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Abstract

Let ϕ and λ be the Euler and Carmichael functions, respectively.
In this paper, we establish lower and upper bounds for the number of
positive integers n ≤ x such that ϕ(λ(n)) = λ(ϕ(n)). We also study
the normal order of the function ϕ(λ(n))/λ(ϕ(n)).

1 Introduction

The Euler ϕ-function (first introduced in [20] of 1760) and the Carmichael
λ-function (first introduced in [9] of 1910) are two of the most interesting,
useful and versatile arithmetic functions that have ever been studied. For
a positive integer n, the value ϕ(n) of the Euler function is defined to be
the number of natural numbers less than or equal to n and coprime to n.
Equivalently,

ϕ(n) = #(Z/nZ)∗ =
∏

pα ‖n

pα−1(p − 1).

For a positive integer n, the value λ(n) of the Carmichael function is defined
to be the maximal order of any element in the multiplicative group (Z/nZ)∗.
More explicitly, for a prime power pα,

λ(pα) =

{
pα−1(p − 1), if p ≥ 3 or α ≤ 2;
2α−2, if p = 2 and α ≥ 3;

and for an arbitrary integer n ≥ 2 with prime factorization n = pα1

1 . . . pαk
k ,

one has
λ(n) = lcm

[
λ(pα1

1 ), . . . , λ(pαk
k )
]
.

Also, λ(1) = 1. In contrast to ϕ, the function λ is not multiplicative.
Over the years, the Euler and Carmichael functions have been exten-

sively researched in the literature, and quite a large number of results have
been obtained concerning the rate of growth and the arithmetical properties
of these functions. To gain insight into the nature of these and other arith-
metic functions, many subsequent investigations considered compositions (or
iterations) of such functions. Let us mention a few relevant examples that
have motivated our present investigations.

(1) In 1929, Pillai [41] was the first to study properties of the iterates
{ϕ(k) : k ≥ 1} of the Euler function, where ϕ(1) = ϕ, and ϕ(k) = ϕ ◦ ϕ(k−1)
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for k ≥ 2. Pillai showed that if W (n) = k is the least integer k for which
ϕ(k)(n) = 1, then

[
log 3n

log 3

]
≤ W (n) ≤

[
log 2n

log 2

]
.

Later, Shapiro [44], Mills [37], Erdős [14] and Erdős and Hall [16] investigated
related questions. Extending some of Shapiro’s work [44], the problem of
finding integers n with the property that ϕ(k)(n) | n was first considered by
Hausman [31] in 1982, and these results were later generalized by Halter-
Koch and Steindl [28] and by Siva Rama Prasad and Fonseca [46].

(2) For a positive integer n, let Ω(n) and ω(n) denote the number of
prime factors of n counted with and without multiplicity, respectively, and
let ∆(n) = Ω(n) − ω(n).

Generalizing the fundamental theorem of Turán [48] from 1934, in 1984,
Erdős and Pomerance [18] and Murty and Murty [39] proved, independently,
that both compositions Ω(ϕ(n)) and ω(ϕ(n)) have normal order 1

2
(log2 n)2,

and they also gave analogues of the Erdős-Kac theorem (see [17]) for these
functions.1

In 1999, Bassily, Kátai and Wijsmuller [7] gave proofs of similar theorems
for ϕ(k). In particular, they showed that, as x → ∞,

∆(ϕ(k)(n)) = (1 + o(1))
1

k!
(log2 x)k log4 x

holds for almost all n ≤ x, and

lim
x→∞

1

x
#

{
n ≤ x :

∆(ϕ(k)(n)) − s(x)√
log2 x log4 x

< z

}
= Φ(z) =

1√
2π

∫ z

−∞

e−t2/2dt,

where s(x) = (log4 x + c + o(1)) log2 x. In other words, the quantity

∆(ϕ(k)(n)) − s(x)√
log2 x log4 x

is normally distributed.
Earlier, in 1990, Erdős, Granville, Pomerance and Spiro [15] proved that,

under the Elliott-Halberstam conjecture, the normal order of Pillai’s function

1logk denotes the k-th iterate of the natural logarithm.
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W (n) is Θ log n for some constant Θ, and for every positive integer k, the nor-
mal order of ϕ(k)(n)/ϕ(k+1)(n) is eγk log3 n, where γ is the Euler-Mascheroni
constant.

(3) In 1944, Alaoglu and Erdős [2] considered the compositions ϕ◦σ and
σ ◦ ϕ, where σ is the sum of divisors function, and they proved that

lim inf
n→∞

ϕ(σ(n))

n
= 0 and lim sup

n→∞

σ(ϕ(n))

n
= ∞.

Conversely, in 1964, Makowski and Schinzel [35] proved that

lim sup
n→∞

ϕ(σ(n))

n
= ∞ and lim inf

n→∞

σ(ϕ(n))

n
≤ 1

2
+

1

234 − 4
,

and in 1989, Pomerance [43] showed that

lim inf
n→∞

σ(ϕ(n))/n > 0.

In 1992, Golomb [25] observed that the value of σ(ϕ(n))− ϕ(σ(n)) takes
both positive and negative values infinitely often and asked for the proportion
of each. De Koninck and Luca [11] have shown that this function is positive
for almost all values of n.

(4) Recently, Martin and Pomerance [36] have studied iterates of the
Carmichael function and have shown that the normal order of the function
log (n/λ(λ(n))) is (log2 n)2 log3 n. In other words,

λ(λ(n)) = n exp
(
−(1 + o(1))(log2 n)2 log3 n

)
(1)

as n → ∞ through a set of integers of asymptotic density one.

For a variety of other results with a similar flavor, we refer the reader
to [3, 4, 5, 6, 8, 10, 12, 13, 21, 22, 23, 24, 26, 33, 34, 40, 42, 45, 49] and the
references contained therein.

In this paper, we initiate the study of the composite functions ϕ ◦ λ and
λ ◦ ϕ by establishing lower and upper bounds for the counting function of
the set

A(x) =
{
n ≤ x : ϕ(λ(n)) = λ(ϕ(n))

}
.
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Our main results are the following:

Theorem 1. There exist positive constants C and x0 such that the following

bound holds for all x ≥ x0:

#A(x) ≥ exp

(
C

log x

log log log x

)
.

Theorem 2. The inequality

#A(x) ≤ x

(log x)3/2+o(1)

holds as x → ∞.

Remark. If we denote A = {n : ϕ(λ(n)) = λ(ϕ(n))}, then Theorem 2
implies that ∑

n∈A

1

n
< ∞.

It is natural to conjecture that the estimate

#A(x) =
x

(log x)c+o(1)
(2)

holds for some positive constant c. Since the Sophie-German primes (i.e.,
primes p for which q = (p − 1)/2 is also prime) are all contained in A, the
Hardy-Littlewood conjectures (see [29]) would suggest that c ≤ 2. Taking into
account the very special structure of the integers in A, it is also natural to
expect the Sophie-German primes to form a subset of A of positive relative
asymptotic density, and we therefore conjecture that (2) holds with c = 2.

Although our focus in this paper is primarily on the set A of positive
integers for which the values of ϕ◦λ and λ◦ϕ coincide, we have also been led
to consider the related question: Which value is larger, ϕ(λ(n)) or λ(ϕ(n)),
for a “typical” integer n? In the last section, we study the normal order of
the function ϕ(λ(n))/λ(ϕ(n)); our result, which relies heavily on (1), is the
following:
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Theorem 3. The estimate

ϕ(λ(n))

λ(ϕ(n))
= exp

(
(1 + o(1))(log log n)2 log log log n

)

holds on a set of positive integers n of asymptotic density one.

In particular, one sees that ϕ(λ(n)) is much larger than λ(ϕ(n)) for almost
all positive integers n.

