
Proceedings of Symposia in Applied Mathematics

Towards Faster Cryptosystems, II

William D. Banks

Abstract. We discuss three cryptosystems, NTRU , SPIFI , and ENROOT ,
that are based on the use of polynomials with restricted coefficients.

Introduction

In this paper, we consider three cryptosystems that are based on the use of
polynomials with restricted coefficients and over a finite ring R. For cryptographic
purposes, polynomials with restricted coefficients offer many attractive features,
including resistance to lattice attacks and other security risks, very modest storage
requirements, and competitive computational speed. The cryptosystems described
below, namely NTRU , SPIFI , and ENROOT , utilize polynomials with restricted
coefficients in different ways, and these constructions have met with varying levels
of success in the cryptographic community. Our aim in this paper is not to imply
that these particular cryptosystems are optimal in any sense. Instead, we simply
hope to illustrate the elegance and simplicity of their design features and perhaps
promote the development of the next generation of fast cryptosystems based on
polynomials.

1. The NTRU Cryptosystem

The NTRU Public Key Cryptosystem is based on ring theory, and its under-
lying security relies on the difficulty of solving certain lattice problems when the
dimension of the given lattice is sufficiently large. In practical implementations of
the NTRU protocol, many of the polynomials that are used have coefficients lying
in the set {0,±1}; this means that multiplication in the underlying ring R can
be performed very efficiently, which contributes significantly to the overall perfor-
mance. Thus, NTRU provides a competitive alternative to cryptosystems based
on RSA or Diffie-Hellman. For a more complete account of NTRU, the reader is
referred to original paper [11] and other related articles that can be found at the
NTRU website (http://www.ntru.com).

1991 Mathematics Subject Classification. Primary ?????, ?????; Secondary ?????, ?????
Key words and phrases. Cryptography, polynomials, number theory.
The author was supported in part by NSF Grant # DMS-0070628.

c©0000 (copyright holder)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62770294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 WILLIAM D. BANKS

1.1. The NTRU Protocol. The original version of NTRU depends on three
integer parameters (N, p, q) and four sets Lf , Lg, Lφ and Lm of polynomials with
integers coefficients and degree at most N−1, which are naturally viewed as subsets
of the ring R = Z[x]/(xN − 1). The symbol ∗ is used to denote the operation of
multiplication in the ring R. The parameters p and q need not be prime numbers
(indeed, q is often chosen to be a power of 2 for obvious reasons), but one does
require that gcd(p, q) = 1. The basic NTRU protocol consists of the following three
steps:

◦ Key Creation. Bob creates a public key h by selecting two polynomials
f ∈ Lf and g ∈ Lg. The polynomial f should satisfy the additional
requirement that it have inverses modulo p and modulo q. These are
denoted by Fp and Fq, respectively, so that

f ∗ Fp ≡ 1 (mod p) and f ∗ Fq ≡ 1 (mod q).

Bob’s public key is the polynomial

h ≡ Fq ∗ g (mod q).

Bob only needs to retain f as his private key, although in practice Bob

would also want to store the polynomial Fp since this is needed for every
decryption.

◦ Encryption. To encrypt a message m ∈ Lm to Bob, Alice randomly
chooses a polynomial φ ∈ Lφ. Using Bob’s public key h, she then computes

e = pφ ∗ h + m (mod q)

and transmits e to Bob.

◦ Decryption. Bob has received e from Alice. To decrypt, Bob first com-
putes

a = f ∗ e (mod q),

choosing the coefficients of a to lie in the interval between −q/2 and q/2.
Bob then recovers the message m by computing

m = Fp ∗ a (mod p).

To see why the decryption works, we observe that in the last step, Bob computes
the polynomial

a = f ∗ e (mod q) ≡ f ∗ (pφ ∗ h + m) (mod q)

≡ pφ ∗ (f ∗ Fq) ∗ g + f ∗ m (mod q)

≡ pφ ∗ g + f ∗ m (mod q).

For appropriate choices of the input parameters, the polynomial

G = pφ ∗ g + f ∗ m ∈ R

will (almost certainly) have coefficients that all lie in the interval −q/2 to q/2,
hence Bob recovers exactly the polynomial G after completing the first calculation.



TOWARDS FASTER CRYPTOSYSTEMS, II 3

Reducing G modulo p, Bob recovers the polynomial f ∗ m (mod p). Then, after
multiplying by Fp (the inverse of f modulo p), he obtains Alice’s message m.

We remark that the protocol described here has been generalized to work over
an arbitrary ring R. In this more general setting, the parameters p and q can be
any ideals in R such that (p, q) = (1).

1.2. Parameter Selection and Efficiency. For the most current recom-
mended parameter sets for NTRU, and an overview of the security analysis, we
refer the reader to [14].

