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Abstract

Let p be a prime and ϑ an integer of order t in the multiplicative group modulo p. In this

paper, we continue the study of the distribution of Diffie–Hellman triples (ϑx, ϑy, ϑxy) by

considering the closely related problem of estimating exponential sums formed from linear

combinations of the entries in such triples. We show that the techniques developed earlier

for complete sums can be combined, modified, and developed further to treat incomplete

sums as well. Our bounds imply uniformity of distribution results for Diffie–Hellman

triples as the pair (x, y) varies over small boxes.

1. Introduction

Let p be a prime and ϑ an integer of order t | p− 1 in the multiplicative group modulo

p, that is, ϑt ≡ 1 (mod p) but ϑj 6≡ 1 (mod p) for 1 ≤ j < t. In this paper we continue

the study of the distribution of Diffie–Hellman triples (ϑx, ϑy, ϑxy) as initiated in [5];

see also [4, 8, 10]. Here we are interested in the case when the exponents x and y belong

to an aligned box inside the square [1, t]2, thus we are led to the problem of estimating

exponential sums with a linear combination of the entries ϑx, ϑy, ϑxy in such triples.

For integers a, b, c and subsets X ,Y of {1, . . . , t} we consider the double exponential

sum defined by

Sa,b,c(X ,Y) =
∑

x∈X , y∈Y

ep (aϑx + bϑy + cϑxy) ,

where as usual eq(z) = exp(2πiz/q) for all q ∈ N and z ∈ R.

When ϑ is a primitive root modulo p (that is, when t = p − 1) and X and Y are

intervals, such double exponential sums have been introduced and estimated in [5]. For
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complete sums (that is, when X = Y = {1, . . . , t}), the results of [5] have been improved

(and extended to arbitrary t | p− 1) in [4].

In this paper we show that the techniques of [4] and [5] can be combined and applied

to incomplete sums. As in [4, 5], we focus on estimates for sums of the form

Va,c(X ,Y) =
∑

y∈Y

∣

∣

∣

∣

∣

∑

x∈X

ep (aϑx + cϑxy)

∣

∣

∣

∣

∣

4

,

for which the Hölder inequality implies

|Sa,b,c(X ,Y)|
4
≤ (#Y)3 Va,c(X ,Y).

Throughout we take X = {L + 1, . . . , L + H}, Y = {M + 1, . . . , M + K}. Due to

periodicity, there is no loss of generality if we assume 1 ≤ H ≤ t, 1 ≤ K ≤ t and hence

we do so. This restriction will be convenient in a number of places in the proofs.

The sums Sa,b,c(X ,Y) and Va,c(X ,Y) arise naturally in number theory and we expect

that the bounds presented here will find applications similar to those derived from bounds

for single exponential sums with exponential functions, the theory of which is rather well

developed; see [12, 13, 14, 15, 16].

The study of double exponential sums of exponential type has also been motivated

by several applications to cryptography, for example to show the uniform distribution of

the Diffie–Hellman triples; see [5] for details, and also [2, 4]. More precise information

about the distribution of these triples over incomplete blocks follows from the results

given herein. Various other applications and generalisations of the results of [4, 5] can

be found in [1, 7, 8, 9, 10, 11, 18].

There is a standard method (see the final section of the paper) whereby incomplete

exponential sums of various types may be successfully bounded once bounds are given for

the corresponding complete sums. Such a method can be quickly applied in our case, and
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it leads to a bound which is fairly good when the range for x and y is almost complete. In

the more interesting case when the sums are shorter we are able to improve on this result

by combining elements in the proofs of [4] and [5] and adding new ingredients, rather

than directly applying the statement for the complete sum. In particular, we obtain a

new upper bound on the number of solutions of n-term exponential equations which we

hope may find several other applications.

Throughout the paper, the implied constants in the symbols ‘O’ and ‘�’ are absolute

unless specified otherwise. We also adopt the convention that [a, b] denotes the set of

integers x with a ≤ x ≤ b; for instance, below we write X = [L + 1, L + H ] instead of

X = {L + 1, . . . , L + H}.

