UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION

Research Bulletin 220

GROWTH AND DEVELOPMENT

With Special Reference to Domestic Animals

XXXIV. Basal Metabolism, Endogenous Nitrogen, Creatinine and Neutral Sulphur Excretions as Functions of Body Weight

SAMUEL BRODY, ROBERT C. PROCTER AND URAL S. ASHWORTH

(Publication Authorized September 18, 1934)

COLUMBIA, MISSOURI OCTOBER, 1934

FOREWORD

The special investigation on growth and development is a cooperative enterprise in which the departments of Animal Husbandry, Dairy Husbandry, Agricultural Chemistry, and Poultry Husbandry have each contributed a substantial part. The plans for the investigation in the beginning were inaugurated by a committee including A. C. Ragsdale, E. A. Trowbridge, H. L. Kempster, A. G. Hogan, F. B. Mumford. Samuel Brody served as Chairman of this committee and has been chiefly responsible for the execution of the plans, interpretation of results and the preparation of the publications resulting from this enterprise.

The investigation has been made possible through a grant by the Herman Frasch Foundation, now represented by Dr. F. J. Seviers.

> F. B. MUMFORD, Director Agricultural Experiment Station

TABLE OF CONTENTS

	1	page
	ABSTRACT	4
I.	INTRODUCTION	5
	1. Definitions	5
	2. Plan; data	5
	3. Practical applications	5
	4. Theoretical implications	6
	5. Literature	7
II.	RESULTS	11
	1. Basal metabolism as function of body weight	11
	2. Endogenous urinary nitrogen as function of body weight .	13
	3. Creatinine nitrogen excretion as function of body weight .	17
	4. Neutral sulphur excretion as function of body weight	18
III.	PREDICTION TABLES; Suggested feeding standards	
	based on these prediction tables	20
IV.	SUMMARY AND CONCLUSIONS	26
v.	APPENDIX	28
	1. The probable errors of the exponents of the equations	
	in this bulletin	28
	2. Notes on fecal nitrogen	28
	3. Numerical data on which the figures in the text are based.	32
	a. Basal metabolism	32
	b. Endogenous nitrogen excretion	34
	c. Creatinine nitrogen excretion	37
	d. Neutral sulphur excretion	40

ABSTRACT

1. An analysis of a very large body of basal (energy) metabolism data of mature animals of different species ranging in weight from 0.02 to 4000 kg (mice to elephants) shows that basal metabolism tends to vary with the 0.73 power of body weight. The general equation is $Q=70.5 \text{ M}^{0.734}$ in which Q is heat production (basal metabolism in kilo-calories per day) for body weight, M, in kilo-grams.

2. An analysis of a smaller, but respectable, body of data on minimum (endogenous) urinary nitrogen excretion by mature animals ranging in weight from 0.02 to 500 kilograms (mice to cattle) shows that the endogenous urinary nitrogen excretion tends to vary with the 0.72 power of body weight. The general equation is $N=146 \ M^{0.72}$ in which N is mgs per day of endogenous urinary nitrogen excretion for body weight, M, in kilograms.

3. An analysis of a relatively small body of data on neutral sulphur excretion by mature animals ranging in weight from 0.1 to 800 kg. shows that the neutral sulphur excretion tends to vary with the 0.74 power of body weight. The general equation is $NS=6.85 \ M^{0.74}$ in which NS is mg per day of neutral sulphur for body weight, M, in kilograms.

4. It appears that the differences in the numerical values of the exponents between equations 1, 2 and 3 above are within the limits of experimental errors; that, therefore, with the limits of experimental errors, basal metabolism, endogenous nitrogen and neutral sulphur excretion all increase, or at least tend to increase, in the same proportion with increasing body weight of mature animals

of different species; that, therefore, the ratios of <u>endogenous nitrogen</u>, and Basal metabolism

neutral sulphur, basal metabolism tend to remain constant.

5. The creatinine excretion for animals of the same species tends to vary directly (linearly) with body weight; but in the case of mature animals of different species this excretion tends to vary with the 0.90 power of weight (Cr.N=12.7 M^{0.896}). It follows, in the latter case, that the creatinine coefficient tends to decrease with increasing body weight; that in either case the ratio of creatinine excretion to basal metabolism increases with increasing live weight; that, in either case, the percentage ratio $\frac{\text{Creatinine N}}{\text{Endogenous Urinary N}}$ increases with increasing body weight. Creatinine nitrogen is therefore not a directly proportional index of either endogenous nitrogen or of basal metabolism. These conclusions refer to mature animals only. Corresponding data for growing animals are not sufficient for drawing conclusions at this time.

6. Prediction tables are presented for: basal metabolism, endogenous urinary nitrogen, creatinine nitrogen, neutral sulphur, protein equivalents of the endogenous nitrogen, calories in the form of protein of endogenous nitrogen, the ratios between these variables. Feeding standards for maintenance are suggested on the basis of the equation of $Y=AM^{0.73}$ in which Y is digestible feed requirement for maintaining body weight M.

GROWTH AND DEVELOPMENT

With Special Reference to Domestic Animals

XXXIV. Basal Metabolism, Endogenous Nitrogen, Creatinine and Neutral Sulphur Excretions as Functions of Body Weight.

SAMUEL BRODY, ROBERT C. PROCTER AND URAL S. ASHWORTH

I. INTRODUCTION

Definitions.—Basal metabolism and endogenous nitrogen represent respectively the minima of energy and of nitrogen expenses for maintenance. Creatinine and neutral sulphur excretions are thought to be comparable to basal metabolism and endogenous nitrogen in their constancy, and so the excretions of these substances are likewise considered to represent roughly irreducible expenses of the life process. This common characteristic of irreducible minimum for these four kinds of metabolism makes it desirable to consider them together. The object of this bulletin is to present the results of a study of the quantitative relations of each of these four classes of metabolism with increasing body weight, and incidentally with each other, and to suggest feeding standards for maintenance based on these data.

Plan; Data.-The plan of this research consisted in formulating equations relating each of these kinds of metabolism with body weight and to present the results in graphic and tabular forms. Since it is desirable to formulate the conclusions on as broad a basis as possible, it is therefore necessary to make use of as many data as possible. We have therefore supplemented generously whatever data we had with data taken from the literature. All the data with their sources are given in the appendix of this bulletin (Tables 1 to 4). It will there be seen that the Missouri data constitute a very substantial part of the whole as regards basal metabolism, especially in the upper live-weight brackets (sheep, swine, cattle, horses, elephants); less with regards to endogenous nitrogen and creatinine; none with regards to neutral sulphur. The method of securing the Missouri data and their sources are given in the publications cited in the foot notes to the tables in the appendix.

Practical Applications.—In the formulation of feeding standards it is first of all necessary to determine the irreducible costs of maintenance. The relations of basal metabolism and of endog-

Paper 82 in the Herman Frasch Foundation Series.

enous nitrogen to body weight given in this bulletin, supply the necessary information concerning the minimum costs of maintenance for energy and for nitrogen for animals of different live weights. Such known relations should have practical applications, for by indicating the necessary nitrogen *spent* by animals of different live weights, they also indicate the amount of protein *required*. The given relation of creatinine to body weight indicates that creatniine can not be taken as a directly proportional index of either the minimum energy or of the minimum nitrogen expense of maintenance.

Theoretical Implications .-- It is generally believed that surface areas of animals vary with the 2/3 power of their body weights and that basal metabolism varies directly with surface area; that therefore basal metabolism likewise varies with the 2/3 power of body weight. This "surface law", as it is often called, has been a subject of extensive study and lively debate for almost a century. This "law" tacitly assumes that the surface area of animals is the limiting factor in their energy metabolism as might be inferred from Newton's law of cooling. We have previously shown (Missouri Research Bulletins 89 and 115) that surface area, basal metabolism, weight of the visceral organs (kidneys, stomach, intestine, liver) all vary with the 2/3 to the 3/4 power of body weight; it was shown by Dreyer [Proc. Royal Soc. B, 82, 545 (1910) and 86, 39, 56 (1912-13); Phil. Trans. B, 201, 133 and 191; Lancet, 2, 227 (1919)] that the area of the aortic cross section, the area of the tracheal cross section, vital capacity, likewise tend to vary with the 2/3 to 3/4 power of body weight. The "surface area law" thus seems to be merely one example of a broader law, which might be termed the 2/3 to 3/4 power law. It seems that the sizes and activities of the vital organs tend to vary with 2/3 to 3/4 power of body weight because the skeletal, or the purely supporting, organs must increase in size more rapidly than the body weight as This bulletin goes a step further by showing that urinary a whole. endogenous nitrogen and neutral sulphur excretions likewise follow this general law. Creatinine excretion tends to vary almost directly with body weight rather than with endogenous nitrogen excretion, thus indicating that it represents the muscular mass, and therefore the principal active mass, of the body. A special feature of this bulletin is the wide range of live weights of animals on

which the generalizations are based. The equation relating minimum energy expense to body weight (Fig. 1) is based on animals ranging in live weight from 0.01 kg. mice to 4000 kg. elephants, i. e., a range of 1 to 400,000; the equation relating endogenous urinary nitrogen to body weights (Fig. 2) is based on animals ranging in body weight from 0.02 to 500 kg. i. e., a range of 1 to 25,000. This range in magnitudes gives the generalizations a rather unusual breadth of validity.

Literature.—As may be inferred from the selected references given in the footnotes for tables 1 to 4, there is a tremendous literature on the quantitative aspects of energy and nitrogen metabolism. However, the papers by Terroine and his pupils and the research by Smuts (Ph.D. Thesis, University of Illinois, Urbana, 1932), carried out under H. H. Mitchell's direction, bear most directly on the problem under consideration and therefore need detailed review.

Terroine and Sorg-Matter [Arch. Internat. de Physiol., 29, 121 (1927) and 30, 115 (1928); also Sorg-Matter, ibid., 30, 126 (1928)] investigated the quantitative relations between basal metabolism and total (including fecal) endogenous nitrogen excretion in mice, rats, pigeons, chickens and rabbits, and found the N/Cal. ratio constant. In the first of the aforecited papers they summarized their results by the following table:

Animal	Mg. of total endog. N per kg-hr.	Cal. of basal me- tabolism per kg-hr.	Mg. N. per Calorie
Mouse	34.8	12.0	2.90
Rat	18.8	7.8	2.41
Pigeon	18.8	6.5	2.89
Chicken	10.6	4.6	2.30
Rabbit	9.0	3.4	2.65
Dog	6.7	2.4	2.80
Man	2.2	0.933	2.32

They generalized this table by saying that "Dans toute la série des homéothermes, la dépense azotée minima de l'adulte, par unité de poids, est rigoureusement proportionnelle à l'intensité minima de sa dépense d'énergie".

In the second of the aforecited papers Terroine and Sorg-Matter reported results indicating that changes in external temperature have the same proportional influence on total endogenous nitrogen excretion as on basal metabolism; and that therefore the

Animal	Body wt. gm.	Mg. end. N. per kg-hr.	Cal. energy me- tabolism per kg-hr.	Mg. N. per Cal.
Mice at 25°C.	17 16 • 15 16 17	34.2 34.7 35.7 38.8 37.0	17 17 17 17 17 17	2.02 2.03 2.10 2.28 2.18
Mice	15	26.95	12	2.24
at 30°C.	15	28.13	12	2.34
Pigeon at 0-2°C.	320 365 300 270	$26.32 \\ 28.58 \\ 27.46 \\ 29.43$	12 12 12 12 12	2.20 2.38 2.29 2.45
Pigeon	340	.18.43	9	2.06
at	300	18.54	9	2.06
15-16°C.	260	19.40	9	2.15
Pigeon	330	13.66	6.5	2.10
at	380	13.92	6.5	2.14
28-29°C.	330	12.81	6.5	1.97

minimum nitrogen excretion is attained only at thermal neutrality. They summarized their results by the following table:

They summarized this table by concluding that "Chez tout homéotherme, à toute variation de température extérieure entraînant une augmentation de la dépense énergétique, correspond une augmentation proportionnelle de la dépense azotée endogène. En conséquence, la dépense azotée minima ne peut être atteinte qu'a' là neutralité thermique".

In the third paper Sorg-Matter showed that the nitrogen to energy ratio remains the same for animals of different sizes of the same or different species as shown by the following table:

Animals	Body wt.	Endog. N. per	Basal metabolism	Mg. N.
	gm.	kg-hr. mg.	per kg-hr., Cal.	per Cal.
Rats	50	26.3	5.4	2.20
Rats	100	23.0	5.4	2.30
Rats	200	15.8	5.4	2.30
Chickens Chickens Chickens Chickens Chickens Chickens	720 740 760 800 1800 1000	13.7 13.5 13.7 13.2 10.5 11.3	5.4 5.4 5.4 5.4 5.4 4.6 4.6	2.53 2.40 2.55 2.44 2.30 2.43

8

Sorg-Matter concluded the paper by the statement that "La loi d'apès laquelle la grandeur de la dépense azotée endogène, aû niveau du métabolisme de base, est entièrement soumise à celle de la dépense énergétique et rigoureusement proportionnelle à cette dernière, est donc valable à la fois intraspécifiquement et interspécifiquement."

Smuts, in the aforecited dissertation, criticised Terroine and Sorg-Matter because in computing their N/Cal. ratios they used total rather than urinary nitrogen, inasmuch as the endogenous fecal nitrogen is more variable than the endogenous urinary nitrogen; and because Terroine and Sorg-Matter did not determine the basal metabolism of the animals for which the endogenous nitrogen was measured, but used instead average basal metabolism determinations obtained at different times, perhaps under different conditions, and on different series of animals, thereby ignoring individual peculiarities of animals with tendencies to have especially low or high metabolic rates for energy or for nitrogen or for Smuts accordingly measured both the energy metabolism both. and urinary nitrogen excretion on the same animals and under conditions giving strictly minimum (or "basal") values in both cases. Smuts' excellent data are included in Tables 1 to 3. The range in live weights of Smuts' animals is seen to be very much wider (from 20 gm. mice to 79 kg. pigs) than the range of Terroine's animals (from 15 gm. mice to 1600 gm. chickens).