In practical implementations of NTRU, the most time consuming part of the
encryption and decryption steps is multiplication in the ring R; encryption involves
the computation of one product r ∗ h (mod q), while decryption requires that two
products a = f ∗ e (mod q) and Fp ∗ a (mod p) be computed. In the key creation
step, the most time consuming part is the computation of the inverses Fp and Fq.
Ordinarily, Bob will store Fp along with his private key f in order to avoid the
recalculation of Fp each time an encrypted message is sent. To speed up both the
key creation and encryption, Bob can choose the element f to have the special form
f = 1+pf1 with f1 ∈ R. In this case, Fp = 1, so it is not necessary to compute the
inverse of f modulo p in the key creation step, and the second multiplication in the
decryption step is eliminated. This also eliminates the need to store Fp. However,
if Bob does choose to work with elements f of this form, then since the underlying
lattice is changed, special care is required in the parameter selection in order to
avoid to potential lattice attacks.

The space of messages Lm consists of all polynomials modulo p; if p is odd, it
is generally convenient to choose

Lm = {m ∈ R |m has coefficients lying between −(p − 1)/2 and (p − 1)/2},

while for p = 2 or p = 2 + X , Lm consists of polynomials with {0, 1} coefficients.
The other sample spaces Lf , Lg and Lφ also depend on the form of p, and are
generally chosen to have the form

Lf = L(df ), Lg = L(dg), Lφ = L(d),

or

Lf = L(df , df − 1), Lg = L(dg, dg), Lφ = L(d, d),

where for all d1, d2 ≥ 1, L(d1) consists of all polynomials F ∈ R with exactly d1

coefficients equal to +1 and the remaining coefficients equal to 0, and L(d1, d2)
consists of all polynomials F ∈ R with exactly d1 coefficients equal to +1, exactly
d2 coefficients equal to −1, and the remaining coefficients equal to 0.

We observe that any element of R modulo p can be encoded with about N log p
bits. Indeed, to encode the coefficient at each position requires about log p bits, and
there are N position altogether. Hence, the private key length is about 2N log p
bits. Similarly, the public key length is about N log q bits. For security equivalent
to 1024-bit RSA (or a symmetric cipher with an 80-bit key), the following choices
have been recommended:

(N, p, q) = (251, 2 + X, 128), Lf = L(72), Lg = L(72), Lφ = L(72),



4 WILLIAM D. BANKS

which gives a private key size of 251 bits and a public key size of 1757 bits (further
optimizations reduce the private key size to 192 bits; see [13]). For security equiva-
lent to 2048-bit RSA (110-bit symmetric), the following choices are recommended:

(N, p, q) = (347, 2 + X, 256), Lf = L(64), Lg = L(173), Lφ = L(64),

which after optimization has a private key size of 184 bits and a public key size
of 2776 bits. For security equivalent to 4096-bit RSA (160-bit symmetric), the
following choices are recommended:

(N, p, q) = (503, 2 + X, 256), Lf = L(420), Lg = L(251), Lφ = L(170),

which has a private key size of 480 bits and a public key size of 4024 bits.
We remark that by working mostly with polynomials whose coefficients lie in

{0, 1} or {0,±1}, multiplication in R is very fast and efficient. Hence, even the
most time consuming aspect of the NTRU protocol is greatly improved by the use
of polynomials with restricted coefficients.

1.3. Some Security Issues. Here we briefly discuss a few issues of secu-
rity; for a complete analysis of NTRU security, the reader is referred to [14] (see
also [11]).

1.3.1. Brute force attacks. To recover the private key f , an attacker Attila can
apply a brute force attack by trying all possible f ∈ Lf and testing whether f ∗ h
(mod q) has small entries (i.e., lies in Lg). Alternatively, Attila can try all possible
g ∈ Lg and test whether g ∗ h−1 (mod q) has small entries (i.e., lies in Lf ). In
practice one usually has #Lg < #Lf , so the key security is determined by #Lg,
while the individual message security is determined by #Lφ. There is a meet-in-
the-middle attack due to Odlyzko, which cuts the search time by the usual square
root (assuming a sufficient amount of storage); thus one finds that

Key Security =
√

#Lg =
1

dg!

√
N !

(N − 2dg)!
,

Message Security =
√

#Lφ =
1

d!

√
N !

(N − 2d)!
.

For instance, in a moderate security implementation of NTRU, with N = 107,
dg = 12 and d = 5, the key security is about 250, while the individual message
security is about 226.5.

1.3.2. Multiple transmission attacks. If Alice sends the same message m several
times using the same public key h but different random φ’s, the attacker Attila

will be able to recover a large part of the message. For suppose Alice transmits
ej ≡ φj ∗ h + m (mod q) for j = 1, . . . , r. Attila can then compute (ej − e1) ∗ h−1

(mod q), obtaining (φj − φ1) mod q for each j. But the coefficients of the φ’s are
so small that Attila recovers exactly φj − φ1, and he can use this to recover many
of the coefficients of φ1. If r is of moderate size, then Attila will recover enough of
φ1 to be able to test the remaining coefficients by brute force, and therefore he can
recover m. Thus, multiple transmissions are not advised.