Acknowledgements. The authors would like to thank the anonymous ref-
eree for a careful reading of the manuscript and for useful suggestions. This
paper was written during an enjoyable visit by F. L. and P. S. to the Univer-
sity of Missouri–Columbia; these authors wish to express their thanks to that
institution for its hospitality and support. Research of W. B. was supported
in part by NSF grant DMS-0070628, that of F. L. by grants SEP-CONACYT
37259-E and 37260-E, and that of P. S. by a grant from his institution.

2 Notation

Throughout the paper, we use the Landau symbols ‘o’ and ‘O’ and the Vino-
gradov symbols ‘≪’ and ‘≫’ with the understanding that the implied con-
stants are absolute; we recall that, for positive functions U and V , the nota-
tions U ≪ V , V ≫ U , and U = O(V ) are each equivalent to the assertion
that the inequality U ≤ cV holds for some constant c > 0. As usual, P (n)
denotes the largest prime factor of n > 1, and ω(n) denotes the number of
distinct prime factors of n. Throughout the paper, the letters p, q, and r
always denote prime numbers. For a positive real number x, we use log x to
denote maximum of 1 and the natural logarithm of x. For an integer k ≥ 2,
logk x denotes the k-th iterate of the function log x. For a positive real num-
ber x and a subset B of the positive integers, we write B(x) = B ∩ [1, x].
Finally, we use c0, c1, . . . to represent positive constants that are absolute.

For the convenience of the reader, we have included a brief index at the
end of the paper which contains, in particular, a list of notation for our proof
of Theorem 2 below.
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3 Coincidences between ϕ ◦ λ and λ ◦ ϕ

Throughout this section, we focus our study on the set

A = {n ≥ 1 : ϕ(λ(n)) = λ(ϕ(n))}.
Our goal is establish lower and upper bounds for the counting function
#A(x) = #(A ∩ [1, x]), where x is a real parameter.

3.1 Lower Bound

Theorem 1. There exists a positive absolute constant c0 such that the fol-
lowing bound holds for all x ≥ 2:

#A(x) ≥ exp

(
c0

log x

log3 x

)
.

Proof. Observe that, since #A(2) = 2, it suffices to establish the inequality
for all sufficiently large values of x.

For a positive integer n, let ϕ(0)(n) = n, and define ϕ(k)(n) inductively by
ϕ(k)(n) = ϕ

(
ϕ(k−1)(n)

)
for all k ≥ 1. Let P(n) denote the set of odd prime

factors of the integer
∏

k≥0 ϕ(k)(n). By a result of Pillai [41], the equality

ϕ(k)(n) = 1 holds for some k ≤ K = ⌈(log n)/ log 2⌉; consequently,
∏

p∈P(n)

p ≤ nK+1 ≤ exp
(
2(log n)2

)
. (3)

We also have

#P(n) ≤ (K + 1) max
ℓ≤n

{ω(ℓ)} ≪ (log n)2

log2 n
. (4)

Now let n ≥ 3 be an odd square-free integer that is coprime to ϕ(k)(n)
for all k ≥ 1, and put

M = 2
∏

p∈P(n)

p and N = 2nMλ(M).

Note that P(n) ∪ {2} is precisely the set of primes that divide N . Denoting
by vp(·) the standard p-adic valuation, it is easy to check that

vp(N) =






2 + maxq∈P(n){v2(q − 1)}, if p = 2;
1 + maxq∈P(n){vp(q − 1)}, if p ∈ P(n) and p ∤ n;
2, if p | n.
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Put

αp =

{
maxq∈P(n){vp(q − 1)}, if p ∈ P(n) ∪ {2} and p ∤ n;
1, if p | n.

Observe that αp ≥ 1 for all primes p ∈ P(n) ∪ {2}. Since

N = 2α2+2
∏

p∈P(n)

pαp+1,

we have

λ(N) = lcm
[
λ(2α2+2), λ(pαp+1) : p ∈ P(n)

]

= lcm [2α2 , pαp(p − 1) : p ∈ P(n)] = 2α2

∏

p∈P(n)

pαp.

Therefore,

ϕ
(
λ(N)

)
= 2α2−1

∏

p∈P(n)

pαp−1(p − 1) = 2α2+δ2−1
∏

p∈P(n)

pαp+δp−1,

where we have factored
∏

p∈P(n)

(p − 1) = 2δ2
∏

p∈P(n)

pδp .

Here, we have used the fact that for each p ∈ P(n), the odd prime factors of
p − 1 also lie in P(n).

On the other hand, we have

ϕ(N) = 2α2+1
∏

p∈P(n)

pαp(p − 1) = 2α2+δ2+1
∏

p∈P(n)

pαp+δp .

Since α2, δ2 ≥ 1, and αp ≥ 1 for all p ∈ P(n), it follows that

λ(ϕ(N)) = lcm
[
λ(2α2+δ2+1), λ(pαp+δp) : p ∈ P(n)

]

= lcm
[
2α2+δ2−1, pαp+δp−1(p − 1) : p ∈ P(n)

]

= 2α2+δ2−1
∏

p∈P(n)

pαp+δp−1 = ϕ(λ(N)).

Thus, we have shown that the integer N lies in the set A.
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We now use the fact that there exists an absolute constant c1 > 0 such
that for all y > 10, there exists a positive integer ℓy ≤ y2 with the property
that ∑

(p−1) | ℓy

1 ≥ exp

(
c1

log y

log2 y

)
(5)

(see [1], for example). Let S be the set of odd primes p such that p − 1 is a
divisor of ℓy, but p does not lie in P(ℓy). Using the inequalities (4) and (5),
it follows that

#S ≥
∑

(p−1) | ℓy

p 6=2

1 − #P(ℓy) ≥ s := exp

(
c2

log y

log2 y

)
(6)

holds with c2 = c1/2, provided that y is sufficiently large. Replacing S by
one of its subsets, if necessary, we can assume that #S = ⌈s⌉. We now set
t = ⌊√s⌋ and consider subsets T ⊂ S of cardinality t. The number of these
subsets is
(⌈s⌉

t

)
≥
(⌈s⌉ − t

t

)t

= exp
(
(0.5 + o(1))s1/2 log s

)
≥ exp

(
c3

s1/2 log y

log2 y

)
,

where c3 = c2/3, provided that y is large enough. For each subset T , put
nT =

∏
p∈T p. Since

ϕ(nT ) =
∏

p∈T

(p − 1)
∣∣∣ ℓt

y,

it follows that
ϕ(k)(nT )

∣∣∣ϕ(k−1)(ℓt
y), k ≥ 1.

As P(ℓt
y) = P(ℓy), we see that nT is coprime to ϕ(k)(nT ) for all k ≥ 1, and

∏

p∈P(nT )

p divides nT

∏

p∈P(ℓy)

p. (7)

The construction given at the beginning of the proof now shows that if

MT = 2
∏

p∈P(nT )

p,

then the positive integer

NT = 2nT MT λ(MT )
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lies in the set A. Moreover, it is clear that distinct subsets T give rise to
distinct elements of A (for if NT1

= NT2
, then by comparing those parts of

NT1
and NT2

composed of primes in S, we obtain that n2
T1

= n2
T2

, and by
unique factorization this leads to T1 = T2). To bound the size of NT , we first
use (3) and (7) to estimate

MT ≤ 2nT

∏

p∈P(ℓy)

p ≤ nT exp
(
O((log y)2)

)
.

Since λ(MT ) ≤ MT , we can use this bound for λ(MT ) as well. Also,

nT =
∏

p∈T

p ≤ (y2 + 1)t = exp
(
(2 + o(1))s1/2 log y

)
.

