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Abstract

In this paper, we study some divisibility properties of palindromic
numbers in a fixed base g ≥ 2. In particular, if PL denotes the set
of palindromes with precisely L digits, we show that for any suffi-
ciently large value of L there exists a palindrome n ∈ PL with at least
(log log n)1+o(1) distinct prime divisors, and there exists a palindrome
n ∈ PL with a prime factor of size at least (log n)2+o(1).

1 Introduction

For a fixed integer base g ≥ 2, consider the base g representation of an
arbitrary natural number n ∈ N:

n =

L−1
∑

k=0

ak(n)gk, (1)

where ak(n) ∈ {0, 1, . . . , g − 1} for each k = 0, 1, . . . , L − 1, and the leading
digit aL−1(n) is nonzero. The integer n is said to be a palindrome if its digits
satisfy the symmetry condition:

ak(n) = aL−1−k(n), k = 0, 1, . . . , L − 1.
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It has recently been shown in [1] that almost all palindromes are composite.
For any n ∈ N, the number L in (1) is called the length of n; let PL ⊂ N

denote the set of all palindromes of length L. In this paper, as in [1], we
estimate exponential sums of the form

Sq(L; c) =
∑

n∈PL

eq(cn),

where as usual eq(x) = exp(2πix/q) for all x ∈ R. Using these estimates,
we show that for all sufficiently large values of L, there exists a palindrome
n ∈ PL with at least (log log n)1+o(1) distinct prime divisors, and there exists
a palindrome n ∈ PL with a prime factor of size at least (log n)2+o(1).

Throughout the paper, all constants defined either explicitly or implicitly
via the symbols O, Ω, ≪ and ≫ may depend on g but are absolute otherwise.
We recall that, as usual, the following statements are equivalent: A = O(B),
B = Ω(A), A ≪ B, and B ≫ A. We also write A ≍ B to indicate that
B ≪ A ≪ B.

Acknowledgements. The authors wish to thank Florian Luca for some
useful conversations. Most of this work was done during a visit by the authors
to the Universidad de Cantabria; the hospitality and support of this institu-
tion is gratefully acknowledged. W. B. was supported in part by NSF grant
DMS-0070628, and I. S. was supported in part by ARC grant DP0211459.

2 Preliminary Results

For every natural number q with gcd(q, g) = 1, we denote by tq the order of
g in the multiplicative group modulo q. For arbitrary integers a, b, K with
K ≥ 1 we consider the exponential sums

Tq(a, b) =

tq
∑

k=1

eq

(

agk + bg−k
)

and Tq(K; a, b) =
K
∑

k=1

eq

(

agk + bg−k
)

,

where the inversion g−k is taken in the residue ring Zq.

Lemma 1. Let S be a set of primes coprime to g, with gcd(tp1
, tp2

) = 1 for
all distinct p1, p2 ∈ S. Then for the integer q =

∏

p∈S p one has

Tq(a, b) =
∏

p∈S

Tp(a, b).
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Proof. Consider the Kloosterman sums

Kχ(a, b; q) =
∑

1≤c≤q
gcd(c,q)=1

χ(c) eq(ac + bc)

as χ varies over the multiplicative characters of Z∗
q. Denoting by Xq the

group of all such characters for which χ(g) = 1, as in the proof of Lemma 2.1
of [1] one has

Tq(a, b) =
tq

ϕ(q)

∑

χ∈Xq

Kχ(a, b; q).

Because of the assumed property of the set S, we see that tq =
∏

p∈S tp, and
therefore

#Xq =
ϕ(q)

tq
=
∏

p∈S

ϕ(p)

tp
=
∏

p∈S

#Xp.

By duality theory, it follows that Xq is the direct product of the groups
{Xp : p ∈ S}, hence every character χ ∈ Xq has a unique decomposition

χ =
∏

p∈S

χp

where χp ∈ Xp for each p ∈ S. By the well known multiplicative property of
Kloosterman sums,

Kχ(a, b; q) =
∏

p∈S

Kχp
(a, b; p),

and therefore

Tq(a, b) =
tq

ϕ(q)

∑

χ∈Xq

∏

p∈S

Kχp
(a, b; p) =

∏

p∈S

tp
ϕ(p)

∑

χp∈Xp

Kχp
(a, b; q).

