 171

effect service responds to the stimuli given by the causal service. We term the effect service

as responsive service. A stimuli generated by a causal service is the result vector

element ܴ݁ሬሬሬሬԦ of that service. For a causality to be established the stimulus ܴ݁ሬሬሬሬԦ should

be perceived by the responsive service and it should satisfy the causality constraint

(i.e. the vector element (ሬሬሬሬԦݎܲ of the responsive service. A stimulus from a causal

service can be perceived by a responsive service only if there exists a

communication channel between the two. A detailed discussion on service to

service communication is given in the next section.

If causality is established between two services then we say that the two services

have dependency. Dependency (denoted as ←) can be two types: (i) strong dependency and

(ii) weak dependency. We define each as follows:

Definition 5.10: A strong dependency is said to exist between a causal service

vector s1 and a responsive service vector s2 (denoted as ଵݏ ←ଶݏ	
௦) iff ,ݔ∃ ݕ ∋

ሺݔ ∈ .ଶݏ ,ݐݑ݌݊݅ ݕ ∈ .ଵݏ ሻݐݑ݌ݐݑ݋ ∧ ሺ ሺݔ, ሻݕ ∈ ሼ݁ݐܿܽݔ, -ሽሻ where is the g݁݉ݑݏܾݑݏ

subsumption operator (chapter 3). ■

Definition 5.11: A weak dependency is said to exist between a causal service vector

s1 and a responsive service vector s2 (denoted as ݏଵ ←ଶݏ	
௪) iff ∃ݔ, ݕ ∋ ሺݔ ∈ .ଶݏ ,ݐݑ݌݊݅ ݕ ∈

.ଵݏ ሻݐݑ݌ݐݑ݋ ∧ ሺ ሺݔ, ሻݕ ∈ ሼ݊݅݃ݑ݈݌, ■ . ሽሻ݈ܾ݃݊݅݅ݏ

⊃
݃

⊃
݃

⊃
݃

 172

We represent dependency with two mutually inverse functions: (i) the function CA

where CA denotes causal and (ii) the function RE where RE denotes responsive. The

function takes three arguments: (i) a service vector (causal or responsive), (ii) the

precondition formula ߠ, and (iii) the system ∑. We use a predicate equals (denoted

by eq) that takes three arguments: (i) a dependency function (CA or RE), (ii), a service

vector (causal or responsive) and (iii) time variable t.

The following axiom relates the CA function and the RE function:

Axiom of dependency equivalence: ݁ݍ൫ܣܥ൫ߝ௝,Θ௣,Σ௤൯, ,௜ߝ ൯ݐ ↔ ,௜,Θ௣,Σ௤൯ߝ൫ܧ൫ܴݍ݁	 ,௝ߝ ■൯ݐ

It should be noted that a particular responsive service may have more than one causal

service and a particular causal service may have more than one responsive service. This is

the case where the dependency is partial. We define partial dependency as follows:

Definition 5.12: A partial dependency is said to exist between a causal service

vector s1 and a responsive service vector s2 iff

ݔ∃ ∈ .ଶݏ 	ݐݑ݌݊݅ ∋ ݕ∀	 ∈ .ଵݏ ሺ	;ݐݑ݌ݐݑ݋ ሺݔ, ሻݕ ∈ ሼ݂݈ܽ݅ሽሻ. ■

In some cases the multiplicity in causality may mean a conjunction (i.e. a logical AND)

where a particular responsive service can trigger off only if all its causal services are

executed (figure 34). In other cases multiplicity in causality may mean a disjunction (i.e. a

logical OR; figure 34). In this case a particular responsive service can trigger off if any of its

causal services are executed. The third type of cases is when a multiplicity in causality

means an exclusive disjunction (i.e. an n-ary logical operator called XC). XC is an n-ary

operator that is semantically equivalent to only one. The above mentioned arguments go the

⊃
݃

 173

same for multiplicity in effects. For multiplicity in causality we use the prefix pre before the

operators and for multiplicity in effect we use the prefix post. We denote logical operators in

general as L and we use the superscripts pr and po to imply whether that is a pre or a post.

Apart from the logical operators there are two special operators called Conflict (denoted as

CN) and Not Necessary (denoted as NN). The CN operator explicitly states the conflicting

effect of two services. If a service si is connected to another service sj via a CN within ALNet

then it means that the occurrence of the former should eliminate any possible occurrence of

the latter until the former finishes execution. Thus, CN is basically an restriction to the

selection of the service Sj during a particular event-handling process. This does not

necessarily mean that Sj cannot be selected for some other event-handling process that may

happen after the current event-handling process terminates. On the other hand the NN

operator helps us to model event-handling processes where feedbacks are existent. By

feedback we mean dual communication between two services Si and Sj where Si gets

occasional feedback information (or stimulus) from Sj but happens to be the causal service to

Sj. In this case Sj is not a necessary causality for Si (otherwise there would have been a

causal deadlock) but occasionally causes Si to respond to its stimulus. We denote the special

operators in general as Q. We summarize the descriptions in table 6.

Edges in an ALNet can be of two types: (i) constrained edge (denoted as ܧఏ) and (ii)

non-constrained edge (denoted as ܧ∅). A constrained edge is one which represents a

dependency between a causal service and a responsive service and hence, a causality

constraint/stimulus is implied over it. On the other hand, a non-constrained edge is one that

is only a connective between two logical nodes or between a logical node and a service node

in A

toge

form

ܮ ∪

,ௌሬሬሬሬԦܥ〉	

ALNet and d

ther. Hence

mal definition

Definitio

ܳሻ ∋ ൫ܮ௣௥ ൈ

ሬܲԦ〉; ܳ ൌ ሼܰܥ

does not imp

, no causali

n of ALNet a

Table 6:

on 5.13: An

ൈ ܸ → ൯∅ܧ ∧

ܰ,ܰܰሽ; ܧ ൌ

ply any dire

ity constrain

as follows:

: ALNet Ope

ALNet can

∧ ሺܸ ൈ ௣௢ܮ →

ൌ ∅ܧ ∪ .Θܧ

 174

ect depende

nt/stimulus i

erators – Sem

be defined b

→ wher	ሻൟ∅ܧ

ency between

is implied o

mantics and

by the set A

re	ܮ ൌ ௣௥ܮ ∪

n the nodes

over it. We

Symbols

L s.t.	ܣ௅ ൌ ൛

∪ ;௣௢ܮ ܸ ൈ ܸ

s that it con

now presen

൛〈ܸ, ܸ	|〈ܧ ൌ

→ ;ܧ Ԧܵ ൌ

nnects

nt the

ሺ Ԧܵ ∪

 175

It can be noted from the above definition that the edges E between any node and the

L nodes in ALNet is restricted in two cases. In the first case there cannot be any constrained

edge from an Lpr node to any other node. In the second case there cannot be any constrained

edge from any node to an Lpo node in ALNet. As the pre-operator Lpr is a connective

between multiple causal service nodes to a single responsive service node hence, the causal

constraint of the responsive node should not be placed over the edge connecting the pre-

operator to the responsive node. Instead, the causality constraint is split into multiple

causality constraints and divided over each of the multiple edges coming from the causal

service nodes to the pre-operator. The nature of the split (i.e. a conjunctive split or a

disjunctive split) decides the nature of the pre-operator. The same argument goes with the

post-operator Lpo that connects a single causal service node to multiple responsive service

nodes. Hence, the stimulus of the causal node should not be placed over the edge connecting

the causal node and the post-operator. Instead it is split and divided over the edges

connecting the post-operator to the multiple responsive nodes. The nature of the post-

operator is decided by the nature of the split. There are 16 different services that can be

identified. These services are causally related to each other. We see that there are 9 logical

operators out of which 7 are post-AND and 2 are pre-OR. There are 6 post-AND operators

that connect the user events with 10 source services (i.e. the effects).

 176

s4

s1

sNs5

s3

ALNet
Middleware s1

s4

s2 s3

s5 sNOR AND OR

CON

…

User
Event

s2

s* Service Vector

Knowledge Base

Figure 35: ALNet architecture

5.5 ALNet Architecture

In this section the architectural backbone of ALNet is introduced. The architecture

consists of the centralized ALNet middleware and the set of service descriptions that are

registered with the middleware (figure 35). It is to be understood that the set of services is

dynamic in the sense that there can be addition and deletion of services from the set over

time. Service descriptions are transformed into corresponding service vectors and the mutual

functional dependency between these service vectors is dynamically generated. Thus, the

underlying ALNet instance grows and shrinks over time as well. The ALNet middleware

maintains a global view of the overall ALNet in its knowledge base. At the same time each

service vector that is registered with the middleware maintains in its own local knowledge

 177

base a local ALNet instance that contains the service vector's own functional dependency

with other service vectors.

Apart from the ALNet instances each service vector and the middleware maintain

their corresponding version of CAOFES instances (introduced in section 5.3). A CAOFES

instance acts as a semantic belief system for a service agent (and the ALNet middleware) that

enables the service agent to semantically interpret events (services and user events). The

interpretation of a service stimulus as an event by a service agent results in the possibility of

execution of the service by the agent causing, in turn, stimuli for other possible agents

within the system. Interpretation of service stimuli can be re-active where the ALNet

middleware (figure 35) invokes a set of service agents by interpreting the stimuli on behalf

of them or pro-active where agents have defined sensory modes. In the case of reactive

response a set of service agents are notified by the middleware based on a match of the user

request desire with the output of the service vector corresponding to each of those service

agents. In other words the middleware interprets the user event on behalf of the service

agents. On the other hand in pro-active response service agents perceive and interpret the

user agent themselves. Based on a particular interpretation a service agent may generate

stimuli that is either pro-actively captured by other service agents or reactively responded to

via the middleware. Sometimes both the service agents as well as the middleware can

participate collaboratively into the interpretation of service stimuli. This happens when a

user agent may not have all the necessary sensory modes or the complete belief system for

fully interpreting the event.

 178

The ALNet architecture allows asynchronous execution of services that is based on a

completely independent order of event interpretation and responses. The middleware keeps

record of all events (both user events and services) that occur within the system. Thus, even

though services may be stateless they need not be synced together for interpreting each

other's stimuli. Although a service agent may be busy over a time period yet its

corresponding service vector is able to interpret an event and keep the interpretation with the

middleware. The middleware then notifies the service agent when it is free so that the

service agent can respond according to the interpretation. In other words, the interpretation

of an event is decoupled from the response to that event within the ALNet architecture.

Figure 36: Abstract Edge between Clusters in O-cluster space and I-cluster space

 179

5.5.1 ALNet Abstraction

As can be understood by the definition of ALNet, with the addition of more and more

services (especially functionally similar services) the number of service dependency defined

will grow. Hence, the ALNet becomes more complex as it grows with time. Thus, the

problem of service discovery becomes much more complicated and computationally

expensive due to the potential explosion of the search space. In order to resolve this issue

efficiently we propose an abstraction technique termed ALNet Abstraction that transforms a

potentially complex ALNet into a simpler abstract ALNet.

ALNet abstraction leverages upon the STC clustering algorithm (proposed in chapter

4) that groups functionally similar service vectors into taxonomies (i.e. clusters). We term

such a cluster as an abstract node (denoted SA) in the context of ALNet. Hence,

definitionally abstract node and g-taxonomy are equivalent. The root service vector of a

cluster describes the abstract node since semantically it subsumes all other service vectors in

that cluster. As STC generates two mutually independent cluster spaces (O-cluster space and

I-cluster space) we therefore have two corresponding abstract nodes - O-abstract node

(where corresponding g = O) and I-abstract node (where corresponding g = I). After the

abstract nodes are generated the O-cluster space is mapped onto the I-cluster space such that

for a particular O-cluster root service vector a dependency can be established with at least

another I-cluster service vector (figure 36). This is done by selecting each O-cluster in the

O-cluster space and then searching for the I-cluster in the I-cluster space such that there

exists at least one service vector (say s) in the I-cluster that is in LSC (i.e. Least Specific

Children set in the context of g-subsumption) with the root service vector of the O-cluster.

 180

After this operation is done all the ancestor and descendant service vectors of s are extracted

to form an abstract responsive node. The corresponding O-cluster is the abstract causal

node. Note that during this operation there can be several abstract responsive nodes

corresponding to one abstract causal node since the LSC set may have more than one

service vector. All such responsive nodes are causally dependent on the causal abstract node

via a logical AND node. The dependency relation is represented as an abstract edge. We

define as abstract edge as follows:

Definition 5.14: An abstract edge (denoted as EA) is defined as an edge EA
ij such that

∀݅, ݆; ௜௝ܧ
஺ ൌ ௜ܸ ൈ ௝ܸ; ݅ ് ݆; ܸ ൌ ሼܵ஺, ,ܮ ܳሽ ∋ ሾ∃݇ ∈ ሼ݅, ݆ሽ; ௞ܸ ൌ ܵ஺ሿ. ■

According to the above definition an abstract edge can hold between three types of

nodes: (i) abstract service node, (ii) AND nodes, and (iii) special nodes. Hence, there can be

four kinds of abstract edges: (i)	ܵ஺ ൈ ܵ஺ (ii) ܵ஺ ൈ ሺܦܰܣ/ܳሻ (iii) ሺܦܰܣ/ܳሻ ൈ ܵ஺ and,

(iv)ሺܦܰܣ/ܳሻ ൈ ሺܦܰܣ/ܳሻ. It is to be noted that an abstract edge is without any constraint

imposition by definition. It is to be noted that the abstracted ALNet is not a global structure

in the sense that the algorithm does not guarantee an abstraction over the entire ALNet

instance to form a single abstract ALNet instance. Instead, the abstraction is at a local level

where each service vector after undergoing an STC operation gets a unique identity of the

root service vector/s of the clusters in which it belongs (note that according to STC there can

be multiple cluster membership). If the root service vector has an I-abstract responsive node

then all the service vectors within that cluster has a dependency with the abstract responsive

node. The abstract responsive node is represented by the corresponding root service vectors

and hence, gets the unique ID of each of these root service vectors. The local abstract

 181

dependency is preserved within the individual knowledge bases of the service vectors. The

ALNet abstraction algorithm is given as in figure 37.

Figure 37: ALNet Abstraction Algorithm

ALNet abstraction algorithm has some very interesting and important properties in

the context of service discovery and composition as follows:

Theorem 5.1: If a root service vector sroot of an abstract causal node Scausal has

dependency with another abstract responsive node Sresponsive then each service vectors within

Scausal has dependency with all other service vectors within Sresponsive.

Proof: If sroot has an LSC and/or MSP in Sresponsive then it has g-relation with all the

member service vectors of both LSC and MSP. Hence, it has g-relation with all the ancestors

of each MSP member and all the descendants of each member of LSC. Since sroot g-

 182

subsumes every other service vectors in Scausal therefore sroot has a g-relation with all the

service vectors in Sresponsive As g-relation is an order relation hence, every service in Scausal

has g-relation with all the members of Sresponsive. ■

Corollary 5.1: If a root service vector sroot of an abstract node Si does not have

dependency with another abstract responsive node Sj then each service vectors within Si does

not have dependency with any other service vectors within Sj

Proof: If sroot does not have dependency with another abstract node Sj then it does

not have any MSP or LSC set with respect to Sj. Thus, all other service vectors in Si has no

g-relation within any of the members of Sj. ■

The above theorems imply the soundness and completeness of the ALNet Abstraction

algorithm.

5.5.2 ALNetSniffer: 2-Phase Service Discovery

As has been outlined in chapter 3, ALNetSniffer consists of two important phases: (i)

end service discovery (this is equivalent to the desire matching phase of the DQM model),

and (ii) source service discovery (this is equivalent to the input matching phase of the DQM

model). Each matching phase generates a set of weak solution set (denoted as WSS) and a

strong solution set (denoted as SSS) after the operation. We define each set as follows:

Definition 5.15 (Weak Solution Set): A Weak Solution Set w.r.t to a given query Q

is the set of all services (denoted as WSS) such that 	

௜ݏ∀ ∈ ܹܵܵ; ௜ݏ ⊨ 	݁ݎ݄݁ݓ	ܳ ⊨ ቊ
⊑1	݁݌ݕܶ	ݏ݅	ܳ	݂݅	

ை

⊒2	݁݌ݕܶ	ݏ݅	ܳ	݂݅	
ூ ∎

 183

Definition 5.16 (Strong Solution Set): A Strong Solution Set w.r.t to a given query Q

is the set of all services (denoted as SSS) such that ∀ݏ௜ ∈ ܵܵܵ; ௜ݏ ⊨ 	݁ݎ݄݁ݓ	ܳ ⊨

ቊ
⊒1	݁݌ݕܶ	ݏ݅	ܳ	݂݅	

ை

⊑2	݁݌ݕܶ	ݏ݅	ܳ	݂݅	
ூ ∎

We now describe each phase of ALNetSniffer in detail as follows:

Phase 1: The user Q-T1 query event is mapped over the abstract causal nodes in the

abstract ALNet so as to insert the query into the space in the same way as how services are

clustered by the STC algorithm. More specifically an MSP of the query is first searched and

then an LSC of the query is extracted out of the children set of the MSP. After that the MSP

and its ancestors becomes the weak solution set (denoted WSS-P1) of the Q-T1 query while

the LSC and its descendants become the strong solution set (denoted SSS-P1). The phase 1

combined solution set is called possible end services. The corresponding algorithm is given

in figure 38.

Figure 38: ALNetSniffer-Phase 1 algorithm

 184

Phase 2: After the phase one is done the phase 2 is initiated only if either one of the

WSS and the SSS so found in phase 1 is not empty. This is because if the phase 1 generates

empty solution then the desire cannot be satisfied by the system at the time of query

mapping. Hence, if at least one of these solution sets are non-empty then phase 2 starts off.

In phase 2 the Q-T2 query event is mapped over the all the abstract I-cluster nodes in the

abstract ALNet in the same way as in phase 1. However, after the MSP and the LSC have

been discovered for Q-T2 the WSS-P2 consists of the LSC and all its descendants (in

contrast to phase 1) while the SSS-P2 consists of the MSP and all its ancestors. The

corresponding algorithm is given in figure 39.

Figure 39: ALNetSniffer-Phase 2 algorithm

Note that the solution sets in phase 2 may not be corresponding to a particular I-

cluster abstract node. In fact the combined solution set is a subset of such a node. Also it

 185

should be noted that the combined solution set may not be equivalent to an abstract

responsive node since the responsive set must have a causal dependency with another

abstract causal node while the combined solution set does not guarantee that. In certain

cases the combined solution set of phase 1 and the combined solution set of phase 2 may

have intersection in the sense that some of the service vectors are capable to generate the

desired output as well as consume the given input. In a more specific case where the

intersection is equivalent to the union query mapping becomes a one-to-one process.

Although this has been assumed by most researches in the area of service discovery and

composition we clearly see that the assumption cannot be generalized. For service discovery

to be accurate a 2-phase approach such as ALNetSniffer is able to capture cases where there

can be service vectors in the phase 1 combined solution set that are absent from the

intersection (if that exists at all) that can still satisfy the Q-T1 query. This is possible only if

there exists a set of helper service vectors that are causally connected to these service

vectors via a dependency path such that some of the helper services (i.e. the source services)

can be triggered using the Q-T2 query event (or the initial event).

We now discuss a very significant property of abstract ALNet that has a major

impact over the proposed event-handling algorithm. We can prove, under certain

assumptions, that there must be only one abstract source node and only one abstract end

node for a satisfiable non-compound (i.e. simple or complex as per DQM model) user event.

 186

Figure 40: ALNetSniffer: Discovering Strong Solution Sets for query (Q-T1 & Q-T2)

The assumptions are that for user events that contain complex DQM queries the system

ignores all possible alternatives where the query arguments in conjunction can be satisfied

by more than one service agent in a contextually coherent manner under certain mutual

negotiation. For an example, if the user event for renting a car contains a complex Q-T1

query that demands {car_information, rent_confirmation} then the ALNet system ignores the

possibility that there can be two services s1 and s2 involved such that s1 provides the

rent_confirmation first and then asks s2 to provide car_information of the corresponding

rented car. In our model we assume that s1 should be able to completely (i.e. member of SSS-

P1) or partially (i.e. member of WSS-P1) satisfy the complex Q-T1 without undergoing any

negotiation with s2 even if the user satisfiability is not complete. We call this assumption the

strict restriction over complex Q-T1. To prove the aforesaid discussed property formally we

first prove the following lemma:

Lemma 5.1: A particular semantic description is unique to an abstract node.

My name is Joe.
I live in NYC.

I’d like to rent a car.

Rent a car
Origin City: NYCName: Joe

The I Cluster Space

s1

s3s5

s2

s6

s7 s4

The O Cluster Space

s4

s6s5

s2

s3

s7 s1

Type 1 Query:
Desire

Type 2 Query:
Input

Search for
Most Specific Parent

(MSP)

Search for
Least Specific Child

(LSC)

 187

Proof: An abstract node is definitionally equivalent to a g-taxonomy. Since a g-

taxonomy has one root service vector (say sr) therefore sr g-subsumes all member service

vectors. Therefore, the semantic description of the abstract node is unique if it takes the

value of the description of sr. ■

Theorem 5.2: A target event can be interpreted in a particular manner by at most

one abstract end node.

Proof: Given the assumption of strict restriction over complex Q-T1 if the desired Q-

T1 of the target event is the set X and if X is satisfiable then there exists a service vector s1

such that ሺܺ, ଵሻݏ ് ݂݈ܽ݅. Hence, ሺܺ, ଵሻሻݏሺݎ݋ݐݏ݁ܿ݊ܣ ് ݂݈ܽ݅	 ሺܺ, ଵሻሻݏሺݐ݊ܽ݀݊݁ܿݏ݁ܦ ്

݂݈ܽ݅ is also true. Also if there exists another service vector s2 such that ሺܺ, ଶሻݏ ് ݂݈ܽ݅

then as g-relation is transitive hence,

ሺݎ݋ݐݏ݁ܿ݊ܣሺݏଵሻ, ଶሻݏ ് ݂݈ܽ݅ ∧ ሺݐ݊ܽ݀݊݁ܿݏ݁ܦሺݏଵሻ, ଶሻݏ ് ݂݈ܽ݅		is true. This implies that s2

must also belong to the same abstract node that contains s1. Hence, there exists an abstract

end node for a given non-compound Q-T1 user event under the aforesaid assumption. As per

lemma 5.1 such an abstract end node is unique. ■

Theorem 5.3: An initial event can be consumed by at most one abstract end node.

Proof: Proof logic similar to that of previous theorem except that the assumption of

strict restriction over complex Q-T1 can be lifted. This is because initial event contains Q-T2

query only. ■

At this point it is to be observed that it is not guaranteed that the combined phase 1

solution set must be the end services. This is because there can exist a set of solution service

⊃
݃

⊃
݃

⊃
݃

⊃
݃

⊃
݃

⊃
݃

 188

vectors such that there is no dependency path from any of the source services. Hence, we

termed the combined phase 1 solution set as 'possible' end services. Finding a dependency

path is basically an event handling process. The problem of finding the optimal dependency

path for a given initial event is called service composition (in the context of the proposed

model event-handling). The abstract ALNet is meant only to ease the discovery of end

service nodes and thereby improve the overall composition performance. The instance-level

ALNet is the structure over which the real dependency path is discovered.

5.5.3 Dependency Path Discovery

One of the major difficulties in an event-handling problem is to provide a

computationally efficient solution for selecting end services out of a set of possible end

services (discussed in previous section). This requires discovering the dependency path from

the source services to the end services. We now introduce a concept called ALNet

reachability that serves as a computational tool for efficiently finding whether a dependency

path exists between a pair of arbitrary causal service node and responsive service node. As

mentioned in the related work section, reachability (denoted as ⟸) is a problem of finding

whether a path exists between two given vertices in a graph. In this work we propose an

ALNet encoding technique that uses the same concept as that of b-Encoding for bit-based

encoding of base ontologies discussed in chapter 3. The only difference is that unlike an

ontological taxonomy an ALNet may not be acyclic. This is because of the special node NN

(Not Necessary) that allows feedback stimuli from the responsive service to the original

causal service. However, during the encoding process we convert all such reverting edges

 189

into forward edges such that from a graph point of view all NN nodes are treated as parent

nodes to responsive service vector nodes instead of child nodes. This transformation does

not affect the problem of dependency path discovery since if a forward path can be

computed between two service vector nodes within ALNet then a backward path can

obviously be deduced from that. Once the global ALNet instance is encoded within the

middleware the codes are passed on to all the local instances of each registered service

vector nodes. A reachability can then be very efficiently computed by doing a subsumption

testing between one service code and another service code. For an example if s1 (say a

source service node) has the code 0*1 and s5 (say an end service node) has the code

0*1111111011 (figure 34) then since the subsumption test results in the code of s2 hence we

understand that there exists a dependency path from s1 to s2 (i.e. ݏଶ ⟸ ଵ). However, suchݏ

reachability computation is based on the assumption that the global ALNet instance topology

remains constant at the point of computation. The query time complexity is O(N/W) where

N is the number of service vectors in the ALNet instance and W is the in-memory word

capacity of the computational model.

