Prime Divisors of Palindromes
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Abstract

In this paper, we study some divisibility properties of palindromic
numbers in a fixed base g > 2. In particular, if P denotes the set
of palindromes with precisely L digits, we show that for any suffi-
ciently large value of L there exists a palindrome n € P, with at least
(loglog n)'*°() distinct prime divisors, and there exists a palindrome
n € Pr, with a prime factor of size at least (logn)2to(),

1 Introduction

For a fixed integer base g > 2, consider the base g representation of an
arbitrary natural number n € N:

n:Zak(n)gk, (1)

where ax(n) € {0,1,...,9 — 1} for each £ = 0,1,..., L — 1, and the leading
digit az_1(n) is nonzero. The integer n is said to be a palindrome if its digits
satisfy the symmetry condition:

ar(n) = ap_1-x(n), k=0,1,...,L—1.



It has recently been shown in [1] that almost all palindromes are composite.

For any n € N, the number L in (1) is called the length of n; let P, C N
denote the set of all palindromes of length L. In this paper, as in [1], we
estimate exponential sums of the form

Se(Lic) = ey(cn),

nePr,

where as usual e (x) = exp(2miz/q) for all x € R. Using these estimates,
we show that for all sufficiently large values of L, there exists a palindrome
n € P, with at least (loglogn)'™*™® distinct prime divisors, and there exists
a palindrome n € Py, with a prime factor of size at least (logn)?To®).

Throughout the paper, all constants defined either explicitly or implicitly
via the symbols O, ), < and > may depend on g but are absolute otherwise.
We recall that, as usual, the following statements are equivalent: A = O(B),
B =Q(A), A< B, and B > A. We also write A < B to indicate that
B« AKB.
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2 Preliminary Results

For every natural number ¢ with ged(q, g) = 1, we denote by ¢, the order of
g in the multiplicative group modulo ¢. For arbitrary integers a, b, K with
K > 1 we consider the exponential sums

tq K
Ty(a,b) => eg(agh+bg7™*) and T,(K;a,b) = e, (ag"+bg "),
k=1 k=1
where the inversion g=* is taken in the residue ring Z,.

Lemma 1. Let S be a set of primes coprime to g, with ged(t,,,t,,) =1 for
all distinct py,ps € S. Then for the integer ¢ = [[ .o p one has

Ty(a,b) = [ [ T(a,b).

peES

pES



Proof. Consider the Kloosterman sums

K, (a,b;q) = Z x(c) e4(ac + be)

1<c<q
ng(07Q):1

as x varies over the multiplicative characters of Z;. Denoting by X, the
group of all such characters for which x(g) = 1, as in the proof of Lemma 2.1
of [1] one has

T,(a

XEX

Because of the assumed property of the set S, we see that ¢, = Hpe stp, and
therefore

o(p
#X, = = [[#x.
peS p peS
By duality theory, it follows that X, is the direct product of the groups
{X, : p € S}, hence every character y € X, has a unique decomposition

x=1]x
peES

where x, € X, for each p € §S. By the well known multiplicative property of
Kloosterman sums,

K, (a,b;q) = HKXpabp

peS

v (a,bip) = H Z (@, 0;q).

xEXq peES pES x eXp

The result follows. ]

and therefore

Lemma 2. Let S be a set of primes p such that p > z, p = 3 (mod 4),
ged(p,g(g — 1)) = 1, and t, = Qlog’p) for every p € S. Suppose that
ged(ty,, tp,) < 2 for all distinct py,p2 € S. If z is sufficiently large, then for
some absolute constant A > 0 and all a,b € Z one has

A
‘Tq(av b)‘ < tq H (1 B lng(log Ing)5) ’

peS
ged(a,b,p)=1

where ¢ = Hpesp.