The result follows.

Lemma 2. Let S be a set of primes p such that p ≥ z, p ≡ 3 (mod 4),
gcd(p, g(g − 1)) = 1, and tp = Ω(log2p) for every p ∈ S. Suppose that
gcd(tp1

, tp2
) ≤ 2 for all distinct p1, p2 ∈ S. If z is sufficiently large, then for

some absolute constant A > 0 and all a, b ∈ Z one has

∣

∣Tq(a, b)
∣

∣ ≤ tq
∏

p∈S
gcd(a,b,p)=1

(

1 −
A

log p(log log p)5

)

,

where q =
∏

p∈S p.
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Proof. If tq is odd, then gcd(tp1
, tp2

) = 1 for all distinct p1, p2 ∈ S, thus

tq =
∏

p∈S

tp.

By Lemma 1, we also have

Tq(a, b) =
∏

p∈S

Tp(a, b).

Moreover,

Tp(a, b) =
tp

p − 1

∑

x∈Z∗

p

ep

(

ax(p−1)/tp + bx−(p−1)/tp
)

for all p ∈ S. If gcd(a, b, p) = 1, then since tp = Ω(log2p), Theorem 1.1 of [2]
implies that the estimate

∣

∣

∣

∣

∣

∣

∑

x∈Z∗

p

ep

(

ax(p−1)/tp + bx−(p−1)/tp
)

∣

∣

∣

∣

∣

∣

≤ (p − 1)

(

1 −
A

log p(log log p)5

)

holds for some absolute constant A > 0 provided that z is large enough. On
the other hand, Tp(a, b) = tp if gcd(a, b, p) = p. This completes the proof in
the case that tq is odd.

If tq is even, then the multiplicative order of g2 modulo q is τq = tq/2, and
for each p ∈ S the multiplicative order of g2 modulo p is τp = tp/2 or τp = tp
according to whether tp is even or odd, respectively. Since each prime p ∈ S
is congruent to 3 (mod 4), it follows that τp is odd, and we have

τq =
∏

p∈S

τp.

We now write

Tq(a, b) =

τq
∑

k=1

eq

(

afk + bf−k
)

+

τq
∑

k=1

eq

(

agfk + bg−1f−k
)

where f = g2. Noting that τp = Ω(log2p) for all p ∈ §, we can apply the
preceding argument to both of these sums (with g replaced by g2), and we
derive the stated result in the case that tq is even.
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Lemma 3. If y is sufficiently large, there is a set S ∈ [y(log y)−2, y] of
primes p with p ≡ 3 (mod 4) and gcd(p, g(g2−1)) = 1, of cardinality at least
#S = Ω(y1/4(log y)−2), such that gcd(tp1

, tp2
) ≤ 2 for any distinct p1, p2 ∈ S,

and tp ≥ p1/4 for all p ∈ S.

Proof. According to Lemma 1 of [3] (taking k = 1, u = 3 and v = 16 in that
lemma), for every sufficiently large value of y there are at least Ω(y/ log2y)
primes p ≤ y with p ≡ 3 (mod 16) such that either p = 2r1r2 + 1 where
r1, r2 ≥ y1/4 are primes, or p = 2r0 + 1 where r0 is a prime. Clearly, the
interval [y(log y)−2, y] also contains a set L of Ω(y/ log2y) such primes. Note
that for y large enough, we have that p ∤ g(g2 − 1) for each p ∈ L.

