Prime Divisors of Palindromes

WILLIAM D. BANKS

Department of Mathematics, University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu

IGOR E. SHPARLINSKI Department of Computing, Macquarie University Sydney, NSW 2109, Australia igor@ics.mq.edu.au

Abstract

In this paper, we study some divisibility properties of palindromic numbers in a fixed base $g \geq 2$. In particular, if \mathcal{P}_L denotes the set of palindromes with precisely L digits, we show that for any sufficiently large value of L there exists a palindrome $n \in \mathcal{P}_L$ with at least $(\log \log n)^{1+o(1)}$ distinct prime divisors, and there exists a palindrome $n \in \mathcal{P}_L$ with a prime factor of size at least $(\log n)^{2+o(1)}$.

1 Introduction

For a fixed integer base $g \ge 2$, consider the base g representation of an arbitrary natural number $n \in \mathbb{N}$:

$$n = \sum_{k=0}^{L-1} a_k(n) g^k,$$
(1)

where $a_k(n) \in \{0, 1, \ldots, g-1\}$ for each $k = 0, 1, \ldots, L-1$, and the leading digit $a_{L-1}(n)$ is *nonzero*. The integer n is said to be a *palindrome* if its digits satisfy the symmetry condition:

$$a_k(n) = a_{L-1-k}(n), \qquad k = 0, 1, \dots, L-1.$$

It has recently been shown in [1] that almost all palindromes are composite.

For any $n \in \mathbb{N}$, the number L in (1) is called the *length* of n; let $\mathcal{P}_L \subset \mathbb{N}$ denote the set of all palindromes of length L. In this paper, as in [1], we estimate exponential sums of the form

$$S_q(L;c) = \sum_{n \in \mathcal{P}_L} \mathbf{e}_q(cn),$$

where as usual $\mathbf{e}_q(x) = \exp(2\pi i x/q)$ for all $x \in \mathbb{R}$. Using these estimates, we show that for all sufficiently large values of L, there exists a palindrome $n \in \mathcal{P}_L$ with at least $(\log \log n)^{1+o(1)}$ distinct prime divisors, and there exists a palindrome $n \in \mathcal{P}_L$ with a prime factor of size at least $(\log n)^{2+o(1)}$.

Throughout the paper, all constants defined either explicitly or implicitly via the symbols O, Ω, \ll and $\gg may$ depend on g but are absolute otherwise. We recall that, as usual, the following statements are equivalent: A = O(B), $B = \Omega(A), A \ll B$, and $B \gg A$. We also write $A \asymp B$ to indicate that $B \ll A \ll B$.

Acknowledgements. The authors wish to thank Florian Luca for some useful conversations. Most of this work was done during a visit by the authors to the Universidad de Cantabria; the hospitality and support of this institution is gratefully acknowledged. W. B. was supported in part by NSF grant DMS-0070628, and I. S. was supported in part by ARC grant DP0211459.

2 Preliminary Results

For every natural number q with gcd(q, g) = 1, we denote by t_q the order of g in the multiplicative group modulo q. For arbitrary integers a, b, K with $K \ge 1$ we consider the exponential sums

$$T_q(a,b) = \sum_{k=1}^{t_q} \mathbf{e}_q \left(ag^k + bg^{-k} \right) \text{ and } T_q(K;a,b) = \sum_{k=1}^K \mathbf{e}_q \left(ag^k + bg^{-k} \right),$$

where the inversion g^{-k} is taken in the residue ring \mathbb{Z}_q .

Lemma 1. Let S be a set of primes coprime to g, with $gcd(t_{p_1}, t_{p_2}) = 1$ for all distinct $p_1, p_2 \in S$. Then for the integer $q = \prod_{p \in S} p$ one has

$$T_q(a,b) = \prod_{p \in \mathcal{S}} T_p(a,b).$$

Proof. Consider the Kloosterman sums

$$K_{\chi}(a,b;q) = \sum_{\substack{1 \le c \le q \\ \gcd(c,q)=1}} \chi(c) \ \mathbf{e}_q(ac+b\overline{c})$$

as χ varies over the multiplicative characters of \mathbb{Z}_q^* . Denoting by X_q the group of all such characters for which $\chi(g) = 1$, as in the proof of Lemma 2.1 of [1] one has

$$T_q(a,b) = \frac{t_q}{\varphi(q)} \sum_{\chi \in X_q} K_{\chi}(a,b;q).$$

Because of the assumed property of the set S, we see that $t_q = \prod_{p \in S} t_p$, and therefore

$$\#X_q = \frac{\varphi(q)}{t_q} = \prod_{p \in \mathcal{S}} \frac{\varphi(p)}{t_p} = \prod_{p \in \mathcal{S}} \#X_p.$$