Acknowledgements. We wish to thank Jean Bourgain for making available to us

his preprint [3] (see the final section), and Andrei Borodin for calling our attention to

an error in the earlier version of the manuscript. During the preparation of this paper,

W. B. was supported in part by NSF grant DMS-0070628, J. F. was supported in part

by NSERC grant A5123 and by a Killam Research Fellowship, S. K. was supported

in part by grants 02-01-00248 from the Russian Foundation for Basic Research and by

NSh-3004.2003.1, and I. S. was supported in part by ARC grant DP0211459.

2. Preparations

In this section we follow to some extent the ideas in Section 3 of [4] and Section 3

of [5]. However, we consider the more general case of incomplete sums as opposed to

summing over the full period t, and for this some new ideas lead to stronger results.

First, we recall the following well-known identity:
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Lemma 1. For any integer u, one has

p−1
∑

λ=0

ep(λu) =















0 if u 6≡ 0 (mod p),

p if u ≡ 0 (mod p).

Proof. See, for example, Exercise 11.a in Chapter 3 of [19].

For integers a, b, k, L, H with 1 ≤ H ≤ t we define the exponential sum

σk(a, b; L, H) =
L+H
∑

x=L+1

ep

(

aϑkx
)

et(bx).

We need the following upper bound on the size of such sums:

Lemma 2. With the notation as above, suppose that gcd(a, p) = 1 and that gcd(k, t) =

δ. Then for any integers b, L, H with 1 ≤ H ≤ t/δ, the following bound holds:

σk(a, b; L, H) � p1/2 log p.

Proof. For the case b = 0, this statement is equivalent to Lemma 2 of [13] or Theo-

rem 8.2 of [16]; the general case can be obtained using the same techniques without any

further adjustments.

From Lemma 2 we immediately derive the bound

σk(a, b; L, H) �

(

δH

t
+ 1

)

p1/2 log p (2·1)

for any H ≥ 1 provided that gcd(a, p) = 1.

Lemma 3. For integers b, L, H with 1 ≤ H ≤ t the following identity holds:

p−1
∑

λ=0

|σ1(λ, b; L, H)|2 = Hp.
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Proof. Indeed,

p−1
∑

λ=0

|σ1(λ, b; L, H)|
2

=

p−1
∑

λ=0

L+H
∑

x,y=L+1

ep (λϑx − λϑy) et(bx − by)

=

L+H
∑

x,y=L+1

et (b(x − y))

p−1
∑

λ=0

ep (λ (ϑx − ϑy)) .

Applying Lemma 1 to the inner sum, we obtain the desired identity.

Let a1, a2, a3, a4 be fixed integers coprime to p, and as before let L, H be integers with

1 ≤ H ≤ t. For arbitrary divisors d1, d2 of t we denote by Q=
d1,d2

(L, H) the number of

solutions to the system

a1ϑ
x1 + a2ϑ

x2 + a3ϑ
x3 + a4ϑ

x4 ≡ 0 (mod p),

x1 ≡ x3 (mod d1), x2 ≡ x4 (mod d2),

L + 1 ≤ x1, x2, x3, x4 ≤ L + H,

and by Q>
d1,d2

(L, H) the number of solutions to the system

a1ϑ
x1 + a2ϑ

x2 + a3ϑ
x3 + a4ϑ

x4 ≡ 0 (mod p),

x1 ≡ x3 (mod d1), x2 ≡ x3 (mod d2),

L + 1 ≤ x1, x2, x3, x4 ≤ L + H.

Then we have the following elementary upper bound:

Lemma 4. With the above notation, for any 1 ≤ H ≤ t and any divisors d1, d2 of t

we have

max
{

Q=
d1,d2

(L, H), Q>
d1,d2

(L, H)
}

� H3/d1d2 + H2.

Proof. Indeed, to obtain the bound for Q=
d1,d2

(L, H) we begin by counting those solu-

tions for which

a1ϑ
x1 + a3ϑ

x3 ≡ 0 ≡ a2ϑ
x2 + a4ϑ

x4 (mod p).