Take the smallest such prime p1 ∈ L and put it into the set S. Next,
remove all primes p ∈ L for which gcd(p− 1, p1 − 1) > 2; since this condition
implies that gcd(p−1, p1−1) ≥ y1/4, we remove at most O(y3/4) such primes
at this step. Now take the smallest remaining prime p2 ∈ L and add it to
S, then remove the O(y3/4) primes p ∈ L for which gcd(p − 1, p2 − 1) > 2.
Continuing in this manner, we eventually put Ω(#Ly−3/4) = Ω(y1/4(log y)−2)
primes into the set S. Noting that each tp > 2 and tp | p − 1, it follows that
tp ≥ y1/4 ≥ p1/4 for every p ∈ S.

We also need the following bound for incomplete sums:

Lemma 4. For any prime p with gcd(p, g) = 1 and any natural number
K ≤ tp, the following bound holds:

max
gcd(a,b,p)=1

∣

∣Tp(K; a, b)
∣

∣≪ p1/2 log p.

Proof. It is easy to see that for any h = 0, . . . , tp,

tp
∑

k=1

ep

(

agk + bg−k
)

etp(hk) =
tp

p − 1

∑

x∈F∗

p

ep

(

ax(p−1)/tp + bx−(p−1)/tp
)

χ(x)

where χ(x) is a certain multiplicative character on F∗
p. Applying the Weil

bound to the last sum (see Example 12 in Appendix 5 of [6]; also Theorem 3
of Chapter 6 in [4], and Theorem 5.41 and the comments to Chapter 5 in [5]),
we derive that

tp
∑

k=1

ep

(

agk + bg−k
)

etp(hk) ≪ p1/2.

Now using the standard reduction from complete sums to incomplete ones,
we obtain the desired result.
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A relation between the sums Sq(L; c) and Tq(K; a, b) has been found in [1]
which we now present in a slightly modified form.

Lemma 5. Let K = ⌊L/2⌋. Then

∣

∣Sq(L; c)
∣

∣ ≤ g2

(

g2 − 1 +
1

K

∣

∣Tq(K; c, cgL−1)
∣

∣

)K/2

.

Proof. As in the proof of Lemma 3.1 of [1] we have

∣

∣Sq(L; c)
∣

∣ ≤ g2
K
∏

k=1

∣

∣

∣

∣

∣

g−1
∑

a=0

eq

(

ac
(

gk + gL−1−k
))

∣

∣

∣

∣

∣

.

Then, using the arithmetic-geometric mean inequality, we derive that

∣

∣Sq(L; c)
∣

∣ ≤ g2





1

K

K
∑

k=1

∣

∣

∣

∣

∣

g−1
∑

a,b=0

eq

(

ac
(

gk + gL−1−k
))

∣

∣

∣

∣

∣
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K/2

= g2

(

1

K

g−1
∑

a,b=0

K
∑

k=1

eq

(

c(a − b)
(

gk + gL−1−k
))

)K/2

.

Estimating each inner sum trivially as K for all a and b except for a = 1,
b = 0, we obtain the desired statement.

3 Exponential Sums with Palindromes

Theorem 6. There exists a constant B > 0 such that for all sufficiently large
values of L and any prime p ≤ L2/ log4L such that gcd(p, g(g − 1)) = 1, the
following bound holds:

max
gcd(c,p)=1

∣

∣Sp(L; c)
∣

∣ ≤ #PL exp
(

−L/ log p(log log p)B
)

.

Proof. Taking K = ⌊L/2⌋, we have by Lemma 5:

∣

∣Sp(L; c)
∣

∣ ≤ g2

(

g2 − 1 +
1

K

∣

∣Tp(K; c, cgL−1)
∣

∣

)K/2

. (2)
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Suppose that gcd(c, p) = 1. Let us write K = Qtp + R where Q ≥ 0 and
0 ≤ R < tp.

Let us first consider the case K ≥ tp. Since p | (gtp − 1), it is clear that
tp = Ω(log p); using Theorem 1.1 of [2] as in the proof of Lemma 2, it follows
that for all sufficiently large primes p,

∣

∣Tp(c, cg
L−1)

∣

∣ ≤ tp

(

1 −
1

log p(log log p)C0

)

(3)

for some constant C0 > 0. Moreover, for any prime p coprime to g(g − 1), it
is clear that tp 6= 1 and that

∣

∣Tp(c, cg
L−1)

∣

∣ < tp.