By duality theory, it follows that X_q is the direct product of the groups $\{X_p : p \in \mathcal{S}\}$, hence every character $\chi \in X_q$ has a unique decomposition

$$\chi = \prod_{p \in \mathcal{S}} \chi_p$$

where $\chi_p \in X_p$ for each $p \in S$. By the well known multiplicative property of Kloosterman sums,

$$K_{\chi}(a,b;q) = \prod_{p \in \mathcal{S}} K_{\chi_p}(a,b;p),$$

and therefore

$$T_q(a,b) = \frac{t_q}{\varphi(q)} \sum_{\chi \in X_q} \prod_{p \in \mathcal{S}} K_{\chi_p}(a,b;p) = \prod_{p \in \mathcal{S}} \frac{t_p}{\varphi(p)} \sum_{\chi_p \in X_p} K_{\chi_p}(a,b;q).$$

The result follows.

Lemma 2. Let S be a set of primes p such that $p \ge z$, $p \equiv 3 \pmod{4}$, gcd(p, g(g-1)) = 1, and $t_p = \Omega(\log^2 p)$ for every $p \in S$. Suppose that $gcd(t_{p_1}, t_{p_2}) \le 2$ for all distinct $p_1, p_2 \in S$. If z is sufficiently large, then for some absolute constant A > 0 and all $a, b \in \mathbb{Z}$ one has

$$|T_q(a,b)| \le t_q \prod_{\substack{p \in \mathcal{S} \\ \gcd(a,b,p)=1}} \left(1 - \frac{A}{\log p(\log \log p)^5}\right),$$

where $q = \prod_{p \in S} p$.

Proof. If t_q is odd, then $gcd(t_{p_1}, t_{p_2}) = 1$ for all distinct $p_1, p_2 \in \mathcal{S}$, thus

$$t_q = \prod_{p \in \mathcal{S}} t_p$$

By Lemma 1, we also have

$$T_q(a,b) = \prod_{p \in \mathcal{S}} T_p(a,b).$$

Moreover,

$$T_p(a,b) = \frac{t_p}{p-1} \sum_{x \in \mathbb{Z}_p^*} \mathbf{e}_p \left(a x^{(p-1)/t_p} + b x^{-(p-1)/t_p} \right)$$

for all $p \in S$. If gcd(a, b, p) = 1, then since $t_p = \Omega(\log^2 p)$, Theorem 1.1 of [2] implies that the estimate

$$\left| \sum_{x \in \mathbb{Z}_p^*} \mathbf{e}_p \left(a x^{(p-1)/t_p} + b x^{-(p-1)/t_p} \right) \right| \le (p-1) \left(1 - \frac{A}{\log p (\log \log p)^5} \right)$$

holds for some absolute constant A > 0 provided that z is large enough. On the other hand, $T_p(a, b) = t_p$ if gcd(a, b, p) = p. This completes the proof in the case that t_q is odd.

If t_q is even, then the multiplicative order of g^2 modulo q is $\tau_q = t_q/2$, and for each $p \in S$ the multiplicative order of g^2 modulo p is $\tau_p = t_p/2$ or $\tau_p = t_p$ according to whether t_p is even or odd, respectively. Since each prime $p \in S$ is congruent to 3 (mod 4), it follows that τ_p is odd, and we have

$$\tau_q = \prod_{p \in \mathcal{S}} \tau_p$$

We now write

$$T_q(a,b) = \sum_{k=1}^{\tau_q} \mathbf{e}_q \left(af^k + bf^{-k} \right) + \sum_{k=1}^{\tau_q} \mathbf{e}_q \left(agf^k + bg^{-1}f^{-k} \right)$$

where $f = g^2$. Noting that $\tau_p = \Omega(\log^2 p)$ for all $p \in \S$, we can apply the preceding argument to both of these sums (with g replaced by g^2), and we derive the stated result in the case that t_q is even.