Here each value of x1 gives rise to at most one value of x3 (since 1 ≤ H ≤ t), and each
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value of x2 gives rise to at most one value of x4. Thus there are at most H2 of these

“diagonal” solutions. For the other solutions, where

a1ϑ
x1 + a3ϑ

x3 ≡ η ≡ −(a2ϑ
x2 + a4ϑ

x4) (mod p)

for some η 6≡ 0 (mod p), every choice of x1, x3 (there are no more than H(H/d1 + 1)

such choices) determines a nonzero class for ϑx2(a2 +a4ϑ
x4−x2). Once we specify x4 −x2

(there are no more than 2H/d2 + 1 ways to do this) the rest is determined. Thus,

Q=
d1,d2

(L, H) ≤ H(H/d1 + 1)(2H/d2 + 1) + H2 � H3/d1d2 + H2.

The bound for Q>
d1,d2

(L, H) is even easier. We see that

Q>
d1,d2

(L, H) ≤ H(H/d1 + 1)(H/d2 + 1) � H3/d1d2 + H2.

For small values of d1, d2 one can improve on the above result via exponential sums.

Lemma 5. With the notation as above, for any 1 ≤ H ≤ t and any divisors d1, d2 of

t the bounds

Q=
d1,d2

(L, H) =
H4

d1d2p
+ O

(

Hp log2 p
)

and

Q>
d1,d2

(L, H) =
H4

d1d2p
+ O

(

Hp log2 p
)

hold.

Proof. By Lemma 1 we have the exponential sum representation:

Q=
d1,d2

(L, H) =
1

p

p−1
∑

λ=0

L+H
∑

x1,x2,x3,x4=L+1
x1≡x3 (mod d1)
x2≡x4 (mod d2)

ep (λ(a1ϑ
x1 + a2ϑ

x2 + a3ϑ
x3 + a4ϑ

x4)) .

The contribution from terms with λ = 0 is equal to Tp−1, where T is the number of
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solutions to the system

x1 ≡ x3 (mod d1), x2 ≡ x4 (mod d2), L + 1 ≤ x1, x2, x3, x4 ≤ L + H.

Thus,

T = H2(H/d1 + O(1))(H/d2 + O(1))

= H4/d1d2 + O(H3/d1 + H3/d2 + H2)

= H4/d1d2 + O(H3) = H4/d1d2 + O
(

Hp2 log2 p
)

.

For the rest of the sum, which we denote by R, we have

R =
1

p

p−1
∑

λ=1

L+H
∑

x1,x2,x3,x4=L+1
x1≡x3 (mod d1)
x2≡x4 (mod d2)

ep (λ(a1ϑ
x1 + a2ϑ

x2 + a3ϑ
x3 + a4ϑ

x4))

=
1

p

p−1
∑

λ=1

L+H
∑

x1,x2,x3,x4=L+1

ep (λ(a1ϑ
x1 + a2ϑ

x2 + a3ϑ
x3 + a4ϑ

x4))

×
1

d1d2

d1
∑

b1=1

ed1
(b1(x1 − x3))

d2
∑

b2=1

ed2
(b2(x2 − x4))

=
1

d1d2p

d1
∑

b1=1

d2
∑

b2=1

p−1
∑

λ=1

σ1(λa1, tb1/d1; L, H)σ1(λa2, tb2/d2; L, H)

× σ1(λa3,−tb1/d1; L, H)σ1(λa4,−tb2/d2; L, H).

To two of the sums, say σ1(λa3,−tb1/d1; L, H) and σ1(λa4,−tb2/d2; L, H), we apply
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the bound of Lemma 2 and then apply the Cauchy inequality:

R �
(p1/2 log p)2

d1d2p

d1
∑

b1=1

d2
∑

b2=1

p−1
∑

λ=1

|σ1(λa1, tb1/d1; L, H)| |σ1(λa2, tb2/d2; L, H)|

≤
log2 p

d1d2

d1
∑

b1=1

d2
∑

b2=1

(

p−1
∑

λ=1

|σ1(λa1, tb1/d1; L, H)|
2

)1/2

×

(

p−1
∑

λ=1

|σ1(λa2, tb2/d2; L, H)|
2

)1/2

≤
log2 p

d1d2

d1
∑

b1=1

d2
∑

b2=1

(

p−1
∑

λ=0

|σ1(λ, tb1/d1; L, H)|
2

)1/2

×

(

p−1
∑

λ=0

|σ1(λ, tb2/d2; L, H)|
2

)1/2

.