Smuts confirmed the fact found by Terroine and Sorg-Matter that the ratio of endogenous nitrogen to basal metabolism is remarkably constant for animals of different live weights. Smuts found the following ratios for mg. urinary nitrogen to basal metabolism: mice, 1.92; rats, 2.00; rabbits, 2.04; pigs, 2.10; average of all measurements 1.99. If one recalls that Terroine reported the ratios in terms of total (including fecal) nitrogen to calories, while Smuts reported his data in terms of urinary nitrogen to calories, then the differences between the N/Cal. ratios of these two investigators probably disappear. The "Terroine-Sorg-Matter law" as the Terroine--Sorg-Matter conclusions were referred to by Bonnet [in Arch. Internat. Physiol., 37, 104 (1933)] is thus completely confirmed by Smuts. Incidentally, Bonnet (loc. cit.) found that the N/Cal. ratios of frogs and of tortoises remain constant at different environmental temperatures ranging from 2° to 30° C; that is, both, endogenous nitrogen and basal metabolism, rise and fall together in constant proportion with temperature changes. In the frog the average of this ratio was 7.2; in tortoises, 2.8—very near that found by Terroine and Sorg-Matter for homeotherms. Within each of these species, however, this ratio remained constant for different environmental temperatures. Bonnet suggests that reptiles are probably in an intermediate class (biochemically and physiologically) between homeotherms and poikilotherms.

Terroine et al [Bull. Soc. Chim. Biol. Vol. 15, pp. 23, 42, 230, 260 (1933)] discussed the problem of the interrelationships between the various nitrogen components of the endogenous urinary nitrogen. They found that the creatinine changes with increasing body weight are independent of the changes in urinary nitrogen: that creatine tends to disappear completely with the increase of time on the N-free diet; that the ammonia output is, as is well known, a species characteristic (e.g., low for the rabbit, high for the rat) even more than a dietary characteristic, but that within the species it probably varies on the N-free diet in the same way as does the total endogenous nitrogen; that the allantoin tends to vary directly with the basal metabolism and endogenous nitrogen excretion; that the urea and amino acid excretions on a N-free diet tend to be proportional to the total urinary endogenous nitrogen. Of course, the body of data on which the above conclusions of Terroine et al are based is relatively small as compared to the data on total urinary nitrogen plotted in Fig. 2; but they are nevertheless important and significant.

Finally note may be made of Ashworth & Brody's attempts [Missouri Research Bulletins 189 and 190 (1933)] to determine for growing rats the relation (among others) between (1) time on N-free diet and nitrogen excretion; (2) relation between endogenous nitrogen and basal metabolism; (3) relation between creatinine nitrogen and total endogenous nitrogen. The unexpected conclusion was reached that the minimum urinary nitrogen levels were attained any time between 4 and 28 days on the N-free diet, and that, therefore, the values of endogenous nitrogen, as obtained empirically by simply keeping the rats on N-free diets for several days, are variable, not reproducible, and usually too high. Likewise, the ratios of endogenous N/basal metabolism are too high. In this work the lowest N/Cal. ratio (as determined from the time curves on N-free diet) was found to be 1.4 mg. N per Cal. rather than 2.0 as found by Smuts; and under some conditions it was found to be as low as 0.70 for very young rats.

These data, together with more recent unpublished data on nitrogen excretion in rats, were plotted in Fig. 2 where they appear to be below the curve of the general equation. However, the nitrogen excretion by these rats on the fourth day on the N-free diet, is seen in Fig. 2 to approach quite closely to the general eurve. It is reasonable to assume that the endogenous nitrogen, qurte like basal metabolism, represents a relative rather than an absolute level, attained only under well defined conditions. It is generally known that the basal metabolism declines for many days following the attainment of the post-absorptive condition; the same appears true as regards endogenous nitrogen. But obviously this problem needs to be re-investigated especially as regards growing animals.

To avoid complications, this bulletin is concerned principally with mature animals of different weights and with metabolism data as conventionally obtained. This problem as it concerns growing animals will be discussed elsewhere in more detail by Asnworth.

II. RESULTS

The results are presented in a series of charts based on the data in Tables 1 to 4 in the appendix.

Basal Metabolism as a Function of Body Weight.—These data, including a range in live-weight from 0.01 kg mice to 4000 kgs elephants, are presented in Fig. 1 based on the data in Table 1. The encircled numbers in Fig. 1 refer to the serial positions of the original data, and to their sources (given in the footnotes of Table 1.)

The metabolism of the elephant was measured by the same method as used for cattle and previously described in Missouri Res. Bull. 143; a rubber sleeve was slipped over the elephant's trunk similar to the mask over the cow's muzzle. The basal metabolism is seen in Fig. 1 to increase with the 0.734 power of body weight, and the equation relating metabolism to body weight is Q=70.5 M^{0.734} in which Q represents Calories (i. e. kilo-calories) per day for body weight M in kgs. The equation was fitted to the data by the method of least squares. The data represented by crosses were not included in fitting the equation to the data. Practically all the data points are within $\pm 20\%$ of the curve of the equation. It is interesting to note that previously we have found the same equation to represent a much smaller group of data (cf. p. 93, Missouri Res. Bull. 166). This chart makes us confident that this equation approaches closely the "true" relation between basal metabolism and body weight of mature mammals of different species.

Fig. 1.—Basal metabolism, Q, plotted against body weight, M, on a logarithmic grid. The numbers enclosed in circles refer to the positions of the corresponding values in table 1 in the appendix. The data points represented by crosses were not included in fitting the equation to the data on account of the empirical corrections shown in the footnotes in Table 1. The metabolism per unit weight, Q/M, is given by the declining line.

MISSOURI AGRICULTURAL EXPERIMENT STATION

12

Endogenous Urinary Nitrogen as a Function of Body Weight. —These data, including a range in live weight from 0.02 kg. mice to 500 kg. cattle, are presented in Figs. 2 and 2a based on data in Tables 2 and 2a in which the sources of the data are also given. Fig. 2 and table 2 are seen to include data from different sources, and to five subgroups of these data separate equations were fitted by the method of least squares. With the exception of Mitchell's data on growing rats (which represent averages, while our plan for fitting equations to the data in Fig. 2 called for individual data points), Smuts' data on mice (which are off the general curve),

Fig. 2.—Endogenous urinary nitrogen data plotted against body weight. The general equation is based on Smuts' data (excepting his mice), Mitchell's compilation, Missouri data, but it does not include Mitchell's growing rat data, nor the Missouri 4th day data. The broken lines on each side of the general equation represent the values of the standard error of estimate, Sr, which are +29.7% and -22.9% from the average curve. The numerical data, and their sources, are given in Table 2 in the appendix.

and the Missouri 4th day data, all these data were included in the general equation (N=146 $M^{0.72}$ in which N stands for milligrams per day endogenous urinary nitrogen for body weight M in kg.). The index of correlation ρ between the logarithms of nitrogen and

logarithms of body weight is seen from Fig. 2 to be .991 (the precise significance of this high correlation between the logarithms of the variables is not altogether clear to the writers). The standard error of estimate, Sr, is +29.7% and -22.9% (which means that 2/3 of the data points are between +29.7% and -22.9% of the average curve, if the data constitute a normal distribution). The broken lines on each side of the average curve in Fig. 2 represent these deviations.*

It will be seen from the variations in the values of the exponents of the subgroups, and from the probable errors of the exponents given in the appendix, that the values of the exponents are sensitively responsive to the lay of the data, and that a difference of one or two units in the second place may be due to experimental errors. As the difference between the exponents of the basal metabolism and endogenous nitrogen weight curves is only one to two units in the second place, we may therefore tormulate the exceedingly important conclusion that, within the limits of experimental errors, the endogenous urinary nitrogen increases at the same rate with increasing body weight as does the basal metabolism. Concretely, this means that increasing the body weight by 100% increases the minimum nitrogen (or protein) cost of maintenance not by 100%, but only by about 70%; likewise, the minimum energy cost of maintenance is increased by the same percentage, so that the ratio of the minimum nitrogen cost of maintenance to the minimum energy cost of maintenance remains prac-

*Formulas for Deriving The Standard Erro Coefficient of Correlation	R OF ESTIMATE AND
$S^{2} \lim_{\log Y} = \frac{\sum \log^{2} Y - \log A\Sigma \log Y - B\Sigma \log X \log Y}{N-1}$	
$S_r = \text{antilog } S_{\log Y}$	
$\rho^{2} = \frac{\log A\Sigma \log Y + B\Sigma \log X \log Y - NM_{2} \log Y}{\Sigma \log^{2} Y - NM^{2} \log Y}$	1
S log Y = Standard error of estimate of log Y	
S_r = Standard error of estimate in ratio form	
ρ = Index of correlation	
Y = Nitrogen Variable	
X = Body weight variable	
A = Constant, 146	
B = Slope constant, 0.72	
N = Number of observations	

M² log Y = Mean of log Y's squared

tically constant (about 2 mg. urinary N or about 2.4 mg. total N. per Calorie) for all body weights for this enormous range in live weight under consideration. This later conclusion, of course, confirms the results of Terroine and Sorg-Matter, and of Smuts.

An examination of the data in Table 2 showed that the data by Terroine *et al* for endogenous urinary nitrogen is, on the average, higher (by about 30%) than the other data in the table. In order to avoid confusion, we have therefore plotted the urinary as well as the total nitrogen data by Terroine *et al* on a separate chart, in Fig. 2a. The urinary nitrogen data for Fig. 2a are given in Table 2, while the total (including fecal) nitrogen for Fig. 2a are given in Table 2a. The exponent for the total nitrogen curve

Fig. 2a.—Endogenous nitrogen plotted against body weight. The heavy solid line represents Terroine's urinary nitrogen data; the upper broken line Terroine's total (including fecal) nitrogen data; as indicated by the data in Table 2a. The lower light line is a reproduction, for purposes of com-parison, of the general curve in Fig. 2 including endogenous urinary nitro-gen other than Terroine's data. The percentage difference at body weight of 1 kg. between Terroine's urinary nitrogen and the general equation for urinary nitrogen is 38% (i.e. $\frac{201-146}{100} \times 100$); between Terroine's total urinary nitrogen is 38% (i. e. x 100); between Terroine's total 146 283--201 nitrogen and Terroine's urinary nitrogen it is 41% (i. e. x 100); 201 between Terroine's total nitrogen and the general equation for urinary ni-283-146 trogen it is 94% (i. e. x 100). 146

16

in Fig. 2a differs from the urinary nitrogen curve by only 0.015; therefore, within the limits of experimental errors, the curves are parallel. But the general level of the total nitrogen curve is about 40% above the general level of the urinary nitrogen curve. The endogenous nitrogen in the feces is thus about 40% of the endogenous nitrogen of the urine (under the given conditions for the given range in live weight and for the given species of animals). (See the appendix for additional discussion of the relation between endogenous, fecal, and urinary nitrogen.)

For purposes of comparison, the average, or general, curve for urinary-nitrogen in Fig. 2 (not including the data by Terroine *et al*) is reproduced in Fig. 2a (the lower light line). This curve has the same exponent for its equation as the heavy curve in the center representing the data by Terroine *et al*, but Terroine's curve is about 38% higher.

Terroine's data (presented in tables 2 and 2a) represent averages of 7 to 10 days; if instead of these averages, the lowest 2-day averages are chosen from Terroine's data, then the general level of the resulting curve is lowered by about 20% (from Ur. N=201 $M^{0.72}$ to Ur. N=182 $M^{0.72}$); but this lowered curve is still above the average curve in Fig. 2 (Ur. N.=146 $M^{0.72}$). The chicken data for total nitrogen by Mitchell, and by Ackerson, while plotted on Fig. 2a, were not included in the general equation.

By way of summary it may be said that the endogenous urinary nitrogen of mature animals of different species increases with about the 0.73 power of live weight, which is, within the limits of experimental errors, of the same order of magnitude of increase as the power for the rate of increase of basal metabolism of mature animals of different species with increasing live weight. However, the general level of the endogenous urinary nitrogen curve (indicated by the coefficient in the power equation, or by the point in the chart where the curve crosses body weight of 1 kg.) is not as well defined as the general level of the basal metabolism curve. The average value of the coefficient of the nitrogen equation in Fig. 2 is seen to be 146, but it may be as low as 140, and on the other hand, as indicated by Fig. 2a, it may be as high as 200 (that is, for body weight of 1 kg., the endogenous urinary nitrogen excretion may be as low as 140 mg., or as high as 200 mg). The endogenous fecal nitrogen, for the given data under the given conditions, as indicated by the data in Fig. 2a., is about 40% of the endogenous urinary nitrogen. However, as pointed out by Smutts, the numerical value of the endogenous fecal nitrogen is rather ill defined quantitatively on account of its variation with the nature and amount of the non-protein diet. It is very possible that other factors, such as structure of the digestive tract, etc., are important influencing factors.

Creatinine Nitrogen as a Function of Body Weight.—It is generally believed that creatinine nitrogen is a constant fraction of the endogenous urinary nitrogen. Both Terroine [cf. Terroine, Bonnet, Danmanville and Mourot, Bull. Soc. Chimie Biologique, 14, 12 (1932); 14, 47 (1932); 14, 68 (1932)] and Smuts (loc. cit.) questioned this notion. Now we have plotted in Fig. 3, based on data in Table 3, a large body of data on creatinine nitrogen excretion for animals ranging in weight from 0.02 to 800 kg. which gives a

Fig. 3.—Creatinine nitrogen plotted against body weight. The data are in Table 3 in the appendix. The equation for the subgroups are given in the lower right-hand corner of the table. The declining curve represents the creatinine nitrogen per unit weight, CN/M.

broad basis for generalizing. It appears from Fig. 3 that for the Missouri data, which represent growing animals, and for animals of different size of the same species, the creatinine excretion is directly proportional to body weight (the exponent in the power equation is nearly unity). For humans of different weight the creatinine excretion increases even more rapidly than body weight (the exponent is 1.29). But for mature animals of different species the creatinine excretion increases with the 0.83 to 0.89 power of body weight. Since the endogenous nitrogen increases with but the 0.72 power of body weight, it therefore follows that the creatinine nitrogen percentage in the endogenous urinary nitrogen must increase with increasing body weight. Creatinine nitrogen, therefore, does not vary directly (i. e., linearly) with either endogenous nitrogen metabolism, or with basal metabolism, but rather with body weight.

Neutral Sulphur Excretion as Function of Body Weight.— While we have not done experimental work on this problem, it seemed interesting to examine in this connection and from this point of view the available data in the literature. The results of this examination are presented in Fig. 4 based on the compilation of data in table 4. The data points seem to be widely, even erratically, scattered in Fig. 4; but the slope (exponent in the equation) of the general curve is seen to be, within the limits of experimental errors, of the same order of magnitude as the slopes of the basal metabolism and endogenous nitrogen curves shown in Figs. 1 and 2.