Lemma 3. If y is sufficiently large, there is a set $S \in [y(\log y)^{-2}, y]$ of primes p with $p \equiv 3 \pmod{4}$ and $gcd(p, g(g^2 - 1)) = 1$, of cardinality at least $\#S = \Omega(y^{1/4}(\log y)^{-2})$, such that $gcd(t_{p_1}, t_{p_2}) \leq 2$ for any distinct $p_1, p_2 \in S$, and $t_p \geq p^{1/4}$ for all $p \in S$.

Proof. According to Lemma 1 of [3] (taking k = 1, u = 3 and v = 16 in that lemma), for every sufficiently large value of y there are at least $\Omega(y/\log^2 y)$ primes $p \leq y$ with $p \equiv 3 \pmod{16}$ such that either $p = 2r_1r_2 + 1$ where $r_1, r_2 \geq y^{1/4}$ are primes, or $p = 2r_0 + 1$ where r_0 is a prime. Clearly, the interval $[y(\log y)^{-2}, y]$ also contains a set \mathcal{L} of $\Omega(y/\log^2 y)$ such primes. Note that for y large enough, we have that $p \nmid g(g^2 - 1)$ for each $p \in \mathcal{L}$.

Take the smallest such prime $p_1 \in \mathcal{L}$ and put it into the set \mathcal{S} . Next, remove all primes $p \in \mathcal{L}$ for which $gcd(p-1, p_1-1) > 2$; since this condition implies that $gcd(p-1, p_1-1) \ge y^{1/4}$, we remove at most $O(y^{3/4})$ such primes at this step. Now take the smallest remaining prime $p_2 \in \mathcal{L}$ and add it to \mathcal{S} , then remove the $O(y^{3/4})$ primes $p \in \mathcal{L}$ for which $gcd(p-1, p_2-1) > 2$. Continuing in this manner, we eventually put $\Omega(\#\mathcal{L}y^{-3/4}) = \Omega(y^{1/4}(\log y)^{-2})$ primes into the set \mathcal{S} . Noting that each $t_p > 2$ and $t_p \mid p-1$, it follows that $t_p \ge y^{1/4} \ge p^{1/4}$ for every $p \in \mathcal{S}$.

We also need the following bound for incomplete sums:

Lemma 4. For any prime p with gcd(p,g) = 1 and any natural number $K \leq t_p$, the following bound holds:

$$\max_{\gcd(a,b,p)=1} |T_p(K;a,b)| \ll p^{1/2} \log p.$$

Proof. It is easy to see that for any $h = 0, \ldots, t_p$,

$$\sum_{k=1}^{t_p} \mathbf{e}_p \left(ag^k + bg^{-k} \right) \, \mathbf{e}_{t_p}(hk) = \frac{t_p}{p-1} \sum_{x \in \mathbb{F}_p^*} \, \mathbf{e}_p \left(ax^{(p-1)/t_p} + bx^{-(p-1)/t_p} \right) \chi(x)$$

where $\chi(x)$ is a certain multiplicative character on \mathbb{F}_p^* . Applying the Weil bound to the last sum (see Example 12 in Appendix 5 of [6]; also Theorem 3 of Chapter 6 in [4], and Theorem 5.41 and the comments to Chapter 5 in [5]), we derive that

$$\sum_{k=1}^{t_p} \mathbf{e}_p \left(ag^k + bg^{-k} \right) \, \mathbf{e}_{t_p}(hk) \ll p^{1/2}.$$

Now using the standard reduction from complete sums to incomplete ones, we obtain the desired result. $\hfill \Box$

A relation between the sums $S_q(L; c)$ and $T_q(K; a, b)$ has been found in [1] which we now present in a slightly modified form.

Lemma 5. Let $K = \lfloor L/2 \rfloor$. Then

$$|S_q(L;c)| \le g^2 \left(g^2 - 1 + \frac{1}{K} |T_q(K;c,cg^{L-1})|\right)^{K/2}.$$

Proof. As in the proof of Lemma 3.1 of [1] we have

$$|S_q(L;c)| \le g^2 \prod_{k=1}^K \left| \sum_{a=0}^{g-1} \mathbf{e}_q \left(ac \left(g^k + g^{L-1-k} \right) \right) \right|.$$