Proof. 1f t, is odd, then ged(t,,,t,,) = 1 for all distinct py, ps € S, thus
ty =[]t
peS

By Lemma 1, we also have

T,(a,b) = [ [ Z,(a,b).

peS

Moreover,

t
Tp(CL, b) = P _p 1 Z e, (ax(p_l)/tp + bx—(p—l)/tp)

TE€Ly,

for all p € S. If ged(a, b, p) = 1, then since t, = Q(log®p), Theorem 1.1 of [2]
implies that the estimate

A
(p—1)/tp —(p—1)/tp
E e, (ax + bz <(p—-1 (1_ )
= 3 )|<e-D log p(log log p)°

holds for some absolute constant A > 0 provided that z is large enough. On
the other hand, T)(a,b) = t, if ged(a, b, p) = p. This completes the proof in
the case that ¢, is odd.

If t,, is even, then the multiplicative order of g> modulo q is 7, = t,/2, and
for each p € S the multiplicative order of g? modulo p is 7, = t,/2 or 7, = ¢,
according to whether ¢, is even or odd, respectively. Since each prime p € S
is congruent to 3 (mod 4), it follows that 7, is odd, and we have

=TI

peES

We now write
Tq Tq

Ty(a,b) = Cq (afk + bf_k) + €q (agfk + bg_lf_k)
k=1 k=1

where f = g?. Noting that 7, = Q(log’p) for all p € §, we can apply the
preceding argument to both of these sums (with g replaced by ¢?), and we
derive the stated result in the case that ¢, is even. O
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Lemma 3. If y is sufficiently large, there is a set S € [y(logy)~2,y| of
primes p with p =3 (mod 4) and ged(p, g(g>—1)) = 1, of cardinality at least
#S = Q(yY*(logy)2), such that ged(t,,, t,,) < 2 for any distinct p1, ps € S,
and t, > p** for allp € S.

Proof. According to Lemma 1 of [3] (taking k = 1, v = 3 and v = 16 in that
lemma), for every sufficiently large value of y there are at least Q(y/logy)
primes p < y with p = 3 (mod 16) such that either p = 2ryry + 1 where
r1,7r9 > y'/* are primes, or p = 2ry + 1 where 7 is a prime. Clearly, the
interval [y(logy)~2,y] also contains a set £ of Q(y/log®y) such primes. Note
that for y large enough, we have that p{ g(¢*> — 1) for each p € L.

Take the smallest such prime p; € £ and put it into the set §. Next,
remove all primes p € L for which ged(p —1,p; — 1) > 2; since this condition
implies that ged(p—1,p; —1) > y/*, we remove at most O(y*/*) such primes
at this step. Now take the smallest remaining prime p, € £ and add it to
S, then remove the O(y**) primes p € £ for which ged(p — 1,p; — 1) > 2.
Continuing in this manner, we eventually put Q(#Ly /%) = Q(y*/*(logy)~?)
primes into the set S. Noting that each t, > 2 and ¢, |p — 1, it follows that
t, > yt/* > pl/* for every p € S. O

We also need the following bound for incomplete sums:

Lemma 4. For any prime p with ged(p,g) = 1 and any natural number
K <t,, the following bound holds:

max |T,(K;a,b)| < p'/?logp.
gcd(a,b,p):l‘ p( )‘ p &P

Proof. It is easy to see that for any h =0, ...,1%,,
tp '[jp

> e, (agh +bg7") ey, (hk) = |

k=1

Z e, (ax(P—l)/tp + bx—(p—l)/tp) X(l")

z€Fy

where x(x) is a certain multiplicative character on F;. Applying the Weil
bound to the last sum (see Example 12 in Appendix 5 of [6]; also Theorem 3
of Chapter 6 in [4], and Theorem 5.41 and the comments to Chapter 5 in [5]),
we derive that

tP

Z e, (agk +bg™*) e, (hk) < p'/%.

k=1
Now using the standard reduction from complete sums to incomplete ones,
we obtain the desired result. O



A relation between the sums S,(L; ¢) and T,(K; a, b) has been found in [1]
which we now present in a slightly modified form.