Therefore,

NT ≪ nT MT λ(MT ) ≤ exp
(
(6 + o(1))s1/2 log y + O((log y)2)

)

Now, given a large real number x, let y be defined implicitly by the equation
x = exp

(
7s1/2 log y

)
, where s is defined as in (6). Then NT ≤ x holds for all

such subsets T , provided that x is sufficiently large. Since

log2 x = (0.5 + o(1)) log s ≫ log y

log2 y
,

it follows that
log2 y ≤ (1 + o(1)) log3 x.

Therefore, if x is large enough, then

#A(x) ≥ exp

(
c3

s1/2 log y

log2 y

)
≥ exp

(
c0

log x

log3 x

)
,

where c0 = c3/8. This completes the proof.

3.2 Upper Bound

We begin this subsection with a few technical lemmas that are used in our
proof of Theorem 2 below.

The following result is a weakened and simplified version of a well-known
result of Hildebrand [32] (see, for example, Chapter III.5 in the book by
Tenenbaum [47]):
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Lemma 1. Uniformly for exp ((log2 x)2) ≤ y ≤ x, the cardinality Ψ(x, y) of
the set of smooth numbers

S(x, y) = {n ≤ x : P (n) ≤ y}

is bounded by
Ψ(x, y) ≤ xu−u+o(u),

where u = (log x)/(log y).

Lemma 2. Uniformly for x ≥ y ≥ 2, the cardinality of the set

F(x, y) = {n ∈ x : q | gcd(n, ϕ(n)) for some prime q > y}

is bounded by

#F(x, y) ≪ x log2 x

y log y
.

Proof. If n lies in F(x, y), then either there exists a prime q > y such that
q2 | n, or there exists a prime q > y and a prime p ≡ 1 (mod q) such that
pq | n. In the first case, the number of such integers n ≤ x is bounded by

∑

q>y

⌊
x

q2

⌋
≤ x

∑

q>y

1

q2
≪ x

y log y
,

and in the second case, the number of such integers n ≤ x is at most

∑

q>y

∑

p<x
p≡1 (mod q)

⌊
x

pq

⌋
≤ x

∑

q>y

1

q

∑

p≤x
p≡1 (mod q)

1

p
≪ x log2 x

∑

q>y

1

q2
≪ x log2 x

y log y
,

where we have used the uniform bound

∑

p≤x
p≡1 (mod m)

1

p
≪ log2 x

ϕ(m)
, (8)

which follows from the inequality (3.1) of [15] (see also Lemma 1 of [7]). The
result follows.
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Lemma 3. If x ≥ 2 and w ≥ ⌊2e log2 x⌋ + 1, then the cardinality of the set

G(x, w) = {n ∈ x : ω(n) > w}

is bounded by

#G(x, y) ≤ x

log x
2−w(1+o(1)).

Proof. By results of Hardy and Ramanujan [30], the number of positive in-
tegers n ≤ x for which ω(n) = k is bounded above by

x

log x
· 1

(k − 1)!
· (log2 x + O(1))k−1 ≤ x

log x

(
e log2 x + O(1)

k − 1

)k−1

.

In the above inequality (and in many others to follow), we have used Stirling’s
formula to conclude that k! ≥ (k/e)k holds for all positive integers k. In
particular, if w ≥ ⌊2e log2 x⌋ + 1, then

#G(x, w) ≤ x

log x

∑

k>w

(0.5 + o(1))k =
x

log x
2−w(1+o(1)),

which is the desired estimate.

Theorem 2. The inequality

#A(x) ≤ x

(log x)3/2+o(1)

holds as x → ∞.

Proof. Our strategy is to express A(x) as a union of boundedly many subsets,
each of which has a cardinality bounded above by x(log x)−3/2+o(1).

Let x be a large positive real number. The first five subsets that we
consider are the following:

(i) The subset
A1(x) = {n ∈ A(x) : P (n) ≤ y1},

where

y1 = exp

(
log x log3 x

3 log2 x

)
.
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Since A1(x) ⊂ S(x, y1), Lemma 1 immediately implies that

#A1(x) ≤ x

(log x)3+o(1)
. (9)

Note that if x is large, then A1(x) contains all powers of 2 which are
smaller than x.

(ii) The subset

A2(x) = {n ≤ x : q | gcd(n, ϕ(n)) or q2 | ϕ(n) for some q > y2 prime}

where y2 = (log x)2. Write A2(x) = A′
2(x) ∪ A′′

2(x), where A′
2(x) con-

sists of those n ∈ A2(x) such that q | gcd(n, ϕ(n)) for some prime
q > y2, and A′′

2(x) consists of the remaining n ∈ A2(x). Since A′
2(x) is

a subset of F(x, y2), Lemma 2 provides the estimate

#A′
2(x) ≪ x

(log x)2
. (10)

Now suppose that n ∈ A′′
2(x). Then there exist a prime q > y2 and

either a prime factor p of n with p ≡ 1 (mod q2), or two prime factors
p1 < p2 of n such that q | gcd(p1 − 1, p2 − 1). Fix q, and p in the first
case, and p1 and p2 in the second case, respectively. Then, the number
of possible multiples n ≤ x of p is ⌊x/p⌋ ≤ x/p in the first case, while
the number of possible multiples n ≤ x of p1p2 is ⌊x/p1p2⌋ ≤ x/p1p2 in
the second case. Therefore,

#A′′
2(x) ≤ x




∑

q>y2

∑

p≤x
p≡1 (mod q2)

1

p
+
∑

q>y2

∑

p1<p2≤x
pi≡1 (mod q) for i=1,2

1

p1p2





≤ x




∑

q>y2

∑

p≤x
p≡1 (mod q2)

1

p
+
∑

q>y2

1

2




∑

p≤x
p≡1 (mod q)

1

p





2



≪ x(log2 x)2
∑

q>y2

1

q2
≪ x(log2 x)2

y2

=
x(log2 x)2

(log x)2
, (11)
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where we have used the estimate (8) twice. The estimates (10) and (11)
immediately imply that

#A2(x) ≤ x

(log x)2+o(1)
. (12)

(iii) The subset
A3(x) = {n ∈ A(x) : ω(n) > w1},

where
c1 = 2e and w1 = ⌊c1 log2 x⌋ + 1.

Since A3(x) ⊂ G(x, w1), Lemma 3 provides the upper bound

#A3(x) ≤ x

log x
2−w1(1+o(1)) =

x

(log x)1+2e log 2+o(1)
. (13)

(iv) The subset

A4(x) = {n ∈ A(x) : 2w2 | n or 2w2 | (p − 1) for some prime p | n},

where
c2 = 2/ log 2 and w2 = ⌊c2 log2 x⌋.

Clearly,

#A4(x) ≤
⌊ x

2w2

⌋
+

∑

p≤x
p≡1 (mod 2w2 )

⌊
x

p

⌋

≤ x

2w2
+ x

∑

p≤x
p≡1 (mod 2w2 )

1

p

≪ x log2 x

2w2
=

x

(log x)2+o(1)
, (14)

where we have used (8) in the last step.

For the remaining subsets of A(x), our estimates are presented as a series of
technical lemmas. We begin with the following:
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Lemma 4. Let

A5(x) =
{
n ∈ A(x)\

(
∪4

j=1Aj(x)
)

: F (n) > w3

}
,

where
F (n) = v2(n) +

∑

p |n

v2(p − 1) (15)

for every positive integer n, and

w3 = c3 log2 x log3 x, c3 =
c1 + 1

log 2
.

If x is sufficiently large, then

#A5(x) ≤ x

(log x)2
. (16)

Proof. For each integer n ∈ A5(x), we have:

• P (n) > y1 and P (n)2 ∤ n;

• ω(n) ≤ w1;

• 2w2 ∤ n, and 2w2 ∤ (p − 1) for every prime p dividing n;

• n is not a power of 2;

• F (n) > w3.