Even though query time for ALNet reachability is fast updating cost is still to be

solved. Updating is required when a new service vector joins the ALNet instance or an

existing service vector leaves the instance. Joining of a service vector is essentially

discovering its all possible dependencies within the instance. This is done by mapping its O-

array to the I-cluster space of the instance and its I-array to the O-cluster space of the

instance. In the worst case this takes linear time. During joining the new service node may

be: (i) leaf node, (ii) root node, (iii) parent node when it has a set of children and also a set

 190

of parents. In the first case encoding is trivial because the new service vector just inherits

existing parent node codes. In the second and third cases the global ALNet instance is re-

encoded. Thus, the worst case insertion update time is O(bn) where n is the number of nodes

in the ALNet and b is the branching factor. On the other hand deletion of service vector can

also be at three levels: (i) leaf, (ii) root, and (iii) parent. However deletion of service vector

does not affect the ALNet instance encoding in any of these three cases.

The idea of reachability can also be applied to the abstract ALNet as well. In a

similar manner we can compute whether two abstract service nodes are reachable by

computing the reachability between their corresponding root service vector nodes. Hence, if

for all root service vectors in a given abstract causal node has reachability with at least one

of the root service vectors in a given abstract responsive node then the two abstract nodes

are said to have reachability. We can therefore prove using theorem 5.1 (and corollary 5.1)

that if there is reachability between an abstract source node and an abstract end node then

there must be reachability from all corresponding source service vector nodes to at least one

end service vector node (and vice-versa) selected from these abstract nodes.

Theorem 5.4: Given abstract nodes Si and Sji if	 ௝ܵ ⟸ ௜ܵthen

௠ݏ∀ൣ ∈ ௜ܵ, ௡ݏ∃ ∈ ௝ܵ ∋ ௡ݏ ⟸ ௠൧ݏ ∧ ሾ∀ݏ௡ ∈ ௝ܵ, ௠ݏ∃ ∈ ௝ܵ ∋ ௡ݏ ⟸ .௠ሿݏ

Proof: Since 	 ௝ܵ ⟸ ௜ܵ hence, either Sj is responsive to Si (i.e.	 ௝ܵ ← ௜ܵ) or there must

exist at least another abstract node Sk such that ௝ܵ ← ܵ௞ ← ௜ܵ. In the former case proof is

obvious according to theorem 5.1. In the latter case Sk is an abstract node that is causal to Sj

and at the same time responsive to Si. Hence, all service vectors in Si have dependency with

 191

all other service vectors of Sk (theorem 5.1). Also same set of service vectors in Sk has

dependency with all other service vectors of Sj. Since g-relation (and thus, dependency) is a

transitive relation hence, all services of Si have dependency with all other services of Sj. ■

5.5.4 ALNetComposer: Event-handling Algorithm

In this section we propose our event-handling algorithm called ALNetComposer. The

algorithm is basically a back-ward traversing greedy approach and is essentially a modified

single destination shortest path algorithm. However, unlike many other popular shortest path

algorithms the traversal is guided and not explorative. It is to be noted that instead of edge

cost we have a node cost in our case since service vectors come with a cost of their own that

can be the price, service latency, service reliability, etc. The goal is to discover a

dependency path D given a user event {Q-T1, Q-T2} such that a cost function Fcost is

minimized. In this work we do not model the cost function Fcost but assume it as generic. We

do not include any user-defined constraint over Fcost as most constraint variables in the

problem of service composition are QoS parameters that can be treated as decision variables

within Fcost. We hereby provide the problem statement as follows:

Problem Statement: Given an ALNet instance AL and a user event consisting of the

query {Q-T1, Q-T2} find a dependency path D such that costD = Min (Fcost) and Q-T1 is best

satisfied in terms of g-relation.

ALNetComposer first initializes D as NULL and its corresponding cost (costD) as 0.

After that it runs ALNetSniffer-Phase 1 for getting the complete solution set (P1_soln). Note

that this solution set contains both the WSS-P1 and SSS-P1 sets. Thus, P1_soln set is the

 192

possible abstract end node. If P1_soln is empty then the algorithm terminates stating that the

given user event cannot be handled. However, if it finds a solution set then it runs

ALNetSniffer-Phase 2 to find the abstract source node P2_soln. As per theorem 5.4, 5.2, and

5.3 for a given user event there can be only one pair of abstract source and end nodes. Thus,

ALNetComposer utilizes this property to prune the search for D only to P1_soln and

P2_soln. The algorithm then checks the reachability between these two solution sets. If there

exists a reachability then it tries to extract the best possible end services (i.e. SSS) out of

P1_soln. However if such a solution set is not found then it extracts the next best matches

(i.e. WSS). After that the algorithm selects the service vector that has minimum cost from the

extracted end service set. This end service (End_node) is guaranteed to have reachability

with at least one service vector in P2_soln (theorem 5.4). Thus, the algorithm selects

End_node as the terminating node of D. After that back-traversal is initiated in a way such

that the next hop is an abstract causal node that has reachability to the source abstract node

P2_soln. After that the service vector that has the lowest cumulative minimum cost is

selected from the next hop. Cumulative cost is simply the addition of the current cost of D

and the cost of each service vector in next hop. This service vector is then added into D. The

process goes on till P2_soln is reached and a service vector is selected (and added into D)

from that. We now provide our proposed event-handling algorithm called ALNetComposer

in figure 41.

To improve runtime performance ALNetComposer follows the traversal guidelines

given in table 7. It has to be noted that runtime traversal is forward traversal over the

 193

discovered optimal dependency path by ALNetComposer. According to the table the

ALNetComposer does not select any operator node as the next hope if there is an alternative

Figure 41: ALNetComposer: Event-Handling Algorithm

next hop. This is because operator nodes in general requires an additional decision

computation when ALNetComposer requires to proceed forwards. If logical operators cannot

be avoided then the next thing to avoid is NN operator nodes since that creates the

possibility of runtime loops during event-handing. Next node that has to be avoid is post-

AND. This is because during runtime post-AND forces the overall event-handling process to

wait till all the responsive service vectors to the post-AND are executed. This increases

overall service latency. Then comes the pre-AND node as it also incurs overall service

 194

latency since all the causal service vectors have to be executed before the event-handling

can proceed forward. Next ALNetComposer tries to avoid the pre/post XC operators since

XC operators enforces a runtime decision to be taken regarding the selection of the service

vectors connected to the XC. After the selection the system then has to stop other non-

selected services from being executed.

Table 7: Runtime Traversal Optimization Guideline

Objective Heuristic Priority

Runtime Traversal Cost
Minimization

Avoid operator nodes 1 (highest)

Avoid NN node 2

Avoid post-AND node 3

Avoid pre-AND node 4

Avoid pre/post-XC node 5

Avoid pre/post-OR node 6

5.5.5 Situation Boundary & Event-handling Optimization

Event-handling within the ALNet framework can be optimized based on the

proposed concept of situation boundary (denoted SB). A 'situation' arises when a set of

related events occur within an ALNet system such that a common user event is handled

optimally. These related events, in general, can be both user feedback events as well as

service events. A situation characterizes a particular dynamics of the ALNet system that is

 195

specifically tailored for a particular event semantics. More specifically, it can be proved that

for a specific kind of user event there is a fixed set of abstract nodes that are involved in the

event-handling process. This fixed set is called situation boundary for the specific type of

user event. We define situation boundary as follow:

Definition 5.17: If there exists a dependency path D that optimally handles a user

event  then a situation boundary for the event (denoted ܵܤఌ) is defined as:	ܵܤఌ ൌ ሼ ௜ܵ|∀ݏ ∈

;ܦ ݏ ∈ ௜ܵሽ where S is an abstract node and s is service vector node in D. ■

In order to prove the existence of a common fixed SB for a given type of user events

we first need a formal understanding of event similarity that is used to typify events.

Definition 5.18: Two events ߝ௜	&	ߝ௝	are said to have event similarity (denoted as

௜ߝ ≅ .௜ߝ௝) iff ሺߝ ܳ-ܶ1, .௝ߝ ܳ-ܶ1ሻ⊇
ை ሻ ് ݂݈ܽ݅.■

The above definition implies that if the desire component of two user events have g-

relation (i.e. exact or plugin or subsume or sibling match) then the user events are said to be

event similar. We now give a stronger definition of event similarity as follows:

Definition 5.19: Two events ߝ௜	&	ߝ௝		are said to have strong event similarity (denoted

as ߝ௜ ≅௝ߝ
ௌ ሻ	iff ሺߝ௜. ܳ-ܶ1, .௝ߝ ܳ-ܶ1ሻ⊇

ை ሻ ് ݂݈ܽ݅ሿ ∧ ሾ ሺߝ௜. ܳ-ܶ2, .௝ߝ ܳ-ܶ2ሻ⊇
ூ ሻ ് ݂݈ܽ݅ሿ.■

The stronger definition imposes an additional g-relation restriction over the input

components of two user events. Based on this definition we now prove the existence of a

fixed situation boundary for two event similar user events.

Theorem 5.5: Given two satisfiable user events  i &  j such that ߝ௜ ≅௝ߝ
ௌ ; ఌ೔ܤܵ ≡ ఌೕܤܵ

 196

Proof: For the Q-T1 components of the events to be satisfied there must exist two

end service vectors (say si and sj). Since ߝ௜ ≅௝ߝ
ௌ hence, they have g-relation with respect to Q-

T1. As g-relation is a transitive relation hence s1 and s2 are in g-relation to each other. Thus,

s1 and s2 belong to the same abstract end node (say Send). Also since the user events have g-

relation with respect to Q-T2 hence, there must exist at least two services s3 and s4 such that

they have g-relation with the user events Q-T2 components as well as with each other (due

to transitivity of g-relation). Thus, s3 and s4 must belong to the same abstract source node

(say Ssource). Since the two user events are satisfiable hence they must have corresponding

dependency paths - say Di and Dj respectively. Hence, both Di and Dj must start at Ssource and

end at Send. According to theorem 5.1 (and corollary 5.1) the next abstract node hop for each

of the ALNetComposer processes corresponding to the two user events will always be the

same. Hence, SBi is equivalent to SBj. ■

The significance of the above theorem is that the ALNet middleware stores SB

information in its knowledge base for every new event type so that if it observes similar

event in future it can pull up the SB and starts off ALNetComposer for the newly observed

event to discover the optimal dependency path just within the selected SB. The same

principle can also be applied to events that are weakly event similar. However, for this case

corresponding user event SBs will have overlap and not equivalent. SB overlap is a

phenomenon when two SB sets have an intersection but the intersection is not equivalent to

their union. It is to be observed that the final abstract end node will be same for the two SBs

and thus, is a minimum SB overlap possible. SB overlap is currently outside the scope of this

 197

work. The following algorithm, called SBTraveller, optimizes the ALNetComposer

algorithm.

Figure 42: SBTraveller: An optimized ALNetComposer algorithm

5.6 Results: Service Discovery Accuracy

One of the primary objectives of the evaluation discussed in this section is to

evaluate the precision/recall of ALNetSniffer algorithm when a set of DQM query based user

events. This approach resolves the inadequacy of domain based accuracy measure by strictly

restricting the accuracy evaluation over the set of services that are retrieved as functionally

similar to a given complex DQM query. Moreover, this approach neatly evaluates the

service discovery performance of the ALNet framework as a whole. We first define query-

precision and query-recall as two measures for understanding the accuracy of a discovery

 198

process and hence, the goodness of a cluster space generated by a given service category

learning algorithm.

Definition 5.20: Query-Precision with respect to a given query Q is defined as the

ratio of the number of relevant services that are retrieved (say nrel,Q) when Q is mapped over

the cluster space generated by a service category learning algorithm L vs. the total number

of retrieved services (Nret,Q) for Q. Numerically this means: Pr(Q) = nrel,Q / Nret,Q. ■

Definition 5.21: Query-Recall with respect to a given query Q is defined as the ratio

of the number of relevant services that are retrieved (say Nrel,Q) when Q is mapped over the

cluster space generated by a service category learning algorithm L vs. the total number of

relevant services (Nrel,Q) for Q. Numerically this means: Re(Q) = nrel,Q / Nrel,Q. ■

To evaluate the query-precision and query-recall of STC we used the query set given

in OWLS-TC v2 dataset. The query set contains 29 queries each accompanied by its

corresponding expert-evaluated set of relevant services. We pre-processed the queries by

converting them into their corresponding query type (i.e. simple, complex, or compound) as

per the proposed DQM query modeling in chapter 3. We observed that all the queries were

either simple or complex in type. We first calculated the average 11 point precision over

recall for each of the 29 queries. This accuracy measure helps us to evaluate the precision as

well as the recall in an integrated manner. The underlying idea is to rank the retrieved

services in order of relevancy to a given query and then to analyze each of the ranked

services one by one by measuring the precision observed till that rank and the recall with

respect to the given relevant set of services for that query. The measure is formally known as

precision@r. We define it as follows:

 199

Definition 5.22: (Precision@r) Given a query Q and its set RQ of relevant services

(Nrel,Q) if a service discovery process over a cluster space generated by a service category

learning algorithm L retrieves an ordered set of services Rret,Q (cardinality, say, Nret,Q) where

the order is in decreasing sequence of relevancy of member services to Q then the precision

@ r (denoted as Pr(Q, r)) is defined as the ratio of number of services in subset Rr
ret,Q = {s1,

s2, ..., sr} that are members of RQ (say, Nr
rel,Q) over the total number of services in Rr

ret,Q (i.e.

r). ■

The precision @ r is numerically calculated as: Pr(Q,r) = Nr
rel,Q / r. The

corresponding recall @ r is numerically calculated as: Re(Q, r) = Nr
rel,Q / Nrel,Q. Note here

that r is a positive integer such that r = [1, Nret,Q]. r is often called the cut-off point. To give

an example, let us assume that the set RQ = {s2, s7, s1, s4, s5, s12, s74, s40, s42, s34} where RQ

containing the relevant services for a query Q has been given. Thus, there are 10 services

that are relevant to the query Q, as determined by the domain experts. Suppose a service

discovery algorithm returns for the query Q the ordered set Rret,Q = {s34, s22, s40, s98, s100, s4,

s500, s600, s17, s12, s21, s23, s33, s51, s74}. We find that the service s34 which is ranked number 1

is relevant. Since this service corresponds to 10% of all the relevant services in the set R,

we say that we have a precision of 100% at 10% recall. The service s40 which is ranked as

number 3 is the next relevant service. At this point, we say that we have a precision of

roughly 66% (2 Service out of 3 are relevant) at 20% recall (two of the 10 relevant services

have been seen). If we move further down the list, precision of 50% at 30% recall; precision

of 40% at 40% recall; precision of 30% at 50% recall; 0% precision at >50% recall. Since

different queries may generate different cut-off points (based on the cardinality of the Rret,Q

 200

set) the standard way of evaluating the discovery performance over a set of queries is to

interpolate the cut-off points into 11-points for each query and then averaging the

precision@r over the number of queries. We define average 11-point interpolated

precision@r as:

Definition 5.23: The interpolated precision @ r (denoted as I_Pr(Q,r)) at a certain

recall level r = [1, 11] is defined as the highest precision found for any recall level r’≥ r

,ሺܳݎܲ_ܫ ሻݎ ൌ ,ሺܳ	ݎ௥ܲ	௥′ஹݔܽܯ ■ .ሻ′ݎ

Definition 5.24: The average 11-point interpolated precision @ r (denoted as

I_Pr(r)) at a certain recall level r = [1, 11] is defined as the averaged interpolated precision

@ r over the total number of queries that have been mapped over the cluster space by the

discovery algorithm:

ሻݎሺ	ݎܲ_ܫ 	ൌ 		
∑ ூ_௉௥	ሺொ,௥ሻ
ಿೂ
ೂసభ

ேೂ
 ■

So, for the previous example, at recall levels 0%, 10%, 20%, 30%: the interpolated

precision is equal to 33.3%. At recall levels 40%, 50%, and 60%, the interpolated precision

is 25% (which is the precision at the recall level 66.6%). At recall levels 70%, 80%, 90%,

and 100%, the interpolated precision is 20% (which is the precision at recall level 100%).

We first observed the performance of the proposed discovery algorithm over the O-cluster

space formed by STC for each of the 29 Q-T1 queries. This was to evaluate the accuracy

performance in the phase 1 service discovery process. To evaluate we calculated the mean

interpolated precision @ r over the 11 points for each of the queries (figure 43). In general

for most queries (except for 10 queries) the phase 1 discovery process obtained an average

 201

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

A
ve
ra
ge

 P
re
ci
si
o
n

Query ID

Query Accuracy
(11 Point‐Interpolated)

Type 1

Type 1+2

Figure 43: Query Accuracy (MIP): Phase 1 & Phase 2 ALNetSniffer

interpolated precision (MIP) near to 0.8. We next repeated the experiment by completing the

2-phase discovery process with the inclusion of phase 2 discovery (figure 43). We observed

a significant increase in the overall average interpolated precision after the 2nd phase was

done. This was because a considerable number of services that were identified as

functionally similar to the desire part of the Q-T1 components of the queries during phase 1

where eliminated out as services that cannot be dynamically called either directly by the

query (by providing the required input in the Q-T2 component) or indirectly by some other

services that can be called themselves. This phenomenon supports the fact that discovery has

to be carried as a 2-phase process.

We then compared the mean average interpolated precision (i.e. average

interpolated precision over 11 points when averaged over all the queries) with that of 6

other prominent service discovery algorithms (figure 44). All these 6 algorithms (except

Woogle) are implemented over a dataset of 391 web services collected from 11 different

 202

Figure 44: Comparative Analysis of Mean Interpolated Accuracy

domains (source: SALCentral.org). Out of these 6 algorithms WIC (Word-IC algorithm

[177]), Woogle [171] and CL (Complete Link algorithm [163]) are based on hierarchical

clustering:

 WIC: WIC uses a distance measure that is based on common words between two

services and relies on a global cluster quality function [177] that acts as the merging

condition for two clusters.

 Woogle: In comparison, Woogle [171] is implemented over a dataset of 1574 web

services over 8 domains Woogle is a merge-split based hierarchical clustering algorithm

where, unlike most other service category learning algorithms, a cluster is a concept (or

set of similar terms) instead of a set of similar services. The distance measure used to

form such concept is based on overall association strength of the member terms (called

cohesion). The merging condition implies that all terms within a cluster have to be

representative terms (called kernels) – that is, terms that have high cohesion with at least

0.25
0.19

0.4

0.17

0.46 0.494

0.93

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

KNN WIC CT GA CL Woogle ALNetSniffer

P
re

c
is

io
n

Service Discovery Algorithms

Precision Comparison

 203

half of the other member kernel terms within a newly formed cluster. Hence, to satisfy

this condition splitting may be necessary. Two services are grouped together based on

the concept match (i.e. whether two Input/Output parameter terms within the web

service descriptions belong to the same concept). Matching between the parameters

(Input and Output) is carried over separately from each other. However, the overall

similarity score is integrated.

 CL: CL is a variation of the hierarchical agglomerative hierarchical clustering algorithm.

 GA: The GA (Group Average algorithm) is an improvisation over CL.

CT is essentially partitional clustering algorithm as per follows:

 CT: In the case of CT (Common Term algorithm [163]) the distance measure is cosine

similarity. The iteration process is similar to k-means except that the centroid that is

shared by all the clusters is selected for the next iteration (unlike k-means where the

cluster members are averaged to get the new centroid).

In comparison to all these 6 algorithms we found that ALNetSniffer has a significant

edge in terms of mean average interpolated precision over all of these. However, it is

important to note over here that the dataset used by STC (i.e. OWLS-TC v2) is semantic in

its representation (web service description language used is OWL-S) while all the others

have used datasets that are based on the standard syntactic web service description language

WSDL. This greatly enhances the precision level of the algorithm in comparison to others

that used statistical learning techniques. Another reason for this significant improvement is

because ALNetSniffer utilizes STC that generates functionally similar taxonomies based on

semantic similarity (g- subsumption). Hence, theoretically (as has been proved in chapter 4)

 204

its accuracy is sound and complete. However, in reality this promise is based upon the

assumption that the service providers have to describe their services semantically as precise

and as complete as possible. Since this assumption is not true in many cases hence, we

observe that although ALNetSniffer scores well compared to all the 6 algorithms still STC

fails to achieve the perfect accuracy. When we compared the F-score of ALNetSniffer with 5

of the previous 6 algorithms (Woogle has been excluded due to lack of data) we found that it

outperforms all the 5 algorithms again. We included the results of two supervised learning

algorithms - Naive Bayes and SVM (ensemble) within this study. We observed that the F-1

score did not come out good for all the 5 unsupervised learning algorithms (figure 45). This

is because their individual recall was not good enough when compared to their precision. In

comparison to these 5 unsupervised algorithms the supervised learning algorithms fared well

because of a prior training phase.

Figure 45: Comparative Analysis of F-measure

0.2
0.102 0.106

0.18
0.09

0.425

0.58

0.77

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F
-1

 s
c

o
re

Service Discovery Algorithms

F-Measure Comparison

 205

Figure 46: Comparative Analysis of Query Processing Accuracy (Precision vs. Recall)

We also compared the average 11 point interpolated precision @ r (i.e. I_Pr(r)

defined previously) versus the average recall @ r of ALNetSniffer with that of 5 different

service discovery techniques proposed in the OWL-S MX [147] (figure 46). The objective

behind this study was to understand how our proposed g-subsumption matchmaking fared

when compared to other matchmaking techniques that have used the same OWL-S TC v2

dataset as we did. M0-M4 are the different types of query match algorithms compared by

OWL-S MX. M0 is a pure Description Logics [39] based matching algorithm that considers

only the semantic definitions of the Input/Output parameter terms. M1 through M4 are

hybrid matchmaking techniques that use both semantic definitions of parameters as well as

tokens recovered from textual descriptions of services. M1 makes use of loss of information

measure (LOI), M2 uses extended Jacquard similarity coefficient [203], M3 uses the cosine

 206

similarity value [204], M4 uses the Jensen-Shannon information divergence based similarity

value [205]. We found that ALNetSniffer had a significant improvement over all these

matchmaking measures even when textual descriptions were not included into the service

feature by ALNetSniffer (unlike M1-M4). The reason for ALNetSniffer having much better

accuracy performance in comparison to M0 is that although both of them are purely based

on subsumption matching of parameters yet the clustering technique that uses M0 is based

on ad-hoc comparison with the innate assumption that clusters are mutually disjoint. This

falsely excludes services that may have a subsumption match with member services in

multiple clusters. Also the case of sibling matching (e.g., car rental and bus rental) is not

accounted for in M) matching. This again falsely splits services into separate disjoint

clusters. Moreover, M0 being based on the Paolucci order of matching allows false inclusion

of services within clusters as strong matches. This is because of higher universal preference

of plugin match over subsume match that assumes that the match strength order is preserved

for both the Input and the Output features (see chapter 3).

To conclude our study on the accuracy performance of ALNetSniffer over ALNet

instances we tried to understand the goodness of the clusters generated by STC integrated

within ALNetSniffer in terms of cluster entropy when the service set to be clustered was

confined to the relevant sets given for each query within the OWLS-TC v2 dataset (figure

47). The objective was to observe the instability caused to each of the relevant sets by STC.

For measuring the instability we chose to compute the entropy of the relevant sets

conditioned on the O-clusters that were formed when each of the relevant sets were fed as a

test sample space to ALNetSniffer.

 207

The entropy is computed based on the following equation: 	

൫ܴ௤൯ܪ ൌ െ		෍
஼ܰ೔

ோܰ೜
ൈ log

஼ܰ೔

ோܰ೜

ெ

௜

where H(Rq) stands for the entropy of resultant set Rq of query q, M is the total

number of clusters (i.e. splits) formed by STC incorporated in ALNetSniffer, NC is the

number of services in cluster C common to Rq, and NRq is the total number of services in the

relevant set. Lower is the entropy the better is our algorithm with respect to the relevant set.

Ideally, a clustering algorithm should be able to reproduce the entire relevant set within a

single cluster without splitting it. In that case the entropy for the relevant set is 0. If the

algorithm splits up the result set into clusters with single member samples then it performs

worst. When we tested the entropy effect of our algorithm on the relevant result sets we

observed average entropy of 0.19551 over 29 relevant sets.

Figure 47: Query Processing Accuracy of ALNetSniffer (in terms of Entropy)

 208

5.7 Results: Query Processing

We also studied the efficiency of the ALNet framework in terms of query processing

overhead. We observed the average query response time performance over the OWL-S TC

sample space. A significant improvement in the average query response time of

ALNetSniffer was recorded when compared to logical-reasoning based web service retrieval

(such as OWLS-M0) and other IR based hybrid models of retrieval (such as OWLS-M1,

M2, M3, M4) (figure 48). This is primarily because of two reasons: (a) the compact DQM

representation of service vector features as g-arrays and (b) the absence of DL-reasoning

based subsumption computation (by using DLEncoding based g-subsumption algorithm).