Perhaps a word is needed for explaining the erratic distributions of the neutral-sulphur data in Fig. 4. As is well-known, Folin discovered the fact that the neutral sulphur excretion tends to be independent of the protein intake. No dietary precautions would therefore seem to be needed for securing reproducible data on neutral sulphur. As a matter of fact a large literature has recently grown up indicating that Folin's conclusion with regards to the constancy of neutral sulphur is relatively, but not absolutely, true. Since no special dietary precautions were taken in securing the neutral sulphur data, plotted in Fig. 4, and since the diet is an influencing factor after all, the distribution of the data in Fig. 4 is irregular.

The most recent, and perhaps the most extensive, discussion of the variability of neutral sulphur excretion, and its relation to the variations in energy, nitrogen and creatinine, is due to Amann.

Fig. 4.—Neutral sulphur excretion plotted against body weight. The numerical data are given in Table 4 of the appendix. The lower black circle at the extreme right of the chart was not included in fitting the equation.

from Terroine's laboratory [Amann, Arch. Internat. Physiol., 37, 121 (1933) and 37, 139 (1933); Amann & Mourot, ibid., 37, 150 (1933); Amann, ibid., 37, 168 (1933)]. According to Amann and Mourot the neutral sulphur excretion is the same on low as on "normal" protein diets, but it is increased on high-protein diets. When the dietary protein is increased 15 times, the neutral sulphur excretion is tripled. In other words, the amount of neutral sulphur is not strictly endogenous (originating from destruction of tissue proteins only); it is not altogether independent of the diet, although, of course, it is relatively constant, that is in comparison with total sulphur excretion. According to Amann, the factors affecting the metabolism of energy also affect the excretion of neutral sulphur, but the neutral sulphur excretion is not definitely proportional to calorie production as is the case with endogenous nitrogen.

MISSOURI AGRICULTURAL EXPERIMENT STATION

III. PREDICTION TABLES

Fig. 5 and Table A present, corresponding to given live weights, the numerical values for basal metabolism; endogenous urinary nitrogen excretion and its protein equivalents, that is, Nx6.25; creatinine nitrogen; neutral sulphur; and finally the ratios between the several variables. All these are based on the average, or general, equations in Figs. 1 to 4. The systematic deviations in the ratios of endogenous urinary nitrogen to basal metabolism are, as pointed out, due to the fact that while in the case of basal metabolism, the exponent relating it to body weight was found to be (by the method of least squares) 0.73, that for the urinary nitrogen, the exponent was only 0.72. Inasmuch as a difference of one unit in the second decimal place in the exponent is within the limits of experimental errors, the apparently systematic deviations of the ratio Mg. N/Cal. shown in Table A are without real physiological significance. The same is true as regards the Mg. Neutral S./Calories ratios. But in the case of the ratio of Mg. creatinine N,/Calories there is undoubtedly a systematic increase with increasing body weight. Likewise, consequently, the percentage of creatinine nitrogen with respect to total urinary nitrogen increases with increasing size of the animal. While the percentage of nitrogen in the form of creatinine nitrogen increases with increasing body weight, yet the nitrogen coefficient (Mg. creatinine N/kg. body wt.) decreases with increasing body weight. This is due to the fact that the exponent in the general equation relating creatinine to body weight is not quite unity. However, as pointed out, while this may be true of the general equation including all species of animals, this does not appear to be true as regards members of the same species, as indicated by the equations in the lower righthand corner of Fig. 3.

The protein equivalent values of endogenous nitrogen presented in table A and Fig. 5 refer to endogenous urinary nitrogen, and in the case of Terroine's data also for total (including fecal) nitrogen. The average fecal nitrogen in the case of Terroine's data is seen to be about 41% of the urinary nitrogen. We cannot however infer from this that the endogenous fecal N is always 40% of the endogenous urinary nitrogen, inasmuch as Terroine's data included only small animals with simple digestive tracts (mice, rats, pigeons, chickens). The endogenous fecal ni-

	Ba Metal Cals	sal oolism ⁄Day	Endog Urin. N Mgs	genous litrogen / Day	Pro Equiv Gms	tein valent ⁄Day	Creatin Mgs/	nine-N ⁄Day	Neu Sulp Mgs	tral bhur Day	Rat	ios Urinar to Basal N Mgs	y N Excre letabolism /Cals	etion n	Creat.	Neutral	Cals. in Ur. N.	n Form Protein
Body Wt. Kgs.	Per Ani- mal 1	Per Kg.	Per Ani- mal 2	Per Kg.	Per Ani- mal 3	Per Kg.	Per Animal 4	Per Kg.	Per Animal 5	Per Kg.	Urin. N.	Protein Equiva- lent	Creati- nine N.	Neutral Sulphur	Urin. N. %	Urin. N. Ratio	Per Day 6	% of Basal Metab- olism
$\begin{array}{c} 1.1 \text{ gs}.\\ \hline 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.$	$\begin{array}{c} 1\\ \hline 2.40\\ 3.99\\ 5.37\\ 6.64\\ 7.82\\ 8.94\\ 10.0\\ 11.0\\ 12.0\\ 13.0\\ 21.6\\ 29.1\\ 36.0\\ 42.4\\ 48.5\\ 54.3\\ 59.9\\ 65.3\\ 70.5\\ 117\\ 158\\ 195\\ 230\\ 263\\ 294\\ 324\\ 354\\ 382\\ 636\\ 856\\ 1050\\ 1250\\ 1420\\ 1590\\ 1760\\ 1920\\ 2070\\ 3450\\ 4640\\ 5730\\ 6750\\ 7715\\ \end{array}$	$\begin{array}{c} 240\\ 200\\ 179\\ 166\\ 156\\ 149\\ 143\\ 138\\ 130\\ 108\\ 97.0\\ 90.0\\ 84.8\\ 81.0\\ 77.6\\ 74.9\\ 72.6\\ 70.5\\ 58.5\\ 52.7\\ 48.8\\ 42.0\\ 40.5\\ 39.3\\ 38.2\\ 31.8\\ 28.5\\ 25.0\\ 23.7\\ 22.7\\ 22.7\\ 22.0\\ 21.3\\ 20.7\\ 17.3\\ 15.5\\ 14.3\\ 13.5\\ 12.9\\ \end{array}$	$\begin{array}{c} 2\\ \hline \\ 5.30\\ 8.73\\ 11.7\\ 14.4\\ 16.9\\ 19.3\\ 21.5\\ 23.7\\ 25.8\\ 27.8\\ 45.8\\ 61.4\\ 45.8\\ 61.4\\ 135\\ 124\\ 135\\ 146\\ 241\\ 321\\ 396\\ 465\\ 530\\ 593\\ 652\\ 710\\ 766\\ 1260\\ 1690\\ 2440\\ 2780\\ 3110\\ 3420\\ 6620\\ 8870\\ 0910\\ 12810\\ 12810\\ 14610\\ \end{array}$	$\begin{array}{c} 530\\ 437\\ 390\\ 338\\ 327\\ 307\\ 296\\ 287\\ 278\\ 229\\ 205\\ 189\\ 177\\ 168\\ 161\\ 155\\ 150\\ 146\\ 121\\ 107\\ 99.0\\ 93.0\\ 88.3\\ 84.7\\ 81.5\\ 78.9\\ 76.6\\ 63.0\\ 56.3\\ 52.0\\ 48.8\\ 44.4\\ 42.7\\ 41.4\\ 40.2\\ 33.1\\ 29.6\\ 27.3\\ 25.6\\ 24.3\\ \end{array}$	$\begin{array}{c} & & & \\ & & & 033 \\ & & & 055 \\ & & & 073 \\ & & & 090 \\ & & & 106 \\ & & & 121 \\ & & & 134 \\ & & & 161 \\ & & & 174 \\ & & & 286 \\ & & & & 384 \\ & & & 472 \\ & & & 554 \\ & & & & 631 \\ & & & & 706 \\ & & & & 384 \\ & & & & 472 \\ & & & & 554 \\ & & & & 631 \\ & & & & 706 \\ & & & & & 775 \\ & & & & & 884 \\ & & & & & & 775 \\ & & & & & & 884 \\ & & & & & & & 775 \\ & & & & & & & 631 \\ & & & & & & & & 775 \\ & & & & & & & & & & & & & \\ & & & & $	$\begin{array}{c} 3.30\\ 2.75\\ 2.43\\ 2.25\\ 2.12\\ 2.02\\ 1.91\\ 1.74\\ 1.43\\ 1.28\\ 1.79\\ 1.74\\ 1.43\\ 1.28\\ 1.11\\ 1.05\\ 1.01\\ .969\\ .938\\ .913\\ .755\\ .670\\ .618\\ .582\\ .551\\ .530\\ .509\\ .493\\ .479\\ .393\\ .353\\ .325\\ .306\\ .290\\ .277\\ .267\\ .259\\ .251\\ .207\\ .185\\ .171\\ .160\\ .152\end{array}$	$\begin{array}{c} 205\\ .381\\ .549\\ .710\\ .867\\ 1.02\\ 1.17\\ 1.32\\ 1.47\\ 1.61\\ 3.00\\ 4.32\\ 5.59\\ 6.82\\ 8.04\\ 9.23\\ 10.4\\ 11.6\\ 12.7\\ 23.6\\ 34.0\\ 4.0\\ 53.7\\ 63.2\\ 72.6\\ 81.8\\ 90.9\\ 100\\ 186\\ 267\\ 346\\ 423\\ 498\\ 571\\ 644\\ 716\\ 787\\ 1460\\ 2105\\ 2725\\ 3330\\ 3920\\ \end{array}$	$\begin{array}{c} 20.5\\ 19.0\\ 18.3\\ 17.3\\ 17.0\\ 16.7\\ 16.5\\ 16.3\\ 16.1\\ 15.0\\ 14.4\\ 13.6\\ 13.4\\ 13.2\\ 13.0\\ 12.9\\ 12.7\\ 11.8\\ 11.3\\ 11.0\\ 10.7\\ 10.5\\ 10.4\\ 10.2\\ 10.1\\ 10.0\\ 8.90\\ 8.65\\ 8.46\\ 8.30\\ 8.16\\ 8.05\\ 7.87\\ 7.30\\ 7.02\\ 6.86\\ 8.30\\ 8.16\\ 8.55\\ 1.66\\ 6.53\\ 1.66\\ 6.53\\ 1.66\\ 6.53\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\ 1.66\\$	$\begin{array}{c} & & & \\ & .227 \\ & .379 \\ & .501 \\ & .633 \\ & .746 \\ & .854 \\ & .957 \\ 1.06 \\ 1.15 \\ 1.25 \\ 2.08 \\ 2.81 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 3.48 \\ 4.10 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 3.48 \\ 4.10 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 3.48 \\ 4.10 \\ 4.69 \\ 5.26 \\ 1.15 \\ 1.25 \\ 2.81 \\ 3.48 \\ 6.85 \\ 1.14 \\ 1.59 \\ 1.22 \\ .58 \\ 9.34 \\ .69 \\ 84 \\ .99 \\ 105 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.24 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ 1.59 \\ $	$\begin{array}{c} 22.7\\ 18.9\\ 16.7\\ 15.8\\ 14.9\\ 14.2\\ 13.7\\ 13.3\\ 12.8\\ 12.5\\ 10.4\\ 9.37\\ 8.20\\ 7.82\\ 7.51\\ 7.04\\ 6.85\\ 5.70\\ 4.30\\ 4.13\\ 3.99\\ 3.87\\ 3.76\\ 3.15\\ 2.83\\ 2.48\\ 2.37\\ 2.27\\ 2.12\\ 2.07\\ 1.75\\ 1.36\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\$	$\begin{array}{c} 2.21\\ 2.19\\ 2.18\\ 2.17\\ 2.16\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.15\\ 2.14\\ 2.12\\ 2.09\\ 2.08\\ 2.07\\ 2.07\\ 2.06\\ 2.03\\ 2.02\\ 2.01\\ 2.00\\ 1.98\\ 1.97\\ 1.96\\ 1.95\\ 1.94\\ 1.94\\ 1.92\\ 1.91\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\ 1.90\\$	$\begin{array}{c} 13.7\\ 13.7\\ 13.6\\ 13.5\\ 13.5\\ 13.5\\ 13.5\\ 13.4\\ 13.4\\ 13.4\\ 13.4\\ 13.2\\ 13.2\\ 13.2\\ 13.1\\ 13.1\\ 13.0\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\ 12.9\\$	$\begin{array}{c} .085\\ .095\\ .102\\ .107\\ .111\\ .114\\ .117\\ .120\\ .123\\ .124\\ .139\\ .148\\ .155\\ .161\\ .166\\ .170\\ .174\\ .179\\ .202\\ .215\\ .226\\ .233\\ .240\\ .247\\ .226\\ .233\\ .240\\ .247\\ .257\\ .262\\ .292\\ .312\\ .326\\ .338\\ .351\\ .359\\ .366\\ .373\\ .380\\ .423\\ .454\\ .475\\ .493\\ .508\end{array}$.095 .095 .095 .095 .095 .095 .096 .096 .096 .096 .096 .097 .097 .097 .097 .097 .097 .097 .097	3.87 4.36 4.93 5.13 5.28 5.44 5.70 5.79 6.55 7.03 7.706 8.17 8.59 8.709 11.1 11.5 12.3 12.8 13.1 14.8 16.6 17.9 18.4 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 12.3 12.8 13.1 14.8 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 17.9 19.6 12.5 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.6 25.9 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26	$\begin{array}{c} .0428\\ .0434\\ .0438\\ .0439\\ .0441\\ .0442\\ .0445\\ .0445\\ .0446\\ .0446\\ .0450\\ .0458\\ .0461\\ .0463\\ .0464\\ .0463\\ .0464\\ .0465\\ .0464\\ .0465\\ .0468\\ .0470\\ .0470\\ .0470\\ .0470\\ .0480\\ .0482\\ .0484\\ .0487\\ .0487\\ .0489\\ .0489\\ .0489\\ .0489\\ .0490\\ .0490\\ .0491\\ .0499\\ .0502\\ .0505\\ .0508\\ .0511\\ .0512\\ .0512\\ .0512\\ .0515\\ .0525\\ .0529\\ .0532\\ .0532\\ .0534\\ .0534\\ .0534\end{array}$	$\begin{array}{c} .132\\ .220\\ .292\\ .360\\ .424\\ .484\\ .592\\ .644\\ .696\\ 1.14\\ 1.59\\ 2.22\\ 2.52\\ 2.82\\ 3.10\\ 3.38\\ 3.65\\ 6.04\\ 8.88\\ 11.6\\ 13.2\\ 14.8\\ 19.2\\ 31.5\\ 42.4\\ 52.0\\ 69.6\\ 77.6\\ 85.6\\ 93.2\\ 100\\ 166\\ 222\\ 273\\ 320\\ 5408\\ 8.8\\ 106\\ 1.2\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 106\\ 222\\ 273\\ 320\\ 5408\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$	$\begin{array}{c} 5.50\\ 5.51\\ 5.42\\ 5.42\\ 5.42\\ 5.42\\ 5.38\\ 5.38\\ 5.35\\ 5.225\\ 5.24\\ 5.25\\ 5.24\\ 5.17\\ 5.17\\ 5.17\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03\\ 5.03$
800 900 1000	9530 10390 11220	12.3 11.9 11.5 11.2	17970 19560 21100	23.3 22.5 21.7 21.1	102 112 122 132	.140 .140 .135 .132	5070 5630 6190	6.34 6.26 6.19	964 1050 1140	1.21 1.17 1.14	1.89 1.88 1.88	11.8 11.7 11.7	.532 .542 .552	. 101 . 101 . 102	28.2 28.8 29.3	.0536 .0537 .0540	448 488 528	4.70 4.70 4.70

TABLE A.—PREDICTION TABLE FOR BASAL METABOLISM, ENDOGENOUS URINARY NITROGEN, CREATININE N., NEUTRAL SULPHUR AND FOR RATIOS OF THE VARIOUS FACTORS.