1.3.3. Malleability and information leakage. The multiple transmission attack
mentioned above is one of many similar attacks on “raw” NTRU. For example,
encrypted messages are trivially malleable: an attacker can add or subtract 1 to
any coefficient of e and there is a good chance that the decrypted m will have 1



TOWARDS FASTER CRYPTOSYSTEMS, II 5

added to or subtracted from the same coefficient. In addition, there is at least one
bit of information leakage: due to the existence of the ring homomorphism

(a ∗ b)(1) = a(1)b(1) ∀a, b ∈ R,

a ciphertext e leaks m(1) through m(1) = e(1)−φ(1)h(1) (note that in the param-
eter sets above, φ(1) is a public parameter of the system). A sensible encryption
scheme must prevent this type of attack.

Therefore, to insure security, the NTRU primitive must be combined with a
secure message processing scheme (similar to the way RSA must be combined with
OAEP). In this scheme, Alice must combine m with some one-time randomness b
in some reversible way to obtain the blinded message m′ (this will ensure that m(1)
is hidden, and that even if the same m is encrypted twice, a different m′ will be
encrypted every time). Then she uses m and b to derive φ, using a hash function
which can be guaranteed to remove mathematical structure from the relationship
between m′ and φ. Finally, she calculates the ciphertext e = pφ ∗ h + m′. On
decryption, Bob recovers m′, extracts m and b from it, regenerates φ and checks that
pφ ∗ h + m′ is equal to the received e. This construction prevents both information
leakage and the adaptive chosen ciphertext attacks described in lecture 4.

1.3.4. Lattice attacks. Very briefly, NTRU’s security against lattice attacks is
derived from the large dimension of the underlying lattice. Initial experiments
using lattice reduction techniques such as LLL indicate that the time t(N) needed
to break an NTRU cryptosystem with parameter N grows like N log N , i.e., faster
than exponential. By extrapolating t(N) from small values of N , one obtains the
estimated breaking times and equivalent security levels given in section 1.2.

2. The SPIFI Identification Scheme

In this section, we describe the SPIFI identification scheme, we can be defined
for an arbitrary finite ring R; see [2] and [3]. The polynomials used in the SPIFI
protocol are taken to have only a few nonzero coefficients, hence particular values
of these polynomials can be computed very rapidly, and the storage requirements
remain quite modest.

2.1. Notation and Definitions. Throughout this section and the next, R
denotes an arbitrary finite (unitary) ring with R× its multiplicative group of units.
We denote by N a fixed multiple of the exponent exp(R×) of R×; then aN+1 = a
for all a ∈ R×∪{0}. We assume that any element of R can be encoded using about
log(#R) bits, where as usual log x denotes the binary logarithm of x > 0.

To illustrate our ideas, we occasionally consider two important special cases
referred to as the “Fq-case” and the “ZM -case.” In the Fq-case, R = Fq is the
finite field q elements, where q is a fixed prime power; in this case, one can take
N = exp(R×) = q − 1. In the ZM -case, R = Z/MZ is the ring of congruence
classes with respect to a fixed RSA modulus M = pℓ, where p and ℓ are (large)
prime numbers; in this case, one can either take N = ϕ(M) = (p− 1)(ℓ− 1), where
ϕ is the Euler function, or N = λ(M) = lcm(p−1, ℓ−1), where λ is the Carmichael

function. With any of the choices above, we have log(#R) ≈ log(#R×) ≈ log N .
Let d be a fixed positive integer. For any fixed subset S ⊆ R, we say that

a polynomial f(x1, . . . , xd) ∈ R[x1, . . . , xd] is an S-polynomial if every coefficient
of f belongs to S. Any expression of the form axe1

1 . . . xed

d is said to be monomial



6 WILLIAM D. BANKS

with coefficient a and exponent (e1, . . . , ed). Finally, we say that a polynomial
f(x1, . . . , xd) ∈ R[x1, . . . , xd] is τ-sparse if f has at most τ nonzero coefficients.

2.2. A Hard Problem. The hard problem underlying the SPIFI scheme can
be stated as follows:

Given 2m arbitrary elements α1, . . . αm, β1, . . . , βm ∈ R and a

set S ⊆ R of small cardinality, it is not feasible to find a τ-sparse

S-polynomial f(x) ∈ R[x] of degree deg(f) ≤ N with f(αj) = βj

for each 1 ≤ j ≤ m, provided that N is of “medium” size relative

to the choices of m ≥ 1, the cardinality #S, and the parameter

τ ≥ 3.

More precisely, one expects that if m, S and τ are fixed, then the problem requires
exponential time as N → ∞.

For example, let p be a prime, and consider the case where R is the finite field
Fp with p elements. Let aij ≡ αi

j (mod p) and bj ≡ βj (mod p) be chosen so that
0 ≤ aij , bj ≤ p − 1 for i = 0, . . . , p − 1 and j = 1, . . . , m. Then in this simplified
situation, the hard problem above is still equivalent to the problem of finding a
feasible solution to the integer programming problem

p−1∑

i=0

xiεiaij + yjp = bj, j = 1, . . . , m,

p−1∑

i=0

εi ≤ τ,

where yj ∈ Z, xi ∈ S, and εi ∈ {0, 1} for all i and j.