 209

 5.8 Results: Event-handling

The experimental setup for evaluating event-handling over ALNet instances has been

designed as a simulation platform where the run-time performance of the SBTraveller

algorithm can be tested. The experimental platform was a machine with CPU cycle of 1.4

GHz and RAM of 2 GB. The development platform was NetBeans IDE 6.0.1. The

evaluation criteria of the SBTraveller are based upon a set of given ALNet instances. For that

we have developed an ALNet Generator that randomly produces such ALNet instances

based on two test parameters: (i) number of service vector nodes and (ii) number of ALNet

logical function nodes. We generated a set of abstract ALNet instances of sizes that varied

between 80 – 700 abstract service nodes. The SBGenerator also assigns randomly generated

service vector features (Input and Output parameters) from a pre-defined CAOFES instance

to each of the service nodes in the generated ALNet instances. We used a set of 20 random

0

2

4

6

8

10

12

14

0 200 400 600 800

R
u

n
ti

m
e(

se
c)

Number of Abstract Service Nodes

ALNet Abstraction Performance

Average service/abstract node = 10

Average service/abstract node = 5

Figure 49: ALNet Abstraction over Abstract ALNet Instances

 210

test events for the SBTraveller algorithm to be evaluated. Hence, we developed an Event

Generator to randomly produce events (and corresponding target events) that have

arbitrarily assigned event semantics. We then mapped those events (and corresponding

target events) to chosen set of services that can act as source (and correspondingly end)

services. The objective of the evaluation was to:

 Test the abstraction performance of ALNetComposer over the ALNet instances in order

to get the corresponding abstract ALNet instances.

 Evaluate the SBTraveller runtime performance over the abstract ALNet instances.

For the first objective we tested the abstraction by first keeping an average of 5

service nodes per abstract node and then an average of 10 service nodes per abstract node

during the random network generation process. We did not observe significant difference in

the abstraction overhead when the abstract node size was doubled for the generated abstract

ALNet instances (figure 49). Hence, the result supports the runtime dynamic creation of

abstract ALNet instances by ALNetComposer during event handling.

For the second objective we observed a near-quadratic runtime behavior of

SBTraveller versus the size of the SBs so formed for abstract ALNet instances (figure 50).

As the number of abstract service nodes increases (with an average of 50 service vector

nodes per abstract node) we found an increase in the logical nodes within the instances.

Because of that the number of alternative path for a particular composition increased with

the overall abstract ALNet instance size. This resulted in more computation time for

deciding the best dependency path during the event-handling process. Moreover, we also

 211

need to account for the time consumed to apply the heuristics whenever such logical nodes

are encountered.

Figure 50: SBTraveller Runtime Performance (in terms of System Scalability)

We now provide a comparison of the same result with respect to number of logical

nodes encountered within the SBs in figure 51. The result shows the performance of the

SBTraveller in terms of the complexity of the SBs that were formed in the experiment. We

observed a maximum of 0.35 secs for event-handling for the most complex SB of 90

operator nodes. Figure 52 shows the distribution of the different type of operator nodes that

were involved in each of the SBs formed. We observe that for the most complex SB of 90

operator nodes we have the most number of NN nodes as compared to other nodes and an

equal number of AND nodes (pre + post). Since these two types of nodes contribute most to

 212

the SB complexity therefore SBTraveller does a reasonable efficient job in computing the

optimal dependency path in around 0.35 secs.

Figure 51: SBTraveller Runtime Performance (in terms of System Complexity)

Figure 52: Operator Node Distribution w.r.t. Number of Logical Nodes in SBs

 213

We also observed the relation between the SB size and the runtime behavior of

SBTraveller. We see in figure 53 that for a maximum length of 176 nodes (with 90 operator

nodes and 86 service vector nodes) the SBTraveller on an average handles an event within

0.35 secs.

Figure 53: SBTraveller Runtime Performance (in terms of SB Length)

 5.9 Conclusion & Discussion

As mentioned in the related work section ALNet based event-handling approach of

solving the service composition problem has some striking similarity with the work of Lang

& Su [198]. Even though the overall problem objective is same as compared to our proposal

yet there are some major differences that have direct relationship to the performance of

composition as such. Structurally ALNet is different from SDG in that the nodes of ALNet

can represent only services (and not data) and logical operators. The data (input and output)

is implicitly defined as feature in the service nodes that are in turn vectors. This reduces the

 214

space complexity (as data nodes can be very large in number) as well as search time (as the

network can become very large). Also data nodes in SDG are by default considered as OR

nodes as more than one service can output the data while service nodes are by default AND

nodes as at least one data node is required as input to the service node. However, the causal

relation (or dependency) between two services are not explicitly defined in SDG but rather

via data nodes making causal inference indirect. This clearly affects the composition time as

for composing two services an extra hop to the data node is required. Also the more

complicated relation of multiple services being causal to a service is computationally

intensive to infer. Just by hopping to a data node having multiple service nodes parents does

not bring us to conclusion that there exists a causal relation with the child service node of

the data node to the parent service nodes via an OR operator because it may very well be

that one of the parent service nodes has yet another output data node link that in turn is the

input parent to the same child service node.

The absence of the NN operator (as defined in ALNet) in SDG is justified by the

inclusion of cycles among data nodes where a particular data node can have another data

node as a parent as well as a child. Such constructs are meant to deal with cases where an

input may have to be updated or refined or repeated as a confirmation in order to be taken as

an input by the same service node. However, due to lack of any explicit label over such

edges it becomes impossible for a composer to differentiate whether an edge is a repetition

or whether it needs a repetition in future. Thus, an indefinite loop is possible during the

composition.

 215

Another important difference is that SDGs are constructed on-demand basis where

the user query is first analyzed to understand the required service categories and then an

SDG involving the services within the selected categories is chosen for search. While on one

hand this approach improvises over the search space but on the other hand it has to incur

huge overhead by constructing new SDGs over relatively short period of time with new

kinds of queries coming in. In this respect the abstraction technique of ALNet and SB

learning can be very useful as one of the advantages of abstraction is that no two services

having same functionality may belong to different abstract nodes. As the composition

primarily takes place over the abstract ALNet hence, this property restricts the search space

of the composition within fixed SBs without having the requirement to construct the

network on query basis.

In order to maintain the completeness of the composition algorithm in the case of

SDG intermediate services are added to a failed composition such that the inclusion can

bring the composer to the final desired state. This approach is an added overhead since in

ALNet the intermediate services are by default part of the composition and is not included

unless required since the problem objective in the case of ALNet is path optimization.

When we compare SDG+ [200] (a modification to the SDG construct) with ALNet

we see that most of the disadvantages of SDG still remain within the SDG+ data structure.

However, there is a certain degree of reduction in unnecessary levels within the service

network due to the exclusion of multi-level partitive hierarchy of data nodes in SDG+. This

surely improves the searching time for a solution path but if compared to ALNet can still be

recognized as a space (and hence, time) overhead. Also, the storing of SDG+ constructs for

 216

future use is query centric and hence, the likelihood of reusability of a particular SDG+

construct purely depends upon the likelihood of its corresponding query to be triggered.

Also there seems to be no obvious way in handling new queries that are similar to

previously seen queries in some sense (specialization, generalization, or partly similar). In

such cases SDG+ constructs needs to be created from scratch. Thus, we see that not only this

model potentially introduces significantly large storage of near-redundant SDG+ constructs

but it also involves the additional computation of SDG+ constructs whenever a new query is

seen. In comparison ALNet being a query independent service network, where new services

can be added or deleted with minor changes to the existing topology, we find that such

problems can be eliminated without much additional overhead.

 217

CHAPTER 6

SMARTSPACE: DISTRIBUTED MULTI-AGENT BASED EVENT-HANDLING

6.1 Introduction

In the previous chapter discussions on service discovery and composition were

limited within the scope of middleware-based centralized SOA platform. However,

middleware based service composition suffers from some major drawbacks that are innate in

all centralized systems: (i) single point of failure, (ii) high network overload leading to

service delay, (iii) impractical assumption that the system is closed and static. The proposed

ALNet framework in the previous chapter solves some of the aforesaid drawbacks even

though it is primarily middleware based. For an example, the platform does not have to

assume that the system is closed and static. New services can enter the system and old

services can leave during the composition process itself. This is because the SBTraveller

algorithm primarily finds an optimal SB and then suggests an optimal dependency path.

However, during runtime (which is a forward traversal over the SB), service vectors call

each other based on their current availability and reachability to the current best end service

vector. In other words, the runtime traversal is not governed by the ALNet middleware. Also

even though service discovery and composition is separate in the ALNet platform yet the

discovery is primarily of the pair of abstract source and end service nodes. Owing to some of

the properties that have been proven in chapter 6 we see that for a given user event there can

be only one such pair of abstract nodes. Hence, all dynamic additions and deletions of

services that are pertinent to a particular event-handling process must occur within a

 218

discovered SB. In this way the proposed ALNet platform is resilient to dynamic changes in

the system.

However, there is significant room for improvement in many other aspects that will

be discussed in this chapter. This has led to some very important research studies on

distributed SOA platforms. Distributed SOA-based systems are very different to

middleware-based SOA systems in several ways. The assumption of a centralized

coordinator (and decision maker) is relaxed. In a distributed setup all service hosting agents

are peer to each other. The discovery and composition process, in general, cannot be seen as

two separate processes unlike centralized approaches. This is because the system state is

non-deterministic and open to unseen values. Hence, discovery of services has to account for

the current system state so as to find an optimal composition. Most of the research works on

distributed service composition can be classified into two groups: (i) message-based [206 -

214] and (ii) agent-based [215 - 237].

In message-based models the network layout over which service discovery and

composition is carried is usually P2P. Either service requests are flooded into the network

for discovery or service advertisements are flooded over the network. Sometimes a hybrid

model has been proposed where both advertisements and requests are flooded for discovery

[211]. Message-based systems are collaborations that are governed by a fixed set of

protocols. Collaborations are basically a choreography where each service hosting node's

role within the P2P overlay has been fixed based on a fixed set of composition rules. In

agent-based approaches the underlying system is modeled as a distributed multi-agent based

system. In such a model services are transformed into software agents that are cooperative in

 219

nature and are adaptive to dynamic system changes. Software agents proactively engage into

a deal-based collaboration (rather than a centralized orchestration) based on their

interpretation of the current system state. Agents communicate with each other through

messages that are mostly in the request mode (i.e. an agent cannot control the behavior of

other agents). In contrast to message-based systems there is no strict guideline or protocols

that the agents must follow. Agent behaviors are very independent and each agent is the sole

master of its set of behaviors. The choice of a particular behavior can be governed by very

complex and abstract rules. Sometimes it may also be governed by an optimization function

(basically the consumer utility). Thus, agent-based service composition is a much more

flexible approach and is specifically useful in complex heterogeneous systems as compared

to centralized middleware based approaches.

In this chapter we propose SMARTSPACE - a novel multi-agent based distributed

platform for service composition. SMARTSPACE is built on top of the JADE multi-agent

platform [125]. JADE is a FIPA (Foundation for Intelligent Physical Agents) compliant

agent development toolkit that provides efficient support for agent-based simulation

environment. Agents within this framework communicate over either an HTTP-based MTP

(Message Transport Protocol) or a CORBA (Common Object Request Broker Architecture)

IIOP-based MTP. We chose to work over HTTP-based MTP. More detailed information

regarding JADE can be found in chapter 2. In SMARTSPACE all computing entities are

transformed into agents. This includes services and user requests (in DQM format). Hence,

there are a set of agents, called service agents (denoted SA) that embody and execute the

services as and when needed. Such services are essentially agent behaviors that are

 220

semantically described OWL-S specifications and formatted as g-arrays (see chapter 3).

Similarly another set of agents, called user agents (UA), are generated for each user event.

The user agents embody both the Q-T1 and the Q-T2 component of the user event. During

an event-handling process the user agent and the service agents enter into a deal with the

help of intermediary helper agents provided by the SMARTSPACE platform. The goal of

the user agent is to maximize the user utility (cheap, best desire match, low service latency,

etc) by: (a) providing as much information as possible to the helper agents, and (b) making

and confirming the best deals possible at a particular instant of time. The goal of the service

agents, on the other hand, is to maximize the service provider’s utility (i.e. profit, reputation,

etc) by: (a) outbidding other service agents for a given user agent deal, and (b) providing

best user satisfaction. The dynamics is primarily that of a game with the restriction of only

fair moves by any particular agent. The helper agents, as will be discussed, are unbiased to

both the user agents and the service agents. In other words, there is no scope for false

representation of information or rogue behavior by impeding other agents’ goals.

The principal objective of SMARTSPACE is to provide a flexible platform where

service composition can be done in an efficient way considering the uncertain dynamics of

the underlying system without trading off with the problem of single-point-of-failure and

incurring network overhead. Also the computational overhead of discovering an optimal

dependency path is distributed over all participating agents without relying on a middleware.

The chapter first introduces some of the important works that has been done in the problem

of distributed service composition. It then reveals some of the major limitations of

centralized service composition in general and the proposed ALNet platform in particular.

 221

After that the chapter discusses the SMARTSPACE architecture in detail laying out all the

different agent roles. Having laid the architectural foundation it then proposes SmartCluster

– a modified distributed version of STC algorithm that helps to discover service agents in an

efficient way. The chapter then proposes SmartDeal – a novel distributed service

composition algorithm that achieves a near-optimal composition that is better than the

previously proposed SBTraveller algorithm.

6.2 Related Work

There has been significant research in the area of agent-based service composition.

One of the earlier works in this direction is the Web Service Modeling Framework (WSMF)

proposed in [48]. Agent based service composition is mostly built on agent-based brokerage

[229], service matchmaking [133, 230], and service coordination [231]. In [215 - 216] it has

been pointed out that SOAP message based service composition is not suitable for dynamic

systems that require complex message exchange during composition. Hence, the

requirement of an agent-based framework suitable for implementing adaptive complex

conversation oriented message exchange has been emphasized. In [217] the Web Service

Conversation Language (WSCL) has been proposed to address some of the issues regarding

complex messaging. The language is capable of formally representing the order of

conversation and the format of input/output. Many of the works have been based on the

AgentCities platform [218 - 219]. This platform is a large open society of FIPA compliant

agents. It consists of 14 backbone platforms across the globe. Currently it hosts 80 active

agent frameworks that host services as agents. Most of these frameworks are reported to be

 222

JADE based. The underlying network topology is star-based where the central node is

responsible for providing agent platform directory, agent directory, and service directory. A

polling agent is responsible for updating the directories whenever a new agent is registered.

In [227, 233] an agent-based service workflow enactment framework has been

proposed. The framework utilizes the concept of social dependence [228] and first order

ability [233] to model inter-agent relationship. The framework is built on top of the

AgentCities platform. The architecture comprises of a set of LEAP-based Mobile Agents

[234] that discover the web services in the system and incorporates them as their dynamic

behaviors, a centralized Wherehoo server that stores DAML-S service descriptions, a Home

Server which is essentially a Piccola (a service composition language [235]) based

composition engine and also does DAML-S to Piccola translation. The major disadvantages

with this architecture is that: (i) it is dependent on a centralized composition engine and

hence, creates a single point of failure, and (ii) the mobile agents have to go through a

computationally intensive service discovery process every time they sense a query and

iteratively consult the composition engine. Another AgentCities based framework is

proposed in [220]. It has been identified in this work that the current AgentCities framework

is not robust and scalable because of the star-based topology. Moreover, all operations

needed for a service composition process is totally dependent on the success of the platform

directory agent that maintains a global knowledge of the system. Using the specific case

study of a conference organizer system the authors proposed a event based agent framework

where an Event Organizer Agent analyzes consumer query (represented as task templates)

and starts conversing with other service agents accordingly. In [226] an agent-based

 223

architecture is proposed that comprises of a Composite Agent responsible for identifying

participant services in a composition, a Service Agent that represents each service instance,

and a Master Service Agent that is responsible for tracking service agents and processes a

composition plan that has been computed by the Composite Agent. The main limitations of

this framework are: (i) the composition process is centralized at the Composite Agent and

hence not scalable, and (ii) the Master Agent has to maintain a global system knowledge

which is computationally expensive.

The frameworks that have been discovered so far is service-centric since the agents

are created to represent the individual services and the composite service that is computed as

a product of a service composition process. In contrast there are some frameworks that

model the problem more from a user-centric perspective. In [223 - 224] a user-centric agent

framework has been proposed based on the ARGUGRID project [225]. The framework

leverages argumentative agent technology for inter-agent message exchange during service

composition. The architecture comprises of a set of User Agents that represent consumer

queries, and a set of Service Agents representing services. Agents are modeled along the

BDI (Belief-Desire-Intention) architecture. Each agent has a set of logically represented

workflows along with a history of all past decisions and communications stored in its belief.

User Agents are responsible for deciding an optimal composition and best service provider.

For this an User Agent maintains a global knowledge of service types and service providers

in registries. Another user-centric approach can be found in [236]. In this work along with

the User Agents and the Service Agents a whole set of mediator agents have been proposed.

The architecture includes a Composite Service Agent (CSA) that is responsible for

 224

triggering and runtime monitoring a composite service specification, a Broker Agent (BA)

for inter-communication translation issues, Service Matchmaker Agent (SMA) for service

matchmaking, and Service Discovery Agent (SDA) for discovery Service Agents on behalf

of the User Agents. In [237] a task-ontology based service composition framework has been

proposed. The task ontology contains definitions of different pre-defined task-based queries.

The architecture consists of Service Requestor Agents (SRA) for representing the queries

and Service Provider Agents (SPA) that are responsible for decomposing a complex query

based on the task ontology. Each agent also keeps a Fellows’ Capability Expectations

Matrix (FCEM) that is used to maintain the agent’s belief about the expected capability of

another agent to provide service to it during its course of action. This helps the agent to

eliminate unnecessary conversations or matchmaking during a service composition process.

However, the proposed framework suffers from certain weaknesses. First, the task ontology

restricts consumer queries that can be decomposable within the ontology space. Secondly,

each agent has to keep an FCEM that can grow very large over time. Thirdly, it seems that

the FCEM assumes that a SPA is either capable of providing the required service in full or is

not capable at all. However, there may be SPAs that partially satisfy the required service and

can form a collaboration to provide the complete service. Fourth, since capability is defined

as an ordered pair of number of recorded transaction with an SPA and the expected success

of making a negotiation with the SPA it is not very clear how during finalizing a deal two

capability estimates are compared. Finally, the service composition procedure entails that an

agent makes a deal based on its local knowledge of all possible matching SPAs who can

accept the deal. If this step fails then the agent asks the Matchmaker Agent for further

 225

results. This may not guarantee optimal composition because the dynamic nature of the

system may cause newer and better SPAs to be added in that are not known to the agent.

Also the granularity of negotiations is too high for meeting the service latency that the

consumer expects. A summarized comparative study of some of the prominent related works

with SMARTSPACE has been given below:

Table 8: Comparative Study of SMARTSPACE with other Agent Models

 226

6.3 Limitations of Centralized Service Composition

In general centralized service composition approaches have some major limitations

that may not, in reality, be able to guarantee the best possible composition. In this section we

discuss each of them as follows:

 Single Point of Failure: A middleware dependent centralized approach is obviously

vulnerable to the problem of single point of failure. This is because the if the middleware

hosting node in the network crushes or is overloaded with too many user requests then a

new user request will be totally lost. This is true even for the ALNet middleware where

the global ALNet instance needs to be stored by the middleware and periodically

updated. Also all notifications regarding update are made by the middleware. In the case

of the middleware failure it is entirely up to the registered service vectors to interpret the

user event and coordinate among themselves so as to avoid redundant discovery of

dependency paths (since an abstract node contains several possible service vectors that

interpret an event in the same way). This is an extremely complex and computationally

expensive process and is currently not incorporated into the current ALNet system.

 Stateless Composition: Services in general are stateless. This means that the state value

produced by a service is not stored by the service. In such a situation the entire runtime

composition process has to be synchronous. However, an optimal composition

discovered by the middleware does not guarantee such a synchronicity during runtime.

This is because runtime environment includes several factors that are not taken into

account by the middleware. One such important factor is network load that might lead to

restarting the entire runtime composition if a causal service output cannot be received by

 227

a busy responsive service. Another factor is service latency that might cause a

responsive service to drop an event-handling process if one of its causal services has a

delay to generate output while some other causal services have already generated their

output.

 Conditioned Causality in System: Service causality within an SOA-based system is

conditioned. This means that a service can only respond to its causal services if the pre-

conditions required for the service to work (such as availability, computing resource

constraints, etc) is satisfied during runtime. However, during discovery of the optimal

composition the middleware does not account for all possible internal system events at

runtime that might dissatisfy such service pre-conditions. This is mitigated to some

extent by the ALNet platform since runtime forward traversal over a selected SB only

service vectors that have favorable conditions can interpret and respond to a particular

causal service event so as to carry the event-handling process forward. However, the

middleware always has to supervise such runtime event-handling over a selected optimal

SB since it needs to select the next best service vector in situations where the best

service vector constraints are unsatisfied. This creates a global lag in the service latency.

 Dynamic Set of Services: Any large-scale open SOA-based system is subject to a lot

of addition and deletion of services in a very non-deterministic way. Hence, the best

composition computed by the middleware may not truly represent the most optimal.

New services with better cost and higher user satisfiability may be added after the

composition process. Also existing best services may be deleted after the middleware

discovers the best composition. Even though the ALNet platform can handle the deletion

c

c

a

b

inclu

can

syste

in th

spec

case with th

cannot handl

after determi

be overlooke

The SMA

udes a set of

be hosted b

em or may d

he proposed

cialized node

he intervent

le the additio

ining the sou

ed during the

Figur

6.4 S

ARTSPACE

f dedicated sp

by service p

drop off from

d model is th

es while the

tion of the

on case that

urce and en

e event-hand

re 54: SMAR

SMARTSPA

E network o

pecialized n

providers (fi

m the system

hat all peer

 specialized

 228

middleware

well. This i

d services. H

dling process

RTSPACE -

ACE: Archite

overlay arch

odes and a d

igure 54). T

m non-determ

r nodes have

d nodes must

e (as describ

is because c

Hence, new

s.

System Ove

ectural Over

hitecture is

dynamic set

These peer n

rministically

e network a

t be strongly

bed previou

omposition

and better e

erview

rview

a hybrid P2

of peer node

nodes may

. The underl

access to at

y connected

usly) howev

process star

end services

2P structure

es where ser

get added t

lying assum

least one o

d to each oth

ver, it

rts off

s may

e that

rvices

o the

mption

of the

her at

 229

any given time point. Each node (specialized and peers) is installed with a JADE container

where software agents can be created and maintained. The peer nodes host the service

agents (SA) and the user agents (UA). The specialized nodes host special agents called in

general as helper agents. Specialized nodes are the start-off points for any event-handling

process although, unlike centralized middleware systems, they do not participate in any

decision making. All kinds of decision making within an event-handling process is done in

the peer nodes. If a peer node fails then agents living in that node move to other peer nodes.

On the other hand if a specialized node fails then agents living in that node move to a new

node. The helper agent that has now moved to the new node then lets other existing

specialized node to know about the failure and also the address of the new node. The

assumption behind the model is that at no given point of time should all the specialized

nodes fail simultaneously. This assumption is important because peer nodes are not required

to get registered with the specialized nodes in the SMARTSPACE model. Each peer node just

needs to know the list of specialized node addresses only. While the architecture can be

extended to relax the aforesaid assumption we do not include that in this current work.

Event-handling within the SMARTSPACE context is essentially a game problem

instance where an UA first tries to lookup SAs that can satisfy it and then starts a dealing

process with each of them. After the dealing process is over the UA receives a set of bids

from these SAs and then confirms the best possible bid. However, this game instance

involves several other internal agent behaviors so as to guarantee a near-optimal deal.

Before any event-handling can be done the SMARTSPACE platform invites service

providers to register their servers with SMARTSPACE. The registration process includes

 230

installing the SMARTSPACE service provider module into their server that hosts their

services. Once installation is done SMARTSPACE converts the hosted services into

software agents called service agents (SA). SAs are executable and lives in JADE containers

installed in the host peer (mostly owned by the service provider) during registration. An SA

inherits all the basic properties of a JADE agent while retaining the service functionality (as

its behavior) and its corresponding description (written in OWL-S). The description is

reformatted into g-array (see chapter 3). An SA starts execution only if it wins a deal from a

particular UA. Once execution is done the output is given back to the UA so that it can

access it whenever it is ready.

After an SA is created SMARTSPACE creates a corresponding service helper agent

(SHA) that attaches itself to the SA. The SHA is basically a light weight agent that contains

only the g-array of the SA and bids for deals in favor of the SA. Thus, UAs make deals with

the SHAs. SHA has its own belief system that contains its interpretations for different events

(i.e. agent behaviors) and also its knowledge of the system (includes measure functions for

various QoS attributes such as service reliability, user utility, user preference, etc). The SHA

has the capability of verifying the reliability of the SA that it works for by periodically

checking the accuracy of the SA’s output once a deal is won by it with respect to the

promised output in the O-array of the SA. The SHA clones itself (called SHA-clone) that is

then sent off to the nearest specialized node. These clones self-organize themselves into an

O-cluster space (see chapter 4) of agent clones. Thus, the SHA-clones only have the O-array

of their corresponding SAs. Clone clustering, called SmartCluster, is the SMARTSPACE

version of organizing services for efficient discovery and query processing. The algorithm

 231

will be discussed in detail in later section. An SHA kills itself and all its traces including its

clone if the corresponding SA gets killed. An SA can get killed because of a system crash or

because a new modified service needs to be uploaded into the server. This leaves no

possibility for a false deal with an SHA whose corresponding SA is non-existent. The design

principle of having a separate SHA for every SA helps in several ways:

 Maintaining system fairness: The design helps to maintain the fairness of the system as

a whole and also to optimize overall customer satisfaction. It tries to prevent the SA from

misrepresenting data to the UAs during a deal or to obstruct the working of other

competing SAs by rogue behavior such as virus implantation, eavesdropping,

impersonation, etc.