Computed from equation Q = 70.5 M^{0.724} (see Fig. 1).
 Computed from equation Ur.N = 146 M^{0.72} (based on data and equation given in Fig. 2.
 Protein equivalent = endog. urin. nitrogen times 6.25.
 Computed from equation C.N. = 12.7 M^{.506} (based on data and equation given in Fig. 3)
 Computed from equation N.S. = 6.85 M^{.74} (based on data and equation given in Fig. 4)
 Calorific equivalent = gm. protein X4.

BODY WEIGHT (M)

Fig. 5.—Prediction chart giving the various metabolic activities as functions of body weight. Numerical prediction values are given in Table A. trogen apppears to vary, as pointed out by Smuts, not only with size of the animal but also with the kind and amount of nitrogen-free diet consumed, as well as with the species. The endogenous fecal nitrogen excreted by cattle, sheep, and other herbivora, particularly ruminants, is undoubtedly greater in comparison to the urinary nitrogen than in the case of rats, chickens, dogs, humans, and other carnivorous or omnivorous species with simple digestive tubes. This uncertainty concerning the fecal nitrogen excretion makes it difficult to estimate the total (including fecal) endogenous nitrogen losses. If one assumes that in carnivors and in omnivors the endogenous fecal nitrogen is 40% of the urinary nitrogen; in non-ruminating herbivors it is 60%; in ruminating herbivors it is 80%; and if one further assumes that the biological value of protein is 100%, then the minimum need of digestible protein for maintenance would be respectively 1.4, 1.6 and 1.8 times that given in table A. If the biological value of the protein is 50%, then the minimum need would be respectively 2.8, 3.2 and 3.6 times that given in table A. These estimates are, of course, offered merely as illustrations of the manner in which table A and Fig. 5 might be used as guides in practical nutritional problems. One must also remember when using table A that, as pointed out in the introduction, the endogenous level of urinary excretion is greatly influenced by (1) the nature of the diet preceding the non-protein feeding period; (2) the time the animal is kept on the N-free diet. The endogenous nitrogen level is therefore an empirically, or conventionally, determined and not a rigorously defined biological entity; therefore the prediction values in table A. derived from the conventionally determined endogenous level, must likewise be considered at present as conventional estimates needing experimental substantiation.

As regards food energy requirements for maintenance, in case of cattle feeds, the net energy is about 50% of the gross energy; therefore the food (gross) energy required for maintaining quietly resting cattle is about double the values given in Table A. In the case of humans, the average net-energy value of human food is probably of the order of 75% of the gross energy; therefore, the food energy required for maintaining quietly resting humans is about 1.3 times the expenditure values given in Table 1. Of course, additional energy must be supplied for muscular activity. Thus walking at moderate speed increases the energy expenditure about 100% above standing; hence the net energy in the food must be twice as great when supplying energy for walking than for standing.

It seems instructive to illustrate the above theoretical discussion by a practical issue. This may be done by formulating tentative maintenance feeding standards which follow the same course with increasing body weight as do the basal metabolism and endogenous nitrogen curves in Figs. 1 and 2. The fecal-nitrogen uncertainty may be avoided by presenting the standards in terms of conventional *digestible* nutrients. In the proposed standard one gram "digestible nutrients" is taken to be equivalent to four Calories (or one pound digestible nutrients equivalent to 1812 Cal.) This is a conventional equivalent used, for example, in Sherman's text book. The protein needs are presented in terms of conventional "digestible crude protein" ("digestible nitrogen" x 6.25). The proposed tentative feeding standards are presented in Table B. To assist the eye, and for comparative purposes, the situation is exhibited graphically in Figs. 6 and 7. In these charts the heavy curves, designated by (A), represent basal metabolism, or endogenous urinary nitrogen. The lighter curves designated

BODY WEIGHT, LBS.

Fig. 6.—(A) designates the weight curve of basal metabolism; 2A, 3A & 4A designate respectively 2, 3, & 4 times basal energy levels. The proposed T D N standard represents curve 2A. (1 gm. T D N is considered equivalent to 4 Cal. or 1 pound to 1812 Cal.). The broken curves represent Henry & Morrison's maintenance standards (1923). The values of B in equation T D N = BM^{0x73} may be helpful (B is the value of T D N when body weight, M, = 1).

Body weight units	T D N units	Multiples of basal metabolism, A	Values of B		
pound s pound s kg. kg. pounds	pounds pounds kg. Cal. Cal.	1 A 2 A 2 A 2 A 2 A 2 A	.0218 .0436 .0352 141.0 79.2		

by (2A), (3A), (4A), represent 2, 3, 4 times the basal levels. The broken curves represent Henry & Morrison's feeding standards (1923) for maintenance, which increase *directly* with body weight (curves A, 2A, etc. increase with the 0.73 power of body weight).

The total digestible nutrient (or Cal.) values in table B represent curve (2A) in Fig. 6, (i. e., assuming the maintenance requirement for energy is double the basal.metabolism); the digestible crude protein values in table B represent curve (4A) in Fig. 7 (i. e., assuming the maintenance requirement for digestible crude protein is four times the

BODY WEIGHT, LBS.

Fig. 7.—(A) designates the weight curve of the D C P (digestible crude protein) equivalent of urinary endogenous nitrogen (1 unit D C P is equivalent to 6.25 units urinary endogenous nitrogen). 2a, 3A etc. designate respectively, 2, 3... times the urinary endogenous level curve. 4A (i. e., 4 times endogenous level) represents the proposed D C P standard for maintenance. The broken curves represent Henry & Morrison's maintenance standards (1923). The following values of B in equation D C P = BM^{0.72} may be helpful (B is the value of D C P when body weight, M, = 1).

Body weight units	D C P units	Multiples of endogenous urinary nitrogen level, A	Value of B
pounds pounds	pounds pounds	4 A	.00113
kg. pounds	kg. gm.	4 A 4 A	3.65 2.05

protein equivalent of the endogenous urinary nitrogen excretion). These standards are in agreement with the 3000 Cal. and 70 to 80 gm. protein maintenance allowance for a 70 Kg. man, or with Henry &

Morrison's maintenance requirement standards for about 500-pound farm animals (Henry & Morrison's standards are seen in Figs. 6 and 7 to be higher for heavier animals and lower for lighter animals than the tenttive standards here proposed). The new contribution of the "standards" here proposed are: (1) they are probably equally applicable to all species of warm blooded animals from mice to elephants; (2) they show that the maintenance requirements per unit weight decline with increasing weight not only as regards energy (or T D N) but also as regards nitrogen (or D C P) with some indication that a similar decline will be found to hold true with respect to most other nutrients. The maintenance requirements are shown in table B to vary not directly with body weight (as indicated by all current feeding standards), nor with the 2/3 power of body weight (as might be inferred from "Rubners' law") but with the 0.73 power ob body weight.

No finality would be claimed for the *absolute* values for energy and protein indicated in table B, even if conditions of activity and environmental temperature could be held constant. It is however, believed that future investigations are not likely to change appreciably the *relative* maintenance requirements between animals of different weights (i.e., they are not likely to change the slope of the curves in Figs. 6 and 7).

SUMMARY AND CONCLUSIONS

Basal metabolism, endogenous nitrogen excretion and possibly neutral sulphur excretion follow the same course with increasing body weight in mature animals of different species; they all increase with, roughly, the 0.73 (0.72 to 0.74) power of body weight. Creatinine, on the other hand tends to increase with the 0.90 power of body weight for mature animals of different species, and directly with body weight in animals of the same species. It follows that, within the limits of experimental errors, the ratios of endogenous nitrogen to basal metabolism and to a less extent the ratios of neutral sulphur to basal metabolism tend to remain constant for all body weights; while the ratios of creatinine to basal metabolism, and also creatinine nitrogen to endogenous urinary nitrogen, increase with body weight. Since the exponent relating creatinine with body weight of animals of different species is less than unity, therefore the ratio of creatinine to body weight (creatinine coefficient) tends to decrease with increasing live weight. Extensive prediction tables are presented based on these findings.

The direct proportionality between creatinine and body weight is in conformity with all the evidence that creatinine represents the muscular mass, and therefore the principal active mass, of the body. The correlation between basal metabolism and endogenous nitrogen in all mature warm-blooded animals indicates a general similarity in the chemistry of animals; a constant balance level in all animals between breakdown and resynthesis. Such a balance, and correlation between energy and nitrogen metabolism, might be expected from Borsook & Keighley's theory of protein metabolism since: (a) deamination is an oxidative process; (b) urea synthesis requires the combustion of some metabolite, whether oxygen is used or not; (c) resynthesis of ammonia and amino acids to protein requires energy. This much can not be said as regards neutral sulphur, since (a) it is not a well defined entity; (b) it is not altogether independent of protein intake.

		P	ound Sys	stem					Ģ	ram Syst	tem		
	T. D. 1	N., 1bs.	D. C.	P., lbs.	T. D. N	., Cals.		T. D. N	I., gms.	D. C. I	., gms.	T. D. 1	N., Cals.
Body wt. lbs.	per animal	per 1000 lbs.	per animal	per 1000 lbs.	per animal	per lb.	Body wt. kgi.	kgs. per animal	gms. per kg.	per animal	per kg.	per anımal	per kg.
body wt. lbs. 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 500 400 500 400 500 1255 100 755 50 255 100 988 77 65 4 330 250 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1255 100 1250 125	per animal 11.20 10.79 9.95 9.52 9.08 8.63 8.63 8.63 8.63 8.63 5.74 6.75 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.21 4.65 5.22 9.08 8.63 5.21 4.65 5.21 4.65 5.22 9.08 8.63 5.21 4.65 5.21 4.65 5.22 9.08 8.63 5.21 4.65 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.22 9.08 8.63 5.55 7.44 5.21 4.65 5.22 9.08 8.63 5.22 9.09 1.48 9.22 9.08 8.14 9.22 9.09 1.48 9.22 9.08 8.03 7.44 9.22 9.03 1.49 9.181 1.102 9.03 6.03 0.043 6.03 1.04 9.03 0.043 6.03 0.043 6.03 0.043 6.03 0.043 6.030 0.030 0.03000 0.03000 0.03000 0.03000 0.030000 0.0300000000	per 1000 1bs. 5.60 5.68 5.68 5.85 5.95 6.05 6.29 6.43 6.29 6.43 6.29 6.43 6.75 6.75 6.75 6.75 6.75 6.16 6.29 6.43 6.75 6.75 6.75 6.16 6.29 6.43 6.75 6.17 7.44 8.65 5.85 5.85 6.16 6.29 6.43 6.75 6.16 6.29 6.43 6.75 6.16 6.29 6.43 6.75 6.15 6.16 6.29 6.43 6.75 6.15 6.16 6.29 6.43 7.77 7.44 8.65 5.16 8.97 9.80 10.455 11.27 11.24 8.28 23.40 24.11 24.87 25.88 26.83 28.20 30.40 5.68 5.95 6.16 6.29 6.43 8.97 9.80 10.455 11.27 8.14 8.28 23.40 24.87 25.88 26.83 28.20 30.40 32.40 32.40 32.40 32.40 34.60 5.38 5.00 5.85 5.00 5.16 6.16 6.29 5.17 7.44 8.28 23.40 24.87 25.88 26.83 28.20 30.00 32.40 34.60 5.36 5.35 5.00 5.16 6.88 5.16 6.16 6.19 7.17 7.44 8.28 23.40 24.87 25.88 26.83 28.20 30.00 32.40 34.60 5.45 8.38 28.20 30.00 32.40 34.60 5.35 5.45 5.35 5.00 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.16 5.16 5.16 5.29 5.16 5.16 5.29 5.16 5.16 5.29 5.20 5.16 5.16 5.20	pet animal 1.16 1.12 1.03 .988 .941 .894 .848 .848 .848 .848 .539 .648 .539 .648 .539 .480 .422 .359 .325 .291 .254 .175 .175 .175 .175 .175 .175 .175 .175	per 1000 1bs. .580 .589 .595 .606 .617 .627 .639 .667 .622 .667 .632 .667 .632 .720 .804 .844 .8929 .970 1.022 1.08 1.122 1.301 1.41 1.57 2.573 2.575 2.573 2.575 .595 .627 .639 .720 .804 .805 .804 .804 .804 .805 .804 .804 .805 .804 .805 .507	per animal 203000 195000 188000 173000 165000 148000 148000 14000 131000 122000 113000 122000 113000 122000 144000 84300 73755 62700 56900 50700 44400 37900 26800 22833 18500 13700 26800 22833 18500 13700 8288 2922 2555 2177 1766 1311 79.00 73.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67	per lb. 10.2 10.3 10.68 11.0 11.1 11.1 11.7 12.2 12.5 13.5 14.1 7 15.7 3 16.9 9 17.8 9 4 12.2 21.4 1 46.9 7 5 4.5 5 8.7 5 5 8.7 5 5 8.7 5 7 8 1.0 3 8 4 0 0 8 4 0 0 8 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	body kg: 1000 900 850 750 650 550 450 200 150 100 90 850 750 650 550 450 200 150 90 80 76 90 80 76 90 80 760 90 80 76 80 76 80 76 80 76 80 76 80 76 80 76 80 76 80 80 80 80 80 80 80 80	kgs per animal 5.45 5.05 4.63 4.43 4.23 3.97 3.77 3.53 3.27 3.05 2.80 2.53 2.26 1.99 1.69 1.36 1.20 1.02 0.943 0.783 0.783 0.783 0.783 0.783 0.423 0.423 0.423 0.523 0.423 0.423 0.523 0.423 0.523 0.423 0.523 0.423 0.523 0.423 0.523 0.545 0.161 0.146 0.130 0.114 0.970 0.0787 0.0585 0.353 0.327 0.353 0.327 0.353 0.327 0.353 0.327 0.353 0.327 0.353 0.423 0.423 0.523 0.423 0.175 0.161 0.146 0.130 0.130 0.142 0.353 0.327 0.353 0.327 0.353 0.327 0.353 0.323 0.327 0.353 0.327	gms. per kg. 5.45 5.61 5.79 5.91 6.04 6.18 6.42 6.78 7.23 7.59 6.04 6.18 6.42 6.78 7.23 7.59 10.5 10.5 10.5 10.5 10.5 11.7 12.3 13.1 14.17 18.9 4.12 20.9 21.7 22.8 3.6 3.7 9.5 3.6 3.7 9.5 10.5 1	per animal 564 524 480 460 436 340 390 263 235 206 175 1428 105 97.6 89.6 89.6 54.0 43.6 54.0 43.6 54.0 43.6 519.6 18.2 16.7 15.1 15.1 1.1.8 10.0 8.16 6.05 3.38 3.102 2.82 2.82 2.82 2.83 2.83 2.83 2.84 2.83 2.83 2.83 2.83 2.83 2.83 2.83 2.83	per kg. .564 .582 .593 .600 .613 .623 .623 .634 .650 .665 .682 .702 .751 .783 .824 .875 .947 1.02 1.05 1.082 1.121 1.27 1.355 1.453 2.09 2.165 2.36 2.50 2.72 3.655 2.50 2.50 2.55 2.56 2.50 3.675 3.775 3.7555 3.7555 3.7555 3.75555 3.75555555555	per animal 21800 20200 19400 18500 17700 16900 15100 14100 13100 12200 10100 9050 7950 6750 6750 6750 5450 4790 4070 3130 2800 2450 2090 1690 1690 1690 1690 1690 1690 1690 1	21.8 22.4 22.8 23.6 24.1 24.2 25.6 26.2 27.1 28.9 30.2 25.6 26.2 27.1 28.9 30.2 31.8 33.7 36.3 340.9 43.17 46.7 52.3 562.5 577.8 80.6 83.6 75.5 80.6 83.6 75.1 10 10 5 117 111 141 1506 162
.6 .5 .4 .3 .2	.0300 .0263 .0223 .0181 .0135 .0081	50.00 52.60 55.75 60.33 67.50 81.00	.00311 .00273 .00232 .00187 .00139 .00084	5.18 5.46 5.80 6.23 6.95 8.40	54.4 47.6 40.4 32.8 24.5 14.7	90.7 95.2 100.1 109.3 122.5 147.0	.6 .5 .4 .3 .2	.0243 .0213 .0181 .0146 .0109 .0065	40.5 42.6 45.3 48.7 54.5 65.0	2.52 2.20 1.87 1.52 1.13 .068	4.20 4.40 4.67 5.07 5.65 6.80	97.0 85.0 72.5 58.5 43.5 26.0	162 170 181 195 217 260