Lemma 5. Let K = |L/2|. Then

1 K/2
—‘Tq(K;c, ch_l)‘) )

S4(L; c)] < ¢° <92 — 1+ %

Proof. As in the proof of Lemma 3.1 of [1] we have

u’,:]x

[a

g—1
e, (ac (¢" +g* 1_’“))‘.
a=0

Then, using the arithmetic-geometric mean inequality, we derive that
o\ K/2

e (ac (9" +9"77"))

1 K
1S,(L;0)| < & E];

1 K K/2
= ¢? <% Z €, (c(a —b) (gk + gL_l_k))> .

Estimating each inner sum trivially as K for all a and b except for a = 1,
b =0, we obtain the desired statement. O

3 Exponential Sums with Palindromes

Theorem 6. There exists a constant B > 0 such that for all sufficiently large
values of L and any prime p < L?/log*L such that ged(p, g(g — 1)) = 1, the
following bound holds:

max ‘S (L;c)| < #Ppexp (—L/log p(loglogp)”) .

ged(c,p)=

Proof. Taking K = |L/2], we have by Lemma 5:

1 K/2
‘SP(L; c)‘ < g? <g2 -1+ E‘T;,(K;C, ch_l)‘) ) (2)



Suppose that ged(c,p) = 1. Let us write K = Qt, + R where > 0 and
0< R <t

Let us first consider the case K > t,. Since p| (g’ — 1), it is clear that
t, = Q(log p); using Theorem 1.1 of [2] as in the proof of Lemma 2, it follows
that for all sufficiently large primes p,

Th(crcs ) <1, 1 i) 3)

~ log p(log log p)o

for some constant Cy > 0. Moreover, for any prime p coprime to g(g — 1), it
is clear that ¢, # 1 and that

‘Tp(c, ch_l)‘ <tp.

Therefore, adjusting the value of Cj if necessary, we see that the bound (3)
holds for every prime p such that ged(p, g(g—1)) = 1. Thus, in the case that
K >t, we have

T (K e, eg"™ )| = Q|Ty(e,cg™ M| + [Tp(Rs e, cg™ )]

1
< ot [1- R
s @y ( log p(log logp)CO) -

Qtp 1
= K- <K|(1- .
log p(log log p)© — 2log p(log log p)©

When K < t, we apply Lemma 4 to deduce that
|T,(K;c,cg" )| < p'?logp < K(logp) ™,

since K > L > p'/?(logp)?. Thus, in this case, we have a much stronger
bound.
Therefore, for sufficiently large p,

1
) log p(log log p)“o

1
< g2 — )
=9 eXp( 2g2logp(10glogp)00)

Using this estimate in (2) together with the obvious relation #P; < ¢%/2,
we derive the stated result. O

1 _
g2—1+?‘Tp(K;c,ch N < g




4 Congruences with Palindromes

Let us denote
Prlg)={nePr:n=0 (modq)}.

Proposition 4.2 of [1] asserts that if ged(q, g(g? — 1)) = 1, then for L >
10 + 2¢? log ¢ the following asymptotic formula holds:

_#PL #PL L
#Pr(q) = . +O( . exp( 2q2))'

Here we obtain a nontrivial bound on #7P(q) without any restrictions on
the size or the arithmetic structure of q.

Theorem 7. For all positive integers L and q, the following bound holds:

#Pr(q) < ZZDQL

Proof. Let r be the largest integer for which » = L (mod 2) and ¢" < gq.
Clearly, g" > q. We observe that every palindrome n € P;, can be expressed
in the form

n = g(L+r)/2k1 +g(L—r)/2m+k2
where ki, ky < ¢\F=7/2 ¢(L=)/2k + ks, is a palindrome of length L — r, and
m < g". Note that for each choice of ks, the value of k; is uniquely determined
by the palindromy condition.