2.3. The SPIFI Protocol. We fix the ring R and some integer parameters
k ≥ 1 and r, s, t ≥ 3; this information is made public. The value of N is kept
private. Since only Alice needs to know this value, the choice of the ring R and
the value of N can be made by Alice.

To avoid a certain well known attack on the scheme (see [1] and the comments
below), we also require that R contains elements of multiplicative order in the inter-
val [0.5N1/4, 2N1/4]. Although this imposes certain number theoretic limitations
on the ring R and the integer N , in practice these constraints are easily satisfied.

The SPIFI protocol consists of an initial set-up, or signature creation, and a
verification procedure.

2.3.1. SPIFI Signature Creation. To create a digital signature, Alice uses the
following algorithm:

◦ Step 1. Alice selects at random k distinct elements a0, . . . ak−1 ∈ R×,
where a0 has a multiplicative order in the interval [0.5N1/4, 2N1/4].

◦ Step 2. Alice selects a random ⌈t/2⌉-sparse {0, 1}-polynomial f1(x) ∈
R[x] with deg(f1) ≤ N and f1(a0) ∈ R×. Next, she selects at random a
⌊t/2⌋-sparse {0, 1}-polynomial f2(x) ∈ R[x] with deg(f2) ≤ N , f2(a0) 6= 0
and f2(a0) 6= −f1(a0).



TOWARDS FASTER CRYPTOSYSTEMS, II 7

◦ Step 3. Alice computes the quantity A = −f2(a0)f1(a0)
−1 and creates

the polynomial f(x) = Af1(x) + f2(x). Then f is a t-sparse {0, 1, A}-
polynomial with deg(f) ≤ N , and f(a0) = 0. The polynomial f is Alice’s
private key.

◦ Step 4. Alice computes the numbers Cj = f(aj) for j = 1, . . . , k − 1.

◦ Step 5. Alice publishes the set of values {A, a0, . . . ak−1, C1, . . . , Ck−1}
as her public key.

2.3.2. SPIFI Verification Protocol. In order for Alice to verify her identity to
Bob, the following algorithm is used:

◦ Step 1. (Commitment) Alice selects a random r-sparse {0, 1}-polynomial
g(x) ∈ R[x] with deg(g) ≤ N and g(0) = 0. She then computes the
numbers

Dj = g(aj), j = 1, . . . , k − 1,

and sends the sum D = D1 + . . . + Dk−1 to Bob.

◦ Step 2. (Challenge) Bob selects a random s-sparse {0, 1, B}-polynomial
h(x) ∈ R[x] of degree deg(h) ≤ N and sends h to Alice. Here B 6∈
{0, 1, A}.

◦ Step 3. (Response) Alice computes

F (x) ≡ f(x)g(x)h(x) (mod xN+1 − x)

and sends the polynomial F and {D1, . . . , Dk−1} to Bob.

◦ Step 4. (Verification) Bob computes

Ej = h(aj), j = 1, . . . , k − 1,

and verifies that

D1 + . . . + Dk−1 = D

that F (x) is an rst-sparse {0, 1, A, B, AB}-polynomial of degree at most
N , that F (a0) = 0, and that F (aj) = CjDjEj for j = 1, . . . , k − 1.

Of course, there is a chance that the constructed polynomial F (x) is not a
{0, 1, A, B, AB}-polynomial due to collisions; however, if rst is substantially smaller
than N , then this chance is negligible (and in this case, Alice and Bob can repeat
the procedure).

2.4. Efficiency. As mentioned earlier, the sparsity of the polynomials plays a
dual role in that it not only guarantees the computational efficiency of this scheme,
but it also means that the storage requirements are minimal.

Using only (naive) repeated squaring, one can compute the power ae for any
a ∈ R and 0 ≤ e ≤ N in about 2 log N arithmetic operations in R in the worst case,
or in about 1.5 logN arithmetic operations “on average”; see Section 1.3 of [4],
Section 4.3 of [5], or Section 2.1 of [6]. Consequently, any τ -sparse polynomial



8 WILLIAM D. BANKS

f(x) ∈ R[x] of degree at most N can be evaluated at any point using only O(τ log N)
arithmetic operations in R.

If 0 ∈ S ⊆ R, then any τ -sparse S-polynomial f(x) ∈ R[x] of degree at most N
can be encoded with about τ log(N ·#S −N) bits. To do this, we have to identify
at most τ positions at which f has a nonzero coefficient. The encoding of each
position requires about log N bits, and for each such position, about log(#S − 1)
bits are then required to determine the corresponding element of S. For example,
the signature must encode rst positions of the polynomial F (corresponding to its
nonzero coefficients), which takes about rst log N bits. Each position requires two
additional bits to distinguish between the possible nonzero coefficients 1, A, B and
AB. The encoding of D1, . . . , Dk−1 and their sum D requires about k log(#R) bits.
Consequently, the total signature size is about rst log(4N) + k log(#R) bits.