Let n = 2α
∏k

ℓ=1 pβℓ

ℓ be the prime factorization of n, where the primes pℓ are
odd and distinct; reordering the odd primes, if necessary, we can assume that
v2(pℓ−1) is a nondecreasing function of ℓ. Then there exists an integer t ≥ 1,
integers 1 ≤ α1 < · · · < αt, and integers κ1, . . . , κt ≥ 1 with the following
three properties:

(i) 2αj | (pℓ − 1) if 1 ≤ j ≤ t and κ1 + · · · + κj−1 < ℓ ≤ κ1 + · · · + κj;

(ii) The inequality

t∑

j=1

κj = k = ω(n) − δ ≤ c1 log2 x

holds, where δ = 0 if α = 0, and δ = 1 otherwise;
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(iii) The equality

α +

t∑

j=1

κjαj = ⌊c3 log2 x log3 x⌋

holds.

Here, the integers αi are all the possible values of v2(p − 1) as p runs over
the odd prime factors of n, arranged increasingly, and κi is the multiplicity
with which αi occurs (i.e., the number of prime factors p of n such that
αi = v2(p − 1)).

Let D be the set of all (2t+2)-tuples (t, α, α1, . . . , αt, κ1, . . . , κt) for which
these properties hold for some n ∈ A5(x). Clearly,

#D ≤
∑

0≤α<N≤c2 log2 x log3 x

p(N − α)

≤ exp
(
O
(
(log2 x log3 x)1/2

))
= (log x)o(1),

where for a positive integer m, we have used p(m) to denote the number of
partitions of m.

Now fix one such (2t + 2)-tuple in D, and suppose that n ∈ A5(x) is of
this type. Since the prime P = P (n) is one of the primes pj, and P 2 ∤ n, we
can write n = Pm, where m satisfies the analogue of (i) with the data

(t − 1, α, α1, . . . , α̂j, . . . , αt, κ1, . . . , κ̂j , . . . , κt). (17)

Here, the hat symbol indicates that the entry has been omitted. Clearly,
y1 < P ≤ x/m, and P lies in the arithmetic progression 1 (mod 2αj ); hence,
the number of such primes is

≪ x

2αjm log(x/(2αjm))

(see [38]). Since 2αj < 2w2 ≤ (log x)2, the inequalities

x/(2αjm) > y1/2αj > y
1/2
1

hold, and therefore

log(x/(2αjm)) ≫ log y1 ≫
log x log3 x

log2 x
.
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Consequently, for a fixed value of m, the number of such primes P is

≪ x log2 x

log x
· 1

2αj
· 1

m
=

x log2 x

log x
· 1

2α+αj

∏

1≤ℓ≤k
ℓ 6=κ1+···+κj−1+1

1

pβℓ

ℓ

.

We now sum up the above inequality over all possible integers m of type (17)
(with j fixed) and deduce that the corresponding contribution to #A5(x) is

≪ x log2 x

log x
· 1

2α+αj

∏

1≤i≤t
i6=j

1

κi!




∑

p≤x
p≡1 (mod 2αi )

∑

β≥1

1

pβ





κi

≤ x log2 x

log x
· 1

2α+
Pt

j=1 αjκj
· (c4 log2 x)

Pt
j=1 κj . (18)

Here, c4 is an absolute constant for which the inequality

∑

1≤p≤x
p≡1 (mod 2α)

∑

β≥1

1

pβ
≤ c4 log2 x

2α

holds for all sufficiently large x and uniformly in α ≤ w2 (see again (8)).
Since

(c4 log2 x)
Pt

j=1 κj ≤ exp (c1 log2 x log(c4 log2 x))

= exp ((c1 + o(1)) log2 x log3 x) ,

and

2α+
Pt

j=1 αjκj = exp (⌊c3 log2 x log3 x⌋ log 2)

= exp ((c1 + 1 + o(1)) log2 x log3 x) ,

we find that the expression (18) is bounded above by

x

exp ((1 + o(1)) log2 x log3 x)
.

Summing this over all possible choices of j ∈ {1, . . . , t}, then over all possible
(2t + 2)-tuples in D, we derive the estimate

#A5(x) ≪ log2 x · #D · x

exp ((1 + o(1)) log2 x log3 x)
≤ x

(log x)2

for all sufficiently large x.
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Now fix n ∈ A(x)\
(
∪5

j=1Aj(x)
)
, and let n = 2α

∏k
ℓ=1 pβℓ

ℓ be its prime
factorization. Let P = {p1, . . . , pk} be the set of odd primes that divide n,
P1 = {p1, . . . , pk1

} be the subset of P consisting of the odd primes p that
divide gcd(n, ϕ(n)), and Q be the set of odd prime factors of ϕ(n) that do
not divide n. Since n 6∈ A2(x), every prime p ∈ P1 satisfies the bound
p ≤ y2 = (log x)2; thus, if q > y2 and q | ϕ(n), then q ∈ Q. Let q1, . . . , qs be
the primes in Q. Factoring

pℓ − 1 = 2αℓ

k1∏

i=1

p
γi,ℓ

i

s∏

j=1

q
δj,ℓ

j , ℓ = 1, . . . , k,

we derive that

ϕ(n) = ϕ(2α) · 2
Pk

ℓ=1 αℓ

k1∏

i=1

p
βi−1+

Pk
ℓ=1 γi,ℓ

i

s∏

j=1

q
Pk

ℓ=1 δj,ℓ

j .

Defining µj = v2(qj − 1) for j = 1, . . . , s, it follows that

v2 (λ(ϕ(n))) = max
{
v2

(
λ
(
ϕ(2α) · 2

Pk
ℓ=1 αℓ

))
, max
1≤i≤k1

{αi − 1}, max
1≤j≤s

{µj}
}

= max
{
α +

k∑

ℓ=1

αℓ, max
1≤j≤s

{µj}
}

+ O(1),

The preceding formula may be rewritten in the form

v2 (λ(ϕ(n))) = max
{

F (n), max
q∈Q

{v2(q − 1)}
}

+ O(1). (19)

On the other hand, we have

λ(n) = max
{
λ(2α), 2maxℓ{αℓ}

} k1∏

i=1

p
max{βi−1, maxℓ{γi,ℓ}}
i

s∏

j=1

q
maxℓ{δj,ℓ}
j ,

where the maxima in the exponents are taken over ℓ ∈ {1, . . . , k}. From the
preceding relation, we see that v2 (ϕ(λ(n))) is equal to

v2

(
max

{
ϕ(λ(2α)), 2maxℓ{αℓ−1}

})
+
∑

p∈P1

v2(p − 1) +
∑

q∈Q

v2(q − 1)

= max{v2(n), max
p |n

{v2(p − 1)}} +
∑

p∈P1

v2(p − 1) +
∑

q∈Q

v2(q − 1) + O(1).

18



Combining this result with (19) and the fact that v2(λ(ϕ(n))) = v2(ϕ(λ(n))),
we obtain:

max{v2(n), max
p |n

{v2(p − 1)}} +
∑

p∈P1

v2(p − 1) +
∑

q∈Q

v2(q − 1)

= max
{
F (n), max

q∈Q
{v2(q − 1)}

}
+ O(1).

(20)

We now define A6(x) be the set of those integers n ∈ A(x)\
(
∪5

j=1Aj(x)
)

for which the maximum on the right hand side of (20) is not achieved with
the term F (n).

Lemma 5. We have
#A6(x) ≪ x

(log x)2+o(1)
. (21)

Proof. If n ∈ A6(x), there exists a prime q′ ∈ Q such that the maximum on
the right hand side of (20) is achieved with the term v(q′ − 1), and it follows
that

max{v2(n), max
p |n

{v2(p − 1)}} +
∑

p∈P1

v2(p − 1) +
∑

q∈Q
q 6=q′

v2(q − 1) ≪ 1,

which implies, in particular, that #P1 + #Q ≪ 1. Hence, there exists an
absolute constant c5 > 0 such that for every n ∈ A6(x), the inequality
ω(p − 1) ≤ c5 holds for all prime factors p of n.