 Releasing computational overload: The design also helps to reduce the computational

overload of dealing by decoupling the dealing behavior from the service execution

behavior of the SA. Thus, SAs just have to worry about execution while all complexities

related to winning a deal is assigned over the SHA. Moreover, for all practical purposes

SAs are dumb as they do not usually come with a belief system of their own powered by

reasoning capability. In other words, service providers do not have to tailor-make their

services so as to suit the SMARTSPACE platform. Instead, SMARTSPACE helps to

provide the extra layer of intelligence by creating the SHAs for them.

 Handling confirmed deal break-up: It may happen that during execution an SA gets

killed. Under such situation there is no way for the agent that confirmed the deal with the

SA to know that the deal has to be terminated and a new deal has to be confirmed. SHA

 232

provides an efficient solution where in such a situation it can let its deal-making agent

know that it can no longer serve it before it gets killed itself.

SMARTSPACE also provides an user module that can be installed into the consumer

peer machine. The module provides an interface for users to give their queries in the DQM

format. The moment a user query is submitted a corresponding user agent (UA) is created by

SMARTSPACE. The UA is also a lightweight agent that contains the g-array of DL-encoded

query and maintains its own belief system. The belief system incorporates the user’s profile

(preference, location, etc) and knowledge of the users utility function variables. The UA

remains active so long as the user request is not satisfied (if it is satisfiable) or if it finds out

that the request is not satisfiable within a stipulated time as required by the user. After a set

of SHA is discovered the UA begins deal with all of them before confirming a deal with the

best one of them.

Apart from the UAs and the SA/SHAs the SMARTSPACE platform provides a whole

set of helper agents that live in the specialized nodes. There are two kinds of helper agents

within the SMARTSPACE platform: (i) blackboard agent (BA), and (ii) directory agent

(DA). Each specialized node contains a DA-BA pair. For a given SOA-system we can set up

n number of specialized nodes that will contain n DA-BA pairs. A BA helps to form and

manage the O-cluster space of SHA-clones that is formed in its specialized node. For this

purpose it keeps its own record of O-taxonomies in a special table called the BA-directory.

The DAs, on the other hand, are the first point of contact of the UAs and SHA's when they

need their desires to get satisfied. For this purpose it uses its own special directory called

DA-directory that keeps a global summarized overview of all the O-cluster spaces in the

 233

entire system. The DA-directory is an extremely efficient lookup directory that is based on

DL-Encoding of UA/SHA desires (i.e. the Q-T1 component) and the SHA-clone O-arrays. It

helps the DA to quickly identify whether the given desire can at all be satisfied and if so then

which specialized node the query should be redirected and thereby processed. It is to be

noted here that during an event-handling process a SHA can also start deals with other SHAs

if it does not get its own desire (i.e. Input) satisfied by the UA that starts off the event-

handling process. Hence, in general any agent that needs to get its desire satisfied to achieve

its goal has to contact one of the DAs. DAs redirect the desire to the BA of the specialized

node where the desire can be satisfied. The job of the BA is to map the desire (i.e. Q-T1

query) into the O-cluster space of SHA clones that it maintains. This is basically the service

discovery phase and the corresponding algorithm, called SHASniffer, is going to be

discussed in later section.

Each agent and its roles will be discussed in greater depth in the following sections.

We will also provide the algorithm that the agents follow in executing each role along with

formal analysis.

6.5 Directory Agent

The directory agent (DA) is a very important agent within the SMARTSPACE

framework since it helps to improve the efficiency of event-handing significantly without

agents to flood their queries for service discovery or multi-cast queries to the specialized

nodes for service discovery over a large space of SHA-clones. The DA maintains a

specialized directory, called the d-directory, that helps it to: (i) understand the satisfiability

of an

oper

data

num

Code

DA (

rows

asso

O-cl

repre

n agent des

rations are do

structure in

The DA-

mber of DAs i

F

e of the O-c

(figure 55).

s in its DA

ciated with

luster space

esents a pa

sire and (ii)

one by the D

the followin

-directory is

in the system

Figure 55: D

cluster space

Thus, if the

-directory c

a particular

e within the

rticular O-t

find out th

DA in worst c

ng sub sectio

6.5

table of N

m, DA_ID is

DA-directory

 of SHA-clo

ere are 4 DA

correspondin

DA is n-ary

e specialized

axonomy w
 234

e correct BA

case constan

on.

.1 DA-direc

2-order tupl

the unique I

as Dynamic

ones that resi

As in total wi

ng to each

y OR of the

d node whe

within this O

A that can p

nt time. We f

tory

les 〈ܯ,ܦܫ_ܣܦ

ID of a DA,

cally Mainta

ide in the co

ithin a syste

of the 4 D

DL-codes o

ere the DA

O-cluster sp

process the

first discuss

wh	஽஺_ூ஽〉ܥܯ

and MCDA_ID

ained by a DA

ontainer of th

em then each

DAs. The M

of the root SH

lives. The

pace. Thus,

desire. Bot

the DA-dire

ere N is the

D is the Mas

A

he correspon

h DA will ha

Mash Code

SHA-clones o

root SHA-

the Mash

th the

ectory

e total

h

nding

ave 4

(MC)

of the

clone

Code

 235

contains all the significant 1-bits of each root SHA-clone and hence, represents the entire O-

cluster space.

It is to be noted that according to the definition of a DA-directory each DA holds an

identical copy for itself. Hence, if there is any update within a particular row of the DA-

directory then all the other DAs need to be notified about the update. Update in DA-

directory can take place for three reasons: (i) MC changes because of a new O-taxonomy

addition into the corresponding O-cluster space, (ii) MC changes because of an existing O-

taxonomy deletion within the corresponding O-cluster space, and (iii) DA gets killed

because of a node crash. The second case is a relatively rare event since the O-cluster space

represents the functional category of a service and categories do not disappear so often. The

third case is also not a very frequent event for specialized nodes and requires only deletion

of corresponding tuple in the DA-directories of other existing DAs. It is important to note

that the DA-directory is not affected by the large number of dynamic addition and deletion

of SHA-clones in the O-clusters since the DA is only interested in the taxonomy information.

Thus, DA_directory update is not an expensive process.

 236

GA
Name

Mashed
Code

DA1 100

DA2 001

101

GA
Name

Mashed
Code

DA2 001

DA1 100

100
AND 101
‐‐‐‐‐‐‐‐‐‐‐‐‐‐

100
(MATCH WITH ME!!!)

100
XOR 101
‐‐‐‐‐‐‐‐‐‐‐‐‐‐

001
(RESIDUE)

001(Residue query)
AND 001(GA2 Code)
‐‐‐‐‐‐‐‐‐‐‐‐‐‐

001
(MATCH WITH GA2!!!)

001(Result)
XOR 001(Residual query)
‐‐‐‐‐‐‐‐‐‐‐‐‐‐

000
(NO FURTHER SEARCH
REQUIRED!!!)

DA1

DA2

RESIDUE CODE

{101}

{001}

{100}

{001}

UA

BA2

BA1

Figure 56: SmartDirect Process Overview

6.5.2 SmartDirect: Query Mapping Algorithm

Using the DA-directory the DA efficiently recognizes the satisfiability of a desire

(formally a Q-T1 query; see chapter 3) of an agent. It is to be understood at this point that

since all DAs have the same identical DA-directory hence, an agent just needs to request

only one DA with a desire. When an agent requests a DA the DA first tries to check up

whether the SHA-clones available in its own container can fully satisfy the Q-T1 query. To

do that it first does an AND operation over its own MC and the DL-code of the Q-T1 query

(figure 56). There can be two situations under such circumstances: (i) failure, (ii) partial

success and (iii) complete success.

 237

 Failure: If the operation results in 0 then there is no match at all. In this case the DA

looks into the remaining tuples to find a match. If all the tuples end up giving a 0 as the

AND result then the DA lets the agent know that there is no SHA (and hence, no SA) that

can satisfy its desire at the moment. However, the DA can still keep the desire in its

memory if the agent is willing to spend some more time in the hope that some SHA

might possibly join a cluster space and form a new taxonomy altogether.

 Partial Success: If the AND operation does not result in a 0 then the DA does an XOR

operation with the result and the DL-code of the desire (figure 56). If the XOR result is

not 0 then there exists a partial match between the desire of the requesting agent and the

available SHA-clones in the DA's container. In such a case the DA then takes the XOR

result and matches that with the other MCs in its directory. The XOR result is essentially

the left-over 1-bits of the desire that are still to be matched.

 Complete Success: If the XOR result in the previous case is 0 then the DA knows that

the SHA-clones inside its own container are able to satisfy the desire completely. In the

case of a complete success the DA does not need to look into the other tuples for match

because of the exclusive existence of a particular O-cluster space in a single specialized

node. More about this property will be discussed in later section.

It is be noted, however, that in any kind of success (partial and complete) a match

may imply that there may exist a strong solution set (SSS) or a weak solution set (WSS) to

the desire. Once the DA knows about the satisfiability of a desire and also the container

where the desire, if satisfiable, has a solution set it redirects the query to the BA agent for

further processing of the desire. The underlying algorithm that the DA follows to map a

 238

query is called SmartDirect. We now prove that the AND followed by the XOR operation is

a sound and complete method to understand the satisfiability of a desire.

Theorem 6.1: Given a DL-encoded Q-T1 Q and a set of MC (say SMC), Q is

satisfiable iff ∃ܯ ∈ ܵெ஼, ሺܳ ∧ ሻܯ ് 0	.

Proof: Since M contains all the significant 1-bits of the root SHA-clones hence, if

there is a exists a corresponding 1-bit of M in Q then AND operation produces a

corresponding 1-bit. Hence, there exists a O-taxonomy corresponding to the significant 1-bit

of M that has g-relation with Q. Therefore Q is satisfiable.

If we assume that Q is satisfiable then Q must have a g-relation with at least one M

in SMC. g-relation implies that there must exist a match that is either: (i) exact, or (ii) plug-in,

or (iii) subsume, or (iv) sibling. According to definitions, for any of these matches there

must exist at least one-pair of corresponding 1-bits. Hence, ∃ܯ ∈ ܵெ஼, ሺܳ ∧ ሻܯ ് 0.■

We now prove that XOR is a sound and complete test for partial success as follows:

Theorem 6.2: Given a DL-encoded Q-T1 Q and a set of MC (say SMC), there exists a

partial success with a DA (say DX) iff 	∃〈ܦ௫,ܯ〉 ∋ ሺܳ ∧ ሻܯ ൌ ܴ ് 0 → ܴ ∨ ܳ ് 0.

Proof: If ∃〈ܦ௫,ܯ〉 ∋ ሺܳ ∧ ሻܯ ൌ ܴ ് 0 → ܴ ∨ ܳ ് 0 is assumed to be true then: (a) R

must have at least one 1-bit whose corresponding bit in Q is a 0-bit or (b) Q must have at

least one 1-bit whose corresponding bit in R is a 0-bit. The first case is contradictory since R

is an AND product and must contain all the matching 1-bits of Q with M. Therefore, the

second case must be true. If that is so then there are 1-bits in Q that are yet to be matched.

Therefore, Q has a partial success with DX.

 239

If we assume that Q has a partial success with DX then Q must have at least one 1-bit

whose corresponding bit in M is a 0-bit. Thus, R will not contain this 1-bit of Q. Hence the

XOR operation will output at least one 1-bit corresponding to the unmatched 1-bit of Q. In

other words, ∃〈ܦ௫,ܯ〉 ∋ ሺܳ ∧ ሻܯ ൌ ܴ ് 0 → ܴ ∨ ܳ ് 0	is true. ■

Based on these two theorems the algorithm is outlined in figure 57.

Figure 57: SmartDirect Algorithm

6.6 Blackboard Agent

The blackboard agent (BA) is the second kind of helper agent within the

SMARTSPACE framework that acts in two different ways: (i) to learn service categories and

 240

organize SHA-clones into an O-cluster space and (ii) to map an agent query (redirected from

a DA) into its O-cluster space. Since the O-cluster space is highly volatile with new SHA-

clones joining it and old ones leaving the BA maintains it using its own directory called the

BA-directory. The BA-directory maintenance job involves several objectives:

 One objective of maintenance is to improve the clustering of the SHA-clones and also

query mapping by decreasing the number of required communications.

 The second objective is to let the DAs know if a new taxonomy has been added or an old

one has been deleted.

 The third objective is to make sure that a specialized node is not over crowded with too

many SHA-clones. In other words, the BA makes sure using the BA-directory that there

is a equitable distribution of SHA-clones over all the specialized nodes thereby

improving query mapping performance and reducing node overloading.

In order to understand how these objectives are met we first provide a detailed

discussion of the BA-directory itself.

 241

1001

110

..

BA

1101001

Output Cluster Space (SHA‐clones)

BA‐directory

Figure 58: BA-directory as Dynamically Maintained by the BA

6.6.1 BA-directory

The BA-directory is table of N 2-order tuples

,ܦܫ_݁݊݋݈ܿ‐ܣܪܵ〉 where N is the total number of O-taxonomies in	ሻ〉ܦܫ_݁݊݋݈ܿ‐ܣܪሺܵ݁݀݋ܿ‐ܮܦ

specialized node where BA lives , SHA-cone_ID is the unique ID of a root SHA-clone, and

DL-code(SHA-clone_ID) is the corresponding DL-code of the O-array of the SHA-clone

(figure 58). Unlike the DA-directory, the BA-directory is completely unique to a particular

BA and is not shared or copied. Hence, there is no requirement of global system updates

when new root SHA-clones join or old ones leave. In other words the BA is a very localized

agent having a local specific perspective while the DA has a global yet abstract perspective.

Although the BA-directory is a localized directory yet it is significantly important to note

that the directory does not contain the information of the entire O-cluster space. In other

words, unlike centralized models (including the proposed ALNet framework), the services

(i.e. the SAs) do not have to get registered with the BA.

 242

6.6.2 BA-directory Update

The BA-directory undergoes a lot more update than a DA-directory. This is because

an open system dynamics entails higher probability of joining and leaving of root SHA-

clones as compared to creation and extinction of taxonomies as a whole.

Increment Update: Whenever a new root SHA-clone is identified by the BA it has

two options to take: (i) to create a new tuple and insert the root information, or (ii) to modify

an existing tuple and update the root information. The first option is taken if:

 There exists a root entry in the directory such that the new root SHA-clone has a sibling

match with it and such that it does not have non-sibling match with any root entry.

or

 For all root entries in the directory the new root SHA-clone has no g-relation. It is in this

case only when the BA reports to the DAs that a new taxonomy has been formed.

 The second option is taken if neither of the given conditions holds. In other words,

the new root SHA-clone has a subsume match with at least one root entry. In such a case the

matched root entry is updated with the new root information. However, in this case the DAs

do not need to be reported since no new taxonomy is formed.

Decrement Update: Whenever an old root SHA-clone leaves the cluster space

(mostly because it has to die) then the BA just has to remove its corresponding tuple from

the BA-directory and insert new tuples that correspond to the old root’s immediate children

within its taxonomy. The BA only reports to the DAs if there is no child SHA-clone i.e. the

taxonomy itself gets deleted.

 243

In the next section we discuss the SHA-clone clustering algorithm, called

SmartCluster, and how BA helps to initiate and improve the clustering process.

6.7 SmartCluster: Distributed STC Algorithm

SmartCluster is a distributed version of the Semantic Taxonomical Clustering (STC)

elaborated in chapter 4. There are some major differences between the two as follows:

1. STC is a clustering of service vectors while SmartCluster is a cluster of the active SHA-

clone agents.

2. STC is processed by the ALNet middleware. On the other hand SmartCluster is a

completely distributed process based on mutual communication between SHA-clones

and the helper agents (DA and BA).

3. STC is a process that forms both the O-cluster space and the I-cluster space. In contrast

to that SmartCluster only forms the O-cluster space. The I-cluster space is not needed

within the SMARTSPACE framework although it is a integral part of the ALNet

framework. Whenever an SHA creates its clone (i.e. the SHA-clone) and sends it to the

nearest available specialized node the SHA-clone communicates with the DA living in

the node to know whether it can live in the existing O-space. The DA checks whether

there exists any existing taxonomy that can include the new SHA-clone. This checking is

just the same AND-XOR operation dual that the DA performs for a query redirection.

There are three possibilities after this operation is done: (i) the SHA-clone has no MC

match at all, (ii) the SHA-clone has a single MC match, and (iii) the SHA-clone has

multiple MC matches. We describe each of the cases as follows:

 244

 No MC Match: This case implies the SHA-clone has to form a new taxonomy of its

own. In this case it first asks the BA whether there is enough room (memory space)

in the current specialized node. If yes the BA inserts a new tuple in its BA-directory

and the SHA-clone starts living in the specialized node. The DAs update their DA-

directories accordingly. If there is no room then the SHA-clone moves to the next

available specialized node and starts communicating in the same way with the DA

living there. It is to be noted here that the SHA-clone has to start the same protocol

all over again since it might happen that during its move to the next specialized node

a similar kind of SHA-clone has already started living in one of the specialized

nodes. So the SHA-clone has to ensure that it does not start a redundant taxonomy

(i.e. similar taxonomy w.r.t g-relation) in multiple specialized nodes. This property

of SmartCluster, as mentioned earlier in section 6.5.2, is called exclusive residence

of O-cluster space. This property is very important since redundancy will increase

the search space for solution set when a query is mapped. Also the DA’s performance

for identifying a query’s satisfiability gets negatively affected since it cannot ensure

complete ‘exclusive’ success even if the XOR product is 0.

 Single MC Match: This case implies that the new SHA-clone has to stay only in the

current specialized node. In other words, it has an exclusive g-relation with one or

more taxonomies present in the current O-cluster space. This happens only when

there is a complete success in the DA-directory. In such a situation the DA

communicates with the corresponding BA and asks it to search for all those matching

taxonomies. The BA then looks up its BA-directory tuples one by one and does a g-

 245

subsumption match. In this way, as explained in section 6.6.2, the BA filters out all

root SHA-clones that have g-relations with the new SHA-clone. After the filtering

process the BA then notifies all these SHA-clones about the new SHA-clone. Each

individual root SHA-clone then tries to understand the kind of g-relation it has with

the new arrival. If the g-relation is subsume then it just tells the new SHA-clone to

consider it as its new child. If the g-relation is plug-in then it sees whether the new

SHA-clone can be a parent or a sibling of its current children SHA-clones. If the test

(called test of parenthood) is positive then it tells the new SHA-clone that it is now

its new parent and also tells the affected children SHA-clones that they have a new

parent (i.e. the new SHA-clone). However, if the test is negative then it just tells its

immediate children SHA-clone to repeat the entire test of parenthood individually.

Thus, from an individual point of view a particular SHA-clone only communicates

with its immediate children and the new SHA-clone. Thus, SmartCluster is a truly

self-organizing form of STC.

 Multiple MC Match: This case implies that there are multiple taxonomies existing

in separate specialized nodes where the new SHA-clone has g-relation. In such a

situation the DA tells the SHA-clone to reproduce new clones and send them to those

matching specialized nodes. After this operation is done each of the new clones

along with their origin SHA-clone starts communicating with the BAs in the same

way as has been explained in the previous match case. The SmartCluster algorithm

has been illustrated in figures 59 and 60.

 246

(a)

(b)

Figure 59: SmartCluster Initiation Process: DA Finds the Correct BA

SlIA-c1one

Output: {ODD }

SIIA-clolle

Output: {ODD }

BA
DA

"I need to get ctustered "

GA l 1111

GAl 101 1100

GAl 1001110

BA
DA

" I need to get clustered" , __ ---'~~~:I;;ZL_,_:_------
0001

1111
&0001

0001
(MATCH!!)

~--~~~~~,oo

GAl 1001110

XOROOOI

0000
(NO ONE ElSE HAS A MATCH !!)

FFigure 60: SmmartCluster:
 247

(a)

(b)

 (a) Pruningg Search Spa

ace, (b) Phas

es

 248

6.8 SmartMap: Distributed Desire Processing Algorithm

SmartMap is a distributed algorithm for processing a desire (i.e. a Q-T1 query) when

it gets redirected from a DA to a set of BAs. The algorithm follows the same logic as that of

SmartCluster except that the goal now is to find a solution set of SHA-clones who can

satisfy (strong or weak) the desire of the querying agent. The SmartMap process is initiated

by a UA. The UA contacts a DA and lets it know about its desire. The DA then redirects the

desire to the set of BAs when it finds the desire to be satisfiable. Each BA then looks up the

BA-directory and maps the desire onto the matching O-taxonomies of SHA-clones.

Whenever a SHA-clone finds out the type of g-relation it has with the desire it immediately

contacts the UA telling it that its corresponding SHA is a bidder and also telling whether the

bidder is a strong bidder or a weak bidder. The corresponding SHA is a strong bidder if the

contacting SHA-clone has an exact or plugin g-relation with the desire. Otherwise the SHA

becomes a weak bidder. The algorithm for SmartMap is given in figure 61.

Note that for an event-handling process even though the SmartMap process is

initiated by a UA yet it can be started up by SHAs as well. This is because a bidder SHA may

find out that it needs to deal with other SHAs in the system so as to win the deal. Thus, it

starts up a Q-T1 query by calling up its nearest available DA. In the context of

SMARTSPACE the event-handling process is called SmartDeal. We describe SmartDeal in

detail in the next section.

 249

 Figure 61: SmartMap Algorithm

6.9 SmartDeal: Distributed Event-Handling Algorithm

SmartDeal is a completely distributed and asynchronous algorithm for computing the

near-optimal composition for a given user event. The process, as mentioned in the previous

 250

section, is initiated by a UA. The UA keeps a directory of its own, called deal-directory, to

execute SmartDeal. A deal-directory is used for several purposes:

 To maintain a record of all bidder SHAs. This record is called the deal list.

 To maintain a record of all possible candidate SHAs. This record is called the candidate

list. Candidate SHAs are those bidder SHAs that has accepted the deal or are known a

priori by the UA to be able to get the deal done.

 To finally confirm a deal by choosing the best possible candidate bidder SHA out of the

candidate list.

It is to be noted that the deal-directory is also owned by every SHA as well. The

reason behind this will be clear when the SmartDeal algorithm will be explained in later

section. We now first explain the deal-directory structure in the next sub-section.

6.9.1 Deal-directory

The deal-directory is a table of N 3-ordered tuple 〈ܳܵܲ, where N	〈ܵܯ,݋݂݊ܫ_௕௜ௗௗ௘௥ܣܪܵ

is the number of bidder SHAs that has to be condidered, SHAbidder_Info is a tuple

,ܦܫ_௕௜ௗௗ௘௥ܣܪܵ〉 where SHAbidder_ID is the unique agent ID of a particular	〈ݐݏ݋ܿ_௕௜ௗௗ௘௥ܣܪܵ

bidder SHA and SHAbidder_cost is the cost of the service (i.e. SA) that it represents, MS refers

to the DQM match strength (i.e. whether the bidder SHA is a strong bidder or a weak

bidder), and QSP is a special data structure called the Query-Service Pair. The QSP is

defined as 2-ary ordered pair 〈ܦܫ, where ID refers to the unique agent ID	ௗ௘௦௜௥௘ሻ〉ܣሺܷ݁݀݋ܿ‐ܮܦ

of the deal maker agent and DL-code(UAdesire) is the DL-code of the initial UA desire. To

summarize the deal-directory of a particular deal maker agent (UA or SHA) contains

 251

information about the all the user events that it is currently handling along with the

corresponding set of bidder SHAs that it requires to deal with for completing the handling

process.

The deal-directory is partitioned into separate sub-tables for each concurrent user-

events that the deal maker tries to handle. For an initiating UA there will be only one deal-

directory table since it specifically handles only one user event. However, for SHAs that

might have to deal with other SHAs there can be several concurrent user event-handling

processes that it has got itself involved with. Each sub-table is then categorized according to

the 9 possible MS values (see chapter 3).

6.9.2 SmartDeal Algorithm

SmartDeal includes three major sub processes in a temporal order: (i) Make Deal,

(ii) Accept Deal, and (iii) Confirm Deal. In this section we explain each of them in their

corresponding sub-sections.

6.9.2.1 Make Deal

Make Deal is a process that is started off by a deal maker agent immediately after it

starts getting responses from SHA-clones. To begin with, the UA first gets a set of such

responses. It then checks up the type of g-relation matches that the SHA-clones report to it.

After that it computes the g-relation of its Q-T2 component with the corresponding bidder

SHAs’ I-array. During g-subsumption computation over the I-array the UA notes all the

input parameters of the bidder SHA that are unmatched. It has to options at this point: (a) to

proactively ask the user for that information or (b) to let the SHA know that some of the

 252

SHA‐lone_A
{SUV}

Deal

QSP SHA name

{me, 101} {SHA_B, CSHA_B}

{me, 101}

QSP
SHA name

{me, 101} {SHA_A}

{me, 101} {SHA_B}

Deal list

Candidate list

“SHA_A is a bidder!”