Putting everything together, after simple calculations we derive that (using the
naive repeated squaring exponentiation)

◦ the initial set-up takes O(kt log N) arithmetic operations in R;
◦ the private key size is about t log(2N) bits;
◦ the public key size is about k(log(#R) + log(#R×)) bits;
◦ signature generation, that is, computation of the polynomial F , the ele-

ments Dj, j = 1, . . . , k − 1, and their sum D, takes O(rst) arithmetic op-
erations with integer numbers in the range [0, 2N ] and O ((k − 1)r log N)
arithmetic operations in R;

◦ the signature size is about rst log(4N) + k log(#R) bits;
◦ signature verification, that is, computation of D1 + . . . + Dk−1, F (aj)

and the products CjDjEj , j = 1, . . . , k − 1, takes about O (krst log N)
arithmetic operations in R.

We remark that the practical and asymptotic performance of the SPIFI scheme
can be improved if one uses more sophisticated algorithms to evaluate powers and
sparse polynomials; see [4, 5, 6, 16, 18].

2.5. Some Security Issues. Here we briefly discuss a few issues of security;
for a complete analysis of SPIFI security, the reader is referred to [3].

2.5.1. Faking the key. It is clear that recovering or faking the private key (that

is, finding a t-sparse {0, 1, A}-polynomial polynomial f̃(x) ∈ R[x] with f̃(a0) = 0

and f̃(aj) = Cj for j = 1, . . . , k − 1) or faking the signature (that is, finding a

rst-sparse {0, 1, A, B, AB}-polynomial F̃ (x) ∈ R[x] with F̃ (a0) = 0 and F̃ (aj) =
CjDjEj for j = 1, . . . , k − 1) are both versions of the hard problem mentioned
in Section 2.2. Hence the security of the SPIFI scheme relies on the difficulty of
solving the hard problem in a computationally feasible manner.

2.5.2. Factorization attacks. Note that without the reduction

f(x)g(x)h(x) (mod xN+1 − x),

one possible attack might be via polynomial factorization. In any practical imple-
mentation of this scheme, one should make sure that both f and g have terms of
degree greater than N/2 so there are some reductions in the Response step. On the
other hand, even without the reduction modulo xN+1 − x, the factorization attack
would not be likely to succeed because of the large degrees of the polynomials in-
volved. All known factorization algorithms (as well as their important components
such as irreducibility testing and the greatest common divisor algorithms) do not



TOWARDS FASTER CRYPTOSYSTEMS, II 9

take any special advantage of sparsity or structure of the coefficients; see [5, 17].
Moreover, the first factor that any of these algorithms would find is the trivial one,
i.e., the factor (x−a0). But the quotient F (x)/(x−a0) is most likely neither sparse
nor an S-polynomial for any small set S. Finally, we remark that if one works in
the setting of a ring R that is not a field (such as the ZM -case), then the problem
of factorization becomes much more complicated, so this type of attack is even less
likely to succeed.

2.5.3. Lattice attacks. One might also consider lattice attacks. In particular,
one can try to select a rt-sparse {0, 1, A}-polynomial e(X) ∈ R[x] with e(a0) = 0,
compute

Dj = e(aj)C
−1
j , j = 1, . . . , k − 1,

and then send these values together with

F (x) ≡ e(x)h(x) (mod xN+1 − x)

to the verifier. In principal, this attack could succeed since finding such a polyno-
mial e is type of knapsack problem. But since the dimension of the corresponding
lattice is equal to the (very large) degree N of the polynomials involved, any such
attack seems completely infeasible at this time. With current technology, one can
reduce lattices of degrees only in the hundreds, while in any practical implementa-
tion of the SPIFI scheme the lattices will have dimension N , which is roughly the
size of an RSA modulus.

2.5.4. Discrete logarithm attacks. One might also attempt to construct such a
polynomial e by solving the discrete logarithm in R to base a0 (see [1]). But a0 has
been specifically selected to have an order that is small enough to defeat this threat.
In fact, the basic SPIFI protocol can be modified slightly to avoid all attacks of
this type. Specifically, one requests that for each of the polynomials f(x), g(x)
and h(x), the sum of the degrees of the monomials is divisible by the integer N .
In this case, the same fact also holds for F (x). Indeed, if an s-sparse polynomial
and a t-sparse polynomial have monomials of degrees n1, . . . , ns and m1, . . . , mt,
respectively, with

s∑

i=1

ni ≡ 0 (mod N) and

t∑

j=1

mj ≡ 0 (mod N)

then their product has st monomials ni + mj , i = 1, . . . , s, j = 1, . . . , t (unless a
collision occurs, which is very unlikely). Then

s∑

i=1

t∑

j=1

(ni + mj) =
s∑

i=1


tni +

t∑

j=1

mj




= t

s∑

i=1

ni + s

t∑

j=1

mj ≡ 0 (mod N)

as claimed. With this additional constraint, the discrete logarithm attack from [1]
can only succeed with probability 1/N , since in the collection of rt-sparse {0, 1, A}-
polynomials e(X) ∈ R[x] with e(a0) = 0, the sum of the degrees of the monomials
are uniformly distributed modulo N .