Using Lemma 3 we obtain the first bound stated in the lemma.

The proof of the second bound is almost identical.

Next, we need an upper bound for the number of zeros of exponential equations over

a finite field. The one given here improves that used in [5] (see Lemma 9 therein), the

original version of which dates back to [17] .

Lemma 6. Fix n ≥ 2, and let a1, . . . , an, ϑ1, . . . , ϑn ∈ F
∗ be 2n arbitrary nonzero

elements of a field F. Let rij denote the multiplicative order of ϑi/ϑj , 1 ≤ i < j ≤ n (and

formally set rij = ∞ if ϑi/ϑj is of infinite order). For n = 2 put ρ = r12, and for n ≥ 3

define

ρ = max
1≤k≤n

min
1≤i<j≤n
i6=k,j 6=k

rij .

Then the number T (N) of solutions of the equation

a1ϑ
x
1 + . . . + anϑx

n = 0, 1 ≤ x ≤ N,

satisfies the bound

T (N) ≤
(

15
4

)n−2
N
(

N−1/(n−1) + ρ−1/(n−1)
)

.
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Proof. We prove the bound by induction on n, the initial case n = 2 being trivial.

Now suppose that n ≥ 3 and that the result holds for all exponential equations with

no more than n − 1 terms.

Clearly we may assume that T (N) ≥ ( 15
4 )n−2 since otherwise the bound is trivial.

After reindexing if necessary, we may also assume that

ρ = min
1≤i<j≤n−1

rij .

Consider the set M of all ordered (n− 1)-tuples (x1, . . . , xn−1) of distinct solutions to

the equation in the statement of the lemma; clearly,

#M = T (N)(T (N)− 1) . . . (T (N) − (n − 2)).

For each (n − 1)-tuple (x1, . . . , xn−1) ∈ M we define the matrix

I(x1, . . . , xn−1) =
(

ϑ
xj

i

)n−1

i,j=1

and split M into two disjoint subsets:

• M1, the set of (n − 1)-tuples (x1, . . . , xn−1) ∈ M which satisfy the condition

det I(x1, . . . , xn−1) = 0;

• M2, the set of all other (n − 1)-tuples in M.

To estimate #M1 we remark that the condition det I(x1, . . . , xn−1) = 0 gives rise to

an (n − 1)-term exponential equation in xn−1:

A1(x1, . . . , xn−2)ϑ
xn−1

1 + . . . + An−1(x1, . . . , xn−2)ϑ
xn−1

n−1 = 0, (2·2)

where the coefficients A1(x1, . . . , xn−2), . . . , An−1(x1, . . . , xn−2) depend only on the val-

ues x1, . . . , xn−2. In particular, we see that

An−1(x1, . . . , xn−2) = I(x1, . . . , xn−2).



INCOMPLETE EXPONENTIAL SUMS AND DIFFIE–HELLMAN TRIPLES11

If I(x1, . . . , xn−2) 6= 0, then by induction xn−1 can take at most

(

15
4

)n−3
N
(

N−1/(n−2) + ρ−1/(n−2)
)

distinct values, while there are at most T (N)n−2 possible values for the other variables

x1, . . . , xn−2. Thus, the number of solutions (x1, . . . , xn−1) to (2·2) is at most

(

15
4

)n−3
T (N)n−2N

(

N−1/(n−2) + ρ−1/(n−2)
)

when I(x1, . . . , xn−2) 6= 0.

Similarly, the condition I(x1, . . . , xn−2) = 0 gives rise to an (n − 2)-term equation for

xn−2 with one of the coefficients equal to I(x1, . . . , xn−3). If I(x1, . . . , xn−3) 6= 0 then by

induction there are at most

(

15
4

)n−4
N
(

N−1/(n−3) + ρ−1/(n−3)
)

possibilities for xn−2 and at most T (N)n−2 possible values for the remaining variables.