Therefore, adjusting the value of C0 if necessary, we see that the bound (3)
holds for every prime p such that gcd(p, g(g−1)) = 1. Thus, in the case that
K ≥ tp we have

∣

∣Tp(K; c, cgL−1)
∣

∣ = Q
∣

∣Tp(c, cg
L−1)

∣

∣+
∣

∣Tp(R; c, cgL−1)
∣

∣

≤ Qtp

(

1 −
1

log p(log log p)C0

)

+ R

= K −
Qtp

log p(log log p)C0

≤ K

(

1 −
1

2 log p(log log p)C0

)

.

When K < tp we apply Lemma 4 to deduce that

∣

∣Tp(K; c, cgL−1)
∣

∣≪ p1/2 log p ≪ K(log p)−1,

since K ≫ L ≥ p1/2(log p)2. Thus, in this case, we have a much stronger
bound.

Therefore, for sufficiently large p,

g2 − 1 +
1

K

∣

∣Tp(K; c, cgL−1)
∣

∣ ≤ g2 −
1

2 log p(log log p)C0

≤ g2 exp

(

−
1

2g2 log p(log log p)C0

)

.

Using this estimate in (2) together with the obvious relation #PL ≍ gL/2,
we derive the stated result.
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4 Congruences with Palindromes

Let us denote
PL(q) =

{

n ∈ PL : n ≡ 0 (mod q)
}

.

Proposition 4.2 of [1] asserts that if gcd(q, g(g2 − 1)) = 1, then for L ≥
10 + 2q2 log q the following asymptotic formula holds:

#PL(q) =
#PL

q
+ O

(

#PL

q
exp

(

−
L

2q2

))

.

Here we obtain a nontrivial bound on #PL(q) without any restrictions on
the size or the arithmetic structure of q.

Theorem 7. For all positive integers L and q, the following bound holds:

#PL(q) ≪
#PL

q1/2
.

Proof. Let r be the largest integer for which r ≡ L (mod 2) and gr ≤ q.
Clearly, gr ≫ q. We observe that every palindrome n ∈ PL can be expressed
in the form

n = g(L+r)/2k1 + g(L−r)/2m + k2

where k1, k2 < g(L−r)/2, g(L−r)/2k1 + k2 is a palindrome of length L − r, and
m < gr. Note that for each choice of k2, the value of k1 is uniquely determined
by the palindromy condition.

Let d = gcd(q, g). If n ∈ PL is divisible by q, then d | k2; since k2 6= 0
there are at most g(L−r)/2/d choices for k2. Since gr ≤ q, it follows that
for each choice of k2 there are at most d values of m < gr such that
the congruence g(L+r)/2k1 + g(L−r)/2m + k2 ≡ 0 (mod q) holds. Therefore,
#PL(q) ≤ g(L−r)/2 ≪ #PL q−1/2.

5 Prime Divisors of Palindromes

Let ω(n) denote the number of distinct prime divisors of an integer n ≥ 2.

Theorem 8. For all sufficiently large L, there is a palindrome n whose length
is L and for which

ω(n) = Ω

(

log log n

log log log n

)

.
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Proof. Define y by the equation

2C1y
1/4(log y)−1 = log L,

where C1 is the constant implied by the Ω-symbol in Lemma 3, and let S
be a set of primes of cardinality #S =

⌊

C1y
1/4(log y)−2

⌋

with the properties
stated in that lemma. Putting

q =
∏

p∈S

p,

by Lemma 2 we see that

max
gcd(a,b,q)<q

∣

∣Tq(a, b)
∣

∣ ≤ tq

(

1 −
C2

log y(log log y)5

)

for some constant C2 > 0 provided that L is large enough. In particular,
supposing that gcd(c, q) = 1, we obtain the estimate

∣

∣Tq(c, cg
L−1)