10 WILLIAM D. BANKS

2.6. Remarks. Although using composite moduli might add some additional
security features to the SPIFI scheme, the security is not compromised in the ZM -
case even when the factorization M = pℓ is known. In fact, in the case where the
modulus is a (sufficiently large) prime, that is, in the Fq-case, the scheme is quite
secure.

It has turned out that Alice must make some commitment about the values of
D1, . . . , Dk−1 before she receives the polynomial h from Bob, otherwise there is a
very simple attack on the scheme. On the other hand, sending the whole set to
Bob before he selects his polynomial h has its own dangers as well. Sending the
sum D = D1 + . . . + Dk−1 is just one of many possible ways for Alice to undertake
some commitments about the values of D1, . . . , Dk−1. Another way is to just send
about half of the bits of D1, . . . , Dk−1 in the Commitment step and then send the
remaining bits in the Response step. This latter method seems to improve on the
overall security against an on-line attack.

Finally, we mention that the SPIFI scheme can be modified so that the value
N = ϕ(M) or λ(M) (see Section 2.1) remains a secret known only to Alice. Indeed,
Alice can choose g in Step 1 of the verification protocol so that the reduction modulo
xN+1 − x that occurs in Step 3 produces a polynomial whose degree is not “too
close” to N. In fact, “on average” it should be about N(1 − 1/2rst) for the SPIFI
scheme and about N(1−1/2R) for the ENROOT scheme (see Section 3 below) since
the corresponding polynomials are rst-sparse and R-sparse, respectively. Thus, in
the case that N = ϕ(M), the degree of F gives a worse approximation to N than
the value of M itself, at least if M = pℓ is a product of two primes of roughly the
same order.

3. The ENROOT Cryptosystem

In this section, we describe the ENROOT cryptosystem for an arbitrary finite
ring R; see [7] and [3]. Since the polynomial ring R[x1, . . . , xd], where d ≥ 2 is
fixed in this construction, it is often convenient to employ vector notation, writing
f(~x) for f(x1, . . . , xd), R[~x] for R[x1, . . . , xd], etc.

3.1. A Hard Problem. Our one-way functions are based on the following
hard problem:

Given the τ-sparse polynomials f1(~x), . . . , fd(~x) ⊂ R[~x] of degree

at most N , it is not feasible to find an element ~a = (a1, . . . , ad) ∈
Rd with fj(~a) = 0 for j = 1, . . . , d, provided that N is sufficiently

large relative to the choices of d ≥ 2 and τ ≥ 3.

Again, we expect that if one fixes the number d ≥ 2 and the sparsity τ ≥ 3,
then the problem requires exponential time as N → ∞ (see Section 3.4 below).

3.2. The ENROOT Protocol. We fix the ring R and the integers d > ℓ ≥ 3,
sj , tj ≥ 3, j = 1, . . . , d such that t1 = . . . = tℓ. This information is made public.
The value of N may be kept private. In fact, only Bob needs this value so the
choice of the ring R and the value of N is made by Bob.

The ENROOT protocol consists of the following three steps:



TOWARDS FASTER CRYPTOSYSTEMS, II 11

◦ Key Creation. Alice selects d random elements a1, . . . , ad ∈ R× which
become her private key.

Next, Alice randomly selects d polynomials hj(~x) ∈ R[~x], of degree
at most #R, containing at most tj − 1 monomials, j = 1, . . . , d, such that
the first ℓ polynomials h1(~x), . . . , hℓ(~x) have the same set E of exponents
of their monomials. Finally, Alice publishes the polynomials fj(~x) =
hj(~x) − hj(~a) for j = 1, . . . , d as her public key, where ~a is the vector
(a1, . . . , ad) ∈ (R×)d.

◦ Encryption. To send a message m ∈ R, Bob selects d random poly-
nomials gj(~x) ∈ R[~x] of degree at most N , containing at most sj − 1
monomials such that one monomial has an exponent from the set E and
having nonzero constant coefficients. Bob then computes the reduction
F (~x) of the polynomial

m + f1(~x)g1(~x) + . . . + fd(~x)gd(~x)

modulo the ideal in R[~x] generated by {xN+1
1 − x1, . . . , x

N+1
d − xd}, and

he sends F (~x) to Alice.

◦ Decryption. To decrypt the message, Alice simply computes F (~a) = m.

3.3. Efficiency. The sparsity of the polynomials involved again provides com-
putational efficiency for this scheme. Using repeated squaring, one can compute
the monomial ae1

1 . . . aed

d for any (a1, . . . , ad) ∈ Rd and 0 ≤ ej ≤ #R, j = 1, . . . , d,
in about O(d log(2#R)) arithmetic operations in R. Consequently, any τ -sparse
polynomial f(~x) ∈ R[~x] of degree at most #R can be evaluated at any point in Rd

in about O(τd log(2#R)) arithmetic operations in R.
We remark that any τ -sparse polynomial f(~x) ∈ R[~x] of degree at most #R

can be encoded with about τ((d+1) log(#R)) bits. To do this, we have to identify
at most τ monomials for which f has a nonzero coefficient. The encoding of each
monomial xe1

1 . . . xed

d requires about d log(#R) bits, and for each such monomial
about log(#R) bits are then required to encode the coefficient.