Let R1 = {p : ω(p − 1) ≤ c5}. Our first step is to establish the estimate:

#R1(x) ≪ x(log2 x)c5+1

(log x)2
(22)

For this, let p ∈ R1(x). We may assume that P (p− 1) > y1, for the number
of primes p ≤ x with P (p − 1) ≤ y1 is no more than

Ψ(x, y1) ≤ x exp (−(1 + o(1))u logu) ≪ x

(log x)2
. (23)

We may also assume that there does not exist a prime q > y3 = log x such
that q2 | p − 1. Indeed, the number of primes p ≤ x for which q2 | p − 1 for
some q > y3 is no more than
∑

y3<q<x1/2

π(x; q2, 1) ≤
∑

y3≤x≤x1/3

π(x; q2, 1) +
∑

x1/3<q<x1/2

π(x; q2, 1) = S1 + S2,
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say. For the sum S1, we apply the Montgomery-Vaughan upper bound on
the number of primes in an arithmetical progression (see [38]) to conclude
that

S1 ≤
∑

y3<q≤x1/3

2x

q2 log(x/q2)
≤ 6x

log x

∑

q>y3

1

q2
≪ x

log x
· 1

y3
≪ x

(log x)2
, (24)

and for the sum S2 we need only the trivial fact that π(x, q2, 1) ≤ x/q2 to
derive the bound:

S2 ≤ x
∑

q>x1/3

1

q2
≪ x2/3

log x
≪ x

(log x)2
. (25)

Thus, we may assume that p − 1 = Pm, where P > max{P (m), y1}. Since
ω(p− 1) ≤ c5, it follows that ω(m) ≤ c5 − 1. Fixing one such number m, we
apply Brun’s method (see [27]) to deduce that the number of possibilities for
the prime p is

≪ x

ϕ(m)(log(x/m))2
.

Since x/m > y1, we have

log(x/m) > log y1 ≫
log x

log2 x
. (26)

Hence, the number of possibilities for p ≤ x when m is fixed, is

≪ x(log2 x)2

(log x)2
· 1

ϕ(m)
.

Summing this inequality over all m with ω(m) ≤ c5 − 1, and using the
inequalities (23), (24), and (25), we obtain that

#R1(x) ≤ x(log2 x)2

(log x)2

∑

m<x/y
ω(m)≤c5−1

1

ϕ(m)
+ O

(
x

(log x)2

)
. (27)

Now, since

∑

m<x/y
ω(m)≤c5−1

1

ϕ(m)
≤ 1 +

c5−1∑

k=1

1

k!

(
∑

q≤x

∑

γ≥1

1

qγ−1(q − 1)

)k

≪ 1 +
c5−1∑

k=1

1

k!
· (log2 x + O(1))k ≪ (log2 x)c5−1,
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the inequality (27) implies the estimate (22).
Using (22), it follows that

∑

p∈R1

∑

γ≥1

1

pγ
= c6

is a constant; thus, writing M1 for the set of positive integers m composed
from the primes in R1, we have

∑

m∈M1

1

m
=
∏

p∈R1

(

1 +
∑

γ≥1

1

pγ

)

< exp

(
∑

p∈R1

∑

γ≥1

1

pγ

)

= exp(c6).

For any n ∈ A6(x), we can write n = Pm, where P ∈ R1(x/m) satisfies
P > max{P (m), y1}, and m ∈ M1(x). Let m be fixed. According to (22),
the prime P ∈ R1(x/m) can be chosen in at most

≪ x (log2(x/m))c5+1

m(log(x/m))2

different ways. By inequality (26), the number of possibilities for P is

≪ x(log2 x)c5+3

(log x)2
· 1

m
.

Summing this inequality over all m ∈ M1(x), we derive that

#A6(x) ≪ x(log2 x)c5+3

(log x)2

∑

m∈M1(x)

1

m

≪ x(log2 x)c5+3

(log x)2
=

x

(log x)2+o(1)
,

which finishes the proof.

Now let n be an integer in A(x)\
(
∪6

j=1Aj(x)
)
. Then, by (20), we have

max{v2(n), max
p |n

{v2(p − 1)}} +
∑

p∈P1

v2(p − 1) +
∑

q∈Q

v2(q − 1)

= F (n) + O(1).
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In particular, it follows that

∑

q∈Q

v2(q − 1) ≤
∑

p∈P

v2(p − 1) + O(1). (28)

Since, for every prime factor q > y2 of ϕ(n), there exists a unique p | n such
that q | p − 1 (because n 6∈ A2(x)), from (28) we deduce that

∑

p |n

∑

q>y2

q | p−1

v2(q − 1) ≤
∑

p |n

v2(p − 1) + O(1). (29)

For any real number z > 0, let

f(z) = exp

(
exp

(
log2 z

(log3 z)2

))
.

For any real number z and positive integer n, we write ω≤z(n) and ω>z(n) for
the number of distinct prime factors of n that are ≤ z and > z, respectively.
Consider the following set of prime numbers:

R2 = {p : ω>f(p)(p − 1) ≤ log2 p/ log3 p}.

We claim that the estimate

#R2(x) ≤ x

(log x)2+o(1)
(30)

holds. Indeed, let p ∈ R2(x) be fixed. Since π(x/ log x) ≪ x/(log x)2, we can
assume that p > x/ log x. As in the above estimate for the counting function
#R1(x) of R1, we can assume that P = P (p− 1) > y1 and that q2 does not
divide p−1 for any prime q > y3 = log x, since the size of the exceptional set
is ≪ x/(log x)2. Finally, we can assume that ω(p − 1) ≤ w1, for otherwise
p − 1 ∈ A3(x), and we have already seen that #A3(x) ≪ x/(log x)2. Now,
write p−1 = Pm, where P = P (p−1) > max{P (m), y1}, m satisfies further
ω(m) ≤ w1 = c1 log2 x, and let M2(x) be the set of all integers m obtained in
this way. For fixed m ∈ M2(x), we apply Brun’s method once again, which
shows that the number of possibilities for p is

≪ x

ϕ(m)(log(x/m))2
≪ x(log2 x)3

(log x)2
· 1

m
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(for the second estimate, we use (26) and the bound ϕ(m) ≫ m/ log2 m).
Clearly, for m ∈ M2(x), we have ω>f(x)(m) < log2 x/ log3 x. Thus, if k2 and
k3 denote the number of prime factors of m which are ≤ f(x) and > f(x),
respectively, then k2 ≤ w1, and k3 ≤ w4 = ⌊log2 x/ log3 x⌋. Therefore,

#R2(x) ≤ x(log2 x)3

(log x)2

∑

m∈M2(x)

1

m
+ O

(
x

(log x)2

)
, (31)

and

∑

m∈M2(x)

1

m
≤
∑

k2≤w1

k3≤w4

1

k2!




∑

p≤f(x)

∑

β≥1

1

pβ




k2

· 1

k3!

(
∑

p≤x

∑

β≥1

1

pβ

)k3

.

Note that for k2 ≤ w1, using Stirling’s formula, we have

1

k2!




∑

p≤f(x)

∑

β≥1

1

pβ




k2

≪
(

e log2 f(x) + O(1)

k2

)k2

=

(
e log2 x/(log3 x)2 + O(1)

k2

)k2

≤ exp

(
e log2 x

(log3 x)2
+ O(1)

)
= (log x)o(1),

uniformly in k2 ≤ w1. Similarly, for k3 ≤ w4, we have

1

k3!