∣

∣ ≤ tq

(

1 −
C2

log y(log log y)5

)

(4)

since gcd(g, q) = 1 for sufficiently large L. Taking K = ⌊L/2⌋, we have by
Lemma 5:

∣

∣Sq(L; c)
∣

∣ ≤ g2

(

g2 − 1 +
1

K

∣

∣Tq(K; c, cgL−1)
∣

∣

)K/2

. (5)

As in the proof of Theorem 6, we now write K = Qtq +R with integers Q ≥ 0
and 0 ≤ R < tq. Because K = ⌊L/2⌋ ≥ (t2q − 1)/2 ≥ tq we have Q ≥ 1.
Thus, provided that L is large enough, using (4) we derive

|Tq(K; c, c)| = Q|Tq(c, c)| + |Tq(R; c, c)|

≤ Qtq

(

1 −
C2

log y(log log y)5

)

+ R

= K −
C2Qtq

log y(log log y)5
≤ K

(

−
C2

2 log y(log log y)5

)

,

since Qtq ≥ Q > R.
Applying this to (5), it follows that

∣

∣Sq(L; c)
∣

∣ ≤ #PL exp
(

−C4L/ log y(log log y)5
)
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for some constant C4 > 0, provided that gcd(c, q) < q and L is sufficiently
large.

Now let us denote

PL(q, a) =
{

n ∈ PL : n ≡ a (mod q)
}

. (6)

By the same arguments given in the proof of Proposition 4.2 of [1], it is easily
shown that the preceding estimate implies

#PL(q, a) =
#PL

q
+ O

(

#PL exp
(

−C4L/ log y(log log y)5
))

.

In particular PL(q, 0) > 0 for sufficiently large L. Taking any n ∈ PL(q, 0)
we obtain ω(n) ≥ ω(q) ≥ #S = Ω(y1/4(log y)−2), and since L ≍ log n the
result follows.

Theorem 9. There is a constant C > 0 such that for all sufficiently large L

∏

p≤L2(log L)−C

gcd(p,g(g−1))=1

p

∣

∣

∣

∣

∣

∏

n∈PL

n

Proof. Repeating the same arguments as in the proof of Proposition 4.1 of [1],
we derive from Theorem 6 that

#PL(p, a) =
#PL

p
+ O

(

#PL exp
(

−L/2 log p(log log p)B
))

where, B is defined in Theorem 6 and as before, PL(p, a) is defined by (6).
In particular, #PL(p, 0) > 0 provided that L is large enough.

Theorem 9 immediately implies that

ω

(

∏

n∈PL

n

)

= Ω

(

L2

(log L)C

)

.

We now use Theorem 7 to derive a more precise result.

Theorem 10. For all sufficiently large L,

ω

(

∏

n∈PL

n

)

= Ω

(

L2

(log L)2

)

.
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Proof. Let

W =
∏

n∈PL

n, s = ω(W ).

For each prime p, we denote by rp the exact power of p dividing W ; then

∏

n∈PL

n =
∏

p |W

prp,

and this implies that

rp =

∞
∑

α=1

#PL(pα).

By Theorem 7 we have the estimate

rp ≪ #PL

∞
∑

α=1

p−α/2 ≪
#PL

p1/2
;

thus,

#PL

∑

p |W

log p

p1/2
≫
∑

p |W

rp log p = log W ≫ LgL.

Denoting by pj the j-th prime number, we obtain

L ≪
∑

p |W

log p

p1/2
≤

s
∑

j=1

log pj

p
1/2
j

≪ (s log s)1/2

which finishes the proof.

6 Remarks

It is an open question (posed in [1]) as to whether there exist infinitely many
prime palindromes in a given base g ≥ 2, and the solution appears to be
quite difficult. Indeed, since the collection of palindromes in any base forms
a set as thin as that of the square numbers, this question is likely to be as
difficult as that of showing the existence of infinitely many primes of the form
p = n2 + 1. At the present time, however, even the question as to whether
there exist infinitely squarefree palindromes remains open.
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