TABLE B—FEEDING STANDARDS FOR MAINTENANCE.*

*Computed from equation $Y = AM^{0.73}$ in which Y represents TDN (total digestible nutrients per day = digestible crude protein+digestible carbohydrates+digestible fat $\times 2.25$), or DCP (digestible crude protein per day = N $\times 6.25$) for body weight M, and from the assumptions that TDN energy (4 Cal. per gram or 1812 Cal. per pound) is twice basal-metabolism energy, and DCP is four times the DCP equivalent of endogenous urinary nitrogen. (The nutritive ratios are thus always 1:8.7 or what is the same, 10.34% of the total calories, or of the TDN, is in the form of protein.)

V. APPENDIX

The Probable Errors of The Exponents of the Equations in this Bulletin.—In order to determine whether or not the differences in the exponents of the several equations are significant, the probable and standard errors were computed. The standard error indicates that the chances are 2 to 1 that the true value of the exponent is within the range of plus or minus the standard error, whereas the probable error indicates that the chances are even that the true value of the exponent is within the range of plus or minus the probable error. The probable error is the standard

error times 0.6745. The standard error = $\left\{ \begin{bmatrix} \Sigma \log^2 Y / N - (M_{\log X})^2 \end{bmatrix} \begin{bmatrix} I - \rho^2 \end{bmatrix} \right\}^{\frac{1}{2}}$

Where Y=dependent variable, i. e. nitrogen, metabolism etc.

X=independent variable, body weight

 $M_{\log X}$ or $M_{\log Y}$ = Mean of log X or log Y

N=number of observations

 ρ =index of correlation

The following table summarizes the equations and the standard and probable errors of their exponents.

			Errors of	Exponent	
		Standard	error, σ_n	Probable er	ror, P.E. on
Figure	Equation	$n \pm \sigma_n$	Range	$n \pm P.E.\sigma_n$	Range
1 2 2a 3 4	$Q = 70.5 M^{0.734}$ $N = 146 M^{0.718}$ $T.N. = 283 M^{0.735}$ $NS = 6.85 M^{0.741}$ $C.N = 12.7 M^{0.896}$	$\begin{array}{c} .734 \pm .005 \\ .718 \pm .007 \\ .735 \pm .013 \\ .741 \pm .025 \\ .896 \pm .007 \end{array}$.729739 .711725 .722748 .716766 .889903	$\begin{array}{r} .734 \pm .003 \\ .718 \pm .005 \\ .735 \pm .009 \\ .741 \pm .017 \\ .896 \pm .005 \end{array}$.731737 .713723 .726744 .724758 .889903

Notes On Fecal Nitrogen.—As indicated in the text, the most serious obstacle to estimating the endogenous nitrogen expenses is the variability in the fecal nitrogen excretion. For one thing, the amount of the N-free diet consumption influences the fecal nitrogen. Schneider [Bioc. J. 28, 360 (1934)] found that the fecal N excretion in the rat is increased by 1 mg. if the dietary dry matter intake is increased by 1.26 gm. An analysis we made of Mitchell's data [J. Biol. Chem. 105, 537 (1934)] indicates that if the weight of the rat is held constant, the fecal N is increased by 1 mg., if the high carbohydrate diet is increased by 1.31 of if the high fat diet is increased by 1.43 gm. An analysis we made of data on rats by Fixsen & Jackson [Bioc. J. 26, 1919 (1932)] indicates that, when body weight is held constant, the fecal N is increased by 1 mg. if the dietary dry matter is increased by only 0.52 gm. The following table gives the equations and statistical constants.

$ \begin{array}{c} \text{Mitchells} \\ \text{hydrat} \\ \text{X}_1 = 13.9 \\ +1. \\ \text{R}_{1.2} \end{array} $	high c: e diet r 33+.12 3135X ₈ 3=.938	arbo- ats 76X	Mitchell die X ₁ =12.43 +1.4 R _{1.23}	ls high f t rats 5+0.101 1250X ₃ =.786	at IOX	Fixsen & Jackson's rats X ₁ =6.00+.02125X +.5247X ₃ R _{1.23} =.619			
Variables	β	%	Variables	β	%	Variables	β	%	
12.3 .166 16.4 13.2 .846 83.6		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.3 13.2 .447 .447					

Where

 $X_1 =$ Fecal nitrogen, mgs. per day

 $X_2 = Body$ weight, gms.

 $X_3 = Dry$ matter of food, gms. per day

 $R_{12.3} = Total or multiple correlation$

 β = Beta coefficient and represents the comparative importance of the various dependent variables

12.3 = Study between fecal-N and body weight with food intake held constant
13.2 = Study between fecal-N and feed intake with body weight held constant.
% = Indicates the per cent of comparative importance of the dependent variables.

According to the aforecited papers by Mitchell and by Schneider, the metabolic nitrogen of feces is made up of two distinct fractions; (1) a very small fraction, represented by the fecal nitrogen during fasting, considered as truly excretory; (2) a fraction which varies directly with the intake of dry matter, considered as a digestive waste. The equations in the preceding paragraph are of course based on the assumptions by Mitchell and Schneider. Mitchell further believes that the ratio of metabolic fecal nitrogen to dry matter consumed varies directly with the intake of indigestible nitrogenous matter. MISSOURI AGRICULTURAL EXPERIMENT STATION

From the time curves of nitrogen excretion on N-free diets we have taken the lowest values for nitrogen excretion for our 3 groups of rats (Missouri data), and determined the percentage ratio fecal/Urinary N with the following results: (1) For 21 immature rats (average initial body weight 51 grams), the fecal nitrogen was $27.29 \pm 0.63\%$ of the urinary nitrogen. (2) For 64 relatively mature animals (average initial body weight 363 grams) the fecal nitrogen was 26.84±0.54% of the urinary nitrogen. (3)For a third group of 20 rats ranging in weight from 31 to 382 grams the average fecal to urinary nitrogen percentage was 26.40 $\frac{.6745\sigma}{\mathrm{N-1}}$ [The probable error= ; where σ is the standard $\pm 0.68.$ deviation=the square root of $\Sigma X^2/N - (Mx)^2$.

N is the number of determinations

X is the percentage ratio

Mx is the mean of X.]

A similar examination of data on rats on N-free diets by Fixsen & Jackson [Bioc. J. 26, 1919 (1932)] indicates that fecal N/ urinary N=20.4%. An examination of the endogenous nitrogen data on rats by Terroine and Reichert [Arch. Internat. Physiol., 32, 337 (1930)] indicates that fecal N/urinary N=60%. The average of the data on the dog by Underhill and Goldschmidt []. Biol. Chem. 15, 341 (1913) gives fecal N/urinary N=25%. Siven's [Skand. Arch. Physiol., 10, 91 (1900)] data on humans indicate that the percentage ratio of fecal N/urinary N varies for his several experiments from 27 through 35 to 38%. Voltz' [Bioc. Z., 102, 151 (1920)] data on sheep indicate the fecal N/urinary N=71%; while Klein and Steuber's data on sheep [Bioc. Z 133, 137 (1922)] indicate a ratio of 87%. Data on cattle by Hart, Humphrey and Morrison [J. Biol. Chem. 13, 133 (1912)] indicate a fecal N/urinary N percentages of about 125% (one group gave an average of 138% on a very low N diet). When we averaged the results of several fasting experiments on steers by Benedict and Ritzman [Publication 377 Carnegie Institution of Washington (1927)] we found a fecal N/urinary N ratio of 28%. It is thus clear that feed ingestion has a profound influence on the fecal N excretion in rumi-This is further substantiated by Titus' [J. Agric. Res. 34, nants. 49 (1927)] experiments on steers. As the alfalfa in the ration was replaced by equivalent weights of cellulose the urinary nitrogen

30

was of course decreased, but the fecal N/urinary N percentage was increased on account of the relative constancy of the fecal N excretion, as indicated by, the following table. The steers were receiving 12 lbs. of feed divided between alfalfa and cellulose.

				Fecal N.
Alfalfa in diet	Protein in diet	Fecal N.	Urinary N.	Urinary N.
%	%	gm.	gm.	%
100	13.6	388	992	39
100	12.7	377	954	40
85	10.6	350	735	48
85	10.3	347	703	49
70	8.38	316	517	61
70	8.35	333	507	66
55	6.80	340	284	120
55	7.20	341	318	107
40	5.06	313	161	183

Beginning with the 85% alfalfa ration, the absolute fecal N excretion is seen to remain nearly constant. In other words, when the feed intake is held constant, the fecal N appears to be relatively independent of the N intake between the given limits of the N intake. Titus suggested that the metabolic nitrogen in the feces is dependent not only on the dry matter consumed (or dry matter digested) but also on the water content of the feces. He accordingly proposed the following equations on the basis of the above steer feeding experiments:

M=0.002813a -0.001704b

 $M_1 = 0.002428a_1 - 0.001562b_1$

in which M is weight of metabolic nitrogen in the feces, a is weight of dry matter digested, a_1 is weight of dry matter consumed, b is weight of water in the feces—all on the basis of 10-day feeding periods results. Analyzing these results Titus found that the metabolic nitrogen (for 10 days) is 219.14 gm. if the steers ingested 12 lbs. of alfalfa per day, and 184.95 gm. if they ingested 12 lbs. of paper pulp only; hence the amount of nitrogen in the feces of a steer consuming a nitrogen-free ration may not safely be taken as a measure of the amount of metabolic nitrogen resulting from the ingestion of an equal weight of alfalfa or other feeding stuff.