(
∑

p≤x

∑

β≥1

1

pβ

)k3

≤
(

e log2 x + O(1)

k3

)k3

≪
(

e log2 x + O(1)

w4

)w4

≪ exp

(
log2 x log4 x

log3 x

)
= (log x)o(1).

Since the pair (k2, k3) can be chosen in at most O((log2 x)2) different ways,
we get that ∑

m∈M2(x)

1

m
≪ (log x)o(1), (32)

which together with (31) implies our claim (30).
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In particular, it follows from (30) that

∑

p∈R2

1

p
= c7.

Now, let n ∈ A(x)\
(
∪6

j=1Aj(x)
)
. Using (29) together with the fact that

n 6∈ A5(x), we see that
∑

p |n

ω>y2
(p − 1) ≤

∑

p |n

∑

q>y2

q | p−1

v2(q − 1) ≤
∑

p |n

v2(p − 1) + O(1)

≤ w3 + O(1) ≪ log2 x log3 x. (33)

Put
y4 = exp

(
exp

(
(log3 x)3

))
.

Clearly, every prime factor p of n satisfies precisely one of the following
properties:

(i) p ∈ R2 and p ≥ y4;

(ii) p < y4;

(iii) p lies in the interval [y4, x] but not in R2.

Suppose that n has k4 primes of type (i), k5 primes of type (ii), and k6

primes of type (iii). Note that

f(y4) = exp

(
exp

(
log2 y4

(log3 y4)2

))
= exp

(
exp

(
(log3 x)3

9(log4 x)2

))
> y2

if x is sufficiently large. Thus, primes p of type (iii) have the property that

ω>y2
(p − 1) ≥ ω>f(p)(p − 1) >

log2 p

log3 p
≥ log2 y4

log3 y4
=

(log3 x)3

9(log4 x)2
,

From (33), it follows that

k6 ·
(log3 x)3

(log4 x)2
≪ log2 x log3 x,

and therefore

k6 ≪
log2 x (log4 x)2

(log3 x)2
.
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Let c8 be the constant implied in the preceding inequality. Put

w5 =
log2 x

log3 x
, w6 = c8

log2 x (log4 x)2

(log3 x)2
, w7 = w5 − w6,

and consider the set

A7(x) =
{
n ∈ A(x)\

(
∪6

j=1Aj(x)
)

: ω(n) > w5

}
.

Lemma 6. The following estimate holds:

#A7(x) ≪ x

(log x)2+o(1)
. (34)

Proof. Let R3(x) denote the set of primes p ≤ y4 together with the set of
primes p ∈ R2(x). Clearly,

∑

p∈R3(x)

∑

β≥1

1

pβ
≤
∑

p≤y4

1

p
+ O(1) ≤ log2 y4 + O(1) = (log3 x)3 + O(1). (35)

As before, write n = Pm, where P > max{P (m), y1}, and denote by M3(x)
the set of all integers m obtained in this way. Since n ∈ A7(x), we know that
m has k6 ≤ w6 primes p ≤ x that are not in R3(x), and

k7 := k4 + k5 ≥ w5 − k6 ≥ w5 − w6 ≥ w7

primes in R3(x). Further, k7 ≤ w1 since n 6∈ A3(x). For fixed m ∈ M3(x),
the prime number P can be chosen in at most

π(x/m) ≪ x

ϕ(m)(log(x/m))2
≪ x(log2 x)3

(log x)2
· 1

m

different ways, where we have again used the inequality (26) together with the
fact that ϕ(m) ≫ m/ log2 m. Summing this estimate over all m ∈ M3(x),
we derive that

#A7(x) ≪ x(log2 x)3

(log x)2

∑

m∈M3(x)

1

m
, (36)

where

∑

m∈M3(x)

1

m
≤

∑

k6≤w6

w7≤k7≤w1

1

k6!

(
∑

p<x

∑

β≥1

1

pβ

)k6

· 1

k7!




∑

p∈R3(x)

∑

β≥1

1

pβ




k7

.
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For fixed k6 ≤ w6, by Stirling’s formula again, it follows easily that

1

k6!

(
∑

p<x

∑

β≥1

1

pβ

)k6

≪
(

e log2 x + O(1)

k6

)k6

≤
(

e log2 x + O(1)

w6

)w6

= exp

(
O

(
log2 x (log4 x)2

log3 x

))
= (log x)o(1).

Here, we used the fact that if A > 1 is fixed, then the function t 7→ (A/t)t

is increasing for t ≤ A/e and decreasing for t > A/e. For example, above we
used this argument with A = e log2 x + O(1) and t = k6 ≤ w6 < A/e, once x
is sufficiently large.

On the other hand, for fixed k7 in the interval [w7, w1], using Stirling’s
formula again and the estimate (35), we have

1

k7!




∑

p∈R3(x)

∑

β≥1

1

pβ




k7

≤
(

e(log3 x)3 + O(1)

k7

)k7

≤
(

e(log3 x)3 + O(1)

w7

)w7

= exp (−(1 + o(1)) log2 x) = (log x)−1+o(1),

where now we have used the fact that (B/t)t is decreasing for the fixed
B = e(log3 x)3 + O(1) and t ≥ w7 > B/e, once x is sufficiently large.

Since the pair (k6, k7) can be chosen in at most O((log2 x)2) distinct
ways, we obtain that

∑

m∈M3(x)

1

m
≤ 1

(log x)1+o(1)
,

which together with (36) leads to the proof of (34).

From now on, we consider only integers n ∈ A(x)\
(
∪7

j=1Aj(x)
)
. If we

again write every such n in the form n = Pm, and let M4(x) be the set of
integers m that arise in this way, then it follows that

∑

m∈M4(x)

1

m
≤ (log x)o(1).
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Indeed,

∑

m∈M4(x)

1

m
≪

∑

k≤w5

1

k!

(
∑

p≤x

∑

β≥1

1

pβ

)k

≪ log2 x

log3 x

(
e log2 x + O(1)

w5

)w5

≤ exp

(
O

(
log2 x log4 x

log3 x

))
= (log x)o(1). (37)

We now put

A8(x) = {n ∈ A(x)\
(
∪7

j=1Aj(x)
)

: F (n) > w2},

where F (n) is defined by (15).

Lemma 7. The following estimate holds:

#A8(x) ≪ x

(log x)2+o(1)
. (38)

Proof. To prove (38), we follow the same arguments used to bound #A5(x).
Suppose that we are given an element (t, α, α1, . . . , αt, κ1, . . . , κt) of D and
that this element encodes the powers of 2 in n and in p−1 for the odd primes
p | n, as in the proof of the upper bound (16) for #A5(x). Assume further
that P = pi for some i ∈ {1, . . . , t}. When all these data are fixed, the
number of corresponding integers n is bounded above (see inequality (18))
by

x log2 x

log x
· 1

2α+
Pt

j=1 αjκj
· (c4 log2 x)

Pt
j=1 κj .

Since α +
∑t

j=1 αjκj > w2 = c2 log2 x, and
∑t

j=1 κj = ω(m) ≤ w5, it follows
that

1

2α+
Pt

j=1 αjκj
· (c4 log2 x)

Pt
j=1 κj ≤ exp (w5 log(c4 log2 x) − w2 log 2)

= exp(−(1 + o(1)) log2 x) =
1

(log x)1+o(1)
.

Therefore,

#A8(x) ≪ #D · log2 x · x

(log x)2+o(1)
=

x

(log x)2+o(1)
,

which is the desired result.
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In order to continue our argument, we shall need the following technical
result:

Lemma 8. Uniformly for 2 ≤ d ≤ x, the following estimate holds:

∑

p∈R2(x)
p≡1 (mod d)

1

p
≪ log2 d

ϕ(d)
.