“SHA_B is a bidder!” SHA_A
Output: {SUV}
Input: {age, email, credit‐info}

SHA_B
Output: {Sedan}
Input: {name, credit_info}

SHA‐clone_B
{Sedan}

Deal

UA

Input: name, credit‐info

Figure 62: SmartDeal initiation - Make Deal process

the SHA’s input parameters are unmatched. In this work we choose the second option

assuming that in order to keep user-friendliness the first option should only be taken if there

can be no event-handling done by the second option.

At this point, as per the DQM model, there can be three cases: (i) strong match (exact

or subsume), (ii) weak match (plug-in), and (iii) sibling. Since the g-relation reported by the

SHA-clones also has 3 possibilities hence, the UA computes the appropriate MS value out of

the 9 possible values (i.e. SS, SW, SSiS, WS, WW, WSiS, SiS, SiW, SiSi; see chapter 3). Based

on the MS value the UA creates a deal-directory tuple and inserts the tuple in the correct

category. If the MS value is SS then it keeps the tuple in the candidate list since it knows for

sure that the bidder SHA can definitely accept the deal and execute the deal. All other cases

 253

go into the deal list. It is to be noted at this point that the candidate list is a special category

within a deal-directory table where the MS value is SS.

After a tuple is inserted into a deal list the UA then starts communicating with the

corresponding SHA of the tuple. This is called a deal. When the SHA receives a deal it first

creates a QSP corresponding to the deal. After that it checks whether any of its input

parameters are still unmatched. If the bidder SHA has unmatched parameters it then forms

up a desire by OR-ing over the unmatched parameters and then sends that desire to the

nearest available DA. The whole process of SmartDirect and SmartMap starts off and a fresh

set of SHA-clones respond to the bidder SHA (which is currently the deal maker SHA) with

new bidder SHAs. The deal maker SHA then repeats the same deal making process as was

done by the UA by trying to match the input of the new bidder SHA with the given input of

the UA. This can lead up to a temporally ordered set of deal making which eventually

terminates in a bidder SHA that does not have to make any further deal (since all its input

parameters are matched). Figure 62 outlines an overview of the Make Deal process.

6.9.2.2 Accept Deal

Once a bidder SHA does not have to deal any more it replies back to its deal maker

and lets it know about its own cost (i.e. SHAbidder_cost). This process is called accept deal.

When a deal maker SHA receives an accept deal from a bidder SHA it takes off the bidder

SHA tuple from the deal list and puts it into the candidate list. If the candidate list is full

(i.e. the deal list for the user event in question is empty) then it chooses the best candidate

bidder SHA’s cost and adds it up with its own cost. After that it reports the cumulative cost

to its

term

UA

SHA

The

chain

mess

new

s deal maker

minates with

fills up its c

A. This proce

confirm de

ning process

sage to the b

bidder SHA

r (which aga

the initiatin

candidate lis

ess is called c

Figure 63:

al process,

s starting off

best bidder S

A has accep

ain can be a

g UA receiv

st in a simil

confirm deal

SmartDeal c

6.9.2

in contrast t

f with the UA

SHA the bidd

pted its deal

 254

nother SHA)

ving the acce

lar way and

l and is elabo

completion -

2.3 Confirm

to the accep

UA. Once a U

der SHA then

(if any) an

). In this wa

ept deal rep

d then choos

orated in the

- Confirm D

Deal

pt deal proc

UA starts it o

n re-checks i

nd is better

ay accept de

ply (figure 6

ses the best

e next sectio

Deal process

cess, is essen

off by sendin

its candidate

than the on

al process fi

3). After tha

candidate b

on.

ntially a for

ng a confirm

e list to see i

ne it chose w

inally

at the

bidder

rward

m deal

if any

while

 255

sending the accept deal message. Therefore re-checking helps SMARTSPACE framework to

produce more accurate on-the-fly compositions as compared to other middleware oriented

centralized system including the proposed ALNet framework.

Once the SHA chooses the best bidder SHA from the candidate list it then sends a

confirm deal message to the corresponding SHA. It then waits for this bidder SHA to reply

back with an output. This process goes on until it reaches the bidder SHA that has not made

any deal. Once it hits the final bidder SHA this final bidder then calls up its corresponding

SA and tells it to execute by providing it with the input data. After an output is generated the

SHA then passes the output back to its caller SHA. The process again goes backward till it

hits the UA which finally provides the output of its chosen best bidder SHA to the user. The

process has been shown in figure 63. In this way the user event-handling process is

completed. The underlying SmartDeal algorithm is given in figure 64 (a, b, c, d).

 256

Figure 64 (a): SmartDeal – Make Deal Phase

A L G-ORITH1'\'I: : Srnarl:Deal ~ake Deal Bell av i o J· - "LTA / S H A)
Input : Q - T .1 [DL- code]
O utput: done [Boole an]

S T A RT
l'vlessa g e rec eipt = readl'vless a g e ()
IF" r e c e ip t . s e n der == S H A - c l o n e

IF" r e c eipt. collt e llt.lll a t c h_ty p e = .1 or 2
/ * r el:rieves unrn.al:ched inpul: params */
IF" g e tIllpll t1vli s l'vlat c h (SH A . illput. Q -T2) == .l\TULL

Bidder_.p r e f eren c e = re c e ipt . c o llt e llt . lliat c h_ty p e + 1
in s e rtC a n didat eL i s t (SHA. Q -Tl . Bidder--.l:Jr e ±e l ·e n c e)

E ND IF"
ELS E

Des i r e = g e tInp utl'vl i s l'vlatc h (S H A . input. Q -T2)
IF" g e tJ'Vl at c h (SHA. input . Q -T2) = subsurn.e

B idd e l ·--.l:Jl ·e ±e l ·e n c e = I·e c eipt. cont e nt. lli a t c h_ty p e + 2
E N D IF"
ELS E IF g et]\ l'l a t c h (S H A . input. Q -T2) == plu gin

B idd e l ·--.l:Jl ·e ±-e l ·e n c e = I·e c e ipt . conte nt. lli a t c h_ty p e + 3
E N D IF"
ELS E IF g e t 1\.'lat c h (S H A . input. Q -T2) == sibling

B idd e l ·--.l:Jl ·e ±e l ·e n c e = I·e c eipt. cont e nt. lli a t c h_ty p e + 4
END IF"
in s e l -tDe a lLi s t (SHA . Q -Tl . Bi d d e r--.l:Jre±-eren c e)
1* deals vvil:h SE-£A infornting il: aboul: il:s unrnal:ched desire */
s e n d J'vl e ssa g e (S H A . A-:fakeDe al, Des ir e . Q -T2)

E ND IF"
E ND IF"
EL S E IF" rec eipt conte nt . lll a t c h_typ e = 3

IF" g e tInput1VIi s l'vlat c h (SH A.. i llPllt . Q -T2) == .l\TULL
Bidder--.l:Jref eren c e = r e c e ipt . c o llt ent . lll a t c h_ty p e + 4
s e n d .1Vlessa g e (S H A _ A-:fakeDeal, .l\TULL. Q -T 2)
ill s e l -tDea l L i s t (SHA. Q -Tl . Bi d d e r--.l:Jre±eren c e)

E N D IF"
ELS E

D e s ire = g etInp utl'vli s l'vlatc h (S H A . input. Q -T2)
IF" g et.1'vlat c h (SHA. inp u t. Q -T2) = subsu m e

Bidder--.l:lr e ±eren c e = I"e c eip t.conte nt. lll a t c h_ty p e + 5
E ND IF"
E LS E IF g e t lvl a t c h (S H A . input. Q -T2) == p l ugin

Bi d d el"--.l:lr e ±eren c e = r e c eipt.conte nt. l ll a t c h_ty p e + 6
E ND IF"
ELS E IF g e t lvl a t c h (S H A . input. Q -T2) == s i bling

Bi d d e l"--.l:lre±e l"en c e = I"e c eipt.conte nt. l ll a t c h_ty p e + 7
E ND IF"
ill s e l -tDealLi s t (SHA. Q -Tl . Bidder--.l:lr e ±e r e n c e)
s e nd.1Vlessa g e (SH A _ A-:fakeDe al, Des ire . Q -T2)

E N D IF"
E ND IF"
ELS E IF" rece ipt. c ontent. n lat c h_ty pe = 4

IF" g e tInput1vli s l'vlat c h (SH A . i llPllt . Q -T2) == .l\TULL
Bidder--.l:Jref eren c e = r e c e ipt . c o llt ent . lll a t c h_ty p e + 7
ill s e l -tVV aitLis t (S H A . Q - Tl . B iddel"--.l:Jre±e l ·e ll ce)

E N D IF"
ELS E

D cs i J·c - g CtIllP 1.ltIVli s l llAt c h IVlflt c h (SH A.. i llP 1.lt _ Q -T2)
IF" g etl'vlat c h (SHA. inp u t. Q -T2) = subsu m e

Bidder--.l:lr e ±eren c e = I"e c eip t.conte nt. lll a t c h_ty p e + 8
E ND IF"
E LS E IF g e t lvl a t c h (S H A . input. Q -T2) == p l ugin

Bi d d er--.l:lr e ±eren c e = r e c eipt.conte nt. l ll a t c h_ty p e + 9
E ND IF"
ELS E IF g e t lvl a t c h (S H A . input. Q -T2) == s i bling

Bidder--.l:lr e ±eren c e = I"e c eip t.conte nt. lll a t c h_ty p e + 1 0
E ND IF"
ill s e l -t'V ait L i s t (S H A . Q - Tl . B i d d e l"--.l:Jre±e l ·ell ce)

E N D IF"
E ND IF"

ret u rn done
END IF"
END

 257

Figure 64 (b): SmartDeal – Query Phase

Figure 64 (c): SmartDeal – Accept Deal Phase

 258

Figure 64 (d): SmartDeal – Confirm Deal Phase

6.10 Optimizing SmartDeal

In the previous section we detailed the SmartDeal algorithm in general. However,

there are a few problems with the algorithm that still need to be addressed. In this section we

first introduce each of these problems. After that we detail techniques to eliminate the

problems thereby optimizing SmartDeal.

 259

6.10.1 Problem of Make Deal Explosion

Make Deal Explosion is a phenomenon that may arise because deals that an agent

makes can actually go on without terminating anywhere. This may occur in situations where

the unmatched input parameters of a bidder SHA actually have very low correlation with the

original desire of the UA. For an example if a SHA promises to give an output

car_information but demands input car_manufacturer then it has very poor correlation with

an UA that has desire {car_information, rent_confirmation}. However, the SHA might be

picked up as a bidder since it partially satisfies the desire of the UA. Because of this the SHA

will start believing that it can handle the user event and try looking for other bidder SHAs in

vain.

To mitigate this problem each deal making agent (UA or SHA) tries to estimate the

joint probability distribution of the given UA input and the unmatched bidder SHA output. In

order to understand the acceptability of an estimated correlation the deal making agent keeps

a deal log table. The deal log keeps a history of all successful deal bidder SHAs for a given

desire. The deal log is a table of N 2-order tuple 〈ܳܵܲ, where Pr is the joint probability	〈ݎܲ

of a UA desire Q and a past bidder SHA’s input. Initially the deal log is empty. Hence, deal

making agent does not discriminate and includes all bidder SHAs for a given desire. The

joint probability is set to 1 for every bidder SHA. This continues till a set threshold deal log

size is reached.

However, the deal maker agent keeps a timer and penalizes all those bidders that

cannot accept the deal within the stipulated time. Penalization takes place in proportion to

the popularity of the query (i.e. the number of times the same query is observed after the

 260

first observation) and the failure rate (i.e. the number of failures versus query observations).

The following model provides the penalization function:

 Pr ൌ Prെ	ሾܲݕݐ݅ݎ݈ܽݑ݌݋	 ൈ :where Popularity and Failure Rate are	ሿ݁ݐܴܽ	݁ݎݑ݈݅ܽܨ

்∆ݕݐ݅ݎ݈ܽݑ݌݋ܲ ൌ ൬
#	ொ௨௘௥௬	ை௕௦௘௥௩௔௧௜௢௡௦

∆ ೜்ೠ೐ೝ೤
൰ ൊ ቀ#	்௢௧௔௟	ொ௨௘௥௬	ை௕௦௘௥௩௔௧௜௢௡௦

∆்
ቁ	

்∆݁ݐܴܽ	݁ݎݑ݈݅ܽܨ ൌ ൬
#	ொ௨௘௥௬	ி௔௜௟௨௥௘	ை௕௦௘௥௩௔௧௜௢௡௦	

∆ ೜்ೠ೐ೝ೤
൰ ൊ ቀ#	்௢௧௔௟	ி௔௜௟௨௥௘	ை௕௦௘௥௩௔௧௜௢௡௦

∆்
ቁ	

and ∆ ௤ܶ௨௘௥௬: Time since the query was first observed by the deal making agent;

∆ܶ: Time since any query was first observed by the deal making agent.

From the above mathematical model we can understand that the joint probability of a

bidder SHA is seriously affected if it fails to accept a deal for a user query that is highly

popular. However, the SHA is not that much affected in its early failures for a given query as

it will be in its later failures. A SHA gets cancelled out of the deal log if it reaches a

deviation lower than a threshold deviation  t from the mean joint probability of the deal

log. In a similar way the deal making agent rewards a SHA in the deal log based on the

following reward function:

Pr ൌ ሺPr൅	ሾܲݕݐ݅ݎ݈ܽݑ݌݋	 ൈ ሿሻ݁ݐܴܽ	ݏݏ݁ܿܿݑܵ ൊ :where Success Rate is	ݎܲ	ݔܽܯ

்∆݁ݐܴܽ	ݏݏ݁ܿܿݑܵ ൌ ቆ
	ݏ݊݋݅ݐܽݒݎ݁ݏܾܱ	ݏݏ݁ܿܿݑܵ	ݕݎ݁ݑܳ	#

∆ ௤ܶ௨௘௥௬
ቇ ൊ ൬

ݏ݊݋݅ݐܽݒݎ݁ݏܾܱ	ݏݏ݁ܿܿݑܵ	݈ܽݐ݋ܶ	#
∆ܶ

൰

and Max Pr is the maximum joint probability in the deal log.

The deal log helps the deal making agent to understand: (a) whether a bidder SHA is

reliable to deal with and (b) whether the bidder SHA is known before. For the first objective

it checks the deal log to compute the current mean joint probability. After that it estimates

 261

the joint probability of the current bidder SHA at hand and the given UA by using a semantic

distance measure, called SGPS measure, proposed in [189]. The joint probability between

two semantic parameters Ci and Cj is estimated as follows:

 Pr൫ܥ௜, ௝൯ܥ ൌ ܵ݅݉ሺܥ௜, .where Sim is semantic similarity as per SGPS model		௝ሻܥ

Based on this estimation the joint probability between n parameters C1, C1,… Cn is

estimated as:

Prሺܥଵ, ଶܥ … , ௡ሻܥ ൌ
1

൫௡ଶ൯
෍෍

ܵ݅݉ሺܥ௜, ௝ሻܥ
2

௝௜

If the estimated joint distribution for a given unknown bidder SHA (i.e. a SHA that is

not recorded in the deal log) has a deviation less that the current standard deviation  current

then it is considered as unreliable bidder. All unreliable bidders are put into a waiting list by

a deal making agent so that it can come back to them for making deals if it cannot confirm

any deal.

6.10.2 Problem of Starvation

Starvation is a situation where an agent keeps on waiting for a particular response so

as to start a process. Hence, starvation can occur when a deal making agent has to keep on

waiting for an accept deal response or an output response from a corresponding SA. One

way to solve this problem has been discussed in the previous section. However, it may

happen that the agent has to wait even when it has found the bidder SHA to be reliable. This

may occur due to unprecedented network traffic overload or peer node overload where the

bidder SHA lives. In such a starvation situation the deal making agent has no way to

 262

understand whether the bidder SHA can finally accept the deal. We solve this problem in

two different ways: (i) the waiting agent has a set timer as defined in the user preference,

and (ii) the waiting agent estimates a wait time TW after which it no longer waits. The first

option is easy and trivial to implement. The second option is taken only when the first option

is not available. A waiting agent computes the wait time as per the following model:

T୛ ൌ T୛൅	൬൤ܲݕݐ݅ݎ݈ܽݑ݌݋	 ൈ ݁ݐܴܽ	ݏݏ݁ܿܿݑܵ ൈ
1

1 ൅ ݕݐ݈݅ܽܿ݅ݐ݅ݎܥ
൨ ൈ T୛൰

where	T୛: Average wait time experienced so far by the agent;

Criticality: Measure that indicates the importance of a user query in terms of desired

service latency. Value range: [0, 1]

According to this estimation model an agent will wait more if the given user query is

very popular and/or if the success rate of the responding agent is high. However, this can be

seriously dampened by the criticality factor if the given user query happens to be a time

critical query (example: online retrieval of medical information). The criticality is given

either by the user or by the system designer based on some statistical estimation.

6.10.3 Problem of Confirm Deal Dilemma

Confirm Deal Dilemma is a problem that arises due to the uncertainty involved while

looking for bidder SHAs by a deal making agent regarding the number of SHA-clone

responses that it should expect. This is important because if the expected number of bidder

SHAs is unknown to a deal making agent then it has no sound way to understand when it

should send an confirm deal message to its bidders. As mentioned earlier, a confirm deal

action is taken only when the deal list is empty. However, without knowing the size of the

 263

deal list a priori the agent cannot be certain that the time is okay for confirming a deal by

choosing the best bidder within the candidate list. It may happen that there are no bidder

SHAs left but due to lack of information the deal making agent keeps on waiting. This

seriously affects the overall service latency.

To solve this problem a DA is required to reply back to its querying deal making

agent the number of MC matches it has observed for the query. If the number is n then there

are n BAs to whom the query will be redirected. At the same time a BA is required to reply

back to the same querying agent the total number of root SHA-clones that got matched in its

BA-directory. If the number is m then the agent knows that there are n * m root SHAs that

will communicate with it. Each root SHA-clone inside the O-cluster space of a specialized

node is required to have a count of the number of descendant SHA-clones it has. Hence, if

the i-th root SHA-clone reports the number as pi then the deal making agent computes the

maximum number of bidder SHAs (denoted as Nbidder) as:

௕ܰ௜ௗௗ௘௥ ൌ ∑ ௜݌
௡ൈ௠
௜ 	.

It is to be noted that Nbidder is an upper bound to the expected number of responses

since root SHA-clones can share descendants within a more generalized O-cluster space

topology. Therefore a deal making agent knows that it can receive a maximum of Nbidder

SHA-clone responses and hence, does not wait for confirming a deal if the deal list is filled

with this many entries.

However, as Nbidder is the upper bound therefore it may happen that the deal making

agent wastes unnecessary time waiting for Nbidder number of entries in the candidate list and

then finally reaches a timer expiry. Under such situation the deal making agent first checks

 264

the deal list count. If the count is close to Nbidder by a chosen constant k then the agent checks

if the deal list is static for a "long enough time". For that the agent uses the average time

interval between two consecutive entries into the deal list (denoted by	ߤ୼்). If the elapsed

time is greater than ߤ୼் ൅ then the agent drops its (is the standard deviation	୼்ߪ where) ୼்ߪ

hope for getting new additions into the deal list.

6.11 Results

Evaluation of the SMARTSPACE platform has been implemented from two different

perspectives:

 To understand the effectiveness of the SmartCluster algorithm for organizing SHA-

clones into a O-cluster space.

 To understand the effectiveness of the SmartDeal algorithm for distributed event-

handling.

For both the objectives we set up a simulation environment that typically represents a

SMARTSPACE instance. We carried the simulation on a single desktop workstation (O/S: 32

bit Windows Vista) with CPU (Intel Core 2 Duo) cycle of 2.67 GHz and a RAM of 3 GB.

We used JADE 3.7 as the underlying agent platform. The Java runtime environment was

Eclipse Helios. The simulation framework consisted of two parts: (i) to develop a domain

that is semantically represented as a set of ontologies, and (ii) to construct the service

hosting P2P overlay on top of the JADE runtime platform.

For the first module of the simulation, called OntoGenerator, we synthetically

constructed a set of ontologies and then DL-encoded them. The ontologies were constructed

 265

as random acyclic graphs where we could control the sparseness in terms of a parameter

called Diversity Factor (DF). We define DF as follows:

Definition 6.1: A Diversity Factor (DF) of a given set of ontologies SO is the

maximum probability with which two concepts Ci and Cj belonging to SO have a mutual

subsumption with each other. ■

From the definition we can understand that if the DF value is high chances are high

as well that we get a very dense SO that in itself signifies a very specialized domain in terms

of breadth of individual ontologies. In contrast if the DF value is set low then SO signifies a

very generic and diverse domain. We also designed the simulation environment such that we

have control over the size of SO in terms of the total number of concepts. Thus, with a fixed

DF if the SO size is increased then there is high chance that the specificity of the domain will

be increased in terms of depth of individual ontologies.

For the second module of the simulation, called OverlayDesigner, we designed a

control mechanism for adjusting the total number of peer nodes and the total number of

specialized nodes within the P2P network overlay. The total number of peer nodes was set to

a constant of 10 for our purpose while the specialized node size was varied between 1, 4,

and 6. We then implemented a random service generator that created a pool of 10,000

services by randomly selecting DL-encoded concepts from SO and filling a particular

service's I-array and O-array. We put a control over the minimum and maximum number of

parameters that any g-array can have. For this present work we set that to [4, 5] for both I-

array and O-array. Once services are generated they are kept in a pool for further

implementation. After this stage is over services are assigned to the peer nodes randomly.

 266

The random assignment is also controlled where we can pre-set the minimum and the

maximum number of services per peer node. For this work it was set to [4, 4].

We also designed a QueryShooter module that generated a set of 100 DQM queries

in random from SO in the same way as how services were created. We set the minimum and

maximum query parameter to [1, 3] for Q-T2 and [5, 7] for Q-T1. The intention behind this

set-up was to force SHAs to make at least one further deal during event-handling since they

would not be fully satisfied by the Q-T2 as they must have a minimum of 4 input

parameters. On the other hand, Q-T1 was kept above the output parameter interval since we

wanted more than one end service to satisfy a given user query so as to ensure a more

generic situation of event-handling.

At this point the simulation environment is ready for SmartDeal to take place and

JADE runtime was booted up. JADE in turn loads SMARTSPACE on top of it. When

SMARTSPACE gets loaded the services assigned to the peer nodes are converted into SAs.

The conversion of services into SAs comes with a default JADE controlled interval of 0.0014

seconds on average. We term this interval SA Birth-Interval (BI). Since this interval is too un

realistically fast for a given SOA-based system we put an extra SMARTSPACE control over

the BI while keeping the JADE BI as a baseline for our observations. For this work we kept a

BI of 1 second (which is also very fast and not so realistic) and another BI of 10 seconds that

reasonably represents a very dynamic SOA-based system with high birth-rate (at least

initially). The QueryShooter is not started before the JADE AMS agent (see chapter 2 for

details) signals the creation of "enough" number of SAs in the system. We set this number

from a range of 50 SAs to 1000 SAs for different observations. The next sub-section

 267

discusses the effectiveness of SmartCluster algorithm while the sub-section that follows it

discusses the effectiveness of SmartDeal algorithm.

0

50

100

150

200

250

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Cl
us

te
r T

im
e (

se
cs

)

Number of SA

SmartCluster Performance
Peer Nodes = 10

Specialized Nodes = 1
Domain Size = 5000 concepts
Domain Diversity Factor = 0.2

SA BI = 0.0014 secs

SA BI = 1 secs

SA BI = 10 secs

Figure 65: Effect of BI over SmartCluster Runtime Performance

6.11.1 SmartCluster Evaluation

The SmartCluster algorithm can be evaluated from two different perspectives: (i)

accuracy, and (ii) runtime performance. Since SmartCluster is a version of STC from an

algorithmic point of view hence, we do not discuss accuracy in this chapter. For detailed

analysis and results on accuracy chapter 4 and chapter 6 can be consulted. In this section we

are more interested in the runtime performance of SmartCluster since this gives us a direct

insight on the ability of SMARTSPACE as a platform to perform distributed service

discovery keeping the accuracy same as STC.

 268

We first tried to understand the effect of BI over the SmartCluster algorithm. For that

we chose the baseline BI and our own BI of 1 second and 10 seconds (figure 65). For this

purpose we kept the domain size and the domain diversity to a constant of 5000 concepts

and 0.2 respectively. The number of specialized nodes was kept to 1. We observed that for

the JADE governed BI the overall performance was not that much promising with an

average runtime of 98.13 secs (min: 2.562 secs for 50 SAs; max: 195.031 secs for 1000

SAs). The performance can mostly be attributed to a message overload per agent. This

happened because the SHA-clones were very frequently born and sent to specialized nodes.

This created a huge overhead on the sole DA-BA pair and also on the SHA-clones themselves

since they have to communicate lot more frequently with new arrivals and between

themselves and hence, consume a lot of JADE runtime resources. Furthermore it needs to be

kept in mind that the experiment was conducted on a single machine with very limited

memory and CPU cycle as compared to the scale in which the agents were created.

However, when we relaxed the BI to 1 second we saw a drastic improvement in the

performance with an average of 8 secs (min: 2.001 for 50 SAs; max: 14.21for 1000 SAs).

We got an even better performance when we lowered the BI to a more realistic 10 seconds.

The average runtime was 0.932 secs (min: 0.013 for 50 SAs; max: 1.964 for 1000 SAs).