Animal and Sex	Chart No.	No. of Trials or Animals	Body Kgms.	Weight Lbs.	Basal Metabolism Cal / Day	Sources of Data
Elephant, 1 male & 1 female Elephant, male Beef Steers, Hereford, 815 Horses, Percheron females Horses, Percheron geldings Beef Steers, grade shorthorn Beef Steers (C. & D.) Dairy Cow, Holstein, 604 Dairy Cows, Holstein Beef Cows, Hereford Dairy Cows, Jersey Dairy Cows, Jersey Dairy Cows, Jersey Beef Steers, Shorthorn Beef Steers, Shorthorn	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3 10 EEE 2 16 4 EEE 2 3 5 4	3833 1360 922 700 675 650 615 601 508 500 500 500 420 392 336 281	8450 2998 2033 1543 1488 1433 1356 1325 1120 1102 1102 1102 1102 926 864 741	20924** 16020** 9996 8910 9743 8188 8554* 7420* 7958 7210 6600 7307 5865 6923* 5781* 4692*	Missouri (unpublished) Missouri (unpublished) Missouri (unpublished) Missouri Res. Bulls. 166 & 176 (1932) Missouri Res. Bulls. 166 & 176 (1932) Missouri Res. Bulls. 166 & 176 (1932) Mitchell et al, J. Agric. Res. 45, 163 (1932) Benedict & Ritzman, Public. 377, Carnegie Inst. Wash. (1927) Missouri (unpublished) Missouri Res. Bulls. 166 & 176 (1932) Missouri Res. Bulls. 166 & 176 (1932) Zuntz & Hagemann, Landw. Jahrb. 27 ErgebBd. III (1898) Forbes, Kriss et al. J. Agric. Res. 48, 1003 (1931)
Beef Steers (E. & F.) Swine, Duroc Jersey males Swine, Duroc Jersey females Pigs, 1 Middle White & 1 Berkshire Pigs, males & females Horses, Shetland pony gelding Human, Am. white males	17 18 19 20 21 22 23	2 E E E 5 3 E	244 200 200 200 72 88 70	538 441 441 159 194 154	4725* 3660 2780 2760 1342 2028* 1700	Missouri (unpublished) Benedict & Ritzman (see above) Missouri Res. Bulls. 166 & 176, (1932) Missouri Res. Bulls. 166 & 176, (1932) Deighton, J. Agric. Res. 19, 140 (1929) Smuts, Ill. Ph. Dissertation (1933), Urbana, Illinois Missouri (unpublished) Benedict et al; & Boothby & Sandiford
Human, Am. white females Sheep, ewes	24 25	E 3	60 42.7	132 94	1370 1105	See Mo. Res. Bull. 166 Benedict et al; & Boothby & Sandiford Benedict & Ritzman, Wiss. Arch. Landw. Abt. B., 1, 1 (1931); N. H. Agric.
Sheep, rams Sheep, Dorset wethers Sheep, Dorset ewes Sheep, Australian Merino ewes	26 27 28 29	3 E E 16	49.5 70 60 46.5	109 154 132 103	1306 1440 1135 1168*	Expt. Sta. 1ech. Bulls. 43 & 45 (1930) Benedict & Ritzman (see above) Missouri Res. Bull. 166-176 (1932) Missouri Res. Bull. 166-176 (1932) Lines & Peirce, Bull. 55 Council for Sc. & Ind. Res. Comm. Australia,
Dogs, male and female Dogs, male and female Dogs, male Dogs, male and female Dogs, female Dogs, male and female Rabbits, male and female Domestic fowls, male & female	30 31 32 33 34 35 36 37	E 5 13 14 7 E E	30.66 5.0 20.4 13.1 11.7 11.5 3.5 3.5	66.1 11.0 45.0 28.9 25.8 25.3 7.72 7.72	807 266 618 319 446 446 189 187	Melbourne Various (p. 84 Mo. Res. Bull. 166) Various (p. 85 Mo. Res. Bull. 166) Steinhaus Boothby See Kunde Am. J. Physiol. 78, 127 Lusk (1926) & 80, 681 (1927) Kunde Various (p. 85 Mo. Res. Bull. 166) Mitchell, Card, Haines, J. Agric. Res. 34, 349 (1927)

TABLE 1.-DATA ON BASAL METABOLISM PLOTTED IN FIGURE 1.

Goose, female	38	. 5	3.31	7.30	204	Hari Biochem Z 78 313 (1917)
Domestic fowls, R. I. R. (day expts)	39	8	2.57	5.66	157	Rendict Landauer & Fox Storre Ager Exp Sta Bull 177 (1932)
Fowls, R. I. R. Hens (day expts)	40	3	2.00	4.41	112	Benedict, Landauer & Fox, Storis right, Lap, Sta. Built, 177 (1992)
Fowls, R. I. R. Cocks (night expts)	41	7	2 89	6 37	131	Benedict, Landauer & Fox (see above)
Fowls, R. I. R. Hens (night expts)	42	10	1 99	4 39	112	Benedict, Landauer & Fox (see above)
Cat	43	ĩ	2.50	5 51	196	Heldene I Physical 12 410 (1902)
Rabbits, male and female	44	10	2.30	4 85	123	Smuth (neg chour)
Ducks, females	45	5	0 925	2 04	83 3	Haris (See above)
Guinea Pigs	46	Ĕ	0.70	1 54	63 7	Variana (0 S Ma Dachem, 2, 66, 545 (1916)
Guinea Pigs, male and female	47	õ	0.43	0.95	30 0	Smith (ne chour)
Pigeon, males	48	à	0.13	0.75	27 2	Didute (see above)
Doves, males	40	ដី	0.15	0.75	16 1	Didle (p. 60 Mo. Res. Dull. 100)
Rat. male	50	1 1	0.13	1 757	10.1	Riadie (p. 57 Mo. Res. Dull.)
Rat. male	51	1 1	0.797	1.757	51.0	Denedict, Horst, & Mendel, J. Nutrition, 5, 581 (1952)
Rat. male	52	1	0.700	1.550	151.9	Benedict, Horst, & Mendel, J. Nutrition, 3, 581 (1932)
Rate males	52	12	0.723	1.393	43.5	Benedict, Horst, & Mendel, J. Nutrition, 3, 581 (1932)
Rate males	55	12	0.464	1.00/	37.3	Benedict, Horst, & Mendel, J. Nutrition, 3, 581 (1932)
Rate high protein males	54		0.351	.0/0	32.3	Benedict, Horst, & Hendel, J. Nutrition, 5, 581 (1932)
Rate	33	<u> </u>	0.29	0.04	28.9	Missouri (Res. Bull. 166 & 1/6)
Rate male and famal	30		0.29	0.64	28.1	Benedict & McLeod (p. 73 Mo. Res. Bulls. 166 & 176)
Rate, male and female	57	E	0.29	0.64	24.7	Mitchell & Carman (p. 73 Mo. Res. Bulls. 166 & 176)
Data famala mill li	58	23	0.226	0.50	23.6	Smuts (see above)
Rats, lemales, milk diet, summer 1934	59	28	0.183	0.40	21.1	Missouri (unpublished)
Rats, normal females	60	143	0.141	0.31	15.6	Hemmingsen Skand. Arch. Physiol.
Kats, Ovariectomized	61	151	0.160	0.35	18.4	Hemmingsen Vols. 67 & 68 (1933-4)
Mice, quiet male & female	62	224	0.0276	0.061	5.0	Davis & Van Dyke J. Biol. Chem. 100
Mice, sleeping male & female	63	11	0.0276	.061	3.67	455 (1933)
Mice, male & female	64	9	0.025	.055	7.84	Smuts (see above)
Mice, male & female	65	32	0.025	.055	4.74	Benedict & Fox Pflugers Arch. 231, 30, (1933) see also Davis & Van Dyke
Mice, male & female	66	3	0.021	.046	4.81	Giaja and Males, Ann. Physiol. 4, 875 (1928)
Mice, male & female	67	4	0.016	.035	3.95	Aszodi, Biochem. Z. 113, 79 (1921)
Sparrow, male & female	68	10	0.022	.049	5.2	Benedict & Fox Pflugers Arch. 322, 357 (1933)
Canary, male and female	69	43	0.0163	.036	5.2	Benedict & Fox Pflugers Arch. 322, 357 (1933)
		Providential Contraction of Contract	1000 00 00 00 00 00 00 00 00 00 00 00 00		181.000	

 *=10% deducted from original values in order to change standing to lying values.
 **=30% deducted from the original value (10% for standing & 20% for heat increment of feeding).
 E = Data taken from equation relating basal metabolism to body weight for the particular species as given in Mo. Res. Bull. 166. .

Animals	Body Wt. kgs.	Urin. N. Mgs. per Day	Reference No.	Animals	Body Wt. kgs.	Urin. N. Mgs. per Day	Reference No.	Animals	Body Wt. kgs.	Urin. N. Mgs. per Day	Reference No.	Animals	Body Wt. kgs.	Urin. N. Mgs. per Day	Reference No.
Rats	.025	8.50	1	Rats	.233	43.8	3	Swine	109	4005	11	Rats	.416	88.9	17
(2nd	.027	8.64	1	,,	.235	54.8	5	Rate	132	4360	11	,,	.425	/8.0	17
series)	.032	10 3	1	"	240	51.3	3	,,,	.165	44.5	12	,,	.435	91.1	17
"	.039	10.7	î	"	.246	48.6	3	,,	.220	61.5	12	"	.444	105.4	17
"	.044	12.3	ī	"	.254	55.8	3	"	.225	51.5	12	"	.454	116.8	17
,,	.044	12.4	1	,,	.255	55.8	3	Rabbits	1.80	319	12	,,	.481	75.5	17
,,	.045	11.3	1	,,	.257	53.8	3	,,,	2.30	523	12	,,,	.488	81.8	17
**	.048	12.5	1	,,	.263	53.9	3	Deer	2.45	6/6	12	,,	.516	82.9	17
,,	.050	12.5	1	,,	. 290	63.9	3	Dogs	11.2	1199	12	"	.529	108 2	17
**	.050	14.5	1	Guinea	326	62 0	3	Swine "	11.5	1230	13	"	537	111 9	17
"	078	18.7	1	Pigs	.378	66.5	3	"	12.5	1122	13	"	.050	10.9	18
"	.086	21.1	î	.,,	.410	66.0	3	"	14.0	1302	13	"	.070	16.5	18
"	. 220	29.0	1	"	.425	71.0	3	,,	14.0	1381	13	,,	.090	20.4	18
**	.263	33.9	• 1	"	.430	83.1	3		15.5	1415	13		.110	21.3	18
,,	.284	34.7	1		.435	78.2	3	Rabbits	1.48	314	14		.130	21.6	18
,,	.315	45.7	1	,,	.481	88.7	3	,,	2.40	454	14	,,	.150	29.3	18
,,	. 340	40.8	1	,,	.482	83.3	3	,,	2.45	420	14	"	190	33.0	18
Rate	.337	12 0	1	Rabbite	1 61	180	3	,,	3 60	274	14	,,	210	34.7	18
(3rd	.044	12.0	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.68	231	ž	,,	4.39	659	14	"	.230	25.3	18
series)	.051	13.5	2	"	1.90	241.4	3	Swine	11.5	1449	14	Rabbits*	1.21	130	19
,,	.053	18.0	2	"	2.17	250	3	,,	12.0	1361	14	"	1.49	164	20
"	.053	14.5	2	,, .	2.22	251.5	3	"	14.0	1415	14	,,,	1.76	249	21
,,	.054	15.0	2	,,,	2.30	212.6	3		14.5	1280	14	Dogs*	12.2	1610	22
,,	.065	21.0	2	,,	2.40	274.6	3	,,	17.0	2680	14	,,	12.7	2200	22
**	.0/3	19.1	2	,,	2.49	340.2	3	• 2	17.5	1367	14	>>	13.1	1830	22
,,	.082	22.5	2	"	2.78	360.2	3 *	,,	12.0	1498	15	,,	18.5	1700	22
"	.092	24.0	2	Swine	67.2	2763	. 3	"	12.5	1563	15	Swine*	10.9	540	23
"	.099	22.0	$\overline{2}$	"	68.0	3080	3	,,	13.0	1915	15	"	14.3	960	24
,,	. 107	23.0	2	"	70.8	2464	3	,,	14.0	1609	15	,,	16.8	900	23
,,	. 109	19.5	2	,,,	75.0	2864	3	,,,	14.0	1769	15	,,,	17.7	1090	24
	.115	23.0	2	.,	79.2	3421	3	,,	15.0	1839	15	,,	19.5	1600	23
"	.120	28 0	22	"	12 5	726	4	,,	15.0	2413	15	>>	25.0	1320	25
"	160	31 0	2	"	12.5	762	4	,,	16.0	2271	15	"	26.3	1190	25
"	.177	38.0	2	"	13.5	1172	4	"	13.0	1646	16	"	37.2	1610	23
"	. 203	45.0	2	"	16.0	1318	4	,,	13.5	1325	16	>>	38.1	1880	26
**	.220	44.0	2	"	21.5	1838	4	"	14.0	2146	16	,,,	38.1	2000	26
,,	.240	62.0	2	Rats	.130	44.8	2	,,	21.0	2219	16	,,	38.5	1830	23
,,	. 250	42.0	2		.134	59.2	5	,,	23.0	2515	16	"	41.0	1540	20
Rate	.519	17 5	22	""	150	47 5	5	Rate	243	66	17	,,	46.3	2230	24
4th	.051	25.5	2	"	.151	56.0	5	"	.271	93	17.	"	68.1	2650	23
series)	.061	23.0	ĩ	"	.153	47.5	5	"	.286	90	17	"	74.9	2610	23
"	.062	24.8	2	"	.157	61.3	5	"	. 291	79.3	17	Sheep*	31.9	990	28
,,	.064	33.0	2	"	.162	58.8	5	,,,	. 294	81.9	17	,,	33.1	1030	29
,,	.069	29.8	2		.166	56.4	5	,,	.310	84.3	17	,,	35.0	2370	30
	.076	32.3	2	,,	.170	59.7	2	,,	.310	90.3	17	,,	32.0	2590	31
**	.082	18.5	2	"	179	42 2	5	"	322	71 7	17	,,	40 0	1910	30
**	.004	24 4	2	>>	183	63 8	5	"	329	92 9	17	,,	40.0	1710	30

TABLE 2.—DATA ON ENDOGENOUS URINARY NITROGEN, PLOTTED IN FIGURE 2.