However, if I(x1, . . . , xn−3) = 0 then we obtain an (n − 3)-term equation for xn−3.

Continuing in this manner, we eventually arrive at the equation I(x1, x2) = 0. This is

equivalent to ϑx1−x2

1 = ϑx1−x2

2 and therefore has at most (N/ρ+1) solutions for x1 when

all of the other variables are fixed. Putting everything together, we find that

#M1 ≤ T (N)n−2
n−1
∑

j=2

(

15
4

)j−2
N
(

N−1/(j−1) + ρ−1/(j−1)
)

< 4
11

(

15
4

)n−2
T (N)n−2N

(

N−1/(n−1) + ρ−1/(n−1)
)

.

We now turn our attention to the set M2. We claim that for each choice of a fixed

(n − 2)-tuple (z1, . . . , zn−2) with |zj | ∈ [1, N ], j = 1, . . . , n − 2, the number of (n − 1)-

tuples (x1, . . . , xn−1) ∈ M2 with zj = xj − xn−1, j = 1, . . . , n − 2, is at most N/ρ + 1.

Indeed, putting zn−1 = 0, we obtain the following system of equations for xn−1:

a1ϑ
zj

1 ϑ
xn−1

1 + . . . + an−1ϑ
zj

n−1ϑ
xn−1

n−1 = −anϑzj

n ϑxn−1

n , j = 1, . . . , n − 1. (2·3)
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Since (x1, . . . , xn−1) ∈ M2, we have

det
(

ϑ
zj

i

)n−1

i,j=1
= (ϑ1 . . . ϑn−1)

−xn−1 det I(x1, . . . , xn−1) 6= 0.

Therefore, by the Cramer rule we see that (2·3) implies that

ϑ
xn−1

i + Bi(z1, . . . , zn−2)ϑ
xn−1

n = 0, i = 1, . . . , n − 1,

with some coefficients Bi(z1, . . . , zn−2), i = 1, . . . , n− 1, depending only on z1, . . . , zn−2.

Thus, for each fixed (n−2)-tuple (z1, . . . , zn−2) there are at most N/ρ+1 possible values

for xn−1 after which x1, . . . , xn−2 are uniquely determined. Consequently,

#M2 ≤ (2N)n−2(N/ρ + 1).

Recalling that T (N) ≥
(

15
4

)n−2
, we now estimate

#M = T (N)(T (N)− 1) . . . (T (N) − (n − 2))

≥ T (N)n−1

(

1 −
n − 2
(

15
4

)n−2

)n−2

≥ 8
11 T (N)n−1,

the last inequality being valid for all positive integers n. Combining this result with the

above bounds on #M1 and #M2, we derive the inequality

T (N)n−1 ≤ 11
8 #M = 11

8 (#M1 + #M2)

≤ 1
2 ( 15

4 )n−2 T (N)n−2N
(

N−1/(n−1) + ρ−1/(n−1)
)

+ 11
8 (2N)n−2(N/ρ + 1)

Thus we have either

T (N)n−1 ≤ ( 15
4 )n−2 T (N)n−2N

(

N−1/(n−1) + ρ−1/(n−1)
)

or

T (N)n−1 ≤ 11
4 (2N)n−2(N/ρ + 1).
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Noting that, in the latter case,

(

11
4 · 2n−2

)1/(n−1)
<
(

15
4

)n−2

for all n ≥ 3, the result follows.

As usual, we denote by τ(m) the number of positive integral divisors of m ≥ 1:

τ(m) =
∑

d |m

1.

For any fixed ε > 0, we have the following well-known estimate:

τ(m) = O(mε), (2·4)

where the implied constant in the Landau symbol depends only on ε; see for example

exercise 11.c in Chapter 2 of [19].

3. Main Results

Theorem 7. Let X and Y be intervals of the form X = [L + 1, L + H ], Y = [M +

1, M + K] with 1 ≤ H, K ≤ t. Then for any integers a, c such that gcd(ac, p) = 1 the

following bound holds:

Va,c(X ,Y) �
(

H16/5K11/15p4/5 + H16/15Kt−4/15p34/15
)

τ(t)8/5 log8/5 p.