We then observed the effect on the number of specialize nodes over SmartCluster to

get an insight over the extent to which distribution of O-cluster spaces contributed to the

overall performance. For this observation we kept the same domain configuration as before

and also kept the more realistic BI of 10 seconds. The performance in this case was

measured in milliseconds (figure 66). We saw that an increase in the DA-BA pair count

 269

significantly released the overload over a single specialized node. For a size of 4 specialized

nodes the average runtime performance dropped from 932 msecs (as noted earlier) to 96.396

msecs (min: 5.32 for 50 SAs; max: 179.994 for 1000 SAs). When we decreased the size

0

500

1000

1500

2000

2500

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

C
lu

st
er

 T
im

e
(m

se
cs

)

Number of SA

SmartCluster Performance
Peer Nodes = 10

SA Birth-Interval = 10 secs
Domain Size = 5000 concepts
Domain Diversity Factor = 0.2

Specialized Nodes = 1

Specialized Nodes = 4

Specialized Nodes = 6

Figure 66: Effect of Specialized Node Count over SmartCluster Runtime Performance

further to 6 nodes we saw an average runtime of 60.405 msecs (min: 3.78 for 50 SAs; max:

83.892 for 1000 SAs). Based on the above observation we think that we do not need too

many specialized nodes for improving the SmartCluster runtime. This is a positive sign

since it is cost effective in terms of maintenance of specialized nodes. Also the number of

mutual updates among DAs will not be much as well.

 270

0

10

20

30

40

50

60

70

80

90

100

0.009 0.02 0.05 0.08 0.2 0.4

Cl
us

te
r

Ti
m

e
(m

se
cs

)

Domain Diversity Factor

SmartCluster Performance
Peer Nodes = 10

Specialized Nodes = 6
SA Birth-Interval = 10 secs

Domain Size = 5000 concepts

SA = 100

SA = 500

SA = 700

SA = 1000

Figure 67: Effect of DF over SmartCluster Runtime Performance

The next experiment was to understand the effect of domain configuration over

SmartCluster. For this purpose the number of specialized nodes was fixed to 6 and the BI

was kept at 10 seconds. We first observed the effect of domain diversity in terms of DF. We

chose 6 different DF values: 0.009, 0.02, 0.05, 0.08, 0.2, and 0.4. Figure 67 shows the DF

effect over 4 different SA sizes. We observed that the runtime increases as the DF value

increases. This is because as we increase the DF value the probability that two SAs having g-

relation in terms of their O-array also increases. Hence, the inter-communication between

SHA-clones and the DA-BA pair increases as well on an average. We then observed the

effect of domain size in terms of number of ontology concepts over SmartCluster. We kept

 271

0

50

100

150

200

250

100 500 1000 2500 5000

C
lu

st
er

 T
im

e
(m

se
cs

)

Domain Size (# of Concepts)

SmartCluster Performance
Peer Nodes = 10

Specialized Nodes = 6
SA Birth-Interval = 10 secs

Diversity Factor = 0.2

SA = 1000

SA = 700

SA = 500

SA = 100

Figure 68: Effect of Domain Size over SmartCluster Runtime Performance

the DF value constant at 0.2. We chose the same sets of SAs as in the previous observation.

We saw that the runtime improves when the number of concepts were increased from a

minimum of 100 to a maximum of 5000 (figure 68). This is because as we increase the

number of concepts keeping the DF constant we probabilistically achieve a domain that is

diverse in terms of breath. Thus, we decrease the probability of two SAs to have their O-

arrays in g-relation with each other. Therefore, the intercommunication overhead during

SmartCluster is decreased as well on an average.

 272

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

C
lu

st
er

 T
im

e
(m

se
cs

)

Number of SA

SmartDeal Performance
Peer Nodes = 10

SA Birth-Interval = 10 secs
UA = 1

Avg. # Make Deal = 8.34

Specialized Nodes = 1

Specialized Nodes = 4

Specialized Nodes = 6

Figure 69: Effect of Specialized Node Count over SmartDeal Runtime Performance

6.11.2 SmartDeal Evaluation

The SmartDeal algorithm can be evaluated from several different aspects. However, in this

work we chose to understand one of the most important aspects - performance. SmartDeal

evaluation is essentially a complete evaluation of the SMARTSPACE platform. For the

analysis in this section we manually chose a set of simulated query (generated by

QueryShooter module) that gave us reasonably complex event-handling situations that

involved service composition as such. This is important because we did not want to include

cases where the problem just came down to a simple set of service discovery with no

 273

composition taking place. The query set that we chose involved 8.34 average number of

make deal behaviors per query by deal making agents. We used the same simulation

environment that was used to test SmartCluster.

We first studied the effect of the number of specialized nodes on SmartDeal (similar

to the test performed on SmartCluster). We kept the number of UA in the system to be just 1

- i.e. there is only one UA living in the entire system. We observed a some improvement on

the runtime as we increased the number of specialized nodes from 1 to 6 (figure 69). The

average runtime dropped from 1.818 msecs (min: 0.21 for 50 SAs; max: 4.34 for 1000 SAs)

to 1.016 msecs (min: 0.105 for 50 SAs; max: 2.456 for 1000 SAs) when the specialized

nodes were increased to 4 from 1. The average runtime dropped a bit more to 0.548 msecs

(min: 0.03 for 50 SAs; max: 0.927 for 1000 SAs) when the specialized nodes were increased

to 6. We did not see a significant drop in the runtime (unlike SmartCluster) because the

QueryShooter is only started after the SHA-clones are clustered and it was only one Q-T1

query that had to be mapped over the O-cluster spaces. Therefore the number of specialized

nodes only affects: (i) the BA-directory look-up time (since each BA will have less records to

check if the system is more distributed over the specialized nodes) and (ii) the inter-agent

communication between SHA-clones when a desire is mapped over the corresponding O-

cluster space.

We then analyzed the effect of concurrency over SmartDeal. For that we made

SMARTSPACE make clones a UA whenever QueryShooter created it. These clones represent

a situation where several similar queries are put into the same system at the same time. We

kept the range of clones from 0 (i.e. only 1 UA) to 999 (i.e. 1000 UAs). We took 4 different

 274

system sizes (in terms of SA number). We observed a gradual but significant increase in the

runtime which then grew rapidly as the number of clones were made more than 500 (figure

70). The significant deterioration in SmartDeal performance is mainly because of frequent

starvation periods that a deal making agent on an average had to suffer. It is to be noted that

0

1000

2000

3000

4000

5000

6000

1 10 50 100 500 1000

C
lu

s
te

r
T

im
e

 (
m

s
e

c
s

)

UA Clones

SmartDeal Concurrency Performance
Peer Nodes = 10

Specialized Nodes = 6
SA Birth-Interval = 10 secs

Avg. # Make Deal = 8.34

SA = 100

SA = 500

SA = 700

SA = 1000

Figure 70: Effect of Concurrency over SmartDeal Runtime Performance

in our experiment we did not use any agent timer that might stop these starvation periods

since we wanted to make sure that all the user events are handled (if can be handled).

Another reason for not using timer is that we also wanted to understand the worst case

handling time for a given query and hence, did not want to stop the process in between.

 275

It is to be noted that SmartDeal was not evaluated in terms of BI since QueryShooter

is started only after SmartCluster has been completed by SMARTSPACE. Hence, the BI

would not have any effect as all the necessary SAs are allowed to be born before the

evaluation starts.

6.12 Conclusion

SMARTSPACE is a novel distributed agent-based approach to the problem of event-

handling. The platform has several features that we summarize below:

 Stateful Asynchronous Service Composition: In SMARTSPACE based event-handling

a bidder SHA can store the corresponding SA output with the underlying AMS agent if it

finds that the agent that confirmed the deal is busy. The busy agent can read the output

once it is free. Also two deal making agents that are dealing with the same bidder SHA

does not have to worry about syncing with each other. Messages are accumulated by the

AMS and are forwarded to the bidder SHA as and when required. Thus, the underlying

JADE runtime guarantees a truly stateful asynchronous service composition.

 Failure-Tolerant Service Composition: SMARTSPACE is a failure-tolerant service

composition platform. This is because the agents that are involved in event-handling are

mobile and hence, can move to other nodes the moment a particular node is sensed to be

crashing.

 Efficient Query Mapping: SMARTSPACE provides a very efficient query mapping

platform. Query mapping only requires a global abstract view of the DA-directory and

the local taxonomic view of the BA-directory. This is complemented with fast

 276

DL_encoding based lookups of these directories. Hence, the search space for user

queries is narrowed down very quickly by the DA and the BA. Furthermore, query

mapping only requires the O-cluster space (unlike the proposed ALNet framework) and

hence, reduces a lot of extra maintenance as well as search overhead.

 No Global Knowledge Requirement: It is to be noted that within the a SMARTSPACE

based system none of the agents has a complete understanding of the global system. In

fact, each agent's belief is very limited to its own roles. Thus, SMARTSPACE is more

flexible and adaptive under a very dynamic and uncertain system.

 More Accurate Service Composition: SMARTSPACE is sensitive to last-minute-

changes that might occur within the system during event-handling. This is possible

because service discovery and composition is truly integrated into one event-handling

process in SMARTSPACE. Also agents are flexible to choose a better bidder SHA during

the course of following a plan that did not include the bidder SHA. This flexibility is

absent in centralized middleware dependent systems where the composition plan is

strictly followed during runtime as planning is not integrated with the runtime binding.

 Concurrent Service Composition: SMARTSPACE can handle concurrency within the

system with much less complexity and without having to re-compute the composition

plan because of resource conflicts so common in concurrent systems. Efficient starvation

policy helps SMARTSPACE to look-out for alternative plans on-the-fly.

 277

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary

In this dissertation we focused on the problem of service composition and elaborated

on the various works that has been done in this area of study. We showed how reformulating

the problem as event-handling problem can eliminate some of the computational hurdles that

were innate in the more common formalization of the problem. We proposed a novel service

category learning algorithm called Semantic Taxonomic Clustering (STC) that utilizes

semantic descriptions of services written in languages like OWL-S. STC is an efficient way

of organizing services into functional categories so as to prune search space during service

discovery and also prune the search space for service composition. To compare semantic

descriptions in an efficient way during STC we proposed the g-subsumption algorithm that

leverages the proposed dynamic bit-based concept encoding algorithm called DL-Encoding.

We then proposed two different frameworks for solving the event-handling problem - (i)

ALNet framework and (ii) SMARTSPACE framework. While ALNet is a centralized

asynchronous platform that is suitable more for relatively static systems SMARTSPACE is a

distributed multi-agent based solution platform built over the JADE platform and is capable

of scaling to large dynamic systems.

The contributions of the dissertation are summarized below:

 DL-Encoding: A Linear Time Description Logics (DL) Subsumption Testing Theory

 g-subsumption: An efficient semantic service matchmaking algorithm

 STC: A novel and efficient semantic service category learning algorithm

 278

 DQM: A novel DL-Encoding based query model for efficient query mapping

 Notability Theory: A formal theory for agent-based cognitive modeling of events

 ALNet: A novel service dependency graph based centralized event-handling platform

 SMARTSPACE: A novel multi-agent based distributed event-handling platform

7.2 Future Work

In this section we discuss the limitations of some of the current work and the directions in

which we plan to move on regarding further research. We identify three main areas that can

be improved significantly: (i) DL-Encoding theory, (ii) SMARTSPACE analysis, and (iii)

Context-aware event-handling.

7.2.1 DL-Encoding Theory Extension

DL-Encoding is currently applicable to the DL language ࣦࣛ࣢ࣷ࣬ܥ. However the

language does not support some important DL constructs such as number restrictions. Also

some of the DL properties such as concept unstatisfiability and rule satisfiability need to be

further analyzed for the proposed theory. We think that in general DL-Encoding can be

theoretically extended further that might reveal more interesting DL properties.

Moreover, currently g-subsumption that is based on DL-Encoding is only over the I-

array and the O-array. The pre-condition and the effect features of service descriptions have

been largely ignored in this work. We would want to extend the g-subsumption algorithm to

include the fuller service feature set. This also includes the DQM query model that must be

extended to include user defined constraint in a succinct format.

 279

7.2.2 SMARTSPACE Analysis

SMARTSPACE is a relatively new project and has a lot of scope for further

evaluation and analysis. This is especially so with respect to the different types of important

analysis that can be done over the SmartDeal algorithm. In the near future we plan to

observe and understand the exclusive effects of having: (i) starvation policy, (ii) make deal

explosion policy, and (iii) confirm deal dilemma policy on SmartDeal accuracy

performance. Accuracy measurement is challenging in the current simulation environment

since the system dynamics is totally unknown. We plan to record this dynamics during an

event-handling span and later compare the composition given by SmartDeal with the actual

optimal composition under the last recorded system state. This will allow us to understand

the number of bidder SHAs that are ignored by SmartDeal and also how much that affects

the overall quality of the composition.

We also plan to understand the overall dynamics of SmartDeal when SAs are allowed

to die as well. It is to be noted that in chapter 6 we only had the BI parameter but we also

need to have a DI (death-interval) parameter into the simulation as well. It will be very

helpful to analyze both the accuracy as well as the computational efficiency of SmartDeal in

an environment that is under constant change even during the event-handling process. In our

current analysis we have assumed that event-handling starts only when the system attains a

stability (i.e. SmartCluster is executed and the system is static). Also, inducing node failures

into the simulation can help us to understand the resiliency of SMARTSPACE.

 280

7.2.3 Context-Aware Event-handling

At present we have not taken into consideration the complex effects of user events

that demand context-awareness from the service composition platform. In the use case

example Chris wants to rent a car for going to Chicago from Kansas City. He is supposed to

stay there for a week and fly back to Kansas City. Imagine a situation where the underlying

compound DQM query is fed into SMARTSPACE. Two different UAs are going to deal very

independent of each other and create two independent event-handling processes. However, if

the car renting UA fails then there is no way to alert the flight booking UA that its service

may not be required any more. The problem is in the lack of understanding between the UAs

that even though they have simplified the initial compound query into simple queries yet

they are not independent and have an innate temporal relation. Such understanding requires

context analysis of the original query at the time of breaking it into simpler queries. We

understand that the problem of context-awareness can be understood from two different

perspectives: (i) a priori context modeling and (ii) dynamic context-learning.

 7.2.3.1 A Priori Context Modeling

Context analysis is an extremely difficult problem. This is even so because

formalization of context is not easy. Previous works (such as Context ToolKit [238], CoBrA

[239 - 240]) has described context from a broad perspective. According to CoBrA context

implies the understanding of: (i) location, (ii) location environmental attributes (i.e. noise

level, temperature, light intensity, motion), (iii) location entities (i.e. people, devices,

objects, software agents). SOUPA [241] also capitalizes on such a conception. In other

 281

words, context is mostly a location-centric concept in these approaches. In the words of Dey

[242] a context is defined as: “…… any information that can be used to characterize the

situation of an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.” This definition of context implies that context characterizes: (i) state of entity,

(ii) activity of entity – provided we accept that situation consists of the state and the activity.

The definition also implies that context should be useful to the world in some ways –

specifically when the world entities interact among themselves. Even though many

researches in the field of context-awareness have accepted this definition as a standard

guideline yet there is a certain degree of ambiguity in it. We enumerate them as follows:

a) If we assume that situation means the state and activities of entities at a particular

point of time then context is just the same as the system state associated with an entity.

This is problematic because this does not really tell us: (i) whether the state information

is useful at all, (ii) when that state information can be useful for other agents, and (iii)

how the state information will be utilized by other agents. The problem leads to

inefficient resource utilization as agents will always have to collect or report context

information to other agents either via a P2P communication infrastructure or via a global

management framework.

b) The second important drawback in this definition is that we cannot properly

distinguish between when state information is a required input to other agents and when

the information is something additional (contexts are normally considered as additional

useful information). This is important as input is necessary and sufficient information for

 282

an agent to behave while context is not. Context influences the mode of behavior of an

agent in three ways: (i) changes the format of an output, (ii) fine-tunes the granularity of

an output, and (iii) suppresses (or over-rides) the output. However, it cannot change the

behavior itself. Let us illustrate this example with a toy use case:

John wants to read the morning news every day. Normally he wakes up and

enters the hall where a huge 46 inch display board is set up. The intelligent space senses

his presence and displays the news. However, on a particular day John is late for office

and instead wants to listen to the news in this car audio system. The intelligent space is

aware that John is in his car.

In this example, John’s identity is an input to the agent that provides news; while

John’s location is the context. Both are the states of the entity John. However, the agent

providing the service will be working fine when it detects John in the car and displays

the news in the hall. The context helps it to fine-tune the output morning news into an

audio-only format when John is in his car. But it cannot change the behavior of the agent

itself by turning it into, say, a music providing agent. Thus, we need a formalism by

which we can clearly distinguish between context and input information.

c) The concept situation itself adds up to the ambiguity. According to Endsley et al.

[243] situation-awareness is defined as: “the perception of elements in the environment

within a volume of time and space, the comprehension of their meaning, and the

 283

projection of their status in the near future”1. This definition implies that: (i) situation is

a conglomeration of several entity states, (ii) the states collective has an interpretation

for one or more agents, and (iii) a situation gradient may be extrapolated for determining

future situations within the system. In other words, situation can be viewed as a logical

constitution of several contexts that has some implication for now or future. Hence, the

context definition may be considered cyclical from a conventional notion of situation in

the community

d) Although there has been a lot of attention regarding the representation of context in

pervasive system frameworks [239 - 241] context is yet to be formalized mathematically.

This is necessary because it provides a computational basis for any framework to

distinctively understand which state is a context to which agent and how that is related to

the agent’s behavior. In other words, the framework does not need explicit apriori

definition of what is context for a system. It can also utilize the resource efficiently by

not collecting garbage state information but only those that constitute the context. Lack

of formalism in existing ontological frameworks prevents new instances of context from

getting automatically classified into the framework.

e) In many works related to policy management in pervasive systems contexts

(specifically context-conditions) are used for framing policies [244]. This has several

advantages in a system where agents cannot be known apriori. If context definition

1 Endley’s definition is considered the most standard one. Other definitions can be seen as a generalized
derivation of this definition.

 284

statically depends upon agent states as well then we cannot in reality frame the policies.

Thus, context definition should be dynamic in the sense that what is context should be

determined by the framework runtime. Based on that the framework should be able to

automatically generate and/or suggest policies that are required for managing the agents.

Based on the above discussions we can see that the notability theory introduced in

chapter 6 can be integrated very easily with SMARTPACE in order to resolve some of the

problems mentioned. We can extend the notability theory to model context space as follows:

Definition 7.1: An context vector space of an event ߝ௜
௔ (denoted as ܥఌೌ) is the set X

s.t. ሺܺ ⊆ ܽ݅ߝ߮
ሬሬሬሬሬԦሻ ∧ ሺ∀ݔ ∈ ܺ, ܣ∃ ∈ ܷ௔஼;	߬௫ →ሻܣ	

⊨ 	where	߬௫ is the transition from the initial state

value to the final state value of the vector element x and UC is the set of context axioms. ■

The definition implies: (i) the context can be expressed in terms of the state of an

event, (ii) there must be an agent a that notes the event and to which the context is

meaningful, (iii) there is a set of context axioms UC that comprises of first-order axioms

written in the event-context_condition-action format, and (iv) all the vector elements

constituting the context should contribute in satisfying at least one context axiom. In the

given toy use case the context condition can be simplified as: if person.location:= car then

output.format:= audio. In this case the vector element person.location should undergo a

value transition from !car to car so as to trigger the context axiom.

As context space is expressed in terms of event states hence, we can design an

extended CAOFES semantic framework where context can be relationally connected to an

event’s state. This helps reasoning about context by understanding the state vector.

Moreover, newer states can be verified whether they are context to any agent by

 285

understanding whether the states trigger off any of the agent’s context axioms. The

separation of context axiom from role axioms is significant because that helps the reasoner

to distinguish whether a state is an input (it is so if it satisfies a role axiom) or whether the

state is the context. In the toy use case the state person.ID:= John is an input as it triggers

the role axiom: if person.ID:= John then output:= morning news.

However, context axioms are not easy to frame within an open, dynamic and

evolving system. This is especially true within an SOA based system where the type of user

events and services is very difficult to estimate. Hence, a priori definitions of crisp context

axioms are not possible. Under such circumstances we think that we need to understand the

significant (and widely ignored) difference between a context space and context itself. We

think that context should be modeled as agent intention (and a corresponding intention

utility function) rather than a pre-defined set of axioms. For a particular agent intention there

is a well-defined context space that needs to be carved out on the run by agents. The overall

objective of all cooperating agents is to maximize the intention utility function of an agent

that is served. For an example, if the agent intention is to do an indoor work then the

corresponding context space can be room temperature, light intensity, indoor noise, resource

availability, etc. In contrast if the agent intention is to do an outdoor activity then the

corresponding context space can be weather condition, resource availability, time

scheduling, etc. Based on such identification generic context axioms can be triggered and

then through techniques such as reinforcement learning we can narrow down the axioms to

more specific ones. This is done by eliminating unnecessary context space vectors and

replacing generic vectors with more specific vectors. For an example, it may be found that

 286

for a cooking activity intention noise parameter is not required while light intensity can be

more specialized to kitchen light intensity.

 7.2.3.2 Dynamic Context Learning

Context learning is a situation where the server agent has no prior knowledge of

what can be the intention of an agent that requires service. This may happen when an user

event is very new to the system. Estimating agent intention is an extremely difficult and not

so well formed problem. There are several dimensions to this problem:

 Context Analysis of Query: Sometimes the true intention can be uncovered from the

query term semantics collectively. For an example, if a compound query desire is framed

as {<rental car info, confirmation>, <flight info, confirmation>} then collectively the

two sub parts of this compound query are semantically related to travel. Now a travel

intention itself has an innate temporal implication and the corresponding utility function

cannot be optimized if the temporal order is not maintained. This understanding may

actually lead to a joint collaboration between the two UAs (and their bidder SHAs) in

ensuring that the utility function is satisfied. Thus, the flight booking UA understands

that there is no way that the utility can be satisfied if it does its job alone. However,

formalizing the utility function itself is a problem as hard as the problem of context-

learning.

 Context Analysis of Past Behavior: Lot of times it is necessary to understand the past

behavior of a service requesting agent in order to estimate its current intention. The

temporal order and the behavior semantics can actually indicate something very different

 287

in comparison to intention estimation without consideration of past history. This is

because many times intention has both a global as well as a local implication. For an

example, if an agent says "I am hot" then there can be at least two conflicting semantics

of the term hot - (i) temperature and (ii) taste. If such semantic conflicts is not resolved

then there can be two parallel event-handling process (one is drink providing and the

other is temperature lowering) in execution within the system. However, investigating

past actions might actually tell the drink providing UA that the agent has eaten

something before this request. Eating has a semantic interpretation for this UA while for

the temperature controller UA it has no interpretation at all. Thus, past behavior can

resolve such semantic ambiguities.

 Context Analysis of Current User State: The user profile cannot be assumed to be

static all the time. The user can move to some other place during the span of the event-

handling process (for an example Chris can move to his mom's city in Manhattan after

requesting car rental from Kansas City) or may change his preference (Chris does not

want an SUV any more) or his personal situation (Chris's meeting at Chicago has now

been moved to Detroit). In such a situation the UAs working for Chris need to update

themselves proactively based on an understanding of all those context space variables

that directly affect the intention utility (such as location of rental car pick-up).

Context-learning is going to be a long-term research study for the ongoing

SMARTSPACE project. It is a relatively less ventured area in all its forms when compared to

context modeling. To sum up the differences between these two problems we can say that

while context modeling is more worried about the question: "Does the current situation

 288

satisfy the context axioms for an agent?" context learning, on the other hand, meddles with

the even more difficult question: "What can be the context axioms of an agent at this

moment?".

We hope that we will get some valuable insights into these two problems and try to

understand their implication in the larger study of distributed context-aware service

composition.

 289

REFERENCES

[1] Berners-Lee, T. Weaving the Web: The Original Design and Ultimate Destiny of the

World Wide. Harper, San Francisco, 1999.

[2] Greenfield, A. Everyware: the dawning age of ubiquitous computing. New Riders,

Berkeley, 2006

[3] Microsoft Corporation. The Component Object Model Specification. October 1995,

Version 0.9.

[4] Object Management Group. The Common Object Request Broker Architecture (CORBA)

core specification. December 2002, Version 3.0.

[5] OASIS. Reference Architecture for Service Oriented Architecture Specification. April

2008, Version 1.0

[6] Nickull, D. Service Oriented Architecture. Adobe Systems Incorporated. Available from

http://www.adobe.com/jp/enterprise/pdfs/Services_Oriented_Architecture_from_Adobe.pdf

(accessed 12 April 2011). 2005

 290

[7] Papazoglou, M. and Georgakopoulos, D. Service-Oriented Computing. Communications

of the ACM, 46 (10), 2003, 25–28.

[8] Bellwood, T., et al. UDDI Spec Technical Committee Draft. 2004, Version 3.0.2.

Available from http://www.uddi.org/pubs/uddi_v3.htm.

[9] ebXML Technical Architecture Team. ebXML technical architecture specification.

February 2001, Version 1.0.4. Available from http://www.ebxml.org.