34

», », », », », », », », », », », », », »	$.104 \\ .108 \\ .120 \\ .125 \\ .125 \\ .126 \\ .142 \\ .172 \\ .203 \\ .230 \\ .234 \\ .240 \\ .250 \\ .320 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .022 \\ .020 \\ .172 \\ .178 \\ .179 \\ .184 \\ .186 \\ .191 \\ .198 \\ .206 \\ .209 \\ .213 \\ .225 \\ .230 \\ .225 \\ .230 \\ .230 \\ .125 \\ .230 \\ .225 \\ .230 \\ .230 \\ .125 \\ .230 \\ .225 \\ .230 \\ .225 \\ .230 \\ .125 \\ .230 \\ .125 \\ .230 \\ .125 \\ .230 \\ .225 \\ .230 \\ .230 \\ .225 \\ .230 \\ .230 \\ .225 \\ .230 \\ .230 \\ .225 \\ .230 \\ .230 \\ .225 \\ .230 \\ .230 \\ .225 \\ .230 \\ $	$\begin{array}{c} 31.5\\ 34.4\\ 28.5\\ 52.0\\ 37.0\\ 31.5\\ 29.0\\ 40.0\\ 62.0\\ 561.5\\ 54.5\\ 42.0\\ 52.9\\ 15.4\\ 13.7\\ 16.0\\ 15.2\\ 16.7\\ 17.0\\ 40.0\\ 44.8\\ 39.2\\ 36.9\\ 44.8\\ 39.6\\ 44.8\\ 39.6\\ 45.7\\ 42.6\\ 38.0\\ 45.7\\ 42.6\\ 45.6$	222222222222223333333333333333333333333	<pre></pre>	.186.192.192.192.216.225.227.226.27815.515.517.024.58.59.09.511.513.214.715.518.513.214.715.513.2513.513.2513.513.513.513.513.513.513.513.	$\begin{array}{c} 69.8\\ 55.5\\ 39.9\\ 40.6\\ 86.7\\ 59.7\\ 83.0\\ 72.9\\ 81.2\\ 69.0\\ 1474\\ 1526\\ 1635\\ 2402\\ 997\\ 725\\ 911\\ 960\\ 1131\\ 1336\\ 1490\\ 1414\\ 1527\\ 1431\\ 1162\\ 4907\\ 8498\\ 1587\\ 4724\\ 1333\\ 1706\\ 1559\\ 2328\\ 2157\\ 4124 \end{array}$	\$ 5 5 5 5 5 5 5 5	33 37	. 334 . 339 . 340 . 347 . 349 . 353 . 355 . 356 . 357 . 358 . 358 . 368 . 368 . 368 . 368 . 374 . 374 . 375 . 376 . 381 . 383 . 388 . 388 . 388 . 388 . 388 . 388 . 388 . 388 . 394 . 396 . 396 . 396 . 396 . 396 . 396 . 396 . 398 . 401 . 403 . 406 . 409 . 409	83.9 97.7 107.8 108.3 77.6 89.8 94.8 75.4 90.7 100.8 77.1 82.6 863.5 98.0 79.7 80.9 98.0 79.7 80.9 98.0 79.3 106.3 103.6 81.4 80.8 98.4 91.9 203.9 81.4 80.8 81.4 80.8 98.5 98.4 91.9 81.4 80.8 81.4 80.8 81.4 91.5 91.6 81.4 80.8 81.4 91.5 91.6 82.1 91.6 82.1 91.6 82.1 91.6 82.1 91.6 82.1 91.6 82.1 91.6 91.6 91.6 91.6 91.6 91.6 91.6 91	17 17 17 17 17 17 17 17 17 17 17 17 17 1	" " " " " " " " " " " " " " " " " " "	$\begin{array}{c} \textbf{42.0} \\ \textbf{43.5} \\ \textbf{43.5} \\ \textbf{44.1} \\ \textbf{45.0} \\ \textbf{47.0} \\ \textbf{54.0} \\ \textbf{55.7} \\ \textbf{57.5} \\$	1840 2390 1160 2630 2410 3390 2020 2420 1990 1840 2130 2250 3040 3120 2600 3800 2510 1580 3760 3500 2890 3340 1750 2980 2930 2930 2010 6480 5030 6330 16320 16400 15000	31 31 29 30 31 31 32 33 34 35 34 36 37 38 32 38 37 32 38 37 32 40 38 41 42 40 38 44 5 46 47 47
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.	Missouri Res. Missouri data Smuts, Ph.D. Terroine, Bon Terroine, Bon Terroine, Bon Terroine, Giaj Terroine, Giaj Terroine, Giaj Terroine, Giaj Terroine, Cha Terroine, Cha Terroine, Cha Terroine, Cha Terroine, Cha Degan, ann., Degan, ibid., Degan, ibid., Fixsen & Jack Mitchell & Ha Meyers & Fin Serio, Biochen Mendel & Ros Underhill & G McCollum & S McCollum & S	Bull. 190 (' (unpublishe Dissertation inet, Chotin eichert, ibid. rnat. Physic met, Danma a & Boy, ib nampagne, H , Champagne, H Physiologie, 9, 469 ('33) p. 495 ('35) p. 495	33) ed) n, Univ. III. a & Mouro , 32, 337 (' ol., 34, 222 nville & Ma id., 14, 901 Bull. Soc. C ie, Bull. Soc Mourot, ibid bid., p. 235 (9, 451 ('33) 9 ('32) c. of Amino hem., 10, 2 J. Biol. Cher 40 ('23) Chem., 10, 2 J. Biol. Cher 49 ('85)	, Urbana t, Arch. I 30) ('31) ourot, Bul ourot, ibid ('32) him. Biol., c. Chim. B 1., 15, 203 () Acids, 49 05 ('13) 226 ('11) tem. 15, 34 Exp. Sta. I n., 16, 305	('32). Internat. I I. Soc. Chi I., 14, 47 (' , 15, 23 ('3 iiol. 15, 23 ('33) 90 ('29) 90 ('29) 90 ('29) 90 ('29) 91 ('13) 8 es. Bull. 2 ('13)	Physiol., 33, m. Biol., 14 32) 1) ('31) 21 ('12)	, 60 ('30) , 12 ('32)	26. 27. 28. 29. 30. 31. 32. 33. 35. 36. 37. 38. 39. 41. 42. 43. 44. 45. 45. 46. 47.	Mitchell & Kia Morgen et al., Voltz, Bioc. Z. Scheunert et a Morgen, et al, Morgen, ibid., Folin, Amer. J. Rochl, Deutsch Robison, Bi'oc Siven, Skand. Graham & Pou Landergren, SI Klemperer, Z. Smith, J. Biol. Kocher, Deutsch Deuel et al, J. Thomas, Arch. Klercher, Bioc. Steenbock, Nel Hart, Humphre Honcamp, Kou Copenhagen In estarred data w Research Cou	ck, J. Agr. I Landw. Ver, 102, 151 (Bioc. Z., J Landw. Ver 85, 1 ('14) . Physiol., 1 he Arch. Kl . J., 16, 131, Arch. Physi llton, Quart kand. Arch. Kl Klin. Med., Chem. 68, che, Arch. I Biol. Chem Anat. Physi . Z., 3, 45 (' son & Hart ey & Morris idela & Mul vestigators, ere taken fr uncil ('29).	Res., 35, 85 rs-Sta. 85, (20) 733, 137 (' s-Sta., 75, 3, 117 ('09) in. Med., 76, 407 ('22) ol., 10, 91 . J. Med., Physiol. 7 16, 550 (' 15 ('25) Klin. Med. . 76, 391 (siol., Physion, J. Bio ller, Bioc. . Landw. V om Mitch	57 ('27) 1 ('14) 22) 265 ('11) 53, 523 ('05) . ('00) 6, 82 (12) 4, 112 ('03) 89) 115, 82 (14) '28) iol. Abt. 219 r. Exp. Sta. . Chem. 13, Z., 143, 111 YersSta. 10. ells compilat	('09) Res. Bull 133 (12) ('23) I, 16 ('07) ion given	., 36 (15)) in Bull. 67	National

Animals	Body wt. kgs.	Total N. mgs. per day	Reference No.	Animals	Body wt. kgs.	Total N. mgs. per day	Reference No.
Mouse	.0150	12.85	1	Rabbit	2.60	562	1
Mouse	.0165	13.74	1	Rats	.050	31.6	2
Mouse	.0167	13.75	1	Rats	.100	55.2	2
Rat	.100	56.4	1	Rats	.200	75.8	2
Rat	.123	51.2	1	Chickens	.720	237	2
Rat	.162	65.7	1	Chickens	.740	240	2
Rat	.168	78.8	Ĩ	Chickens	.760	250	2
Rat.	.175	84.6	1 Î	Chickens	.800	253	2
Rat	.202	75.6	Ĩ	Chickens	.800	230	2
Pigeon	. 260	121	ī	Chickens	1.60	434	2
Pigeon	.300	133	ī	Chickens	1.80	454	2
Pigeon	. 340	151	ī	Chickens	2.00	291	3
Chicken	.910	218	ī	Chickens	1.92	281	4
Rabbit	1.88	405	l î	Chickens	2.25	475	4
Rabbit	2.15	463	l i	Chickens	2.28	324	4

TABLE 2A.—DATA ON TOTAL (INCLUDING FECAL) NITROGEN, PLOTTED IN FIGURE 2A.

Terroine & Sorg-Matter, Arch. Internat. Physiol. 29, 121 ('27).
 Terroine & Sorg-Matter, ibid., 30, 126 ('28).
 Mitchell & Hamilton, The Biochemistry of Amino Acids, p. 539 New York ('29).
 Ackerson et al, Poultry Science, 5, 153 ('25).

Animals	No. of Trials or Animals	Body Wt kgs.	Creatinine N Mgs. per Day	Reference No.	Animals	No. of Trials or Animals	Body wt. kgs.	Creatinine N Mgs. per Day	Reterence No.	Animals	No. of Trials or Animals	Body wt. kgs.	Creatinine N Mgs. per Day	Reference No.
Cattle	1	75	750	1	Pigs	6	15.5	199	7	Humans	18	57.0	594	27
Holstein	1	125	1500	1	Pigs	6	18.5	134	7	Humans	13	58.7	497	29
fem.	1	175	1460	1	Pigs	6	26.5	245	7	Humans fem.	26	58.7	340	30
fem.	4	225	2193	1	Pigs	7	8.0	85.6	8	Humans fem.	14	59.5	506	31
fem.	2	275	2860	1	Pigs	6	10.0	55.8	8	Humans	19	59.6	587	27
fem.	4	325	3388	1	Pigs	7	10.7	106	8	Humans	8	59.9	439	32
fem.	3	375	4200	1	Pigs	7	11.0	118	8	Humans fem.	6	60.3	289	33
fem.	3	425	4450	1	Pigs	9	11.5	110	8	Humans	9	60.9	515	29
fem.	3	475	4857	1	Pigs	6	11.7	97.1	8	Humans	25	61.6	586	27
Cattle	3	75	550	1	Pigs	4	11.7	98.6	8	Humans	6	62.1	303	34
Jersey	5	125	1004	1	Pigs	9	12.0	128	8	Humans	_7	63.3	579	29
fem.	5	175	1594	1	Pigs	8	12.0	119	8	Humans	57	63.9	5/3	27
fem.	8	225	2190	1	Pigs	14	12.0	99	8	Humans	17	64.0	420	29
tem.	10	275	2635	1	Pigs D	2	13.0	50.2	ð	Humans	14	64.4	555	29
iem.	ě	325	2898	1	F1g8	12	12.0	111	0	Humans	47	66 2	431	27
Iem.	0	0 037	0 67	12	Pigs	12	13.0	120	0	Humans	16	69 3	579	29
Kats Mined	0	0.057	1.00	2	Pigs	5	14.0	125	0	Humana mala	10	68 4	638	33
(low prot)	°,	0.005	1 31	2	Pige	13	14.2	08	õ	Humane	56	68.5	671	27
(low prot.)	4	0 113	2 12	2	Pige	10	132 0	1208	ó	Humane	10	68 9	674	36
(low prot.)	R R	0 137	2.25	2	Pige	6	13 2	110	10	Humans male	12	69.2	521	29
(low prot.)	12	0 163	2 37	2	Pige	7	18 3	131	10	Humans male	12	69 2	526	29
(low prot.)	13	0.187	2.98	2	Pigs	4	40.5	379	îŏ	Humans	13	70.3	503	29
(low prot.)	14	0.213	3.57	2	Pigs	6	66.0	466	ĩŏ	Humans	37	70.8	680	27
(low prot.)	ĩĩ	0.237	3.74	2	Pigs	ž	76.3	685	10	Humans	8	71.5	627	35
(low prot.)	18	0.263	4.03	2	Pigs	6	88.5	632	10	Humans	30	73.1	653	27
(low prot.)	10	0.287	4.35	2	Pigs	2	109.3	1175	10	Humans	24	75.4	596	27
(low prot.)	12	0.313	4.79	2	Pigs	7	132.0	880	10	Humans	22	77.7	600	27
(low prot.)	14	0.337	5.25	2	Pigs	8	11.2	93	11	Humans	14	80.0	593	27
Rats	3	0.038	0.58	2	Pigs	6	11.5	91	11	Humans	13	82.3	727	27
Mixed	8	0.062	0.81	2	Pigs	8	12.5	102	11	Humans	12	84.6	733	27
(high prot.)) 7	0.088	1.25	2	Pigs	4	14.0	113	11	Humans	12	86.5	573	29
(high prot.)) 4	0.112	1.63	2	Pigs	6	14.2	142	11	Humans	16	89.0	666	29
(high prot.)) 5	0.138	2.15	2	Pigs	6	15.5	162	11	Humans	5	89.2	750	27
(high prot.)) 13	0.162	2.33	2	Pigs	6	11.5	80.7	12	Humans fem	23	91.0	454	28
(high prot.)	9	0.188	2.80	2	Pigs	5	12.2	115	12	Humans	2	91.5	900	27
(high prot.)) 15	0.212	3.08	2	Pigs	5	12.5	116	12	Humans	1	96.1	850	27
(high prot.)) 12	0.238	3.42	2	Pigs	6	13.5	107	12	Humans	1	100.7	950	27
(high prot.)	24	0.262	3.75	2	Pigs	8	16.0	144	12	Kats	14	0.666	1.39	3.1
(high prot.)	18	0.288	4.08	2	Pigs	5	21.5	193	12	Rats	15	0.067	1.40	31
(nigh prot.)		0.312	4.75	2	rigs D	0	15.2	122	13	Rats	10	0.075	1.00	20
(nigh prot.)	2	0.338	5.05	2	rigs D	0	15.4	12/	13	Rats	10	0.107	2.73	30
(nigh prot.	2	0.362	5.15	2	rigs D:	2	17.0	124	13	Rats	1	0.14/	2.90	30
Rats Mixed	4 2	0.0/1	1.10	5	Pigs	D D	13 5	12/	13	Pate	17	0.290	4.50	40
Rats Mixed	1 2	0.071	1.10	3	Pigs	6 8	13.5	127	13	Rats	17	0.290	4.50	4 0

TABLE 3.—DATA ON CREATININE NITROGEN, PLOTTED IN FIGURE 3.