Proof. Let d ≥ 2. For x ≥ d, we first determine an upper bound on the
counting function of the set R2(x; d, 1) of primes p ∈ R2(x) in the arithmetic
progression p ≡ 1 (mod d). Without loss of generality, we can assume that
x ≥ exp ((log d)2), for otherwise the inequality asserted by the lemma follows
from the fact that ∑

p≤y
p≡1 (mod d)

1

p
≪ log2 y

ϕ(d)
,

which is valid for all 1 ≤ d ≤ y (see again (8)). We can also assume that d
is large enough for our purposes at hand. Now, put

y = exp

(
log x log3 x

6 log2 x

)
.

Then, if d is sufficiently large,

y ≥ exp

(
(log d)2 (log3 d + log 2)

12 log2 d

)
> d.

For each prime p ∈ R(x; d, 1), write p − 1 = dm. We first remark that the
number of primes p for which P (m) ≤ y (and thus, P (p − 1) ≤ y) cannot
exceed

Ψ
(x

d
, y
)
≤ x

d
exp (−(1 + o(1))v log v) ,

where

v =
log(x/d)

log y
>

1

2
· log x

log y
=

3 log2 x

log3 x
.

Hence, v log v ≥ (3 + o(1)) log2 x, therefore the number of such primes p is

≪ x

d(log x)3+o(1)
≤ x

d(log x)2
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if x is sufficiently large.
Now, consider primes p ∈ R(x; d, 1) such that P (m) > y. From this

subset, we discard those primes p for which there exists a prime q > y such
that q2 | p − 1; it is easy to see, using an argument similar the one used to
analyze the counting function #R1(x), that the number of discarded primes
is

≪ x

dy log y
≪ x

d(log x)2
.

For the remaining primes, write p− 1 = dm1P , where p is a prime satisfying
P = P (p − 1) > max{P (m1), y}. Let M(x) be the set of integers m1 that
occur in this way. By Brun’s method, for every fixed value of m1, the number
of possibilities for the prime P is

≪ x

ϕ(dm1)(log(x/dm1))2
≪ x log2 x

ϕ(d)(log(x/dm1))2
· 1

m1

.

Since x/(dm1) ≥ P (p − 1) > y, we get that

log(x/dm1) > log y ≫ log x log3 x

log2 x
,

therefore the number of possibilities for P is

≪ x(log2 x)3

ϕ(d)(log x)2
· 1

m1
. (39)

Recalling that M(x) is contained in the set of those positive integers that
have at most log2 x/ log3 x primes > f(x), the argument used in the analysis
of the counting function #R2(x) (see estimate (32)) shows that

∑

m1∈M(x)

1

m1
≤ (log x)o(1).

Therefore, summing up the inequality (39) over all the possible values for
m1 ∈ M(x), and combining the result with our previous estimates, we obtain
the bound:

#R2(x; d, 1) ≤ x

ϕ(d)(log x)2+o(1)
<

x

ϕ(d)(log x)3/2
,

if x ≥ exp ((log d)2) and d is sufficiently large. The desired inequality now
follows by partial summation.
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Next, defining F (n) as usual by (15), we show that the following estimate
holds:

Lemma 9.

#A(x) ≤ x

(log x)1+o(1)

∑

ℓ∈F(A(x)\(∪8
j=1Aj(x)))

1

2ℓ
+ O

(
x

(log x)2+o(1)

)
. (40)

Proof. To prove this lemma, we apply a modification of the argument used
to bound #A5(x) and #A8(x). We let n ∈ A(x)\

(
∪8

j=1Aj(x)
)
. As before,

we write n = Pm, and we note that m = m′ · m′′, where

m′ =
∏

pβp ‖m
p∈R3(x)

pβp and m′′ =
∏

pβp ‖m
p 6∈R3(x)

pβp.

Recall that ω(m′) = k7 and ω(m′′) = k6 ≤ w6. Now, let us suppose that
(t′, α′, α′

1, . . . , α
′
t′ , κ

′
1, . . . , κ

′
t′) and (t′′, α′′, α′′

1, . . . , α
′′
t′′ , κ

′′
1, . . . , κ

′′
t′′) encode the

powers of 2 in m′ and p′i − 1 for i = 1, . . . , k7 (where p′i | m′) and in m′′ and
p′′j − 1 for j = 1, . . . , k6 (where p′′j | m′′), respectively, as in the analysis of
A5(x). Suppose further that 2αP ‖P − 1. Then,

F (n) = αP + α′ + α′′ +
t′∑

i=1

α′
iκ

′
i +

t′′∑

j=1

α′′
j κ

′′
j .

For each fixed set of data, the number of positive integers counted is

≪ x log2 x

2α′+α′′+αP log x

t′∏

i=1

1

κ′
i!




∑

p′i∈R3(x)

p′i≡1 (mod 2α′
i )

∑

β′

i≥1

1

p′i
β′

i





κ′

i

×
t′′∏

j=1

1

κ′′
j !





∑

p′′j 6∈R3(x)

p′′j ≡1 (mod 2
α′′

j )

∑

β′′

j ≥1

1

p′′j
β′′

j





κ′′

j

.

(41)
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Clearly,

∑

p′i∈R3(x)

p′i≡1 (mod 2α′
i )

∑

β′

i≥1

1

p′i
β′

i
≪

∑

p′i∈R3(x)

p′i≡1 (mod 2α′
i )

1

p′i
≪ S ′

1 + S ′
2,

where

S ′
1 =

∑

p′i∈R2(x)

p′i≡1 (mod 2α′
i)

1

p′i
and S ′

2 =
∑

p′i≤y4

p′i≡1 (mod 2α′
i )

1

p′i
.

Using Lemma 8 together with the fact that α′
i ≤ w2, it follows immediately

that S ′
1 ≪ (log3 x)/2α′

i. We also have

S ′
2 ≪

log2 y4

2α′

i
≪ (log3 x)3

2α′

i
.

Since
∑t′

i=1 κ′
i ≪ log2 x/ log3 x, the estimates above imply that

t′∏

i=1

1

κ′
i!




∑

p′i∈R3(x)

p′i≡1 (mod 2α′
i )

∑

β′

i≥1

1

p′i
β′

i





κ′

i

=
(log3 x)

O
“

log2 x
log3 x

”

2
Pt′

i=1 α′

iκ
′

i

=
(log x)o(1)

2
Pt′

i=1 α′

iκ
′

i

. (42)

Furthermore, since

∑

p′′j ≤x

p′′j ≡1 (mod 2
α′′

j )

∑

β′′

j ≥1

1

p′′j
β′′

j
≪

∑

p′′j 6∈R3(x)

p′′j ≡1 (mod 2
α′′

j )

1

p′′j
≪ log2 x

2α′′

j
,

and
t′′∑

j=1

κ′′
j ≤ k6 ≪

log2 x (log4 x)2

(log3 x)2
,
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we also see that

t′′∏

j=1

1

κ′′
j !





∑

p′′j ≤x

p′′j ≡1 (mod 2
α′′

j )

∑

β′′

j ≥1

1

p′′j
β′′

j





κ′′

j

=
(log2 x)O(log2 x (log4 x)2/(log3 x)2)

2
Pt′′

j=1 α′′

j κ′′

j

=
(log x)o(1)

2
Pt′′

j=1 α′′

j κ′′

j

. (43)

Summing up the preceding estimates (42) and (43) over all possible data sets
(t′, α′, α′

1, . . . , α
′
t′ , κ

′
1, . . . , κ

′
t′) and (t′′, α′′, α′′

1, . . . , α
′′
t′′ , κ

′′
1, . . . , κ

′′
t′′) (there are at

most (log x)o(1) possibilities), and using the estimates we have obtained above
for #Aj(x), j = 1, . . . , 8, we obtain the desired estimate (40).