Proof. It is clear that the bound is nontrivial only if

H16/5K11/15p4/5 ≤ KH4

which is equivalent to the inequality H4K4/3 ≥ p4; since K ≤ t < p, we may therefore

assume without loss of generality that H ≥ p2/3.

Let us introduce a positive integer parameter h to be chosen later. We claim that

Va,c(X ,Y) � h−1
∑

y∈Y

p−1
∑

λ,µ=0

∣

∣

∣

∣

∣

∑

x∈X

ep (λϑx + µϑxy)

∣

∣

∣

∣

∣

4

+ Kh4.
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Note that if h > H this follows from the trivial bound Va,c(X ,Y) ≤ KH4.

To prove the claim in case h ≤ H (and thus h ≤ t) we argue as in the proof of

Theorem 12 of [5]. We apply Hölder’s inequality twice and make a translation of variables

x → x + z, obtaining:

Va,c(X ,Y) =
∑

y∈Y

∣

∣

∣

∣

∣

∑

x∈X

ep (aϑx + cϑxy)

∣

∣

∣

∣

∣

4

≤
∑

y∈Y

(

1

h

h−1
∑

z=0

∣

∣

∣

∣

∣

∑

x∈X

ep

(

aϑx+z + cϑ(x+z)y
)

∣

∣

∣

∣

∣

+ h

)4

� h−1
∑

y∈Y

h−1
∑

z=0

∣

∣

∣

∣

∣

∑

x∈X

ep (aϑzϑx + cϑzyϑxy)

∣

∣

∣

∣

∣

4

+ Kh4

≤ h−1
∑

y∈Y

p−1
∑

λ,µ=0

∣

∣

∣

∣

∣

∑

x∈X

ep (λϑx + µϑxy)

∣

∣

∣

∣

∣

4

+ Kh4

since, for each fixed y ∈ Y , the pairs (aϑz , cϑzy), z = 0, . . . , h − 1, are all necessarily

distinct modulo p due to the inequality h ≤ t. Using Lemma 1 it follows that

Va,c(X ,Y) � h−1p2T + Kh4, (3·1)

where T is the number of solutions (x1, x2, x3, x4, y) to the system

ϑx1 + ϑx2 ≡ ϑx3 + ϑx4 (mod p),

ϑx1y + ϑx2y ≡ ϑx3y + ϑx4y (mod p),

x1, x2, x3, x4 ∈ X , y ∈ Y .

Using Lemma 6 with n = 4 we see that, for each fixed quadruple (x1, x2, x3, x4), there

are at most

Nd ≤ 15K(K−1/3 + t−1/3d1/3)

values of y ∈ Y which satisfy that system, where

d = min
1≤k≤4

max
1≤i<j≤4
i6=k,j 6=k

gcd(xi − xj , t). (3·2)
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We fix a divisor d of t and denote by Md the number of quadruples (x1, x2, x3, x4) for

which (3·2) holds. The condition (3·2) implies that there is a permutation {i1, i2, i3, i4}

of the set {1, 2, 3, 4} such that

gcd(xi1 − xi3 , t) = d1 gcd(xi2 − xi4 , t) = d2

or else such that

gcd(xi1 − xi3 , t) = d1 gcd(xi2 − xi3 , t) = d2

for two divisors d1, d2 of t with min{d1, d2} = d. (In the latter case we can also assert

that gcd(xi1 − xi2 , t) = d3 for a third divisor d3 ≥ d but this is unnecessary.) Thus, for

each fixed d there are at most 2τ(t) suitable pairs (d1, d2). Using Lemmas 4 and 5 we

deduce that

Md � min
{

H3/d2 + H2, H4/d2p + Hp log2 p
}

τ(t).