Let d = ged(q,g). If n € Pr is divisible by ¢, then d | ko; since ky # 0
there are at most g(*="/2/d choices for ky. Since g" < g, it follows that
for each choice of ko there are at most d values of m < ¢" such that
the congruence g**"/2k; + ¢(E=")/2m 4 ky = 0 (mod ¢) holds. Therefore,
#Pr(q) < 9" < H#Prg O

5 Prime Divisors of Palindromes
Let w(n) denote the number of distinct prime divisors of an integer n > 2.
Theorem 8. For all sufficiently large L, there is a palindrome n whose length

is L and for which
log logn
=Q(——.
w(n) <log log log n)



Proof. Define y by the equation
2C,y"*(logy) ™" =log L,

where (' is the constant implied by the (2-symbol in Lemma 3, and let &
be a set of primes of cardinality #S = |Ciy'/*(logy)~2| with the properties
stated in that lemma. Putting

q=]]»

peES
by Lemma 2 we see that
Cy
T, (a,b)] <t,|1-—
gcd?;?fm} oot <t < log y(log log y)5)

for some constant C'y > 0 provided that L is large enough. In particular,
supposing that ged(c, ¢) = 1, we obtain the estimate

Ty (c, cg™ )| < t, (1 Cs ) (4)

~ logy(loglogy)®

since ged(g, q) = 1 for sufficiently large L. Taking K = |L/2], we have by
Lemma 5:

] K/2
|S4(L; c)| < ¢° <92—1+E\Tq(K;c,ch‘l)\) : (5)

As in the proof of Theorem 6, we now write K = Qt,+ R with integers () > 0
and 0 < R < t,. Because K = |L/2] > (2 —1)/2 > t, we have Q > 1.
Thus, provided that L is large enough, using (4) we derive

[ To(Ke,0)] = QITy(e, )| + [Ty(R; ¢, ¢)|

Cy
< ot [1-
- Qq( logy(loglogy)5>+R
Q1

_ K (- &
log y(loglog y)® — 2logy(loglogy)® /)’

since Qt, > Q > R.
Applying this to (5), it follows that

|S4(L; ¢)| < #Pp exp (—C4L/ logy(loglog y)°)

9



for some constant Cy > 0, provided that ged(c,q) < g and L is sufficiently
large.
Now let us denote

Pr(q,a) = {nePL :n=a (mod q)} (6)

By the same arguments given in the proof of Proposition 4.2 of [1], it is easily
shown that the preceding estimate implies
_#PL

#Pr(q,a) = p + O (#Prexp (—CiL/ log y(loglogy)®)) .

In particular Pr(q,0) > 0 for sufficiently large L. Taking any n € Pr(q,0)
we obtain w(n) > w(q) > #S = Q(y*/*(logy)~?), and since L < logn the
result follows. O

Theorem 9. There is a constant C' > 0 such that for all sufficiently large L

II » II»

p<L?(log L)~ n€PL

ged(p,g(g—1))=1
Proof. Repeating the same arguments as in the proof of Proposition 4.1 of [1],
we derive from Theorem 6 that

#Pr(p,a) = #;DL + O (#Pp exp (—L/2log p(loglog p)”))

where, B is defined in Theorem 6 and as before, Py (p, a) is defined by (6).
In particular, #Pr(p,0) > 0 provided that L is large enough. O

Theorem 9 immediately implies that

(1) (i)

We now use Theorem 7 to derive a more precise result.

Theorem 10. For all sufficiently large L,

(1) ()

10



Proof. Let
W = H n, s=w(W).

nePL

For each prime p, we denote by 7, the exact power of p dividing W; then

nePr p|W
and this implies that
rp =D #PL(p").
a=1

By Theorem 7 we have the estimate

%) » #P
’l“p<<#7DLZp /2<< p1/2L§

a=1

thus,

log p
#PLZ Y > erlogpzlogW>> Lg*.

p|W pIW
Denoting by p; the j-th prime number, we obtain

logp 2 log p; 1/2
L< Z pi2 < Z 75 < (slogs)
plW j=1 Pj

which finishes the proof. O

6 Remarks

It is an open question (posed in [1]) as to whether there exist infinitely many
prime palindromes in a given base g > 2, and the solution appears to be
quite difficult. Indeed, since the collection of palindromes in any base forms
a set as thin as that of the square numbers, this question is likely to be as
difficult as that of showing the existence of infinitely many primes of the form
p = n? + 1. At the present time, however, even the question as to whether
there exist infinitely squarefree palindromes remains open.
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