In particular, if we put w8 = log2 x, and

A9(x) = {n ∈ A\
(
∪8

j=1Aj(x)
)

: F (n) > w8},

then the above argument and the estimate (40) immediately implies that

#A9(x) ≤ x

(log x)1+log 2+o(1)
. (44)

Finally, we come to the last set A10(x) = A(x)\
(
∪9

j=1Aj(x)
)
. From now

on, we consider only integers n ∈ A10(x).

Lemma 10. The following estimate holds:

#A10(x) ≤ x

(log x)3/2+o(1)
. (45)

Proof. For n ∈ A10(x), write n = Pm, where P = P (n) and m ∈ M4(x).
From the inequality (29), we see that

ω>y2
(P − 1) ≤

∑

p |n

ω>y2
(p − 1) ≤ v2(n) +

∑

p |n

v2(p − 1) + O(1)

= F (n) + O(1).

Let c9 be the constant implied by O(1) in this estimate. Let ν = F (n) ≤ w8,
and fix the integer ν. Put g(p) = (log p)2, let α ≤ w2 be a positive integer,
and let

R4,α,ν = {p : 2α ‖ p − 1 and ω>g(p)(p − 1) ≤ ν + c9}.
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Then, P = P (n) ∈ R4,α,ν(x/m) for some positive integer α. We now show
that the estimate

#R4,α,ν(x/m) ≤ x

2αm(log x)h(δ)+o(1)
+

x

m(log x)2+o(1)
(46)

holds uniformly for all ν ≤ w8, α ≤ w2, and m ∈ M4(x), where we put
h(δ) = 2 − δ log(e/δ), with δ = ν/ log2 x. To do this, we first observe that it
suffices to prove only the weaker assertion that

#R4,α,ν(x) ≤ x

2α(log x)h(δ)+o(1)
+

x

(log x)2
(47)

holds uniformly for all ν ≤ w8 and α ≤ w2. Indeed, since x/m > y1, it
follows that log(x/m) = (log x)1+o(1) and that δm = ν/ log2(x/m) = δ + o(1),
thus (47) implies (46) uniformly for all m ∈ M4(x). To establish (47), let p
be a prime in R4,α,ν(x). As in the estimation of R1(x) and R2(x), we can
assume that P (p−1) > y1, that there does not exist a prime q > y3 for which
q2 | p − 1, and that ω(p − 1) < w1. Let us write p − 1 = 2αPm, where m
is odd and P > max{P (m), y1}, and let M5(x) be the set of all integers m
obtained in this way. Using Brun’s method again, we see that for each fixed
value of m ∈ M5(x), the number of possibilities for the prime p is

≪ x

2αϕ(m)(log(x/m))2
≪ x(log2 x)3

2α(log x)2
· 1

m

(see inequality (26) again). Every m ∈ M5(x) has k8 ≤ w9 = δ log2 x + c9

prime factors larger than y5 = (log x)3, and k9 ≤ w1 remaining primes which
are ≤ y5; therefore,

∑

m∈M5(x)

1

m
≤
∑

k8≤w9

k9≤w1

1

k8!

(
∑

p≤x

∑

β≥1

1

pβ

)k8

· 1

k9!

(
∑

p≤y5

∑

β≥1

1

pβ

)k9

.

For fixed k9 ≤ w1, we have by Stirling’s formula:

1

k9!

(
∑

p≤y5

∑

β≥1

1

pβ

)k9

≤
(

e log2 y5 + O(1)

k9

)k9

≤
(

e log3 x + O(1)

k9

)k9

≤ exp (log3 x + O(1)) ≪ log2 x.
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Similarly, for fixed k8 ≤ w9, we have:

1

k8!

(
∑

p≤x

∑

β≥1

1

pβ

)k8

≤
(

e log2 x + O(1)

k8

)k8

≪
(

e log2 x + O(1)

w9

)w9

≪ exp (z(δ) log2 x) = (log x)z(δ),

where z(δ) = δ log(e/δ). Thus, since the pair (k8, k9) can be chosen in at
most O((log2 x)2) ways, we get that

∑

m∈M5(x)

1

m
≪ (log x)z(δ)(log2 x)3.

Consequently,

R4,α,ν(x) ≪ x(log2 x)3

2α(log x)2

∑

m∈M5(x)

1

m
+

x

(log x)2

≤ x(log2 x)6

2α(log x)2−z(δ)+o(1)
+

x

(log x)2

=
x

2α(log x)h(δ)+o(1)
+

x

(log x)2
,

which establishes (47).
Returning to the integers n ∈ A10(x), we see that each one has the form

n = Pm, where P > max{P (m), y1} belongs to the set R4,α,ν(x/m), and
m ∈ M4(x). For fixed values of m, ν ≤ w8, and α ≤ w2, the number of
possibilities for P is at most

#R4,α,ν(x/m) ≪
(

x

2α(log x)h(δ)+o(1)
+

x

(log x)2

)
1

m
.

Now an argument similar to the one used to prove estimate (40) (and similar
to the one used to find upper bounds on A5(x) and A8(x)), leads easily to
the conclusion that in formula (40) we may replace the first exponent 1+o(1)
by h(δ) + o(1) once δ < 1, in particular, when we are counting numbers in
A10,ν(x) = {n ∈ A10(x) : F (n) = ν}. Thus, summing up over all possible
values of α and m, we obtain that

#A10,ν(x) ≤ x

(log x)h(δ)+δ log 2+o(1)
, (48)
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since h(δ) < 2 for δ < 1. Finally, summing up over all possible values of ν
(at most O(log2 x) of them), and noticing that the minimum of the function

h(δ) + δ log 2 = 2 − δ log(e/δ) + δ log 2

occurs at δ = 1/2 with a value of 3/2, we obtain the stated result.

Theorem 2 now follows at once from the estimates (9), (12), (13), (14),
(16), (21), (34), (38), (44), and (45).

4 The normal order of ϕ(λ(n))/λ(ϕ(n))

Theorem 3. The estimate

ϕ(λ(n))

λ(ϕ(n))
= exp

(
(1 + o(1))(log2 n)2 log3 n

)

holds on a set of positive integers n of asymptotic density one.

Proof. Clearly,

ϕ(λ(n)) =
ϕ(λ(n))

λ(n)
· λ(n).

Since the inequalities

1 ≥ ϕ(λ(n))

λ(n)
≫ 1

log2 λ(n)
≥ 1

log2 n

hold for all n, and the estimate

λ(n) = n exp(−(1 + o(1)) log2 n log3 n) (49)

holds for almost all n (see [19]), it follows that

ϕ(λ(n)) = n exp(−(1 + o(1)) log2 n log3 n) (50)

holds for almost all positive integers n.
We also have:

λ(λ(n)) ≤ λ(ϕ(n)) = λ

(
ϕ(n)

λ(n)
· λ(n)

)
≤ λ(λ(n)) · ϕ(n)

λ(n)
.
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Here, we used the fact that the prime factors of λ(n) and ϕ(n) are the same,
together with the (easily proved) fact that if m = ab and every prime factor
of b divides a, then λ(ab) | λ(a)b. Now, writing

ϕ(n)

λ(n)
=

ϕ(n)

n
· n

λ(n)

and using the estimate 1 ≥ ϕ(n)/n ≫ 1/ log2 n together with (49), we see
that

λ(ϕ(n)) = λ(λ(n)) exp((1 + o(1)) log2 n log3 n)

holds for almost all n. Applying the result (1) of Martin and Pomerance [36],
it follows that the estimate

λ(ϕ(n)) = n exp
(
−(1 + o(1))(log2 n)2 log3 n

)
(51)

holds for almost all positive integers n. The result now follows from (50)
and (51).
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