Then, using the arithmetic-geometric mean inequality, we derive that

$$\begin{aligned} \left| S_q(L;c) \right| &\leq g^2 \left(\frac{1}{K} \sum_{k=1}^{K} \left| \sum_{a,b=0}^{g-1} \mathbf{e}_q \left(ac \left(g^k + g^{L-1-k} \right) \right) \right|^2 \right)^{K/2} \\ &= g^2 \left(\frac{1}{K} \sum_{a,b=0}^{g-1} \sum_{k=1}^{K} \mathbf{e}_q \left(c(a-b) \left(g^k + g^{L-1-k} \right) \right) \right)^{K/2} \end{aligned}$$

Estimating each inner sum trivially as K for all a and b except for a = 1, b = 0, we obtain the desired statement.

3 Exponential Sums with Palindromes

Theorem 6. There exists a constant B > 0 such that for all sufficiently large values of L and any prime $p \leq L^2/\log^4 L$ such that gcd(p, g(g-1)) = 1, the following bound holds:

$$\max_{\gcd(c,p)=1} \left| S_p(L;c) \right| \le \# \mathcal{P}_L \exp\left(-L/\log p(\log\log p)^B\right).$$

Proof. Taking $K = \lfloor L/2 \rfloor$, we have by Lemma 5:

$$\left|S_p(L;c)\right| \le g^2 \left(g^2 - 1 + \frac{1}{K} \left|T_p(K;c,cg^{L-1})\right|\right)^{K/2}.$$
 (2)

Suppose that gcd(c, p) = 1. Let us write $K = Qt_p + R$ where $Q \ge 0$ and $0 \le R < t_p$.

Let us first consider the case $K \ge t_p$. Since $p \mid (g^{t_p} - 1)$, it is clear that $t_p = \Omega(\log p)$; using Theorem 1.1 of [2] as in the proof of Lemma 2, it follows that for all sufficiently large primes p,

$$\left|T_{p}(c, cg^{L-1})\right| \le t_{p}\left(1 - \frac{1}{\log p(\log \log p)^{C_{0}}}\right)$$
 (3)

for some constant $C_0 > 0$. Moreover, for any prime p coprime to g(g-1), it is clear that $t_p \neq 1$ and that

$$\left|T_p(c, cg^{L-1})\right| < t_p.$$

Therefore, adjusting the value of C_0 if necessary, we see that the bound (3) holds for every prime p such that gcd(p, g(g-1)) = 1. Thus, in the case that $K \ge t_p$ we have

$$\begin{aligned} \left| T_p(K; c, cg^{L-1}) \right| &= Q \left| T_p(c, cg^{L-1}) \right| + \left| T_p(R; c, cg^{L-1}) \right| \\ &\leq Q t_p \left(1 - \frac{1}{\log p(\log \log p)^{C_0}} \right) + R \\ &= K - \frac{Q t_p}{\log p(\log \log p)^{C_0}} \leq K \left(1 - \frac{1}{2 \log p(\log \log p)^{C_0}} \right). \end{aligned}$$

When $K < t_p$ we apply Lemma 4 to deduce that

$$|T_p(K; c, cg^{L-1})| \ll p^{1/2} \log p \ll K(\log p)^{-1},$$

since $K \gg L \ge p^{1/2} (\log p)^2$. Thus, in this case, we have a much stronger bound.

Therefore, for sufficiently large p,

$$\begin{aligned} g^2 - 1 + \frac{1}{K} |T_p(K; c, cg^{L-1})| &\leq g^2 - \frac{1}{2\log p(\log\log p)^{C_0}} \\ &\leq g^2 \exp\left(-\frac{1}{2g^2\log p(\log\log p)^{C_0}}\right). \end{aligned}$$

Using this estimate in (2) together with the obvious relation $\#\mathcal{P}_L \simeq g^{L/2}$, we derive the stated result.

4 Congruences with Palindromes

Let us denote

$$\mathcal{P}_L(q) = \left\{ n \in \mathcal{P}_L : n \equiv 0 \pmod{q} \right\}.$$

Proposition 4.2 of [1] asserts that if $gcd(q, g(g^2 - 1)) = 1$, then for $L \ge 10 + 2q^2 \log q$ the following asymptotic formula holds:

$$\#\mathcal{P}_L(q) = \frac{\#\mathcal{P}_L}{q} + O\left(\frac{\#\mathcal{P}_L}{q}\exp\left(-\frac{L}{2q^2}\right)\right).$$

Here we obtain a nontrivial bound on $\#\mathcal{P}_L(q)$ without any restrictions on the size or the arithmetic structure of q.