Let us set

T =

d∑

j=1

tj , S =

d∑

j=1

sj , R =

d∑

j=1

tjsj , Q = (d + 1) log(#R).

Then, after simple calculations, we derive that (using the naive repeated squaring
exponentiation)

◦ generation of the public key: producing the vector ~a requires O(d log(#R))
random bits; to construct the polynomials hj(~x) requires the generation of
another (T −d)Q random bits; the computation of the hj(~a), j = 1, . . . , d,
takes O(Td log(2#R)) arithmetic operations in R;

◦ the private key size is about d log(#R) + (T − d)Q bits;
◦ the public key size is about TQ bits;
◦ cost of encryption: to construct the polynomials gj(~x) requires the gen-

eration of about d log(#R) + (S − d)Q random bits; the computation of
the polynomial F (~x) requires about R arithmetic operations in R plus Rd
additions in Z/NZ;



12 WILLIAM D. BANKS

◦ the size of the encrypted message is about RQ bits;
◦ the cost of decryption: the evaluation of F (~a) = m takes O(Rd log(2N))

arithmetic operations in R.

In the Fq-case, the above scheme can be accelerated if Alice sets e1 = 1, selects
a random element a ∈ R× and d − 1 random exponents e2, . . . , ed ∈ Z/(q − 1)Z,
and defines ~a as (ae1 , . . . , aed) ∈ (R×)d. Again we mention that the performance of
the ENROOT algorithm can be improved if one uses more sophisticated algorithms
to evaluate powers and sparse polynomials; see [4, 5, 6, 16, 18]. Another possible
way to improve performance is to use at Step 4 only k < d randomly selected
polynomials from the set {f1, . . . , fd}. For the same level of security, there will be
a trade-off between the complexity of Step 2 (hence the size of the private key) and
the complexity of Step 4.

3.4. Security Considerations. The obvious way to attack the ENROOT
cryptosystem is to try to find a simultaneous solution to the system of polynomial
equations

(3.1) fj(~x) = 0, j = 1, . . . , d,

which amounts to solving the hard problem in Section 3.1. All known algorithms
to solve systems of polynomial equations of total degree n require (regardless of
sparsity) an amount of time that is polynomial in n (that is, exponential time with
respect to the bit length of n); see [8, 17]. Since the degrees of the polynomials
in (3.1) will be very large in practical implementations (about the size of N), this
attack is totally infeasible.

Another possibility is to simply “guess” a solution. One expects that a system
of τ -sparse polynomial equations in d variables of high degree over R will have
very few zeros if d ≥ 2, even though the number of zeros of a polynomial over an
arbitrary ring is not necessarily bounded by the degree. Working heuristically, if we

view the vector of polynomials ~f(~x) = (f1(~x), . . . , fd(~x)) as defining a “random”

map ~f : Rd → Rd, then the expected number of roots common to all of the

polynomials fj(~x) (that is, the cardinality of the kernel of ~f) is given by

1 − #Rd(1−#R
d)

1 − (1 − #R−d)#Rd
≈

1

1 − e−1
≈ 1.5819,

hence this brute force attack will take roughly 0.245#Rd trials “on average” to
succeed. For arbitrary rings, we expect the choice d ≥ 2 will provide the 290 level
of security against this attack if N is at least 50 bits long.

Although it is tempting to choose d = ℓ = 1, in this case there are more
sophisticated attacks that provide some information about Alice’s private key. One
of these is based upon consideration of the difference set of the powers of monomials
occurring in the polynomial F (x). Indeed, if

f(x) =
t∑

i=1

Aix
ni and g(x) =

s∑

j=1

Bix
mj

are the polynomials selected by Alice and Bob, respectively, with n1 = m1 = 0
(and such that the sets {n1, . . . , nt} and {m1, . . . , ms} have a reasonably large
intersection) then F (x) contains at most τ ≤ st monomials Cνxrν , where

rν ≡ ni + mj (mod N), ν = 1, . . . , τ,



TOWARDS FASTER CRYPTOSYSTEMS, II 13

for some i = 1, . . . , t and j = 1, . . . , s.
Consequently, finding the repeated elements in the difference set

∆ = {rν − rη (mod N) | ν, η = 1, . . . , τ} ,

may reveal some information about the polynomial f(x).
In addition, if d = 1, one can also compute the greatest common divisor of f(x)

with xN+1 − x. Since this polynomial will have lower degree than f in general, it
would be easier to find a root from a theoretical standpoint. Although it is not
clear how to do this in an amount of time that is polynomial in the sparsity rather
than in the degree of f(x), it remains a potential threat.

On the other hand, these attacks on ENROOT fail when d > ℓ ≥ 2. Indeed, the
first attack may help to gain some information about the total set of monomials in
all of the polynomials f1, . . . , fd, but it does not provide any information about the
individual polynomials since it is impossible to determine which monomial comes
from which product fjgj , j = 1, . . . , d. In order to try all possible partitions into d
groups of sjtj monomials, j = 1, . . . , d, needs to examine

(3.2) P =
R !