37

Animals	No. of Trials or Animals	Body Wt. kgs.	Creatinine N Mgs. per Day	Reference No.	Animals	No. of Trials or Animals	Body wt. kgs.	Creatinine N Mgs. per Day	Reterence No.	Animals	No. of Trials or Animals	Body wt. kgs.	Creatinine N Mgs. per Day	Reference No.
Rats Mixed	2	0.114	1.84	3	Pigs	8	13.5	128	14	Rabbits	6	0.764	5.92	41
Rats Mixed	2	0.138	2.17	3	Pigs	8	15.0	118	14	Rabbits	9	1.35	18.3	42
Rats Mixed	2	0.159	2.71	3	Pigs	8	15.0	124	14	Rabbits	18	1.85	25.7	42
Rats Mixed	2	0.172	3.19	3	Pigs	6	15.5	145	14	Rabbits	11	1.85	26.2	43
Rats Mixed	2	0.180	3.56	3	Pigs	5	15.5	162	14	Rabbits	12	2.08	32.0	44
Rats Mixed	2	0.189	3.57	3	Pigs	6	16.0	153	14	Rabbits	16	2.23	34.9	45
Mice	4	0.022	0.71	4	Pigs	3	16.0	169	14	Rabbits	11	2.77	42.2	46
Mice	5	0.028	0.82	4	Humans	5	3.28	9.5	15	Rabbits	12	2.82	16.1	46
Rats	23	0.266	3.43	4	Humans	12	3.40	16.9	16	Rabbits	11	2.95	20.9	4 0
Guinea pigs	9	0.430	5.48	4	Humans	3	8.80	8.7	17	Guinea pigs	5	2.20	46.8	47
Rabbits	10	2.20	37.8	4	Humans	12	3.83	10.3	18	Fox	1	4.78	45.0	48
Pigs	5	72.0	5.25	4	Humans	6	6.68	28.3	19	Coyotes	6	7.10	100	49
Rats	1	0.155	4.42	5	Humans	3	6.73	26.5	19	Coyotes	1	15.0	140	48
Rats	1	0.165	4.16	5	Humans	4	6.80	27.2	19	Dogs	149	3.17	28.2	50
Rats	1	0.220	5.67	5	Humans	7	7.79	34.9	16	Dogs	14	7.07	57.5	51
Rats	1	0.225	5.82	5	Humans	11	9.60	78.5	20	Dogs	2	7.44	76.4	52
Rabbits	1	1.80	17.0	5	Humans male	3	14.0	82.2	21	Dogs	13	9.48	97.7	50
Rabbits	1	2.30	23.0	5	Humans	4	14.4	64.5	22	Dogs	4	9.59	43.1	40
Rabbits	1	2.45	30.0	5	Humans	1	16.0	81.5	23	Dogs	4	11.1	101	53
Dogs	1	7.00	58.0	5	Humans	6	17.1	72.9	20	Dogs	3	11.7	121	54 .
gRats	2	0.11	0.99	6	H9mans	4	17.9	96.9	22	Dogs	4	14.5	152	55
Rats	4	0.13	1.44	6	Humans	8	18.5	133	24	Dogs	3	18.0	93.6	40
Rats	3	0.30	3.17	6	Humans	10	19.0	89	25	Dogs	1	26.4	410	56
Pigs	4	8.00	58.4	6	Humans	10	22.3	173	24	Pigs	3	18.1	156	57
Pigs	7	8.50	58.8	6	Humans	16	25.2	181	24	Pigs	2	24.5	148	58
Pigs	5	9.00	66.2	0	Humans male	Ļ	28.4	150	26	Pigs	6	31.5	337	29
Pigs	4	9.50	09.0	0	Humans	4	28.7	176	22	Pigs	ļ	40.3	488	57
Pigs	4	9.50	/8.9	0	Humans male	1	30.0	90	26	Sheep	5	57.4	324	60
Pigs	8	11.2	111	0	Humans	1	33.5	301	23	Sheep	2	04.0	361	61
Rabbits	4	2.1	17 30	4	Humans	1	38.0	239	23	Sneep	5	82.0	051	60
Rabbits	4	3.3	4/.2	4	Humans	2	45.5	650	27	Camel	ļ	515	5450	02
rigs D	10	13.5	101	4	Humans	24	52.4	500	21	Steers	5	724	5160	03
rigs D:	10	15.0	140	4	Humans fem.	24	55.0	428	28	Steers	4	101	5755	03
rigs	10	15.0	159	/	Humans	12	54.7	639	27	Steers	20	030	5107	03
					numans	13	33.7	410	29	I				

.

TABLE 3.—DATA ON CREATININE NITROGEN, PLOTTED IN FIGURE 3.

Missouri, Res. Bull. 191, ('33) Missouri, Res. Bull. 189 & 190, ('33) Rose & Cook, J. Biol. Chem. 64, 325 ('25) Smuts, Univ. Illinois, Ph. Dissertation, Urbana ('33). 3. 4. 5. Terroine, Champagne & Mourot, Bull. Soc. Chim. Biol. 15, 203, ('33) 6. Terroine, Bonnet, Danmanville & Mourot, Bull. Soc. Chim. Biol., 14, 12, ('34) 7. Terroine, ibid., p. 47 8. Terroine & Danmanville, ibid., p. 68 Terroine & Champagne, ibid., 15, 23, ('33) Terroine, Boy, Champagne & Mourot, ibid., 15, 42, (33) Terroine, Bonnet & Champagne, ibid., p. 235 Terroine, Bonnet & Chotin, Arch. Internat. Physiol. 33, 60, ('30) 10 11 12 Giaja, ibid., 34, 222, ('31) Garot, ibid., p. 55, ('27) Amberg & Morrill, J. Biol. Chem., 3, 311 ('07) Roughichitch, Am. J. Dis. Child., 31, 504 ('26) 13. 14. 15. 16. Ellinghaus, Muller & Standel, Z. Physiol. Chem. 150, 133 ('25) 17. Amberg & Rowntree, John Hopk. Hosp. Bull. 21, 40 ('10) Gamble & Goldschmidt, J. Biol. Chem. 40, 199 ('19) 18. 19. Denis & Kramer, J. Biol. Chem. 30, 189 ('17) Powis & Raper, Biochem. J. 10, 363 ('16) Harding & Gaebler, J. Biol. Chem. 54, 579 ('22) Folin & Denis, J. Biol. Chem. 11, 253 ('12) 20. 21. 22. 23. Wang. Frank, Kern, & Hays, Am. J. Dis. Child. 32, 360 ('26) Sawyer et al, Am. J. Dis. Child. 15, 1, ('18) 24. 25. Krause, Quart. J. Exper. Physiol. 7, 87 ('13-'14) 26. Beard, Human Biol. 4, 351, ('32) 27. 28. Denis & Minor, J. Biol. Chem. 31, 561 ('17) Folin, Am. J. Physiol. 13, 45, 66 & 117 ('05) Tracy & Clark, J. Biol. Chem. 19, 115 ('14) Hodgson & Lewis, Am. J. Physiol. 87, 288 ('28) 29. 30. 31. 32. McLaughlin & Blunt, J. Biol. Chem. 58, 285 ('14)

- 33.
- 34.
- Hull, J. Am. Chem. Soc. 36, 2146 ('14) Krause, Quart. J. Physiol. 4, 293 ('11) Palmer, Means & Gamble, J. Biol. Chem. 19, 239 ('14) Youngburg & Finch, J. Biol. Chem. 60, 335 ('26) Mitchell, Beadles & Keith, J. Biol. Chem. 71, 15 ('26) Mitchell & Carman, J. Biol. Chem. 68, 183 ('26) Folin & Morris, J. Biol. Chem. 14, 509 ('13) Chaputin & Kingard L. Biol. Chem. 99, 125 ('32) 35.
- 36.
- 37.
- 38.
- 39.
- Chanutin & Kinard, J. Biol. Chem. 99, 125 ('32) 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- Chanutin & Kinard, J. Biol. Chem. 99, 125 (32) Krause, Quart. J. Exper. Physiol. 1, 87, ('13, 14) Myers & Fine, I. Biol. Chem. 15, 283, '13) Myers & Fine, ibid., 14, 9, ('13) Shapiro & Zwarenstein, Bioc. J. 26, 1880 ('32) Mandel & Rose, J. Biol. Chem. 10, 213 ('11, 12) Schenk, Archiv. Exper. Pathol. & Pharm. 95, 45 ('22) Palledia & Kartinova Bioz ('25) 46.
- 47. Palladin & Kratinowa, Bioc. Z., 159, ('25)
- 48. Hawk, J. Biol. Chem. 8, 465, ('10)
- Hunter & Givens, J. Biol. Chem. 8, 449 ('10) 49.
- Harding & Gaebler J. Biol. Chem. 57, 25 ('23) 50.
- 51.
- Osterburg & Wolf, Bioc. Z. 5, 304 ('07) Benedict & Osterberg, J. Biol. Chem. 18, 195 ('14) 52.
- 53.
- 54.
- Bollman, J. Biol. Chem. 85, 169, (1929) Benedict & Osterberg, ibid., 56, (229 ('23) Underhill & Goldschmidt, J. Biol. Chem. 15, 341 ('13) Howe, Mattill & Hawk, J. Biol. Chem. 11, 103 ('12) McCollum & Hoagland, J. Biol. Chem. 16, 299 ('13) 55.
- 56.
- 57.
- 58. Gross & Steinbach, J. Biol. Chem. 47, 33 ('21)
- 59. McCollum & Steinbock, J. Biol. Chem. 13, 209 ('12)
- Palladin, Arch. Ges. Physiol. 203, 73, ('24) 60.
- Hunter, Quart. J. Exper. Physiol. 8, 13 ('14, 15) Read, J. Biol. Chem. 64, 615 ('25) 61.
- 62.
- 63. Carpenter , Am. J. Physiol., 81, 518 ('27)

Animals	No. of Trials or Animals	Body wt. kgs.	Neutral Sulphur Mgs/day	Reference No.	Animals	No. of Trials or Animals	Body wt. kgs.	Neutral Sulphur Mgs⁄day	Reference No.	Animals	No. of Trials or Animals	Body wt. kgs.	Neutral Sulphur Mgs⁄day	Reference No.
Rabbits Rabbits Pigs Pigs Pigs Pigs Humans Humans Humans Humans Humans Humans Humans Humans Rats Pigs Pigs Pigs Pigs Pigs Pigs Pigs Pig	Animals 9 8 5 17 6 4 9 6 6 5 4 4 5 2 5 5 5 6 6 6 9 8 8 8 9 7	kgs. 2.52 3.25 3.58 13.3 14.5 17.5 18.0 57.5 57.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 0.212 0.220 11.5 11.5 11.5 11.5 16.0 16.0 16.0 16.0 16.0 16.0 16.0	$\begin{array}{c} Mgs \ / day \\ 20.8 \\ 16.0 \\ 25.6 \\ 41.8 \\ 37.8 \\ 51.4 \\ 44.0 \\ 130.8 \\ 131.0 \\ 60.3 \\ 94.3 \\ 86.8 \\ 84.8 \\ 108.0 \\ 90.6 \\ 3.3 \\ 2.7 \\ 37.0 \\ 38.0 \\ 45.0 \\ 51.0 \\ 58.0 \\ 27.0 \\ 45.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 27.0 \\ 48.0 \\ 58.0 \\ 58.0 \\ 27.0 \\ 58.0 \\ 5$	No. 1 1 1 1 1 1 1 1 1 1 1 1 1	Pigs Pigs Pigs Rats Rats Rats Rats Guinea Pigs "" Rabbits Rabbits Rabbits Rabbits Rabbits Rabbits Rabbits Rabbits Humans Humans Humans Horses Horses Pigs	Animals 11 8 10 6 6 3 6 4 3 2 6 5 5 2 13 12 3 8 8 6 5 5 2 13 12 3 8 8 6 5 5 5 2 13 12 3 8 8 6 6 5 5 5 5 5 2 13 12 3 8 8 8 8 8 8 8 8 8 8 8 8 8	kgs. 120 120 0.185 0.185 0.191 0.192 0.195 0.445 0.712 0.725 0.780 0.785 1.782 1.782 1.782 1.3.4 14.6 3.25 14.5 19.5 42.2 330 360 384 115	Mgs/day 210 367 427 4.4 4.5 3.6 1.3 1.3 1.3 1.3 1.3 5.7 8.3 7.6 9.7 8.3 45.2 33.4 8.9 27.1 30.4 74.5 1118 1130 834 280	No. 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Pigs Humans Humans Humans Humans Humans Humans Humans Humans Humans Humans Rabbits Rabbits Dogs Dogs Dogs Dogs Dogs Pigs Pigs Pigs Pigs Humans	Animals 13 10 13 9 7 17 14 16 13 12 16 3 7 14 11 6 11 1 6	kgs. 21.5 55.7 57.5 58.7 60.9 63.3 64.0 64.4 68.3 70.3 86.5 89.0 2.27 2.59 7.07 7.23 9.6 12.0 10.0 16.0 16.0 17.7 24.7 29.7 69.5 80.0 1	Mgs/day 52.8 139.0 223 257 207 167 246 154 166 185. 234 302 17.0 22.6 52.2 80.6 50.0 53.0 68.3 44.3 25.0 51.5 199 209 98 121	No. 4 5 5 5 5 5 5 5 5 5 5 5 5 5
Pigs Pigs Pigs Pigs Pigs Pigs	4 8 5 8 5	32.5 32.5 32.5 120.0 120.0	62.0 91.0 43.0 137.0 162.0	2 2 2 2 2 2 2	Pigs Pigs Pigs Pigs		12.5 12.5 13.5 16.5	31.0 36.0 40.0 48.5	4 4 4 4	Humans Steers Steers Steers	8 19 4 5	64.0 636 707 724	120 236 1723 1339	17 18 18 18

TABLE 4.—DATA ON NEUTRAL SULPHUR, PLOTTED IN FIGURE 4.

.

.

 1. Amann, Arch. Internat. Physiol., 37, 121 ('33)
 7. O'Shima, H. Chosen Med. Assoc. p. 431 ('28)
 13. McCollum & Hoagland, J. Biol. Chem., 16, 229 ('13)

 2. Aman & Mourot, ibid., 37, 150 ('33)
 8. Osterburg & Wolf, Bioc. Z. 5, 304 ('07)
 14. Muldoon & Sherwin, J. Biol. Chem., 60, 59 ('29)

 3. Amann, ibid., 37, 168 ('33)
 9. Hele, Bioc. J., 18, 586 ('24)
 15. Gross & Steenbock, J. Biol. Chem., 47, 33 ('21)

 4. Terroine, Bonnet, Chotin & Mourot, ibid., 33, 60 ('30)
 10. Cerecedo, J. Biol. Chem., 88, 695 ('30)
 16. Zeller, Arch. f. Physiol. p. 213 ('14)

 5. Folin, Am. J. Physiol., 13, 45, 66 & 177 ('05)
 11. Denis & Reed, J. Biol. Chem., 77, 627 ('28).
 18. Carpenter, Am. J. Physiol. 27, 445 ('08)

 6. Lewis, Updegraff & MacGuinty, J. Bio .IChem., 59, 59 ('24)
 12. Morgulis, J. Biol. Chem., 77, 627 ('28).
 18. Carpenter, Am. J. Physiol. 81, 518 ('27)

-