[10] Box, D., et al. Simple Object Access Protocol (SOAP). 2001, Version 1.1. Available

from http://www.w3.org/TR/SOAP/ (2001).

[11] Laliwala, Z. and Desai, A. Policy-based Services Aggregation in Grid Business

Process. Annual IEEE India Conference (INDICON), India, 2009.

[12] Levina, O. and Stantchev, V. Realizing Event-Driven SOA. 4th International

Conference on Internet and Web Applications and Services, Italy, 2009

[13] Ye, C. and Jacobsen, H-A. Event Exposure for Web Services: A Grey-box Approach to

Compose and Evolve Web Services. The Smart Internet, Springer LNCS, 6400, 2010.

 291

[14] Taylor, H., Yochem, A., Phillips, L., and Martinez, F. Event-Driven Architecture: How

SOA Enables the Real-Time Enterprise. Addition-Wesley Professional, 2009

[15] Luckham, D.C. and Frasca, B. Complex event processing in distributed systems.

Stanford University, Technical Report, 1998.

[16] Mühl, G., Fiege, L., and Pietzuch, P. Distributed Event-Based Systems. Springer, 2006.

[17] Chandy, M.K. Event-Driven Applications: Costs, Benefits and Design Approaches.

Gartner Application Integration and Web Services Summit, Orlando, USA, 2006.

[18] Chinnici, R., et al. Web Services Description Language (WSDL). 2001, Version 1.2.

Available from http://www.w3.org/TR/wsdl (2001).

[19] Andrews, T., et al. Business Process Execution Language for Web Services

(BPEL4WS), May 2003, Version 1.1. Available at http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel.

[20] Hewlett-Packard Company. E-speak Architectural Specification. Version A.0, January

2001. Available at http://www.hpl.hp.com/-personal/Alan Karp/espeak/version3.14/-

Architecture 3.14.pdf

 292

[21] Chou, D., deVadoss, J., Erl, T., Gandhi, N., Kommalapati, H., Loesgen, B., Schittko,

C., Wilhelmsen, H., and Williams, M. SOA with .NET & Windows Azure:

Realizing Service-Orientation with the Microsoft Platform. Prentice Hall, Boston, 2010.

[22] Chappel, D. Understanding BizTalk Server 2006. Microsoft White Paper, August 2005.

[23] Sun Microsystem. The Sun Open Net Environment (Sun ONE). System News, 36(1),

2001.

[24] Oracle Corporation. Oracle Dynamic Services User's and Administrator's Guide. 2000,

Version 9.0.1

[25] Budinsky, F., DeCandio, G., Earle, R., Francis, T., Jones, J., Li, J., Nally, M., Nelin, C.,

Popescu, V., Rich, S., Ryman, A., and Wilson, T. WebSphere Studio overview. IBM

Systems Journal 43 (2), 2004, 384–419.

[26] VerticalNet Solutions. OSM Platform Overview. December 2000, Version 1.0.

Available at http://adam.cheyer.com/docs/OSMOverview.pdf

[27] Shrivastava, S., Bellissard, L., Fliot, D., et al. A workflow and agent based platform for

service provisioning. Proceedings of the 4th IEEE/OMG International Enterprise

Distributed Object Computing Conference(EDOC 2000), Makuhari, Japan, 2000.

 293

[28] Casati, F., Ilnicki, S., and Jin, L. Adaptive and dynamic service composition in EFlow.

Proceedings of 12th International Conference on Advanced Information Systems

Engineering(CAiSE), Stockholm, Sweden, 2000.

[29] Turner, M., Budgen, D., and Brereton, P. Turning software into a service. IEEE

Computer, 36(10), October 2003.

[30] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic Web. Scientific American,

May 2001, 29-37.

[32] Berners-Lee, T. and Miller, E. The Semantic Web lifts off. ERCIM News, 51, 2002, 9-

10.

[33] Bray, T., Paoli, J., Sperberg-McQueen, C. M. and Maler, E. Extensible Markup

Language (XML). October 2000, Version 1.0 (second edition), W3C recommendation 6.

Availble at http://www.w3.org/TR/2000/REC-xml-20001006.

[34] Lassila, O. and Swick, R. R.. Resource Description Framework (RDF) model and

syntax specification. February 1999, Version 1.2, W3C recommendation. Available at

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

 294

[35] Brickley, D. and Guha, R. V. RDF Vocabulary Description Language 1.0: RDF

Schema. February 2004, Version 1.0. Availeble at http://www.w3.org/TR/rdf-schema/.

[36] Hendler, J. and McGuinness, D.L. The DARPA Agent Markup Language. IEEE

Intelligent Systems, 15 (6), 2000, 67-73.

[37] Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M. and Klein, M. OIL

in a nutshell. Proceedings of the European Knowledge Acquisition Conference (EKAW-

2000), 1937, LNAI, Springer-Verlag, October 2000.

[38] Horrocks, I. DAML+OIL: A Description Logic for the Semantic Web. Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, 25(1), 2002, 4-9.

[39] Baader, F., Horrocks, I., and Sattler, U. Handbook of Knowledge Representation

(Chapter 3 – Description Logics). Elsevier, 2007.

[40] Dean, M. et al. OWL Web Ontology Language 1.0 reference. July 2002, Version 1.0.

Available at http://www.w3.org/TR/owl-ref/.

[41] Horrocks, I. The FaCT system. In Automated Reasoning with Analytic Tableaux and

Related Methods: International Conference Tableaux'98, 1397, LNAI, Springer-Verlag,

1998, 307-312.

 295

[42] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y. Pellet: A Practical OWL-

DL Reasoner. Journal of Web Semantics: Science (Services and Agents on the World Wide

Web), 5(2), 2007.

[43] Racer Systems GmbH & Co. K. RacerPro Reference Manual. December 2005, Version

1.9. Available at http://www.racer-systems.com/products/racerpro/reference-manual-1-9.pdf

[44] Bechhofer, S., Horrocks, I., Goble, C., and Stevens, R. OilEd: A Reasonable ontology

editor for the semantic web. Proceedings of the 2001 Description Logic Workshop (DL

2001), CEUR, 2001, 1–9.

[45] Knublauch, H., Fergerson, R.W., Noy, N.F., and Musen, M.A. The Protégé OWL

Plugin: An Open Development Environment for Semantic Web Applications. International

Semantic Web Conference (The Semantic Web), 3298, 2004, 229-243.

[46] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., and

Domingue, J. Enabling Semantic Web Services: The Web Service Modeling Ontology.

Springer-Verlag, New York, 2006.

[47] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,

Feier, C., Bussler, C., and Fensel, D. Web service modeling ontology. Applied Ontology,

1(1), 2005, 77–106.

 296

[48] Fensel, D. and Bussler, C. The Web Service Modeling Framework WSMF. Electronic

Commerce Research and Applications, 1(2), 2002, 113–137

[49] Lausen, H., de Bruijn, J., Polleres, A., and Fensel, D. WSML - A Language Framework

for Semantic Web Services. Rule Languages for Interoperability. W3C Rules Workshop,

Washington DC, 2005.

[50] Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S, Narayanan, S.,

Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. OWL-S:

Semantic Markup for Web Services. November 2004, W3C recommendation. Available at

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

[51] Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S, Paolucci, M., Sycara, K,

Mcguinness, D.L., Sirin, E., and Srinivasan, N. Bringing Semantics to Web Services with

OWL-S. World Wide Web, 10(3), 2007, 243–277.

[52] Martin, D. et al. DAML-S (and OWL-S) 0.9 draft release. May 2003, Version 0.9.

Available at http://www.daml.org/services/daml-s/0.9/.

[53] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,

Martin, D., Mcilraith, S., Mcguinness, D.L., Su, J., and Tabet, S. Semantic Web Services

 297

Framework (SWSF) Overview. September 2005, Version 1.0, W3C member submission.

Available at http://www.w3.org/Submission/SWSF/.

[54] Gruninger, M. and Fox, M. Methodology for the design and evaluation of ontologies.

IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal, Canada,

1995.

[55] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M-T, Sheth, A, and Verma,

K. Web Service Semantics – WSDL-S. November 2005, Version 1.0, W3C member

submission. Available at http://www.w3.org/Submission/WSDL-S/

[56] Patil, A., Oundhakar, S., Sheth, A., and Verma, K. METEOR-S Web Service

Annotation Framework. Proceedings of the Thirteenth International World Wide Web

Conference (WWW2004), New York, USA, 2004.

[57] Farell, J. and Lausen, H. Semantic Annotations for WSDL and XML Schema

(SAWSDL). August 2007, Version 1.2. Available at http://www.w3.org/TR/sawsdl/.

[58] Foster, H., Uchitel, S., Magee, J., and Kramer, J. WS-Engineer: A Model-Based

Approach to Engineering Web Service Compositions and Choreography. Test and Analysis

of Web Services, Springer Berlin, Heidelberg, 2007.

 298

[59] Bultan, T., Fu, X., Hull, R., and Su, J. Conversation Specification: A New Approach to

Design and Analysis of E-Service Composition. Proceedings of the Twelfth International

World Wide Web Conference (WWW’2003), Budapest, Hungary, 2003.

[60] Yang, H., Zhao, X., Qiu, Z., Pu, G., and Wang, S. A Formal Model for Web Service

Choreography Description Language (WS-CDL). In International Conference on Web

Service (ICWS), Chicago, USA, 2006, 893–894.

[61] Boh, W. F., Soh, C., and Yeo, S. Standards development and diffusion: a case study of

RosettaNet. Communications of the ACM, 50 (12), 2007, 57–62.

[62] http://www.swift.com

[63] http://www.hl7.org/implement/standards/index.cfm?ref=nav

[64] Perttunen, M., Jurmu, M., and Riekki, J. A QoS Model for Task-Based Service

Composition. 4th International Workshop on Managing Ubiquitous Communications and

Services (MUCS 2007), Munich, Germany, 2007.

[65] Sousa, J., Poladian, V., Garlan, D., Schmerl, B., and Shaw, M. Task-based Adaptation

for Ubiquitous Computing. IEEE Transactions on Systems, Man, and Cybernetics, 36(3),

2006. 328-340.

 299

[66] Rao, J. and Su, X. A survey of automated web service composition methods.

Proceedings of the 1st International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC2004), San Diego, USA, 2004.

[67] Narayanan, S. and Mcllraith, S. A. Simulation, Verification and Automated

Composition of Web Services. Proceedings of the 11th International. WWW Conference,

Honolulu, 2002.

[68] Benatallah, B., Dumas, M., Sheng, Q., and Ngu, A. Declarative Composition and Peer-

to-Peer Provisioning of Dynamic Web Services. IEEE International. Conference on Data

Engineering, San Jose, 2002.

[69] Tosic, V., Mennie, D. and Pagurek, B. On Dynamic Service Composition and Its

Applicability to E-business Software Systems. Workshop on OO Business Solution

(ECOOP), Budapest, Hungary, 2001.

[70] Martello, S. and Toth, T. Knapsack Problems: Algorithms and Computer

Implementations. John Wiley & Sons, Inc., New York, USA, 1990.

[71] Tsesmetzis, D., Roussaki, I, and Sykas, E. QoS-aware service evaluation and selection.

European Journal of Operation Research, 191, 2008, 1101 – 1112.

 300

[72] Alrifai, M. and Risse, T. Combining Global Optimization with Local Selection for

Efficient QoS-aware Service Composition. Proceedings of the 18th International World

Wide Web Conference, Madrid, 2009.

[73] Casati, F. and M. Shan. Dynamic and Adaptive Composition of e-Services. Information

Systems, 26(3), 2001, 143 – 162

[74] Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., and ter

Hofstede, A.H.M. Formal semantics and analysis of control flow in WS-BPEL. Scientific

Computing Program, 67(2-3), 2007, 162–198.

[75] Brogi, A. and Popescu, R. Towards Semi-Automated Workflow-based Aggregation of

Web Services. Proceedings of 3rd International Conference on Service Oriented Computing

(ICSOC’05), Amsterdam, Netherlands, 2005.

[76] Tut, M. T. and Edmond, D. The Use of Patterns in Service Composition. Proceedings

of the 1st Workshop of Web Services, e-Business and the Semantic Web, Toronto, Canada,

2002.

[77] Wu, D., Parsia, B., Sirin, E., Hendler, J. and Nau, D. Automating DAML-S Web

Services Composition Using SHOP2. Proceedings of 2nd International Semantic Web

Conference (ISWC2003), Florida, USA, 2003.

 301

[78] Mcilraith, S. and Son, T. C. Adapting GOLOG for Composition of Semantic Web

Services. Proceedings of the Eighth International Conference on Knowledge Representation

and Reasoning, California, USA, 2002.

[79] Narayanan, S., and Mcilraith, S. A. Simulation, Verification and Automated

Composition of Web Services. Proceedings of the 11th international conference on World

Wide Web. New York, NY, USA, 2002.

[80] Mcdermott, D. V. Estimated-regression planning for interactions with web services.

Proceedings of the Sixth International Conference on Artificial Intelligence Planning

Systems (AIPS'02), Toulouse, France, 2002.

[81] Waldinger, R. Web Agents Cooperating Deductively. Proceedings of FAABS 2000,

Greenbelt, MD, USA, 2000.

[82] Lammermann, S. Runtime Service Composition via Logic-Based Program

Syndissertation. PhD dissertation, Department of Microelectronics and Information

Technology, Royal Institute of Technology, Sweden, June 2002.

[83] Rao, J., Kungas, P. and Matskin, M. Application of Linear Logic to Web Sservice

Composition. Proceedings of the 1st International Conference on Web Services, Las Vegas,

USA, June 2003.

 302

[84] Rao, J., Kungas, P. and Matskin. Logic-based Web services composition: from service

description to process model. Proceedings of the 2nd International Conference on Web

Services, San Diego, USA, July 2004.

[85] Medjahed, B., Bouguettaya, A., and Elmagarmid, A. K. Composing Web Services on

the Semantic Web. VLDB Journal, 12(4), 2003.

[86] Ponnekanti, S. R. and Fox, A. SWORD: A developer toolkit for Web service

composition. Proceedings of the 11th World Wide Web Conference, Honolulu, USA, 2002.

[87] Sirin, E., Hendler, J., and Parsia, B. Semi-automatic Composition of Web Services

Using Semantic Descriptions. Proceedings of Web Services: Modeling, Architecture and

Infrastructure Workshop, Angers, France, 2002.

[88] Manna, Z. and Waldinger, R. Fundamentals of deductive program syndissertation.

IEEE Transactions on Software Engineering, 18(8), 1992, 674-704.

[89] Wombacher, A., Fankhauser, P., and Neuhold, E. Transforming BPEL into Annotated

Deterministic Finite State Automata for Service Discovery. Proceedings of the IEEE

International Conference on Web Services (ICWS’04), Washington, DC, USA, 2004.

 303

[90] Kaynar, D.K., Lynch, N., Segala, R., and Vaandrager, F. The Theory of Timed I/O

Automata Syndissertation, Lectures in Computer Science. Morgan & Claypool, 2006.

[91] Beek, M.H.T., Ellis, C.A., Kleijn, J., and Rozenberg, G. Synchronizations in Team

Automata for Groupware Systems. Computer Supported Cooperative Work, 12(1), 2003,

21–69.

[92] Fu, X., Bultan, T. and Su, J. Analysis of Interacting BPEL Web Services. Proceedings

of the 13th international conference on World Wide Web, New York, USA, 2004.

[93] Holzmann, G. J. The model checker SPIN. Software Engineering, 23(5), 1997, 279–

295.

[94] Díaz, G., Pardo, J. J., Cambronero, M-E., Valero, V., and Cuartero, F. Automatic

Translation of WS-CDL Choreographies to Timed Automata. European Performance

Engineering Workshop (EPEW 2005) and International Workshop on Web Services and

Formal Methods (WS-FM 2005), Versailles, France, 2005.

[95] Larsen, K. G., Pettersson, P., and Yi, W. Uppaal: Status & Developments. Proceedings

of 9th International Conference on Computer Aided Verification, Haifa, Israel, 1997.

[96] Dumas, M. , Wang, K. W. S., and Spork, M. L.. Adapt or Perish: Algebra and Visual

 304

Notation for Service Interface Adaptation. Proceeding of the 4th International Conference

on Business Process Management (BPM’06), Vienna, Austria, Lecture Notes in Computer

Science, Springer, 4102, 2006, 65–80.

[97] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes.

Journal of Information and Computing, 100(1), 1992, 41–77, 1992.

[98] Salaün, G. Bordeaux, L., and Schaerf, M. Describing and Reasoning on Web Services

Using Process Algebra. Proceedings of IEEE International Conference of Web Services, San

Diego, USA, 2004.

[99] Milner, R. Communication and Concurrency. Prentice Hall International Series in

Computer Science. Prentice-Hall Inc., NJ, USA, 1989.

[100] Ferrara, A. Web Services: A Process Algebra Approach. Proceedings of 2nd

International Conference on Service Oriented Computing, New York, USA, 2004.

[101] Bolognesi, T. and Brinksma, E. Introduction to the ISO Specification Language

LOTOS. Computer Networks, 14, 1987, 25–59.

 305

[102] Fernandez, J-C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., and Sighireanu,

M. CADP - A Protocol Validation and Verification Toolbox. Proceedings of 8th

International Conference on Computer Aided Verification, New Brunswick, USA, 1996.

[103] Reisig, W. and Rozenberg, G. Lectures on Petri Nets I: Basic Models, Advances in

Petri Nets. Lecture Notes in Computer Science, Springer, 1491, 1998.

[104] Kiepuszewski, B., ter Hofstede, A.H.M., and van der Aalst, W.M.P. Fundamentals of

Control Flow in Workflows. Acta Informatica, 39(3), 2003, 143–209.

[105] Ouyang, Chun, Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., and ter

Hofstede, A.H.M. Formal Semantics and Analysis of Control Flow in WS-BPEL. Scientific

Computing Program, 67(2-3), 2007, 162–198.

[106] Zhang, J., Chung, J-Y., Chang, C.K., and Kim, S. WS-net: A Petri-net based

Specification Model for Web Services. Proceedings of IEEE International Conference of

Web Services, San Diego, USA, 2004.

[107] Laliwala, Z., Khosla, R., Majumdar, P., and Chaudhary, S. Semantic and Rules Based

Event-Driven Dynamic Web Services Composition for Automation of Business Processes.

IEEE Services Computing Workshops, Chicago, USA, 2006.

 306

[108] Cardoso, J. and Sheth, A. Semantic e-Workflow Composition. Journal of Intelligent

Information Systems, 21(3), 2003.

[109] Cardoso, J. Quality of Service and Semantic Composition of Workflows. Ph.D.

Dissertation. Department of Computer Science, University of Georgia, Athens, GA, 2002.

[110] Charkraborty, D., Perich, F. , Avancha, S., and Joshi, A. DReggie: A Smart Service

Discovery Technique for E-Commerce Applications. 20th Symposium on Reliable

Distributed Systems (SRDS). New Orleans, USA, 2001.

[111] Klein, M. and Bernstein, A. Searching for Services on the Semantic Web Using

Process Ontologies. International Semantic Web Working Symposium, Stanford, USA, 2001.

[112] Srivastava, B. and Koehler, J. Web Service Composition – Current Solutions and

Open Problem. ICAPS 2003 Workshop on Planning for Web Services, Trento, Italy, 2003 .

[113] Mao, Z. M., Brewer, E. R., and Katz, R. H. Fault-tolerant, Scalable, Wide-Area

Internet Service Composition. January, 2001, U.C. Berkeley Technical Report UCB//CSD-

01-1129.

[114] METEOR-S: Semantic Web Services and Processes, Available at

lsdis.cs.uga.edu/proj/meteor/SWP.htm

 307

[115] Patil, A, Oundhakar, S.A., Sheth, A., and Verma, K. METEOR-S Web Service

Annotation Framework. Proceedings of the 13th International Conference on World Wide

Web (WWW ' 04), Manhattan, USA, 2004.

[116] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S.A., and Miller, J.

METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication

and Discovery of Web Services. Journal of Information Technology and Management, 6(1),

2005.

[117] Sivashanmugam, K., Verma, K., Sheth, A., and Miller, J. Adding Semantics to Web

Services Standards, Proceedings of the International Conference on Web Services (ICWS '

2003), Las Vegas, USA, 2003.

[118] Dietz, P. and Sleator, D. Two algorithms for maintaining order in a list. In

Proceedings of the 19th annual ACM Symposium on Theory of Computing (STOC), New

York, USA, 1987.

[119] Schenkel, R., Theobald, A., and Weikum, G. Efficient Creation and Incremental

Maintenance of the HOPI Index for Complex XML Document Collections. Proceedings of

the 21st International Conference on Data Engineering (ICDE), Washington DC, USA,

2005.

 308

[120] Wang, H., He, H., Yang, J., Yu, P.S., and Yu, J.X. Dual labeling: Answering Graph

Reachability Queries in Constant Time. Proceedings of the 22nd International Conference

on Data Engineering, Atlanta, USA, 2006.

[121] Roditty, L. and Zwick, U. A Fully Dynamic Reachability Algorithm for Directed

Graphs With An Almost Linear Update Time. Proceedings of the Thirty-sixth Annual ACM

Symposium on Theory of Computing (STOC ' 2004), New York, USA, 2004.

[122] Trißl, S. and Leser, U. Fast and practical indexing and querying of very large graphs.

Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,

Beijing, China, 2007.

[123] Booth, D., et al. W3C Web Service Architecture Working Group. Available at

http://www.w3.org/

[124] FIPA Agent Management Specification. Available at

http://www.fipa.org/specs/fipa00023.

[125] Bellifemine, F., Caire, G., Greenwood, D. Developing Multi-agent Systems with

JADE. John Wiley & Sons, West Sussex, England, 2004.

 309

[126] Lange, D. B. and Chang, D. T. IBM Aglets Workbench - Programming Mobile Agents

in Java. August 1996, White Paper, IBM Corporation, Japan.

[127] Searle, J. R. A Taxonomy of Illocutionary Acts. Language, Mind, and Knowledge, 7,

1975.

[128] Morelli, R. A., Goethe, J. W., and Bronzino, J. D.. A Language/Action Model of

Human-Computer Communication in a Psychiatric Hospital. Proceedings of the Annual

Symposium on Computer Application in Medical Care, Washington DC, USA, 1990.

[129] Greenwood, D. and Monique, C. Engineering Web Service-Agent Integration. IEEE

International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, 2004.

[130] Shafiq, M., Ding, Y., and Fensel, D. Bridging multi agent systems and web services:

Towards interoperability between Software Agents and Semantic Web Services.

Proceedings of the 10th IEEE International Conference on Enterprise Distributed Object

Computing (EDOC’06), Hong Kong, China, 2006.

[131] Greenwood, D., Lyell, M., Mallya, A., and Suguri, H. The IEEE FIPA Approach to

Integrating Software Agents and Web Services. Proceedings of the International Conference

on Autonomous Agents and Multiagent Systems (AAMAS’07), Honolulu, USA, 2007.

 310

[132] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. Semantic Matching of Web

Services Capabilities. Proceedings of the First International Semantic Web Conference on

the Semantic Web. Sardinia, Italy, 2002.

[133] Sycara, K., Widoff, S., Klusch, M., and Lu, J. LARKS: Dynamic Matchmaking

Among Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-

Agent Systems, 5(2), 2002, 173–203.

[134] Klusch, M. Fries, B. and Sycara, K. OWL-S-MX: A hybrid Semantic Web Service

matchmaker for OWL-S services. Web Semantics: Science, Services and Agents on the

World Wide Web, 7(2), 2009, 121-133.

[135] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., and Dean, M.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML May 2004, Version

1.0, W3C member submission. Available at http://www.w3.org/Submission/SWRL/.

[136] Ait-Kaci, H., Boyer, R., Lincoln, P. and Nasr, R. Efficient implementation of lattice

operations. Programming Languages and Systems, 11(1), 1989, 115–146.

[137] Caseau, Y. Efficient handling of multiple inheritance hierarchies. Proceedings of the

Eighth Annual Conference on Object-Oriented Programming Systems, Languages, and

Applications, New York, USA, 1993.

 311

[138] Krall, A., Vitek, J. and Horspool, N. Near Optimal Hierarchical Encoding of Types. In

11th European Conference on Object Oriented Programming (ECOOP’97), Jyväskylä,

Finland, 1997.

[139] Caseau, Y., Habib, M., Nourine, L. and Raynaud, O. Encoding of Multiple Inheritance

Hierarchies and Partial Orders. Computational Intelligence, 15, 1999, 50–62.

[140] Bommel. M. and Beck, T. Incremental Encoding of Multiple Inheritance Hierarchies.

Proceedings of the Eighth International Conference on Information and Knowledge

Management, New York, USA, 1999.

[141] Agrawal, R., Borgida, A., and Jagadish, H. Efficient Management of Transitive

Relationships in Large Data and Knowledge bases. Proceedings of the ACM SIGMOD

International Conference on Management of Data, New York, USA, 1989.

[142] Constantinescu, I. and Faltings, B. Efficient Matchmaking and Directory Services.

Proceedings of the IEEE/WIC International Conference on Web Intelligence, Beijing,

China, 2003.

[143] Preuveneers, D. and Berbers, Y. Prime Numbers Considered Useful: Ontology

Encoding for Efficient Subsumption Testing. 2006, Technical Report CW464, Katholieke

Universiteit, Germany.