Theorem 7. For all positive integers L and q, the following bound holds:

$$\#\mathcal{P}_L(q) \ll \frac{\#\mathcal{P}_L}{q^{1/2}}.$$

Proof. Let r be the largest integer for which $r \equiv L \pmod{2}$ and $g^r \leq q$. Clearly, $g^r \gg q$. We observe that every palindrome $n \in \mathcal{P}_L$ can be expressed in the form

$$n = g^{(L+r)/2}k_1 + g^{(L-r)/2}m + k_2$$

where $k_1, k_2 < g^{(L-r)/2}, g^{(L-r)/2}k_1 + k_2$ is a palindrome of length L - r, and $m < g^r$. Note that for each choice of k_2 , the value of k_1 is uniquely determined by the palindromy condition.

Let $d = \gcd(q, g)$. If $n \in \mathcal{P}_L$ is divisible by q, then $d \mid k_2$; since $k_2 \neq 0$ there are at most $g^{(L-r)/2}/d$ choices for k_2 . Since $g^r \leq q$, it follows that for each choice of k_2 there are at most d values of $m < g^r$ such that the congruence $g^{(L+r)/2}k_1 + g^{(L-r)/2}m + k_2 \equiv 0 \pmod{q}$ holds. Therefore, $\#\mathcal{P}_L(q) \leq g^{(L-r)/2} \ll \#\mathcal{P}_L q^{-1/2}$.

5 Prime Divisors of Palindromes

Let $\omega(n)$ denote the number of distinct prime divisors of an integer $n \geq 2$.

Theorem 8. For all sufficiently large L, there is a palindrome n whose length is L and for which

$$\omega(n) = \Omega\left(\frac{\log\log n}{\log\log\log n}\right).$$

Proof. Define y by the equation

$$2C_1 y^{1/4} (\log y)^{-1} = \log L,$$

where C_1 is the constant implied by the Ω -symbol in Lemma 3, and let S be a set of primes of cardinality $\#S = \lfloor C_1 y^{1/4} (\log y)^{-2} \rfloor$ with the properties stated in that lemma. Putting

$$q = \prod_{p \in \mathcal{S}} p_{s}$$

by Lemma 2 we see that

$$\max_{\gcd(a,b,q)$$

for some constant $C_2 > 0$ provided that L is large enough. In particular, supposing that gcd(c,q) = 1, we obtain the estimate

$$\left|T_q(c, cg^{L-1})\right| \le t_q \left(1 - \frac{C_2}{\log y (\log \log y)^5}\right) \tag{4}$$

since gcd(g,q) = 1 for sufficiently large L. Taking $K = \lfloor L/2 \rfloor$, we have by Lemma 5:

$$\left|S_q(L;c)\right| \le g^2 \left(g^2 - 1 + \frac{1}{K} \left|T_q(K;c,cg^{L-1})\right|\right)^{K/2}.$$
(5)

As in the proof of Theorem 6, we now write $K = Qt_q + R$ with integers $Q \ge 0$ and $0 \le R < t_q$. Because $K = \lfloor L/2 \rfloor \ge (t_q^2 - 1)/2 \ge t_q$ we have $Q \ge 1$. Thus, provided that L is large enough, using (4) we derive

$$\begin{split} |T_q(K;c,c)| &= Q|T_q(c,c)| + |T_q(R;c,c)| \\ &\leq Qt_q \left(1 - \frac{C_2}{\log y (\log \log y)^5} \right) + R \\ &= K - \frac{C_2 Q t_q}{\log y (\log \log y)^5} \leq K \left(-\frac{C_2}{2 \log y (\log \log y)^5} \right), \end{split}$$

since $Qt_q \ge Q > R$.

Applying this to (5), it follows that

$$|S_q(L;c)| \le \#\mathcal{P}_L \exp\left(-C_4L/\log y(\log\log y)^5\right)$$

for some constant $C_4 > 0$, provided that gcd(c,q) < q and L is sufficiently large.