(s1t1) ! . . . (sdtd) !

total combinations. In particular, the most interesting case is when s1, . . . , sd are
of approximately the same size as well as t1, . . . , td, that is, when sj ∼ s and tj ∼ t
for j = 1, . . . , d. In this case

logP ∼ st(d log d),

hence the number P of combinations to consider grows exponentially with respect
to all parameters, provided that d > ℓ ≥ 2.

The second attack fails as well since the notion of greatest common divisor
for multivariate polynomials is not defined, and taking resolvents to reduce to one
variable is too costly.

However the case d = 2 is still not secure. Indeed, in this case we have either
d = ℓ = 2 or ℓ = 1. In either case there are very simple linear algebra attacks which
do not apply when d > ℓ ≥ 2 which we believe to be completely secure against the
aforementioned attacks. There are some other alternative ways to guarantee that
there are sufficiently many common elements in the sets of exponents of monomials
of f1, . . . , fd. In particular, the first few monomials of each polynomial h1, . . . , hd

can be selected the same exponents.
Finally, we remark that the ENROOT cryptosystem is probably secure against

lattice attacks for the same reason that the SPIFI scheme is secure (see Section 2.5):
most lattice attacks would necessarily be based on lattices of dimension equal to
the cardinality of #R, and in practical implementations this number would be very
large.

References

[1] F. Bao, R. H. Deng, W. Geiselmann, C. Schnorr, R. Steinwandt and H. Wu, ‘Crytoanalysis

of two sparse polynomial based cryptosystems’, Proc. Int. Conf. on Public Key Cryptog-

raphy, PKC’2001, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2001, to appear.
[2] W. Banks, D. Lieman and I. E. Shparlinski, ‘An identification scheme based on sparse

polynomials’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1751, 68–74.



14 WILLIAM D. BANKS

[3] W. Banks, D. Lieman, I. Shparlinski, and V. To, “Cryptographic applications of sparse
polynomials over finite rings,” in Proceedings of ICISC2000 (Seoul ), Lecture Notes in
Comput. Sci. 2015, Springer-Verlag, Berlin (2001).

[4] H. Cohen A course in computational algebraic number theory , Springer-Verlag, Berlin,
1997.

[5] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge Univ. Press,
Cambridge, 1999.

[6] D. M. Gordon, ‘A survey of fast exponentiation methods’, J. Algorithms, 27 (1998), 129–
146.

[7] D. Grant, K. Krastev, D. Lieman and I. E. Shparlinski, ‘A public key cryptosystem based
on sparse polynomials’, Proc. International Conference on Coding Theory, Cryptography

and Related Areas, Guanajuato, 1998 , Springer-Verlag, Berlin, 2000, 114–121.
[8] M.-D. A. Huang and Y.-C. Wong, ‘Solving systems of polynomial congruences modulo a

large prime’, Proc. 37 IEEE Symp. on Found. of Comp. Sci., 1996, 115–124.
[9] J. Hoffstein, B. S. Kaliski, D. Lieman, M. J. B. Robshaw and Y. L. Yin, ‘A new identification

scheme based on polynomial evaluation’, US Patent , No. No. 6076163, 2000.
[10] J. Hoffstein, D. Lieman and J. H. Silverman, ‘Polynomial Rings and Efficient Public Key

Authentication’, Proc. the International Workshop on Cryptographic Techniques and E-

Commerce, City University of Hong Kong Press, to appear.

[11] J. Hoffstein, J. Pipher and J. H. Silverman, ‘NTRU: A ring based public key cryptosystem’,
Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1433 (1998), 267–288.

[12] J. Hoffstein and J. H. Silverman, ‘Polynomial rings and efficient public key authentica-
tion II’, Proc. the International Workshop on Cryptography and Computational Number

Theory, Singapore, 1999 , Birkhäuser, to appear.
[13] J. Hoffstein and J. H. Silverman, ‘Optimizations for NTRU’, Public Key Cryptography and

Computational Number Theory, Warsaw, 2000 , available from http://www.ntru.com.
[14] N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte, ‘Choosing Parameter

Sets for NTRUEncrypt with NAEP and SVES-3’, Proceedings of CT-RSA 2005 ; expanded
version available from http://www.ntru.com.

[15] A. Knopfmacher and J. Knopfmacher, ‘Counting polynomials with a given number of zeros
in a finite field’, Linear and Multilinear Algebra, 26 (1990), 287–292.

[16] N. Pippenger, ‘On the evaluation of powers and monomials’, SIAM J. Comp., 9 (1980),
230–250.

[17] I. E. Shparlinski, Finite fields: Theory and computation, Kluwer Acad. Publ., Dordrecht,
1999.

[18] A. C.-C. Yao, ‘On the evaluation of powers’, SIAM J. Comp., 5 (1976), 100–103.

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

E-mail address: bbanks@math.missouri.edu