We now substitute the above bounds in the inequality

T ≤
∑

d | t

MdNd,

and choose optimally between the bounds for Md, namely using the first inequality for

d > B and the second for d ≤ B, where B = Hp−1/2 log−1 p. This yields the estimate

T � (Σ1 + . . . + Σ8) τ(t),
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where

Σ1 = H4K2/3p−1
∑

d | t
d≤B

d−2,

Σ2 = HK2/3p log2 p
∑

d | t
d≤B

1,

Σ3 = H4Kt−1/3p−1
∑

d | t
d≤B

d−5/3,

Σ4 = HKt−1/3p log2 p
∑

d | t
d≤B

d1/3,

and

Σ5 = H3K2/3
∑

d | t
d>B

d−2,

Σ6 = H2K2/3
∑

d | t
d>B

1,

Σ7 = H3Kt−1/3
∑

d | t
d>B

d−5/3,

Σ8 = H2Kt−1/3
∑

d | t
d>B

d1/3.

Using elementary estimates we obtain that

Σ1, Σ3 � τ(t)H4K2/3p−1,

Σ2, Σ5 � τ(t)HK2/3p log2 p,

Σ4, Σ7 � τ(t)H4/3Kt−1/3p5/6 log5/3 p,

Σ6, Σ8 � τ(t)H2K.

Combining the above estimates we bound T by

T �
(

H4K2/3p−1 + HK2/3p + H4/3Kt−1/3p5/6 + H2K
)

τ(t)2 log2 p.
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On the other hand, the inequality

H4K2/3p−1 < HK2/3p

is equivalent to H < p2/3; thus it is never satisfied. Similarly, the inequality

H4K2/3p−1 < H2K

is equivalent to H2 < K1/3p, and this is less than p4/3 which is also not possible for

H ≥ p2/3. Therefore

T �
(

H4K2/3p−1 + H4/3Kt−1/3p5/6
)

τ(t)2 log2 p.

Inserting this bound in (3·1) and then optimising with the choice

h =
⌊(

H4/5K−1/15p1/5 + H4/15t−1/15p17/30
)

τ(t)2/5 log2/5 p
⌋

,

we conclude the proof.

The special cases where gcd(ac, p) 6= 1 are not covered by the above theorem. For

completeness, we give results for these as well. Of course, if both a and c are divisible by

p then there can be no nontrivial bound. In the other cases we have:

Theorem 8. Suppose that gcd(a, c, p) = 1 but gcd(ac, p) 6= 1. Assume that p1/2 log p ≤

H, K ≤ t. Then

• if a ≡ 0 (mod p) we have

Va,c(X ,Y) � H4Kt−1τ(t)p1/2 log p + Kτ(t)p2 log4 p

• while if c ≡ 0 (mod p) we have

Va,c(X ,Y) � Kp2 log4 p.
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Proof. If a ≡ 0 (mod p) then c 6≡ 0 (mod p), and we have

Va,c(X ,Y) =
∑

d | t

∑

y∈Y
gcd(y,t)=d

∣

∣

∣

∣

∣

∑

x∈X

ep (cϑxy)

∣

∣

∣

∣

∣

4

=
∑

d | t

∑

y∈Y
gcd(y,t)=d

|σy(c, 0; L, H)|
4
.

Let s ≤ K be a positive integer parameter to be chosen later. For the large divisors, with

d > s, we apply the trivial estimate |σy(c, 0; L, H)| ≤ H , obtaining the bound

∑

d | t
d>s

∑

y∈Y
gcd(y,t)=d

|σy(c, 0; L, H)|
4
� H4

∑

d | t
d>s

(K/d + 1) < H4(Ks−1 + 1)τ(t).

For the smaller divisors, we apply (2·1) and find that

∑

d | t
d≤s

∑

y∈Y
gcd(y,t)=d

|σy(c, 0; L, H)|
4
�
∑

d | t
d≤s

∑

y∈Y
gcd(y,t)=d

(

d4H4

t4
+ 1

)

p2 log4 p

� p2 log4 p
∑

d | t
d≤s

(

d4H4

t4
+ 1

)

(K/d)

�
(

H4t−4s3 + 1
)

Kτ(t)p2 log4 p.

We choose s = tp−1/2 log−1 p to optimise and note that, for this choice, we necessarily

have 1 ≤ s < K. The result follows in this case.