 312

[144] Levesque, H. and Brachman, R. Expressiveness and Tractability in Knowledge

Representation and Reasoning. Computational Intelligence, 3, 1987, 78-93.

[145] Mokhtar, S.B., Giorgantas, N., Issarny, V. COCOA : Conversation Based Service

Composition for Pervasive Computing Environments. Journal of Systems and Software, 80

(12), 2007, 1941-1955.

[146] Bellur, U. and Kulkarni, R. Improved Matchmaking Algorithm for Semantic Web

Services Based on Bipartite Graph Matching. IEEE International Conference on Web

Services (ICWS 2007), Salt Lake City, USA, 2007.

[147] Klusch, M. Fries, B. and Sycara, K. Automated Semantic Web Service Discovery with

OWLS-MX. Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2006).

[148] Lara, R., Corella, M. A., and Castells, P. A Flexible Model for Web Service

Discovery. Proceedings of the 1st International Workshop on Semantic Matchmaking and

Resource Retrieval (SMR 2006), Seoul, Korea, 2006.

[149] Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., and Berbers, Y. EASY:

Efficient semAntic Service discoverY in pervasive computing environments with QoS and

context support. Journal of Systems and Software, 81(5), 2008, 785 – 808.

 313

[150] Qiu, T., Li, L., and Lin, P. Web Service Discovery with UDDI Based on Semantic

Similarity of Service Properties. Proceedings of the 3rd International Conference on

Semantics, Knowledge and Grid, Xi’an, China, 2007.

[151] Lu, L.M., Chen, J.X., Zhu, G.J. Discovering Web Services Based on Semantic Web

Technology. International Conference on Next Generation Web Services Practices

(NWeSP’05), Seoul, Korea, 2005.

[152] Zhang, P. The Research and Implementation of Semantic Based Web Services

Discovery. Dissertation of Master, Tsinghua University, China, 2005.

[153] Wang, G., Xu, D., Qi, Y., and Hou, D. A Semantic Match Algorithm for Web Services

Based on Improved Semantic Distance, 4th International Conference on Next Generation

Web Services Practices, Seoul, S. Korea, 2008.

[154] Yang, H., Liu, S., Fu, P., Qin, H., and Gu, L. A Semantic Distance Measure for

Matching Web Services. Proceedings of the International Conference on Computational

Intelligence and Software Engineering, (CiSE 2009), Wuhan, China, 2009.

[155] Stoicay, I., Morrisz, R., Liben-Nowellz, D., Kargerz, D.R., Kaashoekz, M. F. et al.

Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM

Transactions on Networking, 11(1), 2003, 17-32.

 314

[156] Crasso, M., Zunino, A., and Campo, M. AWSC: An Approach to Web Service

Classification based on Machine Learning Techniques. Inteligencia Aritificial, 37, 2008, 25-

36.

[157] Oldham, N., Thomas, C., Sheth, A., and Verma, K. METEOR-S Web Service

Annotation Framework with Machine Learning Classification. International Conference on

Semantic Web Services and Web Process Composition, San Diego, USA, 2004.

[158] Corella, M.A. and Castells, P. Taxonomy-Based Web service Categorization using

Conceptual Parameter Descriptions. Proceedings of the 1st Int’l Workshop on Semantic

Matchmaking and Resource Retrieval: Issues and Perspectives (SMR 2006). Seoul, Korea,

2006.

[159] Corella, M.A. and Castells, P. Semi-Automatic Semantic based Web Service

Classification. Business Process Management Workshops, Vienna, Austria, 2006.

[160] Duo, Z., Juan-Zi, L., and Bin, X. Web Service Annotation using Ontology Mapping.

IEEE International Workshop on Service-Oriented System Engineering, (SOSE 2005),

Beijing, China, 2005.

 315

[161] Heß, A., Johnston, E., and Kushmerick, N. ASSAM: A Tool for Semi-Automatically

Annotating Semantic Web Services. Proceedings of the 3rd International Semantic Web

Conference (ISWC 2004), Hiroshima, Japan, 2004.

[162] Lerman, K., Plangrasopchok, A., Knoblock, C.A. Automatically Labeling the Inputs

and Outputs of Web Services. Proceedings of 21st National Conference on Artificial

Intelligence (AAAI-06), Boston, USA, 2006.

[163] Heß, A. and Kushmerick, N. Learning to Attach Semantic Metadata to Web Services.

Proceedings of the 2nd International Semantic Web Conference (ISWC 2003), Sanibel Island,

USA, 2003.

[164] Sajjanhar, A., Jingyu Hou, J., and Zhang, Y. Algorithm for Web Services Matching.

Proceedings of the 6th Asia-Pacific Web Conference (APWeb ‘04), Hangzhou, China, 2004.

[165] Wang, H., Shi, Y., Zhou, X., Zhou, Q., Shao, S., Bouguettaya, A. Web Service

Classification using Support Vector Machine. 22nd IEEE International Conference on Tools

with Artificial Intelligence (ICTAI), Arras, France, 2010.

[166] Bruno, M., Canfora, G., Penta, M.D., and Scognamiglio, R. An Approach to Support

Web Service Classification and Annotation. Proceedings of the IEEE International

 316

Conference on e-Technology, e-Commerce and e-Service (EEE’05), Washington DC, USA,

2005.

[167] Saha, S., Murthy, C.A., Pal, S. K. Classification of Web Services Using Tensor Space

Model and Rough Ensemble Classifier. Proceedings of the 17th International Symposium on

Methodologies for Intelligent Systems (ISMIS'08), Toronto, Canada, 2008.

[168] Liang., Q., Li, P., Hung, P.C.K., and Wu, X. Clustering Web Services for Automatic

Categorization. Proceedings of the 2009 IEEE International Conference on Services

Computing (SCC ‘09), Bangalore, India, 2009.

[169] Shou, D. and Chi, C. Effective Web Service Retrieval Based on Clustering, 4th IEEE

International Conference on Semantics, Knowledge and Grid, Beijing, China, 2008.

[170] Corella, M. A. and Castells, P. A Heuristic Approach to Semantic Web Services

Classification. 10th International Conference on Knowledge-Based & Intelligent Information

& Engineering Systems (KES). Universities of Brighton and Bournemouth, UK, 2006.

[171] Dong, X., Halevy, A., Madhavan, J., Nemes, E., and Zhang, J. Similarity Search for

Web Services. Proceedings of the 13th International Conference on Very Large Data Bases.

Toronto, Canada, 2004.

 317

[172] Ma, J., Cao, J., Zhang, Y. A Probabilistic Semantic Approach for Discovering Web

Services”, Proceedings of the 2007 IEEE World Wide Web Conference, Banff, Canada,

2007.

[173] Ma, J., Cao, J., Zhang, Y. Efficiently Finding Web Services Using a Clustering

Semantic Approach”, Proceedings of the 2008 International Workshop on Context Enabled

Source and Service Selection, Integration and Adaptation (CESSS ‘08), Beijing, China,

2008.

[174] Gaber, J. and Bakhouya, M. An Affinity-driven Clustering Approach for Service

Discovery and Composition for Pervasive Computing. ACS/IEEE International Conference

on Pervasive Services, Lyon, France, 2006.

[175] Yuan-sheng, L., Yong, Q., Di, H., Ying, C., and Lin-feng, S. A Clustering and

Selection Model for Service Composition using Granular Computing. Proceedings of 4th

IEEE Conference on Industrial Electronics and Applications (ICIEA 2009), Xian, China,

2009.

[176] Zhanga, L-J., Chengb, S., Cheea, Y-M, Allamc, A., Zhoua, Q. Pattern Recognition

based Adaptive Categorization Technique and Solution for Services Selection. Proceedings

 318

of the IEEE Asia-Pacific Services Computing Conference (APSCC ‘07), Tsukuba, Japan,

2007.

[177] Zamir, O., Etzioni, O., Madani, O., and Karp, R.M. Fast and Intuitive Clustering of

Web Documents. Proceedings of the 3rd International Conference on Knowledge

Discovery and Data Mining, New Port Beach, USA, 1997.

[178] United Nations Standard Products and Service Code. Available at

http://www.unspsc.org.

[179] The North American Industry Classification System. Available at

http://www.census.gov/eos/www/naics/

[180] Bianchini, D., Antonellis, V., Pernici, B., and Plebani, P. Ontology-based

Methodology for e-Service Discovery. ACM Journal of Information Systems, 31(4), 2006,

361 – 380.

[181] Platzer, C., Rosenberg, F., and Dustdar, S. Web Service Clustering using

Multidimensional Angles as Proximity Measures. ACM Transaction on Internet Technology,

9(3), 2009, 54-79.

 319

[182] Hau, J., Lee, W., and Darlington, J. A semantic similarity measure for semantic Web

Services. Proceedings of 2005 Web Service Semantics Workshop. Chiba, Japan, 2005.

[183] Rada, R., Mili, H., Bicknell, E., and Blettner, M. Development and Application of a

Metric on Semantic Nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1),

1989, 17–30.

[184] Hirst, G., and St-Onge, D. Lexical chains as representations of context for the

detection. WordNet: An Electronic Lexical Database (Language, Speech, and

Communication), The MIT Press, Cambridge, MA, 1995, 305–332.

[185] Resnik, P. Using information content to evaluate semantic similarity. Proceedings of

the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

[186] Lin, D. An information-theoretic definition of similarity. Proceedings of the 15th

International Conference on Machine Learning, Madison, USA, 1998.

[187] Keßler, C., Raubal, M., and Janowicz, K. The Effect of Context on Semantic

Similarity Measurement. On the Move to Meaningful Internet Systems: OTM 2007

Workshops, Vilamoura, Portugal, 2007

 320

[188] Borgida, A., Walsh, T., and Hirsh, H. Towards measuring similarity in description

logics. Proceedings of the 2005 International Workshop on Description Logics (DL2005),

Edinburgh, Scotland, 2005.

[189] Dasgupta, S., Bhat, S., and Lee, Y. SGPS: a semantic scheme for web service

similarity. Proceedings of IEEE World Wide Web Conference, Madrid, Spain, 2009.

[190] Godfrey, C., Siddons, A.W. Modern Geometry (page 20). Cambridge University

Press, London, UK, 1908.

[191] Sun Microsystems. Jini Technology Core Platform Specification. October 2000,

Version 1.1. Available at http://www.sun.com/jini/specs.

[192] Perkins, C. Serice Location Protocol. ACTS Mobile Networking Summit/MMITS

Software Radio Workshop, Rhodes, Greece, 1998.

[193] Zhao, W., Schulzrinne, H., Guttman, E. mSLP-Mesh-enhances Service Location

Protocol. Proceedings of the 9th International Conference on Computer Communications

and Networks (ICCCN 2000), Las Vegas, USA, 2000.

 321

[194] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.

Composite Capability/Preference Profiles (CC/PP). January 2004, Version 1.0, W3C

recommendation. Available at http://www.w3.org/TR/CCPP-struct-vocab/.

[195] Gioldasis N. and Christodoulakis S. Ubiquitous Web Applications. Proceedings of E-

business and e-work, Prague, Czech Rupublic. 2002.

[196] Keller, A. and Ludwig, H. The WSLA Framework: Specifying and Monitoring Service

Level Agreements for Web Service. May 2002, Technical Report RC22456(W0205-171),

IBM Research Division, T.J. Watson Research Center.

[197] Tosic, V., Patel, K., and Pagurek, B. WSOL - Web Service Offerings Language.

International Workshop on Web Services, E-Business and the Semantic Web (WES 2002),

Toronto, Canada, 2002.

[198] Lang, Q. and Su, S. AND/OR Graph and Search Algorithm for Discovering

Composite Services. International Journal of Web Services Research, 2(4), 2005, 46-64.

[199] Nilsson, N. Problem Solving Methods in Artificial Intelligence. McGraw Hill, New

York, 1971.

 322

[200] Gu, Z., Xu, B., and Li, J. Service Data Correlation Modeling and Its Application in

Data-Driven Service Composition. IEEE Transactions On Services Computing, 3(4), 2010.

[201] The Cyc Foundation. OpenCyc Documentation. Available at

http://www.opencyc.org/doc.

[202] van der Aalst, W. M. P. and ter Hofstede, A. H. M. Yawl: Yet Another Workflow

Language. Elsevier Information Systems, 30(4), 2005, 245–275.

[203] Strehl, A. and Ghosh, J. Value-based Customer Grouping from Large Retail Data-sets.

Proceedings of SPIE Conference on Data Mining and Knowledge Discovery, Orlando, USA,

2000.

[204] Manning, C.D., Raghavan, P., and Schutze, H. Introduction to Information Retrieval.

Cambridge University Press, USA, 2008.

[205] Lin, J. Divergence Measures based on the Shannon Entropy. IEEE Transactions on

Information Theory, 37 (1), 1991, 145–151.

 323

[206] Czerwinski, S.E., Zhao, B.Y., Hodes, T., Joseph, A.D., and Katz, R.H. An

Architecture for a Secure Service Discovery Service. Proceedings of the Fifth International

Conference on Mobile Computing and Networks, Seattle, USA, 1999.

[207] John, R. UPnP, Jini and Salutaion—A Look at Some Popular Coordination

Frameworks for Future Network Devices. 1999, Technical Report, California Software

Labs. http://www.cswl.com/whiteppr/tech/upnp.html.

[208] Mennie, D. and Pagurek, B. An Architecture to Support Dynamic Composition of

Service Components. Proceedings of the Fifth International Workshop on Component-

Oriented Programming (WCOP), Sophia Antipolis, France, 2000.

[209] Chen, H., Joshi, A., and Finin, T. Dynamic Service Discovery for Mobile Computing:

Intelligent Agents Meet Jini in the Aether. Baltzer Science Journal on Cluster Computing

(Special Issue on Advances in Distributed and Mobile Systems and Communication), 2001,

343-354.

[210] Changyou, Z., Dongfeng, Z., Yu, Z., and Minghua. Y. A Web Service Discovery

Mechanism Based on Immune Communication. Proceedings of the International

Conference on Convergence Information Technology (ICCIT '07), Gyeongju, Korea, 2007.

 324

[211] Chakraborty, D., Joshi, A., Yesha, Y. Toward Distributed Service Discovery in

Pervasive Computing Environments. IEEE Transactions on Mobile Computing, 5(2), 2006.

[212] Helal, S., Desai, N., and Lee, C. Konark-A Service Discovery and Delivery Protocol

for Ad-Hoc Networks. Proceedings of the Third IEEE Conference on Wireless

Communication Networks (WCNC), Mar. 2003.

[213] Undercoffer, J., Perich, F., Cedilnik, A., Kagal, L., Joshi, A., and Finin, T. A Secure

Infrastructure for Service Discovery and Management in Pervasive Computing. ACM

MONET Journal (Special Issue on Mobility of Systems, Users, Data, and Computing), 2002.

[214] Guttman, E., Perkins, C., and Veizades, J. RFC 2165: Service Location Protocol, June

1997.

[215] Ardissono, L., Goy, A., and Petrone, G. Enabling Conversations with Web Services.

Proceedings of the Second International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS ’03), Melbourne, Australia, 2003.

[216] Benatallah, B., Casati, F., and Toumani, F. Web Service Conversation Modeling, A

Cornerstone for E-Business Automation. IEEE Internet Computing, 8(1), 2004.

 325

[217] Beringer, D., Kuno, H., and Lemon, M. Using WSCL in a UDDI Registry 1.02. 2001.

Available at http://www.uddi.org/pubs/wsclBPforUDDI_5_16_011.doc.

[218] Willmott, S. and Dale, J. Agentcities: A Worldwide Open Agent Network. Agentlink

News, 8, 2001, 13-15.

[219] Willmott, S., Dale, J , and Picault, J. The Agentcities Network Architecture.

Proceedings of the first International Workshop on Challenges in Open Agent Systems,

Bologna, Italy, 2002.

[220] Poggi, A., Tomaiuolo, M., and Turci, P. Service Composition in Open Agent

Societies. Workshop of Dagli Oggetti Agli Agenti (WOA), Villasimius, Italy, 2003.

[221] Poggi, A., Tomaiuolo, M., and Turci, P. An Agent-Based Service Oriented

Architecture. Workshop of Dagli Oggetti Agli Agenti (WOA), Genova, Italy, 2007.

[222] Poggi, A., Tomaiuolo, M., and Turci, P. Using Agent Platforms for Service

Composition. Proceedings of the 6th International Conference on

Enterprise Information Systems (ICEIS), Porto, Portugal, 2004.

 326

[223] Toni, F. Argumentative KGP Agents for Service Composition. AAAI Spring

Symposium, Stanford, USA, 2008.

[224] Toni, F. Assumption-based Argumentation for Selection and Composition of Services.

Proceedings of Computational Logic in Multi-Agent Systems (CLIMA-VIII). Porto, Portugal,

2007.

[225] CORDIS 6th Programme Framework. ARGUGRID; Project Fact Sheet. June 2002.

Available at http://cordis.europa.eu/.

[226] Maamar, Z., Mostefaoui, S.K., and Yahyaoui, H. Toward an Agent-based and

Context-oriented Approach for Web Services Composition. IEEE Transactions on

Knowledge and Data Engineering, 17(5), 2005, 686 – 697.

[227] Buhler, P. and Vidal, J.M. Towards Adaptive Workflow Enactment Using Multiagent

Systems. Information Technology and Management Journal (Special Issue on Universal

Enterprise Integration), 6, 2005, 61-87.

[228] Gelertner, D. and Carriero, N. Coordination Languages and their Significance.

Communications of the ACM, 35(2), 1992, 97–107.

 327

[229] McIlraith, S. A., Son, T. C. and Zeng, H. Semantic Web Services. IEEE Intelligent

Systems (Sp. Issue on The Semantic Web), 16, 2002, 46–53.

[230] Sycara, K. P., Klusch, M., Widoff, S., and Lu, J. Dynamic Service Matchmaking

Among Agents in Open Information Environments. SIGMOD Record, 28(1), 1999, 47-53.

[231] Papadopoulos, G. A. Models and Technologies for the Coordination of Internet

Agents: A Survey. Coordination for Internet Agents - Models, Technologies, and

Applications, Springer-Verlag, 2001.

[232] Buhler, P. and Vidal, J.M. Semantic Web services as Agent Behaviors. Agentcities:

Challenges in Open Agent Environments, Springer, Berlin, 2003, 25–31.

[233] Wooldridge, M.J. Reasoning About Rational Agents. MIT Press, Cambridge,

Massachusetts , USA, 2000.

[234] Bergenti, F. and Poggi, A. LEAP: A FIPA Platform for Handheld and Mobile Devices.

Workshop on Agent Theories, Architectures, and Languages (ATAL-2001), Seattle, USA,

2001.

 328

[235] Achermann, F., Lumpe, M., Schneider, J-G. and Nierstrasz, O. Piccola - A Small

Composition Language. Formal Methods for Distributed Processing: A Survey of Object-

Oriented Approaches, Cambridge University Press, New York, USA, 2001, 403-426.

[236] Ketel, M. A Mobile Agent based Framework for Web Services. Proceedings of the

47th Annual Southeast Regional Conference. Clemson, USA, 2009.

[237] Ermolayev, V., Keberle, N., Plaksin, S., and Kononenko, O. Towards a framework for

Agent-Enabled Semantic Web Service Composition. International Journal of Web Services

Research, 1(3), 2004, 63-87.

[238] Salber, D., Dey, A.K., and Abowd, G.D. The Context Toolkit: Aiding the

Development of Context-Enabled Applications", Proceeding of the Conference on Human

Factors in Computing Systems (CHI), Pittsburgh, USA, 1999.

[239] Chen, H., Finin, T., and Joshi, A. An Ontology for Context-aware Pervasive

Computing Environments. The Knowledge Engineering Review. 18(3), 2003, 197-207.

 329

[240] Chen, H., Finin, T., and Joshi, A. A Context Broker for Building Smart Meeting

Rooms. Proceedings of the Knowledge Representation and Ontology for Autonomous

Systems Symposium (AAAI Spring Symposium). Stanford, USA, 2004.

[241] Chen, H., Finin, T., and Joshi, A. The SOUPA Ontology for Pervasive Computing.

Ontologies for Agents: Theory and Experiences, Birkhäuser, 2005, pp. 233-258.

[242] Dey, A. Understanding and Using Context. Personal and Ubiquitous Computing

Journal, 5(1), 2001, 4-7.

[243] Endsley, M. R. Toward a Theory of Situation Awareness in Dynamic Systems. Human

Factors, 37(1), 1995, 32-64.

[244] Toninelli, R., Bradshaw, J.M., Kagal, L., and Montanari, R. Rule-based and Ontology

based Policies: Toward A Hybrid Approach to Control Agents in Pervasive Systems.

Proceedings of the Semantic Web and Policy Workshop, Galway, Ireland, 2005.

 330

VITA

Sourish Dasgupta was born on December 12th, 1980 in the city of Kolkata (formerly

Calcutta) in India. He spent most of his childhood and schooling years in Durgapur – a small

industrial city located near Kolkata. After coming out of high school he completed his

Bachelors in Information Technology (BIT) from Manipal University, Karnataka, India in

June 2003. He then continued to do his Masters in Computer Applications (MCA) from

West Bengal University of Technology, West Bengal, India and graduated in June 2006.

During his master's program Sourish developed a strong thirst for scientific research and

therefore decided to come over to the United States of America for a PhD degree. He joined

the I-PhD program at the Department of Computer Science Electrical Engineering in the

University of Missouri – Kansas City, MO in fall 2006. His coordinating-discipline was

Computer Science while his co-discipline was Telecommunication & Networking.

While pursuing his PhD Sourish started working under the supervision of Dr.

Yugyung Lee (Associate Professor, Department of Computer Science Electrical

Engineering). Sourish was initiated to some very interesting and challenging problems in the

field of Service Oriented Architecture based intelligent distributed systems. Later on he got

the opportunity to work on a National Science Foundation (NSF, USA) funded research

project called ARTISAN (Art Inspired Service Oriented Architecture Design) under Dr.

Yugyung Lee and Dr. Deendayal Dinakarpandian (Associate Professor, Department of

Computer Science Electrical Engineering). In the course of his research Sourish has

authored 9 peer-reviewed conference papers and two of his journal papers are under review.

Sourish currently holds an assistant professor position at Dhirubhai Ambani Institute of

 331

Information & Communication Technology (DA-IICT), Gandhinagar, India. His primary

areas of research are theoretical and applied aspects of distributed multi-agent based

intelligent cooperative models, service-oriented architecture based systems and semantic

web modeling and mining. He is also highly interested in the field of computational

cognition and information retrieval.

Publications

1. Sourish Dasgupta, Teja Swaroop Mylavarapu, Saurav Jana, Sudeep Maity, Yugyung

Lee. “SMARTSPACE: A Context-Aware Multi-Agent Platform for Distributed Service

Discovery & Composition”. Technical Report L527FH_sd01V1.1, University of

Missouri – Kansas City, April 2011.

2. Sourish Dasgupta, Yugyung Lee. “Bit Encoding based Dynamic Polynomial

Subsumption Testing of Description Logic Definitions”, Technical Report

L527FH_sd02V1.1, University of Missouri – Kansas City, March 2011.

3. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “Event-driven Activity Logic Network for

Service Oriented Systems”, IEEE Transactions on Services Computing, 2010 [under

review]

4. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “Semantic Clustering for Web Service

Discovery and Composition”, IEEE Transactions on Knowledge & Data Engineering.

2010 [under review]

5. Sourish Dasgupta, Satish Bhat, Yugyung Lee, “Taxonomic Clustering and Query

Matching for Efficient Service Discovery”, IEEE 9th International Conference on Web

Services, Washington DC, USA, 2011

 332

6. Sourish Dasgupta, Satish Bhat, Yugyung Lee, “Taxonomic Clustering of Web Services

for Efficient Discovery”, Proceedings of 19th ACM Conference on Information and

Knowledge Management (CIKM), October 25 – 30, 2010

7. Sourish Dasgupta, Satish Bhat, Yugyung Lee, CAOFES: An Ontological Framework

for Web Service Retrieval, Proceedings of 18th ACM Conference on Information and

Knowledge Management (CIKM), November 2 – 6, 2009

8. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “An Abstraction Framework for Service

Composition in Event-driven SOA systems”, IEEE 7th International Conference on Web

Services, Los Angeles, CA, USA, 2009

9. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “Event Driven Service Composition for

Pervasive Computing”, IEEE International Conference on Pervasive Computing,

Galveston, TX, USA, 2009

10. Sourish Dasgupta. “A Logic-based Formalism for Pervasive Workflow”, IEEE

International Conference on Pervasive Computing – PhD Forum, Galveston, TX, USA,

2009

11. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “Event Semantics for Service

Composition in Pervasive Computing”, AAAI Spring Symposium, Stanford, CA, USA,

2009

12. Sourish Dasgupta, Satish Bhat, Yugyung Lee. “SGPS: A Semantic Scheme for Context-

Aware Event-driven Web Service Similarity”, 18th International World Wide Web

Conference, Madrid, Spain, 2009

 333

13. Sourish Dasgupta, Deendayal Dinakarpandian, Yugyung Lee. “A Panoramic Approach

to Integrated Evaluation of Ontologies in the Semantic Web”, 5th International EON

Workshop, ISWC, Busan, S. Korea, 2007