Now let us denote

$$\mathcal{P}_L(q,a) = \left\{ n \in \mathcal{P}_L : n \equiv a \pmod{q} \right\}.$$
(6)

By the same arguments given in the proof of Proposition 4.2 of [1], it is easily shown that the preceding estimate implies

$$\#\mathcal{P}_L(q,a) = \frac{\#\mathcal{P}_L}{q} + O\left(\#\mathcal{P}_L \exp\left(-C_4 L/\log y (\log\log y)^5\right)\right).$$

In particular $\mathcal{P}_L(q,0) > 0$ for sufficiently large L. Taking any $n \in \mathcal{P}_L(q,0)$ we obtain $\omega(n) \geq \omega(q) \geq \#\mathcal{S} = \Omega(y^{1/4}(\log y)^{-2})$, and since $L \asymp \log n$ the result follows.

Theorem 9. There is a constant C > 0 such that for all sufficiently large L

$$\prod_{\substack{p \le L^2(\log L)^{-C} \\ \gcd(p,g(g-1))=1}} p \left| \prod_{n \in \mathcal{P}_L} n \right|$$

Proof. Repeating the same arguments as in the proof of Proposition 4.1 of [1], we derive from Theorem 6 that

$$#\mathcal{P}_L(p,a) = \frac{#\mathcal{P}_L}{p} + O\left(#\mathcal{P}_L \exp\left(-L/2\log p(\log\log p)^B\right)\right)$$

where, B is defined in Theorem 6 and as before, $\mathcal{P}_L(p, a)$ is defined by (6). In particular, $\#\mathcal{P}_L(p, 0) > 0$ provided that L is large enough.

Theorem 9 immediately implies that

$$\omega\left(\prod_{n\in\mathcal{P}_L}n\right) = \Omega\left(\frac{L^2}{(\log L)^C}\right).$$

We now use Theorem 7 to derive a more precise result.

Theorem 10. For all sufficiently large L,

$$\omega\left(\prod_{n\in\mathcal{P}_L}n\right) = \Omega\left(\frac{L^2}{(\log L)^2}\right).$$

Proof. Let

$$W = \prod_{n \in \mathcal{P}_L} n, \qquad s = \omega(W).$$

For each prime p, we denote by r_p the exact power of p dividing W; then

$$\prod_{n\in\mathcal{P}_L}n=\prod_{p\,|\,W}p^{r_p},$$

and this implies that

$$r_p = \sum_{\alpha=1}^{\infty} \# \mathcal{P}_L(p^{\alpha}).$$

By Theorem 7 we have the estimate

$$r_p \ll \# \mathcal{P}_L \sum_{\alpha=1}^{\infty} p^{-\alpha/2} \ll \frac{\# \mathcal{P}_L}{p^{1/2}};$$

thus,

$$#\mathcal{P}_L \sum_{p \mid W} \frac{\log p}{p^{1/2}} \gg \sum_{p \mid W} r_p \log p = \log W \gg Lg^L.$$

Denoting by p_j the *j*-th prime number, we obtain

$$L \ll \sum_{p \mid W} \frac{\log p}{p^{1/2}} \le \sum_{j=1}^{s} \frac{\log p_j}{p_j^{1/2}} \ll (s \log s)^{1/2}$$

which finishes the proof.

6 Remarks

It is an open question (posed in [1]) as to whether there exist infinitely many prime palindromes in a given base $g \ge 2$, and the solution appears to be quite difficult. Indeed, since the collection of palindromes in any base forms a set as thin as that of the square numbers, this question is likely to be as difficult as that of showing the existence of infinitely many primes of the form $p = n^2 + 1$. At the present time, however, even the question as to whether there exist infinitely squarefree palindromes remains open.

References

- [1] W. Banks, D. Hart and M. Sakata, 'Almost all palindromes are composite', to appear in *Math. Res. Lett.*
- [2] T. Cochrane, C. Pinner and J. Rosenhouse, 'Bounds on exponential sums and the polynomial Waring problem mod p', J. London Math. Soc. (2) 67 (2003) no. 2, 319–336.
- [3] D. R. Heath-Brown, 'Artin's conjecture for primitive roots', Quart. J. Math., 37 (1986), 27–38.
- [4] W.-C. W. Li, Number theory with applications, World Scientific, Singapore, 1996.
- [5] R. Lidl and H. Niederreiter, *Finite fields*, Cambridge University Press, Cambridge, 1997.
- [6] A. Weil, *Basic number theory*, Springer-Verlag, New York, 1974.