If c ≡ 0 (mod p) then a 6≡ 0 (mod p), and the result in this case follows immediately

from Lemma 2.

4. Remarks

We draw attention to some interesting special cases of Theorem 7. Let us take ϑ to be

a primitive root modulo p (that is, t = p − 1), and assume that gcd(ac, p) = 1. First of

all, if the sum over x is complete (that is, X = [1, p−1]) then we obtain from Theorem 7

(noting that the second term never dominates in this case) the bound

Va,c(X ,Y) � K11/15p4τ(p − 1)8/5 log8/5 p,
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which by (2·4) is nontrivial for any K ≥ pε. Actually though, as we shall see very soon,

this particular case can be improved.

On the other hand, if the sum over y is complete (that is, Y = [1, p−1]) then we obtain

from Theorem 7 that

Va,c(X ,Y) �
(

H16/5p23/15 + H16/15p3
)

τ(p − 1)8/5 log8/5 p,

which is nontrivial for H ≥ p15/22+ε.

Another interesting case occurs when H = K, for which we obtain a nontrivial bound

provided that H = K ≥ p3/4+ε.

In the special case H = t, the same method as in Theorem 7 can be used in a sharper

fashion to derive the following stronger estimate:

M+K
∑

y=M+1

∣

∣

∣

∣

∣

t
∑

x=1

ep (aϑx + cϑxy) et (αx)

∣

∣

∣

∣

∣

4

<
(

K2/3t3p + Kp17/6
)

po(1). (4·1)

This bound is a generalization of Theorem 8 of [4] which dealt with the case K = t,

α = 0. The method of [4] would extend to give this result for arbitrary α but not for

general K < t.

Indeed, one sees that if X = [1, t] then, by periodicity, the translations x → x + z,

made in the proof of Theorem 7 do not lead to the additional term O(h), so we simply

have

t
∑

x=1

ep (aϑx + cϑxy) et (αx) = h−1
h−1
∑

z=0

t
∑

x=1

ep

(

aϑx+z + cϑ(x+z)y
)

et (α(x + z)) ,

for each y and for any h. Thus the term Kh4 does not appear in the corresponding

version of (3·1). It is easy to see that the “weight” et (αx) does not change the shape of

that bound; the parameter T will count the solutions of the same system as before.

This enables us to take the largest admissible value h = t and thus simple calculations
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lead to the estimate (4·1). By Hölder’s inequality and the well–known method of com-

pleting the sum (see for example [6]), this bound (4·1) immediately leads to the same

upper bound for incomplete sums Va,c(X ,Y) over intervals of the form X = [L+1, L+H ],

Y = [M + 1, M + K]:

Va,c(X ,Y) <
(

K2/3t3p + Kp17/6
)

po(1) (4·2)

provided that gcd(ac, p) = 1. For some values of the parameters this bound is stronger

than the bound of Theorem 7; in particular, this is true when the sum is nearly complete

over both x and y. Thus, for example, in the case t = p − 1, H = K, this bound is

stronger for K ≥ p48/49+ε.

It is easily seen that in the proof of Theorem 7 the combinatorics involving the divisors

d of the order t are greatly simplified in the case that t is prime. However this does not

allow for any improvements in the result.

In many places throughout we have been somewhat relaxed with estimates for sums

over divisors and hence there are available some tiny improvements of size po(1).

All of the results of this paper extend without new arguments to the case where the

prime field of residue classes modulo p is replaced by any finite field of q = pm elements

and the exponential ep is replaced by any nontrivial additive character of the field. The

bounds given above hold just as stated but with p replaced by q throughout.

Bourgain [3] has recently shown how to bound the sum Sa,b,c(X ,Y) nontrivially for

any H ≥ pε, K ≥ pε, provided that gcd(a, b, c, p) = 1. Although these bounds are not

as explicit as those implied by Theorem 7 for the cases considered here, his estimates

remain nontrivial over remarkably short intervals. It would be very interesting to know
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the explicit exponents achievable by Bourgain’s method and also to have an extension of

the arguments to the case of an arbitrary finite field with q = pm elements.
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